Sample records for active adsorption sites

  1. Wrinkles and Folds of Activated Graphene Nanosheets as Fast and Efficient Adsorptive Sites for Hydrophobic Organic Contaminants.

    PubMed

    Wang, Jun; Chen, Baoliang; Xing, Baoshan

    2016-04-05

    To create more wrinkles and folds as available adsorption sites, graphene nanosheets (GNS) were thermally treated with KOH for morphological alteration. The surface structures and properties of the activated graphene nanosheets (AGN) were characterized by BET-N2, SEM, TEM, Raman, XRD, XPS, and FTIR. After KOH etching, the highly crystal structure was altered, self-aggregation of graphene layers were evidently relieved, and more single to few layer graphene nanosheets were created with wrinkles and folds. Also both specific surface area and micropore volume of AGN increased relative to GNS. The adsorption of AGN toward p-nitrotoluene, naphthalene and phenanthrene were greatly enhanced in comparison with GNS, and gradually promoted with increasing degree of KOH etching. Adsorption rate of organic contaminants on AGN was very fast and efficient, whereas small molecules showed higher adsorption rates due to the more porous surface of graphene. In addition to π-π interaction, the high affinities of p-nitrotoluene to AGN are suggested from strong electron charge transfer interactions between nitro groups on p-nitrotoluene and defect sites of AGN. A positively linear correlation between organic molecule uptake and the micropore volume of AGN indicated that pore-filling mechanism may play an important role in adsorption. Morphological wrinkles and folds of graphene nanosheets can be regulated to enhance the adsorption capability and kinetics for efficient pollutant removal and to selectively preconcentrate adsorbates with different sizes for detection.

  2. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    PubMed

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  3. Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)

    NASA Astrophysics Data System (ADS)

    Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.

    2016-04-01

    The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.

  4. A supramolecular strategy for self-mobile adsorption sites in affinity membrane.

    PubMed

    Lin, Ligang; Dong, Meimei; Liu, Chunyu; Wei, Chenjie; Wang, Yuanyuan; Sun, Hui; Ye, Hui

    2014-09-01

    Disclosed here is the design of a novel supramolecular membrane with self-mobile adsorption sites for biomolecules purification. In the 3D micropore channels of membrane matrix, the ligands are conjugated onto the cyclic compounds in polyrotaxanes for protein adsorption. During membrane filtration, the adsorption sites can rotate and/or slide along the axial chain, which results in the enhanced adsorption capacity. The excellent performance of supra-molecular membrane is related with the dynamic working manner of adsorption sites, which plays a crucial role on avoiding spatial mismatching and short-circuit effect. The supra-molecular strategy described here has general suggestions for the "sites" involved technologies such as catalysis, adsorption, and sensors, which is of broad interest. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  6. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    PubMed

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. p-Chlorophenol adsorption on activated carbons with basic surface properties

    NASA Astrophysics Data System (ADS)

    Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek

    2010-05-01

    The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.

  8. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Thiel, Patricia A.

    We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less

  9. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites

    DOE PAGES

    Liu, Da-Jiang; Thiel, Patricia A.

    2018-03-28

    We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less

  10. A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.

    Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less

  11. A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry

    DOE PAGES

    Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.; ...

    2017-02-24

    Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less

  12. A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry.

    PubMed

    Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R C; Stack, Andrew G; Riman, Richard; Anderko, Andre; Navrotsky, Alexandra; Bryantsev, Vyacheslav S

    2017-03-15

    Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J. Phys. Chem. C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. In this work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [101[combining macron]0] > [101[combining macron]1] > [101[combining macron]2] > [0001] > [112[combining macron]2] > [101[combining macron]4] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce 3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Due to similar water adsorption energies on bastnäsite [101[combining macron]1] and calcite [101[combining macron]4] surfaces, the design of collector molecules that selectively bind to

  13. Adsorption kinetics of surfactants on activated carbon

    NASA Astrophysics Data System (ADS)

    Arnelli; Aditama, WP; Fikriani, Z.; Astuti, Y.

    2018-04-01

    A study on the adsorption of both cationic and anionic surfactants using activated carbon as well as the investigation of the adsorption isotherms and adsorption kinetics has been conducted. The results showed that the adsorption of sodium lauryl sulfate (SLS) by activated carbon was Langmuir’s adsorption isotherm while its adsorption kinetics showed pseudo-second order with an adsorption rate constant of 2.23 x 103 g mg-1 hour-1. Meanwhile, the adsorption of HDTMA-Br by activated carbon showed that the isotherm adsorption tended to follow Freundlich’s isotherm and was pseudo-second order with an adsorption rate constant of 89.39 g mg-1 hour-1.

  14. DFT study on stability and H2 adsorption activity of bimetallic Au79-nPdn (n = 1-55) clusters

    NASA Astrophysics Data System (ADS)

    Liu, Xuejing; Tian, Dongxu; Meng, Changgong

    2013-03-01

    The stability and H2 adsorption activity of bimetallic Au79-nPdn (n = 1-55) clusters were studied by density functional theory with GGA-PW91 functional. The stability order for four Pd substitution types is face > mid-edge > corner > edge, and the stability is improved with increasing Pd content. In contrast with the stability order, H2 adsorption activity is corner ≈ edge > mid-edge > face. The Au36Pd43 (3) with Au:Pd ≈ 1:1 ratio and twenty-four Pd substitutions at (1 1 1) facets and nineteen Pd substitutions at subshell sites shows high stability and H2 non-activated dissociation activity. The partial density of d-states and d band center revealed that the electronic properties are closely associated with the geometric characteristic and adsorption activity. Correlating the d band center ɛd and the adsorption energies, the ɛd order agrees with the adsorption activity that the Pd substitution at edge and corner sites are more active than at face and mid-edge sites.

  15. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite

    NASA Astrophysics Data System (ADS)

    Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas

    2014-04-01

    Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol

  16. Adsorption of SOx and NOx in activated viscose fibers.

    PubMed

    Plens, Ana Carolina O; Monaro, Daniel L G; Coutinho, Aparecido R

    2015-01-01

    SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF) were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.

  17. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles

    USGS Publications Warehouse

    Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.

    2006-01-01

    Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.

  18. U(VI) adsorption on aquifer sediments at the Hanford Site.

    PubMed

    Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V

    2007-08-15

    Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.

  19. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  20. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    PubMed

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAadsorption of contaminants is favored at acid pH (pH<5) due to the establishment of attractive electrostatic interactions. In dynamic regime, the amount of pollutant adsorbed was much higher for PA, followed by DPA, and was approximately similar for BPA, 2,4-D, and MCPA. Finally, the amount of BPA and DPA adsorbed on activated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    PubMed

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  2. Identification of adsorption sites in Cu-BTC by experimentation and molecular simulation.

    PubMed

    García-Pérez, Elena; Gascón, Jorge; Morales-Flórez, Víctor; Castillo, Juan Manuel; Kapteijn, Freek; Calero, Sofía

    2009-02-03

    The adsorption of several quadrupolar and nonpolar gases on the Metal Organic Framework Cu-BTC has been studied by combining experimental measurements and Monte Carlo simulations. Four main adsorption sites for this structure have been identified: site I close to the copper atoms, site I' in the bigger cavities, site II located in the small octahedral cages, and site III at the windows of the four open faces of the octahedral cage. Our simulations identify the octahedral cages (sites II and III) and the big cages (site I') as the preferred positions for adsorption, while site I, near the copper atoms, remains empty over the entire range of pressures analyzed due to its reduced accessibility. The occupation of the different sites for ethane and propane in Cu-BTC proceeds similarly as for methane, and shows small differences for O2 and N2 that can be attributed to the quadrupole moment of these molecules. Site II is filled predominantly for methane (the nonpolar molecule), whereas for N2, the occupation of II and I' can be considered almost equivalent. The molecular sitting for O2 shows an intermediate behavior between those observed for methane and for N2. The differences between simulated and experimental data at elevated temperatures for propane are tentatively attributed to a reversible change in the lattice parameters of Cu-BTC by dehydration and by temperature, blocking the accessibility to site III and reducing that to site I'. Adsorption parameters of the investigated molecules have been determined from the simulations.

  3. Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size

    NASA Astrophysics Data System (ADS)

    Sellaoui, Lotfi; Mechi, Nesrine; Lima, Éder Cláudio; Dotto, Guilherme Luiz; Ben Lamine, Abdelmottaleb

    2017-10-01

    Based on statistical physics elements, the equilibrium adsorption of diclofenac (DFC) and nimesulide (NM) on activated carbon was analyzed by a multilayer model with saturation. The paper aimed to describe experimentally and theoretically the adsorption process and study the effect of adsorbate size using the model parameters. From numerical simulation, the number of molecules per site showed that the adsorbate molecules (DFC and NM) were mostly anchored in both sides of the pore walls. The receptor sites density increase suggested that additional sites appeared during the process, to participate in DFC and NM adsorption. The description of the adsorption energy behavior indicated that the process was physisorption. Finally, by a model parameters correlation, the size effect of the adsorbate was deduced indicating that the molecule dimension has a negligible effect on the DFC and NM adsorption.

  4. Promoting the Adsorption of Metal Ions on Kaolinite by Defect Sites: A Molecular Dynamics Study

    PubMed Central

    Li, Xiong; Li, Hang; Yang, Gang

    2015-01-01

    Defect sites exist abundantly in minerals and play a crucial role for a variety of important processes. Here molecular dynamics simulations are used to comprehensively investigate the adsorption behaviors, stabilities and mechanisms of metal ions on defective minerals, considering different ionic concentrations, defect sizes and contents. Outer-sphere adsorbed Pb2+ ions predominate for all models (regular and defective), while inner-sphere Na+ ions, which exist sporadically only at concentrated solutions for regular models, govern the adsorption for all defective models. Adsorption quantities and stabilities of metal ions on kaolinite are fundamentally promoted by defect sites, thus explaining the experimental observations. Defect sites improve the stabilities of both inner- and outer-sphere adsorption, and (quasi) inner-sphere Pb2+ ions emerge only at defect sites that reinforce the interactions. Adsorption configurations are greatly altered by defect sites but respond weakly by changing defect sizes or contents. Both adsorption quantities and stabilities are enhanced by increasing defect sizes or contents, while ionic concentrations mainly affect adsorption quantities. We also find that adsorption of metal ions and anions can be promoted by each other and proceeds in a collaborative mechanism. Results thus obtained are beneficial to comprehend related processes for all types of minerals. PMID:26403873

  5. Activation thermodynamics of virus adsorption to solids.

    PubMed Central

    Preston, D R; Farrah, S R

    1988-01-01

    The kinetics of bacteriophage MS2, T2, and f2 adsorption to powdered nitrocellulose and disrupted Seitz S1 filters at pH 7 were determined as a function of temperature. Data from these studies were combined with data produced in a previous study on MS2 adsorption to clay by Stagg et al. (Appl. Environ. Microbiol. 33:385-391, 1977). These workers studied the adsorption of MS2 to bentonite clay as a function of temperature. Data from both this previous study and the current one were used to calculate the thermodynamic parameters of virus adsorption. The results show that adsorption of bacteriophages to the solids tested is a physical process (energy of activation, less than 40 kcal [168 J]/mol) rather than a chemical process (energy of activation, greater than 40 kcal/mol). The free energy of activation showed a high negative correlation (r = -0.904, r2 = 0.817) with the percentage of virus adsorption to the solids tested. The energy of activation was highly negatively correlated with the percentage of virus adsorption to nitrocellulose and clay (r = -0.913, r2 = 0.834) but poorly correlated with the percentage of virus adsorption to disrupted Seitz S1 filters (r = -0.348, r2 = 0.121). In general, under conditions in which the percentage of virus adsorption was low, the energy of activation, the free energy of activation, and the entropy of activation were high. Increasing the percentage of virus adsorbed by changing the adsorbing conditions or changing the adsorbing solid decreased the energy of activation, the free energy of activation, and the entropy of activation. PMID:3214152

  6. Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.

    2011-12-01

    The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at p

  7. Removal of carbonyl sulfide using activated carbon adsorption.

    PubMed

    Sattler, Melanie L; Rosenberk, Ranjith Samuel

    2006-02-01

    Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H2S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H2S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns, 6 in. in depth and 1 in. in diameter. Inlet COS concentrations varied from 35 to 49 ppmv (86-120 mg/m3). RHs of 17%, 30%, 50%, and 90% were tested. For competitive adsorption studies, H2S was tested at 60 ppmv, with COS at 30 ppmv. COS, RH, H2S, and ammonia concentrations were measured using an International Sensor Technology Model IQ-350 solid state sensor, Cole-Parmer humidity stick, Interscan Corp. 1000 series portable analyzer, and Drager Accuro ammonia sensor, respectively. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H2S in the gas stream. More adsorption sites appear to be available to H2S, a smaller molecule. Ammonia, which has been found to increase H2S adsorption capacity, did not increase the capacity for COS.

  8. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    PubMed

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  9. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    PubMed

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry

    PubMed Central

    Ghouma, Imen; Limousy, Lionel; Bennici, Simona

    2018-01-01

    The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD) was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2. PMID:29670008

  11. Cryogenic adsorption of nitrogen on activated carbon: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Zou, Long-Hui; Liu, Hui-Ming; Gong, Ling-Hui

    2018-03-01

    A cryo-sorption device was built based on a commercial gas sorption analyzer with its sample chamber connected to the 2nd stage of the Gifford-McMahon (GM) cryocooler (by SUMITOMO Corporation), which could provide the operation temperature ranging from 4.5 K to 300 K; The nitrogen adsorption isotherms ranging from 95 to 160 K were obtained by volumetric method on the PICATIF activated carbon. Isosteric heat of adsorption was calculated using the Clausius-Clapeyron equation and was around 8 kJ/mol. Conventional isotherm models and the artificial neural network (ANN) were applied to analyze the adsorption data, the Dual-site Langmuir and the Toth equation turned out to be the most suitable empirical isotherm model; Adsorption equilibrium data at some temperature was used to train the neural network and the rest was used to validate and predict, it turned out that the accuracy of the prediction by the ANN increased with increasing hidden-layer, and it was within ±5% for the three-hidden-layer ANN, and it showed better performance than the conventional isotherm model; Considering large time consumption and complexity of the adsorption experiment, the ANN method can be applied to get more adsorption data based on the already known experimental data.

  12. Significance of Graphitic Surfaces in Aurodicyanide Adsorption by Activated Carbon: Experimental and Computational Approach

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Dhiman; Depci, Tolga; Prisbrey, Keith; Miller, Jan D.

    Despite tremendous developments in industrial use of activated carbon (AC) for gold adsorption, specific aurodicyanide [Au(CN)2-] adsorption sites on the carbon have intrigued researchers. The graphitic structure of AC has been well established. Previously radiochemical and now, XPS and Raman characterizations have demonstrated higher site-specific gold adsorption on graphitic edges. Morphological characterizations have revealed the presence of slit-pores (5-10 Å). Molecular-dynamics-simulation (MDS) performed on graphitic slit-pores illustrated gold-cyanide ion-pair preferentially adsorbs on edges. Ab-initio simulations predicted lower barrier for electron sharing in pores with aurodic yanide, indicating tighter bonding than graphitic surface and was well supported by Gibbs energy calculations too. Interaction energy as function of the separation distance indicated tighter bonding of gold cyanide to the graphite edges than water molecules. Selective adsorption of aurodicyanide ion-pair seems to be related to low polarity of gold complex and its accommodation at graphitic edges.

  13. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion.

    PubMed

    Sloufová, Ivana; Sisková, Karolína; Vlcková, Blanka; Stepánek, Josef

    2008-04-28

    Changes in morphology, surface reactivity and surface-enhancement of Raman scattering induced by modification of borate-stabilized Ag nanoparticles by adsorbed chlorides have been explored using TEM, EDX analysis and SERS spectra of probing adsorbate 2,2'-bipyridine (bpy) excited at 514.5 nm and evaluated by factor analysis. At fractional coverages of the parent Ag nanoparticles by adsorbed chlorides <0.6, the Ag colloid/Cl(-)/bpy systems were found to be constituted by fractal aggregates of Ag nanoparticles fairly uniform in size (10 +/- 2 nm) and SERS spectra of Ag(+)-bpy surface species were detected. The latter result was interpreted in terms of the presence of oxidized Ag(+) and/or Ag(n)(+) adsorption sites, which have been encountered also in systems with the chemically untreated Ag nanoparticles. At chloride coverages >0.6, a fusion of fractal aggregates into the compact aggregates of touching and/or interpenetrating Ag nanoparticles has been observed and found to be accompanied by the formation of another surface species, Ag-bpy, as well as by the increase of the overall SERS enhancement of bpy by factor of 40. The same Ag-bpy surface species has been detected under the strongly reducing conditions of reduction of silver nitrate by sodium borohydride in the presence of bpy. The formation of Ag-bpy is thus interpreted in terms of the stabilization of reduced Ag(0) adsorption sites by adsorbed bpy. The formation of reduced adsorption sites on Ag nanoparticle surfaces at chloride coverages >0.6 is discussed in terms of local changes in the work function of Ag. Finally, the SERS spectral detection of Ag-bpy species is proposed as a tool for probing the presence of reduced Ag(0) adsorption sites in systems with chemically modified Ag nanoparticles.

  14. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  15. Adsorption kinetics of SO2 on powder activated carbon

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Qilong; Ma, Chunyuan

    2018-02-01

    The flue gas SO2 adsorption removal by powder activated carbon is investigated based on a fixed bed reactor. The effect of SO2 inlet concentration on SO2 adsorption is investigated and the adsorption kinetics is analyzed. The results indicated that the initial SO2 adsorption rate and the amount of SO2 adsorbed have increased with increased in SO2 inlet concentration. Gas diffusion, surface adsorption and catalytic oxidation reaction are involved in SO2 adsorption on powder activated carbon, which play a different role in different stage. The Bangham kinetics model can be used to predict the kinetics of SO2 adsorption on powder activated carbon.

  16. Activated Carbon Preparation and Modification for Adsorption

    NASA Astrophysics Data System (ADS)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  17. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).

    PubMed

    Pan, Yun-xiang; Liu, Chang-jun; Mei, Donghai; Ge, Qingfeng

    2010-04-20

    The effects of hydration and oxygen vacancy on CO(2) adsorption on the beta-Ga(2)O(3)(100) surface have been studied using density functional theory slab calculations. Adsorbed CO(2) is activated on the dry perfect beta-Ga(2)O(3)(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga(2)O(3)(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga(2)O(3)(100) surface. Adsorption of CO(2) on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slightly repulsive interaction when H(2)O and CO(2) are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H(2)O to a bicarbonate species, making the CO(2) adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO(2) adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga(2)O(3)(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O(2) molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO(2). In the most stable CO(2) adsorption configuration on the dry defective beta-Ga(2)O(3)(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO(2) occupies the oxygen vacancy site, and the CO(2) adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that, when water and CO(2) are present in the adsorption system simultaneously, water will compete with CO(2) for the oxygen vacancy sites and impact CO(2) adsorption and conversion negatively.

  18. Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust.

    PubMed

    Macedo, Jeremias de Souza; da Costa Júnior, Nivan Bezerra; Almeida, Luis Eduardo; Vieira, Eunice Fragoso da Silva; Cestari, Antonio Reinaldo; Gimenez, Iara de Fátima; Villarreal Carreño, Neftali Lênin; Barreto, Ledjane Silva

    2006-06-15

    Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material.

  19. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation

    DOE PAGES

    Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...

    2017-01-17

    Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less

  1. Modification of polystyrene-based activated carbon spheres to improve adsorption of dibenzothiophene

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Liang, Xiaoyi; Qiao, Wenming; Liu, Chaojun; Liu, Xiaojun; Zhang, Rui; Ling, Licheng

    2009-01-01

    Polystyrene-based activated carbon spheres (PACS) were modified with either air, HNO 3, (NH 4) 2S 2O 8, H 2O 2 or H 2 to improve their adsorption properties of dibenzothiophene (DBT). The texture and surface chemistry of PACS were characterized by N 2 adsorption, scanning electron microscopy (SEM), temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), acid-base titration and elemental analysis. The results showed that HNO 3 and (NH 4) 2S 2O 8 treatments introduced large amount of acidic groups such as carboxylic, lactones and anhydride groups, while air and H 2O 2 had relatively mild effects and introduced a small quantity of phenol, carbonyl and ether groups. In the HNO 3 treatment, the acidic groups might be fixed on the internal and external surface of PACS, which may act as active sites of adsorption, resulting in increase of the adsorption amount by 45%. Whereas H 2O 2 and (NH 4) 2S 2O 8 treatments might fix more oxygen-containing groups on the external surface, which may hinder DBT molecule enter into micropores, leading to rather lower adsorption capacity with the extent of oxidation. So, the concentration, distribution and types of the acidic functional groups are responsible for the removal of DBT.

  2. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  3. Computational study of ibuprofen removal from water by adsorption in realistic activated carbons.

    PubMed

    Bahamon, Daniel; Carro, Leticia; Guri, Sonia; Vega, Lourdes F

    2017-07-15

    Molecular simulations using the Grand Canonical Monte Carlo (GCMC) method have been performed in order to obtain physical insights on how the interaction between ibuprofen (IBP) and activated carbons (ACs) in aqueous mixtures affects IBP removal from water by ACs. A nanoporous carbon model based on units of polyaromatic molecules with different number of rings, defects and polar-oxygenated sites is described. Individual effects of factors such as porous features and chemical heterogeneities in the adsorbents are investigated and quantified. Results are in good agreement with experimental adsorption data, highlightening the ability of GCMC simulation to describe the macroscopic adsorption performance in drug removal applications, while also providing additional insights into the IBP/water adsorption mechanism. The simulation results allow finding the optimal type of activated carbon material for separating this pollutant in water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    PubMed

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  5. An adsorption diffusion model for removal of para-chlorophenol by activated carbon derived from bituminous coal.

    PubMed

    Sze, M F F; McKay, G

    2010-05-01

    Batch adsorption experiments were carried out to study the adsorptive removal and diffusion mechanism of para-chlorophenol (p-CP) onto Calgon Filtrasorb 400 (F400) activated carbon. The external mass transfer resistance is negligible in the adsorption process carried out under different conditions in batch operation. Intraparticle diffusion model plots were used to correlate the batch p-CP adsorption data; three distinct linear sections were obtained for every batch operation. The textural properties of F400 activated carbon showed that it has a large portion of supermicropores, which is comparable to the size of the p-CP molecules. Due to the stronger interactions between p-CP molecules and F400 micropores, p-CP molecules predominantly diffused and occupied active sites in micropore region by hopping mechanism, and eventually followed by a slow filling of mesopores and micropores. This hypothesis is proven by the excellent agreement of the intraparticle diffusion model plots and the textural properties of F400 activated carbon. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Adsorption mechanisms and impact factors of oxytetracycline on activated sludge

    NASA Astrophysics Data System (ADS)

    Xiancai, Song; Dongfang, Liu; Lejun, Zhao

    2017-03-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Pseudo-second-order kinetic model which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na+, K+, Ca2+, Mg2+ and Cd2+ ions more or less inhibited the adsorption of OTC on activated sludge while Cu2+ enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption.

  7. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  8. The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: The role of sulfhydryl sites

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Fein, Jeremy B.

    2015-10-01

    The adsorption and desorption of Cd onto Shewanella oneidensis bacterial cells with and without blocking of sulfhydryl sites was measured in order to determine the effect of metal loading and to understand the role of sulfhydryl sites in the adsorption reactions. The observed adsorption/desorption behaviors display strong dependence on metal loading. Under a high loading of 40 μmol Cd/g bacterial cells, blocking the sulfhydryl sites within the cell envelope by exposure of the biomass to monobromo(trimethylammonio)bimane bromide (qBBr) does not significantly affect the extent of Cd adsorption, and we observed fully reversible adsorption under this condition. In contrast, under a low metal loading of 1.3 μmol Cd/g bacterial cells, the extent of Cd adsorption onto sulfhydryl-blocked S. oneidensis cells was significantly lower than that onto untreated cells, and only approximately 50-60% of the adsorbed Cd desorbed from the cells upon acidification. In conjunction with previous EXAFS results, our findings demonstrate that Cd adsorption onto S. oneidensis under low metal loading conditions is dominated by sulfhydryl binding, and thus is controlled by a distinct adsorption mechanism from the non-sulfhydryl site binding which controls Cd adsorption under high metal loading conditions. We use the data to develop a surface complexation model that constrains the values of the stability constants for individual Cd-sulfhydryl and Cd-non-sulfhydryl bacterial complexes, and we use this approach to account for the Cd adsorption behavior as a function of both pH and metal loading. This approach is crucial in order to predict metal adsorption onto bacteria under environmentally relevant metal loading conditions where sulfhydryl binding sites can dominate the adsorption reaction.

  9. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model

    NASA Astrophysics Data System (ADS)

    Salazar-Camacho, Carlos; Villalobos, Mario

    2010-04-01

    We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in

  10. Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of n -Alkanes on Brønsted Acid Sites in Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janda, Amber; Vlaisavljevich, Bess; Lin, Li-Chiang

    Experimental measurements of the rate coefficient (kapp) and apparent enthalpies and entropies of activation (ΔHapp and ΔSapp) for alkane cracking catalyzed by acidic zeolites can be used to characterize the effects of zeolite structure and alkane size on the intrinsic enthalpy and entropy of activation, ΔHint‡ and ΔSint‡. To determine ΔHint‡ and ΔSint‡, enthalpies and entropies of adsorption, ΔHads-H+ and ΔSads-H+, must be determined for alkane molecules moving from the gas phase to Brønsted acid sites at reaction temperatures (>673 K). Experimental values of ΔHapp and ΔSapp must also be properly defined in terms of ΔHads-H+ and ΔSads-H+. We reportmore » here a method for determining ΔHads-H+ and ΔSads-H+ in which the adsorption site is represented by a fixed volume that includes the proton. Values of ΔHads-H+ and ΔSads-H+ obtained from Monte Carlo simulations are in good agreement with values obtained from experimental data measured at 300–400 K. An important feature of the simulations, however, is their ability to account for the redistribution of alkane adsorbed at protons in different locations with increasing temperature. Values of ΔHint‡ and ΔSint‡ for the cracking of propane through n-hexane, determined from measured values of kapp and ΔHapp and simulated values of ΔHads-H+ and ΔSads-H+, agree well with values obtained independently from quantum mechanics/molecular mechanics calculations. Application of our method of analysis reveals that the observed increase in kapp with increasing n-alkane size is due primarily to a decrease in ΔHint‡ with increasing chain length and that ΔSint‡ is independent of chain length.« less

  11. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on β-Ga2O3(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yunxiang; Liu, Chang-jun; Mei, Donghai

    The effects of hydration and oxygen vacancy on CO2 adsorption on the β-Ga2O3(100) surface have been studied using density functional theory slab calculations. Adsorbed CO2 is activated on the dry perfect β-Ga2O3(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect β-Ga2O3(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect β-Ga2O3(100) surface. Adsorption of CO2 on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slight repulsive interactionmore » when H2O and CO2 are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the co-adsorbed H2O to a bicarbonate species, making the overall process exothermic with an adsorption energy of -0.13 eV. The effect of defects on CO2 adsorption and activation has been examined by creating an oxygen vacancy on the dry β-Ga2O3(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O2 molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO2. In the most stable CO2 adsorption configuration on the dry defective β-Ga2O3(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO2 occupies the oxygen vacancy site and the CO2 adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is instantaneous with an adsorption energy of -0.62 eV. These results indicate that, when water and CO2 are both present in the adsorption system simultaneously, the water molecule will compete with CO2 for the oxygen vacancy sites and impact CO2 adsorption and conversion negatively. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the computing time

  12. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  13. Perfluorooctane sulfonate adsorption on powder activated carbon: Effect of phosphate (P) competition, pH, and temperature.

    PubMed

    Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Li, Kun; Liu, Jingjing; Lu, Bianhe; Tian, Xin

    2017-09-01

    Powdered activated carbon (PAC), as an adsorbent, was applied to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Laboratory batch experiments were performed to investigate the influences of phosphate (P) competition, temperature, and pH for PFOS adsorption onto PAC. The results showed that higher temperature favored PFOS adsorption in single and binary systems. The kinetic data fitted very well to the pseudo second-order kinetic model. Thermodynamically, the endothermic enthalpy of the PFOS adsorption in single and binary systems were 125.07 and 21.25 kJ mol -1 , respectively. The entropy of the PFOS adsorption in single and binary systems were 0.479 and 0.092 kJ mol -1  K -1 , respectively. And the Gibbs constants were negative. These results indicated that the adsorption processes were spontaneous. The adsorption isotherms of PFOS agreed well with the Langmuir model. In the single system, PFOS adsorption decreased with increased pH value. The difference in the amount of PFOS adsorption between the single and binary systems increased at higher pH. Frustrated total internal reflection (FTIR) demonstrated that P competition increased the hydrophilicity of the PAC and the electrostatic repulsion between PFOS and PAC, then the PFOS adsorption amount decreased. It also demonstrated that, at higher temperature, increased PFOS adsorption was mainly due to the higher diffusion rate of PFOS molecules and greater number of active sites opened on the PAC surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Study of Adsorption Mechanism of Congo Red on Graphene Oxide/PAMAM Nanocomposite

    PubMed Central

    Rafi, Mohammad; Samiey, Babak; Cheng, Chil-Hung

    2018-01-01

    Graphene oxide/poly(amidoamine) (GO/PAMAM) nanocomposite adsorbed high quantities of congo red (CR) anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine. PMID:29587463

  15. Application of low energy ion blocking for adsorption site determination of Na Atoms on a Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Makarenko, B.; Bahrim, B.; Rabalais, J. W.

    2010-07-01

    Ion blocking in the low keV energy range is demonstrated to be a sensitive method for probing surface adsorption sites by means of the technique of time-of-flight scattering and recoiling spectroscopy (TOF-SARS). Adsorbed atoms can block the nearly isotropic backscattering of primary ions from surface atoms in the outmost layers of a crystal. The relative adsorption site position can be derived unambiguously by simple geometrical constructs between the adsorbed atom site and the surface atom sites. Classical ion trajectory simulations using the scattering and recoiling imaging code (SARIC) and molecular dynamics (MD) simulations provide the detailed ion trajectories. Herein we present a quantitative analysis of the blocking effects produced by sub-monolayer Na adsorbed on a Cu(111) surface at room temperature. The results show that the Na adsorption site preferences are different at different Na coverages. At a coverage θ = 0.25 monolayer, Na atoms preferentially populate the fcc threefold surface sites with a height of 2.7 ± 0.1 Å above the 1st layer Cu atoms. At a lower coverage of θ = 0.10 monolayer, there is no adsorption site preference for the Na atoms on the Cu(111) surface.

  16. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters.

    PubMed

    Hamdaoui, Oualid; Naffrechoux, Emmanuel

    2007-08-17

    The adsorption equilibrium isotherms of five phenolic compounds from aqueous solutions onto granular activated carbon (GAC) were studied and modeled. Phenol (Ph), 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP), and 2,4,6-trichlorophenol (TCP) were chosen for the adsorption tests. To predict the adsorption isotherms and to determine the characteristic parameters for process design, seven isotherm models: Langmuir (five linear forms), Freundlich, Elovich, Temkin, Fowler-Guggenheim, Kiselev, and Hill-de Boer models were applied to experimental data. The results reveal that the adsorption isotherm models fitted the data in the order: Fowler-Guggenheim>Hill-de Boer>Temkin>Freundlich>Kiselev>Langmuir isotherms. Adsorption isotherms modeling shows that the interaction of phenolic compounds with activated carbon surface is localized monolayer adsorption, that is adsorbed molecules are adsorbed at definite, localized sites. Each site can accommodate only one molecule. The interaction among adsorbed molecules is repulsive and there is no association between them, adsorption is carried out on energetically different sites and is an exothermic process. Uptake of phenols increases in the order Ph<2-CP<4-CPadsorption is directly proportional to their degree of chlorination.

  17. Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks.

    PubMed

    Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini

    2006-11-01

    Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.

  18. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    PubMed

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  20. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  1. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  2. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    PubMed

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  3. Effective adsorption of phenolic compound from aqueous solutions on activated semi coke

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Dai, Yuan; Zhang, Yu; Fu, Feng

    2017-03-01

    Activated Semi coke was prepared by KOH activation and employed as adsorbent to study adsorption function of phenolic compound from aqueous solutions. The adsorption result showed that the adsorption capacity of the activated semi coke for phenolic compound increased with contact time and adsorbent dosage, and slightly affected by temperature. The surface structure property of the activated semi coke was characterized by N2 adsorption, indicating that the activated semi coke was essentially macroporous, and the BET surface area was 347.39 m2 g-1. Scanning electron microscopy indicated that the surface of the activated semi coke had a high developed pore. The adsorption kinetics were investigated according to pseudofirst order, pseudosecond order and intraparticle diffusion, and the kinetics data were fitted by pseudosecond order model, and intraparticle diffusion was not the only rate-controlling step. Adsorption isotherm was studied by Langmuir, Freundlich, Temkin, Redlich-Peterson, Sips and Toth models. The result indicated that adsorption isotherm data could fit well with Langmuir, Redlich-Peterson, Sips and Toth models.

  4. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.

    PubMed

    Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I

    2009-10-15

    The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.

  5. Characterization and phenol adsorption performance of activated carbon prepared from tea residue by NaOH activation.

    PubMed

    Tao, Jun; Huo, Peili; Fu, Zongheng; Zhang, Jin; Yang, Zhen; Zhang, Dengfeng

    2017-10-05

    The preparation of activated carbon (AC) using tea residue was addressed in this work. The preparation process incorporated two-step pyrolysis and activation using NaOH. The influence of activation temperature between 500°C and 700°C on the properties of the AC sample was investigated. The physicochemical properties of the AC sample were characterized. The results show that the optimum temperature for the activation process is 700°C, which generates the AC sample with higher specific surface area and total pore volume, respectively, of 819 m 2  g -1 and 0.443 cm 3  g -1 . The oxygen-containing functional groups evolve on the AC sample during the activation process. The phenol adsorption test was performed to evaluate the adsorption performance of the AC sample. The adsorption data confirm that phenol adsorption on the AC sample obtained at 700°C follows the pseudo-second-order kinetics model. Hereby, the electron donor-acceptor interaction mechanism can describe the adsorption process. The AC sample obtained at 700°C performs superior phenol adsorption performance. The maximum phenol adsorption capacity is 320 mg g -1 , which is higher than that of several AC samples reported previously. Thus, the tea residue acts as a good precursor for the AC with promising adsorption capacity by the NaOH chemical activation method.

  6. Physicochemical factors affecting ethanol adsorption by activated carbon.

    PubMed

    Bradley, K J; Hamdy, M K; Toledo, R T

    1987-03-01

    Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25 degrees C as compared to 5, 15, and 40 degrees C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400 degrees C for 1 h and 600 degrees C for 3 h in N(2) increased ethanol adsorptivity and heating to 1000 degrees C (1 h) in CO(2) decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 L aqueous ethanol/min increased the adsorption rate.

  7. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-05

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.

  9. The removal of chloramphenicol from water through adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Lach, Joanna; Ociepa-Kubicka, Agnieszka

    2017-10-01

    The presented research investigated the removal of chloramphenicol from water solutions on selected activated carbon available in three grades with different porous structure and surface chemical composition. Two models of adsorption kinetics were examined, i.e. the pseudo-first order and the pseudo-second order models. For all examined cases, the results of tests with higher value of coefficient R2 were described by the equation for pseudo-second order kinetics. The adsorption kinetics was also investigated on the activated carbons modified with ozone. The measurements were taken from the solutions with pH values of 2 and 7. Chloramphenicol was the most efficiently adsorbed on the activated carbon F-300 from the solutions with pH=7, and on the activated carbon ROW 08 Supra from the solutions with pH=2. The adsorption of this antibiotic was in the majority of cases higher from the solutions with pH=2 than pH=7. The modification of the activated carbons with ozone enhanced their adsorption capacities for chloramphenicol. The adsorption is influenced by the modification method of activated carbon (i.e. the duration of ozonation of the activated carbon solution and the solution temperature). The results were described with the Freundlich and Langmuir adsorption isotherm equations. Both models well described the obtained results (high R2 values).

  10. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    PubMed

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  11. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)

    PubMed Central

    Xu, Zhen-Feng; Wang, Yixuan

    2011-01-01

    The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt3Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920

  12. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.

    PubMed

    Björklund, Karin; Li, Loretta Y

    2017-07-15

    Adsorption filters have the potential to retain suspended pollutants physically, as well as attracting and chemically attaching dissolved compounds onto the adsorbent. This study investigated the adsorption of eight hydrophobic organic compounds (HOCs) frequently detected in stormwater - including four polycyclic aromatic hydrocarbons (PAHs), two phthalates and two alkylphenols - onto activated carbon produced from domestic sewage sludge. Adsorption was studied using batch tests. Kinetic studies indicated that bulk adsorption of HOCs occurred within 10 min. Sludge-based activated carbon (SBAC) was as efficient as tested commercial carbons for adsorbing HOCs; adsorption capacities ranged from 70 to 2800 μg/g (C initial  = 10-300 μg/L; 15 mg SBAC in 150 mL solution; 24 h contact time) for each HOC. In the batch tests, the adsorption capacity was generally negatively correlated to the compounds' hydrophobicity (log K ow ) and positively associated with decreasing molecule size, suggesting that molecular sieving limited adsorption. However, in repeated adsorption tests, where competition between HOCs was more likely to occur, adsorbed pollutant loads exhibited strong positive correlation with log K ow . Sewage sludge as a carbon source for activated carbon has great potential as a sustainable alternative for sludge waste management practices and production of a high-capacity adsorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado

    USGS Publications Warehouse

    Hyun, S.P.; Fox, P.M.; Davis, J.A.; Campbell, K.M.; Hayes, K.F.; Long, P.E.

    2009-01-01

    A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using <2mm size sediment fractions, a sand-sized fraction, and artificial groundwater solutions prepared to simulate the field groundwater composition. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8 ?? 10-8 to 10-5 M in [U(VI)]tot, 7.2 to 8.0 in pH, 3.0 ?? 10-3 to 6.0 ?? 10 -3 M in [Ca2+], and 0.05 to 2.6% in partial pressure of carbon dioxide. Surface area normalized U(VI) adsorption Kd values for the sand and <2 mm sediment fraction were similar, suggesting a similar reactive surface coating on both fractions. A two-site two-reaction, nonelectrostatic generalized composite surface complexation model was developed and successfully simulated the U(VI) adsorption data. The model successfully predicted U(VI) adsorption observed from a multilevel sampling well installed at the site. A comparison of the model with the one developed previously for a uranium mill tailings site at Naturita, Colorado, indicated that possible calcite nonequilibrium of dissolved calcium concentration should be evaluated. The modeling results also illustrate the importance of the range of data used in deriving the best fit model parameters. ?? 2009 American Chemical Society.

  14. Study on Adsorption of Chromium (VI) by Activated Carbon from Cassava Sludge

    NASA Astrophysics Data System (ADS)

    Yang, Jinhui; Li, Chuanshu; Yang, Bin; Kang, Sijun; Zhang, Zhen

    2018-03-01

    In this paper, a new type of adsorbent prepared by waste sludge from alcohol production industry was used to adsorb Cr (VI) in activated carbon from cassava sludge. A series of static adsorption experiments were carried out on the initial concentration of solution Cr (VI), pH value of solution, adsorption time and dosage of adsorbent. The results of single factor experiments show that the removal rate of Cr (VI) increases with the initial concentration of Cr(VI), while the adsorption amount is opposite. When the pH value of the solution is low, the adsorption effect of activated carbon is better.The adsorption time should be controlled within 40-60min. When the activated carbon dosage is increased, the removal rate increases but the adsorption capacity decreases.

  15. Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.

    PubMed

    Shi, Mo; Wang, Zhengfang; Zheng, Zheng

    2013-08-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  16. Comparative study on the copper activation and xanthate adsorption on sphalerite and marmatite surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yu; Luo, Deqiang; Chen, Luzheng; Deng, Jiushuai

    2018-05-01

    The copper activation and potassium butyl xanthate (PBX) adsorption on sphalerite and marmatite surfaces were comparatively investigated using in situ local electrochemical impedance spectroscopy (LEIS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and surface adsorption tests. Comparing the LEIS and surface adsorption results, it was found that the activation time is a key factor influencing the copper activation and PBX adsorption on marmatite surface, but it has a negligible influence on sphalerite. For a short activation time within 10 min, the Fe impurity in marmatite shows an adverse influence on the speed of Cu adsorption and ion exchange as well as on the subsequent PBX adsorption. For a long activation time of 30 min, the LEIS, ToF-SIMS and surface adsorption results suggested that the Fe impurity in marmatite enhances the copper adsorption, whereas such enhanced copper adsorption of marmatite cannot result in corresponding enhancing of PBX adsorption. DFT result showed that the Fe impurity in marmatite has harmful influence on the PBX interaction with the Cu-activated surface by increasing the interaction energy. ToF-SIMS result further indicated that the Cu distribution in the outermost surface of marmatite is less than that of the sphalerite, which also results in the less PBX adsorption for the marmatite.

  17. KOH catalysed preparation of activated carbon aerogels for dye adsorption.

    PubMed

    Ling, Sie King; Tian, H Y; Wang, Shaobin; Rufford, Thomas; Zhu, Z H; Buckley, C E

    2011-05-01

    Organic carbon aerogels (CAs) were prepared by a sol-gel method from polymerisation of resorcinol, furfural, and hexamethylenetetramine catalysed by KOH at around pH 9 using ambient pressure drying. The effect of KOH in the sol-gel on CA synthesis was studied. It was found that addition of KOH prior to the sol-gel polymerisation process improved thermal stability of the gel, prevented the crystallinity of the gel to graphite, increased the microporosity of CA and promoted activation of CA. The CAs prepared using the KOH catalyst exhibited higher porosity than uncatalysed prepared samples. Activation in CO(2) at higher temperature also enhanced the porosity of CAs. Adsorption tests indicated that the CAs were effective for both basic and acid dye adsorption and the adsorption increased with increasing surface area and pore volume. The kinetic adsorption of dyes was diffusion control and could be described by the second-order kinetic model. The equilibrium adsorption of dyes was higher than activated carbon. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    PubMed

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  19. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism.

