Sample records for active assembly phase

  1. An investigation of Hebbian phase sequences as assembly graphs

    PubMed Central

    Almeida-Filho, Daniel G.; Lopes-dos-Santos, Vitor; Vasconcelos, Nivaldo A. P.; Miranda, José G. V.; Tort, Adriano B. L.; Ribeiro, Sidarta

    2014-01-01

    Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition. PMID

  2. RNA transcription modulates phase transition-driven nuclear body assembly

    PubMed Central

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P.

    2015-01-01

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid–liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of “extranucleolar droplets” (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  3. Structural assembly demonstration experiment, phase 1

    NASA Astrophysics Data System (ADS)

    Akin, David L.; Bowden, Mary L.; Miller, Rene H.

    1983-03-01

    The goal of this phase of the structural assembly and demonstration experiment (SADE) program was to begin to define a shuttle flight experiment that would yield data to compare on-orbit assembly operations of large space structures with neutral buoyancy simulations. In addition, the experiment would be an early demonstration of structural hardware and human capabilities in extravehicular activity (EVA). The objectives of the MIT study, as listed in the statement of work, were: to provide support in establishing a baseline neutral buoyancy testing data base, to develop a correlation technique between neutral buoyancy test results and on-orbit operations, and to prepare the SADE experiment plan (MSFC-PLAN-913).

  4. Independent active and thermodynamic processes govern the nucleolus assembly in vivo

    PubMed Central

    Falahati, Hanieh; Wieschaus, Eric

    2017-01-01

    Membraneless organelles play a central role in the organization of protoplasm by concentrating macromolecules, which allows efficient cellular processes. Recent studies have shown that, in vitro, certain components in such organelles can assemble through phase separation. Inside the cell, however, such organelles are multicomponent, with numerous intermolecular interactions that can potentially affect the demixing properties of individual components. In addition, the organelles themselves are inherently active, and it is not clear how the active, energy-consuming processes that occur constantly within such organelles affect the phase separation behavior of the constituent macromolecules. Here, we examine the phase separation model for the formation of membraneless organelles in vivo by assessing the two features that collectively distinguish it from active assembly, namely temperature dependence and reversibility. We use a microfluidic device that allows accurate and rapid manipulation of temperature and examine the quantitative dynamics by which six different nucleolar proteins assemble into the nucleoli of Drosophila melanogaster embryos. Our results indicate that, although phase separation is the main mode of recruitment for four of the studied proteins, the assembly of the other two is irreversible and enhanced at higher temperatures, behaviors indicative of active recruitment to the nucleolus. These two subsets of components differ in their requirements for ribosomal DNA; the two actively assembling components fail to assemble in the absence of ribosomal DNA, whereas the thermodynamically driven components assemble but lose temporal and spatial precision. PMID:28115706

  5. Automated Array Assembly, Phase 2

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array Project is a process development task. The contract provides for the fabrication of modules from large area tandem junction cells (TJC). During this quarter, effort was focused on the design of a large area, approximately 36 sq cm, TJC and process verification runs. The large area TJC design was optimized for minimum I squared R power losses. In the TJM activity, the cell-module interfaces were defined, module substrates were formed and heat treated and clad metal interconnect strips were fabricated.

  6. De novo assembly and phasing of a Korean human genome.

    PubMed

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  7. Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot

    PubMed Central

    Zhang, Xianmin; Zheng, Yanglong; Ota, Jun; Huang, Yanjiang

    2017-01-01

    This paper focuses on peg-in-hole assembly based on a two-phase scheme and force/torque sensor (F/T sensor) for a compliant dual-arm robot, the Baxter robot. The coordinated operations of human beings in assembly applications are applied to the behaviors of the robot. A two-phase assembly scheme is proposed to overcome the inaccurate positioning of the compliant dual-arm robot. The position and orientation of assembly pieces are adjusted respectively in an active compliant manner according to the forces and torques derived by a six degrees-of-freedom (6-DOF) F/T sensor. Experiments are conducted to verify the effectiveness and efficiency of the proposed assembly scheme. The performances of the dual-arm robot are consistent with those of human beings in the peg-in-hole assembly process. The peg and hole with 0.5 mm clearance for round pieces and square pieces can be assembled successfully. PMID:28862691

  8. Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot.

    PubMed

    Zhang, Xianmin; Zheng, Yanglong; Ota, Jun; Huang, Yanjiang

    2017-09-01

    This paper focuses on peg-in-hole assembly based on a two-phase scheme and force/torque sensor (F/T sensor) for a compliant dual-arm robot, the Baxter robot. The coordinated operations of human beings in assembly applications are applied to the behaviors of the robot. A two-phase assembly scheme is proposed to overcome the inaccurate positioning of the compliant dual-arm robot. The position and orientation of assembly pieces are adjusted respectively in an active compliant manner according to the forces and torques derived by a six degrees-of-freedom (6-DOF) F/T sensor. Experiments are conducted to verify the effectiveness and efficiency of the proposed assembly scheme. The performances of the dual-arm robot are consistent with those of human beings in the peg-in-hole assembly process. The peg and hole with 0.5 mm clearance for round pieces and square pieces can be assembled successfully.

  9. The space station assembly phase: Flight telerobotic servicer feasibility, volume 1

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.

    1987-01-01

    The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.

  10. Re-entrant phase behavior for systems with competition between phase separation and self-assembly

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Williamson, Alexander J.; Doye, Jonathan P. K.; Carrete, Jesús; Varela, Luis M.; Louis, Ard A.

    2011-03-01

    In patchy particle systems where there is a competition between the self-assembly of finite clusters and liquid-vapor phase separation, re-entrant phase behavior can be observed, with the system passing from a monomeric vapor phase to a region of liquid-vapor phase coexistence and then to a vapor phase of clusters as the temperature is decreased at constant density. Here, we present a classical statistical mechanical approach to the determination of the complete phase diagram of such a system. We model the system as a van der Waals fluid, but one where the monomers can assemble into monodisperse clusters that have no attractive interactions with any of the other species. The resulting phase diagrams show a clear region of re-entrance. However, for the most physically reasonable parameter values of the model, this behavior is restricted to a certain range of density, with phase separation still persisting at high densities.

  11. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    NASA Astrophysics Data System (ADS)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  12. Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin.

    PubMed

    Sims, Jennifer K; Wade, Paul A

    2011-09-01

    During chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication. The Mi2/NuRD chromatin remodeling complex tightly associates with actively replicating pericentric heterochromatin, suggesting a role in its assembly. Here we demonstrate that depletion of the catalytic ATPase subunit CHD4/Mi-2β in cells with a dampened DNA damage response results in a slow-growth phenotype characterized by delayed progression through S phase. Furthermore, we observe defects in pericentric heterochromatin maintenance and assembly. Our data suggest that chromatin assembly defects are sensed by an ATM-dependent intra-S phase chromatin quality checkpoint, resulting in a temporal block to the transition from early to late S phase. These findings implicate Mi-2β in the maintenance of chromatin structure and proper cell cycle progression.

  13. Equilibrium polymerization models of re-entrant self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  14. Active colloids as assembly machines

    NASA Astrophysics Data System (ADS)

    Goodrich, Carl; Brenner, Michael

    Controlling motion at the microscopic scale is a fundamental goal in the development of biologically-inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the two-dimensional motion of active colloids so that their path has a non-trivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semi-flexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that non-equilibrium assembly pathways can be designed using active particles.

  15. The space station assembly phase: System design trade-offs for the flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The effects of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems often involves a substitution of automation capabilities for human EVA or IVA activities. A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effects of operational constaints. Changes in the region of cost-effectiveness are examined under a variety of system design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: as a research-oriented test bed to learn more about space usage of telerobotics; as a research based test bed having an experimental demonstration orientation with limited assembly and servicing applications; or as an operational system to augment EVA and to aid construction of the Space Station and to reduce the program (schedule) risk by increasing the flexibility of mission operations.

  16. Mechanisms of kinetic trapping in self-assembly and phase transformation

    PubMed Central

    Hagan, Michael F.; Elrad, Oren M.; Jack, Robert L.

    2011-01-01

    In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions. PMID:21932884

  17. A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase

    DOE PAGES

    Li, Hongfei; Yang, Zhenhua; Pan, Cheng; ...

    2017-07-14

    Here, we report that the addition of a non-photoactive tertiary polymer phase in the binary bulk heterojunction (BHJ) polymer solar cell leads to a self-assembled columnar nanostructure, enhancing the charge mobilities and photovoltaic efficiency with surprisingly increased optimal active blend thicknesses over 300 nm, 3–4 times larger than that of the binary counterpart. Using the prototypical poly(3-hexylthiophene) (P3HT):fullerene blend as a model BHJ system, we discover that the inert poly(methyl methacrylate) (PMMA) added in the binary BHJ blend self-assembles into vertical columns, which not only template the phase segregation of electron acceptor fullerenes but also induce the out-of-plane rotation ofmore » the edge-on-orientated crystalline P3HT phase. Using complementary interrogation methods including neutron reflectivity, X-ray scattering, atomic force microscopy, transmission electron microscopy, and molecular dynamics simulations, we show that the enhanced charge transport originates from the more randomized molecular stacking of the P3HT phase and the spontaneous segregation of fullerenes at the P3HT/PMMA interface, driven by the high surface tension between the two polymeric components. The results demonstrate a potential method for increasing the thicknesses of high-performance polymer BHJ solar cells with improved photovoltaic efficiency, alleviating the burden of stringently controlling the ultrathin blend thickness during the roll-to-roll-type large-area manufacturing environment.« less

  18. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    PubMed

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  19. Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface.

    PubMed

    Niu, Tianchao; Wu, Jinge; Ling, Faling; Jin, Shuo; Lu, Guanghong; Zhou, Miao

    2018-01-09

    Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Br δ- ) were generated and participated in assembly via unique C-Br δ+ ···Br δ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Br δ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.

  20. Two-phase pressure drop reduction BWR assembly design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dix, G.E.; Crowther, R.L.; Colby, M.J.

    1992-05-12

    This patent describes a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies, an improvement to a fuel bundle assembly for placement in the reactor. It comprises a fuel channel having vertically extending walls forming a continuous channel around a fuel assembly volume, the channel being open at the bottom end for engagement to a lower tie plate and open at the upper end for engagement to an upper tie plate; rods for placement within the chamber, each the rod containing fissile material for producing nuclear reaction when in the presence of sufficient moderatedmore » neutron flux; a lower tie plate for supporting the bundle of rods within the channel, the lower tie plate for supporting the bundle of rods within the channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water in the channel between the rods for the generating of steam during the nuclear reaction; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein a two phase region of the water and steam in the bundle is defined during nuclear steam generating reaction in the fuel bundle.« less

  1. FAST TRACK COMMUNICATION Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Heredia, A.; Bdikin, I.; Kopyl, S.; Mishina, E.; Semin, S.; Sigov, A.; German, K.; Bystrov, V.; Gracio, J.; Kholkin, A. L.

    2010-11-01

    Diphenylalanine (FF) peptide nanotubes (PNTs) represent a unique class of self-assembled functional biomaterials owing to a wide range of useful properties including nanostructural variability, mechanical rigidity and chemical stability. In addition, strong piezoelectric activity has recently been observed paving the way to their use as nanoscale sensors and actuators. In this work, we fabricated both horizontal and vertical FF PNTs and examined their optical second harmonic generation and local piezoresponse as a function of temperature. The measurements show a gradual decrease in polarization with increasing temperature accompanied by an irreversible phase transition into another crystalline phase at about 140-150 °C. The results are corroborated by the molecular dynamic simulations predicting an order-disorder phase transition into a centrosymmetric (possibly, orthorhombic) phase with antiparallel polarization orientation in neighbouring FF rings. Partial piezoresponse hysteresis indicates incomplete polarization switching due to the high coercive field in FF PNTs.

  2. Self-assembly of amorphous biophotonic nanostructures by phase separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important rolesmore » in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.« less

  3. Self-assembly of active amphiphilic Janus particles

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  4. Solid-phase synthesis of self-assembling multivalent π-conjugated peptides

    DOE PAGES

    Sanders, Allix M.; Kale, Tejaswini S.; Katz, Howard E.; ...

    2017-02-07

    Here, we present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, asmore » revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.« less

  5. Phases and Dynamics of Self-Assembled DNA Programmed Nanocubes

    NASA Astrophysics Data System (ADS)

    Knorowski, Christopher; Travesset, Alex

    2013-03-01

    Systems of Nanoparticles grafted with complementary DNA strands have been shown to self-assemble into an array of superlattices. In this talk, we extend our previous model, which successfully predicted equilibrium phases and dynamics of assembly for spherical Nanoparticles without fitting parameters, to the case of nanocubes. We show that the phase diagram consists of bcc and sc lattices, depending on DNA length. The bcc lattices are either rotator and orientational glass or cubatic. For temperatures above the DNA melting temperature, the system is equivalent to f-star polymer systems, and consist of bcc, also with rotator, orientational glass or cubatic orientational order as well as sc. We also provide a characterization of the dynamics, including the role of topological defects in crystal nucleation and growth. This work is funded by DOE through the Ames Lab under Contract DE-AC02-07CH11358. Most simulations are performed on the Exalted GPU cluster, which is funded by a grant from Iowa State University and Nvidia Corp.

  6. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  7. Animal Telemetry Network Data Assembly Center: Phase 2

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Animal telemetry network data assembly center: Phase...2 Barbara Block & Randy Kochevar Hopkins Marine Station Stanford University 120 Oceanview Blvd. Pacific Grove, Ca phone: (831) 655-6236...prior development for tag data management (e.g. TOPP, GTOPP, GulfTOPP) of animal telemetry data management into a single system (DAC) with an

  8. Automated array assembly, phase 2

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    Tasks of scaling up the tandem junction cell (TJC) from 2 cm x 2 cm to 6.2 cm and the assembly of several modules using these large area TJC's are described. The scale-up of the TJC was based on using the existing process and doing the necessary design activities to increase the cell area to an acceptably large area. The design was carried out using available device models. The design was verified and sample large area TJCs were fabricated. Mechanical and process problems occurred causing a schedule slippage that resulted in contract expiration before enough large-area TJCs were fabricated to populate the sample tandem junction modules (TJM). A TJM design was carried out in which the module interconnects served to augment the current collecting buses on the cell. No sample TJMs were assembled due to a shortage of large-area TJCs.

  9. Active control of complex, multicomponent self-assembly processes

    NASA Astrophysics Data System (ADS)

    Schulman, Rebecca

    The kinetics of many complex biological self-assembly processes such as cytoskeletal assembly are precisely controlled by cells. Spatiotemporal control over rates of filament nucleation, growth and disassembly determine how self-assembly occurs and how the assembled form changes over time. These reaction rates can be manipulated by changing the concentrations of the components needed for assembly by activating or deactivating them. I will describe how we can use these principles to design driven self-assembly processes in which we assemble and disassemble multiple types of components to create micron-scale networks of semiflexible filaments assembled from DNA. The same set of primitive components can be assembled into many different, structures depending on the concentrations of different components and how designed, DNA-based chemical reaction networks manipulate these concentrations over time. These chemical reaction networks can in turn interpret environmental stimuli to direct complex, multistage response. Such a system is a laboratory for understanding complex active material behaviors, such as metamorphosis, self-healing or adaptation to the environment that are ubiquitous in biological systems but difficult to quantitatively characterize or engineer.

  10. An Active Approach to Colloidal Self-Assembly

    NASA Astrophysics Data System (ADS)

    Mallory, Stewart A.; Valeriani, Chantal; Cacciuto, Angelo

    2018-04-01

    In this review, we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field, with a specific focus on dry active matter. We explore this phenomenology through the lens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and we suggest possible strategies for how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise to the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.

  11. Studies of cluster-assembled materials: From gas phase to condensed phase

    NASA Astrophysics Data System (ADS)

    Gao, Lin

    . After being mass gated in a reflectron equipped time-of-flight mass spectrometer (TOF-MS) and deposited onto TEM grids, the resultant specimens can be loaded onto high-resolution TEM investigation via electron diffraction. In conclusion, soft-landing of mass selected clusters has been shown to be a successful approach to obtain structural information on Zr-Met-Car cluster-assembled materials collected from the gas phase. TEM images indicate the richness of the morphologies associated with these cluster crystals. However, passivation methods are expected to be examined further to overcome the limited stabilities of these novel clusters. From this initial study, it's shown the promising opportunity to study other Met-Cars species and more cluster-based materials. Experimental results of reactions run with a solvothermal synthesis method obtained while searching for new Zr-C cluster assembled materials, are reported. One unexpected product in single crystal form was isolated and tentatively identified by X-ray diffraction to be [Zr6i O(OH)O12·2(Bu)4], with space group P2 1/n and lattice parameters of a = 12.44 A, b = 22.06 A, c = 18.40 A, alpha = 90°, beta = 105°, gamma = 90°, V = 4875 A3 and R 1 = 3.15% for the total observed data (I ≥ 2 sigma I) and oR2 = 2.82%. This novel hexanuclear Zr(IV)-oxo-hydroxide cluster anion may be the first member in polyoxometalates class with metal atoms from the IVB group and having Oh symmetry. Alternatively, it may be the first member in {[(Zr6Z)X 12]X6}m- class with halides replaced by oxo- and hydroxyl groups and with an increased oxidation state of Zr. It is predicted to bear application potentials directed by both families. This work could suggest a direction in which the preparation of Zr-C cluster-assembled materials in a liquid environment may be eventually fulfilled. 1,3-Bis(diethylphosphino)propane (depp) protected small gold clusters are studied via multiple techniques, including Electrospray Ionization Mass Spectrometry

  12. Big Joe Capsule Assembly Activities

    NASA Image and Video Library

    1959-08-01

    Big Joe Capsule Assembly Activities in 1959 at NASA Glenn Research Center (formerly NASA Lewis). Big Joe was an Atlas missile that successfully launched a boilerplate model of the Mercury capsule on September 9, 1959.

  13. Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors.

    PubMed

    Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia

    2018-02-14

    The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.

  14. Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation.

    PubMed

    Yamazaki, Tomohiro; Souquere, Sylvie; Chujo, Takeshi; Kobelke, Simon; Chong, Yee Seng; Fox, Archa H; Bond, Charles S; Nakagawa, Shinichi; Pierron, Gerard; Hirose, Tetsuro

    2018-06-21

    A class of long noncoding RNAs (lncRNAs) has architectural functions in nuclear body construction; however, specific RNA domains dictating their architectural functions remain uninvestigated. Here, we identified the domains of the architectural NEAT1 lncRNA that construct paraspeckles. Systematic deletion of NEAT1 portions using CRISPR/Cas9 in haploid cells revealed modular domains of NEAT1 important for RNA stability, isoform switching, and paraspeckle assembly. The middle domain, containing functionally redundant subdomains, was responsible for paraspeckle assembly. Artificial tethering of the NONO protein to a NEAT1_2 mutant lacking the functional subdomains rescued paraspeckle assembly, and this required the NOPS dimerization domain of NONO. Paraspeckles exhibit phase-separated properties including susceptibility to 1,6-hexanediol treatment. RNA fragments of the NEAT1_2 subdomains preferentially bound NONO/SFPQ, leading to phase-separated aggregates in vitro. Thus, we demonstrate that the enrichment of NONO dimers on the redundant NEAT1_2 subdomains initiates construction of phase-separated paraspeckles, providing mechanistic insights into lncRNA-based nuclear body formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Cytoskeletal motor-driven active self-assembly in in vitro systems

    DOE PAGES

    Lam, A. T.; VanDelinder, V.; Kabir, A. M. R.; ...

    2015-11-11

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode whichmore » complements robotic manipulation and passive self-assembly.« less

  16. Inflammasome activation and assembly at a glance.

    PubMed

    Malik, Ankit; Kanneganti, Thirumala-Devi

    2017-12-01

    Inflammasomes are multimeric protein complexes that typically comprise a sensor, an adaptor and the zymogen procaspase-1. An inflammasome assembles in response to a diverse range of pathogen-associated or danger-associated molecular patterns (PAMPs or DAMPs). The inflammasome platform leads to activation of caspase-1 through proximity-induced self-cleavage, which further induces maturation of interleukins 1β and 18 (IL-1β and IL-18) through proteolytic cleavage of pro-IL-1β and pro-IL-18. Activated caspase-1 also cleaves gasdermin D, which leads to a particular form of cell death called pyroptosis. Mutations in genes that encode inflammasome components are associated with many inflammatory disorders, and studies in the past decade have highlighted the importance of appropriate activation of the inflammasome in homeostasis and disease pathogenesis. Therefore, much attention is being paid to uncover the modulators and regulators of inflammasome assembly and pyroptosis. This Cell Science at a Glance article and accompanying poster outlines the concepts in the activation of inflammasome sensors and assembly of the inflammasome platform. We also discuss recent insights into the mechanisms of regulation of inflammasome activity and the induction of cell death by pyroptosis. © 2017. Published by The Company of Biologists Ltd.

  17. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    PubMed

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices

    PubMed Central

    Zylla, Maura M.; Zhang, Xiaomin; Reichinnek, Susanne; Draguhn, Andreas; Both, Martin

    2013-01-01

    The mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity. Memory consolidation is linked to sharp wave-ripple oscillations (SPW-R) during decreased cholinergic tone. We hypothesized that increased cholinergic tone supports plastic changes of assemblies while low cholinergic tone favors their stability. Coherent spatiotemporal network patterns were measured during SPW-R activity in mouse hippocampal slices. We compared neuronal activity within the oscillating assemblies before and after a transient phase of carbachol-induced gamma oscillations. Single units maintained their coupling to SPW-R throughout the experiment and could be re-identified after the transient phase of gamma oscillations. However, the frequency of SPW-R-related unit firing was enhanced after muscarinic stimulation. At the network level, these changes resulted in altered patterns of extracellularly recorded SPW-R waveforms. In contrast, recording of ongoing SPW-R activity without intermittent cholinergic stimulation revealed remarkably stable repetitive activation of assemblies. These results show that activation of cholinergic receptors induces plasticity at the level of oscillating hippocampal assemblies, in line with the different role of gamma- and SPW-R network activity for memory formation and –consolidation, respectively. PMID:24260462

  19. End plate assembly having a two-phase fluid-filled bladder and method for compressing a fuel cell stack

    DOEpatents

    Carlstrom, Jr., Charles M.

    2001-01-01

    An end plate assembly is disclosed for use in a fuel cell assembly in which the end plate assembly includes a housing having a cavity, and a bladder receivable in the cavity and engageable with the fuel cell stack. The bladder includes a two-phase fluid having a liquid portion and a vapor portion. Desirably, the two-phase fluid has a vapor pressure between about 100 psi and about 600 psi at a temperature between about 70 degrees C. to about 110 degrees C.

  20. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  1. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGES

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  2. An active locking mechanism for assembling 3D micro structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Mayyas, Mohammad; Lee, Woo Ho; Popa, Dan; Shiakolas, Panos; Stephanou, Harry; Chiao, J. C.

    2007-01-01

    Microassembly is an enabling technology to build 3D microsystems consisting of microparts made of different materials and processes. Multiple microparts can be connected together to construct complicated in-plane and out-of-plane microsystems by using compliant mechanical structures such as micro hinges and snap fasteners. This paper presents design, fabrication, and assembly of an active locking mechanism that provides mechanical and electrical interconnections between mating microparts. The active locking mechanism is composed of thermally actuated Chevron beams and sockets. Assembly by means of an active locking mechanism offers more flexibility in designing microgrippers as it reduces or minimizes mating force, which is one of the main reasons causing fractures in a microgripper during microassembly operation. Microgrippers, microparts, and active locking mechanisms were fabricated on a silicon substrate using the deep reactive ion etching (DRIE) processes with 100-um thick silicon on insulator (SOI) wafers. A precision robotic assembly platform with a dual microscope vision system was used to automate the manipulation and assembly processes of microparts. The assembly sequence includes (1) tether breaking and picking up of a micropart by using an electrothermally actuated microgripper, (2) opening of a socket area for zero-force insertion, (3) a series of translation and rotation of a mating micropart to align it onto the socket, (4) insertion of a micropart into the socket, and (5) deactivation and releasing of locking fingers. As a result, the micropart was held vertically to the substrate and locked by the compliance of Chevron beams. Microparts were successfully assembled using the active locking mechanism and the measured normal angle was 89.2°. This active locking mechanism provides mechanical and electrical interconnections, and it can potentially be used to implement a reconfigurable microrobot that requires complex assembly of multiple links and

  3. Fabrication of capsule assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1973-01-01

    Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.

  4. Colloidal Material Box: In-situ Observations of Colloidal Self-Assembly and Liquid Crystal Phase Transitions in Microgravity

    NASA Astrophysics Data System (ADS)

    Li, WeiBin; Lan, Ding; Sun, ZhiBin; Geng, BaoMing; Wang, XiaoQing; Tian, WeiQian; Zhai, GuangJie; Wang, YuRen

    2016-05-01

    To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.

  5. Minimum accommodation for aerobrake assembly, phase 2

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Haynes, Davy A.; Tutterow, Robin D.; Watson, Judith J.; Russell, James W.

    1994-01-01

    A multi-element study was done to assess the practicality of a Space Station Freedom-based aerobrake system for the Space Exploration Initiative. The study was organized into six parts related to structure, aerodynamics, robotics and assembly, thermal protection system, inspection, and verification, all tied together by an integration study. The integration activity managed the broad issues related to meeting mission requirements. This report is a summary of the issues addressed by the integration team.

  6. Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub

    PubMed Central

    Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David

    2018-01-01

    Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. PMID:29368691

  7. Phase behavior and transitions of self-assembling nano-structured materials

    NASA Astrophysics Data System (ADS)

    Duan, Hu

    Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.

  8. Active turbulence in a gas of self-assembled spinners

    PubMed Central

    Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey

    2017-01-01

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382

  9. Active turbulence in a gas of self-assembled spinners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  10. Active turbulence in a gas of self-assembled spinners

    DOE PAGES

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...

    2017-11-20

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  11. ZPPR-20 phase D : a cylindrical assembly of polyethylene moderated U metal reflected by beryllium oxide and polyethylene.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lell, R.; Grimm, K.; McKnight, R.

    The Zero Power Physics Reactor (ZPPR) fast critical facility was built at the Argonne National Laboratory-West (ANL-W) site in Idaho in 1969 to obtain neutron physics information necessary for the design of fast breeder reactors. The ZPPR-20D Benchmark Assembly was part of a series of cores built in Assembly 20 (References 1 through 3) of the ZPPR facility to provide data for developing a nuclear power source for space applications (SP-100). The assemblies were beryllium oxide reflected and had core fuel compositions containing enriched uranium fuel, niobium and rhenium. ZPPR-20 Phase C (HEU-MET-FAST-075) was built as the reference flight configuration.more » Two other configurations, Phases D and E, simulated accident scenarios. Phase D modeled the water immersion scenario during a launch accident, and Phase E (SUB-HEU-MET-FAST-001) modeled the earth burial scenario during a launch accident. Two configurations were recorded for the simulated water immersion accident scenario (Phase D); the critical configuration, documented here, and the subcritical configuration (SUB-HEU-MET-MIXED-001). Experiments in Assembly 20 Phases 20A through 20F were performed in 1988. The reference water immersion configuration for the ZPPR-20D assembly was obtained as reactor loading 129 on October 7, 1988 with a fissile mass of 167.477 kg and a reactivity of -4.626 {+-} 0.044{cents} (k {approx} 0.9997). The SP-100 core was to be constructed of highly enriched uranium nitride, niobium, rhenium and depleted lithium. The core design called for two enrichment zones with niobium-1% zirconium alloy fuel cladding and core structure. Rhenium was to be used as a fuel pin liner to provide shut down in the event of water immersion and flooding. The core coolant was to be depleted lithium metal ({sup 7}Li). The core was to be surrounded radially with a niobium reactor vessel and bypass which would carry the lithium coolant to the forward inlet plenum. Immediately inside the reactor vessel was a

  12. Directed self-assembly into low-density colloidal liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Gao, Yongxiang; Romano, Flavio; Dullens, Roel P. A.; Doye, Jonathan K.; Aarts, Dirk G. A. L.

    2018-01-01

    Alignment of anisometric particles into liquid crystals (LCs) often results from an entropic competition between their rotational and translational degrees of freedom at dense packings. Here we show that by selectively functionalizing the heads of colloidal rods with magnetic nanoparticles this tendency can be broken to direct the particles into novel, low-density LC phases. Under an external magnetic field, the magnetic heads line up in columns whereas the nonmagnetic tails point out randomly in a plane perpendicular to the columns, forming bottle-brush-like objects; laterally, the bottle brushes are entropically stabilized against coalescence. Experiments and simulations show that upon increasing the particle density the system goes from a dilute gas to a dense two-dimensional liquid of bottle brushes with a density well below the zero-field nematic phase. Our findings offer a strategy for self-assembly into three-dimensional open phases that may find applications in switchable photonics, filtration, and light-weight materials.

  13. Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub.

    PubMed

    Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David; Bryant, Clare E

    2018-01-24

    Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. © 2018, Latty et al.

  14. Mechanisms Underlying the Active Self-Assembly of Microtubule Rings and Spools.

    PubMed

    VanDelinder, Virginia; Brener, Stephanie; Bachand, George D

    2016-03-14

    Active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly. Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.

  15. Mechanisms underlying the active self-assembly of microtubule rings and spools

    DOE PAGES

    VanDelinder, Virginia; Brener, Stephanie; Bachand, George D.

    2016-02-04

    Here, active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly.more » Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.« less

  16. Graphene oxide: surface activity and two-dimensional assembly.

    PubMed

    Kim, Franklin; Cote, Laura J; Huang, Jiaxing

    2010-05-04

    Graphene oxide (GO) is a promising precursor for preparing graphene-based composites and electronics applications. Like graphene, GO is essentially one-atom thick but can be as wide as tens of micrometers, resulting in a unique type of material building block, characterized by two very different length scales. Due to this highly anisotropic structure, the collective material properties are highly dependent on how these sheets are assembled. Therefore, understanding and controlling the assembly behavior of GO has become an important subject of research. In this Research News article the surface activity of GO and how it can be employed to create two-dimensional assemblies over large areas is discussed.

  17. Self-assembled phase-change nanowire for nonvolatile electronic memory

    NASA Astrophysics Data System (ADS)

    Jung, Yeonwoong

    One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic

  18. Self-assembly concepts in the formation of nanostructured particles using a liquid-phase synthesis method

    NASA Astrophysics Data System (ADS)

    Nandiyanto, Asep Bayu Dani

    2016-02-01

    When synthesizing particles using a liquid-phase synthesis method, reactant components show interaction with the reaction system itself. However, current reports described successful synthesis of material with only partial information on the component-component interaction and possible self-assembly mechanism occurring during the material synthesis process. Here, self-assembly concepts in the formation of nanostructured particles are presented. Influences of self-assembly parameters (i.e., surface charge, size, and concentration of components involving the reaction) on self-organized material fabrication are described. Because understanding the interaction of the component provides significant information in regard to practical uses, this report can be relevant to further material development and fabrication.

  19. Neuronal Activity and the Expression of Clathrin Assembly Protein AP180

    PubMed Central

    Wu, Fangbai; Mattson, Mark P.; Yao, Pamela J.

    2010-01-01

    The clathrin assembly protein AP180 is known to promote the assembly of clathrin-coated vesicles in the neuron. However, it is unknown whether the expression of AP180 is influenced by neuronal activity. In this study, we report that chronic depolarization results in a reduction of AP180 from hippocampal neurons, while acute depolarization causes a dispersed synaptic distribution of AP180. Activity-induced effects are observed only for AP180, but not for the structurally-related clathrin assembly proteins CALM, epsin1, or HIP1. These findings suggest that AP180 levels and synaptic distribution are highly sensitive to neuronal activity. PMID:20937255

  20. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B.; Donnio, Bertrand

    2016-07-01

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates.The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. Electronic supplementary information (ESI) available: TEM microscope images. See DOI: 10.1039/c6nr03404g

  1. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  2. Programming biological operating systems: genome design, assembly and activation.

    PubMed

    Gibson, Daniel G

    2014-05-01

    The DNA technologies developed over the past 20 years for reading and writing the genetic code converged when the first synthetic cell was created 4 years ago. An outcome of this work has been an extraordinary set of tools for synthesizing, assembling, engineering and transplanting whole bacterial genomes. Technical progress, options and applications for bacterial genome design, assembly and activation are discussed.

  3. Characterization of charged polymer self-assemblies by multidetector thermal field-flow fractionation in aqueous mobile phases.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2018-01-12

    Charged block copolymer self-assemblies, such as charged micelles, have attracted much attention as versatile drug delivery systems due to their readily tunable characteristics such as size and surface charge. However, current column-based analytical techniques are not suitable to fractionate and comprehensively characterize charged micelles in terms of size, molar mass, chemical composition and morphology. Multidetector thermal field-flow fractionation (ThFFF) is shown to be a unique characterization platform that can be used to characterize charged micelles in terms of size, molar mass, chemical composition and morphology in aqueous mobile phases with various ionic strengths and pH. This is demonstrated by the characterization of poly(methacrylic acid)-b-poly(methyl methacrylate) self-assemblies in high pH buffers as well as the characterization of cationic poly(2-vinyl pyridine)-b-polystyrene and poly(4-vinyl pyridine)-b-polystyrene self-assemblies in low pH buffers. Moreover, it is shown that ThFFF is capable of separating charged micelles according to the corona composition. These investigations prove convincingly that ThFFF is broadly applicable to the comprehensive characterization of amphiphilic self-assemblies even when aqueous mobile phases are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Physical principles of intracellular organization via active and passive phase transitions

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Brangwynne, Clifford P.; Haataja, Mikko

    2018-04-01

    Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.

  5. Physical principles of intracellular organization via active and passive phase transitions.

    PubMed

    Berry, Joel; Brangwynne, Clifford P; Haataja, Mikko

    2018-04-01

    Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.

  6. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.

    PubMed

    Forgacs, Gabor; Newman, Stuart A; Hinner, Bernhard; Maier, Christian W; Sackmann, Erich

    2003-02-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G' and loss modulus G") were measured as a function of time for five different frequencies ranging from omega = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G' and G" obey a scaling law, with the critical exponent Delta = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.

  7. Consequences of Molecular-Scale Non-Equilibrium Activity on the Dynamics and Mechanics of Self-Assembled Actin-Based Structures and Materials

    NASA Astrophysics Data System (ADS)

    Marshall Mccall, Patrick

    Living cells are hierarchically self-organized forms of active soft matter: molecules on the nanometer scale form functional structures and organelles on the micron scale, which then compose cells on the scale of 10s of microns. While the biological functions of intracellular organelles are defined by the composition and properties of the structures themselves, how those bulk properties emerge from the properties and interactions of individual molecules remains poorly understood. Actin, a globular protein which self-assembles into dynamic semi-flexible polymers, is the basic structural material of cells and the major component of many functional organelles. In this thesis, I have used purified actin as a model system to explore the interplay between molecular-scale dynamics and organelle-scale functionality, with particular focus on the role of molecular-scale non-equilibrium activity. One of the most canonical forms of molecular-scale non-equilibrium activity is that of mechanoenzymes, also called motor proteins. These proteins utilized the free energy liberated by hydrolysis of ATP to perform mechanical work, thereby introducing non-equilibrium "active" stresses on the molecular scale. Combining experiments with mathematical modeling, we demonstrate in this thesis that non-equilibrium motor activity is sufficient to drive self-organization and pattern formation of the multimeric actin-binding motor protein Myosin II on 1D reconstituted actomyosin bundles. Like myosin, actin is itself an ATPase. However, nono-equilibrium ATP hydrolysis on actin is known to regulate the stability and assembly kinetics of actin filaments rather than generate active stresses per se. At the level of single actin filaments, the inhomogeneous nucleotide composition generated along the filament length by hydrolysis directs binding of regulatory proteins like cofilin, which mediate filament disassembly and thereby accelerate actin filament turnover. The concequences of this non

  8. A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco

    2017-09-01

    Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular phase separation to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the phase separation of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular phase separation of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.

  9. Phase Transitions in the Nucleus: the functional implications of concentration-dependent assembly of a Liquid-like RNA/Protein Body

    NASA Astrophysics Data System (ADS)

    Zhu, Lian; Weber, Stephanie; Berry, Joel; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford

    2015-03-01

    The nucleolus is a liquid-like membrane-less nuclear body which plays an important role in cell growth and size control. By modulating nucleolar component concentration through RNAi conditions that change C. elegans cell size, we find that nucleoli only assemble above a threshold concentration; moreover, the ripening dynamics of nucleated droplets are consistent with the hypothesis that the assembly of the nucleolus represents an intracellular liquid-liquid phase transition. A key question is how this phase-transition is linked to the primary function of the nucleolus, in transcribing and processing ribosomal RNA. To address this, we characterize the localization of RNA Polymerase I, a key transcriptional enzyme, into nucleolar foci as a function of nucleolar component concentration. Our results suggest that there are a small number of key disordered phosphoproteins that may serve as a link between transcription and assembly. Finally, we present preliminary results using a reduced model system consisting of purified nucleolar proteins to assess the ability of nucleolar proteins to drive liquid-liquid phase separation in vitro. These results lay the foundation for a quantitative understanding of intracellular phase transitions and their impact on biomedically-critical RNA-processing steps.

  10. Fabrication of fuel pin assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1972-01-01

    Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.

  11. Systematic investigation of the SERS efficiency and SERS hotspots in gas-phase deposited Ag nanoparticle assemblies.

    PubMed

    He, L B; Wang, Y L; Xie, X; Han, M; Song, F Q; Wang, B J; Cheng, W L; Xu, H X; Sun, L T

    2017-02-15

    Gas-phase deposited Ag nanoparticle assemblies are one of the most commonly used plasmonic substrates benefiting from their remarkable advantages such as clean particle surface, tunable particle density, available inter-particle gaps, low-cost and scalable fabrication, and excellent industry compatibility. However, their performance efficiencies are difficult to optimize due to the lack of knowledge of the hotspots inside their structures. We here report a design of delicate rainbow-like Ag nanoparticle assemblies, based on which the hotspots can be revealed through a combinatorial approach. The findings show that the hotspots in gas-phase deposited Ag nanoparticle assemblies are uniquely entangled by the excitation energy and specific inter-particle gaps, differing from the matching conditions in periodic arrays. For Ag nanoparticle assemblies deposited on Formvar-filmed substrates, the mean particle size is maintained around 10 nm, while the particle density can be widely tuned. The one possessing the highest SERS efficiency (under 473 nm excitation) have a particle number density of around 7100 μm -2 . Gaps with an inter-particle spacing of around 3 nm are found to serve as SERS hotspots, and these hotspots contribute to 68% of the overall SERS intensity. For Ag nanoparticle assemblies fabricated on carbon-filmed substrates, the mean particle size can be feasibly tuned. The one possessing the highest SERS efficiency under 473 nm excitation has a particle number density of around 460 μm -2 and a mean particle size of around 42.1 nm. The construction of Ag-analyte-Ag sandwich-like nanoparticle assemblies by a two-step-deposition method slightly improves the SERS efficiency when the particle number density is low, but suppresses the SERS efficiency when the particle number density is high.

  12. Development of self-assembling nanowires containing electronically active oligothiophenes

    NASA Astrophysics Data System (ADS)

    Tsai, Wei-Wen

    This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the

  13. Emergence of Chiral Phases in Active Torque Dipole Systems

    NASA Astrophysics Data System (ADS)

    Fialho, Ana; Tjhung, Elsen; Cates, Michael; Marenduzzo, Davide

    The common description of active particles as active force dipoles fails to take into account that active processes in biological systems often exhibit chiral asymmetries, generating active chiral processes and torque dipoles. Examples of such systems include cytoskeleton filaments which interact with motor proteins and beating cilia and flagella. In particular, the generation of active torques by the actomyosin cytoskeleton has been linked to the break of chiral symmetry at a cellular level. This phenomenon could constitute the primary determinant for the break of left-right symmetry in many living organisms, e.g. the position of the human heart within the human body. In order to account for the effects of chirality, we consider active torque dipoles which generate a chiral active stress. We characterize quasi-1D and 2D systems of torque dipoles, using a combination of linear stability analysis and numerical simulations (Lattice Boltzmann). Our results show that activity drives a spontaneous breaking of chiral symmetry, leading to the self-assembly of a chiral phase, in the absence of any thermodynamic interactions favoring cholesteric ordering. At high values of activity, we also observe labyrinthine patterns where the activity-induced chiral ordering is highly frustrated.

  14. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry.

    PubMed

    Zhou, Xiao-Ming; Shimanovich, Ulyana; Herling, Therese W; Wu, Si; Dobson, Christopher M; Knowles, Tuomas P J; Perrett, Sarah

    2015-06-23

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.