    PubMed

    Kaur, Harkirat; Bansiwal, Amit; Hippargi, Girivyankatesh; Pophali, Girish R

    2017-09-11

    Adsorption of three pharmaceuticals and personal care products (PPCPs), namely caffeine, ibuprofen and triclosan on commercial powdered activated carbon was examined in aqueous medium. The contaminants were chosen based on their diverse log K ow (octanol-water partition coefficient) viz. - 0.07 for caffeine, 3.97 for ibuprofen and 4.76 for triclosan to examine the role of hydrophobicity on adsorption process. The adsorbent characterisation was achieved using BET surface area, SEM, pore size distribution studies and FTIR. Influence of mass of PAC, contact time, solution pH and initial concentration on adsorption capacity of PAC was studied. Adsorption isotherms and kinetics were applied to establish the mechanism of adsorption. The kinetics followed pseudo-second order with physisorption occurring through particle diffusion. The Freundlich model fitted best among the isotherm models. The adsorption capacity increased in the order CFN < IBU < TCS which correlates with increasing hydrophobicity (log K ow ), molecular weight and decreasing water solubility, respectively. We conclude that micro-pollutant hydrophobicity contributes towards adsorption on activated carbon.

  20. Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth.

    PubMed

    Boulinguiez, B; Le Cloirec, P

    2009-01-01

    The study assesses the adsorption onto activated carbon materials of selected volatile organic compounds -VOCs- (dichloromethane, 2-propanol, toluene, siloxane D4) in a biogas matrix composed of methane and carbon dioxide (55:45 v/v). Three different adsorbents are tested, two of them are granular activated carbon (GAC), and the last is an activated carbon fiber-cloth (ACFC). The adsorption isotherm data are fitted by different models by nonlinear regression. The Langmuir-Freundlich model appears to be the adequate one to describe the adsorption phenomena independently of the VOC considered or the adsorbent. The adsorbents present attractive adsorption capacity of the undesirable compounds in biogas atmosphere though the maximum adsorption capacities for a VOC are quite different from each other. The adsorption kinetics are characterized through three coefficients: the initial adsorption coefficient, the external film mass transfer coefficient and the internal diffusion coefficient of Weber. The ACFC demonstrates advanced kinetic yields compared to the granular activated carbon materials whatever VOC is considered. Therefore, pre-upgrading of biogas produced from wastewater sludge or co-digestion system by adsorption onto activated carbon appears worth investigating. Especially with ACFC material that presents correct adsorption capacities toward VOCs and concrete regeneration process opportunity to realize such process.

  1. Influence of activated carbon preloading by EfOM fractions from treated wastewater on adsorption of pharmaceutically active compounds.

    PubMed

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2016-05-01

    In this study, the preloading effects of different fractions of wastewater effluent organic matter (EfOM) on the adsorption of trace-level pharmaceutically active compounds (PhACs) onto granular activated carbon (GAC) were investigated. A nanofiltration (NF) membrane was employed to separate the EfOM by size, and two GACs with distinct pore structures were chosen for comparison. The results showed that preloading with EfOM substantially decreased PhAC uptake of the GACs; however, comparable PhAC adsorption capacities were achieved on GACs preloaded by feed EfOM and the NF-permeating EfOM. This indicates that: (1) the NF-rejected, larger EfOM molecules with an expectation to block the PhAC adsorption pores exerted little impact on the adsorbability of PhACs; (2) the smaller EfOM molecules present in the NF permeate contributed mainly to the decrease in PhAC uptake, mostly due to site competition. Of the two examined GACs, the wide pore-size-distributed GAC was found to be more susceptible to EfOM preloading than the microporous GAC. Furthermore, among the fourteen investigated PhACs, the negatively charged hydrophilic PhACs were generally subjected to a greater EfOM preloading impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Adsorption of lignocelluloses of model pre-hydrolysis liquor on activated carbon.

    PubMed

    Fatehi, Pedram; Ryan, Jennifer; Ni, Yonghao

    2013-03-01

    The main objective of this work was to study the adsorption behavior of various components dissolved in the pre-hydrolysis of kraft process on activated carbon. In this work, model prehydrolysis liquor (PHL) solutions (MPHL)s were prepared via mixing various commercially available monosugars, xylan, lignin and furfural; and their adsorption performance on activated carbon (AC) was investigated. In singular (one component) MPHL/AC systems, furfural had the maximum and xylose had the minimum adsorption, and the adsorption of monosugars was basically similar on AC. Also, polydiallyldimethylammonium chloride (PDADMAC) was added (0.5 g/l) to singular xylan or lignin MPHL/AC system, which increased the lignin and xylan adsorptions to 350 and 190 mg/g on AC, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Molecular Dynamics Simulation of Resin Adsorption at Kaolinite Edge Sites: Effect of Surface Deprotonation on Interfacial Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.

    Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations

  4. Molecular Dynamics Simulation of Resin Adsorption at Kaolinite Edge Sites: Effect of Surface Deprotonation on Interfacial Structure

    DOE PAGES

    Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.; ...

    2017-10-05

    Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations

  5. The Correlation of Adsorption Behavior between Ciprofloxacin Hydrochloride and the Active Sites of Fe-doped MCM-41.

    PubMed

    Wu, Ying; Tang, Yiming; Li, Laisheng; Liu, Peihong; Li, Xukai; Chen, Weirui; Xue, Ying

    2018-01-01

    HIGHLIGHTS Fe incorporation significantly accelerated the adsorption of CPX on MCM-41.Fe leaching can be ignored when pH was higher than 4.0.pH played an important role in CPX adsorption on Fe-MCM-41.Co-effect of CPX and metal cations on Fe-MCM-41 was investigated. Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80, and 160) were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms, and infrared spectroscopy (FT-IR). Effects of silicon-iron ratio, adsorbent dosage, pH, and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g -1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions, and π-π electron donor-acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb, and Cd) were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of Fe-MCM-41

  6. The Correlation of Adsorption Behavior between Ciprofloxacin Hydrochloride and the Active Sites of Fe-doped MCM-41

    PubMed Central

    Wu, Ying; Tang, Yiming; Li, Laisheng; Liu, Peihong; Li, Xukai; Chen, Weirui; Xue, Ying

    2018-01-01

    HIGHLIGHTS Fe incorporation significantly accelerated the adsorption of CPX on MCM-41.Fe leaching can be ignored when pH was higher than 4.0.pH played an important role in CPX adsorption on Fe-MCM-41.Co-effect of CPX and metal cations on Fe-MCM-41 was investigated. Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80, and 160) were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms, and infrared spectroscopy (FT-IR). Effects of silicon-iron ratio, adsorbent dosage, pH, and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g−1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions, and π-π electron donor-acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb, and Cd) were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of Fe-MCM-41

  7. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less

  8. Phenol adsorption by activated carbon produced from spent coffee grounds.

    PubMed

    Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C

    2011-01-01

    The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue.

  9. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  10. Adsorption of sodium dodecylbenzenesulfonate on activated carbons: effects of solution chemistry and presence of bacteria.

    PubMed

    Bautista-Toledo, M I; Méndez-Díaz, J D; Sánchez-Polo, M; Rivera-Utrilla, J; Ferro-García, M A

    2008-01-01

    The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.

  11. Adsorption of chlorine dioxide gas on activated carbons.

    PubMed

    Wood, Joseph P; Ryan, Shawn P; Snyder, Emily Gibb; Serre, Shannon D; Touati, Abderrahmane; Clayton, Matthew J

    2010-08-01

    Research and field experience with chlorine dioxide (ClO2) gas to decontaminate structures contaminated with Bacillus anthracis spores and other microorganisms have demonstrated the effectiveness of this sterilant technology. However, because of its hazardous properties, the unreacted ClO2, gas must be contained and captured during fumigation events. Although activated carbon has been used during some decontamination events to capture the ClO2 gas, no data are available to quantify the performance of the activated carbon in terms of adsorption capacity and other sorbent property operational features. Laboratory experiments were conducted to determine and compare the ClO2 adsorption capacities of five different types of activated carbon as a function of the challenge ClO2 concentration. Tests were also conducted to investigate other sorbent properties, including screening tests to determine gaseous species desorbed from the saturated sorbent upon warming (to provide an indication of how immobile the ClO2 gas and related compounds are once captured on the sorbent). In the adsorption tests, ClO2 gas was measured continuously using a photometric-based instrument, and these measurements were verified with a noncontinuous method utilizing wet chemistry analysis. The results show that the simple activated carbons (not impregnated or containing other activated sorbent materials) were the most effective, with maximum adsorption capacities of approximately 110 mg/g. In the desorption tests, there was minimal release of ClO(2) from all sorbents tested, but desorption levels of chlorine (Cl2) gas (detected as chloride) varied, with a maximum release of nearly 15% of the mass of ClO2 adsorbed.

  12. Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon.

    PubMed

    Wang, Zhengfang; Nie, Er; Li, Jihua; Yang, Mo; Zhao, Yongjun; Luo, Xingzhang; Zheng, Zheng

    2011-08-01

    Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-Fe(II) and AC/N-Fe(III)), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions. The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors. Maximum removals of phosphate are obtained in the pH range of 3.78-6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-Fe(II) and AC/N-Fe(III) is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon. Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-Fe(II) has a higher phosphate removal capacity than AC/N-Fe(III), which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol(-1) for AC/N-Fe(II) and AC/N-Fe(III), respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.

  13. The correlation of adsorption behavior between ciprofloxacin hydrochloride and the active sites of Fe-doped MCM-41

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Tang, Yiming; Li, Laisheng; Liu, Peihong; Li, Xukai; Chen, Weirui; Xue, Ying

    2018-02-01

    Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80 and 160) were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms and infrared spectroscopy (FT-IR). Effects of silicon–iron ratio, adsorbent dosage, pH and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g-1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions and π-π electron donor–acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb and Cd) were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of Fe-MCM-41 to remove CPX in water.

  14. Structural and adsorptive properties of activated carbons prepared by carbonization and activation of resins.

    PubMed

    Leboda, R; Skubiszewska-Zieba, J; Tomaszewski, W; Gun'ko, V M

    2003-07-15

    Four activated carbons (S1-S4) possessing different structural characteristics were prepared by carbonization of commercial resins (used for ion exchange) and subsequent activation. Their textural parameters were determined on the basis of nitrogen adsorption-desorption at 77.4 K, analyzed by applying several local and overall adsorption isotherm equations. The nature of carbon surface functionalities was analyzed by FTIR spectroscopy. The GC and solid-phase extraction (SPE) techniques were applied to study the influence of the texture of carbonaceous materials on their adsorptive properties. The adsorption efficiency of synthesized carbons with respect to alkylhalides used as probe compounds in the GC measurements varied over a range from 28% (C(2)H(3)Cl(3)/S2) to 85% (CHBr(3)/S1) depending on the type of adsorbates and adsorbents. The concentrating efficiency of these carbons in SPE of explosive materials changed over a larger range from 12% (trinitroglycerin/S4) and 13% (trinitrotoluene/S2) up to 100% (octogen/S1). Active carbon prepared using Zerolite 225x8 as a precursor demonstrated better results than other carbons in two types of adsorption with average values of the efficiency of 75.4% for explosives and 60.8% for alkylhalides.

  15. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  16. Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon.

    PubMed

    Maghsoodloo, Sh; Noroozi, B; Haghi, A K; Sorial, G A

    2011-07-15

    In this work, equilibrium and kinetic adsorption of humic acid (HA) onto chitosan treated granular activated carbon (MGAC) has been investigated and compared to the granular activated carbon (GAC). The adsorption equilibrium data showed that adsorption behaviour of HA could be described reasonably well by Langmuir adsorption isotherm for GAC and Freundlich adsorption isotherm for MGAC. It was shown that pre-adsorption of chitosan onto the surface of GAC improved the adsorption capacity of HA changing the predominant adsorption mechanism. Monolayer capacities for the adsorption of HA onto GAC and MGAC were calculated 55.8 mg/g and 71.4 mg/g, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process for MGAC. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.

    PubMed

    Rivera-Utrilla, J; Sánchez-Polo, M

    2003-08-01

    The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.

  18. Adsorption characteristics of Bisphenol-A on tailored activated carbon in aqueous solutions.

    PubMed

    Yan, Liang; Lv, Di; Huang, Xinwen; Shi, Huixiang; Zhang, Geshan

    2016-10-01

    The adsorption behavior of pharmaceuticals and personal care product, Bisphenol-A (BPA), according to four coal-based and four wood-based granular activated carbons modified using outgassing treatment, acidic treatment or alkaline treatment was studied. The adsorption isotherm results indicated that carbon surface acidity played a very important role in the adsorption of BPA. It was found that increasing surface acidity would increase the hydrogen bonding effects and increase adsorption of BPA on activated carbon. The acidic modified sample (F600-A and OLC-A) represented the best adsorption capacity, and the equilibrium adsorption amounts reached 346.42 and 338.55 mg/g, respectively. Further, effects of surface charge and surface basicity were examined. It was found that the adsorbed amount of BPA decreased with the increase of surface charge. Finally, there appeared to be a significant oligomerization phenomenon with BPA molecules onto the surface of activated carbon. OLC and OLC-OG, which have higher micropore percentages, are very effective in hampering the oligomerization of BPA under oxic conditions.

  19. Strong Selective Adsorption of Polymers.

    PubMed

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d < 1 that are characterized by the fraction of occupied adsorption sites and whether the dominant conformation of adsorbed chains is a single-end-adsorbed "mushroom" or double-end-adsorbed loop. For l / d > 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker

  20. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  1. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    PubMed

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.

  2. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation

    NASA Astrophysics Data System (ADS)

    Li, Xianghui; Guo, Weilin; Liu, Zhonghua; Wang, Ruiqin; Liu, Hua

    2016-04-01

    Fe-based metal-organic frameworks (MOFs) including MIL-101(Fe), MIL-100(Fe), MIL-53(Fe), and MIL-88B(Fe) prepared via a facile solvothermal process were introduced as both adsorbents and catalysts to generate powerful radicals from persulfate for acid orange 7 (AO7) removal in aqueous solution. Various catalysts were described and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectra. Because of the high specific surface area of the materials, we studied the adsorption isotherms of the four MILs by the fitting of Langmuir adsorption isotherm. Meanwhile, the catalytic activities in persulfate oxidation system were investigated. The results showed that the sequence of the materials ability in the combination of adsorption and degradation was MIL-101(Fe) > MIL-100(Fe) > MIL-53(Fe) > MIL-88B(Fe), which had a close connection with the activity of metal ion in active site of the catalysts and their different cages in size. Moreover, the reactive species in MILs/persulfate system were identified as sulfate radicals and hydroxyl radicals. The reaction mechanism for persulfate activation over MILs was also studied.

  3. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  4. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  5. Probing adsorption sites of carbon dioxide in metal organic framework of [Zn(bdc)(dpds)]n: A molecular simulation study

    NASA Astrophysics Data System (ADS)

    Lu, Shih-I.; Liao, Jian-Min; Huang, Xiao-Zhuang; Lin, Chia-Hsun; Ke, Szu-Yu; Wang, Chih-Chieh

    2017-11-01

    We used force-field based grand-canonical Monte Carlo simulation method and density functional theory to study adsorption characteristics of carbon dioxide (CO2) molecules in a metal-organic framework (MOF) compound, [Zn(bdc)(dpds)]n. The studied MOF include a metal ion (Zn(II)), an anion organic linker (dianion of benzene dicarboxylicacid, bdc2-) and a neutral organic linker (4,4‧-dipyridyldisulfide, dpds). Results from calculated adsorption isotherms and enthalpies of adsorption agree with the experimental data. The interactions between the adsorbed CO2 and the organic linkers were examined in simulations. Calculated results show available absorption sites are surrounded by two dpds ligands in which an S-S bond as an N-N‧ spacer connect two pyridines. In contrast, the bdc2- ligand does not give a significant contribution to the substantial adsorption amount even though it contains the carboxylate group that provides available bonding site to CO2.

  6. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  7. [Active carbon from Thalia dealbata residues: its preparation and adsorption performance to crystal violet].

    PubMed

    Chu, Shu-Yi; Yang, Min; Xiao, Ji-Bo; Zhang, Jun; Zhu, Yan-Ping; Yan, Xiang-Jun; Tian, Guang-Ming

    2013-06-01

    By using phosphoric acid as activation agent, active carbon was prepared from Thalia dealbata residues. The BET specific surface area of the active carbon was 1174.13 m2 x g(-1), micropore area was 426.99 m2 x g(-1), and average pore diameter was 3.23 nm. An investigation was made on the adsorption performances of the active carbon for crystal violet from aqueous solution under various conditions of pH, initial concentration of crystal violet, contact time, and contact temperature. It was shown that the adsorbed amount of crystal violet was less affected by solution pH, and the adsorption process could be divided into two stages, i. e., fast adsorption and slow adsorption, which followed the pseudo-second-order kinetics model. At the temperature 293, 303, and 313 K, the adsorption process was more accordance with Langmuir isotherm model, and the maximum adsorption capacity was 409.83, 425.53, and 438.59 mg x g(-1), respectively. In addition, the adsorption process was spontaneous and endothermic, and the randomness of crystal violet molecules increased.

  8. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chen, Chih-Yu; Choa, Ching-Guan; Hwu, Ching-Shyung; Lai, Nina

    2006-05-01

    This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.

  9. Selective adsorption of flavor-active components on hydrophobic resins.

    PubMed

    Saffarionpour, Shima; Sevillano, David Mendez; Van der Wielen, Luuk A M; Noordman, T Reinoud; Brouwer, Eric; Ottens, Marcel

    2016-12-09

    This work aims to propose an optimum resin that can be used in industrial adsorption process for tuning flavor-active components or removal of ethanol for producing an alcohol-free beer. A procedure is reported for selective adsorption of volatile aroma components from water/ethanol mixtures on synthetic hydrophobic resins. High throughput 96-well microtiter-plates batch uptake experimentation is applied for screening resins for adsorption of esters (i.e. isoamyl acetate, and ethyl acetate), higher alcohols (i.e. isoamyl alcohol and isobutyl alcohol), a diketone (diacetyl) and ethanol. The miniaturized batch uptake method is adapted for adsorption of volatile components, and validated with column breakthrough analysis. The results of single-component adsorption tests on Sepabeads SP20-SS are expressed in single-component Langmuir, Freundlich, and Sips isotherm models and multi-component versions of Langmuir and Sips models are applied for expressing multi-component adsorption results obtained on several tested resins. The adsorption parameters are regressed and the selectivity over ethanol is calculated for each tested component and tested resin. Resin scores for four different scenarios of selective adsorption of esters, higher alcohols, diacetyl, and ethanol are obtained. The optimal resin for adsorption of esters is Sepabeads SP20-SS with resin score of 87% and for selective removal of higher alcohols, XAD16N, and XAD4 from Amberlite resin series are proposed with scores of 80 and 74% respectively. For adsorption of diacetyl, XAD16N and XAD4 resins with score of 86% are the optimum choice and Sepabeads SP2MGS and XAD761 resins showed the highest affinity towards ethanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations

    NASA Astrophysics Data System (ADS)

    Mulder, F. M.; Dingemans, T. J.; Schimmel, H. G.; Ramirez-Cuesta, A. J.; Kearley, G. J.

    2008-07-01

    Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF's) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (˜550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].

  11. High ionic strength narrows the population of sites participating in protein ion-exchange adsorption: A single-molecule study

    PubMed Central

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Dominguez-Medina, Sergio; Kulla, Eliona; Kang, Marci; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.

    2014-01-01

    The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins. PMID:24751557

  12. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption.

    PubMed

    Fiuza, Raildo Alves; Medeiros de Jesus Neto, Raimundo; Correia, Laise Bacelar; Carvalho Andrade, Heloysa Martins

    2015-09-15

    Stones of yellow mombin, a native fruit of the tropical America and West Indies, were used as starting materials to produce activated carbons, subsequently used as adsorbent for CO2 capture. The carbonaceous materials were either chemically activated with HNO3, H3PO4 and KOH or physically activated with CO2. The carbon samples were characterized by SEM, EDX, TG/DTA, Raman spectroscopy, physical adsorption for textural analysis and by acid-base titrations. The CO2 adsorption capacity and adsorption cycles were investigated by TG. The results indicate that the capacity of CO2 adsorption may be maximized on highly basic surfaces of micropores smaller than 1 nm. The KOH activated carbon showed high and stable capacity of CO2 adsorption after 10 cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.

    PubMed

    Ben, Weiwei; Qiang, Zhimin; Yin, Xiaowei; Qu, Jiuhui; Pan, Xun

    2014-08-01

    Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well. Copyright © 2014. Published by Elsevier B.V.

  14. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    PubMed

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  15. Energetic investigation of the adsorption process of CH4, C2H6 and N2 on activated carbon: Numerical and statistical physics treatment

    NASA Astrophysics Data System (ADS)

    Ben Torkia, Yosra; Ben Yahia, Manel; Khalfaoui, Mohamed; Al-Muhtaseb, Shaheen A.; Ben Lamine, Abdelmottaleb

    2014-01-01

    The adsorption energy distribution (AED) function of a commercial activated carbon (BDH-activated carbon) was investigated. For this purpose, the integral equation is derived by using a purely analytical statistical physics treatment. The description of the heterogeneity of the adsorbent is significantly clarified by defining the parameter N(E). This parameter represents the energetic density of the spatial density of the effectively occupied sites. To solve the integral equation, a numerical method was used based on an adequate algorithm. The Langmuir model was adopted as a local adsorption isotherm. This model is developed by using the grand canonical ensemble, which allows defining the physico-chemical parameters involved in the adsorption process. The AED function is estimated by a normal Gaussian function. This method is applied to the adsorption isotherms of nitrogen, methane and ethane at different temperatures. The development of the AED using a statistical physics treatment provides an explanation of the gas molecules behaviour during the adsorption process and gives new physical interpretations at microscopic levels.

  16. Doping and vacancy effects of graphyne on SO2 adsorption.

    PubMed

    Kim, Sunkyung; Lee, Jin Yong

    2017-05-01

    The adsorption of sulfur dioxide (SO 2 ) on pristine and modified graphyne (including boron- or nitrogen- doping and introducing a single carbon atom defect) was investigated by density functional theory calculations. The structural, electronic, and magnetic properties of graphyne were changed according to the dopant atom site of doping and vacancy. SO 2 adsorption was obviously affected by modification of graphyne. SO 2 weakly interacted with pristine and nitrogen-doped graphynes. Boron doping at the sp-hybridized carbon site and introducing a single carbon atom vacancy in graphyne brought about a dramatic enhancement in SO 2 adsorption. The strongly chemisorbed SO 2 at these active sites caused deformation of the graphyne structure and electron redistribution, which induced changes in the conductivity and magnetism of graphynes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    EPA Science Inventory

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  18. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method.

    PubMed

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2017-03-01

    Activated carbon (AC) was synthesized from golden shower (GS) through a new chemical activation process. The three-stage process comprised (1) hydrothermal carbonization of GS to produce hydrochar, (2) pyrolysis of hydrochar to produce biochar, and (3) subsequent chemical activation of biochar with K 2 CO 3 to obtain GSHBAC. The traditional synthesis processes (i.e., one-stage and two-stage) were also examined for comparison. In the one-stage process, GS that was impregnated with K 2 CO 3 was directly pyrolyzed (GSAC), and the two-stage process consisted of (1) pyrolytic or hydrothermal carbonization to produce biochar or hydrochar and (2) subsequent chemical activation was defined as GSBAC and GSHAC, respectively. The synthesized ACs were characterized by scanning electron microscope, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectrometry, point zero charge, and Boehm titration. The adsorption results demonstrated that the MG5 adsorption process was not remarkably affected by neither the solution pH (2.0-10) nor ionic strength (0-0.5 M NaCl). Kinetic studies showed that the adsorption equilibrium was quickly established, with a low activation energy required for adsorption (Ea; 3.30-27.8 kJ/mol), and the ACs removed 50-73% of the MG5 concentration from solution within 01 min. Desorption studies confirmed the adsorption was irreversible. Thermodynamic experiments suggested that the MG5 adsorption was spontaneous (-ΔG°) and endothermic (+ΔH°), and increased the randomness (+ΔS°) in the system. Although the specific surface areas of the ACs followed the order GSAC (1,413) > GSHAC (1,238) > GSHBAC (903) > GSBAC (812 m 2 /g), the maximum adsorption capacities determined from the Langmuir model (Q o max ) at 30 °C exhibited the following order: GSHBAC (531) > GSAC (344) > GSHAC (332) > GSBAC (253 mg/g). Oxygenation of the ACs' surface through a hydrothermal process with acrylic acid resulted in a decrease in

  19. Adsorption properties of cationic rhodamine B dye onto metals chloride-activated castor bean residue carbons.

    PubMed

    Zhi, Lee Lin; Zaini, Muhammad Abbas Ahmad

    2017-02-01

    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m 2 /g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.

  20. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    PubMed

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  1. Grape stalks biomass as raw material for activated carbon production: synthesis, characterization and adsorption ability

    NASA Astrophysics Data System (ADS)

    Hashemi Shahraki, Zahra; Sharififard, Hakimeh; Lashanizadegan, Asghar

    2018-05-01

    In order to produce activated carbon from grape stalks, this biomass was activated chemically with KOH. Identification methods including FTIR, BET, SEM, Boehm titration and pHzpc measurement were applied to characterize the produced carbon. The adsorption ability of produced activated carbon toward cadmium removal from aqueous solution was evaluated by using Central Composite Design methodology and the effects of process parameters were analysed, as well as, the optimum processing conditions were determined using statistical methods. In order to characterize the equilibrium behaviour of adsorption process, the equilibrium data were analysed by Langmuir, Freundlich, and R-D isotherm models. Results indicated that the adsorption process is a monolayer process and the adsorption capacity of prepared activated carbon was 140.84 mg L‑1. Analysis of kinetics data showed that the pseudo-second-order and Elovich models were well fitted with the kinetics results and this suggests the domination of chemical adsorption. The regenerability results showed that the prepared activated carbon has a reasonable adsorption capacity toward cadmium after five adsorption/desorption cycles.

  2. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE PAGES

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.; ...

    2017-03-17

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  3. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  4. Surface and adsorptive properties of Moringa oleifera bark for removal of V(V) from aqueous solutions.

    PubMed

    Mnisi, Robert Londi; Ndibewu, Peter Papoh

    2017-11-04

    The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N 2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m 2 ). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl - , F - , PO 4 3- , NO 3 - , and SO 4 2- ) and cations (Ca 2+ , K + , Mg 2+ , and Al 3+ ) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.

  5. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    USGS Publications Warehouse

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  6. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  7. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  8. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons.

    PubMed

    Lorenc-Grabowska, Ewa; Gryglewicz, Grazyna

    2005-04-15

    The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT. Two activated carbons used differed in terms of mesopore volume, mesopore size distribution, and chemical properties of the surface. The kinetics of adsorption of HAs have been discussed using three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. It was found that the adsorption of HAs from alkaline solution on mesoporous activated carbon proceeds according to the pseudo-second-order model. The correlation coefficients were close to 1. The intraparticle diffusion of HA molecules within the carbon particle was identified to be the rate-limiting step. Comparing the two activated carbons, the carbon with a higher volume of pores with widths of 10-50 nm showed a greater removal efficiency of HA. An increase in the Freundlich adsorption capacity with decreasing carbon content of HA was observed. Among the HAs studied, S-HA shows characteristics indicating the highest contribution of small-size fraction. The S-HA was removed by both activated carbons to the highest extent. The effect of pH solution on the adsorption of HA was examined over the range pH 5.4-12.2. It was found that the extent of adsorption decreased with decreasing pH of the solution.

  9. Adsorption-Induced Changes in Ribonuclease A Structure and Enzymatic Activity on Solid Surfaces

    PubMed Central

    2015-01-01

    Ribonuclease A (RNase A) is a small globular enzyme that lyses RNA. The remarkable solution stability of its structure and enzymatic activity has led to its investigation to develop a new class of drugs for cancer chemotherapeutics. However, the successful clinical application of RNase A has been reported to be limited by insufficient stability and loss of enzymatic activity when it was coupled with a biomaterial carrier for drug delivery. The objective of this study was to characterize the structural stability and enzymatic activity of RNase A when it was adsorbed on different surface chemistries (represented by fused silica glass, high-density polyethylene, and poly(methyl-methacrylate)). Changes in protein structure were measured by circular dichroism, amino acid labeling with mass spectrometry, and in vitro assays of its enzymatic activity. Our results indicated that the process of adsorption caused RNase A to undergo a substantial degree of unfolding with significant differences in its adsorbed structure on each material surface. Adsorption caused RNase A to lose about 60% of its native-state enzymatic activity independent of the material on which it was adsorbed. These results indicate that the native-state structure of RNase A is greatly altered when it is adsorbed on a wide range of surface chemistries, especially at the catalytic site. Therefore, drug delivery systems must focus on retaining the native structure of RNase A in order to maintain a high level of enzymatic activity for applications such as antitumor chemotherapy. PMID:25420087

  10. Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties.

    PubMed

    Lima, Isabel; Marshall, Wayne E

    2005-01-01

    The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.

  11. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents.

    PubMed

    Rivera-Utrilla, José; Gómez-Pacheco, Carla V; Sánchez-Polo, Manuel; López-Peñalver, Jesús J; Ocampo-Pérez, Raúl

    2013-12-15

    The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0 mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    PubMed

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On the Preferred Active Sites of Promoted MoS 2 for Hydrodesulfurization with Minimal Organonitrogen Inhibition

    DOE PAGES

    Rangarajan, Srinivas; Mavrikakis, Manos

    2016-12-14

    Hydrodesulfurization is a process to produce ultralow-sulfur diesel fuel. Although promoted molybdenum sulfide (MoS 2) catalysts have been used industrially for several decades, the active site requirements for selective hydrodesulfurization of organosulfur compounds with minimal inhibition by organonitrogen constituents of a real gasoil feed has not been resolved. By using molecular binding energy descriptors derived from plane wave density functional theory calculations for comparative adsorption of organosulfur and organonitrogen compounds, we analyzed more than 20 potential sites on unpromoted and Ni- and Co-promoted MoS 2. We also found that hydrogen sulfide and ammonia are simple descriptors of adsorption of stericallymore » unhindered organosulfur and organonitrogen compounds such as dibenzothiophene and acridine, respectively. Further, organonitrogen compounds in gasoil bind more strongly than organosulfur compounds on all sites except on sites with exposed metal atoms on the corner and sulfur edges of promoted MoS 2. Consequently, these sites are proposed as required for maximum-hydrodesulfurization minimum-inhibition catalysis.« less

  14. Hydrothermal Carbonization of Microalgae (Chlorococcum sp.) for Porous Carbons With High Cr(VI) Adsorption Performance.

    PubMed

    Sun, Yuanyuan; Liu, Chang; Zan, Yifan; Miao, Gai; Wang, Hao; Kong, Lingzhao

    2018-04-12

    Porous carbon adsorbents were prepared from microalgae (Chlorococcum sp.) via directly hydrothermal carbonization coupled with KOH or NH 3 activation for Cr(VI) adsorption. KOH-activated porous carbons exhibit high Cr(VI) adsorption capacities than those obtained via NH 3 modification (370.37 > 95.70 mg/g). The superior Cr(VI) adsorption capacity is due to high surface areas (1784 m 2 /g) and pore volumes of porous carbon with mesoporous and macroporous structures. The Cr(VI) adsorption result was well fitted to the Langmuir model, showing that the removal of Cr(VI) was attributed to the monolayer adsorption of activity site on carbon surface.

  15. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.

    PubMed

    Liu, Yan-Ling; Wang, Xiao-Mao; Yang, Hong-Wei; Xie, Yuefeng F

    2018-06-01

    Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion.

  17. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  18. Enhancement of elemental mercury adsorption by silver supported material.

    PubMed

    Khunphonoi, Rattabal; Khamdahsag, Pummarin; Chiarakorn, Siriluk; Grisdanurak, Nurak; Paerungruang, Adjana; Predapitakkun, Somrudee

    2015-06-01

    Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents. Copyright © 2015. Published by Elsevier B.V.

  19. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.

    PubMed

    Jung, Chanil; Park, Junyeong; Lim, Kwang Hun; Park, Sunkyu; Heo, Jiyong; Her, Namguk; Oh, Jeill; Yun, Soyoung; Yoon, Yeomin

    2013-12-15

    Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0-45 ppm), methoxyl (45-63 ppm), O-alkyl (63-108 ppm), and carboxyl carbon (165-187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (Kow) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property of adsorbates steadily throughout the study. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent.

    PubMed

    Wang, Nannan; Hao, Linlin; Chen, Jiaqing; Zhao, Qiang; Xu, Han

    2018-05-01

    Raw coal fly ash was activated to an adsorbent by sulfuric acid impregnation. The activation condition, the adsorption capacity, and the regenerative valorization of the adsorbent were studied. The results show that the optimal preparation conditions of the adsorbent are [H 2 SO 4 ] = 1 mol L -1 , activation time = 30 min, the ratio of coal fly ash to acid = 1:20 (g:mL), calcination temperature = 100 °C. The adsorption of p-nitrophenol on the adsorbent accords with the pseudo-second-order kinetic equation and the adsorption rate constant is 0.089 g mg -1  min -1 . The adsorption on this adsorbent can be considered enough after 35 min, when the corresponding adsorption capacity is 1.07 mg g -1 (85.6% of p-nitrophenol removal). Compared with raw coal fly ash, the adsorbent has a stable adsorption performance at low pH range (pH = 1-6) and the adsorption of p-nitrophenol is an exothermic process. Ninety minutes is required for the regenerative valorization of saturated adsorbent by Fenton process. The regenerative valorization for this saturated adsorbent can reach 89% under the optimal proposed conditions (30 °C, pH = 3, [H 2 O 2 ] = 5.0 mmol L -1 , [Fe 2+ ] = 5.5 mmol L -1 ). Within 15 experimental runs, the adsorbent has a better and better stability with the increase of experimental runs. Finally, the mechanism of activating coal fly ash is proposed, being verified by the results of the SEM and BET test.

  1. Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size.

    PubMed

    Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul

    2017-09-12

    Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

  2. Effects of NH4+, K+, Mg2+, and Ca2+ on the Cesium Adsorption/Desorption in Binding Sites of Vermiculitized Biotite.

    PubMed

    Yin, Xiangbiao; Wang, Xinpeng; Wu, Hao; Takahashi, Hideharu; Inaba, Yusuke; Ohnuki, Toshihiko; Takeshita, Kenji

    2017-12-05

    The reversibility of cesium adsorption in contaminated soil is largely dependent on its interaction with micaceous minerals, which may be greatly influenced by various cations. Herein, we systematically investigated the effects of NH 4 + , K + , Mg 2+ , and Ca 2+ on the adsorption/desorption of Cs + into different binding sites of vermiculitized biotite (VB). Original VB was initially saturated by NH 4 + , K + , or Mg 2+ ; we then evaluated the adsorption of Cs + on three treated VBs, and the desorption by extraction with NH 4 + , K + , Mg 2+ , or Ca 2+ was further evaluated. Our structural analysis and Cs + extractability determinations showed that NH 4 + and K + both collapsed the interlayers of VB, resulting in the dominant adsorption of Cs + to external surface sites on which Cs + was readily extracted by NH 4 + , K + , Mg 2+ , or Ca 2+ irrespective of their species, whereas Mg 2+ maintained the VB with expanded interlayers, leading to the overwhelming adsorption of Cs + in collapsed interlayer sites on which the Cs + desorption was difficult and varied significantly by the cations used in extraction. The order of Cs + extraction ability from the collapsed interlayers was K + ≫ Mg 2+ ≈ Ca 2+ ≫ NH 4 + . These results could provide important insights into Cs migration in soil and its decontamination for soil remediation.

  3. Combining an Optical Resonance Biosensor with Enzyme Activity Kinetics to Understand Protein Adsorption and Denaturation

    PubMed Central

    Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.

    2014-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme’s adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. PMID:25453976

  4. Combining an optical resonance biosensor with enzyme activity kinetics to understand protein adsorption and denaturation.

    PubMed

    Wilson, Kerry A; Finch, Craig A; Anderson, Phillip; Vollmer, Frank; Hickman, James J

    2015-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme's adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13 F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dissociative adsorption of O2 on unreconstructed metal (100) surfaces: Pathways, energetics, and sticking kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Evans, James W.

    An accurate description of oxygen dissociation pathways and kinetics for various local adlayer environments is key for an understanding not just of the coverage dependence of oxygen sticking, but also of reactive steady states in oxidation reactions. Density functional theory analysis for M(100) surfaces with M=Pd, Rh, and Ni, where O prefers the fourfold hollow adsorption site, does not support the traditional Brundle-Behm-Barker picture of dissociative adsorption onto second-nearest-neighbor hollow sites with an additional blocking constraint. Rather adsorption via neighboring vicinal bridge sites dominates, although other pathways can be active. The same conclusion also applies for M=Pt and Ir, wheremore » oxygen prefers the bridge adsorption site. Statistical mechanical analysis is performed based on kinetic Monte Carlo simulation of a multisite lattice-gas model consistent with our revised picture of adsorption. This analysis determines the coverage and temperature dependence of sticking for a realistic treatment of the oxygen adlayer structure.« less

  6. A quantum chemical study for exploring the inhibitory effect of nitrogen containing species on the adsorption of polynuclear aromatic hydrocarbons over a Bronsted acid site

    NASA Astrophysics Data System (ADS)

    Celis-Cornejo, C. M.; Garnica Mantilla, M. M.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E.

    2016-08-01

    The analysis of the inhibitory effect of nitrogenated compounds on the hydroprocessing and hydropurification of oil derived fuels is important to produce cleaner fuels. In this work, density functional theory calculations were performed to investigate the effect of the nitrogen containing molecules on the adsorption of Polynuclear Aromatic Hydrocarbons (PAHs). Mordenite was chosen as a zeolitic structure for simulating a Bronsted acid site. The character of the acid site was confirmed by both a vibrational frequency calculation and a Bader charge analysis. From the adsorption calculations, it was found that the adsorption energy of PAHs increases with the number of aromatic rings in the structure. Also, the nitrogen containing species possibly inhibit more extensively two and three rings PAHs because of their lower adsorption energies. Finally, it was observed that the nitrogen species tend to drag the proton from the mordenite acid site. This explains the inhibitory effect in the adsorption of PAHs and contributes to understanding the dynamics of hydrocarbon hydroprocessing in refineries.

  7. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    PubMed

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  8. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca and Fe doped MgO (001) surface basic sites

    PubMed Central

    Hatch, Courtney; Orlando, Roberto

    2012-01-01

    The electronic properties of undoped and Ca or Fe doped MgO (001) surfaces, as well as their propensity towards atmospheric acidic gas (CO2, SO2 and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, Osurf, using periodic Density Functional Theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the Osurf sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe doped MgO (001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca doped MgO (001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces. PMID:22775293

  9. Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption.

    PubMed

    Dinamarca, M Alejandro; Ibacache-Quiroga, C; Baeza, P; Galvez, S; Villarroel, M; Olivero, P; Ojeda, J

    2010-04-01

    The immobilization of Pseudomonas stutzeri using adsorption on different inorganic supports was studied in relation to the number of adsorbed cells, metabolic activity and biodesulfurization (BDS). The electrophoretic migration (EM) measurements and Tetrazolioum (TTC) method were used to evaluate adsorption and metabolic activity. Results indicate that maximal immobilization was obtained with an initial load of 14 x 10(8) cells mL(-1) for Al and Sep, whereas Ti requires 20 x 10(8) cells mL(-1). The highest interaction was observed in the P. stutzeri/Si and P. stutzeri/Sep biocatalysts. The IEP values and metabolic activities indicate that P. stutzeri change the surface of supports and maintains metabolic activity. A direct relation between BDS activity and the adsorption capacity of the bacterial cells was observed at the adsorption/desorption equilibrium level. The biomodification of inorganic supports by the adsorption process increases the bioavailability of sulphur substrates for bacterial cells, improving BDS activity. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  11. Adsorption of organic compounds onto activated carbons from recycled vegetables biomass.

    PubMed

    Mameli, Anna; Cincotti, Alberto; Lai, Nicola; Crisafulli, Carmelo; Sciré, Salvatore; Cao, Giacomo

    2004-01-01

    The removal of organic species from aqueous solution by activated carbons is investigated. The latter ones are prepared from olive husks and almond shells. A wide range of surface area values are obtained varying temperature and duration of both carbonization and activation steps. The adsorption isotherm of phenol, catechol and 2,6-dichlorophenol involving the activated carbons prepared are obtained at 25 degrees C. The corresponding behavior is quantitatively correlated using classical isotherm, whose parameters are estimated by fitting the equilibrium data. A two component isotherm (phenol/2,6-dichlorophenol) is determined in order to test activated carbon behavior during competitive adsorption.

  12. Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption.