  15. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry

    PubMed Central

    2015-01-01

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507

  16. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    PubMed

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.

  17. H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo

    PubMed Central

    Ejlassi-Lassallette, Aïda; Mocquard, Eloïse; Arnaud, Marie-Claire; Thiriet, Christophe

    2011-01-01

    While specific posttranslational modification patterns within the H3 and H4 tail domains are associated with the S-phase, their actual functions in replication-dependent chromatin assembly have not yet been defined. Here we used incorporation of trace amounts of recombinant proteins into naturally synchronous macroplasmodia of Physarum polycephalum to examine the function of H3 and H4 tail domains in replication-coupled chromatin assembly. We found that the H3/H4 complex lacking the H4 tail domain was not efficiently recovered in nuclei, whereas depletion of the H3 tail domain did not impede nuclear import but chromatin assembly failed. Furthermore, our results revealed that the proper pattern of acetylation on the H4 tail domain is required for nuclear import and chromatin assembly. This is most likely due to binding of Hat1, as coimmunoprecipitation experiments showed Hat1 associated with predeposition histones in the cytoplasm and with replicating chromatin. These results suggest that the type B histone acetyltransferase assists in shuttling the H3/H4 complex from cytoplasm to the replication forks. PMID:21118997

  18. Noncovalent Derivatization: A Laboratory Experiment for Understanding the Principles of Molecular Recognition and Self-Assembly through Phase Behavior

    ERIC Educational Resources Information Center

    Cannon, Amy S.; Warner, John C.; Koraym, Smaa A.; Marteel-Parrish, Anne E.

    2014-01-01

    An experiment focusing on the creation of phase diagrams involving nonconvalent derivatives of hydroquinone and bis[N,N-diethyl]terephthalamide (HQ-DETPA) is presented. A phase diagram was assembled by taking samples of different compositions (i.e., 40% hydroquinone and 60% bis[N,N-diethyl]terephthalamide, 70%/30%, etc.) and determining the…

  19. Water Dynamics in Gyroid Phases of Self-Assembled Gemini Surfactants

    DOE PAGES

    Roy, Santanu; Skoff, David; Perroni, Dominic V.; ...

    2016-02-14

    Water-mediated ion transport through functional nanoporous materials depends on the dynamics of water confined within a given nanostructured morphology. In this study, we investigate hydrogen-bonding dynamics of interfacial water within a ‘normal’ (Type I) lyotropic gyroid phase formed by a gemini dicarboxylate surfactant self-assembly using a combina- tion of 2DIR spectroscopy and molecular dynamics simulations. Experiments and simulations demonstrate that water dynamics in the normal gyroid phase is one order of magnitude slower than that in bulk water, due to specific interactions between water, the ionic surfactant headgroups, and counterions. However, the dynamics of water in the normal gyroid phasemore » are faster than those of water confined in a reverse spherical micelle of a sulfonate surfactant, given that the water pool in the reverse micelle and the water pore in the gyroid phase have roughly the same diameters. This difference in confined water dynamics likely arises from the significantly reduced curvature- induced frustration at the convex interfaces of the normal gyroid, as compared to the concave interfaces of a reverse spherical micelle. These detailed insights into confined water dynamics may guide the future design of artificial membranes that rapidly transport protons and other ions.« less

  20. The Assembly-Activating Protein Promotes Stability and Interactions between AAV's Viral Proteins to Nucleate Capsid Assembly.

    PubMed

    Maurer, Anna C; Pacouret, Simon; Cepeda Diaz, Ana Karla; Blake, Jessica; Andres-Mateos, Eva; Vandenberghe, Luk H

    2018-05-08

    The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Lingzi; Yeo, Yee-Chia, E-mail: yeo@ieee.org

    This work demonstrates and describes for the first time an unusual strain-relaxation mechanism by the formation and self-assembly of well-ordered tin wires during the thermal annealing of epitaxial Ge{sub 0.83}Sn{sub 0.17}-on-Ge(001) substrate. Fully strained germanium-tin alloys (Ge{sub 0.83}Sn{sub 0.17}) were epitaxially grown on Ge(001) substrate by molecular beam epitaxy. The morphological and compositional evolution of Ge{sub 0.83}Sn{sub 0.17} during thermal annealing is studied by atomic force microscopy, X-ray diffraction, transmission electron microscopy. Under certain annealing conditions, the Ge{sub 0.83}Sn{sub 0.17} layer decomposes into two stable phases, and well-defined Sn wires that are preferentially oriented along two orthogonal 〈100〉 azimuths aremore » formed. The formation of the Sn wires is related to the annealing temperature and the Ge{sub 0.83}Sn{sub 0.17} thickness, and can be explained by the nucleation of a grain with Sn islands on the outer front, followed by grain boundary migration. The Sn wire formation process is found to be thermally activated, and an activation enthalpy (E{sub c}) of 0.41 eV is extracted. This thermally activated phase transformation, i.e., 2D epitaxial layer to 3D wires, occurs via a mechanism akin to “cellular precipitation.” This synthesis route of Sn wires opens new possibilities for creation of nanoscale patterns at high-throughput without the need for lithography.« less

  2. Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11.

    PubMed

    Earley, Lauriel F; Powers, John M; Adachi, Kei; Baumgart, Joshua T; Meyer, Nancy L; Xie, Qing; Chapman, Michael S; Nakai, Hiroyuki

    2017-02-01

    Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly. Assembly-activating protein (AAP) is a recently discovered adeno-associated virus (AAV) protein that promotes capsid assembly and provides new opportunities

  3. Mesoscale Simulation and Machine Learning of Asphaltene Aggregation Phase Behavior and Molecular Assembly Landscapes.

    PubMed

    Wang, Jiang; Gayatri, Mohit A; Ferguson, Andrew L

    2017-05-11

    Asphaltenes constitute the heaviest fraction of the aromatic group in crude oil. Aggregation and precipitation of asphaltenes during petroleum processing costs the petroleum industry billions of dollars each year due to downtime and production inefficiencies. Asphaltene aggregation proceeds via a hierarchical self-assembly process that is well-described by the Yen-Mullins model. Nevertheless, the microscopic details of the emergent cluster morphologies and their relative stability under different processing conditions remain poorly understood. We perform coarse-grained molecular dynamics simulations of a prototypical asphaltene molecule to establish a phase diagram mapping the self-assembled morphologies as a function of temperature, pressure, and n-heptane:toluene solvent ratio informing how to control asphaltene aggregation by regulating external processing conditions. We then combine our simulations with graph matching and nonlinear manifold learning to determine low-dimensional free energy surfaces governing asphaltene self-assembly. In doing so, we introduce a variant of diffusion maps designed to handle data sets with large local density variations, and report the first application of many-body diffusion maps to molecular self-assembly to recover a pseudo-1D free energy landscape. Increasing pressure only weakly affects the landscape, serving only to destabilize the largest aggregates. Increasing temperature and toluene solvent fraction stabilizes small cluster sizes and loose bonding arrangements. Although the underlying molecular mechanisms differ, the strikingly similar effect of these variables on the free energy landscape suggests that toluene acts upon asphaltene self-assembly as an effective temperature.

  4. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  5. Ground controlled robotic assembly operations for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1991-01-01

    A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities.

  6. Industrial Technology Modernization Program. Phase 3 Proposal, Category 1 Project Countermeasures Assembly Improvements

    DTIC Science & Technology

    1985-05-24

    Tracor INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM DTICRt .1ECTE CDJUN07 1989 00 PHASE 3 PROPOSAL CATEGORY 1 PROJECT COUNTERMEASURES ASSEMBLY...package in bin C V_ Put-package back in bin C Put part in plastic bag 0CDV _7 _ ] Seal plastic bag with stapler CDDV _ _- 1 Mark paperwork CDV __ I Peel...part in plastic bag CDV7 Seal plastic bag with stapler C>CDV _ Mark paperwork ~CV_ _ Peel preprinted tag from sheet ~ D Put preprinted tag on plastic

  7. Observation of the Chiral and Achiral Hexatic Phases of Self-assembled Micellar polymers

    PubMed Central

    Pal, Antara; Kamal, Md. Arif; Raghunathan, V. A.

    2016-01-01

    We report the discovery of a thermodynamically stable line hexatic (N + 6) phase in a three-dimensional (3D) system made up of self-assembled polymer-like micelles of amphiphilic molecules. The experimentally observed phase transition sequence nematic (N)  N + 6  two-dimensional hexagonal (2D-H) is in good agreement with the theoretical predictions. Further, the present study also brings to light the effect of chirality on the N + 6 phase. In the chiral N + 6 phase the bond-orientational order within each “polymer” bundle is found to be twisted about an axis parallel to the average polymer direction. This structure is consistent with the theoretically envisaged Moiré state, thereby providing the first experimental demonstration of the Moiré structure. In addition to confirming the predictions of fundamental theories of two-dimensional melting, these results are relevant in a variety of situations in chemistry, physics and biology, where parallel packing of polymer-like objects are encountered. PMID:27577927

  8. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    NASA Astrophysics Data System (ADS)

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  9. Automated solar panel assembly line

    NASA Technical Reports Server (NTRS)

    Somberg, H.

    1981-01-01

    The initial stage of the automated solar panel assembly line program was devoted to concept development and proof of approach through simple experimental verification. In this phase, laboratory bench models were built to demonstrate and verify concepts. Following this phase was machine design and integration of the various machine elements. The third phase was machine assembly and debugging. In this phase, the various elements were operated as a unit and modifications were made as required. The final stage of development was the demonstration of the equipment in a pilot production operation.

  10. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  11. 75 FR 11916 - Chrysler LLC, Manufacturing Truck and Activity Division, Jefferson North Assembly Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ..., Manufacturing Truck and Activity Division, Jefferson North Assembly Plant, Including On-Site Leased Workers From..., Jefferson North Assembly Plant, Detroit, Michigan. The notice was published in the Federal Register on April... substantial portion of which are shipped to an affiliated plant where they are used in the assembly of...

  12. Traveling wave electro-optic phase modulators based on intrinsically polar self-assembled chromophoric superlattices

    NASA Astrophysics Data System (ADS)

    Zhao, Y.-G.; Wu, A.; Lu, H.-L.; Chang, S.; Lu, W.-K.; Ho, S. T.; van der Boom, M. E.; Marks, T. J.

    2001-07-01

    Traveling-wave electro-optic modulators based on chromophoric self-assembled superlattices (SASs) possessing intrinsically polar microstructures have been designed and fabricated. Although the thickness of the SAS layer is only ˜150 nm, a π-phase shift is clearly observed. From the measured Vπ value, the effective electro-optic coefficient of the SAS film is determined to be ˜21.8 pm/V at an input wavelength of 1064 nm.

  13. Sensor fusion of phase measuring profilometry and stereo vision for three-dimensional inspection of electronic components assembled on printed circuit boards.

    PubMed

    Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il

    2009-07-20

    Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.

  14. Beyond the continuum: a multi-dimensional phase space for neutral-niche community assembly.

    PubMed

    Latombe, Guillaume; Hui, Cang; McGeoch, Melodie A

    2015-12-22

    Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral-niche community dynamics. The neutral-niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. © 2015 The Author(s).

  15. Beyond the continuum: a multi-dimensional phase space for neutral–niche community assembly

    PubMed Central

    Latombe, Guillaume; McGeoch, Melodie A.

    2015-01-01

    Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. PMID:26702047

  16. Activity recognition of assembly tasks using body-worn microphones and accelerometers.

    PubMed

    Ward, Jamie A; Lukowicz, Paul; Tröster, Gerhard; Starner, Thad E

    2006-10-01

    In order to provide relevant information to mobile users, such as workers engaging in the manual tasks of maintenance and assembly, a wearable computer requires information about the user's specific activities. This work focuses on the recognition of activities that are characterized by a hand motion and an accompanying sound. Suitable activities can be found in assembly and maintenance work. Here, we provide an initial exploration into the problem domain of continuous activity recognition using on-body sensing. We use a mock "wood workshop" assembly task to ground our investigation. We describe a method for the continuous recognition of activities (sawing, hammering, filing, drilling, grinding, sanding, opening a drawer, tightening a vise, and turning a screwdriver) using microphones and three-axis accelerometers mounted at two positions on the user's arms. Potentially "interesting" activities are segmented from continuous streams of data using an analysis of the sound intensity detected at the two different locations. Activity classification is then performed on these detected segments using linear discriminant analysis (LDA) on the sound channel and hidden Markov models (HMMs) on the acceleration data. Four different methods at classifier fusion are compared for improving these classifications. Using user-dependent training, we obtain continuous average recall and precision rates (for positive activities) of 78 percent and 74 percent, respectively. Using user-independent training (leave-one-out across five users), we obtain recall rates of 66 percent and precision rates of 63 percent. In isolation, these activities were recognized with accuracies of 98 percent, 87 percent, and 95 percent for the user-dependent, user-independent, and user-adapted cases, respectively.

  17. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity

    DTIC Science & Technology

    2016-10-27

    AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis, dynamics and activity 5a.  CONTRACT NUMBER 5b...report Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and Activity Ulrich Heiz

  18. Dynamics of self-assembled cytosine nucleobases on graphene

    NASA Astrophysics Data System (ADS)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  19. Automated aray assembly, phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1979-01-01

    A manufacturing process suitable for the large-scale production of silicon solar array modules at a cost of less than $500/peak kW is described. Factors which control the efficiency of ion implanted silicon solar cells, screen-printed thick film metallization, spray-on antireflection coating process, and panel assembly are discussed. Conclusions regarding technological readiness or cost effectiveness of individual process steps are presented.

  20. Self-Assembly: How Nature Builds

    ERIC Educational Resources Information Center

    Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon

    2006-01-01

    Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…

  1. Thermal-induced phase transition and assembly of hexagonal metastable In 2O 3 nanocrystals: A new approach to In 2O 3 functional materials

    NASA Astrophysics Data System (ADS)

    Shu, Shiwen; Yu, Dabin; Wang, Yan; Wang, Feng; Wang, Zirong; Zhong, Wu

    2010-10-01

    This paper reports on the thermal-induced performance of hexagonal metastable In 2O 3 nanocrystals involving in phase transition and assembly, with particular emphasis on the assembly for the preparation of functional materials. For In 2O 3 nanocrystals, the metastable phase was found to be thermally unstable and transform to cubic phase when temperature was higher than 600 °C, accompanied by assembly as well as evolution of optical properties, but the two polymorphs coexisted at the temperature ranging from 600 to 900 °C, during which the content of product phase and crystal size gradually increased upon increasing temperature. The assembly of In 2O 3 nanocrystals can be developed to fabricate In 2O 3 functional materials, such as various ceramic materials, or even desired nano- or micro-structures, by using metastable In 2O 3 nanocrystals as precursors or building blocks. The electrical resistivity of In 2O 3 conductive film fabricated by a hot-pressing route was as low as 3.72×10 -3 Ω cm, close to that of In 2O 3 single crystal, which is important for In 2O 3 that is always used as conductive materials. The findings should be of importance for both the wide applications of In 2O 3 in optical and electronic devices and theoretical investigations on crystal structures.

  2. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    PubMed

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical

  3. Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling.

    PubMed

    McGuire, Christina M; Forgac, Michael

    2018-06-08

    The vacuolar H + -ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V 1 domain and the integral V 0 domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized. Here, we identify glucose starvation as a novel regulator of V-ATPase assembly in mammalian cells. During acute glucose starvation, the V-ATPase undergoes a rapid and reversible increase in assembly and activity as measured by lysosomal acidification. Because the V-ATPase has recently been implicated in the activation of AMP kinase (AMPK), a critical cellular energy sensor that is also activated upon glucose starvation, we compared the time course of AMPK activation and V-ATPase assembly upon glucose starvation. We observe that AMPK activation precedes increased V-ATPase activity. Moreover, the starvation-induced increase in V-ATPase activity and assembly are prevented by the AMPK inhibitor dorsomorphin. These results suggest that increased assembly and activity of the V-ATPase upon glucose starvation are dependent upon AMPK. We also find that the PI3K/Akt pathway, which has previously been implicated in controlling V-ATPase assembly in mammalian cells, also plays a role in the starvation-induced increase in V-ATPase assembly and activity. These studies thus identify a novel stimulus of V-ATPase assembly and a novel signaling pathway involved in regulating this process. The possible function of starvation-induced increase in lysosomal V-ATPase activity is discussed. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity.

    PubMed

    Joseph, Anna-Maria; Hood, David A

    2012-03-01

    We investigated the assembly of the TOM complex within skeletal muscle under conditions of chronic contractile activity-induced mitochondrial biogenesis. Tom40 import into mitochondria was increased by chronic contractile activity, as was its time-dependent assembly into the TOM complex. These changes coincided with contractile activity-induced augmentations in the expression of key protein import machinery components Tim17, Tim23, and Tom22, as well as the cytosolic chaperone Hsp90. These data indicate the adaptability of the TOM protein import complex and suggest a regulatory role for the assembly of this complex in exercise-induced mitochondrial biogenesis. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  5. Order from the disorder: hierarchical nanostructures self-assembled from the gas phase (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Di Fonzo, Fabio

    2017-02-01

    The assembly of nanoscale building blocks in engineered mesostructures is one of the fundamental goals of nanotechnology. Among the various processes developed to date, self-assembly emerges as one of the most promising, since it relays solely on basic physico-chemical forces. Our research is focused on a new type of self-assembly strategy from the gas-phase: Scattered Ballistic Deposition (SBD). SBD arises from the interaction of a supersonic molecular beam with a static gas and enables the growth of quasi-1D hierarchical mesostructures. Overall, they resemble a forest composed of individual, high aspect-ratio, tree-like structures, assembled from amorphous or crystalline nanoparticles. SBD is a general occurring phenomenon and can be obtained with different vapour or cluster sources. In particular, SBD by Pulsed Laser Deposition is a convenient physical vapor technique that allows the generation of supersonic plasma jets from any inorganic material irrespective of melting temperature, preserving even the most complex stoichiometries. One of the advantages of PLD over other vapour deposition techniques is extremely wide operational pressure range, from UHV to ambient pressure. These characteristics allowed us to develop quasi-1D hierarchical nanostructures from different transition metal oxides, semiconductors and metals. The precise control offered by the SBD-PLD technique over material properties at the nanoscale allowed us to fabricate ultra-thin, high efficiency hierarchical porous photonic crystals with Bragg reflectivity up to 85%. In this communication we will discuss the application of these materials to solar energy harvesting and storage, stimuli responsive photonic crystals and smart surfaces with digital control of their wettability behaviour.

  6. One-dimensional poly(L-lysine)-block-poly(L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis.

    PubMed

    Chen, Yu-Fon; Shiau, Ai-Li; Chang, Sue-Joan; Fan, Nai-Shin; Wang, Chung-Teng; Wu, Chao-Liang; Jan, Jeng-Shiung

    2017-06-01

    Herein, we report the oncolytic activity of cationic, one-dimensional (1D) fibril assemblies formed from coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides for cancer therapy. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via the mitochondria-lytic effect. The concept is analogous to that of 1D drug carriers that exhibit enhanced cell penetration. In comparison to free PLL chains, PLL-b-PLT fibril assemblies exhibit selective cytotoxicity toward cancer cells, low hemolysis activity, enhanced membranolytic activity, and a different apoptosis pathway, which may be due to differences in the peptide-membrane interactions. Antitumor studies using a metastatic LL2 lung carcinoma model indicate that the fibril assemblies significantly inhibited tumor growth, improved survival in tumor-bearing mice and suppressed lung metastasis without obvious body weight loss. An additive efficacy was also observed for treatment with both PLL-b-PLT and cisplatin. These results support the feasibility of using 1D fibril assemblies as potential apoptotic anticancer therapeutics. We report that cationic, one-dimensional (1D) fibril assemblies formed by coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides exhibited potent anticancer activity by enhancing membranolysis. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via mitochondria-lytic effect. Moreover, the fibril assemblies exhibited low hemolytic activity and selective cytotoxicity toward cancer cell, which is advantageous as compared to PLL and most antimicrobial/anticancerous peptides. This study provides a new concept of using cationic, 1D fibril assemblies for cancer therapy

  7. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Zhao, Jianghong; Feng, Chong; Zhao, Rijie; Sun, Yahui; Guan, Taotao; Han, Baixin; Tang, Nan; Wang, Jianlong; Li, Kaixi; Qiao, Jinli; Zhang, Jiujun

    2017-02-01

    A scalable inverse-microemulsion-polymerization-phase-separation coupling method is applied to successfully prepare hierarchical macropore-rich activated carbon microspheres (ACS) using a phenolic resin (PR) precursor followed by carbonization and KOH activation for the first time. The formed ACS materials are assembled by carbon nanoparticles (CNPs). The macropores interspersed among the component CNPs are formed after removing the non-reactive solvent phase in the course of the polymerization of the reactive PR phase, which occupies ∼64% of the total pore volume (∼2.779 cm3 g-1) of the optimized ACS. In combination with mesopores (∼18% of the total pore volume), the ACS possesses meso/macropores approaching 82% of the total pore volume. Micropores are created in the component CNPs via KOH activation, showing shortened ion transport distances in the nanoscale dimension. Both the hierarchical micro/meso/macroporous structure and the inner nanoparticle morphology (short ion diffusion pathways) can significantly contribute to the rapid transport of electrolyte ions throughout the carbonaceous matrix, resulting in superior rate performance of ACS-based supercapacitors. More importantly, the energy densities of the ACS supercapacitors operating in both aqueous and organic electrolyte retain steady over a wide range of power densities varying dramatically from 0.25 to 14.5 kW kg-1 and to 7.0 kW kg-1, respectively.