    PubMed

    Wu, Feng-Chin; Wu, Pin-Hsueh; Tseng, Ru-Ling; Juang, Ruey-Shin

    2010-05-01

    In this work, unburnt coal (UC) in bottom ash from coal-fired power plants was soaked in KOH solution and activated for 1 h at 780 degrees C. The yield of activated carbons varied from 47.8 to 54.8% when the KOH/UC weight ratio changed from 2 to 4. Pore properties of these activated carbons including the BET surface area, pore volume, pore size distribution, and pore diameter were characterized based on N(2) adsorption isotherms. It was shown that the isotherms for the adsorption of methylene blue, acid blue 74, and 4-chlorophenol from aqueous solutions on these activated carbons at 30 degrees C were well fitted by the Langmuir equation (correlation coefficient r(2) > 0.9968). The adsorption capacities of methylene blue, acid blue 74, and 4-chlorophenol were obtained to be 2.40-2.88, 0.57-1.29, and 2.34-5.62 mmol/g, respectively. Moreover, the adsorption kinetics could be suitably described by the Elovich equation. Copyright 2010. Published by Elsevier Ltd.

  13. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    PubMed

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Removal of gadolinium-based contrast agents: adsorption on activated carbon.

    PubMed

    Elizalde-González, María P; García-Díaz, Esmeralda; González-Perea, Mario; Mattusch, Jürgen

    2017-03-01

    Three carbon samples were employed in this work, including commercial (1690 m 2  g -1 ), activated carbon prepared from guava seeds (637 m 2  g -1 ), and activated carbon prepared from avocado kernel (1068 m 2  g -1 ), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H 3 PO 4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.

  15. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    PubMed

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters.

  16. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    PubMed

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  18. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.

    PubMed

    Gangupomu, Roja Haritha; Sattler, Melanie L; Ramirez, David

    2016-01-25

    The overall goal was to determine an optimum pre-treatment condition for carbon nanotubes (CNTs) to facilitate air pollutant adsorption. Various combinations of heat and chemical pre-treatment were explored, and toluene was tested as an example hazardous air pollutant adsorbate. Specific objectives were (1) to characterize raw and pre-treated single-wall (SW) and multi-wall (MW) CNTs and compare their physical/chemical properties to commercially available granular activated carbon (GAC), (2) to determine the adsorption capacities for toluene onto pre-treated CNTs vs. GAC. CNTs were purified via heat-treatment at 400 °C in steam, followed by nitric acid treatment (3N, 5N, 11N, 16N) for 3-12 h to create openings to facilitate adsorption onto interior CNT sites. For SWNT, Raman spectroscopy showed that acid treatment removed impurities up to a point, but amorphous carbon reformed with 10h-6N acid treatment. Surface area of SWNTs with 3 h-3N acid treatment (1347 m(2)/g) was higher than the raw sample (1136 m(2)/g), and their toluene maximum adsorption capacity was comparable to GAC. When bed effluent reached 10% of inlet concentration (breakthrough indicating time for bed cleaning), SWNTs had adsorbed 240 mg/g of toluene, compared to 150 mg/g for GAC. Physical/chemical analyses showed no substantial difference for pre-treated vs. raw MWNTs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties.

    PubMed

    Li, Lei; Quinlivan, Patricia A; Knappe, Detlef R U

    2005-05-01

    A method based on the Polanyi-Dubinin-Manes (PDM) model is presented to predict adsorption isotherms of aqueous organic contaminants on activated carbons. It was assumed that trace organic compound adsorption from aqueous solution is primarily controlled by nonspecific dispersive interactions while water adsorption is controlled by specific interactions with oxygen-containing functional groups on the activated carbon surface. Coefficients describing the affinity of water for the activated carbon surface were derived from aqueous-phase methyl tertiary-butyl ether (MTBE) and trichloroethene (TCE) adsorption isotherm data that were collected with 12 well-characterized activated carbons. Over the range of oxygen contents covered by the adsorbents (approximately 0.8-10 mmol O/g dry, ash-free activated carbon), a linear relationship between water affinity coefficients and adsorbent oxygen content was obtained. Incorporating water affinity coefficients calculated from the developed relationship into the PDM model, isotherm predictions resulted that agreed well with experimental data for three adsorbents and two adsorbates [tetrachloroethene (PCE), cis-1,2-dichloroethene (DCE)] that were not used to calibrate the model.

  20. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue.

    PubMed

    Marrakchi, F; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-05-01

    In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adsorption of basic dyes on granular activated carbon and natural zeolite.

    PubMed

    Meshko, V; Markovska, L; Mincheva, M; Rodrigues, A E

    2001-10-01

    The adsorption of basic dyes from aqueous solution onto granular activated carbon and natural zeolite has been studied using an agitated batch adsorber. The influence of agitation, initial dye concentration and adsorbent mass has been studied. The parameters of Langmuir and Freundlich adsorption isotherms have been determined using the adsorption data. Homogeneous diffusion model (solid diffusion) combined with external mass transfer resistance is proposed for the kinetic investigation. The dependence of solid diffusion coefficient on initial concentration and mass adsorbent is represented by the simple empirical equations.

  2. Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon

    NASA Astrophysics Data System (ADS)

    Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira

    2018-04-01

    Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.

  3. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    PubMed Central

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.

    2017-01-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376

  4. Platelet Adhesion and Activation on Chiral Surfaces: The Influence of Protein Adsorption.

    PubMed

    Fan, Yonghong; Luo, Rifang; Han, Honghong; Weng, Yajun; Wang, Hong; Li, Jing'an; Yang, Ping; Wang, Yunbing; Huang, Nan

    2017-10-03

    Adsorbed proteins and their conformational change on blood-contacting biomaterials will determine their final hemocompatibility. It has frequently been reported that surface chirality of biomaterials may highly influence their protein adsorption behavior. Here, lysine and tartaric acid with different chirality were immobilized onto TiO 2 films respectively, and the influence of surface chirality on protein adsorption, platelet adhesion, and activation was also investigated. It showed that the l- and d-molecule grafted samples had almost the same grafting density, surface topography, chemical components, and hydrophilicity in this study. However, biological behaviors such as protein adsorption, platelet adhesion, and activation were quite different. The d-lysine grafted surface had a greater ability to inhibit both bovine serum albumin and fibrinogen adsorption, along with less degeneration of fibrinogen compared to the l-lysine anchored surface. However, the d-tartaric acid grafted surface adsorbed more protein but with less denatured fibrinogen compared to the l-tartaric acid grafted one. Further studies showed that the secondary structural change of the adsorbed albumin and fibrinogen on all surfaces with deduction of the α-helix content and increase of disordered structure, while the changing degree was apparently varied. As a result, the d-lysine immobilized surface absorbed less platelets and red blood cells and achieved slightly increased platelet activation. For tartaric acid anchored surfaces, a larger number of platelets adhered to the D-surface but were less activated compared to the L-surface. In conclusion, the surface chirality significantly influenced the adsorption and conformational change of blood plasma protein, which in turn influenced both platelet adhesion and activation.

  5. Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.

    PubMed

    Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle

    2018-04-24

    Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.

  6. Nitroimidazoles adsorption on activated carbon cloth from aqueous solution.

    PubMed

    Ocampo-Pérez, R; Orellana-Garcia, F; Sánchez-Polo, M; Rivera-Utrilla, J; Velo-Gala, I; López-Ramón, M V; Alvarez-Merino, M A

    2013-07-01

    The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pH<3, which favors the repulsive forces between dimetridazole or metronidazole and the ACC surface. The formation of hydrogen bonds and dispersive interactions play the predominant role at higher pH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Adsorption and activity of Thermomyces lanuginosus lipase on hydrophobic and hydrophilic surfaces measured with dual polarization interferometry (DPI) and confocal microscopy.

    PubMed

    Sonesson, Andreas W; Callisen, Thomas H; Brismar, Hjalmar; Elofsson, Ulla M

    2008-02-15

    The adsorption and activity of Thermomyces lanuginosus lipase (TLL) was measured with dual polarization interferometry (DPI) and confocal microscopy at a hydrophilic and hydrophobic surface. In the adsorption isotherms, it was evident that TLL both had higher affinity for the hydrophobic surface and adsorbed to a higher adsorbed amount (1.90 mg/m(2)) compared to the hydrophilic surface (1.40-1.50mg/m(2)). The thickness of the adsorbed layer was constant (approximately 3.5 nm) on both surfaces at an adsorbed amount >1.0mg/m(2), but decreased on the hydrophilic surface at lower surface coverage, which might be explained by partially unfolding of the TLL structure. However, a linear dependence of the refractive index of the adsorbed layer on adsorbed amount of TLL on C18 surfaces indicated that the structure of TLL was similar at low and high surface coverage. The activity of adsorbed TLL was measured towards carboxyfluorescein diacetate (CFDA) in solution, which upon lipase activity formed a fluorescent product. The surface fluorescence intensity increase was measured in a confocal microscope as a function of time after lipase adsorption. It was evident that TLL was more active on the hydrophilic surface, which suggested that a larger fraction of adsorbed TLL molecules were oriented with the active site facing the solution compared to the hydrophobic surface. Moreover, most of the activity remained when the TLL surface coverage decreased. Earlier reports on TLL surface mobility on the same surfaces have found that the lateral diffusion was highest on hydrophilic surfaces and at low surface coverage of TLL. Hence, a high lateral mobility might lead to a longer exposure time of the active site towards solution, thereby increasing the activity against a water-soluble substrate.

  8. Albumin (BSA) adsorption onto graphite stepped surfaces

    NASA Astrophysics Data System (ADS)

    Rubio-Pereda, Pamela; Vilhena, J. G.; Takeuchi, Noboru; Serena, Pedro A.; Pérez, Rubén

    2017-06-01

    Nanomaterials are good candidates for the design of novel components with biomedical applications. For example, nano-patterned substrates may be used to immobilize protein molecules in order to integrate them in biosensing units. Here, we perform long MD simulations (up to 200 ns) using an explicit solvent and physiological ion concentrations to characterize the adsorption of bovine serum albumin (BSA) onto a nano-patterned graphite substrate. We have studied the effect of the orientation and step size on the protein adsorption and final conformation. Our results show that the protein is stable, with small changes in the protein secondary structure that are confined to the contact area and reveal the influence of nano-structuring on the spontaneous adsorption, protein-surface binding energies, and protein mobility. Although van der Waals (vdW) interactions play a dominant role, our simulations reveal the important role played by the hydrophobic lipid-binding sites of the BSA molecule in the adsorption process. The complex structure of these sites, that incorporate residues with different hydrophobic character, and their flexibility are crucial to understand the influence of the ion concentration and protein orientation in the different steps of the adsorption process. Our study provides useful information for the molecular engineering of components that require the immobilization of biomolecules and the preservation of their biological activity.

  9. Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon.

    PubMed

    Wang, Zhengfang; Shi, Mo; Li, Jihua; Zheng, Zheng

    2014-03-01

    A novel adsorbent based on iron oxide dispersed over activated carbon (AC) were prepared, and used for phosphate removal from aqueous solutions. The influence of pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing AC were determined. Two series of ACs, non-oxidized and oxidized carbon modified by iron (denoted as AC-Fe and AC/O-Fe), resulted in a maximum impregnated iron of 4.03% and 7.56%, respectively. AC/O-Fe showed 34.0%-46.6% higher phosphate removal efficiency than the AC-Fe did. This was first attributed to the moderate pre-oxidation of raw AC by nitric acid, achieved by dosing Fe(II) after a pre-oxidation, to obtain higher iron loading, which is favorable for phosphate adsorption. Additionally, the in-situ formed active site on the surface of carbon, which was derived from the oxidation of Fe(II) by nitric acid dominated the remarkably high efficiency with respect to the removal of phosphate. The activation energy for adsorption was calculated to be 10.53 and 18.88 kJ/mol for AC-Fe and AC/O-Fe, respectively. The results showed that the surface mass transfer and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste.

    PubMed

    Ahmad, A A; Hameed, B H

    2010-03-15

    In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adam's-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column. (c) 2009 Elsevier B.V. All rights reserved.

  11. A relativistic density functional study of the role of 5f electrons in atomic and molecular adsorptions on actinide surfaces

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad Nurul

    Atomic and molecular adsorptions of oxygen and hydrogen on actinide surfaces have been studied within the generalized gradient approximations to density functional theory (GGA-DFT). The primary goal of this work is to understand the details of the adsorption processes, such as chemisorption sites, energies, adsorption configurations and activation energies for dissociation of molecules; and the signature role of the plutonium 5f electrons. The localization of the 5f electrons remains one of central questions in actinides and one objective here is to understand the extent to which localizations plays a role in adsorption on actinide surfaces. We also investigated the magnetism of the plutonium surfaces, given the fact that magnetism in bulk plutonium is a highly controversial issue, and the surface magnetism of it is not a well explored territory. Both the non-spin-polarized and spin-polarized calculations have been performed to arrive at our conclusions. We have studied both the atomic and molecular hydrogen and oxygen adsorptions on plutonium (100) and (111) surfaces. We have also investigated the oxygen molecule adsorptions on uranium (100) surface. Comparing the adsorption on uranium and plutonium (100) surfaces, we have seen that O2 chemisorption energy for the most favorable adsorption site on uranium surface has higher chemisorption energy, 9.492 eV, than the corresponding plutonium site, 8.787 eV. Also degree of localization of 5f electrons is less for uranium surface. In almost all of the cases, the most favorable adsorption sites are found where the coordination numbers are higher. For example, we found center sites are the most favorable sites for atomic adsorptions. In general oxygen reacts more strongly with plutonium surface than hydrogen. We found that atomic oxygen adsorption energy on (100) surface is 3.613 eV more than that of the hydrogen adsorptions, considering only the most favorable site. This is also true for molecular adsorptions, as the

  12. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Ab initio molecular dynamics determination of competitive O₂ vs. N₂ adsorption at open metal sites of M₂(dobdc).

    PubMed

    Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M

    2016-04-28

    The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.

  14. Heterogeneous adsorption behavior of landfill leachate on granular activated carbon revealed by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC).

    PubMed

    Lee, Sonmin; Hur, Jin

    2016-04-01

    Heterogeneous adsorption behavior of landfill leachate on granular activated carbon (GAC) was investigated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). The equilibrium adsorption of two leachates on GAC was well described by simple Langmuir and Freundlich isotherm models. More nonlinear isotherm and a slower adsorption rate were found for the leachate with the higher values of specific UV absorbance and humification index, suggesting that the leachate containing more aromatic content and condensed structures might have less accessible sites of GAC surface and a lower degree of diffusive adsorption. Such differences in the adsorption behavior were found even within the bulk leachate as revealed by the dissimilarity in the isotherm and kinetic model parameters between two identified PARAFAC components. For both leachates, terrestrial humic-like fluorescence (C1) component, which is likely associated with relatively large sized and condensed aromatic structures, exhibited a higher isotherm nonlinearity and a slower kinetic rate for GAC adsorption than microbial humic-like (C2) component. Our results were consistent with size exclusion effects, a well-known GAC adsorption mechanism. This study demonstrated the promising benefit of using EEM-PARAFAC for GAC adsorption processes of landfill leachate through fast monitoring of the influent and treated leachate, which can provide valuable information on optimizing treatment processes and predicting further environmental impacts of the treated effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    EPA Science Inventory

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  16. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    NASA Astrophysics Data System (ADS)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  17. Adsorption of bentazon on CAT and CARBOPAL activated carbon: Experimental and computational study

    NASA Astrophysics Data System (ADS)

    Spaltro, Agustín; Simonetti, Sandra; Torrellas, Silvia Alvarez; Rodriguez, Juan Garcia; Ruiz, Danila; Juan, Alfredo; Allegretti, Patricia

    2018-03-01

    Removal of the bentazon by adsorption on two different types of activated carbon was investigated under various experimental conditions.Kinetics of adsorption is followed and the adsorption isotherms of the pesticide are determined. The effects of the changes in pH, ionic strength and temperature are analyzed. Computational simulation was employed to analyze the geometry and the energy of pesticide absorption on activated carbon. Concentration of bentazon decreases while increase all the variables, from the same initial concentration. Experimental data for equilibrium was analyzed by three models: Langmuir, Freundlich and Guggenheim-Anderson-de Boer isotherms. Pseudo-first and pseudo-second-order kinetics are tested with the experimental data, and pseudo-second-order kinetics was the best for the adsorption of bentazon by CAT and CARBOPAL with coefficients of correlation R2 = 0.9996 and R2 = 0.9993, respectively. The results indicated that both CAT and CARBOPAL are very effective for the adsorption of bentazon from aqueous solutions, but CAT carbon has the greater capacity.

  18. Composites of ZnO nanoparticles and biomass based activated carbon: adsorption, photocatalytic and antibacterial capacities.

    PubMed

    Cruz, G J F; Gómez, M M; Solis, J L; Rimaycuna, J; Solis, R L; Cruz, J F; Rathnayake, B; Keiski, R L

    2018-05-01

    Composite material (AC-ZnO) was prepared by growing ZnO nanoparticles during the production of biomass based-activated carbon (AC) via the incorporation of zinc acetate in the process. Comprehensive analyses confirmed the presence of ZnO nanoparticles over the AC surface and described the particular nature of the composite adsorbent. Methylene blue (MB) equilibrium data fitted the Dubinin-Radushkevich model. The MB adsorption capacity was higher for the bare activated carbons (197.9-188.7 mg/g) than the activated carbons with ZnO nanoparticles (137.6-149.7 mg/g). The adsorption of the MB on the adsorbents is physical because the mean adsorption energy (E) is between 1.76 and 2.00 kJ/mol. Experiments that combine adsorption and photocatalysis were carried out with different loads of adsorbents and with and without UV-light exposure. Photocatalytic activity was identified mostly at the first stage of the adsorption process and, in the case of experiments with less load of the composite AC-ZnO, because the light obstruction effect of the activated carbon is more for higher loads. The ZnO grown over AC improves the adsorption of cations such as Pb, Al and Fe in aqueous phase (polluted river water) and provides antibacterial capacity against Escherichia coli and Salmonella typhimurium.

  19. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids. Copyright © 2011 SETAC.

  20. Adsorption and desorption of SO2, NO and chlorobenzene on activated carbon.

    PubMed

    Li, Yuran; Guo, Yangyang; Zhu, Tingyu; Ding, Song

    2016-05-01

    Activated carbon (AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other's adsorption. A series of adsorption experiments for multicomponents, including SO2, NO, chlorobenzene and H2O, on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO2, demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO2 adsorption. The temperature-programmed desorption (TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO2>chlorobenzene > NO. The adsorption amount is independent of the binding strength. The presence of H2O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy (XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C=O groups, which explains the positive effect of chlorobenzene on SO2 adsorption and the strong NO adsorption. Copyright © 2015. Published by Elsevier B.V.

  1. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers.

    PubMed

    Rodrigues, Sofia N; Gonçalves, Inês C; Martins, M C L; Barbosa, Mário A; Ratner, Buddy D

    2006-11-01

    The effect of surface wettability on fibrinogen adsorption, platelet adhesion and platelet activation was investigated using self-assembled monolayers (SAMs) containing different ratios of longer chain methyl- and shorter chain hydroxyl-terminated alkanethiols (C15CH3 vs. C11OH) on gold. Protein adsorption studies were performed using radiolabeled human fibrinogen (HFG). Platelet adhesion and activation studies with and without pre-adsorbed fibrinogen, albumin and plasma were assessed using scanning electron microscopy (SEM) and a glutaraldehyde-induced fluorescence technique (GIFT). Results demonstrated a linear decrease of HFG adsorption with the increase of OH groups on the monolayer (increase of the hydrophilicity). Platelet adhesion and activation also decrease with increase of hydrophilicity of surface. Concerning SAMs pre-immersed in proteins, fibrinogen adsorption was related with high platelet adhesion and activation. The passivant effect of albumin on platelet adhesion and activation was only demonstrated on SAMs contained C11OH. When all the blood proteins are present (plasma) platelet adhesion was almost absent on SAMs with 65% and 100% C11OH. This could be explained by the higher albumin affinity of the SAMs with 65% C11OH and the lower total protein adsorption associated with SAMs with 100% C11OH.

  2. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    NASA Astrophysics Data System (ADS)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  3. Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.

    1975-01-01

    One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.

  4. Application of the IAS theory combining to a three compartments description of natural organic matter to the adsorption of atrazine or diuron on activated carbon.

    PubMed

    Baudu, M; Raveau, D; Guibaud, G

    2004-07-01

    The study of natural organic matter (NOM) adsorption on an activated carbon showed that equilibrium cannot be described according to a simple model such as a Freundlich isotherm and confirms the need for a closer description of the organic matter to simulate the competitive adsorption with micropollutants. A representation of the organic matter in three fractions is chosen: non-adsorbable, weak and strong adsorbable. The Ideal Adsorbed Solution Theory (IAST) can, under restrictive conditions, be used to effectively predict the competition between the pesticides and the organic matter. Therefore, it was noted that the model simulated with good precision the competition between atrazine or diuron and natural organic matter in aqueous solution for two activated carbons (A and B). The same parameters for the modeling of organic matter adsorption (Freudlich constants for two absorbable fractions) are used with the two pesticides. However, IAST does not allow correct modeling of pesticide adsorption onto two other (C and D) activated carbons in solution in natural water to be described. IAS theory does not reveal competition between diuron and NOM and pore blockage mechanism by the NOM is proposed as the major effect for the adsorption capacity reduction. However, the difference observed between the two pesticides could be due to in addition to the pore blockage effect, a particular phenomenon with the diuron, especially with D activated carbon. We can suppose specific interactions between the diuron and the adsorbed organic matter and a competition between adsorption sites of NOM and activated carbon surface.

  5. Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Guo; Chen, Honglin; Qin, Hangdao; Feng, Yujun

    2014-02-01

    To study the contribution of different nitrogen-containing functional groups to enhancement of phenol adsorption, the aminated activated carbons (AC) were characterized by N2 adsorption/desorption, XPS, Boehm titration, and pH drift method and tested for adsorption behaviors of phenol. Adsorption isotherm fitting revealed that the Langmuir model was preferred for the aminated ACs. The adsorption capacity per unit surface area (qm/SSABET) was linearly correlated with the amount of pyridinic and pyrrolic N, which suggested that these two functional groups played a critical role in phenol adsorption. The enhancement of adsorption capacity was attributed to the strengthened π-π dispersion between phenol and basal plane of AC by pyridinic, pyrrolic N. The adsorption kinetics was found to follow the pseudo-second-order kinetic model, and intraparticle diffusion was one of the rate-controlling steps in the adsorption process.

  6. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  7. High performance activated carbon for benzene/toluene adsorption from industrial wastewater.

    PubMed

    Asenjo, Natalia G; Alvarez, Patricia; Granda, Marcos; Blanco, Clara; Santamaría, Ricardo; Menéndez, Rosa

    2011-09-15

    A coal-tar-derived mesophase was chemically activated to produce a high surface area (~3200 m(2)/g) carbon with a porosity made up of both micropores and mesopores. Its adsorption capacities were found to be among the highest ever reported in literature, reaching values of 860 mg/g and 1200 mg/g for the adsorption of benzene and toluene, respectively, and 1200 mg/g for the combined adsorption of benzene and toluene from an industrial wastewater. Such high values imply that the entire pore system, including the mesopore fraction, is involved in the adsorption process. The almost complete pore filling is thought to be due to the high relative concentrations of the tested solutions, resulting from the low saturation concentration values for benzene and toluene, which were obtained by fitting the adsorption data to the BET equation in liquid phase. The kinetics of adsorption in the batch experiments which were conducted in a syringe-like adsorption chamber was observed to proceed in accordance with the pseudo-second order kinetic model. The combined presence of micropores and mesopores in the material is thought to be the key to the high kinetic performance, which was outstanding in a comparison with other porous materials reported in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Activated carbon oxygen content influence on water and surfactant adsorption.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  9. Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification.

    PubMed

    Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L

    2007-03-06

    In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).

  10. Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies.

    PubMed

    Foletto, Edson Luiz; Weber, Caroline Trevisan; Paz, Diego Silva; Mazutti, Marcio Antonio; Meili, Lucas; Bassaco, Mariana Moro; Collazzo, Gabriela Carvalho

    2013-01-01

    Activated carbon prepared from bottle gourd has been used as adsorbent for removal of leather dye (Direct Black 38) from aqueous solution. The activated carbon obtained showed a mesoporous texture, with surface area of 556.16 m(2) g(-1), and a surface free of organic functional groups. The initial dye concentration, contact time and pH significantly influenced the adsorption capacity. In the acid region (pH 2.5) the adsorption of dye was more favorable. The adsorption equilibrium was attained after 60 min. Equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The equilibrium data were best described by the Langmuir isotherm, with maximum adsorption capacity of 94.9 mg g(-1). Adsorption kinetic data were fitted using the pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The adsorption kinetic was best described by the second-order kinetic equation. The adsorption process was controlled by both external mass transfer and intraparticle diffusion. Activated carbon prepared from bottle gourd was shown to be a promising material for adsorption of Direct Black 38 from aqueous solution.

  11. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    NASA Astrophysics Data System (ADS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  12. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  13. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    PubMed

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, P<0.01) than the Langmuir Isotherm, a similar finding to previous studies. However, at a P concentration of 10 mg/L, typical of domestic effluent, the Freundlich equation predicted a retention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design.

  14. Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Culp, J.T.; Natesakhawat, Sittichai

    2007-07-05

    We have improved the activation process for CuBTC [Cu3(BTC)2, BTC ) 1,3,5-benzenetricarboxylate] by extracting the N,N-dimethylformamide-solvated crystals with methanol; we identify material activated in this way as CuBTC-MeOH. This improvement allowed the activation to be performed at a much lower temperature, thus greatly mitigating the danger of reducing the copper ions. A review of the literature for H2 adsorption in CuBTC shows that the preparation and activation process has a significant impact on the adsorption capacity, surface area, and pore volume. CuBTC-MeOH exhibits a larger pore volume and H2 adsorption amount than any previously reported results for CuBTC. We havemore » performed atomically detailed modeling to complement experimentally measured isotherms. Quantum effects for hydrogen adsorption in CuBTC were found to be important at 77 K. Simulations that include quantum effects are in good agreement with the experimentally measured capacity for H2 at 77 K and high pressure. However, simulations underpredict the amount adsorbed at low pressures. We have compared the adsorption isotherms from simulations with experiments for H2 adsorption at 77, 87, 175, and 298 K; nitrogen adsorption at 253 and 298 K; and argon adsorption at 298 and 356 K. Reasonable agreement was obtained in all cases.« less

  15. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms

  16. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    PubMed Central

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5–20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g. PMID:26689357

  17. Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell.

    PubMed

    Gaya, Umar Ibrahim; Otene, Emmanuel; Abdullah, Abdul Halim

    2015-01-01

    Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40-50 nm size, less graphitic, mesoporous NaOH activated carbon yielded high adsorption efficiency, pointing largely to the influence surface area. The performance of the KOH based activated carbon was arguably explained for the first time in terms of crystallinity. The efficiencies of the mesoporous ZnCl2-formulated activated carbon diminished due to the presence of larger particles. Batch adsorption of divalent metals revealed dependence on adsorbent dose, agitation time, pH and adsorbate concentrations with high adsorption efficiencies at optimum operating parameters. The equilibrium profiles fitted Langmuir and Freundlich isotherms, and kinetics favoured pseudo-second order model. The study demonstrated the practicability of the removal of alarming levels of cadmium and lead ions from industrial effluents.

  18. Tunable gas adsorption in graphene oxide framework

    NASA Astrophysics Data System (ADS)

    Razmkhah, Mohammad; Moosavi, Fatemeh; Taghi Hamed Mosavian, Mohammad; Ahmadpour, Ali

    2018-06-01

    Effect of length of linker inter-space was studied on the adsorption capacity of CO2 by graphene oxide framework (GOF). Effect of linker inter-space of 14, 11, and 8 Å was studied here. The linker inter-space of 11 Å showed the highest CO2 adsorption capacity. A dual-site Langmuir model was observed for adsorption of CO2 and CH4 into the GOF. According to radial distribution function (RDF), facial and central atoms of linker are the dual-site predicted by Langmuir model. Two distinguishable sites of adsorption and parallel orientation of CO2 are the main reasons of high adsorption capacity in 11 Å linker inter-space. Gas-adsorbent affinity obtains the orientation of CO2 near the linker. The affinity in the 11 Å linker inter-space is the highest. Thus, it forces the CO2 to lay parallel and orient more localized than the other GOFs. In addition, CH4 resulted higher working capacity than CO2 in 14 Å. This occurs because of the change in gas-adsorbent affinity by changing pressure. An entrance adsorption occurs out of the pore of the GOF. This adsorption is not as stable as deep adsorption.

  19. Urea adsorption by activated carbon prepared from palm kernel shell

    NASA Astrophysics Data System (ADS)

    Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee

    2017-07-01

    Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.

  20. Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth.

    PubMed

    Bayram, Edip; Hoda, Numan; Ayranci, Erol

    2009-09-15

    Removal of catechol and resorcinol from aqueous solutions by adsorption and electrosorption onto high area activated carbon cloth (ACC) was investigated. Kinetics of both adsorption and electrosorption were followed by in-situ UV-spectroscopic method and the data were treated according to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the adsorption and electrosorption of these compounds onto ACC follows pseudo-second-order model. pH changes during adsorption and electrosorption were followed and discussed with regard to the interaction between ACC and adsorbate molecules, utilizing the pH(pzc) value of ACC. An electrodesorption experiment was conducted to explore the possibility of regeneration of ACC. Adsorption isotherms were derived at 25 degrees C on the basis of batch analysis. The fits of experimental isotherm data to the well-known Freundlich, Langmuir and Tempkin models were examined.

  1. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiming; Li, Baiyan; Wu, Zili

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO 3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO 3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  2. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    DOE PAGES

    Zhang, Yiming; Li, Baiyan; Wu, Zili; ...

    2015-01-09

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO 3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO 3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  3. Irreversible adsorption of particles on heterogeneous surfaces.

    PubMed

    Adamczyk, Zbigniew; Jaszczółt, Katarzyna; Michna, Aneta; Siwek, Barbara; Szyk-Warszyńska, Lilianna; Zembala, Maria

    2005-12-30

    Methods of theoretical and experimental evaluation of irreversible adsorption of particles, e.g., colloids and globular proteins at heterogeneous surfaces were reviewed. The theoretical models were based on the generalized random sequential adsorption (RSA) approach. Within the scope of these models, localized adsorption of particles occurring as a result of short-ranged attractive interactions with discrete adsorption sites was analyzed. Monte-Carlo type simulations performed according to this model enabled one to determine the initial flux, adsorption kinetics, jamming coverage and the structure of the particle monolayer as a function of the site coverage and the particle/site size ratio, denoted by lambda. It was revealed that the initial flux increased significantly with the site coverage theta(s) and the lambda parameter. This behavior was quantitatively interpreted in terms of the scaled particle theory. It also was demonstrated that particle adsorption kinetics and the jamming coverage increased significantly, at fixed site coverage, when the lambda parameter increased. Practically, for alpha = lambda2theta(s) > 1 the jamming coverage at the heterogeneous surfaces attained the value pertinent to continuous surfaces. The results obtained prove unequivocally that spherically shaped sites were more efficient in binding particles in comparison with disk-shaped sites. It also was predicted that for particle size ratio lambda < 4 the site multiplicity effect plays a dominant role, affecting significantly the structure of particle monolayers and the jamming coverage. Experimental results validating main aspects of these theoretical predictions also have been reviewed. These results were derived by using monodisperse latex particles adsorbing on substrates produced by covering uniform surface by adsorption sites of a desired size, coverage and surface charge. Particle deposition occurred under diffusion-controlled transport conditions and their coverage was

  4. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater.

    PubMed

    Nair, Vaishakh; Vinu, R

    2016-09-01

    In this study, mesoporous activated biochar with high surface area and controlled pore size was prepared from char obtained as a by-product of pyrolysis of Prosopis juliflora biomass. The activation was carried out by a simple process that involved H2O2 treatment followed by microwave pyrolysis. H2O2 impregnation time and microwave power were optimized to obtain biochar with high specific surface area and high adsorption capacity for commercial dyes such as Remazol Brilliant Blue and Methylene Blue. Adsorption parameters such as initial pH of the dye solution and adsorbent dosage were also optimized. Pore size distribution, surface morphology and elemental composition of activated biochar were thoroughly characterized. H2O2 impregnation time of 24h and microwave power of 600W produced nanostructured biochar with narrow and deep pores of 357m(2)g(-1) specific surface area. Langmuir and Langmuir-Freundlich isotherms described the adsorption equilibrium, while pseudo second order model described the kinetics of adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Adsorption of thiophene on silica-supported Mo clusters

    NASA Astrophysics Data System (ADS)

    Komarneni, M.; Kadossov, E.; Justin, J.; Lu, M.; Burghaus, U.

    2010-07-01

    The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoS x clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H 4C 4S desorbs molecularly at 190-400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 10 13/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H 4C 4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H 2, H 2S, and mostly alkynes are detected in the gas phase as decomposition products. H 4C 4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H 4C 4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H 2 and H 2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O 2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H 2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C 4H 4S has been determined. At thermal impact energies ( Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the

  6. Characteristics and adsorption study of the activated carbon derived from municipal sewage sludge.

    PubMed

    Guo, Tiecheng; Yao, Sicong; Chen, Hengli; Yu, Xin; Wang, Meicheng; Chen, Yao

    2017-10-01

    Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer-Emmett-Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4-6) and around 98% for MB in a very wide pH range (pH = 2-12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions' removal than dyes'.

  7. Adsorption of Free Fatty Acid (FFA) in Low-Grade Cooking Oil Used Activated Natural Zeolite as Adsorbent

    NASA Astrophysics Data System (ADS)

    Larasati Tres Ayu Putranti, Monika; Kompiang Wirawan, Sang; Made Bendiyasa, I.

    2018-01-01

    Adsorption of free fatty acid (FFA) in low-grade cooking oil using active natural zeolite adsorbent was done as an effort to improve the quality of low-grade cooking oil so that it can fulfill the standard of fried oil which has been set on SNI 01-3741-2013. Adsorption was carried out with natural zeolite which activated with HCl and NaOH solution followed by the calcination process. The results showed that the NaOH activated zeolite decreased FFA content in low-grade cooking oil more than the HCl activated natural zeolite, with optimum NaOH concentration was 0.75 M. In the adsorption equilibrium analysis with temperature variation (25 °C, 40 °C, 80 °C ), obtained that adsorption of FFA with NaOH activated natural zeolite follows Adsorption Isotherm Freundlich Model with equilibrium constant value was 20,5873; 0,9629 dan 0,8053.

  8. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Scaling trace organic contaminant adsorption capacity by granular activated carbon.

    PubMed

    Corwin, Christopher J; Summers, R Scott

    2010-07-15

    The role of particle size on the reduction of granular activated carbon (GAC) adsorption capacity for trace organic contaminants by dissolved organic matter (DOM) is examined and applied to performance scale-up. The adsorption capacity reduction, termed fouling, must be scalable in order to use bench scale tests, such as the rapid small-scale column test (RSSCT) to predict full-scale breakthrough. Equilibrium adsorption capacity tests with GAC preloaded with DOM and RSSCT breakthrough curves at three different GAC particle sizes indicate that GAC adsorption capacity is dependent on GAC particle size when DOM is present. Thus, the RSSCT cannot be expected to match full-scale results regardless of which RSSCT design approach is used (constant or proportional diffusivity), unless a scaling factor is applied to the results. Proportional diffusivity RSSCT breakthrough curves demonstrate that surface concentration of DOM is not a good measure of fouling. It is hypothesized that pore blockage is the mechanism responsible for the dependence on particle size. As GAC particle size increases, the microporous surface area behind a constricted pore also increases. The result is lower adsorption capacity per mass of adsorbent in the larger GAC particles. A scaling methodology for equilibrium and breakthrough data is presented that accounts for the dependence of NOM preloading effects on GAC particle diameter.

  10. Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun

    2018-04-01

    To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.

  11. Overview of As(V) adsorption on Zr-functionalized activated carbon for aqueous streams remediation.

    PubMed

    Velazquez-Jimenez, Litza Halla; Arcibar-Orozco, Javier Antonio; Rangel-Mendez, Jose Rene

    2018-04-15

    The present work introduces a simple methodology of carbon modification with zirconium, using an organic complexing ligand, as efficient media for selective As(V) removal. It is hypothesized that the incorporation of Zr-nanoparticles improves the attraction of anionic species such as arsenates (HAsO 4 2- /H 2 AsO 4 - ) making the material highly selective. The effects of pH (3-11) and temperature (15, 25 and 35 °C) were studied. Furthermore, potentiometric titrations, the effect of competing anions, thermodynamics, and adsorption kinetics were evaluated in order to clarify the rate-controlling process and the adsorption mechanism for arsenic removal. Results demonstrated that OH and COOH groups play an important role during the arsenic adsorption process; a small amount of Zr(IV) species (0.77%) increased the adsorption capacity of activated carbon in about a 43%. Thermodynamic analysis showed the spontaneous exothermic nature of the adsorption process was favored at lower temperatures. The presence of anions, such as chloride, sulfate, carbonate, nitrate and phosphate, did not affect the adsorption capacity, while kinetic studies demonstrated that the arsenic adsorption process in Zr-modified activated carbon is not exclusively controlled by intraparticle diffusion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Study of CO2 adsorption capacity of mesoporous carbon and activated carbon modified by triethylenetetramine (TETA)

    NASA Astrophysics Data System (ADS)

    Sulistianti, I.; Krisnandi, Y. K.; Moenandar, I.

    2017-04-01

    Mesoporous carbon was synthesized by soft template method using phloroglucinol and formaldehyde as a carbon source; and Pluronic F-127 as a mesoporous template. The synthesized mesoporous carbon and commercial activated carbon were modified with triethylenetetramine (TETA) to increase CO2 adsorption capacity. Based on FTIR characterization, the synthesized mesoporous carbon and the activated carbon without modification process has similarity pattern. After the modification, both of them showed absorption peaks in the area around 1580 to 1650 cm-1 which is known as N-H bending vibration and absorption peaks in the area around 3150 to 3380 cm-1 which is known as N-H stretching vibration. The XRD results showed two peaks at 2θ = 24.21° and 2θ = 43.85°, according to JCPDS index No. 75-1621 those peak are the typical peaks for hexagonal graphite carbon. In BET analysis, the synthesized mesoporous carbon and activated carbon modified TETA have surface area, pore volume and pore diameter lower than without modification process. In carbon dioxide adsorption testing, the synthesized mesoporous carbon showed better performance than the commercial activated carbon for CO2 adsorption both without modification and by modification. The synthesized mesoporous carbon obtained CO2 adsorption of 9.916 mmol/g and the activated carbon of 3.84 mmol/g for on 3.5 hours of adsorption. It is three times better than activated carbon for adsorption of carbon dioxide. The modified mesoporous carbon has the best performance for adsorption of gas CO2 if compared by unmodified.

  13. A periodic DFT study of ammonia adsorption on the V2O5 (001), V2O5 (010) and V2O5 (100) surfaces: Lewis versus Brönsted acid sites

    NASA Astrophysics Data System (ADS)

    Yao, Huichao; Chen, Yu; Wei, Yuechang; Zhao, Zhen; Liu, Zhichang; Xu, Chunming

    2012-11-01

    The adsorption of ammonia at Brönsted and Lewis acid sites on three low-index (001), (010) and (100) surfaces of V2O5 catalyst was investigated using density functional theory (DFT) method. Three levels of surface relaxation periodic models including top single layer relaxation (S-model), moderately deeper relaxation (M-model) and full relaxation model (F-model) were applied to examine the effect of the surface relaxation on the binding structures and adsorption energies. The results of calculations showed that on the saturated basal plane V2O5 (001), ammonia adsorption at the Brönsted acid sites (VOH) is energetically more favorable. On unsaturated (010) and (100) surfaces, ammonia is adsorbed strongly on both Brönsted (VOH) and Lewis acid sites (V). Surface relaxations have no influence on ammonia adsorption on saturated (001) surface, while a strong dependence on the relaxation models is observed for NH3-adsorption energies on (010) and (100) surfaces, especially at the Lewis acid sites of both side planes. When complete relaxation considered (F-model), ammonia adsorption on the Lewis acid sites (V) dominates for side planes (010) and (100). In the presence of VOH as neighbor, the ammonia adsorption at V sites is however weakened significantly due to steric hindrance. Hydrogen bonds may play a role, although not determining one, in the respect of the adsorption of ammonia on (010) and (100) surfaces. Moderate relaxation and full relaxation are absolutely necessary for the description of both H and NH3 adsorption on unsaturated (100) and (010) surfaces, respectively.

  14. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  15. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    PubMed

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Wei-fang; Pan, Ling; Chen, Li-fang; Yu, Zhe; Wang, Qiong; Yan, Chang-cheng

    2014-08-01

    Ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS) were employed to impregnate activated carbons for the purpose of lead removal. The mechanisms of surface impregnation and lead adsorption method of chemical regeneration were investigated. Results showed that the highest impregnation of EDTA and SDS on activated carbon was 0.33 and 0.96 mmol/g, respectively. Adsorption capacities for lead of EDTA and SDS impregnated activated carbons reached 0.29 and 0.24 mmol/g. Rapid small scale column tests of adsorption and regeneration were conducted. Lead adsorption was greatly enhanced by EDTA impregnation. In addition, EDTA impregnated adsorbent was able to be successful regenerated by HNO3 and thus reused.

  17. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe

    2016-06-01

    The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4  /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    PubMed Central

    Smets, Koen; De Jong, Mats; Lupul, Iwona; Gryglewicz, Grazyna; Schreurs, Sonja; Carleer, Robert; Yperman, Jan

    2016-01-01

    The production of activated carbons (ACs) from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C), activation time (30, 60, 90 and 120 min) and agent (steam and CO2) on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240) in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model. PMID:28773684

  19. Adsorption Isotherm of Chromium (Vi) into Zncl2 Impregnated Activated Carbon Derived by Jatropha Curcas Seed Hull

    NASA Astrophysics Data System (ADS)

    Mohammad, M.; Yakub, I.; Yaakob, Z.; Asim, N.; Sopian, K.