  8. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase.

    PubMed

    Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G

    2017-11-01

    The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    DOE PAGES

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; ...

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less

  10. 77 FR 73038 - Agency Information Collection Activities: Foreign Assembler's Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Foreign Assembler's Declaration AGENCY: U.S. Customs and Border Protection, Department of... information. SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland Security will be...

  11. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure

    PubMed Central

    2013-01-01

    Background Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved. Results We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans. Conclusions The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution. PMID:24025428

  12. Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone

    PubMed Central

    Gundelfinger, Eckart D.; Reissner, Carsten; Garner, Craig C.

    2016-01-01

    Bassoon and Piccolo are two very large scaffolding proteins of the cytomatrix assembled at the active zone (CAZ) where neurotransmitter is released. They share regions of high sequence similarity distributed along their entire length and seem to share both overlapping and distinct functions in organizing the CAZ. Here, we survey our present knowledge on protein-protein interactions and recent progress in understanding of molecular functions of these two giant proteins. These include roles in the assembly of active zones (AZ), the localization of voltage-gated Ca2+ channels (VGCCs) in the vicinity of release sites, synaptic vesicle (SV) priming and in the case of Piccolo, a role in the dynamic assembly of the actin cytoskeleton. Piccolo and Bassoon are also important for the maintenance of presynaptic structure and function, as well as for the assembly of CAZ specializations such as synaptic ribbons. Recent findings suggest that they are also involved in the regulation activity-dependent communication between presynaptic boutons and the neuronal nucleus. Together these observations suggest that Bassoon and Piccolo use their modular structure to organize super-molecular complexes essential for various aspects of presynaptic function. PMID:26793095

  13. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  14. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  15. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  16. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  17. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  18. Detection of Intermediates And Kinetic Control During Assembly of Bacteriophage P22 Procapsid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuma, R.; Tsuruta, H.; French, K.H.

    2009-05-26

    Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter {approx} 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibriummore » (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly.« less

  19. Confined Pattern-Directed Assembly of Polymer-Grafted Nanoparticles in a Phase Separating Blend with a Homopolymer Matrix.

    PubMed

    Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir

    The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.

  20. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity

    PubMed Central

    Magalhaes, Luma G.; Marques, Fernando B.; da Fonseca, Marina B.; Rogério, Kamilla R.; Graebin, Cedric S.; Andricopulo, Adriano D.

    2016-01-01

    Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497

  1. Electrochemistry of redox-active self-assembled monolayers

    PubMed Central

    Eckermann, Amanda L.; Feld, Daniel J.; Shaw, Justine A.; Meade, Thomas J.

    2010-01-01

    Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. PMID:20563297

  2. Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities

    PubMed Central

    Ackerman, Paul J.; Qi, Zhiyuan; Lin, Yiheng; Twombly, Christopher W.; Laviada, Mauricio J.; Lansac, Yves; Smalyukh, Ivan I.

    2012-01-01

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators. PMID:22679553

  3. Ergonomic risk assessment with DesignCheck to evaluate assembly work in different phases of the vehicle development process.

    PubMed

    Winter, Gabriele; Schaub, Karlheinz G; Großmann, Kay; Laun, Gerhard; Landau, Kurt; Bruder, Ralph

    2012-01-01

    Occupational hazards exist, if the design of the work situation is not in accordance with ergonomic design principles. At assembly lines ergonomics is applied to the design of work equipment and tasks and to work organisation. The ignoring of ergonomic principles in planning and design of assembly work leads to unfavourable working posture, action force and material handling. Disorders of the musculoskeletal system are of a common occurrence throughout Europe. Musculoskeletal disorders are a challenge against the background of disabled workers. The changes in a worker's capability have to be regarded in the conception of redesigned and new assembly lines. In this way ergonomics becomes progressively more important in planning and design of vehicles: The objective of ergonomic design in different stages of the vehicles development process is to achieve an optimal adaptation of the assembly work to workers. Hence the ergonomic screening tool "Design Check" (DC) was developed to identify ergonomic deficits in workplace layouts. The screening-tool is based on the current ergonomic state of the art in the design of physical work and relevant EU legal requirements. It was tested within a federal German research project at selected work stations at the assembly lines at Dr.-Ing. h.c. F. Porsche AG / Stuttgart. Meanwhile the application of the screening-tool DC is transferred in other parts of the Porsche AG, Stuttgart. It is also realized as an ergonomic standard method to perform assembly work in different phases of the vehicle development process.

  4. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS

    DOE PAGES

    Huang, William Y. C.; Yan, Qingrong; Lin, Wan-Chen; ...

    2016-07-01

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kineticsmore » and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. In conclusion, the generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.« less

  5. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS

    PubMed Central

    Huang, William Y. C.; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K.; Hansen, Scott D.; Christensen, Sune M.; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T.

    2016-01-01

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes. PMID:27370798

  6. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS.

    PubMed

    Huang, William Y C; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K; Hansen, Scott D; Christensen, Sune M; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T

    2016-07-19

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.

  7. 1D Self-Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptide-Functionalized Perylene Bisimides.

    PubMed

    Adam, Madeleine K; Jarrett-Wilkins, Charles; Beards, Michael; Staykov, Emiliyan; MacFarlane, Liam R; Bell, Toby D M; Matthews, Jacqueline M; Manners, Ian; Faul, Charl F J; Moens, Pierre D J; Ben, Robert N; Wilkinson, Brendan L

    2018-06-04

    Antifreeze glycoproteins (AFGPs) are polymeric natural products that have drawn considerable interest in diverse research fields owing to their potent ice recrystallization inhibition (IRI) activity. Self-assembled materials have emerged as a promising class of biomimetic ice growth inhibitor, yet the development of AFGP-based supramolecular materials that emulate the aggregative behavior of AFGPs have not yet been reported. This work reports the first example of the 1D self-assembly and IRI activity of AFGP-functionalized perylene bisimides (AFGP-PBIs). Glycopeptide-functionalized PBIs underwent 1D self-assembly in water and showed modest IRI activity, which could be tuned through substitution of the PBI core. This work presents essential proof-of-principle for the development of novel IRIs as potential supramolecular cryoprotectants and glycoprotein mimics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities.

    PubMed

    Didychuk, Allison L; Montemayor, Eric J; Carrocci, Tucker J; DeLaitsch, Andrew T; Lucarelli, Stefani E; Westler, William M; Brow, David A; Hoskins, Aaron A; Butcher, Samuel E

    2017-09-08

    U6 small nuclear ribonucleoprotein (snRNP) biogenesis is essential for spliceosome assembly, but not well understood. Here, we report structures of the U6 RNA processing enzyme Usb1 from yeast and a substrate analog bound complex from humans. Unlike the human ortholog, we show that yeast Usb1 has cyclic phosphodiesterase activity that leaves a terminal 3' phosphate which prevents overprocessing. Usb1 processing of U6 RNA dramatically alters its affinity for cognate RNA-binding proteins. We reconstitute the post-transcriptional assembly of yeast U6 snRNP in vitro, which occurs through a complex series of handoffs involving 10 proteins (Lhp1, Prp24, Usb1 and Lsm2-8) and anti-cooperative interactions between Prp24 and Lhp1. We propose a model for U6 snRNP assembly that explains how evolutionarily divergent and seemingly antagonistic proteins cooperate to protect and chaperone the nascent snRNA during its journey to the spliceosome.The mechanism of U6 small nuclear ribonucleoprotein (snRNP) biogenesis is not well understood. Here the authors characterize the enzymatic activities and structures of yeast and human U6 RNA processing enzyme Usb1, reconstitute post-transcriptional assembly of yeast U6 snRNP in vitro, and propose a model for U6 snRNP assembly.

  9. The Fossil Record of Two-phase Galaxy Assembly: Kinematics and Metallicities in the Nearest S0 Galaxy

    NASA Astrophysics Data System (ADS)

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Chomiuk, Laura; Spitler, Lee R.; Strader, Jay; Benson, Andrew J.; Forbes, Duncan A.

    2011-08-01

    We present a global analysis of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging from Suprime-Cam on the Subaru telescope, and multi-slit spectra of the field stars and globular clusters (GCs) obtained using Keck-DEIMOS/LRIS and Magellan-IMACS. Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly (v/σ >~ 1.5). At larger radii, the rotation declines dramatically to v/σ ~ 0.7, but remains well aligned with the inner regions. The radial decrease in characteristic metallicity of both the metal-rich and metal-poor GC subpopulations produces strong gradients with power-law slopes of -0.17 ± 0.04 and -0.38 ± 0.06 dex dex-1, respectively. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers with typical mass ratios of ~15-20:1.

  10. Fabrication of Polyhedral Particles from Spherical Colloids and Their Self-Assembly into Rotator Phases**

    PubMed Central

    Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials. PMID:25366869

  11. Mapping and Engineering Functional Domains of the Assembly Activating Protein of Adeno-Associated Viruses.

    PubMed

    Tse, Longping V; Moller-Tank, Sven; Meganck, Rita M; Asokan, Aravind

    2018-04-25

    Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis followed by deletion and substitutional mutagenesis of specific domains, namely, the hydrophobic N-terminal domain (HR), conserved core (CC), proline-rich region (PRR), threonine/serine rich region (T/S) and basic region (BR). First, we establish that the centrally located PRR and T/S regions are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display varying ability to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N-terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful towards understanding and controlling AAV capsid assembly. Importance: Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a

  12. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  13. Laser-Directed Hierarchical Assembly of Liquid Crystal Defects and Control of Optical Phase Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, P. J.; Qi, Z. Y.; Lin, Y. H.

    2012-06-07

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable 'optical drawing' of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies ofmore » defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators.« less

  14. Catalytic diversity in self-propagating peptide assemblies

    NASA Astrophysics Data System (ADS)

    Omosun, Tolulope O.; Hsieh, Ming-Chien; Childers, W. Seth; Das, Dibyendu; Mehta, Anil K.; Anthony, Neil R.; Pan, Ting; Grover, Martha A.; Berland, Keith M.; Lynn, David G.

    2017-08-01

    The protein-only infectious agents known as prions exist within cellular matrices as populations of assembled polypeptide phases ranging from particles to amyloid fibres. These phases appear to undergo Darwinian-like selection and propagation, yet remarkably little is known about their accessible chemical and biological functions. Here we construct simple peptides that assemble into well-defined amyloid phases and define paracrystalline surfaces able to catalyse specific enantioselective chemical reactions. Structural adjustments of individual amino acid residues predictably control both the assembled crystalline order and their accessible catalytic repertoire. Notably, the density and proximity of the extended arrays of enantioselective catalytic sites achieve template-directed polymerization of new polymers. These diverse amyloid templates can now be extended as dynamic self-propagating templates for the construction of even more complex functional materials.

  15. General Mechanism of Morphology Transition and Spreading Area-dependent Phase Diagram of Block Copolymer Self-assembly at the Air/Water Interface

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hyup; Kim, So Youn

    Block copolymers (BCPs) can be self-assembled forming periodic nanostructures, which have been employed in many applications. While general agreements exist for the phase diagrams of BCP self-assembly in bulk or thin films, a fundamental understanding of BCP structures at the air/water interface still remain elusive. The current study explains morphology transition of BCPs with relative fraction of each block at the air/water interface: block fraction is the only parameter to control the morphology. In this study, we show morphology transitions from spherical to cylindrical and planar structures with neat polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) via reducing the spreading area of BCP solution at the air/water interface. For example, PS-b-P2VP in a fixed block fraction known to form only spheres can experience sphere to cylinder or lamellar transitions depending on the spreading area at the air/water interface. Suggesting a new parameter to control the interfacial assembly of BCPs, a complete phase diagram is drawn with two paramters: relative block fraction and spreading area. We also explain the morphology transition with the combinational description of dewetting mechanism and spring effect of hydrophilic block.

  16. Anthranilate-Activating Modules from Fungal Nonribosomal Peptide Assembly Lines†

    PubMed Central

    Ames, Brian D.; Walsh, Christopher T.

    2010-01-01

    Fungal natural products containing benzodiazepinone- and quinazolinone-fused ring systems can be assembled by nonribosomal peptide synthetases (NRPS) using the conformationally restricted β-amino acid anthranilate as one of the key building blocks. We validated that the first module of the acetylaszonalenin synthetase of Neosartorya fischeri NRRL 181 activates anthranilate to anthranilyl-AMP. With this as starting point, we then used bioinformatic predictions about fungal adenylation domain selectivities to identify and confirm an anthranilate-activating module in the fumiquinazoline A producer Aspergillus fumigatus Af293 as well as a second anthranilate-activating NRPS in N. fischeri. This establishes an anthranilate adenylation domain code for fungal NRPS and should facilitate detection and cloning of gene clusters for benzodiazepine- and quinazoline-containing polycyclic alkaloids with a wide range of biological activities. PMID:20225828

  17. Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms.

    PubMed

    Torres, Viviana I; Inestrosa, Nibaldo C

    2018-06-01

    Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.

  18. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  19. Light-activated control of protein channel assembly mediated by membrane mechanics

    NASA Astrophysics Data System (ADS)

    Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.

    2016-12-01

    Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.

  20. Assembly and activation of neurotrophic factor receptor complexes.

    PubMed

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  1. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.

    PubMed

    Humenik, Martin; Mohrand, Madeleine; Scheibel, Thomas

    2018-04-18

    The recombinant spider silk protein eADF4(C16) was genetically fused either with esterase 2 (EST2) or green fluorescent protein (GFP). The fusions EST-eADF4(C16) and GFP-eADF4(C16) were spectroscopically investigated and showed native structures of EST and GFP. The structural integrity was confirmed by the enzymatic activity of EST and the fluorescence of GFP. The spider silk moiety retained its intrinsically unstructured conformation in solution and the self-assembly into either nanofibrils or nanoparticles could be controlled by the concentration of phosphate. Particles, however, showed significantly lower activity of the EST and GFP domains likely caused by a steric hindrance. However, upon self-assembly of EST-eADF4(C16) and GFP-eADF4(C16) into fibrils the protein activities were retained. In general, the fusion of globular enzymes with the spider silk domain allows the generation of fibrous biomaterials with catalytic or light emitting properties.

  2. Galaxy And Mass Assembly (GAMA): the effect of galaxy group environment on active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Gordon, Yjan A.; Pimbblet, Kevin A.; Owers, Matt S.; Bland-Hawthorn, Joss; Brough, Sarah; Brown, Michael J. I.; Cluver, Michelle E.; Croom, Scott M.; Holwerda, Benne W.; Loveday, Jonathan; Mahajan, Smriti; Wang, Lingyu

    2018-04-01

    In galaxy clusters, efficiently accreting active galactic nuclei (AGNs) are preferentially located in the infall regions of the cluster projected phase-space, and are rarely found in the cluster core. This has been attributed to both an increase in triggering opportunities for infalling galaxies, and a reduction of those mechanisms in the hot, virialized, cluster core. Exploiting the depth and completeness (98 per cent at r < 19.8 mag) of the Galaxy And Mass Assembly survey (GAMA), we probe down the group halo mass function to assess whether AGNs are found in the same regions in groups as they are in clusters. We select 451 optical AGNs from 7498 galaxies with log10(M*/M⊙) > 9.9 in 695 groups with 11.53 ≤ log10(M200/M⊙) ≤ 14.56 at z < 0.15. By analysing the projected phase-space positions of these galaxies, we demonstrate that when split both radially, and into physically derived infalling and core populations, AGN position within group projected phase-space is dependent on halo mass. For groups with log10(M200/M⊙) > 13.5, AGNs are preferentially found in the infalling galaxy population with 3.6σ confidence. At lower halo masses, we observe no difference in AGN fraction between core and infalling galaxies. These observations support a model where a reduced number of low-speed interactions, ram pressure stripping and intra-group/cluster medium temperature, the dominance of which increase with halo mass, work to inhibit AGN in the cores of groups and clusters with log10(M200/M⊙) > 13.5, but do not significantly affect nuclear activity in cores of less massive structures.

  3. Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes

    NASA Astrophysics Data System (ADS)

    Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.

    2004-08-01

    We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.

  4. High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy.

    PubMed

    Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S

    2013-02-11

    Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.

  5. Active Glutaminase C Self-assembles into a Supratetrameric Oligomer That Can Be Disrupted by an Allosteric Inhibitor*

    PubMed Central

    Ferreira, Amanda Petrina Scotá; Cassago, Alexandre; Gonçalves, Kaliandra de Almeida; Dias, Marília Meira; Adamoski, Douglas; Ascenção, Carolline Fernanda Rodrigues; Honorato, Rodrigo Vargas; de Oliveira, Juliana Ferreira; Ferreira, Igor Monteze; Fornezari, Camila; Bettini, Jefferson; Oliveira, Paulo Sérgio Lopes; Paes Leme, Adriana Franco; Portugal, Rodrigo Villares; Ambrosio, Andre Luis Berteli; Dias, Sandra Martha Gomes

    2013-01-01

    The phosphate-dependent transition between enzymatically inert dimers into catalytically capable tetramers has long been the accepted mechanism for the glutaminase activation. Here, we demonstrate that activated glutaminase C (GAC) self-assembles into a helical, fiber-like double-stranded oligomer and propose a molecular model consisting of seven tetramer copies per turn per strand interacting via the N-terminal domains. The loop 321LRFNKL326 is projected as the major regulating element for self-assembly and enzyme activation. Furthermore, the previously identified in vivo lysine acetylation (Lys311 in humans, Lys316 in mouse) is here proposed as an important down-regulator of superoligomer assembly and protein activation. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a known glutaminase inhibitor, completely disrupted the higher order oligomer, explaining its allosteric mechanism of inhibition via tetramer stabilization. A direct correlation between the tendency to self-assemble and the activity levels of the three mammalian glutaminase isozymes was established, with GAC being the most active enzyme while forming the longest structures. Lastly, the ectopic expression of a fiber-prone superactive GAC mutant in MDA-MB 231 cancer cells provided considerable proliferative advantages to transformed cells. These findings yield unique implications for the development of GAC-oriented therapeutics targeting tumor metabolism. PMID:23935106

  6. Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly

    PubMed Central

    2012-01-01

    Background In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly). Results In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results. Conclusions Our analysis shows for which molecular parameters hierarchical assembly schemes can outperform direct ones and suggests that viruses with high bond stability might prefer hierarchical assembly schemes. These insights increase

  7. Assembly of an FtsZ Mutant Deficient in GTPase Activity Has Implications for FtsZ Assembly and the Role of the Z Ring in Cell Division

    PubMed Central

    Mukherjee, Amit; Saez, Cristian; Lutkenhaus, Joe

    2001-01-01

    FtsZ, the ancestral homologue of eukaryotic tubulins, assembles into the Z ring, which is required for cytokinesis in prokaryotic cells. Both FtsZ and tubulin have a GTPase activity associated with polymerization. Interestingly, the ftsZ2 mutant is viable, although the FtsZ2 mutant protein has dramatically reduced GTPase activity due to a glycine-for-aspartic acid substitution within the synergy loop. In this study, we have examined the properties of FtsZ2 and found that the reduced GTPase activity is not enhanced by DEAE-dextran-induced assembly, indicating it has a defective catalytic site. In the absence of DEAE-dextran, FtsZ2 fails to assemble unless supplemented with wild-type FtsZ. FtsZ has to be at or above the critical concentration for copolymerization to occur, indicating that FtsZ is nucleating the copolymers. The copolymers formed are relatively stable and appear to be stabilized by a GTP-cap. These results indicate that FtsZ2 cannot nucleate assembly in vitro, although it must in vivo. Furthermore, the stability of FtsZ-FtsZ2 copolymers argues that FtsZ2 polymers would be stable, suggesting that stable FtsZ polymers are able to support cell division. PMID:11717278

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: METSAT Phase Locked Oscillator Assembly, P/N 1334360-1, S/N's F03 and F04

    NASA Technical Reports Server (NTRS)

    Pines, D.

    1998-01-01

    Two Flight Model AMSU-A Phase Locked Oscillators (P/N 1348360-1, S/Ns F03 and F04) have been tested per AES Test Procedure AE-26758. The tests included vibration testing, thermal cycle testing, AM/FM Noise testing, and full functional testing. EMI/REO 2 Testing was not performed. (See test data for S/N F01). Both AMSU-A Phase Locked Oscillators satisfactorily passed all performance requirements of the AE-26633 Product specification. During thermal cycling of PLO serial number F03, the oven and data logger momentarily lost power, including a loss of data. The unit did not experience any thermal stress. TAR 003134 describes the corrective action. Prior to testing PLO serial number FO4, power was applied to the unit. (+15v,-15v) the unit did not display the proper phase lock. Upon test equipment check out a connector was found to be defective. TAR 003133 describes the corrective action. After completion of testing of PLO serial number F04 was installed into Receiver Assembly F02. Upon testing F02 Receiver Assembly the unit was found not to phase lock at ambient temperature. Removal of PLO Assembly F04 was required. R2 was the real issue. Solithane was secondary. Troubleshooting revealed excessive solithane on inner PLL Assembly cover inhibiting optimum grounding. Also, R2 was reselected which increased the lock range from -30 C to +60 C. TAR 002737 describes the corrective action.

  9. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.

    PubMed

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-11-10

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.

  10. Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network.

    PubMed

    Goswami, Abir; Pramanik, Susnata; Schmittel, Michael

    2018-04-17

    A catalytically active three-component nanorotor is reversibly self-assembled and disassembled by remote control. When zinc(ii) ions (2 equiv.) are added as an external chemical trigger to the mixture of transmitter [Cu(1)]+ and pre-rotor assembly [(S)·(R)], two equiv. of copper(i) ions translocate from [Cu(1)]+ to the two phenanthroline sites of [(S)·(R)]. As a result, [Zn(1)]2+ forms along with the three-component assembly [Cu2(S)(R)]2+, which is both a nanorotor (k298 = 46 kHz, ΔH‡ = 49.1 ± 0.4 kJ mol-1, ΔS‡ = 9.5 ± 1.7 J mol-1 K-1) and a catalyst for click reactions (catalysis ON: A + B→AB). Removal of zinc from the mixture reverts the translocation sequence and thus commands disassembly of the catalytically active rotor (catalysis OFF). The ON/OFF catalytic cycle was run twice in situ in the full network.

  11. Structural assembly in space

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.; Pruett, E. C.

    1980-01-01

    A cost algorithm for predicting assembly costs for large space structures is given. Assembly scenarios are summarized which describe the erection, deployment, and fabrication tasks for five large space structures. The major activities that impact total costs for structure assembly from launch through deployment and assembly to scientific instrument installation and checkout are described. Individual cost elements such as assembly fixtures, handrails, or remote minipulators are also presented.

  12. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  13. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor.

    PubMed

    Kim, Yongdae; Kim, Sangyoo; Park, Kyihwan

    2009-04-01

    A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

  14. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    NASA Astrophysics Data System (ADS)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  15. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    NASA Astrophysics Data System (ADS)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  16. CHEMO/mechanical energy conversiona via supramolecular self-assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, David G.; Conticello, Vincent

    With the assembly codes for protein/peptide self-assembly sufficiently developed to control these phases, we are positioned to address critical requirements for generating unique self-propagating functional assemblies such as chemical batteries and engines that can be used to extend the capability of living cells. These integrative functional assemblies can then be used within cells to create new functions that will address the world’s energy challenges.

  17. Uterine electromyography during active phase compared with latent phase of labor at term.

    PubMed

    Trojner Bregar, Andreja; Lucovnik, Miha; Verdenik, Ivan; Jager, Franc; Gersak, Ksenija; Garfield, Robert E

    2016-02-01

    In a prospective study in a tertiary university hospital we wanted to determine whether uterine electromyography (EMG) can differentiate between the active and latent phase of labor. Thirty women presenting at ≥37(0/7) weeks of gestation with regular uterine contractions, intact membranes, and a Bishop score <6. EMG was recorded from the abdominal surface for 30 min. Latent phase was defined as no cervical change within at least 4 h. Student's t-test was used for statistical analysis (p ≤ 0.05 significant). Diagnostic accuracy of EMG was determined by receiver operator characteristics (ROC) analysis. The integral of the amplitudes of the power density spectrum (PDS) corresponding to the PDS energy within the "bursts" of uterine EMG activity was compared between the active and latent labor groups. Seventeen (57%) women were found to be in the active phase of labor and 13 (43%) were in the latent phase. The EMG PDS integral was significantly higher (p = 0.02) in the active (mean 3.40 ± 0.82 μV) compared with the latent (mean 1.17 ± 0.33 μV) phase of labor. The PDS integral had an area under the ROC curve (AUC) of 0.80 to distinguish between active and latent phases of labor, compared with number of contractions on tocodynamometry (AUC = 0.79), and Bishop score (AUC = 0.78). The combination (sum) of PDS integral, tocodynamometry, and Bishop score predicted active phase of labor with an AUC of 0.90. Adding uterine EMG measurements to the methods currently used in the clinics could improve the accuracy of diagnosing active labor. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome.

    PubMed

    Su, Tsung-Wei; Yang, Chao-Yu; Kao, Wen-Pin; Kuo, Bai-Jiun; Lin, Shan-Meng; Lin, Jung-Yaw; Lo, Yu-Chih; Lin, Su-Chang

    2017-03-07

    Death domain (DD)-fold assemblies play a crucial role in regulating the signaling to cell survival or death. Here we report the crystal structure of the caspase recruitment domain (CARD)-CARD disk of the human apoptosome. The structure surprisingly reveals that three 1:1 Apaf-1:procaspase-9 CARD protomers form a novel helical DD-fold assembly on the heptameric wheel-like platform of the apoptosome. The small-angle X-ray scattering and multi-angle light scattering data also support that three protomers could form an oligomeric complex similar to the crystal structure. Interestingly, the quasi-equivalent environment of CARDs could generate different quaternary CARD assemblies. We also found that the type II interaction is conserved in all DD-fold complexes, whereas the type I interaction is found only in the helical DD-fold assemblies. This study provides crucial insights into the caspase activation mechanism, which is tightly controlled by a sophisticated and highly evolved CARD assembly on the apoptosome, and also enables better understanding of the intricate DD-fold assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Upper Extremity Muscle Activity During In-Phase and Anti-Phase Continuous Pushing Tasks.

    PubMed

    Gruevski, Kristina M; Hodder, Joanne N; Keir, Peter J

    2017-11-01

    To determine the effect of anti-phase, in-phase bimanual and unimanual simulated industrial pushing tasks and frequency on upper extremity muscle activity. Research investigating symmetrical (in-phase) and asymmetrical (anti-phase) pushing exertions is limited despite a high prevalence in industry. Fifteen female participants completed five pushing tasks using a dual handle apparatus at three frequencies: 15 cycles per minute (cpm), 30 cpm, and self-selected. Tasks included two bimanual symmetrical pushes (constrained and unconstrained), two bimanual asymmetrical pushes (reciprocating and continuous), and one right unimanual push. Surface electromyography (EMG) from the right anterior, middle, and posterior deltoid (AD, MD, and PD); right and left trapezius (RT and LT); right pectoralis major (PM); and right and left external obliques (REO and LEO) was collected and normalized to maximum voluntary effort. There was a task by frequency interaction in the AD, MD, PD, and RT ( p < .005), where activity in AD, MD, and PD was highest in the continuous task at 15 cpm, but activity was similar across task in 30 cpm and self-selected. Muscle activity coefficient of variation was lowest during continuous task across all frequencies. Continuous, anti-phase pushes and constrained, in-phase pushes had the highest muscle activity demands and the least amount of variability in muscle activity and therefore may present the greatest risk of injury. Anti-phase pushing is known to have a greater cognitive demand, and this study demonstrated that it also has a greater physical demand when performed continuously.

  20. Flower-like superstructures of AIE-active tetraphenylethylene through solvophobic controlled self-assembly

    NASA Astrophysics Data System (ADS)

    Salimimarand, Mina; La, Duong Duc; Kobaisi, Mohammad Al; Bhosale, Sheshanath V.

    2017-02-01

    The development of well-organized structures with high luminescent properties in the solid and aggregated states is of both scientific and technological interest due to their applications in nanotechnology. In this paper we described the synthesis of amphiphilic and dumbbell shaped AIE-active tetraphenylethylene (TPE) derivatives and studied their self-assembly with solvophobic control. Interestingly, both TPE derivatives form a 3D flower-shape supramolecular structure from THF/water solutions at varying water fractions. SEM microscopy was used to visualise step-wise growth of flower-shape assembly. TPE derivatives also show good mechanochromic properties which can be observed in the process of grinding, fuming and heating. These TPE derivative self-assemblies are formed due to two main important properties: (i) the TPE-core along with alkyl chains, optimizing the dispersive interactions within a construct, and (ii) amide-linkage through molecular recognition. We believe such arrangements prevent crystallization and favour the directional growth of flower-shape nanostructures in a 3D fashion.

  1. Sequence-Mandated, Distinct Assembly of Giant Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Lu, Xinlin; Mao, Jialin

    Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less

  2. Sequence-Mandated, Distinct Assembly of Giant Molecules

    DOE PAGES

    Zhang, Wei; Lu, Xinlin; Mao, Jialin; ...

    2017-10-24

    Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less

  3. Synthesis and Self-Assembly of fcc Phase FePt Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Min; Pica, Timothy; Jiang, Ying-Bing

    2007-05-01

    In this paper, we report a synthesis of FePt nanorods by confining decomposition of Fe(CO) 5 and reduction of Pt(caca) 2 in surfactant reverse cylindrical micelles. The controlled nucleation and growth kinetics in confined environment allows easy control over Fe/Pt composition, nanorod uniformity, and nanorod aspect ratio. The FePt nanorods tend to self-assemble into ordered arrays along three-dimensions. Directed assembly under external magnetic field leads to two-dimensional ordered arrays, parallel to the substrate magnetic field. We expect that with optimized external magnetic fields, we should be able to assemble these nanorods into orientated one or two-dimensional arrays, providing a uniformmore » anisotropic magnetic platform for varied applications in enhanced data storage, magneto-electron transport, etc.« less

  4. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    NASA Astrophysics Data System (ADS)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  5. Temperature-Induced Phase Separation in Molecular Assembly of Nanotubes Comprising Amphiphilic Polypeptide with Poly( N-Ethyl Glycine) in Water by a Hydrophilic-Region Driven Type Mechanism.

    PubMed

    Hattori, Tetsuya; Itagaki, Toru; Uji, Hirotaka; Kimura, Shunsaku

    2018-06-20

    Two kinds of amphiphilic polypeptides having different types of hydrophilic polypeptoids, poly(sarcosine)-b-(L-Leu-Aib)6 (ML12) and poly(N-ethyl glycine)-b-(L-Leu-Aib)6 (EL12), were self-assembled via two paths to phase-separated nanotubes. One path was via sticking ML12 nanotubes with EL12 nanotubes, and the other was a preparation from a mixture of ML12 and EL12 in solution. In either case, nanotubes showed temperature-induced phase separation along the long axis, which was observed by two methods of labeling one phase with gold nanoparticles and fluorescence resonance energy transfer between the components. The phase-separation was ascribed to aggregation of poly(N-ethyl glycine) blocks over the cloud point temperature. The addition of 5% trifluoroethanol was needed for the phase separation, because the tight association of the helices in the hydrophobic region should be loosened to allow lateral diffusion of the components to be separated. The phase-separation in molecular assemblies in water based on the hydrophilic-region driven type mechanism therefore requires sophisticated balances of association forces exerting among the hydrophilic and hydrophobic regions of the amphiphilic polypeptoids.

  6. Layer-by-layer self-assembled graphene oxide/silica microsphere composites as stationary phase for high performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Liu, Shujuan; Song, Xinwang; Zhu, Yangwen; Jiang, Shengxiang

    2012-11-21

    Graphene oxide (GO) has been layer-by-layer assembled onto silica microspheres to form a GO/SiO(2) composite stationary phase. All the characterizations of GO/SiO(2) by elemental analysis, Raman spectroscopy and Fourier transformed infrared spectrometry confirmed that with the increase of the assembled layer, GO gradually increases on the silica surface. The chromatographic properties of bare SiO(2) and GO/SiO(2) with different GO assembled layers show that the amount of GO plays an important role in the separation of analytes. Only the appropriate amount of GO on SiO(2) can perform a good chromatographic separation. The comparison between chromatographic performances of bare SiO(2) column, GO/SiO(2)-2 column and C18 commercial column clearly show that GO/SiO(2)-2 and C18 columns obtained a better separation; GO/SiO(2)-2 exhibits a large π-electron system and C18 exhibits hydrophobicity. The eluting order, peak width and resolution of analyte on GO/SiO(2)-2 column was highly dependent on the size of its π-electron system, while on the C18 column the decisive factor is its hydrophobic property.

  7. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity

    NASA Astrophysics Data System (ADS)

    Howson, Suzanne E.; Bolhuis, Albert; Brabec, Viktor; Clarkson, Guy J.; Malina, Jaroslav; Rodger, Alison; Scott, Peter

    2012-01-01

    The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans).

  8. Space station assembly/servicing capabilities

    NASA Technical Reports Server (NTRS)

    Joyce, Joseph

    1986-01-01

    The aim is to place a permanently manned space station on-orbit around the Earth, which is international in scope. The program is nearing the close of the system definition and preliminary design phase. The first shuttle launch for space station assembly on-orbit is estimated for January 1993. Topics perceived to be important to on-orbit assembly and servicing are discussed. This presentation is represented by charts.

  9. Self-assembling holographic biosensors and biocomputers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Yooli Kim; Bachand, George David; Schoeniger, Joseph S.

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins andmore » amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.« less

  10. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    2015-05-01

    Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1 /r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.

  11. Freezing-induced self-assembly of amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  12. Freezing-induced self-assembly of amphiphilic molecules.

    PubMed

    Albouy, P A; Deville, S; Fulkar, A; Hakouk, K; Impéror-Clerc, M; Klotz, M; Liu, Q; Marcellini, M; Perez, J

    2017-03-01

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0 °C.

  13. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: METSAT Phase Locked Oscillator Assembly, P/N 1348360-1, S/N's F09

    NASA Technical Reports Server (NTRS)

    Pines, D.

    1999-01-01

    This is the Performance Verification Report, METSAT (Meteorological Satellites) Phase Locked Oscillator Assembly, P/N 1348360-1, S/N F09 and F10, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  14. Massively Parallel Nanostructure Assembly Strategies for Sensing and Information Technology. Phase 2

    DTIC Science & Technology

    2013-05-25

    field. This work has focused on the synthesis of new functional materials and the development of high-throughput, facile methods to assemble...Hong (Seoul National University, Korea). Specifically, gapped nanowires (GNW) were identified as candidate materials for synthesis and assembly as...Throughout the course of this grant, we reported major accomplishments both in the synthesis and assembly of such structures. Synthetically, we report three

  15. Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures

    NASA Astrophysics Data System (ADS)

    Breger, Joyce C.; Buckhout-White, Susan; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2017-06-01

    Nanoparticle (NP) display potentially offers a new way to both stabilize and, in many cases, enhance enzyme activity over that seen for native protein in solution. However, the large, globular and sometimes multimeric nature of many enzymes limits their ability to attach directly to the surface of NPs, especially when the latter are colloidally stabilized with bulky PEGylated ligands. Engineering extended protein linkers into the enzymes to achieve direct attachment through the PEG surface often detrimentally alters the enzymes catalytic ability. Here, we demonstrate an alternate, hybrid biomaterials-based approach to achieving directed enzyme assembly on PEGylated NPs. We self-assemble a unique architecture consisting of a central semiconductor quantum dot (QD) scaffold displaying controlled ratios of extended peptide-DNA linkers which penetrate through the PEG surface to directly couple enzymes to the QD surface. As a test case, we utilize phosphotriesterase (PTE), an enzyme of bio-defense interest due to its ability to hydrolyze organophosphate nerve agents. Moreover, this unique approach still allows PTE to maintain enhanced activity while also suggesting the ability of DNA to enhance enzyme activity in and of itself.

  16. Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors.

    PubMed

    Thakore, Pratiksha I; Gersbach, Charles A

    2016-01-01

    Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.

  17. Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors

    PubMed Central

    Thakore, Pratiksha I.; Gersbach, Charles A.

    2016-01-01

    Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy. PMID:26443215

  18. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    NASA Astrophysics Data System (ADS)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  19. Activated Carbon Fibers "Thickly Overgrown" by Ag Nanohair Through Self-Assembly and Rapid Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Yan, Xuefeng; Xu, Sijun; Wang, Qiang; Fan, Xuerong

    2017-11-01

    Anisotropic nanomaterial-modified carbon fibers attract increasing attention because of their superior properties over traditional ones. In this study, activated carbon fibers (ACFs) "thickly overgrown" by Ag nanohair were prepared through self-assembly and rapid thermal annealing. Viscose fibers with well-dispersed silver nanoparticles (AgNPs) on surfaces were first prepared through self-assembly of hyperbranched poly(amino-amine) (HBPAA)-capped AgNPs on viscose surfaces. HBPAA endowed the AgNP surfaces with negative charges and abundant amino groups, allowing AgNPs to monodispersively self-assemble to fiber surfaces. Ag nanohair-grown ACFs were prepared by sequential pre-oxidation and carbonization. Because the carbonization furnace was open-ended, ACFs are immediately transferrable to the outside of the furnace. Therefore, the Ag liquid adsorbed by ACF pores squeezed out to form Ag nanowires through thermal contraction. FESEM characterization indicated that Ag nanohairs stood on ACF surface and grew from ACF caps. XPS and XRD characterization showed that Ag successfully assembled to fiber surfaces and retained its metallic state even after high-temperature carbonization. TG analysis suggested that Ag nanohair-grown ACFs maintained their excellent thermal stabilities. Finally, the fabricated ACFs showed excellent and durable antibacterial activities, and the developed method may provide a potential strategy for preparing metal nanowire-grown ACFs.

  20. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    NASA Astrophysics Data System (ADS)

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  1. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity.

    PubMed

    Yu, Jiaguo; Qi, Lifang

    2009-09-30

    Hierarchically flower-like tungsten trioxide assemblies were fabricated on a large scale by a simple hydrothermal treatment of sodium tungstate in aqueous solution of nitric acid. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and N(2) adsorption-desorption measurements. The photocatalytic activity was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that the three-dimensional tungsten trioxide assemblies were constructed from two-dimensional layers, which were further composed of a large number of interconnected lathy nanoplates with different sizes. Such flower-like assemblies exhibited hierarchically porous structure and higher visible-light photocatalytic activity than the samples without such hierarchical structures due to their specific hierarchical pores that served as the transport paths for light and reactants. After five recycles for the photodegradation of RhB, the catalyst did not exhibit any great loss in activity, confirming hierarchically flower-like tungsten trioxide was stability and not photocorroded. This study may provide new insight into environmentally benign preparation and design of novel photocatalytic materials and enhancement of photocatalytic activity.

  2. Vapor-phase-processed fluorinated self-assembled monolayer for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Roh, Jeongkyun; Lee, Changhee; Kwak, Jeonghun; Jung, Byung Jun; Kim, Hyeok

    2015-09-01

    A vapor-phase-processed fluorinated silazane self-assembled monolayer (SAM), 1,3-bis(trifluoropropyl)-1,1,3,3-tetramethyldisilazane (FPDS), was introduced as a surface modifier for pentacene-based organic thin-film transistors (OTFTs). A remarkable improvement in the field effect mobility from 0.25 cm2/Vs (without SAM-treatment) to 0.42 cm2/Vs (with FPDS-treatment) was observed, which was attributed to the better pentacene growth on a hydrophobic surface. A significant reduction in the contact resistance was also observed by FPDS treatment due to the improved bulk conductivity and diminished charge trapping at the gate dielectric surface by the SAM treatment. In addition, FPDS treatment efficiently improved the bias stability of the OTFTs; the drain-to-source current degradation by the bias stress was greatly reduced from 80% to 50% by FPDS treatment, and the characteristic time for charge trapping of the FPDS treated OTFTs was approximately one order of magnitude larger than that of the OTFTs without SAM treatment.