    2017-12-01

    Hexavalent chromium is carcinogenic and should be removed from industrial wastewater before discharged into water resources. Adsorption by using activated carbon from biomass is an economic and conventional way on removing the heavy metal ions from wastewater. In this research, activated carbon is synthesized from Jatropha curcas L. seed hull through chemical activation with ZnCl2 and carbonized at 800 °C (JAC/ZnCl2). The activated carbon has been characterized using FTIR, SEM-EDX, BET and CHNS-O analyzer. Adsorption isotherms have been analysed using Langmuir and Freundlich models to determine its removal mechanism. The maximum adsorption capacity of Cr (VI) metal ions onto JAC/ZnCl2 activated carbon is 25.189 mg/g and following Langmuir isotherm model which is monolayer adsorption.

  20. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    NASA Astrophysics Data System (ADS)

    Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.

    2009-05-01

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  1. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.

    PubMed

    Purewal, J J; Kabbour, H; Vajo, J J; Ahn, C C; Fultz, B

    2009-05-20

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  2. Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics.

    PubMed

    Prakash Kumar, B G; Shivakamy, K; Miranda, Lima Rose; Velan, M

    2006-08-25

    Activated carbon was produced from a biowaste product, rubberwood sawdust (RWSD) using steam in a high temperature fluidized bed reactor. Experiments were carried out to investigate the influence of various process parameters such as activation time, activation temperature, particle size and fluidising velocity on the quality of the activated carbon. The activated carbon was characterized based on its iodine number, methylene blue number, Brauner Emmet Teller (BET) surface area and surface area obtained using the ethylene glycol mono ethyl ether (EGME) retention method. The best quality activated carbon was obtained at an activation time and temperature of 1h and 750 degrees C for an average particle size of 0.46 mm. The adsorption kinetics shows that pseudo-second-order rate fitted the adsorption kinetics better than pseudo-first-order rate equation. The adsorption capacity of carbon produced from RWSD was found to be 1250 mg g(-1) for the Bismark Brown dye. The rate constant and diffusion coefficient for intraparticle transport were determined for steam activated carbon. The characteristic of the prepared activated carbon was found comparable to the commercial activated carbon.

  3. Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu(2+) ion.

    PubMed

    Kim, J W; Sohn, M H; Kim, D S; Sohn, S M; Kwon, Y S

    2001-08-17

    Production of granular activated carbon by chemical activation has been attempted employing walnut shells as the raw material. The thermal characteristics of walnut shell were investigated by TG/DTA and the adsorption capacity of the produced activated carbon was evaluated using the titration method. As the activation temperature increased, the iodine value increased. However, a temperature higher than 400 degrees C resulted in a thermal degradation, which was substantiated by scanning electron microscopy (SEM) analysis, and the adsorption capacity decreased. Activation longer than 1h at 375 degrees C resulted in the destruction of the microporous structure of activated carbon. The iodine value increased with the increase in the concentration of ZnCl2 solution. However, excessive ZnCl2 in the solution decreased the iodine value. The extent of activation by ZnCl2 was compared with that by CaCl2 activation. Enhanced activation was achieved when walnut shell was activated by ZnCl2. Applicability of the activated carbon as adsorbent was examined for synthetic copper wastewater. Adsorption of copper ion followed the Freundlich model. Thermodynamic aspects of adsorption have been discussed based on experimental results. The adsorption capacity of the produced activated carbon met the conditions for commercialization and was found to be superior to that made from coconut shell.

  4. Adsorption Studies of Chromium(VI) on Activated Carbon Derived from Mangifera indica (Mango) Seed Shell

    NASA Astrophysics Data System (ADS)

    Mise, Shashikant; Patil, Trupti Nagendra

    2015-09-01

    The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.

  5. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Lei; Shi, Zhenqing; Lu, Yang

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all fourmore » metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.« less

  6. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  7. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption.

    PubMed

    Wibowo, N; Setyadhi, L; Wibowo, D; Setiawan, J; Ismadji, S

    2007-07-19

    The influence of surface chemistry and solution pH on the adsorption of benzene and toluene on activated carbon and its acid and heat treated forms were studied. A commercial coal-based activated carbon F-400 was chosen as carbon parent. The carbon samples were obtained by modification of F-400 by means of chemical treatment with HNO3 and thermal treatment under nitrogen flow. The treatment with nitric acid caused the introduction of a significant number of oxygenated acidic surface groups onto the carbon surface, while the heat treatment increases the basicity of carbon. The pore characteristics were not significantly changed after these modifications. The dispersive interactions are the most important factor in this adsorption process. Activated carbon with low oxygenated acidic surface groups (F-400Tox) has the best adsorption capacity.

  8. A density functional study on adsorption and dissociation of O 2 on Ir(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2011-06-01

    The adsorption and the reaction barrier for the dissociation of O 2 on Ir(1 0 0) surface are studied using periodic self-consistent density functional theory (DFT) calculations. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Parallel approaches Prl1 and Prl2 on a hollow site with the same adsorption energy of -3.93 eV for both of them are found to have the most energetically preferred sites of adsorptions among all the studied cases. Hybridization between p-O 2 and d-metal orbitals is responsible for the dissociative adsorption. The minimum energy path is determined by using the nudge elastic band method (NEB). We found that the dissociation occurs immediately and very early in the dissociation path with a small activation barrier (0.26 eV), which means that molecular adsorption of O 2 on Ir(1 0 0) surface occurs at very low temperatures; this is consistent with previous experimental and theoretical studies on Ir surfaces.

  9. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    PubMed

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  10. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    PubMed

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties.

    PubMed

    Cougnaud, A; Faur, C; Le Cloirec, P

    2005-08-01

    The adsorption of pesticides (atrazin, atrazin-desethyl and triflusulfuron-methyl) from aqueous solution is performed by activated carbon fibers (ACF) and granular activated carbons (GAC) in static and dynamic reactors, in order to study the co-influence of adsorbent and adsorbate characteristics on the adsorption mechanisms. First, mono-component adsorption equilibrium is carried out in a batch reactor for a wide range of concentrations (from 5 microg 1(-1) to 21.4 mg 1(-1)). Classic models, like Freundlich and Langmuir equations, are applied: the maximum adsorption capacities are high, ranging between 63 and 509 mg g(-1). The comparison of single-solute isotherms tends to confirm the decisive role of the adsorbent properties in the adsorption capacity of pesticides by the activated carbons: the performance of ACF is significantly higher than that of GAC due to a narrower pore size distribution of fibers in the area of micropores. Furthermore, their small diameter (10 microm compared with 1 mm for grains) enables faster adsorption kinetics because of the larger surface area exposed to the fluid. The influence of adsorbate size is also demonstrated. A multiple linear regression enables the co-influence of adsorbent and adsorbate properties to be quantified, a relationship being assessed between Langmuir maximum adsorption capacity and pesticide molecular weight and adsorbent diameter (R2 = 0.90). Secondly, the adsorption of the three pesticides is studied in a dynamic reactor: in this case, the influence of operating conditions (inlet concentration C0, flow velocity U0) is also taken into account. As the initial concentration or flow velocity decreases, the column performance significantly improves. Both operating factors are included in a multiple linear regression (R2 = 0.91) used to predict saturation adsorption capacity, with molecular weight and particle diameter being again designed as influent explicative variables.

  12. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    NASA Astrophysics Data System (ADS)

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  13. An experimental design approach for modeling As(V) adsorption from aqueous solution by activated carbon.

    PubMed

    Bakkal Gula, C; Bilgin Simsek, E; Duranoglu, D; Beker, U

    2015-01-01

    The present paper discusses response surface methodology as an efficient approach for predictive model building and optimization of As(V) adsorption on activated carbon derived from a food industry waste: peach stones. The objectives of the study are application of a three-factor 2³ full factorial and central composite design technique for maximizing As(V) removal by produced activated carbon, and examination of the interactive effects of three independent variables (i.e., solution pH, temperature, and initial concentration) on As(V) adsorption capacity. Adsorption equilibrium was investigated by using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. First-order and second-order kinetic equations were used for modeling of adsorption kinetics. Thermodynamic parameters (ΔG °, ΔH °, and ΔS °) were calculated and used to explain the As(V) adsorption mechanism. The negative value of ΔH (-7.778 kJ mol⁻¹) supported the exothermic nature of the sorption process and the Gibbs free energy values (ΔG°) were found to be negative, which indicates that the As(V) adsorption is feasible and spontaneous.

  14. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR.

    PubMed

    Bordiga, S; Regli, L; Bonino, F; Groppo, E; Lamberti, C; Xiao, B; Wheatley, P S; Morris, R E; Zecchina, A

    2007-06-07

    Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N2 and H2). From a temperature dependent IR study, it has been estimated that the H2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H2 species.

  15. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    NASA Astrophysics Data System (ADS)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  16. Kinetics of Competitive Adsorption between Lysozyme and Lactoferrin on Silicone Hydrogel Contact Lenses and the Effect on Lysozyme Activity.

    PubMed

    Hall, Brad; Jones, Lyndon; Forrest, James A

    2015-05-01

    To determine the effect of competitive adsorption between lysozyme and lactoferrin on silicone hydrogel contact lenses and the effect on lysozyme activity. Three commercially available silicone hydrogel contact lens materials (senofilcon A, lotrafilcon B and balafilcon A) were examined, for time points ranging from 10 s to 2 h. Total protein deposition was determined by I(125) radiolabeling of lysozyme and lactoferrin, while the activity of lysozyme was determined by a micrococcal activity assay. Senofilcon A and balafilcon A did not show any relevant competitive adsorption between lysozyme and lactoferrin. Lotrafilcon B showed reduced protein deposition due to competitive adsorption for lactoferrin at all time points and lysozyme after 7.5 min. Co-adsorption of lactoferrin and lysozyme decreased the activity of lysozyme in solution for senofilcon A and lotrafilcon B, but co-adsorption had no effect on the surface activity of lysozyme for all lens types investigated. Competition between lysozyme and lactoferrin is material specific. Co-adsorption of lysozyme and lactoferrin does not affect the activity of surface-bound lysozyme but can reduce the activity of subsequently desorbed lysozyme.

  17. A procedure to find thermodynamic equilibrium constants for CO2 and CH4 adsorption on activated carbon.

    PubMed

    Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A

    2015-03-28

    Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.

  18. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  19. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    ERIC Educational Resources Information Center

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  20. Formation of titanosilicate precursors of an active adsorption phase

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. F.; Ivanets, A. I.; Katsoshvili, L. L.

    2017-04-01

    Micro-mesoporous titanosilicate precursors of the active absorption phase of a composite ceramic membrane are synthesized, and their textural and adsorption properties are investigated by means of low-temperature nitrogen adsorption/desorption. Low-temperature isotherms of nitrogen adsorption/desorption are analyzed using the BET, Langmuir, comparative t-plot, Barrett-Joyner-Halenda, and density functional theory methods. It is found that at high contents of silicon(IV) oxide, the resulting xerogels have surface areas of 656 and 890 m2/g according to the BET and Langmuir approaches, respectively, while the micropores' inner and outer surfaces are 453 and 466 m2/g, respectively, according to the t-plot. According to the DFT distributions, the mesopore diameters of a sample can be adjusted in the range of 3-9 nm. By analyzing the type of capillary condensation hysteresis in the adsorption/desorption isotherms, it is shown that the pores in the samples are very bottle-like, even though their shape may be different in reality. It is found that in samples with high contents of titanium(IV) oxide, the pore throats are blocked during adsorbate desorption, due to the percolation effect. It is assumed that the stabilization of particles of titanium(IV) oxide by amorphous layers of silica protects the texture of titanosilicate xerogels from full contraction and the coalescence of particles during heat treatment ranging from 393 to 923 K.

  1. Experimental study on removal of NO using adsorption of activated carbon/reduction decomposition of microwave heating.

    PubMed

    Shuang-Chen, Ma; Yao, Juan-Juan; Gao, Li

    2012-01-01

    Experimental studies were carried out on flue gas denitrification using activated carbon irradiated by microwave. The effects of microwave irradiation power (reaction temperature), the flow rate of flue gas, the concentration of NO and the flue gas coexisting compositions on the adsorption property of activated carbon and denitrification efficiency were investigated. The results show that: the higher of microwave power, the higher of denitrification efficiency; denitrification efficiency would be greater than 99% and adsorption capacity of NO is relatively stable after seven times regeneration if the microwave power is more than 420 W; adsorption capacity of NO in activated carbon bed is 33.24 mg/g when the space velocity reaches 980 per hour; adsorption capacity declines with increasing of the flow rate of flue gas; the change in denitrification efficiency is not obvious with increasing oxygen content in the flue gas; and the maximum adsorption capacity of NO was observed when moisture in flue gas was about 5.88%. However, the removal efficiency of NO reduces with increasing moisture, and adsorption capacity and removal efficiency of NO reduce with increasing of SO2 concentration in the flue gas.

  2. Preferential adsorption of fluorescing fulvic and humic acid components on activated carbon using flow field-flow fractionation analysis.

    PubMed

    Schmit, Kathryn H; Wells, Martha J M

    2002-02-01

    Activated carbon treatment of drinking water is used to remove natural organic matter (NOM) precursors that lead to the formation of disinfection byproducts. The innate hydrophobic nature and macromolecular size of NOM render it amenable to sorption by activated carbon. Batch equilibrium and minicolumn breakthrough adsorption studies were performed using granular activated carbon to treat NOM-contaminated water. Ultraviolet (UV) absorption spectroscopy and flow field-flow fractionation analysis using tandem diode-array and fluorescence detectors were used to monitor the activated carbon sorption of NOM. Using these techniques, it was possible to study activated carbon adsorption properties of UV absorbing, fluorescing and nonfluorescing, polyelectrolytic macromolecules fractionated from the total macromolecular and nonmacromolecular composition of NOM. Adsorption isotherms were constructed at pH 6 and pH 9. Data were described by the traditional and modified Freundlich models. Activated carbon capacity and adsorbability were compared among fractionated molecular subsets of fulvic and humic acids. Preferential adsorption (or adsorptive fractionation) of polyelectrolytic, fluorescing fulvic and humic macromolecules on activated carbon was observed. The significance of observing preferential adsorption on activated carbon of fluorescing macromolecular components relative to nonfluorescing components is that this phenomenon changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the composition that existed in the aqueous phase prior to adsorption. Likewise, it changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the adsorbed phase. This research increases our understanding of NOM interactions with activated carbon which may lead to improved methods of potable water production.

  3. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.

    PubMed

    Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank

    2017-12-01

    Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.

  4. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior

    NASA Astrophysics Data System (ADS)

    Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank

    2017-12-01

    Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.

  5. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals.

    PubMed

    Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang

    2016-07-01

    Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process. Copyright © 2016. Published by Elsevier B.V.

  6. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.

    PubMed

    Lima, Isabel M; Marshall, Wayne E

    2005-04-01

    Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.

  7. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption.

    PubMed

    Rashidi, Nor Adilla; Yusup, Suzana

    2018-05-09

    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO 2 ) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO 2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO 2 flow rate of 450 cm 3 /min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N 2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO 2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.

  9. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  10. The dynamic adsorption characteristics of phenol by granular activated carbon.

    PubMed

    Namane, A; Hellal, A

    2006-09-01

    The objective of the present work is to determine the operating conditions of an activated carbon filter, based on the characteristics of breakthrough curves. For this we apply the technical developed by Mickaels for the ionic exchange and applied by Luchkis for the adsorption, and which is the mass transfer zone. To reach our goal, an evaluation of the operating conditions (height of the bed, flow and concentration of effluent) on the characteristics of the mass transfer zone was made and an explanation of the mechanism of adsorption was given. Thereafter a modeling of the experimental results was done.

  11. Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

    NASA Astrophysics Data System (ADS)

    Karamah, E. F.; Leonita, S.; Bismo, S.

    2018-01-01

    Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC

  12. The role of the anionic and cationic pt sites in the adsorption site preference of water and ethanol on defected Pt4/Pt(111) substrates: A density functional theory investigation within the D3 van der waals corrections

    NASA Astrophysics Data System (ADS)

    Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.

    2018-01-01

    Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the

  13. Understanding the Adsorption Interface of Polyelectrolyte Coating on Redox Active Nanoparticles Using Soft Particle Electrokinetics and Its Biological Activity

    PubMed Central

    2015-01-01

    The application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analyzed using the change in the Gibbs free energy computed by the Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The change in Gibbs free energy was highest for CNPs coated with PAA of 250 kg/mol indicating the most stable coating. The change in free energy for PAA of 100 kg/mol coated CNPs was 85% lower than the PAA of 250 kg/mol coated CNPs. This significant difference is caused by the strong adsorption of PAA of 100 kg/mol on CNPs. Catalytic activity of PAA-CNPs is assessed by the catalase enzymatic mimetic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. This indicates that the catalase activity is also affected by the structure of the coating layer. PMID:24673655

  14. Assessing changes in the physico-chemical properties and fluoride adsorption capacity of activated alumina under varied conditions

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.

    2017-01-01

    Adsorption using activated alumina is a simple method for removing fluoride from drinking water, but to be cost effective the adsorption capacity must be high and effective long-term. The intent of this study was to assess changes in its adsorption capacity under varied conditions. This was determined by evaluating the physico-chemical properties, surface charge, and fluoride (F−) adsorption capacity and rate of activated alumina under conditions such as hydration period, particle size, and slow vs. fast titrations. X-ray diffraction and scanning electron microscopy analyses show that the mineralogy of activated alumina transformed to boehmite, then bayerite with hydration period and a corresponding reduction in adsorption capacity was expected; while surface area analyses show no notable changes with hydration period or particle size. The pH dependent surface charge was three times higher using slow potentiometric titrations as compared to fast titrations (due largely to diffusion into pore space), with the surface acidity generally unaffected by hydration period. Results from batch adsorption experiments similarly show no change in fluoride adsorption capacity with hydration period. There was also no notable difference in fluoride adsorption capacity between the particle size ranges of 0.5–1.0 mm and 0.125–0.250 mm, or with hydration period. However, adsorption rate increased dramatically with the finer particle sizes: at an initial F− concentration of 0.53 mmol L−1 (10 mg L−1), 90% was adsorbed in the 0.125–0.250 mm range after 1 h, while the 0.5–1.0 mm range required 24 h to achieve 90% adsorption. Also, the pseudo-second-order adsorption rate constants for the finer vs. larger particle sizes were 3.7 and 0.5 g per mmol F− per min respectively (24 h); and the initial intraparticle diffusion rate of the former was 2.6 times faster than the latter. The results show that adsorption capacity of activated alumina remains consistent and

  15. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    NASA Astrophysics Data System (ADS)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  16. Adsorption of leather dyes on activated carbon from leather shaving wastes: kinetics, equilibrium and thermodynamics studies.

    PubMed

    Manera, Christian; Tonello, Andrezza Piroli; Perondi, Daniele; Godinho, Marcelo

    2018-03-23

    In this work, the adsorption of Acid Black 210 (AB210) and Acid Red 357 (AR357) onto activated carbon prepared from leather shaving wastes (ACLW) was investigated. The activated carbon presented a surface area of 800.4 m²/g with an average pore size of 1.27 nm. The kinetic study showed that the adsorption of both dyes followed the Elovich kinetic model while the AB210 and AR357 isotherm data were well described by the Langmuir and BET models, respectively. Furthermore, the Boyd plot revealed that the adsorption of the leather dyes on activated carbon was mainly governed by film diffusion. The pH had a strong influence on the adsorption, and the higher amounts of dye adsorbed were obtained at pH 2. The obtained activated carbon exhibited a high monolayer adsorption capacity of 573.9 and 204.4 mg/g for AB210 and AR357, respectively. Its high capacity is mainly attributed to its basicity (0.17 mmol/g) and high surface area. Desorption efficiency of the spent activated carbon was found to be 54.3% and 43.0% for AB210 and AR357, respectively. The spontaneity of the process was demonstrated by the negative values of the Gibbs free energy change.

  17. Study of adsorption process of iron colloid substances on activated carbon by ultrasound

    NASA Astrophysics Data System (ADS)

    Machekhina, K. I.; Shiyan, L. N.; Yurmazova, T. A.; Voyno, D. A.

    2015-04-01

    The paper reports on the adsorption of iron colloid substances on activated carbon (PAC) Norit SA UF with using ultrasound. It is found that time of adsorption is equal to three hours. High-frequency electrical oscillation is 35 kHz. The adsorption capacity of activated carbon was determined and it is equal to about 0.25 mg iron colloid substances /mg PAC. The iron colloid substances size ranging from 30 to 360 nm was determined. The zeta potential of iron colloid substances which consists of iron (III) hydroxide, silicon compounds and natural organic substances is about (-38mV). The process of destruction iron colloid substances occurs with subsequent formation of a precipitate in the form of Fe(OH)3 as a result of the removal of organic substances from the model solution.

  18. Adsorption of p-nitrophenols (PNP) on microalgal biochar: Analysis of high adsorption capacity and mechanism.

    PubMed

    Zheng, Heshan; Guo, Wanqian; Li, Shuo; Chen, Yidi; Wu, Qinglian; Feng, Xiaochi; Yin, Renli; Ho, Shih-Hsin; Ren, Nanqi; Chang, Jo-Shu

    2017-11-01

    Biochars derived from three microalgal strains (namely, Chlorella sp. Cha-01, Chlamydomonas sp. Tai-03 and Coelastrum sp. Pte-15) were evaluated for their capacity to adsorb p-nitrophenols (PNP) using raw microalgal biomass and powdered activated carbon (PAC) as the control. The results show that BC-Cha-01 (biochar from Chlorella sp. Cha-01) exhibited a high PNP adsorption capacity of 204.8mgg -1 , which is 250% and 140% higher than that of its raw biomass and PAC, respectively. The adsorption kinetics and equilibrium are well described with pseudo-second-order equation and Freundlich model, respectively. BC-Cha-01 was found to contain higher polarity moieties with more O-containing functional groups than PAC and other microalgae-derived biochars. The strong polarity of binding sites on BC-Cha-01 may be responsible for its superior adsorption capacity. The biochars from Chlorella sp. Cha-01 seem to have the potential to serve as a highly efficient PNP adsorbent for wastewater treatment or emergency water pollution control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...

  20. Removal of Hexavalent Chromium by Adsorption on Microwave Assisted Activated Carbon Prepared from Stems of Leucas Aspera

    NASA Astrophysics Data System (ADS)

    Shanmugalingam, A.; Murugesan, A.

    2018-05-01

    This study reports adsorption of Cr(VI) ions from aqueous solution using activated carbon that was prepared from stems of Leucas aspera. Eight hundred and fifty watts power of microwave radiation, 12 min of radiation time, 60% of ZnCl2 solution and 24 h of impregnation time are the optimal parameters to prepare efficient carbon effective activated carbon. It was designated as MWLAC (Microwave assisted Zinc chloride activated Leucas aspera carbon). Various adsorption characteristics such as dose of the adsorbent, agitation time, initial Cr(VI) ion concentration, pH of the solution and temperature on adsorption were studied for removal of Cr(VI) ions from aqueous solution by batch mode. Also the equilibrium adsorption was analyzed by the Langmuir, Freundlich, Tempkin and D-R isotherm models. The order of best describing isotherms was given based on R2 value. The pseudo-second-order kinetic model best fitted with the Cr(VI) adsorption data. Thermodynamic parameters were also determined and results suggest that the adsorption process is a spontaneous, endothermic and proceeded with increased randomness.

  1. Adsorption-desorption mechanism of phosphate by immobilized nano-sized magnetite layer: interface and bulk interactions.

    PubMed

    Zach-Maor, Adva; Semiat, Raphael; Shemer, Hilla

    2011-11-15

    Phosphate adsorption mechanism by a homogenous porous layer of nano-sized magnetite particles immobilized onto granular activated carbon (nFe-GAC) was studied for both interface and bulk structures. X-ray Photoelectron Spectroscopy (XPS) analysis revealed phosphate bonding to the nFe-GAC predominantly through bidentate surface complexes. It was established that phosphate was adsorbed to the magnetite surface mainly via ligand exchange mechanism. Initially, phosphate was adsorbed by the active sites on the magnetite surface, after which it diffused into the interior of the nano-magnetite layer, as indicated by intraparticle diffusion model. This diffusion process continues regardless of interface interactions, revealing some of the outer magnetite binding sites for further phosphate uptake. Desorption, using NaOH solution, was found to be predominantly a surface reaction, at which hydroxyl ions replace the adsorbed phosphate ions only at the surface outer biding sites. Five successive fix-bed adsorption/regeneration cycles were successfully applied, without significant reduction in the nFe-GAC adsorption capacity and at high regeneration efficiency. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Experimental study on removals of SO2 and NOX using adsorption of activated carbon/microwave desorption.

    PubMed

    Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi

    2012-09-01

    Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO 2 ), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO 2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO 2 concentrations. Adsorption capacity of SO 2 declines with the increasing of O 2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO 2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO 2 increases and removal efficiencies of NO and SO 2 would be relatively stable. Adsorption capacities of both NO and SO 2 decrease with the increasing of CO 2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO 2 content exceeds 12.4%. The mechanisms of this process are also discussed. [Box: see text].

  3. Adsorption kinetics of malachite green onto activated carbon prepared from Tunçbilek lignite.

    PubMed

    Onal, Y; Akmil-Başar, C; Eren, Didem; Sarici-Ozdemir, Cigdem; Depci, Tolga

    2006-02-06

    Adsorbent (T3K618) has been prepared from Tunçbilek lignite by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. The N2 adsorption isotherm of malachite green on T3K618 is type I. The BET surface area of the adsorbent which was primarily contributed by micropores was determined 1000 m2/g. T3K618 was used to adsorb malachite green (MG) from an aqueous solution in a batch reactor. The effects of initial dye concentration, agitation time, initial pH and adsorption temperature have been studied. It was also found that the adsorption isotherm followed both Freundlich and Dubinin-Radushkevich models. However, the Freundlich gave a better fit to all adsorption isotherms than the Dubinin-Radushkevich. The kinetics of adsorption of MG has been tested using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Results show that the adsorption of MG from aqueous solution onto micropores T3K618 proceeds according to the pseudo-second-order model. The intraparticle diffusion of MG molecules within the carbon particles was identified to be the rate-limiting step. The adsorption of the MG was endothermic (DeltaH degrees = 6.55-62.37 kJ/mol) and was accompanied by an increase in entropy (DeltaS degrees = 74-223 J/mol K) and a decrease in mean value of Gibbs energy (DeltaG degrees = -6.48 to -10.32 kJ/mol) in the temperature range of 20-50 degrees C.

  4. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    NASA Astrophysics Data System (ADS)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-07-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  5. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation

    NASA Astrophysics Data System (ADS)

    Shafeeyan, Mohammad Saleh; Daud, Wan Mohd Ashri Wan; Houshmand, Amirhossein; Arami-Niya, Arash

    2011-02-01

    A commercial granular activated carbon (GAC) was subjected to thermal treatment with ammonia for obtaining an efficient carbon dioxide (CO2) adsorbent. In general, CO2 adsorption capacity of activated carbon can be increased by introduction of basic nitrogen functionalities onto the carbon surface. In this work, the effect of oxygen surface groups before introduction of basic nitrogen functionalities to the carbon surface on CO2 adsorption capacity was investigated. For this purpose two different approaches of ammonia treatment without preliminary oxidation and amination of oxidized samples were studied. Modified carbons were characterized by elemental analysis and Fourier Transform Infrared spectroscopy (FT-IR) to study the impact of changes in surface chemistry and formation of specific surface groups on adsorption properties. The texture of the samples was characterized by conducting N2 adsorption/desorption at -196 °C. CO2 capture performance of the samples was investigated using a thermogravimetric analysis (TGA). It was found that in both modification techniques, the presence of nitrogen functionalities on carbon surface generally increased the CO2 adsorption capacity. The results indicated that oxidation followed by high temperature ammonia treatment (800 °C) considerably enhanced the CO2 uptake at higher temperatures.

  6. Oxygen adsorption on the Al₉Co₂(001) surface: first-principles and STM study.

    PubMed

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Gille, P; Dubois, J-M; Gaudry, E

    2013-09-04

    Atomic oxygen adsorption on a pure aluminum terminated Al9Co2(001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a 'bridge' type site between the cluster entities exposed at the (001) surface termination. The Al-O bonding between the adsorbate and the substrate presents a covalent character, with s-p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al-O distances are in agreement with those reported in Al2O and Al2O3 oxides and for oxygen adsorption on Al(111).

  7. Comparative study of selenite adsorption on carbon based adsorbents and activated alumina.

    PubMed

    Jegadeesan, G; Mondal, K; Lalvani, S B

    2003-08-01

    The sorption characteristics of carbon-based adsorbents such as activated carbon and chitin for the removal of selenite, Se (IV), an anionic, hazardous contaminant, are compared with those of alpha and gamma alumina. Batch experiments were conducted to determine the influence of pH, concentration of adsorbate, adsorbent loading and temperature on the sorption characteristics of the adsorbents. Generally, low pH of the solution resulted in favorable selenium removal. With the exception of activated carbon, uptakes decreased with increase in temperature. In comparison, chitin was found to be far less effective for the removal of Se (IV) from aqueous solutions. The data also showed that gamma alumina provided higher selenium removal percentages (99%) compared to alpha alumina (94%), activated carbon (87%) and chitin (49%). The selenite removal was found to decrease with increasing initial Se (IV) concentration in the solution. Adsorption capacities of the adsorbents are reported in terms of their Langmuir adsorption isotherms. The adsorption capacity (on unit mass basis) of the adsorbents for selenite is in the order: chitin (specific area (sa) = 9.58 m2 g(-1)) < activated carbon (sa = 96.37 m2 g(-1)) < alpha alumina (sa = 6 m2 g(-1)) < gamma alumina (sa = 150 m2 g(-1)).

  8. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  9. Adsorption potential of a modified activated carbon for the removal of nitrogen containing compounds from model fuel

    NASA Astrophysics Data System (ADS)

    Anisuzzaman, S. M.; Krishnaiah, D.; Alfred, D.

    2018-02-01

    The purpose of this study is to find the effect of the modified activated carbon (MAC) on the adsorption activity for nitrogen containing compounds (NCC) removal from model fuel. Modification of commercial activated carbon (AC) involved impregnation with different ratios of sulfuric acid solution. Pseudo-first and pseudo-second order kinetic models were applied to study the adsorption kinetics, while the adsorption isotherms were used for the evaluation of equilibrium data. All of the experimental data were analyzed using ultraviolet-visible spectroscopy after adsorption experiment between different concentration dosage of adsorbent and model fuel. It has been found that adsorption of NCC by MAC was best fit is the Langmuir isotherm for quinoline (QUI) and Freundlich isotherm for indole (IND) with a maximum adsorption capacity of 0.13 mg/g and 0.16 mg/g respectively. Based on the experimental data, pseudo-first order exhibited the best fit for QUI with linear regression (R2) ranges from 0.0.9777 to 0.9935 and pseudo-second order exhibited the best fit for IND with linear regression (R2) ranges from 0.9701 to 0.9962. From the adsorption isotherm and kinetic studies result proven that commercial AC shows great potential in removing nitrogen.

  10. GRANULAR ACTIVATED CARBON ADSORPTION AND INFRARED REACTIVATION: A CASE STUDY

    EPA Science Inventory

    A study evaluated the effectiveness and cost of removing trace organic contaminants and surrogates from drinking water by granular activated carbon (GAC) adsorption. The effect of multiple reactivations of spent GAC was also evaluated. Results indicated that reactivated GAC eff...

  11. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.

    PubMed

    Mohamed, E F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2011-01-01

    Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge-based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p-nitrophenol, p-chlorophenol, p-hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single-solute isotherms. Moreover, the Langmuir-Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi-solute system was in the following order: p-nitrophenol > p-chlorophenol > PHBA > phenol.

  12. Contrasting nitrate adsorption in Andisols of two coffee plantations in Costa Rica.

    PubMed

    Ryan, M C; Graham, G R; Rudolph, D L

    2001-01-01

    Fertilizer use in coffee plantations is a suspected cause of rising ground water nitrate concentrations in the ground water-dependent Central Valley of Costa Rica. Nitrate adsorption was evaluated beneath two coffee (Coffea arabica L.) plantations in the Central Valley. Previous work at one site had identified unsaturated zone nitrate retardation relative to a tritium tracer. Differences in nitrate adsorption were assessed in cores to 4 m depth in Andisols at this and one other plantation using differences in KCl- and water-extractable nitrate as an index. Significant adsorption was confirmed at the site of the previous tracer test, but not at the second site. Anion exchange capacity, X-ray diffraction data, extractable Al and Si, and soil pH in NaF corroborated that differences in adsorption characteristics were related to subtle differences in clay mineralogy. Soils at the site with significant nitrate adsorption showed an Al-rich allophane clay content compared with a more weathered, Si-rich allophane and halloysite clay mineral content at the site with negligible adsorption. At the site with significant nitrate adsorption, nitrate occupied less than 10% of the total anion adsorption capacity, suggesting that adsorption may provide long-term potential for mitigation or delay of nitrate leaching. Evaluation of nitrate sorption potential of soil at local and landscape scales would be useful in development of nitrogen management practices to reduce nitrate leaching to ground water.

  13. Microgravimetric Analysis Method for Activation-Energy Extraction from Trace-Amount Molecule Adsorption.

    PubMed

    Xu, Pengcheng; Yu, Haitao; Li, Xinxin

    2016-05-03

    Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials.

  14. Fluoride adsorption properties of three modified forms of activated alumina in drinking water.

    PubMed

    Duan, Ying; Wang, Chenchen; Li, Xuede; Xu, Wei

    2014-12-01

    The study describes the removal of fluoride from drinking water using activated alumina (AA). AA was modified with H2SO4, FeCl3 and a combination of the two to enhance fluoride adsorption. The AA adsorbents were characterized using Brunauer-Emmett-Teller surface area analysis and X-ray fluorescence. The maximum adsorption capacity of H2SO4- and FeCl3-modified AA adsorbents was 4.98 mg/g, which is 3.4 times higher compared with that of normal AA. The results showed that the surface area of AA increased when modified with H2SO4. AA modified with FeCl3 enhanced fluoride adsorption ability through ion-exchange between chlorine ions and fluoride ions. The fluoride adsorption properties of AA modified with both H2SO4 and FeCl3 were consistent with the Langmuir model. The fluoride adsorption kinetics of the adsorbents were well described by the pseudo-second-order kinetic model.

  15. Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies.

    PubMed

    Goel, Jyotsna; Kadirvelu, Krishna; Rajagopal, Chitra; Kumar Garg, Vinod

    2005-10-17

    In the present study, a deeper understanding of adsorption behavior of Pb(II) from aqueous systems onto activated carbon and treated activated carbon has been attempted via static and column mode studies under various conditions. It probes mainly two adsorbents that is, activated carbon (AC) and modified activated carbon (AC-S). Characterization of both the adsorbents was one of the key focal areas of the present study. This has shown a clear change or demarcation in the various physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and then after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The lead removal increased for sample of treated carbon. The extent of Pb(II) removal was found to be higher in the treated activated carbon. The aim of carrying out the continuous-flow studies was to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. This has helped in ascertaining the practical applicability of the adsorbent. Breakthrough curves were plotted for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3.0-10.5 m3/(hm2)), bed height (0.3-0.5 m) and feed concentrations (2.0-6.0 mg/l). At the end, an attempt has also been made to model the data generated from column studies using the empirical relationship based on Bohart-Adams model. This model has provided an objective framework to the subjective interpretation of the adsorption system and the model constant obtained here can be used to achieve the ultimate objective of our study that is, up scaling and designing of adsorption process at the pilot plant scale level. AC-S column regeneration using 0.5 and 1.0M concentration of

  16. Cysteine and cystine adsorption on FeS2(100)

    NASA Astrophysics Data System (ADS)

    Suzuki, Teppei; Yano, Taka-aki; Hara, Masahiko; Ebisuzaki, Toshikazu

    2018-08-01

    Iron pyrite (FeS2) is the most abundant metal sulfide on Earth. Owing to its reactivity and catalytic activity, pyrite has been studied in various research fields such as surface science, geochemistry, and prebiotic chemistry. Importantly, native iron-sulfur clusters are typically coordinated by cysteinyl ligands of iron-sulfur proteins. In the present paper, we study the adsorption of L-cysteine and its oxidized dimer, L-cystine, on the FeS2 surface, using electronic structure calculations based density functional theory and Raman spectroscopy measurements. Our calculations suggest that sulfur-deficient surfaces play an important role in the adsorption of cysteine and cystine. In the thiol headgroup adsorption on the sulfur-vacancy site, dissociative adsorption is found to be energetically favorable compared with molecular adsorption. In addition, the calculations indicate that, in the cystine adsorption on the defective surface under vacuum conditions, the formation of the S-Fe bond is energetically favorable compared with molecular adsorption. Raman spectroscopic measurements suggest the formation of cystine molecules through the S-S bond on the pyrite surface in aqueous solution. Our results might have implications for chemical evolution at mineral surfaces on the early Earth and the origin of iron-sulfur proteins, which are believed to be one of the most ancient families of proteins.

  17. Adsorption of O2, SO2, and SO3, on nickel oxide - Mechanism for sulfate formation

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1986-01-01

    Calculations based on the atom superposition and electron delocalization molecular orbital technique suggest that O2 will adsorb preferentially end-on at an angle 45 deg from normal on a nickel cation site on the (100) surface of NiO. SO2 adsorption is also stronger on the nickel site; SO2 bonds through the sulfur atom in a plane perpendicular to the surface. Adsorption energies for SO3 on the nickel and oxygen sites are comparable in the preferred orientation in which the SO3 plane is parallel to the surface. The calculations suggest that the strength of adsorption varies as O2 greater than SO2 greater than SO3. On activation, SO3 adsorbed to an O(2-) site forms a trigonal pyramidal SO4 species which yields, with a low barrier, a tetrahedral sulfate anion. Subsequently the anion reorients on the surface. Alternative mechanisms which require the formation of Ni(3+) or O(-) are discussed. NiSO4 thus formed may play a passivating role for the corrosion of Ni at low temperatures in the SO2 + O2 + SO3 atmospheres and an active role at high temperatures, as discussed in the experimental literature.

  18. Application of activated carbon modified by acetic acid in adsorption and separation of CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Song, Xue; Wang, Li'ao; Zeng, Yunmin; Zhan, Xinyuan; Gong, Jian; Li, Tong

    2018-03-01

    Compared with the methods to modify the activated carbons by alkalis for gas adsorption, fewer studies of that by organic acids have been reported. The acid modified activated carbons are usually utilized to treat wastewater, whereas the application in the separation of CO2/CH4 has less been studied. In this study, acetic acid was used to modify activated carbon. N2 adsorption/desorption isotherms and FT-IR were adopted to describe the properties of the samples. According to the adsorption data of pure gas component at 298 K, the gas adsorbed amount and the selectivity on the modified samples were larger than that on the raw sample. Besides, the adsorbed amount of CO2 and the selectivity on 15H-AC in the adsorption breakthrough experiments showed better performance. The results confirm that the method to modify the activated carbons with acetic acid is feasible to improve the adsorption capacity and the separation effect of CO2/CH4.

  19. THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION

    EPA Science Inventory

    Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...

  20. Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye.

    PubMed

    Gürses, A; Doğar, C; Karaca, S; Açikyildiz, M; Bayrak, R

    2006-04-17

    An activated carbon was developed from Rosa canina sp. seeds, characterized and used for the removal of methylene blue (basic dye) from aqueous solutions. Adsorption studies were carried out at 20 degrees C and various initial dye concentrations (20, 40, 60, 80, and 100 mg/L) for different times (15, 30, 60, and 120 min). The adsorption isotherm was obtained from data. The results indicate that the adsorption isotherm of methylene blue is typically S-shaped. The shape of isotherm is believed to reflect three distinct modes of adsorption. In region 1, the adsorption of methylene blue is carried out mainly by ion exchange. In region 2 by polarizations of pi-electrons established at cyclic parts of the previously adsorbed methylene blue molecules is occurred. However, it is not observed any change at the sign of the surface charge although zeta potential value is decreased with increase of amount adsorbed. In region 3, the slope of the isotherm is reduced, because adsorption now must overcome electrostatic repulsion between oncoming ions and the similarly charged solid. Adsorption in this fashion is usually complete when the surface is covered with a monolayer of methylene blue. To reveal the adsorptive characteristics of the produced active carbon, porosity and BET surface area measurements were made. Structural analysis was performed using SEM-EDS. The produced active carbon has the specific surface area of 799.2 m2 g-1 and the iodine number of 495 mg/g.

  1. DEVELOPMENT OF THE CHARCOAL ADSORPTION TECHNIQUE FOR DETERMINATION OF RADON CONTENT IN NATURAL GAS.

    PubMed

    Paewpanchon, P; Chanyotha, S

    2017-11-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters

    NASA Astrophysics Data System (ADS)

    Regti, Abdelmajid; Ayouchia, Hicham Ben El; Laamari, My Rachid; Stiriba, Salah Eddine; Anane, Hafid; Haddad, Mohammadine El

    2016-12-01

    The adsorption of cationic dyes, Basic Yellow (BY28) and Methylene Blue (MB) on a new activated carbon from medlar species were studied in both single and binary system. Some experimental parameters, namely, pH, amount of adsorbent and contact time are studied. Quantum chemical results indicate that the adsorption efficiency was directly related to the dye electrophilicity power. Some theorical parameters were calculated and proved that MB is more electrophilic than BY28, than greatest interaction with surface sites. Kinetic study showed that the adsorption follows the pseudo-second-order model and Freundlich was the best model to describe the phenomenon in the single and binary system. According to the local reactivity results using Parr functions, the sulphur and nitrogen atoms will be the main adsorption sites.

  3. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption.

    PubMed

    Islam, Md Azharul; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-12-01

    Mesoporous activated carbon was prepared using a hydrochar derived from coconut shell waste through hydrothermal carbonization and NaOH chemical activation process (COSHTC). Three sets of activated carbons were obtained with different hydrochar:NaOH impregnation ratios (1:1, 1:2, and 1:3). Among these ratios, 1:3 (COSHTC3) exhibited the optimum adsorption for methylene blue (MB). COSHTC3 adsorbed MB with an initial concentration of 25-250 mg/L at pH 3-11 and 30 °C. The adsorption isotherm of MB on COSHTC3 demonstrated that Langmuir isotherm could be better applied at a maximum monolayer adsorption capacity of 200.01 mg/g at 30 °C. The data was well fitted to the pseudo-second-order (PSO) kinetic model. These results show that the COSHTC3 prepared from low-cost agricultural waste (coconut shell) with average pore diameter 28.6 Å and surface area 876.14 m 2 /g acts as a better adsorbent for removal of cationic dyes and could pave the way for more low-cost adsorbents for dye removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Tong, Qiang; Shan, Weijun; Xing, Zhiqiang; Wang, Yuejiao; Wen, Siqi; Lou, Zhenning

    2017-09-01

    Iron hydroxide/manganese dioxide doped straw activated carbon was synthesized for As(III) adsorption. The Fe-Mn-SAc adsorbent has two advantages, on the one hand, the straw active carbon has a large surface area (1360.99 m2 g-1) for FeOOH and MnO2 deposition, on the other hand, the manganese dioxide has oxidative property as a redox potential of (MnO2 + H+)/Mn2+, which could convert As(III) into As(V). Combined with the arsenic species after reacting with Fe-Mn-SAc, the As(III) transformation and adsorption mechanism was discussed. H2AsO4-oxidized from As(III) reacts with the Fe-Mn-SAc by electrostatic interaction, and unoxidized As(III) as H3AsO3 reacts with SAc and/or iron oxide surface by chelation effect. The adsorption was well-described by Langmuir isotherms model, and the adsorption capacity of As(III) was 75.82 mg g-1 at pH 3. Therefore, considering the straw as waste biomass material, the biosorbent (Fe-Mn-SAc) is promising to be exploited for applications in the treatment of industrial wastewaters containing a certain ratio of arsenic and germanium.

  5. DFT studies on H 2O adsorption and its effect on CO oxidation over spinel Co 3O 4 (110) surface

    NASA Astrophysics Data System (ADS)

    Xu, Xiang Lan; Li, Jun Qian

    2011-12-01

    Adsorption of H2O and its effect on CO oxidation over spinel Co3O4 (110) surface were studied by density functional theory calculations. H2O is adsorbed favorably at the octahedral cobalt (Cooct) site through O atom on the surface. Hydrogen bonding interaction between 1s orbitals of H atoms in H2O and the 2p orbitals of surface active oxygen sites plays a key role for H2O adsorption. The inhibition effect of H2O adsorption on the CO oxidation over the surfaces is attributed to the competition between H2O and CO molecules for the surface twofold coordinated oxygen site.

  6. Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites.

    PubMed

    Martínez-Orozco, R D; Rosu, H C; Lee, Soo-Wohn; Rodríguez-González, V

    2013-12-15

    Nanocomposites of graphene oxide (GO) and silver nanoparticles (AgNPs) were synthetized using a practical photochemical silver functionalization. Their photocatalytic activities were evaluated with two dyes, Rhodamine B and Indigo Carmine, under visible-light irradiation. The prepared nanocomposites were characterized by HRTEM, FESEM, XRD, Raman, FTIR and UV-vis absorption spectroscopy. These nanocomposites present new defect domains of sp(3) type in combination with several graphitic functional groups that act as nucleation sites for anchoring AgNPs, while the sp(2)-sp(3) edge defects domains of GO generate the photoactivity. Furthermore, their photocatalytic performances are governed by their large adsorption capacity, and strong interaction with dye chromophores. A comprehensive photocatalytic way underlying the importance of adsorption is suggested to explain the low visible-light responsive photoactivity of the AgNPs-GO nanocomposites and the possible binding-site saturation. Then, the usage of H2SO4 allows the production of ionic species and helps to confirm the strong adsorption of both dyes. The ability to synthesize AgNPs-GO nanocomposites with extensive adsorptive capacity is certainly of interest for the efficient removal of hazardous materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets.

    PubMed

    Chen, Xiaoxiao; Chen, Baoliang

    2015-05-19

    The surface properties and adsorption mechanisms of graphene materials are important for potential environmental applications. The adsorption of m-dinitrobenzene, nitrobenzene, and p-nitrotoluene onto graphene oxide (GO), reduced graphene oxide (RGO), and graphene (G) nanosheets was investigated using IR spectroscopy to probe the molecular interactions of graphene materials with nitroaromatic compounds (NACs). The hydrophilic GO displayed the weakest adsorption capability. The adsorption of RGO and G was significantly increased due to the recovery of hydrophobic π-conjugation carbon atoms as active sites. RGO nanosheets, which had more defect sites than did GO or G nanosheets, resulted in the highest adsorption of NACs which was 10-50 times greater than the reported adsorption of carbon nanotubes. Superior adsorption was dominated by various interaction modes including π-π electron donor-acceptor interactions between the π-electron-deficient phenyls of the NACs and the π-electron-rich matrix of the graphene nanosheets, and the charge electrostatic and polar interactions between the defect sites of graphene nanosheets and the -NO2 of the NAC. The charge transfer was initially proved by FTIR that a blue shift of asymmetric -NO2 stretching was observed with a concomitant red shift of symmetric -NO2 stretching after m-dinitrobenzene was adsorbed. The multiple interaction mechanisms of the adsorption of NAC molecule onto flat graphene nanosheets favor the adsorption, detection, and transformation of explosives.

  8. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  9. Kinetic studies of adsorption in the bioethanol dehydration using polyvinyl alcohol, zeolite and activated carbon as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Pratiwi, I. M.; Sudibandriyo, M.; Haryono, A.; Saputra, A. H.

    2017-11-01

    Bioethanol is considered as the most promising alternative fuel in the future due to its abundant renewable sources. However, the result of bioethanol production process using fermentation contains 70% v/v, and it still needs simultaneous purification process. One of the most energy-efficient purification methods is adsorption. Specifically, the rate of adsorption is an important factor for evaluating adsorption performance. In this work, we have conducted an adsorption using polyvinyl alcohol (PVA), zeolite and activated carbon as promising adsorbents in the bioethanol dehydration. This research aims to prove that PVA, zeolite, activated carbon is suitable to be used as adsorbent in bioethanol dehydration process through kinetics study and water adsorption selectivity performance. According to the results, PVA, zeolite and activated carbon are the potential materials as adsorbents in the bioethanol dehydration process. The kinetics study shows that 30°C temperature gave the optimum adsorption kinetics rate for PVA, zeolite, and activated carbon adsorbents which were 0.4911 min-1; 0.5 min-1; and 1.1272 min-1 respectively. In addition, it also shows that the activated carbon performed as a more potential adsorbent due to its higher pore volume and specific surface area properties. Based on the Arrhenius equation, the PVA works in the chemisorption mechanism, meanwhile zeolite and activated carbon work in the physisorption system as shown in the value of the activation energy which are 51.43 kJ/mole; 8.16 kJ/mole; and 20.30 kJ/mole. Whereas the water to ethanol selectivity study, we discover that zeolite is an impressive adsorbent compared to the others due to the molecular sieving characteristic of the material.

  10. Removal of Heavy Metals by Adsorption onto Activated Carbon Derived from Pine Cones of Pinus roxburghii.

    PubMed

    Saif, Muhammad Jawwad; Zia, Khalid Mahmood; Fazal-ur-Rehman; Usman, Muhammad; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid

    2015-04-01

    Activated carbon derived from cones of Pinus roxburghii (Himalayan Pine) was used as an adsorbent for the removal of copper, nickel and chromium ions from waste water. Surface analysis was carried out to determine the specific surface area and pore size distribution of the pine cone derived activated carbon. Optimal parameters, effect of adsorbent quantity, pH, equilibrium time, agitation speed and temperature were studied. Equilibrium data were evaluated by Langmuir and Freundlich isotherm models. Langmuir isotherm afforded the best fit to the equilibrium data with a maximum adsorption capacity of 14.2, 31.4 and 29.6 mg/g for Cu(II), Ni(II) and Cr(VI) respectively. Maximum adsorption of Cu(II), Ni(II) was observed in the pH range 4.0 to 4.5, whereas the best adsorption of Cr(VI) was observed at pH 2.5. It was found that 180 minutes was sufficient to gain adsorption equilibrium. The adsorption process follows a pseudo-second-order kinetic model.

  11. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    NASA Astrophysics Data System (ADS)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  12. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Adsorption and Conformation Change of Helical Peptides on Colloidal Silica

    NASA Astrophysics Data System (ADS)

    Read, Michael; Zhang, Shuguang; Mayes, Anne; Burkett, Sandra

    2001-03-01

    Helical conformations of short peptides in solution are partly stabilized by the pattern of electrostatic charge formed by the amino acid sequence. We have studied the role of electrostatics in the adsorption and helix-coil transition of peptides on oxide surfaces. Adsorption isotherms, along with a combination of spectroscopic techniques, show that this is a reversible equilibrium process. Strong electrostatic forces between ionic side chains and charged surface sites increase the adsorbed amount, and promote a loss of helicity in the adsorbed state qualitatively different from that observed upon thermal or chemical perturbation. The electrical dipole of the peptide, arising from the amino acid side chains, serves to orient the molecules on the surface. Effects of adsorption, orientation, and conformation change on the activity of peptides in model biological reactions, as well as the relevance of this simplified system to protein adsorption, are considered.

  14. Hydrogen adsorption site on the Ni?110?-p(1 × 2)-H surface from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Bu, H.; Roux, C. D.; Rabalais, J. W.

    The adsorption site of hydrogen on the Ni{110}-p(1 × 2)-H surface resulting from saturation exposure to H 2 at ˜ 310-350 K has been investigated by time-of-flight scattering and recoiling spectrometry (TOF-SARS). The recoiled neutral plus ion hydrogen atom flux resulting from 2-5 keV Ar + or Ne + pulsed ion beams incident on the surface was monitored as a function of crystal azimuthal angle and beam incidence angle. From classical trajectory calculations and shadowing and blocking analyses, it is concluded that hydrogen atoms are localized at the pseudo-three-fold sites on the (1 × 2) missing-row (MR) reconstructed Ni{110} surface; the (1 × 2) MR reconstruction is induced by hydrogen adsorption shown elsewhere [Surf. Sci. 259 (1991) 253]. Only the pseudo-three-fold site is consistent with all of the experimental data. The coordinates of the hydrogen adsorption site with respect to the nickel lattice were determined. The lateral distance of hydrogen from the 1st-layer Ni <1 overline10> rows is 1.56 ± 0.12 Å and the vertical distance above the substrate is 0.21 ± 0.12 Å, providing NiH bond lengths of 2.0 Å to the two-layer Ni atoms and 1.5 Å to the 2nd-layer Ni atom.

  15. Ab initio molecular dynamics determination of competitive O 2 vs. N 2 adsorption at open metal sites of M 2 (dobdc)

    DOE PAGES

    Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.; ...

    2016-04-04

    The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O 2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O 2 and N 2 in the M 2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize themore » process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.« less

  16. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC.

    PubMed

    Karra, Jagadeswara R; Walton, Krista S

    2008-08-19

    Atomistic grand canonical Monte Carlo simulations were performed in this work to investigate the role of open copper sites of Cu-BTC in affecting the separation of carbon monoxide from binary mixtures containing methane, nitrogen, or hydrogen. Mixtures containing 5%, 50%, or 95% CO were examined. The simulations show that electrostatic interactions between the CO dipole and the partial charges on the metal-organic framework (MOF) atoms dominate the adsorption mechanism. The binary simulations show that Cu-BTC is quite selective for CO over hydrogen and nitrogen for all three mixture compositions at 298 K. The removal of CO from a 5% mixture with methane is slightly enhanced by the electrostatic interactions of CO with the copper sites. However, the pore space of Cu-BTC is large enough to accommodate both molecules at their pure-component loadings, and in general, Cu-BTC exhibits no significant selectivity for CO over methane for the equimolar and 95% mixtures. On the basis of the pure-component and low-concentration behavior of CO, the results indicate that MOFs with open metal sites have the potential for enhancing adsorption separations of molecules of differing polarities, but the pore size relative to the sorbate size will also play a significant role.

  17. Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.

    PubMed

    Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G

    2016-12-01

    The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.

  18. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Elhadidy, H

    2014-07-01

    The present investigation deals with preparation of three different adsorbent materials namely; potassium hydroxide activated carbon based apricot stone (C), calcium alginate beads (G) and calcium alginate/activated carbon composite beads (GC) were used for the removal of arsenic. The prepared adsorbent materials were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), N2-adsorption at -196°C and point of zero charge. From the obtained results, it was found that the porosity, surface area and total pore volume of the adsorbent material C>GC>G respectively, however, the G adsorbent has more acidic function group than the other adsorbents. The influence of pH, time, temperature and initial concentration of arsenic(V) were studied and optimized. GC exhibits the maximum As(V) adsorption (66.7mg/g at 30°C). The adsorption of arsenic ions was observed to follow pseudo-second order mechanism as well as the thermodynamic parameters confirm also the endothermic spontaneous and a physisorption process. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: influence of combined sewer overflow components.

    PubMed

    Jung, Chanil; Oh, Jeill; Yoon, Yeomin

    2015-07-01

    The combined coagulation and adsorption of targeted acetaminophen and naproxen using activated biochar and aluminum sulfate were studied under various synthetic "combined sewer overflow" (CSO) conditions. The biochar demonstrated better adsorption performance for both acetaminophen and naproxen (removal, 94.1 and 97.7%, respectively) than that of commercially available powdered activated carbon (removal, 81.6 and 94.1%, respectively) due to superior carbonaceous structure and surface properties examined by nuclear magnetic resonance analysis. The adsorption of naproxen was more favorable, occupying active adsorption sites on the adsorbents by naproxen due to its higher adsorption affinity compared to acetaminophen. Three classified CSO components (i.e., representing hydrophobic organics, hydrophilic organics, and inorganics) played different roles in the adsorption of both adsorbates, resulted in inhibition by humic acid complexation or metal ligands and negative electrostatic repulsion under adsorption and coagulation combined system. Adsorption alone with biochar was determined to be the most effective adsorptive condition for the removal of both acetaminophen and naproxen under various CSO conditions, while both coagulation alone and combined adsorption and coagulation failed to remove the acetaminophen and naproxen adequately due to an increase in ionic strength in the presence of spiked aluminum species derived from the coagulant.

  20. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  1. Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.

    PubMed

    Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan

    2010-08-15

    For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    NASA Astrophysics Data System (ADS)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2017-07-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  3. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon.

    PubMed

    Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing

    2016-01-01

    The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal.

  4. Development of parthenium based activated carbon and its utilization for adsorptive removal of p-cresol from aqueous solution.

    PubMed

    Singh, Ravi Kant; Kumar, Shashi; Kumar, Surendra; Kumar, Arinjay

    2008-07-15

    The activated carbon was prepared from carbonaceous agriculture waste Parthenium hysterophorous by chemical activation using concentrated H2SO4 at 130+/-5 degrees C. The prepared activated carbon was characterized and was found as an effective adsorbent material. In order to test the efficacy of parthenium based activated carbon (PAC), batch experiments were performed to carryout the adsorption studies on PAC for the removal of highly toxic pollutant p-cresol from aqueous solution. The p-cresol adsorption studies were also carried out on commercial grade activated carbon (AC) to facilitate comparison between the adsorption capabilities of PAC and AC. For PAC and AC, the predictive capabilities of two types of kinetic models and six types of adsorption equilibrium isotherm models were examined. The effect of pH of solution, adsorbent dose and initial p-cresol concentration on adsorption behaviour was investigated, as well. The adsorption on PAC and on AC was found to follow pseudo-first order kinetics with rate constant 0.0016 min(-1) and 0.0050 min(-1), respectively. The highest adsorptive capacity of PAC and AC for p-cresol solution was attained at pH 6.0. Further, as an adsorbent PAC was found to be as good as AC for removal of p-cresol upto a concentration of 500 mg/l in aqueous solution. Freundlich, Redlich-Peterson, and Fritz-Schlunder models were found to be appropriate isotherm models for PAC while Toth, Radke-Prausnitz and Fritz-Schlunder were suitable models for AC to remove p-cresol from aqueous solution.

  5. Solvent dependence of the activation energy of attachment determined by single molecule observations of surfactant adsorption.

    PubMed

    Honciuc, Andrei; Baptiste, Denver Jn; Campbell, Ian P; Schwartz, Daniel K

    2009-07-07

    Single-molecule total internal reflection fluorescence microscopy was used to obtain real-time images of fluorescently labeled hexadecanoic (palmitic) acid molecules as they adsorbed at the interface between fused silica and three different solvents: hexadecane (HD), tetrahydrofuran (THF), and water. These solvents were chosen to explore the effect of solvent polarity on the activation energy associated with the attachment rate, i.e., the rate at which molecules were transferred to the surface from the near-surface layer. Direct counting of single-molecule events, made under steady-state conditions at extremely low coverage, provided direct, model-independent measurements of this attachment rate, in contrast with conventional ensemble-averaged methods, which are influenced by bulk transport and competing detachment processes. We found that the attachment rate increased with increasing temperature for all solvents. Arrhenius analyses gave activation energies of 5+/-2 kJ/mol for adsorption from HD, 10+/-2 kJ/mol for adsorption from THF, and 19+/-2 kJ/mol for adsorption from water. These energies increased systematically with the solvent polarity and, therefore, with the expected strength of the solvent-substrate interaction. We hypothesize that the adsorption of amphiphilic solute molecules from solution can be regarded as a competitive exchange between solute molecules and surface-bound solvent. In this scenario, adsorption is an activated process, and the activation energy for attachment is associated with the solvent-substrate interaction energy.

  6. Physicochemical and adsorptive characteristics of activated carbons from waste polyester textiles utilizing MgO template method.

    PubMed

    Xu, Zhihua; Zhang, Daofang; Yuan, Zhihang; Chen, Weifang; Zhang, Tianqi; Tian, Danqi; Deng, Haixuan

    2017-10-01

    Activated carbons with high specific surface areas were produced, utilizing waste polyester textiles as carbon precursor by magnesium oxide (MgO) template method. Magnesium chloride (MgCl 2 ), magnesium citrate (MgCi), and MgO were employed as MgO precursors to prepare activated carbons (AC-MgCl 2 , AC-MgCi, and AC-MgO). Thermogravimetry-differential scanning calorimetry was conducted to investigate the pore-forming mechanism, and N 2 adsorption/desorption isotherms, XRD, SEM-EDS, TEM, FTIR and pH pzc were achieved to analyze physicochemical characteristics of the samples. The specific surface areas of AC-MgCl 2 (1173 m 2 /g) and AC-MgCi (1336 m 2 /g) were much higher than that of AC-MgO (450 m 2 /g), and the pores sizes of which were micro-mesoporous, mesoporous, and macropores, respectively, due to the formation of MgO crystal with different sizes. All activated carbons had abundant acidic oxygen groups. In addition, batch adsorption experiments were carried out to investigate the adsorptive characteristics of the prepared activated carbons toward Cr(VI). The adsorption kinetics fitted well with the pseudo-second order, and the adsorptive capacity of AC-MgCl 2 (42.55 mg/g) was higher than those of AC-MgCi (40.93 mg/g) and AC-MgO (35.87 mg/g).

  7. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H 2SO 4 activation and its adsorption behavior in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gerçel, Özgül; Özcan, Adnan; Özcan, A. Safa; Gerçel, H. Ferdi

    2007-03-01

    The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H 2SO 4. The surface area of chemically modified activated carbon was 741.2 m 2 g -1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g -1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as Δ G°, Δ H° and Δ S° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol -1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.

  8. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  9. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  10. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue

    NASA Astrophysics Data System (ADS)

    Liu, Qing-Song; Zheng, Tong; Li, Nan; Wang, Peng; Abulikemu, Gulizhaer

    2010-03-01

    Modification of bamboo-based activated carbon was carried out in a microwave oven under N 2 atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N 2 adsorption, acid-base titration, point of zero charge (pH pzc) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pH pzc value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.

  11. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    PubMed

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  12. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study.

    PubMed

    Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N

    2007-07-19

    Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.

  13. Adsorption and catalytic properties of sulfated aluminum oxide modified with cobalt ions

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Bannykh, A. A.; Vlasenko, E. V.; Krotova, I. N.; Obrezkov, O. N.; Shilina, M. I.

    2017-01-01

    The adsorption properties of sulfated aluminum oxide (9% SO 4 2- /γ-Al2O3) and a cobalt-containing composite (0.5%Co/SO 4 2- /γ-Al2O3) based on it are studied via dynamic sorption. The adsorption isotherms of such test adsorbates as n-hydrocarbons (C6-C8), benzene, ethylbenzene, chloroform, and diethyl ether are measured, and their isosteric heats of adsorption are calculated. It is shown that the surface sulfation of aluminum oxide substantially improves its electron-accepting properties, and so the catalytic activity of SO 4 2- /γ-Al2O3 in the liquid-phase alkylation of benzene with octene-1 at temperatures of 25-120°C is one order of magnitude higher than for the initial aluminum oxide. It is established that additional modification of sulfated aluminum oxide with cobalt ions increases the activity of this catalyst by 2-4 times. It is shown that adsorption sites capable of strong specific adsorption with both donating (aromatics, diethyl ether chemosorption) and accepting molecules (chloroform) form on the surface of sulfated γ-Al2O3 promoted by cobalt salt.

  14. Influence of preozonation on the adsorptivity of humic substances onto activated carbon.

    PubMed

    Rodríguez, Francisco J; García-Valverde, María

    2016-11-01

    This research aims to study the influence of preozonation on the adsorptivity of humic substances onto activated carbon, which are usual stages in drinking water treatment. Three different types of humic substances were used in this study: natural fulvic and humic acids extracted from the Úzquiza Reservoir (Burgos, Spain) and a commercially supplied humic acid. The fractionation of the humic substances by ultrafiltration showed a very different molecular weight (MW) distribution for them: the lowest fraction of <1 kDa comprises the vast majority of the fulvic acids (around 86 %), whereas the main fraction for the commercial humic acids was the highest one of >30 kDa (around 40 %). The natural humic acids show an intermediate distribution between the two aforementioned humic substances. The 1-5-kDa fraction turned out to be the most reactive toward trihalomethane formation for the commercial humic acids. The adsorptive capacity of activated carbon for the humic substances was in the following order: natural fulvic acids > natural humic acids > commercial humic acids. The most adsorbable fraction was that of <1 kDa for the fulvic acids, whereas the 5-10-kDa fraction was the most adsorbable for both humic acids. Preozonation changes the MW distribution of the humic substances, decreasing the abundance of the high MW fractions and generating smaller molecules within the low to medium MW range. Adsorption isotherms show that preozonation has a beneficial effect on the adsorptivity of the commercial humic acids onto activated carbon, whereas no appreciable effect was observed for the case of the fulvic acids.

  15. Adsorption of dimethyl trisulfide from aqueous solution on a low-cost adsorbent: thermally activated pinecone

    NASA Astrophysics Data System (ADS)

    Shang, Jingge; He, Wei; Fan, Chengxin

    2015-01-01

    Thermally activated pinecone (TAP) was used for the adsorption of dimethyl trisulfide (DMTS) from aqueous solutions, which was proved to be the main odorous in algae-caused black bloom. The effects of adsorbent dosage, adsorbate concentration and contact time on DMTS biosorption were studied. The TAP produced at 600°C exhibited a relatively high surface area (519.69 m2/g) and excellent adsorption capacity. The results show that the adsorption of DMTS was initially fast and that the equilibrium time was 6 h. Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity. The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage. The adsorption process conforms well to a pseudo-second-order kinetics model. The adsorption of DMTS is more appropriately described by the Freundlich isotherm ( R 2 =0.996 1) than by the Langmuir isotherm ( R 2 =0.916 9). The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.

  16. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    PubMed

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  17. Understanding Electrocatalytic Activity Enhancement of Bimetallic Particles to Ethanol Electro-oxidation: (1) Water Adsorption and Decomposition on PtnM (n=2,3 and 9; M=Pt, Ru, Sn)

    PubMed Central

    Wang, Yixuan; Mi, Yunjie; Redmon, Natalie; Holiday, Jessica

    2009-01-01

    The fundamental assumption of the bi-functional mechanism for PtSn alloy to catalyze ethanol electro-oxidation reaction (EER) is that Sn facilitates water dissociation and EER occurs over Pt site of the PtSn alloy. To clarify this assumption and achieve a good understanding about the EER, H2O adsorption and dissociation over bimetallic clusters PtM (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) are systematically investigated in the present work. To discuss a variety of effects, PtnM (n=2, and 3; M=Pt, Sn and Ru), one-layer Pt6M (M=Pt, Sn and Ru), and two-layer (Pt6M)Pt3 (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) clusters are used to model the PtM bimetallic catalysts. Water exhibits atop adsorption on Pt and Ru sites of the optimized clusters PtnM (n=2, and 3; M=Pt and Ru), yet bridge adsorption on Sn sites of Pt2Sn as well as distorted tetrahedral Pt3Sn. However, in the cases of one-layer Pt6M and two-layer Pt9M cluster models water preferentially binds to all of investigated central atom M of surface layer in atop configuration with the dipole moment of water almost parallel to the cluster surface. Water adsorption on the Sn site of PtnSn (n=2 and 3) is weaker than those on the Pt site of Ptn (n=3 and 4) and the Ru site of PtnRu (n=2 and 3), while water adsorptions on the central Sn atom of Pt6Sn and Pt9Sn are enhanced so significantly that they are even stronger than those on the central Pt and Ru atoms of PtnM (n=6 and 9; M=Pt and Ru). For all of the three cluster models, energy barrier (Ea) for the dissociation of adsorbed water over Sn is lower than over Ru and Pt atoms (e.g., Ea: 0.78 vs 0.96 and 1.07 eV for Pt9M), which also remains as external electric fields were added. It is interesting to note that the dissociation energy on Sn site is also the lowest (Ediss: 0.44 vs 0.61 and 0.67eV). The results show that from both kinetic and thermodynamic viewpoints Sn is more active to water decomposition than pure Pt and the PtRu alloy, which well supports the assumption of the bi

  18. Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.

    PubMed

    Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya

    2016-01-01

    Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH 4 ) 2 S 2 O 8 solution to maximize oxygen content for the first step, and then NH 3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pH e ) investigated. The more decrease in pH e value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pH pzc ) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pH e 2.5 for Ox-9.5AG.

  19. Role of adsorption in liquid lubrication

    NASA Technical Reports Server (NTRS)

    Groszek, A. J.

    1973-01-01

    Changes at solid-liquid interfaces caused by adsorption from solution are discussed paying attention to the following aspects: (1) stability of adsorbed films and the structure of metal-additive-film-liquid interface and effect of adsorbate orientation. (2) chemical versus physical adsorption, (3) heat of adsorption, (4) adsorption of additives, (5) activated adsorption, effect of activating adsorbates, (6) displacement phenomena at solid-liquid interfaces, (7) competition of antiwear additives, their solvents, and water, (8) effect of adsorption on the orientation of liquid in the interfacial region, and (9) relation between the chemical nature of solid surfaces and their interaction with liquid lubricants. The relevance of the above adsorption phenomena to lubrication is discussed, referring where possible to specific examples.

  20. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  1. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve duringmore » preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.« less

  2. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon withmore » D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.« less

  3. Chromium (Ⅵ) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption.

    PubMed

    Wang, Wenqiang

    2018-01-01

    To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%. Copyright © 2017. Published by Elsevier Ltd.

  4. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.

    PubMed

    Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A

    2007-06-15

    The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. (c) 2007 Wiley Periodicals, Inc.

  5. Adsorption mechanism of 2,4-dichlorophenoxyacetic acid onto nitric-acid-modified activated carbon fiber.

    PubMed

    Li, Qun; Sun, Jie; Ren, Tianhao; Guo, Lin; Yang, Zhilin; Yang, Qi; Chen, Hai

    2018-04-01

    Adsorption by carbon materials is one of the relatively fast methods in present research, which is widely used in emergency events. Activated carbon fiber (ACF) modified by nitric acid (N-ACF) was studied in this research to determine the adsorption performance for 2,4-dichlorophenoxyacetic acid (2,4-D). Subsequently, influence factors, adsorption isotherm models, kinetics and thermodynamic were investigated in a batch system to realize this adsorption. Experimental results showed that ACF modified by 0.1M nitric acid had a better removal ability than 2,4-D. Removal rate of 2,4-D by N-ACF was greatly influenced by pH with the optimum pH at 2. The superiority of the Langmuir isotherm model in describing the adsorption equilibrium was revealed by correlation coefficients R2 (R 2  ≥ 0.997). Furthermore, adsorption kinetics was well described by pseudo-second-order model. The results of thermodynamic showed that adsorption was a spontaneous, endothermic process with randomness increasing. Additionally, surface structure properties of adsorbent were characterized by Scanning electron microscopy, Fourier transform infrared spectroscopy, Specific surface area analysis of Brunauer, Emmett and Teller and Boehm's titration. It turned out that the micropore structure and functional groups on N-ACF all can contribute to the removal of 2,4-D.

  6. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC). The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevantfor drinking water treatment Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns forthe change in Freundlich K(F) and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated thatfilm diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional masstransfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model.

  7. New Insights into the adsorption of aurocyanide ion on activated carbon surface: electron microscopy analysis and computational studies using fullerene-like models.

    PubMed

    Yin, Chun-Yang; Ng, Man-Fai; Saunders, Martin; Goh, Bee-Min; Senanayake, Gamini; Sherwood, Ashley; Hampton, Marc

    2014-07-08

    Despite decades of concerted experimental studies dedicated to providing fundamental insights into the adsorption of aurocyanide ion, Au(CN)2(-), on activated carbon (AC) surface, such a mechanism is still poorly understood and remains a contentious issue. This adsorption process is an essential unit operation for extracting gold from ores using carbon-in-pulp (CIP) technology. We hereby attempt to shed more light on the subject by employing a range of transmission electron microscopy (TEM) associated techniques. Gold-based clusters on the AC surface are observed by Z-contrast scanning TEM imaging and energy-filtered TEM element mapping and are supported by X-ray microanalysis. Density functional theory (DFT) calculations are applied to investigate this adsorption process for the first time. Fullerene-like models incorporating convex, concave, or planar structure which mimic the eclectic porous structures on the AC surface are adopted. Pentagonal, hexagonal, and heptagonal arrangements of carbon rings are duly considered in the DFT study. By determining the favored adsorption sites in water environment, a general adsorption trend of Au(CN)2(-) adsorbed on AC surface is revealed whereby concave > convex ≈ planar. The results suggest a tendency for Au(CN)2(-) ion to adsorb on the carbon sheet defects or edges rather than on the basal plane. In addition, we show that the adsorption energy of Au(CN)2(-) is approximately 5 times higher than that of OH(-) in the alkaline environment (in negative ion form), compared to only about 2 times in acidic environment (in protonated form), indicating the Au extraction process is much favored in basic condition. The overall simulation results resolve certain ambiguities about the adsorption process for earlier studies. Our findings afford crucial information which could assist in enhancing our fundamental understanding of the CIP adsorption process.

  8. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  9. Heterogeneity of activated carbons in adsorption of phenols from aqueous solutions—Comparison of experimental isotherm data and simulation predictions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; Nieszporek, K.

    2007-01-01

    Surface heterogeneity of activated carbons is usually characterized by adsorption energy distribution (AED) functions which can be estimated from the experimental adsorption isotherms by inverting integral equation. The experimental data of phenol adsorption from aqueous solution on activated carbons prepared from polyacrylonitrile (PAN) and polyethylene terephthalate (PET) have been taken from literature. AED functions for phenol adsorption, generated by application of regularization method have been verified. The Grand Canonical Monte Carlo (GCMC) simulation technique has been used as verification tool. The definitive stage of verification was comparison of experimental adsorption data and those obtained by utilization GCMC simulations. Necessary information for performing of simulations has been provided by parameters of AED functions calculated by regularization method.

  10. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  11. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch.

    PubMed

    Njoku, V O; Islam, Md Azharul; Asif, M; Hameed, B H

    2015-05-01

    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption capacity increased with temperature. The adsorption data was well described by Langmuir isotherm followed by removal capacity of 261.2 mg/g at 30 °C. The results from this work showed that LEFBAC can be used as outstanding material for anionic herbicide uptake from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater.

    PubMed

    Xing, W; Ngo, H H; Kim, S H; Guo, W S; Hagare, P

    2008-12-01

    In this study, the performances of GAC adsorption and GAC bioadsorption in terms of dissolved organic carbon (DOC) removal were investigated with synthetic biologically treated sewage effluent (BTSE), synthetic primary treated sewage effluent (PTSE), real BTSE and real PTSE. The main aims of this study are to verify and compare the efficiency of DOC removal by GAC (adsorption) and acclimatized GAC (bioadsorption). The results indicated that the performance of bioadsorption was significantly better than that of adsorption in all cases, showing the practical use of biological granular activated carbon (BGAC) in filtration process. The most significance was observed at a real PTSE with a GAC dose of 5g/L, having 54% and 96% of DOC removal by adsorption and bioadsorption, respectively. In addition, it was found that GAC adsorption equilibrium was successfully predicted by a hybrid Langmuir-Freundlich model whilst integrated linear driving force approximation (LDFA)+hybrid isotherm model could describe well the adsorption kinetics. Both adsorption isotherm and kinetic coefficients determined by these models will be useful to model the adsorption/bioadsorption process in DOC removal of BGAC filtration system.

  13. The influence of iron oxide nanoparticles upon the adsorption of organic matter on magnetic powdered activated carbon.

    PubMed

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2017-10-15

    Combining powdered activated carbon (PAC) with magnetic iron oxides has been proposed in the past to produce adsorbents for natural organic matter (NOM) removal that can be easily separated using a magnetic field. However, the trade-off between the iron oxides' benefits and the reduced carbon content, porosity, and surface area has not yet been investigated systematically. We produced 3 magnetic powdered activated carbons (MPAC) with mass fractions of 10%, 38% and 54% maghemite nanoparticles and compared them to bare PAC and pure nanoparticles with respect to NOM adsorption kinetics and isotherms. While adsorption kinetics were not influenced by the presence of the iron oxide nanoparticles (IONP), as shown by calculated diffusion coefficients from the homogeneous surface diffusion model, nanoparticles reduced the adsorption capacity of NOM due to their lower adsorption capacity. Although the nanoparticles added mesoporosity to the composite materials they blocked intrinsic PAC mesopores at mass fractions >38% as measured by N 2 -adsorption isotherms. Below this mass fraction, the adsorption capacity was mainly dependent on the carbon content in MPAC and mesopore blocking was negligible. If NOM adsorption with MPAC is desired, a highly mesoporous PAC and a low IONP mass fraction should be chosen during MPAC synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of a Confined Methanol Solvent on the Reactivity of Active Sites in UiO-66.

    PubMed

    Caratelli, Chiara; Hajek, Julianna; Rogge, Sven M J; Vandenbrande, Steven; Meijer, Evert Jan; Waroquier, Michel; Van Speybroeck, Veronique

    2018-02-19

    UiO-66, composed of Zr-oxide bricks and terephthalate linkers, is currently one of the most studied metal-organic frameworks due to its exceptional stability. Defects can be introduced in the structure, creating undercoordinated Zr atoms which are Lewis acid sites. Here, additional Brønsted sites can be generated by coordinated protic species from the solvent. In this Article, a multilevel modeling approach was applied to unravel the effect of a confined methanol solvent on the active sites in UiO-66. First, active sites were explored with static periodic density functional theory calculations to investigate adsorption of water and methanol. Solvent was then introduced in the pores with grand canonical Monte Carlo simulations, followed by a series of molecular dynamics simulations at operating conditions. A hydrogen-bonded network of methanol molecules is formed, allowing the protons to shuttle between solvent methanol, adsorbed water, and the inorganic brick. Upon deprotonation of an active site, the methanol solvent aids the transfer of protons and stabilizes charged configurations via hydrogen bonding, which could be crucial in stabilizing reactive intermediates. The multilevel modeling approach adopted here sheds light on the important role of a confined solvent on the active sites in the UiO-66 material, introducing dynamic acidity in the system at finite temperatures by which protons may be easily shuttled from various positions at the active sites. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    NASA Astrophysics Data System (ADS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  16. Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review

    PubMed Central

    Jarrah, Nabeel; Zubair, Mukarram; Alagha, Omar

    2017-01-01

    Due to their industrial relevance, phenolic compounds (PC) are amongst the most common organic pollutants found in many industrial wastewater effluents. The potential detrimental health and environmental impacts of PC necessitate their removal from wastewater to meet regulatory discharge standards to ensure meeting sustainable development goals. In recent decades, one of the promising, cost-effective and environmentally benign techniques for removal of PC from water streams has been adsorption onto sewage sludge (SS)-based activated carbon (SBAC). This is attributed to the excellent adsorptive characteristics of SBAC and also because the approach serves as a strategy for sustainable management of huge quantities of different types of SS that are in continual production globally. This paper reviews conversion of SS into activated carbons and their utilization for the removal of PC from water streams. Wide ranges of topics which include SBAC production processes, physicochemical characteristics of SBAC, factors affecting PC adsorption onto SBAC and their uptake mechanisms as well as the regeneration potential of spent SBAC are covered. Although chemical activation techniques produce better SBAC, yet more research work is needed to harness advances in material science to improve the functional groups and textural properties of SBAC as well as the low performance of physical activation methods. Studies focusing on PC adsorptive performance on SBAC using continuous mode (that are more relevant for industrial applications) in both single and multi-pollutant aqueous systems to cover wide range of PC are needed. Also, the potentials of different techniques for regeneration of spent SBAC used for adsorption of PC need to be assessed in relation to overall economic evaluation within realm of environmental sustainability using life cycle assessment. PMID:28934127

  17. Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review.

    PubMed

    Mu'azu, Nuhu Dalhat; Jarrah, Nabeel; Zubair, Mukarram; Alagha, Omar

    2017-09-21

    Due to their industrial relevance, phenolic compounds (PC) are amongst the most common organic pollutants found in many industrial wastewater effluents. The potential detrimental health and environmental impacts of PC necessitate their removal from wastewater to meet regulatory discharge standards to ensure meeting sustainable development goals. In recent decades, one of the promising, cost-effective and environmentally benign techniques for removal of PC from water streams has been adsorption onto sewage sludge (SS)-based activated carbon (SBAC). This is attributed to the excellent adsorptive characteristics of SBAC and also because the approach serves as a strategy for sustainable management of huge quantities of different types of SS that are in continual production globally. This paper reviews conversion of SS into activated carbons and their utilization for the removal of PC from water streams. Wide ranges of topics which include SBAC production processes, physicochemical characteristics of SBAC, factors affecting PC adsorption onto SBAC and their uptake mechanisms as well as the regeneration potential of spent SBAC are covered. Although chemical activation techniques produce better SBAC, yet more research work is needed to harness advances in material science to improve the functional groups and textural properties of SBAC as well as the low performance of physical activation methods. Studies focusing on PC adsorptive performance on SBAC using continuous mode (that are more relevant for industrial applications) in both single and multi-pollutant aqueous systems to cover wide range of PC are needed. Also, the potentials of different techniques for regeneration of spent SBAC used for adsorption of PC need to be assessed in relation to overall economic evaluation within realm of environmental sustainability using life cycle assessment.

  18. The Impact of Iron Adsorption on the Electronic and Photocatalytic Properties of the Zinc Oxide (0001) Surface: A First-Principles Study.

    PubMed

    Cheng, Jingsi; Wang, Ping; Hua, Chao; Yang, Yintang; Zhang, Zhiyong

    2018-03-12

    The structural stability, electronic structure, and optical properties of an iron-adsorbed ZnO (0001) surface with three high-symmetry adsorption sites are investigated with first-principle calculations on the basis of density functional theory and the Hubbard-U method. It is found that the iron adatom in the H₃ adsorption site of ZnO (0001) surface has the lowest adsorption energy of -5.665 eV compared with T₄ and Top sites. For the Top site, compared with the pristine ZnO (0001) surface, the absorption peak located at 1.17 eV has a red shift, and the elevation of the absorption coefficient is more pronounced in the visible-light region, because the Fe-related levels are introduced in the forbidden band and near the Fermi level. The electrostatic potential computation reveals that the work function of the ZnO (0001) surface is significantly decreased from 2.340 to 1.768 eV when iron is adsorbed on the Top site. Furthermore, the degradation mechanism based on the band structure is analyzed. It can be concluded that the adsorption of iron will promote the separation of photoinduced carriers, thus improving the photocatalytic activity of ZnO (0001) surface. Our study benefits research on the photocatalytic activity of ZnO and the utilization rate of solar energy.

  19. Selective adsorption of toluene-3,4-dithiol on Si(553)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Suchkova, Svetlana; Hogan, Conor; Bechstedt, Friedhelm; Speiser, Eugen; Esser, Norbert

    2018-01-01

    The adsorption of small organic molecules onto vicinal Au-stabilized Si(111) surfaces is shown to be a versatile route towards controlled growth of ordered organic-metal hybrid one-dimensional nanostructures. Density functional theory is used to investigate the site-specific adsorption of toluene-3,4-dithiol (TDT) molecules onto the clean Si(553)-Au surface and onto a co-doped surface whose steps are passivated by hydrogen. We find that the most reactive sites involve bonding to silicon at the step edge or on the terraces, while gold sites are relatively unfavored. H passivation and TDT adsorption both induce a controlled charge redistribution within the surface layer, causing the surface metallicity, electronic structure, and chemical reactivity of individual adsorption sites to be substantially altered.