  3. Nanotransforming Assemblies

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2005-03-01

    Degradable polymeric materials with hydrolysable backbones have attracted much attention because they break down to non-toxic metabolites. They are the key solutions to many environmental problems, and are particularly useful for various biomedical applications. Much work has been focused on degradable polymers and their co-polymers as bulk, or films and monolayers.^2 Only limited work has explored the degradable amphiphilic copolymer self-assemblies (spherical micelles, worm micelles and vesicles) in solutions, which are quite important for soft-material engineering. Mostly spherical micelles, and in rare cases, vesicles, have been reported made from copolymers with degradable polyester, typically polylactide or polycaprolactone, as the hydrophobic block, connected to biocompatible, stealthy poly (ethylene oxide) as hydrophilic block. Morphological change of such spherical micelles induced by degradation is subtle, and the degradation kinetics and mechanism in assemblies, which can be quite different from that in bulk or film, are not well understood. Here we will describe the phase transformations of worm micelles and vesicles as they degrade and also highlight how these polymeric self-assemblies interact with lipid membranes.

  4. Octanol-assisted liposome assembly on chip

    PubMed Central

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells. PMID:26794442

  5. Octanol-assisted liposome assembly on chip.

    PubMed

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E C; Dekker, Cees

    2016-01-22

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  6. Octanol-assisted liposome assembly on chip

    NASA Astrophysics Data System (ADS)

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  7. Two-phase pressure drop reduction BWR assembly design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dix, G.E.; Crowther, R.L.; Colby, M.J.

    1991-05-21

    This patent describes an improved fuel assembly for a boiling water reactor. It comprises: a fuel channel; a lower tie plate; an upper tie plate; the lower tie plate and the upper tie plate defining a two-dimensional matrix; at least one water rod the fuel rods being partial length rods.

  8. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the Space Station Freedom truss

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Watson, Judith J.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Wallsom, Richard E.; Phelps, James E.

    1992-01-01

    Results are presented from a ground test program of an alternate mobile transporter (MT) concept and extravehicular activity (EVA) assembly procedure for the Space Station Freedom (SSF) truss keel. A three-bay orthogonal tetrahedral truss beam consisting of 44 2-in-diameter struts and 16 nodes was assembled repeatedly in neutral buoyancy by pairs of pressure-suited test subjects working from astronaut positioning devices (APD's) on the MT. The truss bays were cubic with edges 15 ft long. All the truss joint hardware was found to be EVA compatible. The average unit assembly time for a single pair of experienced test subjects was 27.6 sec/strut, which is about half the time derived from other SSF truss assembly tests. A concept for integration of utility trays during truss assembly is introduced and demonstrated in the assembly tests. The concept, which requires minimal EVA handling of the trays, is shown to have little impact on overall assembly time. The results of these tests indicate that by using an MT equipped with APD's, rapid EVA assembly of a space station-size truss structure can be expected.

  9. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Novel agrochemical conjugates with self-assembling behaviour.

    PubMed

    Liu, Qingtao; Graham, Bim; Hawley, Adrian; Dong, Yao-Da; Boyd, Ben J

    2018-02-15

    That conjugation of agrichemicals to pro-assembly hydrophobic moieties will enable enhanced compatibility and loading with host lyotropic liquid crystalline carrier matrix, and potentially self-assemble in their own right in aqueous environments. A series of lipid-like agrochemical-conjugates were synthesized using specific amphiphilic entities conjugated onto the agrochemicals, picloram and 2,4-dichlorophenoxyacetic acid (2,4-D). The self-assembly behaviour and compatibility of the novel entities when incorporated into phytantriol and monoolein-based liquid crystalline systems were examined using small angle X-ray scattering, cryo-TEM and polarized optical microscopy. Compared to agrochemical-conjugates with simple alkyl ester groups, the esterification of the agrochemicals with amphiphilic groups such as phytantriol and monoolein led to greater structural compatibility and consequently a greater loading of the agrochemicals in the liquid crystalline systems without destabilizing phase structure. Picloram-monoolein and picloram-monoelaidin can self-assemble to form lamellar structures in water. However, certain agrochemical-conjugates such as picloram-monoelaidin and picloram-PEGn-oleate showed poor compatibility with liquid crystalline systems, resulting in phase separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

    PubMed Central

    Fischbach, Michael A.; Lai, Jonathan R.; Roche, Eric D.; Walsh, Christopher T.; Liu, David R.

    2007-01-01

    Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with ≈10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts. PMID:17620609

  12. Eutectic phase in water-ice: a self-assembled environment conducive to metal-catalyzed non-enzymatic RNA polymerization.

    PubMed

    Monnard, Pierre-Alain; Ziock, Hans

    2008-08-01

    Information and catalytic polymers play an essential role in contemporary cellular life, and their emergence must have been crucial during the complex processes that led to the assembly of the first living systems. Polymerization reactions producing these molecules would have had to occur in aqueous medium, which is known to disfavor such reactions. Thus, it was proposed early on that these polymerizations had to be supported by particular environments, such as mineral surfaces and eutectic phases in water-ice, which would have led to the concentration of the monomers out of the bulk aqueous medium and their condensation. This review presents the work conducted to understand how the eutectic phases in water-ice might have promoted RNA polymerization, thereby presumably contributing to the emergence of the ancient information and catalytic system envisioned by the 'RNA-World' hypothesis.

  13. Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly

    PubMed Central

    2018-01-01

    Emulsions are widely used in numerous fields. Therefore, there has been increasing interest in the development of new emulsification strategies toward emulsions with advanced functions. Herein we report the formation of diverse emulsions by host–guest interaction-mediated interfacial self-assembly under mild conditions. In this strategy, a hydrophilic diblock copolymer with one block containing β-cyclodextrin (β-CD) can assemble at the oil/water interface when its aqueous solution is mixed with an oil phase of benzyl alcohol (BA), by host–guest interactions between β-CD and BA. This results in significantly reduced interfacial tension and the formation of switchable emulsions with easily tunable droplet sizes. Furthermore, nanoemulsions with excellent stability are successfully prepared simply via vortexing. The self-assembled oil-in-water emulsions also show catastrophic phase inversion, which can generate stable bicontinuous phase and water-in-oil emulsions, thereby further extending phase structures that can be realized by this host–guest self-assembly approach. Moreover, the host–guest nanoemulsions are able to engineer different nanoparticles and microstructures as well as solubilize a diverse array of hydrophobic drugs and dramatically enhance their oral bioavailability. The host–guest self-assembly emulsification is facile, energetically friendly, and fully translatable to industry, therefore representing a conceptually creative approach toward advanced emulsions. PMID:29806006

  14. Activator-inhibitor coupling between Rho signaling and actin assembly make the cell cortex an excitable medium

    PubMed Central

    Bement, William M.; Leda, Marcin; Moe, Alison M.; Kita, Angela M.; Larson, Matthew E.; Golding, Adriana E.; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L.; Goryachev, Andrew B.; von Dassow, George

    2016-01-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, while Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modeling results show that waves represent excitable dynamics of a reaction diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  15. Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly

    NASA Astrophysics Data System (ADS)

    Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles

    Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.

  16. Development of a Sono-Assembled, Bifunctional Soy Peptide Nanoparticle for Cellular Delivery of Hydrophobic Active Cargoes.

    PubMed

    Zhang, Yuanhong; Zhao, Mouming; Ning, Zhengxiang; Yu, Shujuan; Tang, Ning; Zhou, Feibai

    2018-04-25

    Soy proteins are prone to aggregate upon proteolysis, hindering their sustainable development in food processing. Here, a continuous work on the large insoluble peptide aggregates was carried out, aiming to develop a new type of soy peptide-based nanoparticle (SPN) for active cargo delivery. Sono-assembled SPN in spherical appearance and core-shell structure maintained by noncovalent interactions was successfully fabricated, exhibiting small particle size (103.95 nm) in a homogeneous distribution state (PDI = 0.18). Curcumin as a model cargo was efficiently encapsulated into SPN upon sonication, showing high water dispersity (129.6 mg/L, 10 4 higher than its water solubility) and storage stability. Additionally, the pepsin-resistant SPN contributed to the controlled release of curcumin at the intestinal phase and thus significantly improved the bioaccessibility. Encapsulated curcumin was effective in protecting glutamate-induced toxicity in PC12 cells, where the matrix SPN can simultaneously reduce lipid peroxidation and elevate antioxidant enzymes levels, innovatively demonstrating its bifunctionality during cellular delivery.

  17. Biogenesis of the bacterial cbb3 cytochrome c oxidase: Active subcomplexes support a sequential assembly model.

    PubMed

    Durand, Anne; Bourbon, Marie-Line; Steunou, Anne-Soisig; Khalfaoui-Hassani, Bahia; Legrand, Camille; Guitton, Audrey; Astier, Chantal; Ouchane, Soufian

    2018-01-19

    The cbb 3 oxidase has a high affinity for oxygen and is required for growth of bacteria, including pathogens, in oxygen-limited environments. However, the assembly of this oxidase is poorly understood. Most cbb 3 are composed of four subunits: the catalytic CcoN subunit, the two cytochrome c subunits (CcoO and CcoP) involved in electron transfer, and the small CcoQ subunit with an unclear function. Here, we address the role of these four subunits in cbb 3 biogenesis in the purple bacterium Rubrivivax gelatinosus Analyses of membrane proteins from different mutants revealed the presence of active CcoNQO and CcoNO subcomplexes and also showed that the CcoP subunit is not essential for their assembly. However, CcoP was required for the oxygen reduction activity in the absence of CcoQ. We also found that CcoQ is dispensable for forming an active CcoNOP subcomplex in membranes. CcoNOP exhibited oxygen reductase activity, indicating that the cofactors (hemes b and copper for CcoN and cytochromes c for CcoO and CcoP) were present within the subunits. Finally, we discovered the presence of a CcoNQ subcomplex and showed that CcoN is the required anchor for the assembly of the full CcoNQOP complex. On the basis of these findings, we propose a sequential assembly model in which the CcoQ subunit is required for the early maturation step: CcoQ first associates with CcoN before the CcoNQ-CcoO interaction. CcoP associates to CcoNQO subcomplex in the late maturation step, and once the CcoNQOP complex is fully formed, CcoQ is released for degradation by the FtsH protease. This model could be conserved in other bacteria, including the pathogenic bacteria lacking the assembly factor CcoH as in R. gelatinosus . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Self-assembly in Dipolar Fluids

    NASA Astrophysics Data System (ADS)

    Ronti, Michela; Kantorovich, Sofia

    We are studying low temperature structural transitions in dipolar hard spheres (DHS), combining grand-canonical Monte Carlo simulations and direct analytical theoretical calculations. DHS is characterized by long-range anisotropic interactions: it consists of a point dipole at the center of a hard sphere. We are interested in low temperature and low density phase behaviour of DHS systems. From a theoretical point of view the process of self-assembly is not responsible for a phase transition; this belief was completely reverted by theoretical studies showing that the process of self-assembly is alone capable to induce phase transition. On the other hand in the last years it was proved that no sign of critical behaviour is observed, implementing efficient and tailored Monte Carlo algorithms. Moreover a theoretical approach based on Density Functional Theory was developed: a series of structural transitions were discovered providing evidence of a hierarchy in the structures on cooling. We are performing free-energy calculations in order to draw the phase diagram of DHS model. Comparing the numerical results with the theoretical ones shed light on the scenario of temperature induced structural transitions in magnetic nanocolloids. Etn-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).

  19. Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

    PubMed

    Gao, En-Feng; Kang, Kyung Lhi; Kim, Jeong Hee

    2014-06-01

    Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields.

  20. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  1. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  2. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE PAGES

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  3. Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Prabhu, Vivek; de Pablo, Juan; Tirrell, Matthew

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at extremely low polymer concentrations (<1 % by mass) has been observed in scattering experiments and molecular dynamics simulations. In contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing polymer concentrations, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assemblies of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously upon solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of triblock copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries not only contribute to our fundamental understanding of the structure and pathways of complexation driven assemblies, but also raise intriguing prospects for formation of gel structures at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  4. Gel phase formation in dilute triblock copolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  5. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.

    PubMed

    Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin

    2015-06-16

    In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with

  6. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    NASA Technical Reports Server (NTRS)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  7. Ultrasonically Activated Diffusion Bonding for Fluidic Control Assembly

    DTIC Science & Technology

    1979-02-01

    CONTROL ASSEMBLY SONOBOND CORPORATION SUBSIDIARY OF CHRISTIAN METALS CORPORATION WEST CHESTER, PENNSYLVANIA HOWARD A. SCHEETZ PAUL L. COPPA JANET...FLUIDIC CONTROL ASSEMBLY Howard A. Scheetz Paul L. Coppa Janet Devine Sonobond Corporation Subsidiary of Christiana Metals Corporation West... Paul L. Coppa Janet Devine fl. CONTRACT OR GRANT NUMBERS.) Contract No. DAAA21-76-C-0136 ». PERFORMING ORGANIZATION N AM t AND ADDRESS

  8. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function

    DOE PAGES

    Sun, Jingchuan; Li, Huilin; Fernandez-Cid, Alejandra; ...

    2014-10-15

    Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex andmore » an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.« less

  9. High-coercivity FePt nanoparticle assemblies embedded in silica thin films.

    PubMed

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Li, A; Ramanujan, R V; Ramanath, G

    2009-01-14

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 degrees C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H(c)>630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  10. Plumbagin inhibits cytokinesis in Bacillus subtilis by inhibiting FtsZ assembly--a mechanistic study of its antibacterial activity.

    PubMed

    Bhattacharya, Anusri; Jindal, Bhavya; Singh, Parminder; Datta, Anindya; Panda, Dulal

    2013-09-01

    The assembly of FtsZ plays a central role in construction of the cytokinetic Z-ring that orchestrates bacterial cell division. A naturally occurring naphthoquinone, plumbagin, is known to exhibit antibacterial properties against several types of bacteria. In this study, plumbagin was found to perturb formation of the Z-ring in Bacillus subtilis 168 cells and to cause elongation of these cells without an apparent effect on nucleoid segregation, indicating that it may inhibit FtsZ assembly. Furthermore, it bound to purified B. subtilis FtsZ (BsFtsZ) with a dissociation constant of 20.7 ± 5.6 μM, and inhibited the assembly and GTPase activity of BsFtsZ in vitro. Interestingly, plumbagin did not inhibit either the assembly or GTPase activity of Escherichia coli FtsZ (EcFtsZ) in vitro. Using docking analysis, a putative plumbagin-binding site on BsFtsZ was identified, and the analysis indicated that hydrophobic interactions and hydrogen bonds predominate. Based on the in silico analysis, two variants of BsFtsZ, namely D199A and V307R, were constructed to explore the binding interaction of plumbagin and BsFtsZ. The effects of plumbagin on the assembly and GTPase activity of the variant BsFtsZ proteins in vitro indicated that the residues D199 and V307 may be involved in the binding of plumbagin to BsFtsZ. The results suggest that plumbagin inhibits bacterial proliferation by inhibiting the assembly of FtsZ, and provide insight into the binding site of plumbagin on BsFtsZ, which may help in the design of potent FtsZ-targeted antibacterial agents. © 2013 FEBS.

  11. Inverse design of multicomponent assemblies

    NASA Astrophysics Data System (ADS)

    Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-03-01

    Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.

  12. Pathways for virus assembly around nucleic acids

    PubMed Central

    Perlmutter, Jason D; Perkett, Matthew R

    2014-01-01

    Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288

  13. Redox-Active Carbohydrate-Coated Nanoparticles: Self-Assembly of a Cyclodextrin-Polystyrene Glycopolymer with Tetrazine-Naphthalimide.

    PubMed

    Gross, Andrew J; Haddad, Raoudha; Travelet, Christophe; Reynaud, Eric; Audebert, Pierre; Borsali, Redouane; Cosnier, Serge

    2016-11-15

    The controlled self-assembly of precise and well-defined photochemically and electrochemically active carbohydrate-coated nanoparticles offers the exciting prospect of biocompatible catalysts for energy storage/conversion and biolabeling applications. Here an aqueous nanoparticle system has been developed with a versatile outer layer for host-guest molecule encapsulation via β-cyclodextrin inclusion complexes. A β-cyclodextrin-modified polystyrene polymer was first obtained by copper nanopowder click chemistry. The glycopolymer enables self-assembly and controlled encapsulation of tetrazine-naphthalimide, as a model redox-active agent, into nanoparticles via nanoprecipitation. Cyclodextrin host-guest interactions permit encapsulation and internanoparticle cross-linking for the formation of fluorescent compound and clustered self-assemblies with chemically reversible electroactivity in aqueous solution. Light scattering experiments revealed stable particles with hydrodynamic diameters of 138 and 654 nm for nanoparticles prepared with tetrazine, of which 95% of the nanoparticles represent the smaller objects by number. Dynamic light scattering revealed differences as a function of preparation method in terms of size, 3-month stability, polydispersity, radius of gyration, and shape factor. Individual self-assemblies were visualized by atomic force microscopy and fluorescence microscopy and monitored in real-time by nanoparticle tracking analysis. UV-vis and fluorescence spectra provided insight into the optical properties and critical evidence for host-guest encapsulation as evidenced by solvachromatism and enhanced tetrazine uptake. Cyclic voltammetry was used to investigate the electrochemical properties and provided further support for encapsulation and an estimate of the tetrazine loading capacity in tandem with light scattering data.

  14. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    PubMed Central

    2011-01-01

    Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK)2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli) when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs) under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might also provide hints for

  15. Self-Assembly through Noncovalent Preorganization of Reactants: Explaining the Formation of a Polyfluoroxometalate.

    PubMed

    Schreiber, Roy E; Avram, Liat; Neumann, Ronny

    2018-01-09

    High-order elementary reactions in homogeneous solutions involving more than two molecules are statistically improbable and very slow to proceed. They are not generally considered in classical transition-state or collision theories. Yet, rather selective, high-yield product formation is common in self-assembly processes that require many reaction steps. On the basis of recent observations of crystallization as well as reactions in dense phases, it is shown that self-assembly can occur by preorganization of reactants in a noncovalent supramolecular assembly, whereby directing forces can lead to an apparent one-step transformation of multiple reactants. A simple and general kinetic model for multiple reactant transformation in a dense phase that can account for many-bodied transformations was developed. Furthermore, the self-assembly of polyfluoroxometalate anion [H 2 F 6 NaW 18 O 56 ] 7- from simple tungstate Na 2 WO 2 F 4 was demonstrated by using 2D 19 F- 19 F NOESY, 2D 19 F- 19 F COSY NMR spectroscopy, a new 2D 19 F{ 183 W} NMR technique, as well as ESI-MS and diffusion NMR spectroscopy, and the crucial involvement of a supramolecular assembly was found. The deterministic kinetic reaction model explains the reaction in a dense phase and supports the suggested self-assembly mechanism. Reactions in dense phases may be of general importance in understanding other self-assembly reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model.

    PubMed

    Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C

    2012-06-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.

  17. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  18. Deposition of extreme-tolerant bacterial strains isolated during different phases of Phoenix spacecraft assembly in a public culture collection.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Benardini, James N; Rooney, Alejandro P; Spry, J Andy

    2014-01-01

    Extreme-tolerant bacteria (82 strains; 67 species) isolated during various assembly phases of the Phoenix spacecraft were permanently archived within the U.S. Department of Agriculture's Agricultural Research Service Culture Collection in Peoria, Illinois. This represents the first microbial collection of spacecraft-associated surfaces within the United States to be deposited into a freely available, government-funded culture collection. Archiving extreme-tolerant microorganisms from NASA mission(s) will provide opportunities for scientists who are involved in exploring microbes that can tolerate extreme conditions.

  19. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn(2+)-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane).

    PubMed

    Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin

    2016-01-01

    We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.

  20. Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks

    PubMed Central

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A.; Mullins, R. Dyche

    2016-01-01

    Branched actin networks–created by the Arp2/3 complex, capping protein, and a nucleation promoting factor– generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry, but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487

  1. Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons.