  20. Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides

    DOE PAGES

    Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.; ...

    2018-01-19

    The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less

  1. Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.

    The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less

  2. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  3. Adsorption of Cu(II) Ions in Aqueous Solutions by HCl Activated Carbon of Oil Palm

    NASA Astrophysics Data System (ADS)

    Muslim, A.; Syamsuddin, Y.; Salamun, A.; Abubakar; Ramadhan, D.; Peiono, D.

    2017-06-01

    Activated carbon was prepared from oil palm empty fruit bunch (OPEFB) by pyrolysis at 873.15 K in a furnace and chemical activation using 0.01 M HCl. Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and BET (Brunauer, Emmett and Teller) surface area analyses were taken into account to investigate the chemical functional group, to characterise the surface morphology and to determine total surface area the OPEFB AC, respectively. Experiments in batch mode were conducted to investigate Cu(II) adsorption capacity by the OPEFB AC whereas the system consisted of 1 g the OPEFB AC in 100 mL Cu(II) aqueous solution with initial concentration in the range of 10-70 mg/L, magnetic stirring at 75 rpm, room temperature of 300.15 K (± 2 K), at 1 atm and neutral pH over contact time in the range of 0-150 min. As the result, Cu(II) adsorption capacity increased exponentially over contact time and initial concentration. The Cu(II) adsorption kinetics followed the pseudo second order kinetics with the correlation coefficients (R 2), kinetics rate constant and equilibrium adsorption capacity being 0.98, 4.81 mg/g and 0.15/min, respectively for initial Cu(II) concentration being 58.71 mg/L. In addition, Cu(II) adsorption isotherm followed the Langmuir equation with the R2 value, the mono-layer and over-all adsorption capacity being 0.99, 5.92 mg/g and 0.17 L/mg, respectively.

  4. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    PubMed

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling.

    PubMed

    Fu, Hao; Li, Xuebing; Wang, Jun; Lin, Pengfei; Chen, Chao; Zhang, Xiaojian; Suffet, I H Mel

    2017-06-01

    The extensive use of antibiotics has led to their presence in the aquatic environment, and introduces potential impacts on human and ecological health. The capability of powdered activated carbon (PAC) to remove six frequently used quinolone (QN) antibiotics during water treatment was evaluated to improve drinking water safety. The kinetics of QN adsorption by PAC was best described by a pseudo second-order equation, and the adsorption capacity was well described by the Freundlich isotherm equation. Isotherms measured at different pH showed that hydrophobic interaction, electrostatic interaction, and π-π dispersion force were the main mechanisms for adsorption of QNs by PAC. A pH-dependent isotherm model based on the Freundlich equation was developed to predict the adsorption capacity of QNs by PAC at different pH values. This model had excellent prediction capabilities under different laboratory scenarios. Small relative standard derivations (RSDs), i.e., 0.59%-0.92% for ciprofloxacin and 0.09%-3.89% for enrofloxacin, were observed for equilibrium concentrations above the 0.3mg/L level. The RSDs increased to 11.9% for ciprofloxacin and 32.1% for enrofloxacin at μg/L equilibrium levels, which is still acceptable. This model could be applied to predict the adsorption of other chemicals having different ionized forms. Copyright © 2016. Published by Elsevier B.V.

  6. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes.

    PubMed

    Ma, Jie; Yu, Fei; Zhou, Lu; Jin, Lu; Yang, Mingxuan; Luan, Jingshuai; Tang, Yuhang; Fan, Haibo; Yuan, Zhiwen; Chen, Junhong

    2012-11-01

    An alkali-acitvated method was explored to synthesize activated carbon nanotubes (CNTs-A) with a high specific surface area (SSA), and a large number of mesopores. The resulting CNTs-A were used as an adsorbent material for removal of anionic and cationic dyes in aqueous solutions. Experimental results indicated that CNTs-A have excellent adsorption capacity for methyl orange (149 mg/g) and methylene blue (399 mg/g). Alkali-activation treatment of CNTs increased the SSA and pore volume (PV), and introduced oxygen-containing functional groups on the surface of CNTs-A, which would be beneficial to improving the adsorption affinity of CNTs-A for removal of dyes. Kinetic regression results shown that the adsorption kinetic was more accurately represented by a pseudo second-order model. The overall adsorption process was jointly controlled by external mass transfer and intra-particle diffusion, and intra-particle diffusion played a dominant role. Freundlich isotherm model showed a better fit with adsorption data than Langmuir isotherm model. Adsorption interactions of dyes onto CNTs-A from aqueous solutions were investigated using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) method. The remarkable adsorption capacity of dye onto CNTs-A can be attributed to the multiple adsorption interaction mechanisms (hydrogen bonding, π-π electron-donor-acceptor interactions, electrostatic interactions, mesopore filling) on the CNTs-A. Results of this work are of great significance for environmental applications of activated CNTs as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions.

  7. Competitive effects of humic acid and wastewater on adsorption of Methylene Blue dye by activated carbon and non-imprinted polymers.

    PubMed

    Murray, Audrey; Örmeci, Banu

    2018-04-01

    Natural organic matter (NOM), present in natural waters and wastewater, decreases adsorption of micropollutants, increasing treatment costs. This research investigated mechanisms of competition for non-imprinted polymers (NIPs) and activated carbon with humic acid and wastewater. Three different types of activated carbons (Norit PAC 200, Darco KB-M, and Darco S-51) were used for comparison with the NIP. The lower surface area and micropore to mesopore ratio of the NIP led to decreased adsorption capacity in comparison to the activated carbons. In addition, experiments were conducted for single-solute adsorption of Methylene Blue (MB) dye, simultaneous adsorption with humic acid and wastewater, and pre-loading with humic acid and wastewater followed by adsorption of MB dye using NIP and Norit PAC 200. Both the NIP and PAC 200 showed significant decreases of 27% for NIP (p=0.087) and 29% for PAC 200 (p=0.096) during simultaneous exposure to humic acid and MB dye. There was no corresponding decrease for NIP or PAC 200 pre-loaded with humic acid and then exposed to MB. In fact, for PAC 200, the adsorption capacity of the activated carbon increased when it was pre-loaded with humic acid by 39% (p=0.0005). For wastewater, the NIP showed no significant increase or decrease in adsorption capacity during either simultaneous exposure or pre-loading. The adsorption capacity of PAC 200 increased by 40% (p=0.001) for simultaneous exposure to wastewater and MB. Pre-loading with wastewater had no effect on MB adsorption by PAC 200. Copyright © 2017. Published by Elsevier B.V.

  8. Influence of porous texture and surface chemistry on the CO₂ adsorption capacity of porous carbons: acidic and basic site interactions.

    PubMed

    Sánchez-Sánchez, Angela; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M D

    2014-12-10

    Doped porous carbons exhibiting highly developed porosity and rich surface chemistry have been prepared and subsequently applied to clarify the influence of both factors on carbon dioxide capture. Nanocasting was selected as synthetic route, in which a polyaramide precursor (3-aminobenzoic acid) was thermally polymerized inside the porosity of an SBA-15 template in the presence of different H3PO4 concentrations. The surface chemistry and the porous texture of the carbons could be easily modulated by varying the H3PO4 concentration and carbonization temperature. Porous texture was found to be the determinant factor on carbon dioxide adsorption at 0 °C, while surface chemistry played an important role at higher adsorption temperatures. We proved that nitrogen functionalities acted as basic sites and oxygen and phosphorus groups as acidic ones toward adsorption of CO2 molecules. Among the nitrogen functional groups, pyrrolic groups exhibited the highest influence, while the positive effect of pyridinic and quaternary functionalities was smaller. Finally, some of these N-doped carbons exhibit CO2 heats of adsorption higher than 42 kJ/mol, which make them excellent candidates for CO2 capture.

  9. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot.

    PubMed

    Onal, Yunus

    2006-10-11

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.

  10. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves.

    PubMed

    Beltrame, Karla K; Cazetta, André L; de Souza, Patrícia S C; Spessato, Lucas; Silva, Taís L; Almeida, Vitor C

    2018-01-01

    The present work reports the preparation of activated carbon fibers (ACFs) from pineapple plant leaves, and its application on caffeine (CFN) removal from aqueous solution. The preparation procedure was carried out using the H 3 PO 4 as activating agent and slow pyrolysis under N 2 atmosphere. The characterization of materials was performed from the N 2 adsorption and desorption isotherms, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, Boehm titration and pH pzc method. ACFs showed high BET surface area value (S BET = 1031m 2 g -1 ), well-developed mesoporous structure (mesopore volume of 1.27cm³ g -1 ) and pores with average diameter (D M ) of 5.87nm. Additionally, ACFs showed features of fibrous material with predominance of acid groups on its surface. Adsorption studies indicated that the pseudo-second order kinetic and Langmuir isotherm models were that best fitted to the experimental data. The monolayer adsorption capacity was found to be 155.50mgg -1 . thermodynamic studies revealed that adsorption process is spontaneous, exothermic and occurs preferably via physisorption. The pineapple leaves are an efficient precursor for preparation of ACFs, which were successful applied as adsorbent material for removal of caffeine from the aqueous solutions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Adsorption of cadmium by sulphur dioxide treated activated carbon.

    PubMed

    Macías-García, A; Gómez-Serrano, V; Alexandre-Franco, M F; Valenzuela-Calahorro, C

    2003-10-01

    Merck carbon (1.5 mm) was treated in three ways: heating from ambient temperature to 900 degrees C in SO(2); treatment at ambient temperature in SO(2); or successive treatments in SO(2) and H(2)S at ambient temperature. All samples were then characterised and tested as adsorbents of Cd(2+) from aqueous solution. The characterisation was in terms of composition by effecting ultimate and proximate analyses and also of textural properties by N(2) adsorption at -196 degrees C. Kinetics and extent of the adsorption process of Cd(2+) were studied at 25 and 45 degrees C at pH of the Cd(2+) solution (i.e., 6.2) and at 25 degrees C also at pH 2.0. The various treatments of the starting carbon had no significant effect on the kinetics of the adsorption of Cd(2+), but increased its adsorption capacity. The most effective treatment was heating to 900 degrees C, the adsorption in this case being 70.3% more than that of the starting carbon. The adsorption increased at 45 degrees C but decreased at pH 2.0 when compared to adsorption at 25 degrees C and pH 6.2, respectively.

  12. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.

    PubMed

    Wang, Jun; Chen, Zaiming; Chen, Baoliang

    2014-05-06

    The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.

  13. The impact of metabolic state on Cd adsorption onto bacterial cells

    USGS Publications Warehouse

    Johnson, K.J.; Ams, D.A.; Wedel, A.N.; Szymanowski, J.E.S.; Weber, D.L.; Schneegurt, M.A.; Fein, J.B.

    2007-01-01

    This study examines the effect of bacterial metabolism on the adsorption of Cd onto Gram-positive and Gram-negative bacterial cells. Metabolically active Gram-positive cells adsorbed significantly less Cd than non-metabolizing cells. Gram-negative cells, however, showed no systematic difference in Cd adsorption between metabolizing and non-metabolizing cells. The effect of metabolism on Cd adsorption to Gram-positive cells was likely due to an influx of protons in and around the cell wall from the metabolic proton motive force, promoting competition between Cd and protons for adsorption sites on the cell wall. The relative lack of a metabolic effect on Cd adsorption onto Gram-negative compared to Gram-positive cells suggests that Cd binding in Gram-negative cells is focused in a region of the cell wall that is not reached, or is unaffected by this proton flux. Thermodynamic modeling was used to estimate that proton pumping causes the pH in the cell wall of metabolizing Gram-positive bacteria to decrease from the bulk solution value of 7.0 to approximately 5.7. ?? 2007 The Authors.

  14. Experimental study on removals of SO2 and NO(x) using adsorption of activated carbon/microwave desorption.

    PubMed

    Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi

    2012-09-01

    Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO2), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO2 concentrations. Adsorption capacity of SO2 declines with the increasing of O2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO2 increases and removal efficiencies of NO and SO2 would be relatively stable. Adsorption capacities of both NO and SO2 decrease with the increasing of CO2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO2 content exceeds 12.4%. The mechanisms of this process are also discussed. The prominent SO2 and NOx treatment techniques in power plants are wet flue gas desulfurization (FGD) and the catalytic decomposition method like selective catalytic reduction (SCR) or nonselective catalytic reduction (NSCR). However, these processes would have some difficulties in commercial application due to their high investment, requirement of expensive catalysts and large-scale equipment, and so on. A simple SO2 and NOx reduction utilizing decomposition by microwave energy method can be used. The pollutants control of flue gas in the power plants by the method of microwave-induced decomposition using adsorption of activated carbon/microwave desorption can meet the

  15. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review.

    PubMed

    Ahmed, Muthanna J

    2017-03-01

    Antibiotics, an important type of pharmaceutical pollutant, have attracted many researchers to the study of their removal from aqueous solutions. Activated carbon (AC) has been widely used as highly effective adsorbent for antibiotics because of its large specific surface area, high porosity, and favorable pore size distribution. In this article, the adsorption performance of AC towards three major types of antibiotics such as tetracyclines, quinolones, and penicillins were reviewed. According to collected data, maximum adsorption capacities of 1340.8, 638.6, and 570.4mg/g were reported for tetracyclines, quinolones, and penicillins, respectively. The values of 1/n for Freundlich isotherm were less than unity, suggesting that the adsorption was nonlinear and favorable. Adsorption kinetics followed closely the pseudo-second-order model and analysis using the Weber-Morris model revealed that the intra-particle diffusion was not the only rate controlling step. AC adsorption demonstrated superior performance for all selected drugs, thus being efficient technology for treatment of these pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC).

    PubMed

    Zhang, Yiping; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-01-01

    Soil washing is a kind of physical method to remove organic matters from contaminated soil. However, its eluate after washing may result in secondary pollution to the environment. In this study, activated coke (AC) was used to remove organic pollutants from contaminated soil eluate. The effect of temperature, initial chemical oxygen demand (COD) and AC dosage on COD removal efficiency was investigated. The results showed that the organic matter can be removed in the eluate because the COD dropped a lot. When the AC dosage was 20 g·L(-1), 88.92% of COD decreased after 480 min of adsorption at 50 °C. The process of adsorption can be described by the Redlich-Peterson isotherm. The adsorption was spontaneous and endothermic. The pseudo-second-order model can be used to describe the adsorption process. After adsorption, the acute toxicity of the eluate was reduced by 76%, and the water qualities were in agreement with Chinese discharge standard GB 14470.1-2002, which means the eluate could be discharged to the environment.

  17. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    NASA Astrophysics Data System (ADS)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  18. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials.

    PubMed

    Doczekalska, Beata; Kuśmierek, Krzysztof; Świątkowski, Andrzej; Bartkowiak, Monika

    2018-05-04

    Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.

  19. ROLE OF HCL IN ADSORPTION OF ELEMENTAL MERCURY VAPOR BY CALCIUM-BASED SORBENTS

    EPA Science Inventory

    The paper gives results of a study to identify active sites and surface functional groups that may contribute to the adsorption of elemental mercury (Hg?) by relatively inexpensive calcium (Ca)-based sorbents. (NOTE: Hg? capture has been mostly investigated using high-surface-ar...

  20. Adsorption characteristics of trace levels of bromate in drinking water by modified bamboo-based activated carbons.

    PubMed

    Chen, Ho-Wen; Chuang, Yen Hsun; Hsu, Cheng-Feng; Huang, Winn-Jung

    2017-09-19

    This study was undertaken to investigate the adsorption kinetics and isotherms of bromate (BrO 3 - ) on bamboo charcoals that are activated with nitrogen and water vapor. Bamboo-based activated carbon (AC) was dipped in acid and oxidized in a mixture of potassium permanganate and sulfuric acid. Oxidation treatment considerably improved the physicochemical properties of AC, including purity, pore structure and surface nature, significantly enhancing BrO 3 - adsorption capacity. AC with many oxygenated groups and a high mesopore volume exhibited a particularly favorable tendency for BrO 3 - adsorption. Its adsorption of BrO 3 - is best fitted using Langmuir isotherm, and forms a monolayer. A kinetic investigation revealed that the adsorption of BrO 3 - by the ACs involved chemical sorption and was controlled by intra-particle diffusion. The competitive effects of natural organic matter (NOM) on AC were evaluated, and found to reduce the capacity of carbon to adsorb BrO 3 - . Residual dissolved ozone reacted with AC, reducing its capacity to absorb BrO 3 - . Proper dosing and staging of the ozonation processes can balance the ozone treatment efficiency, BrO 3 - formation, and the subsequent removal of BrO 3 - .

  1. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon.

    PubMed

    Li, Wei-Guang; Gong, Xu-Jin; Wang, Ke; Zhang, Xin-Ran; Fan, Wen-Biao

    2014-08-01

    An innovative coal-based mesoporous activated carbon (NCPAC) was prepared by re-agglomeration, oxidation and two-step activation using coal-blending as precursor. Adsorption capacities of As(III) and As(V) ions (<0.5mg/L) onto NCPAC as a function of pH, adsorbent dose, initial arsenic concentrations, contact time, and adsorption isotherms at 7°C was investigated. The innovative methods promoted total pore volume (1.087cm(3)/g), mesoporosity (64.31%), iodine numbers (1104mg/g), methylene blue (251.8mg/g) and ash contents (15.26%). The adsorption capacities of NCPAC for As(III) and As(V) were found to be strongly dependent on pH and contact time. The optimal pH value was 6. The equilibrium time was 60min for adsorption of As(III) and As(V) by NCPAC. The Langmuir model fitted the experimental data well for both As(III) (R(2)=0.9980) and As(V) (R(2)=0.9988). Maximum adsorption capacities of As(III) and As(V) (C0=0.50mg/L) by NCPAC were 1.491 and 1.760mg/g, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides.

    PubMed

    Chitrakar, Ramesh; Tezuka, Satoko; Sonoda, Akinari; Sakane, Kohji; Ooi, Kenta; Hirotsu, Takahiro

    2005-10-01

    Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.

  3. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinrauch, Ingrid; Savchenko, Ievgeniia L.; Denysenko, D.

    The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol -1) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gasmore » phase. Large difference in adsorption enthalpy of 2.5 kJ mol -1 between D 2 and H 2 results in D 2-over-H 2 selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H 2/D 2 mixtures allows the prediction of selectivities for tritium-containing isotopologues.« less

  4. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

    DOE PAGES

    Weinrauch, Ingrid; Savchenko, Ievgeniia L.; Denysenko, D.; ...

    2017-03-06

    The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol -1) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gasmore » phase. Large difference in adsorption enthalpy of 2.5 kJ mol -1 between D 2 and H 2 results in D 2-over-H 2 selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H 2/D 2 mixtures allows the prediction of selectivities for tritium-containing isotopologues.« less

  5. Adsorption of guaiacol on Fe (110) and Pd (111) from first principles

    NASA Astrophysics Data System (ADS)

    Hensley, Alyssa J. R.; Wang, Yong; McEwen, Jean-Sabin

    2016-06-01

    The catalytic properties of surfaces are highly dependent upon the effect said surfaces have on the geometric and electronic structure of adsorbed reactants, products, and intermediates. It is therefore crucial to have a surface-level understanding of the adsorption of the key species in a reaction in order to design active and selective catalysts. Here, we study the adsorption of guaiacol on Fe (110) and Pd (111) using dispersion-corrected density functional theory calculations as both of these metals are of interest as hydrodeoxygenation catalysts for the conversion of bio-oils to useable biofuels. Both vertical (via the oxygen functional groups) and horizontal (via the aromatic ring) adsorption configurations were examined and the resulting adsorption and molecular distortion energies showed that the vertical sites were only physisorbed while the horizontal sites were chemisorbed on both metal surfaces. A comparison of guaiacol's horizontal adsorption on Fe (110) and Pd (111) showed that guaiacol had a stronger adsorption on Pd (111) while the Fe (110) surface distorted the Csbnd O bonds to a greater degree. Electronic analyses on the horizontal systems showed that the greater adsorption strength for guaiacol on Pd (111) was likely due to the greater charge transfer between the aromatic ring and the surface Pd atoms. Additionally, the greater distortion of the Csbnd O bonds in adsorbed guaiacol on Fe (110) is likely due to the greater degree of interaction between the oxygen and surface Fe atoms. Overall, our results show that the Fe (110) surface has a greater degree of interaction with the functional groups and the Pd (111) surface has a greater degree of interaction with the aromatic ring.

  6. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations.

    PubMed

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre

    2016-01-15

    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics.

    PubMed

    Rodríguez, Araceli; García, Juan; Ovejero, Gabriel; Mestanza, María

    2009-12-30

    Activated carbon was utilized as adsorbent to remove anionic dye, Orange II (OII), and cationic dye, Methylene blue (MB), from aqueous solutions by adsorption. Batch experiments were conducted to study the effects of temperature (30-65 degrees C), initial concentration of adsorbate (300-500 mg L(-1)) and pH (3.0-9.0) on dyes adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The equilibrium experimental data were analyzed by the Langmuir, Freundlich, Toth and Redlich-Peterson models. The kinetic data obtained with different carbon mass were analyzed using a pseudo-first order, pseudo-second order, intraparticle diffusion, Bangham and Chien-Clayton equations. The best results were achieved with the Langmuir isotherm equilibrium model and with the pseudo-second order kinetic model. The activated carbon was found to be very effective as adsorbent for MB and OII from aqueous solutions.

  8. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    NASA Technical Reports Server (NTRS)

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  9. Removing polycyclic aromatic hydrocarbons from water using granular activated carbon: kinetic and equilibrium adsorption studies.

    PubMed

    Eeshwarasinghe, Dinushika; Loganathan, Paripurnanda; Kalaruban, Mahatheva; Sounthararajah, Danious Pratheep; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2018-05-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log K ow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.

  10. Adsorption and Dissociation of Molecular Hydrogen on the (0001) Surface of DHCP Americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik; Ray, Asok

    2009-03-01

    Hydrogen molecule adsorption on the (0001) surface of double hexagonal closed packed americium has been studied in detail within the framework of density functional theory. Weak molecular hydrogen adsorptions were observed. The most stable configuration corresponded to a Hor2 approach molecular adsorption at the one-fold top site where the molecule's approach is perpendicular to a lattice vector. Adsorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the hydrogen molecule will be discussed. Reaction barrier for the dissociation of hydrogen molecule will be presented. The implications of adsorption on Am 5f electron localization-delocalization will be summarized.

  11. Goethite surface reactivity: a macroscopic investigation unifying proton, chromate, carbonate, and lead(II) adsorption.

    PubMed

    Villalobos, Mario; Pérez-Gallegos, Ayax

    2008-10-15

    The goethite surface structure has been extensively studied, but no convincing quantitative description of its highly variable surface reactivity as inversely related to its specific surface area (SSA) has been found. The present study adds experimental evidence and provides a unified macroscopic explanation to this anomalous behavior from differences in average adsorption capacities, and not in average adsorption affinities. We investigated the chromate anion and lead(II) cation adsorption behavior onto three different goethites with SSA varying from 50 to 94 m(2)/g, and analyzed an extensive set of published anion adsorption and proton charging data for variable SSA goethites. Maximum chromate adsorption was found to occupy on average from 3.1 to 9.7 sites/nm(2), inversely related to SSA. Congruency of oxyanion and Pb(II) adsorption behavior based on fractional site occupancy using these values, and a site density analysis suggest that: (i) ion binding occurs to singly and doubly coordinated sites, (ii) proton binding occurs to singly and triply coordinated sites (ranging from 6.2 to 8 total sites/nm(2), in most cases), and (iii) a predominance of (210) and/or (010) faces explains the high reactivity of low SSA goethites. The results imply that the macroscopic goethite adsorption behavior may be predicted without a need to investigate extensive structural details of each specific goethite of interest.

  12. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    NASA Astrophysics Data System (ADS)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  13. Comparison of adsorption of Remazol Black B and Acidol Red on microporous activated carbon felt.

    PubMed

    Donnaperna, L; Duclaux, L; Gadiou, R; Hirn, M-P; Merli, C; Pietrelli, L

    2009-11-15

    The adsorption of two anionic dyes, Remazol Black B (RB5) and Acidol Red 2BE-NW (AR42), onto a microporous activated carbon felt was investigated. The characterization of carbon surface chemistry by X-ray microanalysis, Boehm titrations, and pH-PZC measurements indicates that the surface oxygenated groups are mainly acidic. The rate of adsorption depends on the pH and the experimental data fit the intraparticle diffusion model. The pore size distribution obtained by DFT analysis shows that the mean pore size is close to 1nm, which indicates that a slow intraparticle diffusion process control the adsorption. The adsorption isotherms were measured for different pH values. The Khan and the Langmuir-Freundlich models lead to the best agreement with experimental data for RB5 and AR42, respectively. These isotherm simulations and the pH dependence of adsorption show that the adsorption capacity is mainly controlled by nondispersive electrostatic interactions for pH values below 4. The adsorption kinetics, the irreversibility of the process, and the influence of the pH indicate that the rate of adsorption in this microporous felt proceeds through two steps. The first one is fast and results from direct interaction of dye molecules with the external surface of the carbon material (which account for 10% of the whole surface area); in the second, slow step, the adsorption rate is controlled by the slow diffusion of dye molecules into the narrow micropores. The influence of temperature on the adsorption isotherms was studied and the thermodynamic parameters were obtained. They show that the process is spontaneous and exothermic.

  14. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: a comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes.

    PubMed

    Lian, Fei; Chang, Chun; Du, Yang; Zhu, Lingyan; Xing, Baoshan; Liu, Chang

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  15. Adsorption effect on the formation of conductive path in defective TiO2: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Wenshi; Qin, Han; Yang, Jianfeng; Mao, Ling-Feng

    2017-10-01

    Although the metal/TiO2/metal junctions providing resistive switching properties have attracted lots of attention in recent decades, revealing the atomic-nature of conductive path in TiO2 active layer remains a critical challenge. Here the effects of metal adsorption on defective TiO2(1 1 0) surface are theoretically investigated via ab initio calculations. The dependence of the conductive path on the adsorption of Ti/Zr/Cu/Pt/O atoms above a lattice Ti-ion in (1 1 0) plane and at 〈1 1 0〉 direction of the defective TiO2(0 0 1) surface are compared. It is found that Ti adsorptions in both sites give larger contributions to the presence of conductive path with more stability and larger transport coefficients at Fermi level, whereas the O adsorptions at both sites fail to produce conductive path. Moreover, the adsorptions of Zr/Cu/Pt atoms reduce the existence possibility of conductive path, especially absorbed above the lattice Ti-ion at 〈1 1 0〉 direction. Thus, it is helpful to clarify the interaction of the metal electrode and oxide layer in resistive random access memory.

  16. EFFECT OF MOLECULAR OXYGEN ON THE ACTIVATED CARBON ADSORPTION OF NATURAL ORGANIC MATTER IN OHIO RIVER WATER

    EPA Science Inventory

    Recently published data show that the adsorptive capacity of granular activated carbon for phenois increases significantly in the presence of molecular oxygen (Vidic, Suidan,Traegner and Nakhla, 1990). in this study, the effect of molecular oxygen on the adsorptive capacity of a...

  17. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon: effect of surface charge and interactions.

    PubMed

    Hnatukova, Petra; Kopecka, Ivana; Pivokonsky, Martin

    2011-05-01

    In this research, the adsorption of two herbicides, alachlor (ALA) and terbuthylazine (TBA), on granular activated carbon (GAC) in the presence of well-characterized peptide fraction of cellular organic matter (COM) produced by cyanobacterium Microcystis aeruginosa was studied. Two commercially available GACs were characterized using nitrogen gas adsorption and surface charge titrations. The COM peptides of molecular weight (MW) < 10 kDa were isolated and characterized using MW fractionation technique and high-performance size exclusion chromatography (HPSEC). The effect of surface charge on the adsorption of COM peptides was studied by means of equilibrium adsorption experiments at pH 5 and pH 8.5. Electrostatic interactions and hydrogen bonding proved to be important mechanisms of COM peptides adsorption. The adsorption of ALA and TBA on granular activated carbon preloaded with COM peptides was influenced by solution pH. The reduction in adsorption was significantly greater at pH 5 compared to pH 8.5, which corresponded to the increased adsorption of COM peptides at pH 5. The majority of the competition between COM peptides and both herbicides was attributed to low molecular weight COM peptides with MW of 700, 900, 1300 and 1700 Da. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effects of activated carbon surface chemistry and pore structure on the adsorption of trace organic contaminants from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Lei

    The objectives were (1) to identify activated pore structure and surface chemistry characteristics that assure the effective removal of trace organic contaminants from aqueous-solution, and (2) to develop a procedure to predict the adsorption capacity of activated carbons from fundamental adsorbent and adsorbate properties. A matrix of activated carbon fibers (ACFs) (with three activation levels and four surface chemistry levels) and three commercially available granular activated carbons (GACs) served as the adsorbents. BET surface area, pore size distribution, elemental composition, point of zero charge and infrared spectroscopy data were obtained to characterize the adsorbents. The adsorption of relative hydrophilic methyl tertiary-butyl ether (MTBE) and relative hydrophobic trichloroethene (TCE) were conducted in both ultrapure water and Sacramento-San Joaquin Delta water. The results showed that an effective adsorbent for the removal of micropollutants from water requires (1) a large volume of micropores with widths that are about 1.5 times larger than the kinetic diameter of the target adsorbate, (2) a micropore size distribution that extends to widths that are approximately twice the kinetic diameter of the target adsorbate to prevent pore blockage by NOM, and (3) a hydrophobic pore surface chemistry with the sum of oxygen and nitrogen contents less than 2 to 3 mmol/g. A procedure based on the Polanyi Potential Theory (PPT) was developed to predict the adsorption capacities of activated carbons from fundamental adsorbent and adsorbate properties. A correlation between the coalescing factor for water adsorption and adsorbent oxygen content was developed. Based on this correlation, the PPT yielded reasonable estimates of aqueous phase adsorption capacities for both relatively polar and non-polar adsorbates on both relatively hydrophobic and hydrophilic activated carbons. With the developed procedure, the adsorption capacities of organic compounds that are

  19. Adsorption performance of coconut shell activated carbon for the removal of chlorate from chlor-alkali brine stream.

    PubMed

    Lakshmanan, Shyam; Murugesan, Thanapalan

    2016-12-01

    Activated carbon from coconut shell was used to investigate the adsorption of chlorate from a chlor-alkali plant's brine stream. The effect of pH, flowrate, chlorate and chloride concentration on the breakthrough curves were studied in small-scale column trials. The results obtained show enhanced adsorption at low flowrates, higher chlorate concentrations, and at a pH of 10. These studies show that introducing an activated carbon adsorption column just before the saturator would remove sufficient quantities of chlorate to allow more of the chlor-alkali plant's brine stream to be reused. From column dynamic studies, the Thomas model showed close approximation when the chlorate in the effluent was higher than breakthrough concentrations and there was close correlation at high influent concentration. The q o (maximum adsorption capacity) values were close to those obtained experimentally, indicating close representation of the breakthrough curve by the Thomas model.

  20. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole.

    PubMed

    Chang, E-E; Wan, Jan-Chi; Kim, Hyunook; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K(ow). The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K(ow) was replaced by the one with larger K(ow). Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores.

  1. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole

    PubMed Central

    Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K ow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K ow was replaced by the one with larger K ow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989

  2. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.

    PubMed

    Chen, Tao; Yan, Chunjie; Wang, Yixia; Tang, Conghai; Zhou, Sen; Zhao, Yuan; Ma, Rui; Duan, Ping

    2015-01-01

    This work aims to investigate the adsorption of Ce(III) onto chelating resin based on activated carbon (CRAC). The CRAC adsorbent was prepared from activated carbon (AC) followed by oxidation, silane coupling, ammoniation and phosphorylation, and characterized by Fourier transform-infrared spectrometry, nitrogen adsorption measurements and scanning electron microscopy. The effects of solution pH, adsorbent dosage and contact time were studied by batch technique. Langmuir and Freundlich isotherms were used to describe the adsorption behaviour of Ce(III) by CRAC, and the results showed that the adsorption behaviour well fitted the Langmuir model. The maximum uptake capacity (qmax) calculated by using the Langmuir equation for cerium ions was found to be 94.34 mg/g. A comparison of the kinetic models and the overall experimental data was best fitted with the type 1 pseudo second-order kinetic model. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the adsorption for Ce(III) was feasible, spontaneous and exothermic at 25-45 °C. The CRAC showed an excellent adsorptive selectivity towards Ce(III). Moreover, more than 82% of Ce(III) adsorbed onto CRAC could be desorbed with HCl and could be used several times.

  3. Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review.

    PubMed

    Ahmed, Muthanna J

    2017-04-01

    Pharmaceutical pollutants are of significant effect on the environment, so that their treatments have been addressed in many studies. Activated carbon (AC) adsorbent shows best attraction for these compounds due to its unique characteristics represented by high capacity and porosity. In this article, the adsorption performance of AC towards non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, ketoprofen, naproxen, and diclofenac were reviewed. According to collected data, maximum adsorption capacities of 417, 25, 290, and 372 mg/g were obtained from Langmuir isotherm for these drugs, respectively. The values of 1/n for Freundlich isotherm were lower than unity for all studied drugs, confirming the nonlinear and favorable adsorption. In addition, kinetics data were well represented by the pseudo-second-order model and mechanism was not controlled by the pore diffusion step alone. AC adsorption demonstrated superior performance for all selected NSAIDs, thus being efficient technology for treatment of these pharmaceutical pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    PubMed

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  5. Modeling of Cd adsorption to goethite-bacteria composites

    DOE PAGES

    Qu, Chenchen; Ma, Mingkai; Chen, Wenli; ...

    2017-11-21

    The accurate modeling of heavy metal adsorption in complex systems is fundamental for risk assessments in soils and associated environments. Bacteria-iron (hydr)oxide associations in soils and sediments play a critical role in heavy metal immobilization. The reduced adsorption of heavy metals on these composites have been widely reported using the component additivity (CA) method. However, there is a lack of a mechanism model to account for these deviations. In this study, we established models for Cd adsorption on goethite-Pseudomonas putida composites at 1:1 and 5:1 mass ratios. Cadmium adsorption on the 5:1 composite was consistent with the additivity method. But,more » the CA method over predicted Cd adsorption by approximately 8% on the 1:1 composite at high Cd concentration. The deviation was corrected by adding the site blockage reactions between P. putida and goethite. Both CA and “CA-site masking” models for Cd adsorption onto the composites were in line with the ITC data. These results indicate that CA method in simulating Cd adsorption on bacteria-iron oxides composites is limited to low bacterial and Cd concentrations. Thus the interfacial complexation reactions that occur between iron (hydr)oxides and bacteria should be taken into account when high concentrations of bacteria and heavy metals are present.« less

  6. Modeling of Cd adsorption to goethite-bacteria composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Chenchen; Ma, Mingkai; Chen, Wenli

    The accurate modeling of heavy metal adsorption in complex systems is fundamental for risk assessments in soils and associated environments. Bacteria-iron (hydr)oxide associations in soils and sediments play a critical role in heavy metal immobilization. The reduced adsorption of heavy metals on these composites have been widely reported using the component additivity (CA) method. However, there is a lack of a mechanism model to account for these deviations. In this study, we established models for Cd adsorption on goethite-Pseudomonas putida composites at 1:1 and 5:1 mass ratios. Cadmium adsorption on the 5:1 composite was consistent with the additivity method. But,more » the CA method over predicted Cd adsorption by approximately 8% on the 1:1 composite at high Cd concentration. The deviation was corrected by adding the site blockage reactions between P. putida and goethite. Both CA and “CA-site masking” models for Cd adsorption onto the composites were in line with the ITC data. These results indicate that CA method in simulating Cd adsorption on bacteria-iron oxides composites is limited to low bacterial and Cd concentrations. Thus the interfacial complexation reactions that occur between iron (hydr)oxides and bacteria should be taken into account when high concentrations of bacteria and heavy metals are present.« less

  7. Adsorption properties of AlN on Si(111) surface: A density functional study

    NASA Astrophysics Data System (ADS)

    Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting

    2018-04-01

    In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.

  8. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    PubMed

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  9. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes.

    PubMed

    Sumalinog, Divine Angela G; Capareda, Sergio C; de Luna, Mark Daniel G

    2018-03-15

    The adsorption potential and governing mechanisms of emerging contaminants, i.e. acetaminophen or acetyl-para-aminophenol (APAP) and methylene blue (MB) dye, on activated carbon derived from municipal solid waste were investigated in this work. Results showed that MB adsorption was significantly more effective, with a maximum removal of 99.9%, than APAP adsorption (%R max  = 63.7%). MB adsorption was found to be unaffected by pH change, while the adsorption capacity of APAP drastically dropped by about 89% when the pH was adjusted from pH 2 to 12. Surface reactions during APAP adsorption was dominated by both physical and chemical interactions, with the kinetic data showing good fit in both pseudo-first order (R 2  = 0.986-0.997) and pseudo-second order (R 2 >0.998) models. On the other hand, MB adsorption was best described by the pseudo-second order model, with R 2 >0.981, denoting that chemisorption controlled the process. Electrostatic attractions and chemical reactions with oxygenated surface functional groups (i.e., -OH and -COOH) govern the adsorption of APAP and MB on the activated biochar. Thermodynamic study showed that APAP and MB adsorption were endothermic with positive ΔH° values of 16.5 and 74.7 kJ mol -1 , respectively. Negative ΔG° values obtained for APAP (-3.7 to -5.1 kJ mol -1 ) and MB (-11.4 to -17.1 kJ mol -1 ) implied that the adsorption onto the activated biochar was spontaneous and feasible. Overall, the study demonstrates the effectiveness of activated biochar from municipal solid wastes as alternative adsorbent for the removal of acetaminophen and methylene blue dye from contaminated waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures.

    PubMed

    Park, J H; Ok, Y S; Kim, S H; Cho, J S; Heo, J S; Delaune, R D; Seo, D C

    2015-12-01

    The phosphorus (P) adsorption characteristic of sesame straw biochar prepared with different activation agents and pyrolysis temperatures was evaluated. Between 0.109 and 0.300 mg L(-1) in the form of inorganic phosphate was released from raw sesame straw biochar in the first 1 h. The release of phosphate was significantly enhanced from 62.6 to 168.2 mg g(-1) as the pyrolysis temperature increased. Therefore, sesame straw biochar cannot be used as an adsorbent for P removal without change in the physicochemical characteristics. To increase the P adsorption of biochar in aqueous solution, various activation agents and pyrolysis temperatures were applied. The amount of P adsorbed from aqueous solution by biochar activated using different activation agents appeared in the order ZnCl2 (9.675 mg g(-1)) > MgO (8.669 mg g(-1)) ⋙ 0.1N-HCl > 0.1N-H2SO4 > K2SO4 ≥ KOH ≥ 0.1N-H3PO4, showing ZnCl2 to be the optimum activation agent. Higher P was adsorbed by the biochar activated using ZnCl2 under different pyrolysis temperatures in the order 600 °C > 500 °C > 400 °C > 300 °C. Finally, the amount of adsorbed P by activated biochar at different ratios of biochar to ZnCl2 appeared in the order 1:3 ≒ 1:1 > 3:1. As a result, the optimum ratio of biochar to ZnCl2 and pyrolysis temperature were found to be 1:1 and 600 °C for P adsorption, respectively. The maximum P adsorption capacity by activated biochar using ZnCl2 (15,460 mg kg(-1)) was higher than that of typical biochar, as determined by the Langmuir adsorption isotherm. Therefore, the ZnCl2 activation of sesame straw biochar was suitable for the preparation of activated biochar for P adsorption.

  11. ADSORPTION AND DISSOCIATION OF O2 ON Ti3Al (0001) STUDIED BY FIRST-PRINCIPLES

    NASA Astrophysics Data System (ADS)

    Wei, Li-Jing; Guo, Jian-Xin; Dai, Xiu-Hong; Wang, Ying-Long; Liu, Bao-Ting

    2015-05-01

    The adsorption and dissociation of oxygen molecule on Ti3Al (0001) surface have been investigated by density functional theory (DFT) with the generalized gradient approximation (GGA). All possible adsorption sites including nine vertical and fifteen parallel sites of O2 are considered on Ti3Al (0001) surface. It is found that all oxygen molecules dissociate except for three vertical adsorption sites after structure optimization. This indicates that oxygen molecules prefer to dissociate on the junction site between Ti and Al atoms. Oxygen atoms coming from dissociation of oxygen molecule tend to occupy the most stable adsorption sites of the Ti3Al (0001) surface. The distance of O-O is related to the surface dissociation distance of Ti3Al (0001) surface. The valence electron localization function (ELF) and projected density of states (DOS) show that the bonds of O-O are breakaway at parallel adsorption end structures.

  12. Adsorptive performance of coal-based magnetic activated carbon for cyclic volatile methylsiloxanes from landfill leachate.

    PubMed

    Zhang, Chunhui; Jiang, Shan; Zhang, Wenwen

    2018-02-01

    Bituminous coal-based magnetic activated carbon (MAC) was prepared, characterized, and used successfully for removal of cyclic volatile methylsiloxanes (cVMSs) from treated landfill leachate. Batch adsorption studies were performed at different adsorption dosages and contact times. With adsorptive dosage of 0.75 g/L and contact time of 60 min, the removal efficiencies achieved by MAC for octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) are 100, 82.8, and 71.4%, respectively. The specific magnetization coefficients of MAC before and after adsorption are 4.6 × 10 -7 and 5.2 × 10 -7  m 3 /kg, between 1.26 × 10 -7 and 3.8 × 10 -5  m 3 /kg, which suggests that MAC can be recycled by the high-intensity magnetic separators.