    PubMed

    Angulo-Garcia, David; Berke, Joshua D; Torcini, Alessandro

    2016-02-01

    Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson's and Huntington's diseases.

  2. Thermo-triggerable self-assembly comprising cinnamoyl polymeric β cyclodextrin and cinnamoyl Pluronic F127.

    PubMed

    Wang, Min Hui; Jeong, Jae Hyun; Kim, Jin-Chul

    2016-06-01

    Thermo-triggerable self-assembly was prepared by co-dissolving cinnamoyl Pluronic F127 (CinPlu) and cinnamoyl polymeric β cyclodextrin (CinPβCD) in an aqueous phase. On TEM photo, the CinPlu/CinPβCD self-assembly was 100-200nm in diameter. The specific loading of Nile red (NR) in the assembly was calculated to be 5.5% (wt NR/wt polymer), and the molar ratio of NR to βCD residue in the assembly was about 0.89:1. No significant release of NR from the assembly was observed at 10°C and 20°C. However, when the temperature was raised to 30°C, 40°C, 50°C, and 60°C, the cumulative release amount in 5min was 17%, 25%, 32%, and 52%, respectively. The specific loading of doxorubicin (DOX) in the assembly was about 6.8% (wt DOX/wt polymer) (corresponding to the molar ratio of DOX to βCD residue was about 0.41:1). The DOX release from the assembly was proportional to the temperature of release medium. NR and DOX were likely to be expelled out of the cavity of βCD residue by the interaction of the thermally hydrophobicized Pluronic F127 chain (molecular piston) and the cavity of βCD residue (cylinder). After 4h-incubation with KB cell, DOX loaded in CinPlu/CinPβCD self-assembly was found to be internalized into the cancer cell more than free DOX, observed on a confocal laser scanning microscope and a fluorescence activated cell sorter. CinPlu/CinPβCD self-assembly enhanced the in vitro anti-cancer activity of DOX against KB cell without increasing significantly the in vitro toxicity of DOX against Raw264.7 cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Animal Telemetry Network Data Assembly Center: Phase 1

    DTIC Science & Technology

    2015-09-30

    biologging techniques enables a new scientific capacity for studying of animal migrations in the marine environment. In the past two decades, rapid...information that is used to support the management of marine fisheries and endangered and protected species, to assess the potential effects of...sustainable ATN Data Assembly Center (or DAC) for data collected by the growing U.S. community of marine animal taggers or biologgers. The ATN is

  4. Simple method for assembly of CRISPR synergistic activation mediator gRNA expression array.

    PubMed

    Vad-Nielsen, Johan; Nielsen, Anders Lade; Luo, Yonglun

    2018-05-20

    When studying complex interconnected regulatory networks, effective methods for simultaneously manipulating multiple genes expression are paramount. Previously, we have developed a simple method for generation of an all-in-one CRISPR gRNA expression array. We here present a Golden Gate Assembly-based system of synergistic activation mediator (SAM) compatible CRISPR/dCas9 gRNA expression array for the simultaneous activation of multiple genes. Using this system, we demonstrated the simultaneous activation of the transcription factors, TWIST, SNAIL, SLUG, and ZEB1 a human breast cancer cell line. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Diverse assembly behavior in colloidal Platonic polyhedral sphere clusters

    NASA Astrophysics Data System (ADS)

    Marson, Ryan; Teich, Erin; Dshemuchadse, Julia; Glotzer, Sharon; Larson, Ronald

    We simulate the self-assembly of colloidal ``polyhedral sphere clusters (PSCs)'', which consist of equal-sized spheres placed at the vertices of a polyhedron such that they just touch along each edge. These colloidal building blocks have recently been experimentally fabricated; here we predict crystal structures that would appear in the phase diagram of resulting particle assemblies. We use Brownian dynamics (BD) simulations of rigid body clusters performed in the open-source GPU-based HOOMD-Blue particle simulation package to show the assembly behavior of the 5 Platonic PSCs. The simulations contain as many as 4096 individual polyhedra, across over 30 different densities per cluster geometry, with some ordered phases possessing unit cells with 20 or more particles. We observe the formation of not only traditional cubic structures such as BCC and FCC, but also more complex phases having structure symmetries with Pearson symbols - hP7, cP20, cI2, mP6, and hR3. The observations reported here will serve as a guide for future colloidal assembly experiments using an expanded library of PSCs, consisting of other regular and irregular polyhedra, allowing researchers to target specific arrangements of ``halo'' and ``core'' particles for technologically relevant applications including photonics and structural color.

  6. Chiral self-assembly of helical particles.

    PubMed

    Kolli, Hima Bindu; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille

    2016-01-01

    The shape of the building blocks plays a crucial role in directing self-assembly towards desired architectures. Out of the many different shapes, the helix has a unique position. Helical structures are ubiquitous in nature and a helical shape is exhibited by the most important biopolymers like polynucleotides, polypeptides and polysaccharides as well as by cellular organelles like flagella. Helical particles can self-assemble into chiral superstructures, which may have a variety of applications, e.g. as photonic (meta)materials. However, a clear and definite understanding of these structures has not been entirely achieved yet. We have recently undertaken an extensive investigation on the phase behaviour of hard helical particles, using numerical simulations and classical density functional theory. Here we present a detailed study of the phase diagram of hard helices as a function of their morphology. This includes a variety of liquid-crystal phases, with different degrees of orientational and positional ordering. We show how, by tuning the helix parameters, it is possible to control the organization of the system. Starting from slender helices, whose phase behaviour is similar to that of rodlike particles, an increase in curliness leads to the onset of azimuthal correlations between the particles and the formation of phases specific to helices. These phases feature a new kind of screw order, of which there is experimental evidence in colloidal suspensions of helical flagella.

  7. Active phase locking of thirty fiber channels using multilevel phase dithering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhimeng; Luo, Yongquan, E-mail: yongquan-l@sina.com; Liu, Cangli

    2016-03-15

    An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels ismore » achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.« less

  8. 3D investigation on polystyrene colloidal crystals by floatage self-assembly with mixed solvent via synchrotron radiation x-ray phase-contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao

    2017-06-01

    The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.

  9. A Near-Atomic Structure of the Dark Apoptosome Provides Insight into Assembly and Activation.

    PubMed

    Cheng, Tat Cheung; Akey, Ildikó V; Yuan, Shujun; Yu, Zhiheng; Ludtke, Steven J; Akey, Christopher W

    2017-01-03

    In Drosophila, the Apaf-1-related killer (Dark) forms an apoptosome that activates procaspases. To investigate function, we have determined a near-atomic structure of Dark double rings using cryo-electron microscopy. We then built a nearly complete model of the apoptosome that includes 7- and 8-blade β-propellers. We find that the preference for dATP during Dark assembly may be governed by Ser325, which is in close proximity to the 2' carbon of the deoxyribose ring. Interestingly, β-propellers in V-shaped domains of the Dark apoptosome are more widely separated, relative to these features in the Apaf-1 apoptosome. This wider spacing may be responsible for the lack of cytochrome c binding to β-propellers in the Dark apoptosome. Our structure also highlights the roles of two loss-of-function mutations that may block Dark assembly. Finally, the improved model provides a framework to understand apical procaspase activation in the intrinsic cell death pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model

    PubMed Central

    Padilla, Jennifer E.; Liu, Wenyan; Seeman, Nadrian C.

    2012-01-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution. PMID:23226722

  11. Balancing the intermolecular forces in peptide amphiphiles for controlling self-assembly transitions.

    PubMed

    Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E

    2017-06-21

    While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.

  12. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  13. Rational Self-Assembly of Nano-Colloids using DNA Interaction

    NASA Astrophysics Data System (ADS)

    Ung, Marie T.; Scarlett, Raynaldo; Sinno, Talid R.; Crocker, John C.

    2010-03-01

    DNA is an attractive tool to direct the rational self-assembly of nano-colloids since its interaction is specific and reversible. This tunable attractive interaction should lead to a diverse and rich phase diagram of higher ordered structures which would not otherwise be entropically favored.footnotetextTkachenko AV, Morphological Diversity of DNA-Colloidal Self-Assembly, Phys. Rev. Lett 89 (2002) We compare our latest experimental observations to a simulation framework that precisely replicates the experimental phase behavior and the crystal growth kinetics.footnotetextKim AJ, Scarlett R., Biancaniello PL, Sinno T, Crocker JC, Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly, Nature Materials 8, 52-55 (2009) We will discuss the crystallography of novel structures and address how particle size and heterogeneity affect nucleation and growth rates.

  14. Ionic self-assembly for functional hierarchical nanostructured materials.

    PubMed

    Faul, Charl F J

    2014-12-16

    CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons

  15. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  16. Neutral buoyancy test evaluation of hardware and extravehicular activity procedures for on-orbit assembly of a 14 meter precision reflector

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Lake, Mark S.

    1993-01-01

    A procedure that enables astronauts in extravehicular activity (EVA) to perform efficient on-orbit assembly of large paraboloidal precision reflectors is presented. The procedure and associated hardware are verified in simulated Og (neutral buoyancy) assembly tests of a 14 m diameter precision reflector mockup. The test article represents a precision reflector having a reflective surface which is segmented into 37 individual panels. The panels are supported on a doubly curved tetrahedral truss consisting of 315 struts. The entire truss and seven reflector panels were assembled in three hours and seven minutes by two pressure-suited test subjects. The average time to attach a panel was two minutes and three seconds. These efficient assembly times were achieved because all hardware and assembly procedures were designed to be compatible with EVA assembly capabilities.

  17. Device for measuring the fluid density of a two-phase mixture

    DOEpatents

    Cole, Jack H.

    1980-01-01

    A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.

  18. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on

  19. Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS.

    PubMed

    Wei, Feng; Xiong, Wei; Li, Wenhui; Lu, Wangting; Allen, Heather C; Zheng, Wanquan

    2015-10-14

    The assembly conformation and kinetics of phosphatidylethanolamine (PE) lipids are the key to their membrane curvatures and activities, such as exocytosis, endocytosis and Golgi membrane fusion. In the current study, a polarization and frequency resolved (bandwidth ≈ 1 cm(-1)) picosecond sum frequency generation (SFG) system was developed to characterize phosphatidylethanolamine monolayers. In addition to obtaining π-A isotherms and Brewster angle microscopy (BAM) images, the conformational changes and assembly behaviors of phosphatidylethanolamine molecules are investigated by analyzing the SFG spectra collected at various surface pressures (SPs). The compression kinetics and relaxation kinetics of phosphatidylethanolamine monolayers are also reported. The conformational changes of PE molecules during the monolayer compression are separated into several stages: reorientation of the head group PO2(-) in the beginning of the liquid-expanded (LE) phase, conformational changes of head group alkyl chains in the LE phase, and conformational changes of tail group alkyl chains in the LE-liquid condensed (LE-LC) phase. Such an understanding may help researchers to effectively control the lipid molecular conformation and membrane curvatures during the exocytosis/endocytosis processes.

  20. Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2016-02-01

    A structure's temperature can be determined from the Raman spectrum using the frequency and the ratio of the intensities of the anti-Stokes and Stokes signals (the Ias/Is ratio). In this study, we apply this approach and an equation relating the temperature, Raman frequency, and Ias/Is ratio to in-situ estimation of the phase change point of a (3-aminopropyl)triethoxysilane self-assembled monolayer (APTES SAM). Ag nanoparticles were deposited on APTES to enhance the Raman signals. A time-resolved measurement mode was used to monitor the variation in the Raman spectra in situ. Moreover, the structural change in APTES SAM (from ordered to disordered structure) under heating was discussed in detail, and the phase change point (around 118 °C) was calculated.

  1. Pre-transition effects mediate forces of assembly between transmembrane proteins

    DOE PAGES

    Katira, Shachi; Mandadapu, Kranthi K.; Vaikuntanathan, Suriyanarayanan; ...

    2016-02-24

    We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order–disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to thismore » phenomenon as the 'orderphobic effect'. The effect is mediated by proximity to the order–disorder phase transition and the size and hydrophobic mismatch of the protein. The strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered.« less

  2. Pre-transition effects mediate forces of assembly between transmembrane proteins

    DOE PAGES

    Katira, Sachi; Mandadapu, Kranthi K.; Vaikuntanathan, Suriyanarayanan; ...

    2016-02-24

    We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order-disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to thismore » phenomenon as the ‘orderphobic effect’. The effect is mediated by proximity to the order-disorder phase transition and the size and hydrophobic mismatch of the protein. Furthermore, the strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered.« less

  3. Pre-transition effects mediate forces of assembly between transmembrane proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katira, Shachi; Mandadapu, Kranthi K.; Vaikuntanathan, Suriyanarayanan

    We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order–disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to thismore » phenomenon as the 'orderphobic effect'. The effect is mediated by proximity to the order–disorder phase transition and the size and hydrophobic mismatch of the protein. The strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered.« less

  4. Pre-transition effects mediate forces of assembly between transmembrane proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katira, Sachi; Mandadapu, Kranthi K.; Vaikuntanathan, Suriyanarayanan

    We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order-disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to thismore » phenomenon as the ‘orderphobic effect’. The effect is mediated by proximity to the order-disorder phase transition and the size and hydrophobic mismatch of the protein. Furthermore, the strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered.« less

  5. OSLay: optimal syntenic layout of unfinished assemblies.

    PubMed

    Richter, Daniel C; Schuster, Stephan C; Huson, Daniel H

    2007-07-01

    The whole genome shotgun approach to genome sequencing results in a collection of contigs that must be ordered and oriented to facilitate efficient gap closure. We present a new tool OSLay that uses synteny between matching sequences in a target assembly and a reference assembly to layout the contigs (or scaffolds) in the target assembly. The underlying algorithm is based on maximum weight matching. The tool provides an interactive visualization of the computed layout and the result can be imported into the assembly editing tool Consed to support the design of primer pairs for gap closure. To enhance efficiency in the gap closure phase of a genome project it is crucial to know which contigs are adjacent in the target genome. Related genome sequences can be used to layout contigs in an assembly. OSLay is freely available from: http://www-ab.informatik.unituebingen.de/software/oslay.

  6. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    PubMed Central

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  7. Separating homeologs by phasing in the tetraploid wheat transcriptome.

    PubMed

    Krasileva, Ksenia V; Buffalo, Vince; Bailey, Paul; Pearce, Stephen; Ayling, Sarah; Tabbita, Facundo; Soria, Marcelo; Wang, Shichen; Akhunov, Eduard; Uauy, Cristobal; Dubcovsky, Jorge

    2013-06-25

    The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.

  8. Finishing bacterial genome assemblies with Mix.

    PubMed

    Soueidan, Hayssam; Maurier, Florence; Groppi, Alexis; Sirand-Pugnet, Pascal; Tardy, Florence; Citti, Christine; Dupuy, Virginie; Nikolski, Macha

    2013-01-01

    Among challenges that hamper reaping the benefits of genome assembly are both unfinished assemblies and the ensuing experimental costs. First, numerous software solutions for genome de novo assembly are available, each having its advantages and drawbacks, without clear guidelines as to how to choose among them. Second, these solutions produce draft assemblies that often require a resource intensive finishing phase. In this paper we address these two aspects by developing Mix , a tool that mixes two or more draft assemblies, without relying on a reference genome and having the goal to reduce contig fragmentation and thus speed-up genome finishing. The proposed algorithm builds an extension graph where vertices represent extremities of contigs and edges represent existing alignments between these extremities. These alignment edges are used for contig extension. The resulting output assembly corresponds to a set of paths in the extension graph that maximizes the cumulative contig length. We evaluate the performance of Mix on bacterial NGS data from the GAGE-B study and apply it to newly sequenced Mycoplasma genomes. Resulting final assemblies demonstrate a significant improvement in the overall assembly quality. In particular, Mix is consistent by providing better overall quality results even when the choice is guided solely by standard assembly statistics, as is the case for de novo projects. Mix is implemented in Python and is available at https://github.com/cbib/MIX, novel data for our Mycoplasma study is available at http://services.cbib.u-bordeaux2.fr/mix/.

  9. Hierarchical Self-Assembly of Light Guided Spinning Microgears

    NASA Astrophysics Data System (ADS)

    Aubret, Antoine; Youssef, Mena; Sacanna, Stefano; Palacci, Jeremie; Sacanna Group, NYU Team

    2017-11-01

    In this work, we demonstrate the self-assembly of microgears obtained from the guided construction of tailored self-propelled particles used as primary building blocks. The experiment relies on our control of phoretic phenomena: the migration of particles in a solute gradient. We activate a photocatalytic material, the hematite, and trigger the decomposition of hydrogen peroxide to set concentration gradient. We use this effect to engineer phototactic swimmers, attracted to the region of high illumination. We guide the swimmers to form robust and highly persistent microgears. They interact with each other through hydrodynamics and diffusiophoretically through the chemical clouds of fuel consumption. Multiple rotors are studied and we specifically address the dynamics of two rotors. We show that the microgears move collectively or synchronize thanks to the interaction of their chemical clouds. Increasing the number of microrotors (N = 2 - 7), we form an active crystal which can rotate, re-organize, change shape, and exhibit phase synchronization between its individual components. Such crystal made of non-equilibrium rotating gears at the microscale is unique. Our study paves the way for better understanding and control of emergent phenomena in collection of active spinning particles. It is a promising avenue for the creation of cutting-edge materials using emergent behavior from hierarchical self-assembly to unveil untapped functionalities. This work is supported by NSF CAREER DMR 1554724.

  10. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  11. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.

    PubMed

    Abraham, Alex; Chatterji, Apratim

    2018-04-21

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  12. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    NASA Astrophysics Data System (ADS)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  13. Self-Assembly and Crystallization of Hairy (f-Star) and DNA-Grafted Nanocubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knorowski, Christopher; Travesset, Alex

    Nanoparticle superlattices are key to realizing many of the materials that will solve current technological challenges. Particularly important for their optical, mechanical or catalytic properties are superlattices of anisotropic (nonspherical) nanoparticles. The key challenge is how to program anisotropic nanoparticles to self-assemble into the relevant structures. In this Article, using numerical simulations, we show that “hairy” (f-star) or DNA grafted on nanocubes provides a general framework to direct the self-assembly into phases with crystalline, liquid crystalline, rotator, or noncrystalline phases with both long-range positional and orientational order. We discuss the relevance of these phases for engineering nanomaterials or micromaterials displayingmore » precise orientational order, realization of dry superlattices as well as for the field of programmed self-assembly of anisotropic nanoparticles in general.« less

  14. Organogel-emulsions with mixtures of β-sitosterol and γ-oryzanol: influence of water activity and type of oil phase on gelling capability.

    PubMed

    Sawalha, Hassan; den Adel, Ruud; Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2012-04-04

    In this study, water-in-oil emulsions were prepared from water containing different salt concentrations dispersed in an oil phase containing a mixture of β-sitosterol and γ-oryzanol. In pure oil, the β-sitosterol and γ-oryzanol molecules self-assemble into tubular microstructures to produce a firm organogel. However, in the emulsion, the water molecules bind to the β-sitosterol molecules, forming monohydrate crystals that hinder the formation of the tubules and resulting in a weaker emulsion-gel. Addition of salt to the water phase decreases the water activity, thereby suppressing the formation of sitosterol monohydrate crystals even after prolonged storage times (∼1 year). When the emulsions were prepared with less polar oils, the tubular microstructure was promoted, which significantly increased the firmness of the emulsion-gel. The main conclusion of this study is that the formation of oryzanol and sitosterol tubular microstructure in the emulsion can be promoted by reducing the water activity and/or by using oils of low polarity.

  15. Computational path planner for product assembly in complex environments

    NASA Astrophysics Data System (ADS)

    Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi

    2013-03-01

    Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.

  16. Self-assembling biomolecular catalysts for hydrogen production

    NASA Astrophysics Data System (ADS)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  17. Photocatalytic activity of self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan

    2018-04-01

    A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.

  18. Cytochrome oxidase assembly does not require catalytically active cytochrome C.

    PubMed

    Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander

    2003-03-14

    Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.

  19. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  20. OSIRIS-REx OCAMS detector assembly characterization

    NASA Astrophysics Data System (ADS)

    Hancock, J.; Crowther, B.; Whiteley, M.; Burt, R.; Watson, M.; Nelson, J.; Fellows, C.; Rizk, B.; Kinney-Spano, E.; Perry, M.; Hunten, M.