  13. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    PubMed

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

    USGS Publications Warehouse

    Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.

    1993-01-01

    The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at

  15. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  16. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes.

    PubMed

    Auta, M; Hameed, B H

    2013-05-01

    A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had <20% adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Hesabi, Maryam; Behjatmanesh-Ardakani, Reza

    2018-01-01

    Nowadays, an important process applied in the design of novel composite materials and drug delivery fields is the carboxylation of carbon nanotubes. In this work, we study the interaction of the anti-cancer drug hydroxyurea with carboxyl-functionalized zigzag carbon nanotubes (CNTs) by employing the method of the density functional theory (DFT) at B3LYP and CAM-B3LYP levels in gas and solvent phases. The results show that all complexes are energetically favorable, especially in the aqueous phase. The enthalpy energy values are negative in all cases, which indicate their exothermic adsorption nature. The presence of sbnd COOH groups would create enough free space on the nanotube surface for the adsorption between interacting atoms. Thus, these can increase the activity of CNTs. Data indicates that adsorption is dependent on the carboxyl sites of the nanotube as well as on the sites of the drug. Furthermore, the hydrogen-bonding interactions between drug and sbnd COOH-CNTs play an important role for the different kinds of adsorption observed.

  18. Enhanced removal of azo dye using modified PAN nanofibrous membrane Fe complexes with adsorption/visible-driven photocatalysis bifunctional roles

    NASA Astrophysics Data System (ADS)

    Li, Fu; Dong, Yongchun; Kang, Weimin; Cheng, Bowen; Cui, Guixin

    2017-05-01

    A series of polyacrylonitrile (PAN) nanofibrous membrane Fe complexes as the Fenton heterogeneous catalysts were fabricated through surface modification with different ratio of hydrazine hydrate (HH) and hydroxylamine (HA) and subsequent coordination with Fe3+ ions for the synergistic removal of a typical azo dye, Reactive Red 195 (RR 195) via adsorption and visible-driven photocatalytic oxidation. Effect of molar ratio of HH and HA on surface structure characteristics of the resulting complexes were examined. Their adsorptive or photocatalytic activity was also compared by changing molar ratio of HH and HA. The results indicated that three PAN nanofibrous membrane Fe complexes prepared with simultaneous modification of HA and HH exhibited much higher adsorption and visible photocatalytic activities than the complex modified solely with HA or HH due to their distinctive surface structures containing more active sites. Their adsorption and visible photocatalytic kinetics of RR 195 followed pseudo-second-order model equation. Their high photocatalytic rate constant and large amount of dye adsorption were regarded as the main reasons for better dye removal efficiency and durability in cyclic reuse by means of the synergistic adsorption-photocatalysis process.

  19. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    PubMed

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    NASA Astrophysics Data System (ADS)

    Askalany, Ahmed A.; Saha, Bidyut B.

    2017-01-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  1. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  2. A unifying model for adsorption and nucleation of vapors on solid surfaces.

    PubMed

    Laaksonen, Ari

    2015-04-23

    Vapor interaction with solid surfaces is traditionally described with adsorption isotherms in the undersaturated regime and with heterogeneous nucleation theory in the supersaturated regime. A class of adsorption isotherms is based on the idea of vapor molecule clustering around so-called active sites. However, as the isotherms do not account for the surface curvature effects of the clusters, they predict an infinitely thick adsorption layer at saturation and do not recognize the existence of the supersaturated regime. The classical heterogeneous nucleation theory also builds on the idea of cluster formation, but describes the interactions between the surface and the cluster with a single parameter, the contact angle, which provides limited information compared with adsorption isotherms. Here, a new model of vapor adsorption on nonporous solid surfaces is derived. The basic assumption is that adsorption proceeds via formation of molecular clusters, modeled as liquid caps. The equilibrium of the individual clusters with the vapor phase is described with the Frenkel-Halsey-Hill (FHH) adsorption theory modified with the Kelvin equation that corrects for the curvature effect on vapor pressure. The new model extends the FHH adsorption isotherm to be applicable both at submonolayer surface coverages and at supersaturated conditions. It shows good agreement with experimental adsorption data from 12 different adsorbent-adsorbate systems. The model predictions are also compared against heterogeneous nucleation data, and they show much better agreement than predictions of the classical heterogeneous nucleation theory.

  3. Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15

    NASA Astrophysics Data System (ADS)

    Xu, Yun-qiang; Zhou, Guo-wei; Wu, Cui-cui; Li, Tian-duo; Song, Hong-bin

    2011-05-01

    Ordered mesoporous SBA-15 was prepared by hydrothermal process and was functionalized with(3-aminopropyl) triethoxysilane (APTES) by post-synthesis-grafting method. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS), small-angle X-ray powder diffraction (SAXRD), N 2 adsorption-desorption and Fourier transform infrared spectroscopy (FT-IR). The results indicated that SBA-15 had a 2-dimensional hexagonal p6 mm mesoscopic structure and the mesoscopic structure was remained after the functionalization procedure. The activities of porcine pancreatic lipase (PPL) immobilized in SBA-15 by physical adsorption and in APTES functionalized SBA-15 by chemical adsorption were studied by hydrolysis of triacetin. Chemically adsorbed PPL showed higher loading amount and catalytic activity comparing with physically adsorbed PPL. The stability of immobilized PPL against thermal and pH of reaction medium was significantly improved. Recycling experiments showed that chemically adsorbed PPL exhibited better reusability than physically adsorbed PPL.

  4. Concentration-Dependent Multiple Binding Sites on Saliva-Treated Hydroxyapatite for Streptococcus sanguis

    PubMed Central

    Gibbons, R. J.; Moreno, E. C.; Etherden, I.

    1983-01-01

    activity when low numbers of streptococci were used, but the magnitude of this difference was considerably less when high streptococcal concentrations were employed. This suggests an association between salivary components which possess bacterial-aggregating activity and bacterial adsorption to high-affinity specific binding sites on saliva-treated hydroxyapatite surfaces. PMID:6822416

  5. Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: kinetic, equilibrium and thermodynamic characterization.

    PubMed

    Onal, Y; Akmil-Başar, C; Sarici-Ozdemir, C

    2007-09-30

    In this study, activated carbon (WA11Zn5) was prepared from waste apricot, which is waste in apricot plants in Malatya, by chemical activation with ZnCl(2). BET surface area of activated carbon is determined as 1060 m(2)/g. The ability of WA11Zn5, to remove naproxen sodium from effluent solutions by adsorption has been studied. Equilibrium isotherms for the adsorption of naproxen sodium on activated carbon were measured experimentally. Results were analyzed by the Langmiur, Freundlich equation using linearized correlation coefficient at 298 K. The characteristic parameters for each isotherm have been determined. Langmiur equation is found to best represent the equilibrium data for naproxen sodium-WA11Zn5 systems. The monolayer adsorption capacity of WA11Zn5 for naproxen sodium was found to be 106.38 mg/g at 298 K. The process was favorable and spontaneous. The kinetics of adsorption of naproxen sodium have been discussed using three kinetic models, i.e., the pseudo first-order model, the pseudo second-order model, the intraparticle diffusion model. Kinetic parameters and correlation coefficients were determined. It was shown that the pseudo second-order kinetic equation could describe the adsorption kinetics for naproxen sodium onto WA11Zn5. The thermodynamic parameters, such as DeltaG degrees , DeltaS degrees and DeltaH degrees, were calculated. The thermodynamics of naproxen sodium-WA11Zn5 system indicates endothermic process.

  6. Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.

    PubMed

    Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing

    2018-05-15

    The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.

  7. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    PubMed

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

  8. Surface restructuring of red mud to produce FeO x (OH) y sites and mesopores for the efficient complexation/adsorption of β-lactam antibiotics.

    PubMed

    Pinto, Paula S; Lanza, Giovani D; Souza, Mayra N; Ardisson, José D; Lago, Rochel M

    2018-03-01

    In this work, iron oxide in the red mud (RM) waste was restructured to produce mesopores with surface [FeO x (OH) y ] sites for the efficient complexation/adsorption of β-lactam antibiotics. Red mud composed mainly by hematite was restructured by an acid/base process followed by a thermal treatment at 150-450 °C (MRM150, MRM200, MRM300, and MRM450) and fully characterized by Mössbauer, XRD, FTIR, BET, SEM, CHN, and thermogravimetric analyses. The characterization data showed a highly dispersed Fe 3+ oxyhydroxy phase, which was thermally dehydrated to a mesoporous α-Fe 2 O 3 with surface areas in the range of 141-206 m 2  g -1 . These materials showed high efficiencies (21-29 mg g -1 ) for the adsorption of β-lactam antibiotics, amoxicillin, cephalexin, and ceftriaxone, and the data was better fitted by the Langmuir model isotherm (R 2  = 0.9993) with monolayer adsorption capacity of ca. 39 mg g -1 for amoxicillin. Experiments such as competitive adsorption in the presence of phosphate and H 2 O 2 decomposition suggested that the β-lactamic antibiotics might be interacting with surface [FeO x (OH) y ] species by a complexation process. Moreover, the OH/Fe ratio, BET surface area and porosity indicated that this complexation is occurring especially on [FeO x (OH) y ] surf sites contained in the mesopore space.

  9. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  10. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons.

    PubMed

    Blanco-Martínez, D A; Giraldo, L; Moreno-Piraján, J C

    2009-09-30

    An activated carbon Carbochem--PS230 was modified by chemical and thermal treatment in flow of H(2) in order to evaluate the influence of the activated carbon chemical surface in the adsorption of the monohydroxylated phenols. The solid-solution interaction was determined by analyzing the adsorption isotherms at 298 K at pH 7, 9 and 11 during 48 h. The adsorption capacity of activated carbons increases when the pH solution decreases. The amount adsorbed increases in the reduced carbon at the maximum adsorption pH and decreases in the oxidized carbon. In the sample of granulated activated carbon, CAG, the monohydroxylated phenols adsorption capacity diminishes in the following order catechol >hydroquinone >resorcinol, at the three pH values. The experimental data are evaluated with Freundlich's and Langmuir's models. The immersion enthalpies are determined and increase with the retained amount, ranging between 21.5 and 45.7 J g(-1). In addition, the immersion enthalpies show more interaction with the reduced activated carbon that has lower total acidity contents.

  11. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    PubMed

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.

    PubMed

    Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B

    2005-06-01

    This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.

  13. NH3 adsorption on anatase-TiO2(101)

    NASA Astrophysics Data System (ADS)

    Koust, Stig; Adamsen, Kræn C.; Kolsbjerg, Esben Leonhard; Li, Zheshen; Hammer, Bjørk; Wendt, Stefan; Lauritsen, Jeppe V.

    2018-03-01

    The adsorption of ammonia on anatase TiO2 is of fundamental importance for several catalytic applications of TiO2 and for probing acid-base interactions. Utilizing high-resolution scanning tunneling microscopy (STM), synchrotron X-ray photoelectron spectroscopy, temperature-programmed desorption (TPD), and density functional theory (DFT), we identify the adsorption mode and quantify the adsorption strength on the anatase TiO2(101) surface. It was found that ammonia adsorbs non-dissociatively as NH3 on regular five-fold coordinated titanium surface sites (5f-Ti) with an estimated exothermic adsorption energy of 1.2 eV for an isolated ammonia molecule. For higher adsorbate coverages, the adsorption energy progressively shifts to smaller values, due to repulsive intermolecular interactions. The repulsive adsorbate-adsorbate interactions are quantified using DFT and autocorrelation analysis of STM images, which both showed a repulsive energy of ˜50 meV for nearest neighbor sites and a lowering in binding energy for an ammonia molecule in a full monolayer of 0.28 eV, which is in agreement with TPD spectra.

  14. Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste.

    PubMed

    Nayl, Abd ElAziz A; Elkhashab, Reda A; El Malah, Tamer; Yakout, Sobhy M; El-Khateeb, Mohamed A; Ali, Mahmoud M S; Ali, Hazim M

    2017-10-01

    In this work, the adsorption of chemical oxygen demand (COD) and biological oxygen demand (BOD) from treated sewage with low-cost activated carbon prepared from date palm shell waste by chemical activation method was studied. Different parameters affecting the adsorption process such as carbon dose, pH, contact time, agitation rate, and temperature were studied. Adsorption equilibrium was attained after 150 min at pH 6.0 with agitation rate of 400 rpm at 25 °C. The results showed that COD removal percentage of 95.4 and 92.8% for BOD was obtained with carbon dosage of 0.1 g/100 ml of solution. The experimental batch equilibrium results follow linear, Langmuir, and Freundlich isotherm models. The experimental data was fitted to a pseudo-second-order kinetics model controlled by pore diffusion. Thermodynamic parameter values of ΔH 0 , ΔG 0 , and ΔS 0 were calculated. The obtained data indicated that the adsorption was spontaneous, endothermic nature and reflects an increased randomness and degree of disorderliness at the activated carbon/sewage interface during the adsorption process investigated in this study. Concentrations of different impurities were reduced to very small value by investigated adsorption process.

  15. Adsorption of steroid micropollutants on polymer-based spherical activated carbon (PBSAC).

    PubMed

    Tagliavini, Matteo; Engel, Fabio; Weidler, Peter Georg; Scherer, Torsten; Schäfer, Andrea Iris

    2017-09-05

    Removal and interaction mechanisms of four different steroid micropollutants, estrone (E1), estradiol (E2), progesterone (P) and testosterone (T) were determined for different types of polymer-based spherical activated carbon (PBSAC). Higher than 90% removal and significantly faster kinetics compared to conventional granular activated carbon (GAC) were observed, while performance was comparable with powdered activated carbon (PAC). No influence of pH in the range 2-12 was determined, while the presence of humic acid (HA) reduced both the removal and the kinetic by up to 20%. PBSAC was characterized in terms of morphology and material properties. The low oxygen content was identified as the main cause for the high performance observed. This was attributed to the enhancement of the hydrophobic effect between PBSAC and hormones and the reduced interactions between PBSAC and water. The ratio of micropollutant size (∼0.8nm) and average pore size (1-2nm) proved ideal for both micropollutant adsorption and HA exclusion. The homogenous size, spherical shape and surface smoothness of PBSAC did not influence adsorption negatively and make PBSAC a very promising sorbent for a vast range of applications, in particular for the removal of micropollutants in water treatment applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Preparation and evaluation of molecularly imprinted polymer for selective recognition and adsorption of gossypol.

    PubMed

    Zhi, Keke; Wang, Lulu; Zhang, Yagang; Zhang, Xuemin; Zhang, Letao; Liu, Li; Yao, Jun; Xiang, Wei

    2018-03-01

    Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol. Copyright © 2017 John Wiley & Sons, Ltd.

  17. A structural study of the K adsorption site on a Si(001)2 × 1 surface: Dimer, caves or both

    NASA Astrophysics Data System (ADS)

    Asensio, M. C.; Michel, E. G.; Alvarez, J.; Ocal, C.; Miranda, R.; Ferrer, S.

    1989-04-01

    The atomic structure of the clean Si(100) and K covered surfaces has been investigated by Auger electron diffraction (AED) monitoring the intensities along polar scans. This technique is sensitive to the asymmetric-dimer nature of the 2 × 1 reconstruction of the Si(001) surface. Data taken at room temperature for submonolayer coverages are consistent with adsorption of K on the troughs (cave position) existing between two consecutive dimer chains along the [110] direction. At 110 K both dimer and cave sites are occupied. A mild annealing to 300 K produces an overlayer redistribution in favor of the "cave" site further indicating that this site is energetically favoured as found in some recent calculations.

  18. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    PubMed Central

    Hur, Jin; Shin, Jaewon; Yoo, Jeseung; Seo, Young-Soo

    2015-01-01

    Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II) > Cu(II) > Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation. PMID:25861683

  19. Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites.

    PubMed

    Rui, Jingwei; Liu, Fei; Wang, Rijie; Lu, Yanfei; Yang, Xiaoxia

    2017-02-17

    A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO₃)₂, Zn(Ac)₂ and ZnSO₄. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac)₂-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents' characterization results, the higher adsorption capacity of Zn(Ac)₂-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP) solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac)₂-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.

  20. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste.

    PubMed

    Namasivayam, C; Sangeetha, D

    2005-09-01

    The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 16.2 mg g(-1) of the adsorbent. The per cent adsorption was maximum in the pH range 3.0-7.0. pH effect and desorption studies showed that ion exchange and chemisorption mechanism are involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. The negative values of DeltaH0 confirm the exothermic nature of adsorption. Effects of foreign ions on the adsorption of thiocyanate have been investigated. Removal of thiocyanate from ground water was also tested.

  1. Metal adsorption on monolayer blue phosphorene: A first principles study

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Son, Jicheol; Hong, Jisang

    2018-01-01

    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  2. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    PubMed

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  3. Nanoscale zerovalent iron (nZVI) supported by natural and acid-activated sepiolites: the effect of the nZVI/support ratio on the composite properties and Cd2+ adsorption.

    PubMed

    Habish, Amal Juma; Lazarević, Slavica; Janković-Častvan, Ivona; Jokić, Bojan; Kovač, Janez; Rogan, Jelena; Janaćković, Đorđe; Petrović, Rada

    2017-01-01

    Natural (SEP) and partially acid-activated (AAS) sepiolites were used to prepare composites with nanoscale zerovalent iron (nZVI) at different (SEP or AAS)/nZVI ratios in order to achieve the best nZVI dispersibility and the highest adsorption capacity for Cd 2+ . Despite the higher surface area and pore volume of AAS, better nZVI dispersibility was achieved by using SEP as the support. On the other hand, a lower oxidation degree was achieved during the synthesis using AAS. X-ray photoelectron spectroscopy (XPS) analysis of the composite with the best nZVI dispersibility, before and after Cd 2+ adsorption, confirmed that the surface of the nZVI was composed of oxidized iron species. Metallic iron was not present on the surface, but it was detected in the subsurface region after sputtering. The content of zerovalent iron decreased after Cd 2+ adsorption as a result of iron oxidation during Cd 2+ adsorption. The XPS depth profile showed that cadmium was present not only at the surface of the composite but also in the subsurface region. The adsorption isotherms for Cd 2+ confirmed that the presence of SEP and AAS decreased the agglomeration of the nZVI particles in comparison to the pure nZVI, which provided a higher adsorption capacity. The results showed that the prevention of both aggregation and oxidation during the synthesis was necessary for obtaining an SEP/AAS-nZVI composite with a high adsorption capacity, but oxidation during adsorption was beneficial for Cd 2+ removal. The formation of strong bonds between Cd 2+ and the adsorbents sites of different energy until monolayer formation was proposed according to modeling of the adsorption isotherms.

  4. The influence of CO adsorption on the surface composition of cobalt/palladium alloys

    NASA Astrophysics Data System (ADS)

    Murdoch, A.; Trant, A. G.; Gustafson, J.; Jones, T. E.; Noakes, T. C. Q.; Bailey, P.; Baddeley, C. J.

    2016-04-01

    Segregation induced by the adsorption of gas phase species can strongly influence the composition of bimetallic surfaces and can therefore play an important role in influencing heterogeneous catalytic reactions. The addition of palladium to cobalt catalysts has been shown to promote Fischer Tropsch catalysis. We investigate the adsorption of CO onto bimetallic CoPd surfaces on Pd{111} using a combination of reflection absorption infrared spectroscopy and medium energy ion scattering. The vibrational frequency of adsorbed CO provides crucial information on the adsorption sites adopted by CO and medium energy ion scattering probes the surface composition before and after CO exposure. We show that cobalt segregation is induced by CO adsorption and rationalise these observations in terms of the strength of adsorption of CO in various surface adsorption sites.

  5. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  6. Quantum chemical study of arsenic (III, V) adsorption on Mn-oxides: implications for arsenic(III) oxidation.

    PubMed

    Zhu, Mengqiang; Paul, Kristian W; Kubicki, James D; Sparks, Donald L

    2009-09-01

    Density functional theory (DFT) calculations were used to investigate As(V) and As(III) surface complex structures and reaction energies on both Mn(III) and Mn(IV) sites in an attempt to better understand As(III) oxidation bybirnessite, a layered Mn-dioxide mineral. Edge-sharing dioctahedral Mn(III) and Mn(IV) clusters with different combinations of surface functional groups (>MnOH and >MnOH2) were employed to mimic pH variability. Results show that As(V) adsorption was more thermodynamically favorable than As(III) adsorption on both Mn(III) and Mn(IV) surface sites under simulated acidic pH conditions. Therefore, we propose that As(V) adsorption inhibits As(III) oxidation by blocking adsorption sites. Under simulated acidic pH conditions, Mn(IV) sites exhibited stronger adsorption affinity than Mn(III) sites for both As(III) and As(V). Overall, we hypothesize that Mn(III) sites are less reactive in terms of As(III) oxidation due to their lower affinity for As(III) adsorption, higher potential to be blocked by As(V) complexes, and slower electron transfer rates with adsorbed As(III). Results from this study offer an explanation regarding the experimental observations of Mn(III) accumulation on birnessite and the long residence time of As(III) adsorption complexes on manganite (r-MnOOH) during As(III) oxidation.

  7. Application of surface complexation models to anion adsorption by natural materials.

    PubMed

    Goldberg, Sabine

    2014-10-01

    Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.

  8. Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-11-01

    In this study, the adsorption mechanism of Cs/NF3 on the [001]-oriented GaN nanowire surface is investigated by using the density function theory based on first-principles. In the Cs/NF3 co-activation process, the system is inclined to form NF3-in structure. Through the calculation results of adsorption energy, NF3 molecule adsorption tends to take an orientation with F atoms on top and the most favorable adsorption site is BGa-N. The NF3 activation process can further cut down the work function of the Cs-covered nanowire surface only when Cs coverage is 0.75 ML and 1 ML, which can be explained by the double dipole moment theory. With increasing Cs coverage, the valence band and conduction band both shift to lower energy side, contributing to the appearance of a downward band bending region and promoting the escape of surface photoelectrons. After NF3 molecule adsorption, the peak of total density of states near Fermi level increase due to the orbital hybridization between NF3-2s, Cs-5s states and N-2p states, which strengthen the conductivity of the nanowire surface and leads to the metallic properties. All these calculations may direct the Cs/NF3 activation process of GaN nanowire optoelectronic devices.

  9. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  10. Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.

    PubMed

    Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan

    2015-10-07

    In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.

  11. Entrapped Single Tungstate Site in Zeolite for Cooperative Catalysis of Olefin Metathesis with Brønsted Acid Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Pu; Ye, Lin; Sun, Zhenyu

    Industrial olefin metathesis catalysts generally suffer from low reaction rates and require harsh reaction conditions for moderate activities. This is due to their inability to prevent metathesis active sites (MAS) from aggregation and their intrinsic poor adsorption and activation of olefin molecules. Here, isolated tungstate species as single molecular MAS is immobilized inside zeolite pores by Bronsted acid sites (BAS) on the inner surface. It is demonstrated for the first time that unoccupied BAS in atomic proximity to MAS enhance olefin adsorption and greatly facilitate the formation of metallocycle intermediates in a stereospecific manner. Thus, effective cooperative catalysis takes placemore » over the BAS-MAS pair. In consequence, for the cross-metathesis of ethene and trans-2-butene to propene, under the same mild reaction conditions, the propene production rate over WOx/USY is ca. 7,300 times that over the industrial WO3/SiO2 based catalyst. A propene yield up to 79% (80% selectivity) without observable deactivation was obtained over WOx/USY for a wide range of reaction conditions.« less

  12. Adsorption-desorption mediated separation of low concentrated D2O from water with hydrophobic activated carbon fiber.

    PubMed

    Ono, Yuji; Futamura, Ryusuke; Hattori, Yoshiyuki; Sakai, Toshio; Kaneko, Katsumi

    2017-12-15

    The adsorption and desorption of D 2 O on hydrophobic activated carbon fiber (ACF) occurs at a smaller pressure than the adsorption and desorption of H 2 O. The behavior of the critical desorption pressure difference between D 2 O and H 2 O in the pressure range of 1.25-1.80kPa is applied to separate low concentrated D 2 O from water using the hydrophobic ACF, because the desorption branches of D 2 O and H 2 O drop almost vertically. The deuterium concentration of all desorbed water in the above pressure range is lower than that of water without adsorption-treatment on ACF. The single adsorption-desorption procedure on ACF at 1.66kPa corresponding to the maximum difference of adsorption amount between D 2 O and H 2 O reduced the deuterium concentration of desorbed water to 130.6ppm from 143.0ppm. Thus, the adsorption-desorption procedure of water on ACF is a promising separation and concentration method of low concentrated D 2 O from water. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber.

    PubMed

    Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan

    2013-08-01

    The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-Chi

    2012-06-01

    Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).

  16. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon.

    PubMed

    Li, Xiaona; Chen, Shuo; Fan, Xinfei; Quan, Xie; Tan, Feng; Zhang, Yaobin; Gao, Jinsuo

    2015-06-01

    Carbon nanofibers (CNFs) were prepared by electrospun polyacrylonitrile (PAN) polymer solutions followed by thermal treatment. For the first time, the influence of stabilization procedure on the structure properties of CNFs was explored to improve the adsorption capacity of CNFs towards the environmental pollutants from aqueous solution. The adsorption of three organic chemicals including ciprofloxacin (CIP), bisphenol (BPA) and 2-chlorophenol (2-CP) on electrospun CNFs with high surface area of 2326m(2)/g and micro/mesoporous structure characteristics were investigated. The adsorption affinities were compared with that of the commercial powder activated carbon (PAC). The adsorption kinetics and isotherms showed that the maximum adsorption capacities (qm) of CNFs towards the three pollutants are sequenced in the order of CIP>BPA>2-CP, which are 2.6-fold (CIP), 1.6-fold (BPA) and 1.1-fold (2-CP) increase respectively in comparison with that of PAC adsorption. It was assumed that the micro/mesoporous structure of CNFs, molecular size of the pollutants and the π electron interaction play important roles on the high adsorption capacity exhibited by CNFs. In addition, electrostatic interaction and hydrophobic interaction also contribute to the adsorption of CNFs. This study demonstrates that the electrospun CNFs are promising adsorbents for the removal of pollutants from aqueous solutions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Adsorption Characteristics of LaNi 5Particles

    NASA Astrophysics Data System (ADS)

    Song, M. Y.; Park, H. R.

    1997-11-01

    Nitrogen adsorption on an intermetallic compound, LaNi 5, was studied before and after activation and after hydriding-dehydriding cycling. The specific surface area of activated LaNi 5was 0.271±0.004 m 2g -1. Adsorption and desorption isotherms of activated LaNi 5were obtained. The adsorption isotherm was similar to type II among the five types of isotherms classified by S. Brunauer, L. S. Deming, W S. Deming, and E. Teller ( J. Am. Chem. Soc.62, 1723, 1940). Its hysteresis curve had the type B form among de Boer's five types of hysteresis. Desorption pore-size analyses showed that the activated LaNi 5had only a few mesopores, the diameters of which were around 20-110 Å. The average adsorption rate of the activated LaNi 5showed a first-order dependence on nitrogen pressure at 77 K.

  18. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.

    PubMed

    Jiang, Luhua; Liu, Yunguo; Liu, Shaobo; Zeng, Guangming; Hu, Xinjiang; Hu, Xi; Guo, Zhi; Tan, Xiaofei; Wang, Lele; Wu, Zhibin

    2017-06-06

    Adsorption of two estrogen contaminants (17β-estradiol and 17α-ethynyl estradiol) by graphene nanomaterials was investigated and compared to those of a multi-walled carbon nanotube (MWCNT), a single-walled carbon nanotube (SWCNT), two biochars, a powdered activated carbon (PAC), and a granular activate carbon (GAC) in ultrapure water and in the competition of natural organic matter (NOM). Graphene nanomaterials showed comparable or better adsorption ability than carbon nanotubes (CNTs), biochars (BCs), and activated carbon (ACs) under NOM preloading. The competition of NOM decreased the estrogen adsorption by all adsorbents. However, the impact of NOM on the estrogen adsorption was smaller on graphenes than CNTs, BCs, and ACs. Moreover, the hydrophobicity of estrogens also affected the uptake of estrogens. These results suggested that graphene nanomaterials could be used to removal estrogen contaminants from water as an alternative adsorbent. Nevertheless, if transferred to the environment, they would also adsorb estrogen contaminants, leading to great environmental hazards.

  19. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon.

    PubMed

    Li, Lin; Gao, Min; Liu, Junxin; Guo, Xuesong

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch. Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms. The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr. Over 85% of airborne bacteria and fungi emitted from the oxidation ditch were adsorbed within 80 hr of continuous operation mode. Most of them had a particle size of 0.65-4.7 microm. Those airborne microorganisms with small particle size were apt to be adsorbed. The SEM/EDAX, BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC. Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms. Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon. High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon. Microscopic observation was also carried out to investigate original and used adsorbents.

  20. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    NASA Astrophysics Data System (ADS)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  1. Chlorate adsorption from chlor-alkali plant brine stream.

    PubMed

    Lakshmanan, Shyam; Murugesan, Thanabalan

    2017-07-01

    Chlorates are present in the brine stream purged from chlor-alkali plants. Tests were conducted using activated carbon from coconut shell, coal or palm kernel shell to adsorb chlorate. The results show varying levels of adsorption with reduction ranging between 1.3 g/L and 1.8 g/L. This was higher than the chlorate generation rate of that plant, recorded at 1.22 g/L, indicating that chlorate can be adequately removed by adsorption using activated carbon. Coconut based activated carbon exhibited the best adsorption of chlorate of the three types of activated carbon tested. Introducing an adsorption step prior to purging of the brine will be able to reduce chlorate content in the brine stream. The best location for introducing the adsorption step was identified to be after dechlorination of the brine and before resaturation. Introduction of such an adsorption step will enable complete recovery of the brine and prevent brine purging, which in turn will result in less release of chlorides and chlorates to the environment.

  2. Comparison of hydrogen and deuterium adsorption on Pd(100).

    PubMed

    Gladys, M J; Kambali, I; Karolewski, M A; Soon, A; Stampfl, C; O'Connor, D J

    2010-01-14

    Low energy ion recoil spectroscopy is a powerful technique for the determination of adsorbate position on metal surfaces. In this study, this technique is employed to compare the adsorption sites of hydrogen and deuterium on Pd(100) by detection of either H or D recoil ions produced by Ne(+) bombardment. Comparisons of experimental and Kalypso simulated azimuthal yield distributions show that, at room temperature, both hydrogen isotopes are adsorbed in the fourfold hollow site of Pd(100), however, at different heights above the surface (H-0.20 A and D-0.25 A). The adsorbates remain in the hollow site at all temperatures up to 383 K even though they move up to 0.40-0.45 A above the surface. Density functional theory calculations show a similar coverage dependent adsorption height for both H and D and confirm a real difference between the H and D adsorption heights based on zero point energies.

  3. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases.

    PubMed

    Hu, Hongyun; Chen, Dunkui; Liu, Huan; Yang, Yuhan; Cai, Hexun; Shen, Junhao; Yao, Hong

    2017-08-01

    Arsenic emission from fuel combustion and metal smelting flue gas causes serious pollution. Addition of sorbents is a promising way for the arsenic capture from high temperature flue gas. However, it is difficult to remove arsenic from SO 2 /HCl-rich flue gas due to the competitive reaction of the sorbents with arsenic and these acid gases. To solve this problem, arsenic adsorption over γ-Al 2 O 3 was studied in this work to evaluate its adsorption mechanism, resistance to acid gases as well as regeneration behavior. The results show that γ-Al 2 O 3 had good resistance to acid gases and the arsenic adsorption by γ-Al 2 O 3 could be effectively carried out at a wide temperature range between 573 and 1023 K. Nevertheless, adsorption at higher-temperature (like 1173 K) leaded to the decrease of surface area and the rearrangement of crystal structure of γ-Al 2 O 3 , reducing the active sites for arsenic adsorption. The adsorption of arsenic was confirmed to occur at different active sites in γ-Al 2 O 3 by forming various adsorbed species. Increasing temperature facilitated arsenic transformation into more stable chemisorbed As 3+ and As 5+ which were difficult to remove through thermal treatment regeneration. Fortunately, the regeneration of spent γ-Al 2 O 3 could be well performed using NaOH solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry.

    PubMed

    Zhao, Zhiwei; Geng, Cong; Yang, Chun; Cui, Fuyi; Liang, Zhijie

    2018-06-15

    A novel flake-ball-like magnetic Fe 3 O 4 /γ-MnO 2 meso-porous nano-composite was synthesized and characterized for defluoridation. Adsorption process, characters, and effects of solution chemistry on the adsorption of flourinion in Fe 3 O 4 /γ-MnO 2 were evaluated. The results show that the adsorption of fluorinion in the Fe 3 O 4 /γ-MnO 2 nano-composite is fitted with the Pseudo-first model and the Langmuir model, indicating that the adsorption process of fluorinion in the Fe 3 O 4 /γ-MnO 2 nano-composite was a physical process and not only controlled by the film diffusion but also controlled by the intra-particle diffusion and surface adsorption. It shows that the adsorption of fluorinion sharply decrease with the increase of pH due to the negative changed surface of Fe 3 O 4 /γ-MnO 2 in water and the competition of OH - for the active points. The competition from decreases the adsorption of fluoride in the order of Cl -  < NO 3 -  < SO 4 2- , which relied on the ratio of charge towards radius (z/r) of the anions, and the negatively charged humic acid competed with fluorinion for the adsorption sites. Based on the adsorption results and the XPS analysis, the OMn bond in the raw adsorbent supported the active site (OMnOH) for fluoride adsorption by forming an OMnF bond on the surface of Fe3O4/γ-MnO2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Carbon Dioxide (CO2) Adsorption by Activated Carbon Functionalized with Deep Eutectic Solvent (DES)

    NASA Astrophysics Data System (ADS)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2017-06-01

    In recent years, carbon dioxide (CO2) emission has become a major concern as the amount of the emitted gas significantly increases annually. Consequently, this phenomenon contributes to global warming. Several CO2 capture methods, including chemical adsorption by activated carbon, have been proposed. In this study, activated carbon was prepared from sea mango (Cerbera odollam), which was functionalized with deep eutectic solvent (DES) composed of choline chloride and glycerol to increase the efficiency of CO2 capture. The samples underwent pre-carbonization and carbonization processes at 200 °C and 500 °C, respectively, with nitrogen gas and flowing several gases, namely, CO2 and steam, and then followed by impregnation with 50 phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratio. The prepared activated carbon was impregnated with DES at 1:2 precursor-to-activant ratio. The optimum CO2 adsorption capacity of the activated carbon was obtained by using CO2 gas treatment method (9.851 mgCO2/gsol), followed by the absence of gases (9.685 mgCO2/gsol), steam (9.636 mgCO2/gsol), and N2 (9.536 mgCO2/gsol).

  6. Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2013-02-01

    The adsorption of the chiral molecule lactic acid on chiral Pt surfaces is studied by density functional theory calculations. First, we study the adsorption of L-lactic acid on the flat Pt(111) surface. Using the optimed PBE - van der Waals (oPBE-vdW) functional, which includes van der Waals forces on an ab initio level, it is shown that the molecule has two binding sites, a carboxyl and the hydroxyl oxygen atoms. Since real chiral surfaces are (i) known to undergo thermal roughening that alters the distribution of kinks and step edges but not the overall chirality and (ii) kink sites and edge sites are usually the energetically most favored adsorption sites, we focus on two surfaces that allow qualitative sampling of the most probable adsorption sites. We hereby consider chiral surfaces exhibiting (111) facets, in particular, Pt(321) and Pt(643). The binding sites are either both on kink sites—which is the case for Pt(321) or on one kink site—as on Pt(643). The binding energy of the molecule on the chiral surfaces is much higher than on the Pt(111) surface. We show that the carboxyl group interacts more strongly than the hydroxyl group with the kink sites. The results indicate the possible existence of very small chiral selectivities of the order of 20 meV for the Pt(321) and Pt(643) surfaces. L-lactic acid is more stable on Pt(321)S than D-lactic acid, while the chiral selectivity is inverted on Pt(643)S. The most stable adsorption configurations of L- and D-lactic acid are similar for Pt(321) but differ for Pt(643). We explore the impact of the different adsorption geometries on the work function, which is important for field ion microscopy.

  7. A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Fornstedt, Torgny

    2016-07-29

    A fundamental investigation of the pressure effect on individual adsorption sites was undertaken based on adsorption energy distribution and adsorption isotherm measurements. For this purpose, we measured adsorption equilibrium data at pressures ranging from 100 to 1000bar at constant flow and over a wide concentration range for three low-molecular-weight solutes, antipyrine, sodium 2-naphthalenesulfonate, and benzyltriethylammonium chloride, on an Eternity C18 stationary phase. The adsorption energy distribution was bimodal for all solutes, remaining clearly so at all pressures. The bi-Langmuir model best described the adsorption in these systems and two types of adsorption sites were identified, one with a low and another with a high energy of interaction. Evidence exists that the low-energy interactions occur at the interface between the mobile and stationary phases and that the high-energy interactions occur nearer the silica surface, deeper in the C18 layer. The contribution of each type of adsorption site to the retention factor was calculated and the change in solute molar volume from the mobile to stationary phase during the adsorption process was estimated for each type of site. The change in solute molar volume was 2-4 times larger at the high-energy site, likely because of the greater loss of solute solvation layer when penetrating deeper into the C18 layer. The association equilibrium constant increased with increasing pressure while the saturation capacity of the low-energy site remained almost unchanged. The observed increase in saturation capacity for the high-energy site did not affect the column loading capacity, which was almost identical at 50- and 950-bar pressure drops over the column. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mesoporous g-C₃N₄ Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity.

    PubMed

    Li, Dong-Feng; Huang, Wei-Qing; Zou, Lan-Rong; Pan, Anlian; Huang, Gui-Fang

    2018-08-01

    Elimination of pollutants from water is one of the greatest challenges in resolving global environmental issues. Herein, we report a high-surface-area mesoporous g-C3N4 nanosheet with remarkable high adsorption capacity and photocatalytic performance, which is prepared through directly polycondensation of urea followed by a consecutive one-step thermal exfoliation strategy. This one-pot method to prepare mesoporous g-C3N4 nanosheet is facile and rapid in comparison with others. The superior adsorption capacity of the fabricated mesoporous g-C3N4 nanostructures is demonstrated by a model organic pollutant-methylene blue (MB), which is up to 72.2 mg/g, about 6 times as that of the largest value of various g-C3N4 adsorbents reported so far. Moreover, this kind of porous g-C3N4 nanosheet exhibits high photocatalytic activity to MB and phenol degradation. Particularly, the regenerated samples show excellent performance of pollutant removal after consecutive adsorption/degradation cycles. Therefore, this mesoporous g-C3N4 nanosheet may be an attractive robust metal-free material with great promise for organic pollutant elimination.

  9. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Adsorption of thiophene on transition metal surfaces with the inclusion of van der Waals effects

    NASA Astrophysics Data System (ADS)

    Malone, Walter; Matos, Jeronimo; Kara, Abdelkader

    2018-03-01

    We use density functional theory with the inclusion of the van der Waals interaction to study the adsorption of thiophene, C4H4S, on Pt, Rh, Pd, Au, and Ag (100) surfaces. The five van der Waals (vdW) inclusive functionals we employ are optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, and rPW86-vdW2. For comparison we also run calculations with the GGA- Perdew Burke and Ernzerhof (PBE) functional. We examine several adsorption sites with the plane of the molecule parallel or perpendicular to the surface. The most stable configuration on all metals was the site where the center of the thiophene lies over a 4-fold hollow site with the sulfur atom lying close to a top site. Furthermore, we examine several electronic and geometric properties of the adsorbate including charge transfer, modification of the d-band, adsorption energy, tilt angle, and adsorption height. For the coinage metals PBE gives the lowest adsorption energy. For reactive transition metal substrates, revPBE-vdW and rPW86-vdW2 give lower adsorption energies than PBE.

  11. Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution.

    PubMed

    Liu, Xitao; Yu, Gang; Han, Wenya

    2007-08-25

    The treatment of 2,4,5-trichlorobiphenyl (PCB29) in simulated soil-washing solution by granular activated carbon (GAC) adsorption and microwave (MW) regeneration was investigated in this study. The PCB29 adsorption process was carried out in a continuous flow adsorption column. After adsorption, the PCB29-loaded GAC was dried at 103 degrees C, and regenerated in a quartz reactor by 2450MHz MW irradiation at 700W for 5min. The efficacy of this procedure was analyzed by determining the rates and amounts of PCB29 adsorbed in successive adsorption/MW regeneration cycles. Effects of the regeneration on the textural properties and the PCB29 adsorption capacity of GAC were examined. It was found that after several adsorption/MW regeneration cycles, the adsorption rate of GAC increased, whereas, the adsorption capacity decreased, which could be explained according to the change of textural properties. Most of the PCB29 adsorbed on GAC was degraded within 3min under MW irradiation, and the analysis of degradation products by GC-MS demonstrated that PCB29 experienced dechlorination during this treatment.

  12. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2018-05-01

    High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.

  13. Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity.

    PubMed

    Sarda, Stéphanie; Errassifi, Farid; Marsan, Olivier; Geffre, Anne; Trumel, Catherine; Drouet, Christophe

    2016-09-01

    This work proposes to combine tranexamic acid (TAX), a clinically used antifibrinolytic agent, and hydroxyapatite (HA), widely used in bone replacement, to produce a novel bioactive apatitic biomaterial with intrinsic hemostatic properties. The aim of this study was to investigate adsorptive behavior of the TAX molecule onto HA and to point out its release in near physiological conditions. No other phase was observed by X-ray diffraction or transmission electron microscopy, and no apparent change in crystal size was detected. The presence of TAX on the powders was lightly detected on Raman spectra after adsorption. The adsorption data could be fitted with a Langmuir-Freundlich equation, suggesting a strong interaction between adsorbed molecules and the formation of multilayers. The concentration of calcium and phosphate ions in solution remained low and stable during the adsorption process, thus ion exchange during the adsorption process could be ruled out. The release of TAX was fast during the first hours and was governed by a complex process that likely involved both diffusion and dissolution of HA. Preliminary aPTT (activated partial thromboplastin time) hemostasis tests offered promising results for the development of osteoconductive apatitic biomaterials with intrinsic hemostatic properties, whether for dental or orthopedic applications. Copyright © 2016. Published by Elsevier B.V.

  14. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-03-06

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase.

  15. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.

    PubMed

    Guo, Xuejun; Wu, Zhijun; He, Mengchang; Meng, Xiaoguang; Jin, Xin; Qiu, Nan; Zhang, Jing

    2014-07-15

    Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl3, was oxidized into Sb(V) probably due to the involvement of O2 in the long duration of sample preservation. Only one Sb-Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0-1.9 attributed to bidentate mononuclear edge-sharing ((2)E) between Sb and HFO. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Adsorption and decomposition of dimethyl methylphosphonate (DMMP) on expanded graphite/metal oxides

    NASA Astrophysics Data System (ADS)

    Hung, Wei-Che; Wang, Je-Chuang; Wu, Kuo-Hui

    2018-06-01

    Composites based on expanded graphite (EG) and metal oxides (MOs) were prepared by an explosive combustion and blending method. A metal oxide (Ag2O, CuO or ZnO)-containing phase was employed as a component with reactive functionality, which was supported on EG as a component with adsorptive functionality. The physical properties of the EG/MO composites were examined using SEM and FTIR spectroscopy, the results of which indicated that the MOs were incorporated in the EG matrix after impregnation. Solid state magic angle spinning (MAS) 1H, 31P and cross polarization (CP) MAS 13C NMR studies of the EG/MO composites were performed after adsorption of dimethyl methylphosphonate (DMMP). The FTIR and NMR data showed that the initial uptake occurred through both molecular and reactive adsorption. Molecular adsorption occurred by van der Waals interaction of M(Zn, Cu, Ag)⋯Odbnd P and hydrogen-bond formation to isolated hydroxyl groups. Reactive chemisorption appeared to occur through interaction with both Lewis acid sites and active oxygen species present on the MO surface. The FTIR and NMR results exhibited a trend of reactivity towards DMMP in the order Ag2O > ZnO > CuO, which indicated stronger interaction between the Lewis acid sites and the phosphoryl O atom of DMMP for Ag2O as compared with ZnO and CuO, with concomitant formation of surface-coordinated DMMP and bridge-bonded Osbnd Psbnd O phosphorus oxide species.

  17. Effect of oxidation and catalytic reduction of trace organic contaminants on their activated carbon adsorption.

    PubMed

    Schoutteten, Klaas V K M; Hennebel, Tom; Dheere, Ellen; Bertelkamp, Cheryl; De Ridder, David J; Maes, Synthia; Chys, Michael; Van Hulle, Stijn W H; Vanden Bussche, Julie; Vanhaecke, Lynn; Verliefde, Arne R D

    2016-12-01

    The combination of ozonation and activated carbon (AC) adsorption is an established technology for removal of trace organic contaminants (TrOCs). In contrast to oxidation, reduction of TrOCs has recently gained attention as well, however less attention has gone to the combination of reduction with AC adsorption. In addition, no literature has compared the removal behavior of reduction vs. ozonation by-products by AC. In this study, the effect of pre-ozonation vs pre-catalytic reduction on the AC adsorption efficiency of five TrOCs and their by-products was compared. All compounds were susceptible to oxidation and reduction, however the catalytic reductive treatment proved to be a slower reaction than ozonation. New oxidation products were identified for dinoseb and new reduction products were identified for carbamazepine, bromoxynil and dinoseb. In terms of compatibility with AC adsorption, the influence of the oxidative and reductive pretreatments proved to be compound dependent. Oxidation products of bromoxynil and diatrizoic acid adsorbed better than their parent TrOCs, but oxidation products of atrazine, carbamazepine and dinoseb showed a decreased adsorption. The reductive pre-treatment showed an enhanced AC adsorption for dinoseb and a major enhancement for diatrizoic acid. For atrazine and bromoxynil, no clear influence on adsorption was noted, while for carbamazepine, the reductive pretreatment resulted in a decreased AC affinity. It may thus be concluded that when targeting mixtures of TrOCs, a trade-off will undoubtedly have to be made towards overall reactivity and removal of the different constituents, since no single treatment proves to be superior to the other. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  19. QCM-D and ToF-SIMS Investigation to Deconvolute the Relationship between Lipid Adsorption and Orientation on Lipase Activity.

    PubMed

    Joyce, Paul; Kempson, Ivan; Prestidge, Clive A

    2015-09-22

    Quartz crystal microbalance with dissipation (QCM-D) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to provide insights into the relationship between lipid adsorption kinetics and molecular behavior in porous silica particles of varying hydrophobicities on lipase activity. Lipase (an interfacial enzyme that cleaves ester bonds to break down lipids to fatty acids and monoglycerides) activity was controlled by loading triglycerides at different surface coverages in hydrophilic and hydrophobic porous silica particles. The rate of lipid adsorption increased 2-fold for the hydrophobic surface compared to the hydrophilic surface. However, for submonolayer lipid coverage, the hydrophilic surface enhanced lipase activity 4-fold, whereas the hydrophobic surface inhibited lipase activity 16-fold, compared to lipid droplets in water. A difference in lipid orientation for low surface coverage, evidenced by ToF-SIMS, indicated that lipid adsorbs to hydrophilic silica in a conformation promoting hydrolysis. Multilayer coverage on hydrophobic and hydrophilic surfaces was indistinguishable with ToF-SIMS analysis. Increased lipid adsorption for both substrates facilitated digestion kinetics comparable to a conventional emulsion. Improved understanding of the interfacial adsorption and orientation of lipid and its digestibility in porous silica has implications in improving the uptake of pharmaceuticals and nutrients from lipid-based delivery systems.

  20. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-03

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  1. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    NASA Astrophysics Data System (ADS)

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  2. Surface structural-chemical characterization of a single-site d0 heterogeneous arene hydrogenation catalyst having 100% active sites

    PubMed Central

    Williams, Linda A.; Guo, Neng; Motta, Alessandro; Delferro, Massimiliano; Fragalà, Ignazio L.; Miller, Jeffrey T.; Marks, Tobin J.

    2013-01-01

    Structural characterization of the catalytically significant sites on solid catalyst surfaces is frequently tenuous because their fraction, among all sites, typically is quite low. Here we report the combined application of solid-state 13C-cross-polarization magic angle spinning nuclear magnetic resonance (13C-CPMAS-NMR) spectroscopy, density functional theory (DFT), and Zr X-ray absorption spectroscopy (XAS) to characterize the adsorption products and surface chemistry of the precatalysts (η5-C5H5)2ZrR2 (R = H, CH3) and [η5-C5(CH3)5]Zr(CH3)3 adsorbed on Brønsted superacidic sulfated alumina (AlS). The latter complex is exceptionally active for benzene hydrogenation, with ∼100% of the Zr sites catalytically significant as determined by kinetic poisoning experiments. The 13C-CPMAS-NMR, DFT, and XAS data indicate formation of organozirconium cations having a largely electrostatic [η5-C5(CH3)5]Zr(CH3)2+···AlS− interaction with greatly elongated Zr···OAlS distances of ∼2.35(2) Å. The catalytic benzene hydrogenation cycle is stepwise understandable by DFT, and proceeds via turnover-limiting H2 delivery to surface [η5-C5(CH3)5]ZrH2(benzene)+···AlS− species, observable by solid-state NMR and XAS. PMID:23269836

  3. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption.

    PubMed

    Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan

    2016-07-01

    Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system.

  4. Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model

    USGS Publications Warehouse

    Waite, T.D.; Davis, J.A.; Payne, T.E.; Waychunas, G.A.; Xu, N.

    1994-01-01

    A study of U(VI) adsorption by ferrihydrite was conducted over a wide range of U(VI) concentrations, pH, and at two partial pressures of carbon dioxide. A two-site (strong- and weak-affinity sites, FesOH and FewOH, respectively) surface complexation model was able to describe the experimental data well over a wide range of conditions, with only one species formed with each site type: an inner-sphere, mononuclear, bidentate complex of the type (FeO2)UO2. The existence of such a surface species was supported by results of uranium EXAFS spectroscopy performed on two samples with U(VI) adsorption density in the upper range observed in this study (10 and 18% occupancy of total surface sites). Adsorption data in the alkaline pH range suggested the existence of a second surface species, modeled as a ternary surface complex with UO2CO30 binding to a bidentate surface site. Previous surface complexation models for U(VI) adsorption have proposed surface species that are identical to the predominant aqueous species, e.g., multinuclear hydrolysis complexes or several U(VI)-carbonate complexes. The results demonstrate that the speciation of adsorbed U(VI) may be constrained by the coordination environment at the surface, giving rise to surface speciation for U(VI) that is significantly less complex than aqueous speciation.

  5. Recovery oriented phosphorus adsorption process in decentralized advanced Johkasou.

    PubMed

    Ebie, Y; Kondo, T; Kadoya, N; Mouri, M; Maruyama, O; Noritake, S; Inamori, Y; Xu, K

    2008-01-01

    Decentralized advanced wastewater treatment using adsorption and desorption process for recovery and recycling oriented phosphorus removal was developed. Adsorbent particles made of zirconium were set in a column, and it was installed as subsequent stage of BOD and nitrogen removal type Johkasou, a household domestic wastewater treatment facility. The water quality of the effluent of adsorption column in a number of experimental sites was monitored. The effluent phosphorus concentration was kept below 1 mg l(-1) during 90 days at all the sites. Furthermore, over 80% of the sites achieved 1 mg l(-1) of T-P during 200 days. This adsorbent was durable, and deterioration of the particles was not observed over a long duration. The adsorbent collected from each site was immersed in alkali solution to desorb phosphorus. Then the adsorbent was reactivated by soaking in acid solution. The reactivated adsorbent was reused and showed almost the same phosphorus adsorption capacity as a new one. Meanwhile, the desorbed phosphorus was recovered with high purity as trisodium phosphate by crystallization. It is proposed as a new decentralized system for recycling phosphorus that paves the way to high-purity recovery of finite phosphorus. IWA Publishing 2008.

  6. Copper (II) adsorption by the extracellular polymeric substance extracted from waste activated sludge after short-time aerobic digestion.

    PubMed

    Zhang, Zhiqiang; Zhou, Yun; Zhang, Jiao; Xia, Siqing

    2014-02-01

    The extracellular polymeric substance (EPS) extracted from waste activated sludge (WAS) after short-time aerobic digestion was investigated to be used as a novel biosorbent for Cu(2+) removal from water. The EPS consisted of protein (52.6 %, w/w), polysaccharide (30.7 %, w/w), and nucleic acid (16.7 %, w/w). Short-time aerobic digestion process of WAS for about 4 h promoted the productivity growth of the EPS for about 10 %. With a molecular weight of about 1.9 × 10(6) Da, the EPS showed a linear structure with long chains, and contained carboxyl, hydroxyl, and amino groups. The sorption kinetics was well fit for the pseudo-second-order model, and the maximum sorption capacity of the EPS (700.3 mg Cu(2+)/g EPS) was markedly greater than those of the reported biosorbents. Both Langmuir model and Freundlich model commendably described the sorption isotherm. The Gibbs free energy analysis of the adsorption showed that the sorption process was feasible and spontaneous. According to the complex results of multiple analytical techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, etc., the adsorption process took place via both physical and chemical sorption, but the electrostatic interaction between sorption sites with the functional groups and Cu(2+) is the major mechanism.

  7. Influence of temperature on the adsorption of α-tocopherol from ethanol solutions on acid-activated clinoptilolite tuff

    NASA Astrophysics Data System (ADS)

    Kotova, D. L.; Vasilyeva, S. Yu.; Krysanova, T. A.

    2014-08-01

    Patterns in the adsorption of α-tocopherol on acid-activated clinoptilolite tuff at 283, 295, 305, and 333 K are established and explained. It is found that the selectivity of the sorbent toward the vitamin rises as the temperature of the process falls. The adsorption of α-tocopherol from dilute solutions is described in terms of the Langmuir adsorption theory. It is shown that the fixing of vitamin E monolayers in the structural matrix of clinoptilolite tuff is due to the formation of hydrogen bonds between isolated silanol groups of the adsorbent and oxygen atoms of the chromane ring and the phenol residue of α-tocopherol. The thermodynamic functions of monolayer adsorption of the vitamin are estimated. It is concluded that the formation of polymolecular layers in the form of associates is due to hydrophobic interactions between side substituents of α-tocopherol.

  8. Study of adsorption of Neon on open Carbon nanohorns aggregates

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl Andrew

    Adsorption isotherms can be used to determine surface area of a substrate and the heat released when adsorption occurs. Our measurements are done determining the equilibrium pressures corresponding to a given amount of gas adsorbed on a substrate at constant temperature. The adsorption studies were done on aggregates of open dahlia-like carbon nanohorns. The nanohorns were oxidized for 9 hours at 550 °C to open them up and render their interior space accessible for adsorption. Volumetric adsorption measurements of Ne were performed at twelve different temperatures between 19 K and 48 K. The isotherms showed two substeps. The first substep corresponds to adsorption on the high energy binding sites in the interior of the nanohorns, near the tip. The second substep corresponds to low energy binding sites both on the outside of the nanotubes and inside the nanotube away from the tip. The isosteric heat measurements obtained from the isotherm data also shows these two distinct substeps. The effective surface area of the open nanotubes was determined from the isotherms using the point-B method. The isosteric heat and surface area data for neon on open nanohorns were compared to two similar experiments of neon adsorbed on aggregates of closed nanohorns.

  9. A first principles kinetic Monte Carlo investigation of the adsorption and mobility of gadolinium on the (100) surface of tungsten

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.; Zhang, Jinsuo

    2017-05-01

    An accurate characterization of lanthanide adsorption and mobility on tungsten surfaces is important for pyroprocessing. In the present study, the adsorption and diffusion of gadolinium on the (100) surface of tungsten was investigated. It was found that the hollow sites were the most energetically favorable for the adsorption. It was further observed that a magnetic moment was induced following the adsorption of gadolinium on the tungsten surface and that the system with adsorbed hollow sites had the largest magnetization. A pathway for the surface diffusion of gadolinium was determined to occur by hopping between the nearest neighbor hollow sites via the bridge site and the activation energy for the hop was calculated to be 0.75 eV. The surface diffusion process was further assessed using two distinct kinetic Monte Carlo models; one that accounted for lateral adsorbate interactions up to the second nearest neighbor and one that did not account for such interatomic interactions in the adlayer. When the lateral interactions were included in the simulations, the diffusivity was observed to have a strong dependence on coverage (for the coverage values being studied). The effects of lateral interactions were further observed in a one-dimensional simulation of the diffusion equation where the asymmetry in the surface coverage profile upon its approach to a steady state distribution was clear in comparison with the simulations which did not account for those interactions.

  10. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.

    PubMed

    Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip

    2015-12-21

    A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption.

    PubMed

    Liew, Rock Keey; Azwar, Elfina; Yek, Peter Nai Yuh; Lim, Xin Yi; Cheng, Chin Kui; Ng, Jo-Han; Jusoh, Ahmad; Lam, Wei Haur; Ibrahim, Mohd Danial; Ma, Nyuk Ling; Lam, Su Shiung

    2018-06-19

    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m 2 /g) and pore volume (≤0.80 cm 3 /g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effect of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector

    NASA Astrophysics Data System (ADS)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Yang, Yaohui; Sun, Wei; Hu, Yuehua

    2017-12-01

    The effects of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid (BHA) as a collector were investigated using microflotation tests, zeta potential measurements, adsorption analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The microflotation results indicate that the addition of Pb2+ significantly improves the recovery of ilmenite using BHA as a collector. A maximum recovery of 88.46% is obtained at pH 8.12 in the presence of Pb2+; a maximum recovery of 45% is obtained at the same pH using BHA alone. At pHs below 8.0, lead nitrate are mainly present in the solution as Pb2+ and PbOH+, while at pHs above 8.0, the predominant components are Pb(OH)2(s) and Pb(OH)3-. The adsorption of these lead species influences the zeta potential of ilmenite and the number of activated sites on the ilmenite surface. FTIR and XPS analyses reveal that lead species and BHA react with the metal sites on the ilmenite surface. The lead species in solution are either adsorbed onto the ilmenite surface, which increases the surface activity of ilmenite, or react with BHA in solution to form complexes of lead and BHA.

  13. Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.

    PubMed

    Florez, Elizabeth; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc

    2009-06-28

    The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides.

  14. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    PubMed

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  15. Adsorption of aqueous copper on peanut hulls

    NASA Astrophysics Data System (ADS)

    Davis, Kanika Octavia

    A method was established for measuring the adsorption of Cu(II) from aqueous solution to unmodified and modified peanut hulls at constant temperature and pH. Modification of the hulls was performed by oxidation with alkaline hydrogen peroxide. During the modification process, the hydrogen peroxide solubilizes the lignin component, making the surface more porous which increases the availability of binding sites, while simultaneously oxidizing the cellulose. The oxidation of alcohol groups creates more binding sites by creating functional groups such as COO-, which increases chelation to metal ions. Fourier transform infrared spectroscopy confirms delignification of the peanut hulls by the disappearance of carboxyl peaks of the modified hulls, which were originally produced from the lignin content. Although, oxidation is not fully confirmed, it is not ruled out because the expected carboxylate peak (1680 cm-1) maybe overshadowed by a broad peak due to OH bending of water adsorbed to the hulls. Hulls adsorbed copper from solutions in the concentration range of 50-1000 ppm of CuCl2. Concentrations of pre- and post-adsorption solutions were determined using inductively coupled plasma optical emission spectroscopy. The adsorption isotherms were fit to known two and three-parameter models, evaluated and the binding mechanism was inferred. Maximum surface coverage was 3.5 +/- 0.6 mg Cu2+ /g hull for unmodified hulls and 11 +/- 1 mg Cu2+/g hull for modified hulls. The adsorption for the hulls is best described by the Langmuir model, suggesting monolayer, homogeneous adsorption. With a free energy of adsorption of 10.5 +/- 0.9 kJ/mol for unmodified hulls and 14.5 +/-0.4 kJ/mol for modified hulls, the process is categorized as chemisorption for both types of hulls. The adsorption for both hulls is also described by the Redlich-Peterson model, giving beta nearer to 1 than 0, which further suggests homogeneous adsorption described by the Langmuir model. After rinsing the hulls

  16. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; ...

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K +/Na + molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showedmore » that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K +/Na + molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K +/Na + molar ratio increases.« less

  17. Early stages of Cs adsorption mechanism for GaAs nanowire surface

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu

    2018-03-01

    In this study, the adsorption mechanism of Cs adatoms on the (100) surface of GaAs nanowire with [0001] growth direction is investigated utilizing first principles method based on density function theory. The adsorption energy, work function, atomic structure and electronic property of clean surface and Cs-covered surfaces with different coverage are discussed. Results show that when only one Cs is adsorbed on the surface, the most favorable adsorption site is BGa-As. With increasing Cs coverage, work function gradually decreases and gets its minimum at 0.75 ML, then rises slightly when Cs coverage comes to 1 ML, indicating the existence of 'Cs-kill' phenomenon. According to further analysis, Cs activation process can effectively reduce the work function due to the formation of a downward band bending region and surface dipole moment directing from Cs adatom to the surface. As Cs coverage increases, the conduction band minimum and valence band maximum both shift towards lower energy side, contributed by the orbital hybridization between Cs-5s, Cs-5p states and Ga-4p, As-4s, As-4p states near Fermi level. The theoretical calculations and analysis in this study can improve the Cs activation technology for negative electron affinity optoelectronic devices based on GaAs nanowires, and also provide a reference for the further Cs/O or Cs/NF3 activation process.

  18. Surface-Bound Casein Modulates the Adsorption and Activity of Kinesin on SiO2 Surfaces

    PubMed Central

    Ozeki, Tomomitsu; Verma, Vivek; Uppalapati, Maruti; Suzuki, Yukiko; Nakamura, Mikihiko; Catchmark, Jeffrey M.; Hancock, William O.

    2009-01-01

    Abstract Conventional kinesin is routinely adsorbed to hydrophilic surfaces such as SiO2. Pretreatment of surfaces with casein has become the standard protocol for achieving optimal kinesin activity, but the mechanism by which casein enhances kinesin surface adsorption and function is poorly understood. We used quartz crystal microbalance measurements and microtubule gliding assays to uncover the role that casein plays in enhancing the activity of surface-adsorbed kinesin. On SiO2 surfaces, casein adsorbs as both a tightly bound monolayer and a reversibly bound second layer that has a dissociation constant of 500 nM and can be desorbed by washing with casein-free buffer. Experiments using truncated kinesins demonstrate that in the presence of soluble casein, kinesin tails bind well to the surface, whereas kinesin head binding is blocked. Removing soluble casein reverses these binding profiles. Surprisingly, reversibly bound casein plays only a moderate role during kinesin adsorption, but it significantly enhances kinesin activity when surface-adsorbed motors are interacting with microtubules. These results point to a model in which a dynamic casein bilayer prevents reversible association of the heads with the surface and enhances association of the kinesin tail with the surface. Understanding protein-surface interactions in this model system should provide a framework for engineering surfaces for functional adsorption of other motor proteins and surface-active enzymes. PMID:19383474

  19. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J; Salhi, E; von Gunten, U

    2006-08-01

    The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)adsorption of bromide and iodide was studied under dynamic conditions using waters from Lake Zurich. Results obtained showed that the carbonization and activation processes increased the adsorptive capacity of the aerogel sample. However, results showed that the adsorption capacity of the aerogel samples studied was considerably lower in water from Lake Zurich. Results showed X(0.02) (amount adsorbed to initial breakthrough) values of 0.1 and 4.3 mg/g for chloride anion and dissolved organic carbon (DOC), respectively, during bromide adsorption process in water from Lake Zurich

  20. Activated adsorption of methane on clean and oxygen-modified Pt?111? and Pd?110?

    NASA Astrophysics Data System (ADS)

    Valden, M.; Pere, J.; Hirsimäki, M.; Suhonen, S.; Pessa, M.

    1997-04-01

    Activated adsorption of CH 4 on clean and oxygen modified Pt{111} and Pd{110} has been studied using molecular beam surface scattering. The absolute dissociation probability of CH 4 was measured as a function of the incident normal energy ( E) and the surface temperature ( Ts). The results from clean Pt{111} and Pd{110} are consistent with a direct dissociation mechanism. The dissociative chemisorption dynamics of CH 4 is addressed by using quantum mechanical and statistical models. The influence of adsorbed oxygen on the dissociative adsorption of CH 4 on both Pt{111} and Pd{110} shows that the dissociation probability decreases linearly with increasing oxygen coverage.

  1. The role of mineral surface chemistry in modified dextrin adsorption.

    PubMed

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka M; Harmer, Sarah L; Beattie, David A

    2011-05-15

    The adsorption of two modified dextrins (phenyl succinate dextrin--PS Dextrin; styrene oxide dextrin--SO Dextrin) on four different mineral surfaces has been studied using X-ray photoelectron spectroscopy (XPS), in situ atomic force microscopy (AFM) imaging, and captive bubble contact angle measurements. The four surfaces include highly orientated pyrolytic graphite (HOPG), freshly cleaved synthetic sphalerite (ZnS), and two surfaces produced through surface reactions of sphalerite: one oxidized in alkaline solution (pH 9, 1 h immersion); and one subjected to metal ion exchange between copper and zinc (i.e. copper activation: exposed to 1×10(-3) M CuSO(4) solution for 1 h). XPS measurements indicate that the different sphalerite surfaces contain varying amounts of sulfur, zinc, oxygen, and copper, producing substrates for polymer adsorption with a range of possible binding sites. AFM imaging has shown that the two polymers adsorb to a similar extent on HOPG, and that the two polymers display very different propensities for adsorption on the three sphalerite surface types, with freshly cleaved sphalerite encouraging the least adsorption, and copper activated and oxidized sphalerite encouraging significantly more adsorption. Contact angle measurements of the four surfaces indicate that synthetic sphalerite has a low contact angle upon fracture, and that oxidation on the timescale of one hour substantially alters the hydrophobicity. HOPG and copper-activated sphalerite were the most hydrophobic, as expected due to the carbon and di/poly-sulfide rich surfaces of the two samples, respectively. SO Dextrin is seen to have a significant impact on the wettability of HOPG and the surface reacted sphalerite samples, highlighting the difficulty in selectively separating sphalerite from carbonaceous unwanted minerals in flotation. PS Dextrin has the least effect on the hydrophobicity of the reacted sphalerite surfaces, whilst still significantly increasing the wettability of

  2. Enhancement of methylbenzene adsorption capacity through cetyl trimethyl ammonium bromide-modified activated carbon derived from Astragalus residue

    NASA Astrophysics Data System (ADS)

    Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin

    2018-02-01

    Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.

  3. The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI)

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Han, Shaoke; Dong, Yingbo; He, Yinhai

    2017-08-01

    A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25-45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, qmax, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.

  4. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    PubMed

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-05-19

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data.

  5. Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge

    NASA Astrophysics Data System (ADS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2013-03-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).

  6. Adsorption of glyphosate on variable-charge, volcanic ash-derived soils.

    PubMed

    Cáceres-Jensen, L; Gan, J; Báez, M; Fuentes, R; Escudey, M

    2009-01-01

    Glyphosate (N-phosphonometylglycine) is widely used due to its broad spectrum of activity and nonselective mode of action. In Chile it is the most used herbicide, but its adsorption behavior in the abundant and widespread variable charge soils is not well understood. In this study, three volcanic ash-derived soils were selected, including Andisols (Nueva Braunau and Diguillin) and Ultisols (Collipulli), to evaluate the adsorption kinetics, equilibrium isotherms, and the effect of pH in glyphosate adsorption. The influence of glyphosate on soil phosphorus retention was also studied. Glyphosate was rapidly and strongly adsorbed on the selected soils, and adsorption isotherms were well described by the Freundlich relationship with strong nonlinearity (n(fads) < 0.5). The n(fads) values were consistently higher than n(fdes) values, suggesting strong hysteresis. Adsorption (K(ads)) increased strongly when pH decreased. The presence of glyphosate (3200 mug mL(-1)) changed the adsorption behavior of phosphate at its maximum adsorption capacity. Andisol soils without the addition of glyphosate had similar mean K(ads) values for Nueva Braunau (5.68) and Diguillin (7.38). Collipulli had a mean K(ads) value of 31.58. During the successive desorption steps, glyphosate at the highest level increased K(ads) values for phosphate in the Andisol soils but had little effect in the Ultisol soil. This different behavior was probably due to the irreversible occupation of some adsorption sites by glyphosate in the Ultisol soil attributed to the dominant Kaolinite mineral. Results from this study suggest that in the two types of volcanic soils, different mechanisms are involved in glyphosate and phosphate adsorption and that long-term use of glyphosate may impose different effects on the retention and availability of phosphorus. Volcanic ash-derived soils have a particular environmental behavior in relation to the retention of organic contaminants, representing an environmental substrate

  7. Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit

    NASA Astrophysics Data System (ADS)

    Yusuf, N. Y.; Masdar, M. S.; Isahak, W. N. R. W.; Nordin, D.; Husaini, T.; Majlan, E. H.; Rejab, S. A. M.; Chew, C. L.

    2017-06-01

    Biological methods for hydrogen production (biohydrogen) are known as energy intensive and can be operated at ambient temperature and pressure; however, consecutive productions such as purification and separation processes still remain challenging in the industry. Various techniques are used to purify and separate hydrogen. These techniques include the use of sorbents/solvents, membranes and cryogenic distillation. In this study, carbon dioxide (CO2) was purified and separated from biohydrogen to produce high purity hydrogen gas. CO2 capture was studied using the activated carbon (AC) modified with the ionic liquid (IL) choline chloride as adsorbent. The physical and chemical properties of the adsorbents were characterized through XRD, FTIR, SEM-EDX, TGA, and BET analyses. The effects of IL loading, flow rate, temperature, and gas mixture were also investigated based on the absorption and desorption of CO2. The CO2 level in the biohydrogen composition was analyzed using a CO2 gas analyzer. The SEM image indicated that the IL homogeneously covered the AC surface. High IL dispersion inlet enhanced the capability of the adsorbent to capture CO2 gas. The thermal stability and presence of the functionalized group of ILs on AC were analyzed by TGA and FTIR techniques, respectively. CO2 adsorption experiments were conducted using a 1 L adsorber unit. Hence, adsorption technologies exhibit potential for biohydrogen purification and mainly affected by adsorbent ability and operating parameters. This research presents an improved biohydrogen technique based on adsorption technology with novel adsorbents. Two different types of commercial CO2 adsorbents were used in the experiment. Results show that the IL/AC exhibited properties suitable for CO2 adsorption. The IL/AC sample presented a high CO2 uptake of 30 wt. % IL when treated at 30 °C for 6 h under a flow rate of 1 L/min. The presence of IL increased the selectivity of CO2 removal during the adsorption process. This IL

  8. Adsorption Behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from Water

    PubMed Central

    Zhang, Ke-Deng; Tsai, Fang-Chang; Ma, Ning; Xia, Yue; Liu, Huan-Li; Zhan, Xue-Qing; Yu, Xiao-Yan; Zeng, Xiang-Zhe; Jiang, Tao; Shi, Dean; Chang, Chang-Jung

    2017-01-01

    Zirconium based metal organic frameworks (Zr-MOFs) have become popular in engineering studies due to their high mechanical stability, thermostability and chemical stability. In our work, by using a theoretical kinetic adsorption isotherm, we can exert MOFs to an acid dye adsorption process, experimentally exploring the adsorption of MOFs, their external behavior and internal mechanism. The results indicate their spontaneous and endothermic nature, and the maximum adsorption capacity of this material for acid orange 7 (AO7) could be up to 358 mg·g−1 at 318 K, estimated by the Langmuir isotherm model. This is ascribed to the presence of an open active metal site that significantly intensified the adsorption, by majorly increasing the interaction strength with the adsorbates. Additionally, the enhanced π delocalization and suitable pore size of UiO-66 gave rise to the highest host–guest interaction, which further improves both the adsorption capacity and separation selectivity at low concentrations. Furthermore, the stability of UiO-66 was actually verified for the first time, through comparing the structure of the samples before and after adsorption mainly by Powder X-ray diffraction and thermal gravimetric analysis. PMID:28772564

  9. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon.

    PubMed

    Xie, Ruzhen; Jin, Yan; Chen, Yao; Jiang, Wenju

    2017-12-01

    In this study, activated carbon (AC) was prepared from walnut shell using chemical activation. The surface chemistry of the prepared AC was modified by introducing or blocking certain functional groups, and the role of the different functional groups involved in the copper uptake was investigated. The structural and chemical heterogeneity of the produced carbons are characterized by Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, Boehm titration method and N 2 /77 K adsorption isotherm analysis. The equilibrium and the kinetics of copper adsorption onto AC were studied. The results demonstrated that the functional groups on AC played an important role in copper uptake. Among various surface functional groups, the oxygen-containing group was found to play a critical role in the copper uptake, and oxidation is the most effective way to improve Cu (II) adsorption onto AC. Ion-exchange was identified to be the dominant mechanism in the copper uptake by AC. Some other types of interactions, like complexation, were also proven to be involved in the adsorption process, while physical force was found to play a small role in the copper uptake. The regeneration of copper-loaded AC and the recovery of copper were also studied to evaluate the reusability of the oxidized AC.

  10. Adsorption of Cd (II) on Modified Granular Activated Carbons: Isotherm and Column Study.

    PubMed

    Rodríguez-Estupiñán, Paola; Erto, Alessandro; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2017-12-20

    In this work, equilibrium and dynamic adsorption tests of cadmium Cd (II) on activated carbons derived from different oxidation treatments (with either HNO₃, H₂O₂, or NaOCl, corresponding to GACoxN, GACoxP, and GACoxCl samples) are presented. The oxidation treatments determined an increase in the surface functional groups (mainly the acidic ones) and a decrease in the pH PZC (except for the GACoxCl sample). A slight alteration of the textural parameters was also observed, which was more significant for the GACoxCl sample, in terms of a decrease of both Brunauer-Emmett-Teller ( BET ) surface area and micropore volume. Adsorption isotherms were determined for all the adsorbents and a significant increase in the adsorption performances of the oxidized samples with respect to the parent material was observed. The performances ranking was GACoxCl > GACoxP > GACoxN > GAC, likely due to the chemical surface properties of the adsorbents. Dynamic tests in a fixed bed column were carried out in terms of breakthrough curves at constant Cd inlet concentration and flow rate. GACoxCl and GACoxN showed a significantly higher value of the breakpoint time, likely due to the higher adsorption capacity. Finally, the dynamic tests were analyzed in light of a kinetic model. In the adopted experimental conditions, the results showed that mass transfer is controlled by internal pore diffusion, in which surface diffusion plays a major role.

  11. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  12. Adsorption of superplasticizer admixtures on alkali-activated slag pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palacios, M.; Houst, Y.F.; Bowen, P.

    2009-08-15

    Alkali-activated slag (AAS) binders are obtained by a manufacturing process less energy-intensive than ordinary Portland cement (OPC) and involves lower greenhouse gasses emission. These alkaline cements allow the production of high mechanical strength and durable concretes. In the present work, the adsorption of different superplasticizer admixtures (naphthalene-based, melamine-based and a vinyl copolymer) on the slag particles in AAS pastes using alkaline solutions with different pH values have been studied in detail. The effect of the superplasticizers on the yield stress and plastic viscosity of the AAS and OPC pastes have been also evaluated. The results obtained allowed us to concludemore » that the adsorption of the superplasticizers on AAS pastes is independent of the pH of the alkaline solutions used and lower than on OPC pastes. However, the effect of the admixtures on the rheological parameters depends directly on the type and dosage of the superplasticizer as well as of the binder used and, in the case of the AAS, on the pH of the alkaline activator solution. In 11.7-pH NaOH-AAS pastes the dosages of the superplasticizers required to attain similar reduction in the yield stress are ten-fold lower than for Portland cement. In this case the superplasticizers studied show a fluidizing effect considerably higher in 11.7-pH NaOH-AAS pastes than in OPC pastes. In 13.6-pH NaOH-AAS pastes, the only admixture observed to affect the rheological parameters is the naphthalene-based admixture due to its higher chemical stability in such extremely alkaline media.« less

  13. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    PubMed

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  14. Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons

    NASA Astrophysics Data System (ADS)

    Álvarez-Torrellas, S.; Martin-Martinez, M.; Gomes, H. T.; Ovejero, G.; García, J.

    2017-08-01

    In this work several activated carbons showing different textural and chemical properties were obtained by chemical and physical activation methods, using a lignocellulosic material (peach stones) as precursor. The activated carbon resulting from the chemical activation, namely as CAC, revealed the best textural properties (SBET = 1521 m2 g-1, pore volume = 0.90 cm3 g-1) and an acidic character. It was found that the activated carbon obtained at 300 °C (under air atmosphere, PAC_air), and those synthesized at 750 °C in presence of N2 flow with bubbling of water/12 M H3PO4 solution (PAC_N2(H2O)/PAC_N2(H3PO4)), respectively, revealed worse textural properties, compared to CAC. Two functionalization treatments, by using sulphuric acid at boiling temperature (PACS) and nitric acid-urea-N2 heating at 800 °C (PAC-NUT), were applied to PAC_air, in order to enhance the adsorption ability of the carbon material. Several techniques were carried out to characterize the physical and chemical properties of the obtained carbon materials. The modification treatments had influence on the carbon surface properties, since the nitric acid-urea-N2 heating treatment led to a carbon material with highly-improved properties (SBET = 679 m2 g-1, pHIEP = 5.3). Accordingly, the original and modified-carbon materials were tested as adsorbents to remove 4-nitrophenol (4-NP), assessing batch and fixed-bed column adsorption tests. PAC-NUT carbon offered the best adsorption behavior (qe = 234 mg g-1), showing a high ability for the removal of 4-NP from water.

  15. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana

    2013-11-30

    Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism.

    PubMed

    Xiong, Weiping; Tong, Jing; Yang, Zhaohui; Zeng, Guangming; Zhou, Yaoyu; Wang, Dongbo; Song, Peipei; Xu, Rui; Zhang, Chen; Cheng, Min

    2017-05-01

    Phosphate (P) removal is significant for the prevention of eutrophication in natural waters. In this paper, a novel adsorbent for the removal of P from aqueous solution was synthesized by loading zirconium oxide and iron oxide onto activated carbon nanofiber (ACF-ZrFe) simultaneously. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that P adsorption was highly pH dependent and the optimum pH was found to be 4.0. The isotherm of adsorption could be well described by the Langmuir model and the maximum P adsorption capacity was estimated to be 26.3mgP/g at 25°C. The kinetic data were well fitted to the pseudo-second-order equation, indicating that chemical sorption was the rate-limiting step. Moreover, co-existing ions including sulfate (SO 4 2- ), chloride (Cl - ), nitrate (NO 3 - ) and fluoride (F - ) exhibited a distinct effect on P adsorption with the order of F - >NO 3 - >Cl - >SO 4 2- . Further investigations by FT-IR spectroscopy and pH variations associated with the adsorption process revealed that ligands exchange and electrostatic interactions were the dominant mechanisms for P adsorption. The findings reported in this work highlight the potential of using ACF-ZrFe as an effective adsorbent for the removal of P in natural waters. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A DFT+U investigation of hydrogen adsorption on the LaFeO3(010) surface.

    PubMed

    Boateng, Isaac W; Tia, Richard; Adei, Evans; Dzade, Nelson Y; Catlow, C Richard A; de Leeuw, Nora H

    2017-03-08

    The ABO 3 perovskite lanthanum ferrite (LaFeO 3 ) is a technologically important electrode material for nickel-metal hydride batteries, energy storage and catalysis. However, the electrochemical hydrogen adsorption mechanism on LaFeO 3 surfaces remains under debate. In the present study, we have employed spin-polarized density functional theory calculations, with the Hubbard U correction (DFT+U), to unravel the adsorption mechanism of H 2 on the LaFeO 3 (010) surface. We show from our calculated adsorption energies that the preferred site for H 2 adsorption is the Fe-O bridge site, with an adsorption energy of -1.18 eV (including the zero point energy), which resulted in the formation of FeOH and FeH surface species. H 2 adsorption at the surface oxygen resulted in the formation of a water molecule, which leaves the surface to create an oxygen vacancy. The H 2 molecule is found to interact weakly with the Fe and La sites, where it is only physisorbed. The electronic structures of the surface-adsorption systems are discussed via projected density of state and Löwdin population analyses. The implications of the calculated adsorption strengths and structures are discussed in terms of the improved design of nickel-metal hydride (Ni-MH) battery prototypes based on LaFeO 3 .

  18. Metronidazole removal in powder-activated carbon and concrete-containing graphene adsorption systems: Estimation of kinetic, equilibrium and thermodynamic parameters and optimization of adsorption by a central composite design.

    PubMed

    Manjunath, S V; Kumar, S Mathava; Ngo, Huu Hao; Guo, Wenshan

    2017-12-06

    Metronidazole (MNZ) removal by two adsorbents, i.e., concrete-containing graphene (CG) and powder-activated carbon (PAC), was investigated via batch-mode experiments and the outcomes were used to analyze the kinetics, equilibrium and thermodynamics of MNZ adsorption. MNZ sorption on CG and PAC has followed the pseudo-second-order kinetic model, and the thermodynamic parameters revealed that MNZ adsorption was spontaneous on PAC and non-spontaneous on CG. Subsequently, two-parameter isotherm models, i.e., Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Elovich models, were applied to evaluate the MNZ adsorption capacity. The maximum MNZ adsorption capacities ([Formula: see text]) of PAC and CG were found to be between 25.5-32.8 mg/g and 0.41-0.002 mg/g, respectively. Subsequently, the effects of pH, temperature and adsorbent dosage on MNZ adsorption were evaluated by a central composite design (CCD) approach. The CCD experiments have pointed out the complete removal of MNZ at a much lower PAC dosage by increasing the system temperature (i.e., from 20°C to 40°C). On the other hand, a desorption experiment has shown 3.5% and 1.7% MNZ removal from the surface of PAC and CG, respectively, which was insignificant compared to the sorbed MNZ on the surface by adsorption. The overall findings indicate that PAC and CG with higher graphene content could be useful in MNZ removal from aqueous systems.

  19. Adsorption of O2, SO2, and SO3 on nickel oxide. Mechanism for sulfate formation

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1985-01-01

    Calculations based on the atom superposition and electron delocalization molecular orbital (ASED-MO) technique suggest that O2 will adsorb perferentially end-on at an angle 45 deg from normal on a nickel cation site on the (100) surface of NiO. SO2 adsorption is also stronger on the nickel site; SO2 bonds through the sulfur atom is a plane perpendicular to the surface. Adsorption energies for SO3 on the nickel and oxygen sites are comparable in the perferred orientation in which the SO3 plane is parallel to the surface. On activation, SO3 adsorbed to an O2(-) site forms a trigonal pyramidal SO4 species which yields, with a low barrier, a tetrahedral sulfate anion. Subsequently the anion reorients on the surface. Possibilities for alternative mechanisms which require the formation of Ni3(+) or O2(-) are discussed. NiSO4 thus formed leads to the corrosion of Ni at high temperatures in the SO2+O2/SO3 The SO2+O2/SO3 atmosphere, as discussed in the experimental literature.

  20. Adsorption of radionuclides on the monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping

    2018-04-01

    How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.