    2013-09-01

    The OSIRIS-REx asteroid sample return mission carries a suite of three cameras referred to as OCAMS. The Space Dynamics Laboratory (SDL) at Utah State University is providing the CCD-based detector assemblies for OCAMS to the Lunar Planetary Lab (LPL) at the University of Arizona. Working with the LPL, SDL has designed the electronics to operate a 1K by 1K frame transfer Teledyne DALSA Multi-Pinned Phase (MPP) CCD. The detector assembly electronics provides the CCD clocking, biasing, and digital interface with the OCAMS payload Command Control Module (CCM). A prototype system was built to verify the functionality of the detector assembly design and to characterize the detector system performance at the intended operating temperatures. The characterization results are described in this paper.

  1. Dynamics of assembly production flow

    NASA Astrophysics Data System (ADS)

    Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2015-06-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.

  2. Target Assembly to Check Boresight Alignment of Active Sensors

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael

    2011-01-01

    A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.

  3. Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shrestha, Lok Kumar; Strzelczyk, Karolina Maria; Goswami Shrestha, Rekha; Ichikawa, Kotoko; Aramaki, Kenji; Hill, Jonathan P.; Ariga, Katsuhiko

    2015-05-01

    Amphiphiles, molecules that possess both hydrophilic and hydrophobic moieties, are architecturally simple molecules that can spontaneously self-assemble into complex hierarchical structures from lower to higher dimensions either in the bulk phase or at an interface. Recent developments in multifunctional nanostructure design using the advanced concept of nanoarchitectonics utilize this simple process of assembly. Amphiphilic self-assemblies involving lipids or proteins mimic the structure of biological systems, thus highlighting the necessity of a fundamental physical understanding of amphiphilic self-assembly towards a realization of the complex mechanisms operating in nature. Herein, we describe self-assembled microstructures of biocompatible and biodegradable tetraglycerol lauryl ether (C12G4) nonionic surfactant in an aqueous solvent system. Temperature-composition analyses of equilibrium phases identified by using small-angle x-ray scattering (SAXS) provide strong evidence of various spontaneously self-assembled mesostructures, such as normal micelles (Wm), hexagonal liquid crystal (H1), and reverse micelles (Om). In contrast to conventional poly(oxyethylene) nonionic surfactants, C12G4 did not exhibit the clouding phenomenon at higher temperatures (phase separation was not observed up to 100 °C), demonstrating the greater thermal stability of the self-assembled mesophases. Generalized indirect Fourier transformation (GIFT) evaluation of the SAXS data confirmed the formation of core-shell-type spherical micelles with a maximum dimension ca. 8.7 nm. The shape and size of the C12G4 micelles remained apparently unchanged over a wide range of concentrations (up to 20%), but intermicellar interactions increased and could be described by the Percus-Yevick (PY) theory (after Carnahan and Starling), which provides a very accurate analytical expression for the osmotic pressure of a monodisperse hard sphere.

  4. Technical Report: Understanding Functional Lyotropic Liquid Crystal Network Phase Self-Assembly and the Properties of Nanoconfined Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahanthappa, Mahesh K; Yethiraj, Arun

    Through the synergistic interplay of molecular dynamics (MD) simulations, chemical synthesis, and materials characterization by X-ray and neutron scattering techniques, this project investigated the phase behaviors of new classes of aqueous lyotropic liquid crystals (LLCs) and the properties of water nanoconfined within their pores. A portion of our studies focused on the synthesis of new classes of alkylsulfonic acid and alkylphosphonate amphiphiles, which were shown to undergo water-induced self-assembly to form a wide variety of nanostructured morphologies with unusually high degrees of long-range translational order observed by small- angle X-ray scattering (SAXS). Sample LLC morphologies that were observed include themore » lamellar (L!), tricontinuous double gyroid (G), hexagonally-packed cylinders (H), and low symmetry discontinuous micellar (I) Frank-Kasper phases. Since the G and H phases are the most promising for the development of selective ion transporting membranes for energy applications, we sought the characterize the structure and dynamics of water confined within the sub-3 nm pores of these LLCs using wide-angle neutron diffraction (WAND) and quasielastic neutron scattering (QENS) experiments performed at the Spallation Neutron Source at Oak Ridge National Laboratory. Using molecular dynamics (MD) simulations, we validated models for analyzing this QENS data to obtain water self-diffusion coefficients in LLC G and H phases of carboxylate and sulfonate surfactant LLCs as a function of the identities of their charge compensating counterions.« less

  5. Launch Deployment Assembly Extravehicular Activity Neutral Buoyancy Development Test Report

    NASA Technical Reports Server (NTRS)

    Loughead, T.

    1996-01-01

    This test evaluated the Launch Deployment Assembly (LDA) design for Extravehicular Activity (EVA) work sites (setup, igress, egress), reach and visual access, and translation required for cargo item removal. As part of the LDA design, this document describes the method and results of the LDA EVA Neutral Buoyancy Development Test to ensure that the LDA hardware support the deployment of the cargo items from the pallet. This document includes the test objectives, flight and mockup hardware description, descriptions of procedures and data collection used in the testing, and the results of the development test at the National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS).

  6. Minimum accommodation for aerobrake assembly. Phase 2: Structural concepts for a lunar transfer vehicle aerobrake which can be assembled on orbit

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.; Tutterow, Robin D.

    1993-01-01

    A multidisciplinary conceptual study was conducted to define a reusable lunar transfer vehicle (LTV) aerobrake which could be launched on a Space Shuttle of Titan 4 and assembled on orbit at Space Station Freedom. A major objective was to design an aerobrake, with integrated structure and thermal protection systems, which has a mass less than 20 percent (9040 lb) of the LTV lunar return mass. The aerobrake segmentation concepts, the structural concepts, a joint concept for assembly, and a structural design with analysis of the aerobrake are described. Results show that a 50-foot diameter LTV aerobrake can be designed for on-orbit assembly which will achieve the 20 percent mass budget.

  7. De Novo Assembly and Phasing of Dikaryotic Genomes from Two Isolates of Puccinia coronata f. sp. avenae, the Causal Agent of Oat Crown Rust

    PubMed Central

    Miller, Marisa E.; Zhang, Ying; Omidvar, Vahid; Sperschneider, Jana; Raley, Castle; Palmer, Jonathan M.; Garnica, Diana; Upadhyaya, Narayana; Rathjen, John; Taylor, Jennifer M.; Park, Robert F.; Dodds, Peter N.; Hirsch, Cory D.

    2018-01-01

    ABSTRACT Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenae. PMID:29463655

  8. Separating homeologs by phasing in the tetraploid wheat transcriptome

    PubMed Central

    2013-01-01

    Background The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Conclusions Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies. PMID:23800085

  9. Probing Phase Evolutions of Au-Methyl-Propyl-Thiolate Self-Assembled Monolayers on Au(111) at the Molecular Level.

    PubMed

    Gao, Jianzhi; Lin, Haiping; Qin, Xuhui; Zhang, Xin; Ding, Haoxuan; Wang, Yitao; Rokni Fard, Mahroo; Kaya, Dogan; Zhu, Gangqiang; Li, Qing; Li, Youyong; Pan, Minghu; Guo, Quanmin

    2018-06-18

    A self-assembled monolayer (SAM) consisting of a mixture of CH 3 S-Au-SCH 3 , CH 3 S-Au-S(CH 2 ) 2 CH 3 , and CH 3 (CH 2 ) 2 S-Au-S(CH 2 ) 2 CH 3 was studied systematically using scanning tunneling microscopy and density functional calculations. We find that the SAM is subjected to frequent changes at the molecular level on the time scale of ∼minutes. The presence of CH 3 S or CH 3 S-Au as a dissociation product of CH 3 S-Au-SCH 3 plays a key role in the dynamical behavior of the mixed SAM. Slow phase separation takes place at room temperature over hours to days, leading to the formation of methyl-thiolate-rich and propyl-thiolate-rich phases. Our results provide new insights into the chemistry of the thiolate-Au interface, especially for ligand exchange reaction in the RS-Au-SR staple motif.

  10. Self-assembly of chlorophenols in water

    PubMed Central

    Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe

    1999-01-01

    In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753

  11. An Active Approach to Engineering the Microscopic

    NASA Astrophysics Data System (ADS)

    Mallory, Stewart A.

    Active colloids, which can be thought of as the synthetic analog of swimming bacteria, exhibit remarkable collective behavior. Using a combination of computer simulations and analytical theory, I have looked to provide quantitative answers to fundamental questions concerning the phase behavior and material properties of active suspensions. A primary focus of my Ph.D work has been devoted to developing novel techniques to exploit the active nature of these particles to manipulate and self-assemble matter at the colloidal scale. In the introductory chapter, I discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field. The remaining chapters are each self-contained and focus on a particular topic within active colloidal self-assembly. These chapters are ordered in terms of system complexity, and begins with characterizing the thermomechanical properties of an ideal active fluid. The next three chapters are centered around characterizing the effective interactions induced by an active suspension. The last two chapters focus on using self-propulsion as a tool to improve colloidal self-assembly, and understanding the interplay between self-propulsion and anisotropic pair interaction.

  12. Micro Galvanic Cell To Generate PtO and Extend the Triple-Phase Boundary during Self-Assembly of Pt/C and Nafion for Catalyst Layers of PEMFC.

    PubMed

    Long, Zhi; Gao, Liqin; Li, Yankai; Kang, Baotao; Lee, Jin Yong; Ge, Junjie; Liu, Changpeng; Ma, Shuhua; Jin, Zhao; Ai, Hongqi

    2017-11-08

    The self-assembly powder (SAP) with varying Nafion content was synthesized and characterized by XRD, XPS, HRTEM, and mapping. It is observed that the oxygen from oxygen functional groups transfers to the surface of Pt and generate PtO during the process of self-assembly with the mechanism of micro galvanic cell, where Pt, carbon black, and Nafion act as the anode, cathode and electrolyte, respectively. The appearance of PtO on the surface of Pt leads to a turnover of Nafion structure, and therefore more hydrophilic sulfonic groups directly contact with Pt, and thus the triple-phase boundary (TPB) has been expanded.

  13. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics

    NASA Astrophysics Data System (ADS)

    Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.

    2018-01-01

    Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.

  14. De Novo Assembly and Phasing of Dikaryotic Genomes from Two Isolates of Puccinia coronata f. sp. avenae, the Causal Agent of Oat Crown Rust.

    PubMed

    Miller, Marisa E; Zhang, Ying; Omidvar, Vahid; Sperschneider, Jana; Schwessinger, Benjamin; Raley, Castle; Palmer, Jonathan M; Garnica, Diana; Upadhyaya, Narayana; Rathjen, John; Taylor, Jennifer M; Park, Robert F; Dodds, Peter N; Hirsch, Cory D; Kianian, Shahryar F; Figueroa, Melania

    2018-02-20

    Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae , is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenae IMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae , which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae , resources to study the

  15. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Hyo Seon; Kim, Do Han; Moni, Priya

    2017-03-27

    Directed self-assembly (DSA) of the domain structure in block copolymer (BCP) thin films is a promising approach for sub-10-nm surface patterning. DSA requires the control of interfacial properties on both interfaces of a BCP film to induce the formation of domains that traverse the entire film with a perpendicular orientation. Here we show a methodology to control the interfacial properties of BCP films that uses a polymer topcoat deposited by initiated chemical vapour deposition (iCVD). The iCVD topcoat forms a crosslinked network that grafts to and immobilizes BCP chains to create an interface that is equally attractive to both blocksmore » of the underlying copolymer. The topcoat, in conjunction with a chemically patterned substrate, directs the assembly of the grating structures in BCP films with a half-pitch dimension of 9.3 nm. As the iCVD topcoat can be as thin as 7 nm, it is amenable to pattern transfer without removal. As a result, the ease of vapour-phase deposition, applicability to high-resolution BCP systems and integration with pattern-transfer schemes are attractive properties of iCVD topcoats for industrial applications.« less

  16. Phase separation and large deviations of lattice active matter

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Klymko, Katherine; Mandal, Dibyendu

    2018-04-01

    Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.

  17. Bacterial community assembly in activated sludge: mapping beta diversity across environmental variables.

    PubMed

    Isazadeh, Siavash; Jauffur, Shameem; Frigon, Dominic

    2016-12-01

    Effect of ecological variables on community assembly of heterotrophic bacteria at eight full-scale and two pilot-scale activated sludge wastewater treatment plants (AS-WWTPs) were explored by pyrosequencing of 16S rRNA gene amplicons. In total, 39 samples covering a range of abiotic factors spread over space and time were analyzed. A core bacterial community of 24 families detected in at least six of the eight AS-WWTPs was defined. In addition to the core families, plant-specific families (observed at <50% AS-WWTPs) were found to be also important in the community structure. Observed beta diversity was partitioned with respect to ecological variables. Specifically, the following variables were considered: influent wastewater characteristics, season (winter vs. summer), process operations (conventional, oxidation ditch, and sequence batch reactor), reactor sizes (pilot-scale vs. full-scale reactors), chemical stresses defined by ozonation of return activated sludge, interannual variation, and geographical locations. Among the assessed variables, influent wastewater characteristics and geographical locations contributed more in explaining the differences between AS-WWTP bacterial communities with a maximum of approximately 26% of the observed variations. Partitioning of beta diversity is necessary to interpret the inherent variability in microbial community assembly and identify the driving forces at play in engineered microbial ecosystem. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Study of seismic activity during the ascending and descending phases of solar activity

    NASA Astrophysics Data System (ADS)

    Sukma, Indriani; Abidin, Zamri Zainal

    2017-06-01

    The study of the solar cycle and geomagnetic index associated with the seismic activity from the year 1901 to the end of 2015 has been done for an area that covers the majority of China and its bordering countries. Data of sunspot number, solar wind speed, daily storm time index and earthquake number are collected from NOAA, NASA, WDC, OMNI and USGS databases and websites. The earthquakes are classified into small (M < 5) and large (M ≥ 5) magnitudes (in Richter scale). We investigated the variation of earthquake activities with the geomagnetic storm index due to the solar wind. We focused on their variation in the ascending and descending phases of solar cycle. From our study, we conclude that there is a correlation between the phases' geomagnetic index and solar wind speed. We have also suggested that there is a certain degree of correlation between solar activity and seismicity in these phases. For every solar cycle, we find that there is a trend for earthquakes to occur in greater numbers during the descending phase. This can be explained by the increment in the solar wind speed and geomagnetic storm index during this phase.

  19. Assembly of transcriptionally inactive chromatin in vitro.

    PubMed

    Shanahan, M M; Kmiec, E B

    1989-07-01

    We have successfully uncoupled the previously interlocked activities of chromatin assembly and in vitro transcription promoted by the Xenopus oocyte S-150 cell-free extract. Our isolated fraction catalyzes extensive chromatin assembly measured both by changes in DNA topology and Micrococcal nuclease digestions. The assembly of chromatin is slowed by the exogenous addition of ATP. In the absence of exogenously added ATP, the fraction forms a chromatin template that is transcriptionally inert. Addition of small amounts of the HeLa cell extract (S-100) converts these templates into transcriptionally active ones without disrupting the chromatin structure. Our protocol defines a method for the isolation of a fraction from the Xenopus cell free extract that catalyzes the assembly of transcriptionally inactive chromatin. We characterize this reaction and establish conditions for the transcriptional activation of these inactive minichromosomes.

  20. Tuning the self-assembled 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol nanoarchitectures using the phase inversion method

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chi; Tseng, Shen-Jhen

    2013-11-01

    1,3:2,4-Di(3,4-dimethylbenzylidene) sorbitol (DMDBS) molecules can self-assemble into nanoscaled structures in organic solvents and polymer melts. The nanofibril structures were the mostly found. In this study, we used two phase inversion methods, i.e., dry and wet methods, to obtain different DMDBS nanoarchitectures. Poly(vinylidene fluoride) (PVDF) was chosen as polymer matrix, and the DMDBS structures were tuned by the process of PVDF membrane formation (crystallization and liquid-liquid demixing). When the membrane was prepared using the dry method, the DMDBS structure is controlled by the PVDF crystallization. Fewer DMDBS nanofibrils formed on the surfaces, and no nanofibrils were found in the cross-sections. On the other hand, when the membrane was prepared using the wet method, the liquid-liquid demixing (nonsolvent induced phase separation) occurred simultaneously as PVDF crystallized, and thus influenced the aggregation of DMDBS molecules. DMDBS is an amphiphilic molecule with two hydrophilic hydroxyl groups. The addition of nonsolvent (water) caused a large number of DMDBS molecules to aggregate outside the hydrophobic PVDF. In addition, a new structure "nanomat" was found. The mat was composed of DMDBS nanofibrils with diameters of 10-20 nm, similar to those observed in the dry method membranes. Fourier transform infra-red spectroscopy indicates that the DMDBS molecules self-assembled (aggregated) mainly through intermolecular hydrogen bonding in the presence of PVDF. The more intermolecular hydrogen bonding between DMDBS existed, the more excessive amounts of DMDBS molecules were, leading to the formation of nanomats.

  1. Photocontrolled reversible self-assembly of dodecamer nitrilase.

    PubMed

    Yu, Qiao; Wang, Yong; Zhao, Shengyun; Ren, Yuhong

    2017-01-01

    Naturally photoswitchable proteins act as a powerful tool for the spatial and temporal control of biological processes by inducing the formation of a photodimerizer. In this study, a method for the precise and reversible inducible self-assembly of dodecamer nitrilase in vivo (in Escherichia coli ) and in vitro (in a cell-free solution) was developed by means of the photoswitch-improved light-inducible dimer (iLID) system which could induce protein-protein dimerization. Nitrilase was fused with the photoswitch protein AsLOV2-SsrA to achieve the photocontrolled self-assembly of dodecamer nitrilase. The fusion protein self-assembled into a supramolecular assembly when illuminated at 470 nm. Scanning electron microscopy showed that the assembly formed a circular sheet structure. Self-assembly was also induced by light in E. coli . Dynamic light scattering and turbidity assay experiments showed that the assemblies formed within a few seconds under 470-nm light and completely disassembled within 5 min in the dark. Assembly and disassembly could be maintained for at least five cycles. Both in vitro and in vivo, the assemblies retained 90% of the initial activity of nitrilase and could be reused at least four times in vitro with 90% activity. An efficient method was developed for the photocontrolled assembly and disassembly of dodecamer nitrilase and for scaffold-free reversible self-assembly of multiple oligomeric enzymes in vivo and in vitro, providing new ideas and methods for immobilization of enzyme without carrier.

  2. Pre-transition effects mediate forces of assembly between transmembrane proteins

    PubMed Central

    Katira, Shachi; Mandadapu, Kranthi K; Vaikuntanathan, Suriyanarayanan; Smit, Berend; Chandler, David

    2016-01-01

    We present a mechanism for a generic, powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the membrane. Using large-scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order–disorder interface. The stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic effect, we refer to this phenomenon as the 'orderphobic effect'. The effect is mediated by proximity to the order–disorder phase transition and the size and hydrophobic mismatch of the protein. The strength and range of forces arising from this effect are significantly larger than those that could arise from membrane elasticity for the membranes considered. DOI: http://dx.doi.org/10.7554/eLife.13150.001 PMID:26910009

  3. Neural assembly computing.

    PubMed

    Ranhel, João

    2012-06-01

    Spiking neurons can realize several computational operations when firing cooperatively. This is a prevalent notion, although the mechanisms are not yet understood. A way by which neural assemblies compute is proposed in this paper. It is shown how neural coalitions represent things (and world states), memorize them, and control their hierarchical relations in order to perform algorithms. It is described how neural groups perform statistic logic functions as they form assemblies. Neural coalitions can reverberate, becoming bistable loops. Such bistable neural assemblies become short- or long-term memories that represent the event that triggers them. In addition, assemblies can branch and dismantle other neural groups generating new events that trigger other coalitions. Hence, such capabilities and the interaction among assemblies allow neural networks to create and control hierarchical cascades of causal activities, giving rise to parallel algorithms. Computing and algorithms are used here as in a nonstandard computation approach. In this sense, neural assembly computing (NAC) can be seen as a new class of spiking neural network machines. NAC can explain the following points: 1) how neuron groups represent things and states; 2) how they retain binary states in memories that do not require any plasticity mechanism; and 3) how branching, disbanding, and interaction among assemblies may result in algorithms and behavioral responses. Simulations were carried out and the results are in agreement with the hypothesis presented. A MATLAB code is available as a supplementary material.

  4. Actively suspended counter-rotating machine

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A counter-rotating machine, such as a positive displacement pump having a pair of meshed, non-contacting helical screws (10,12), subjects its rotating members to axial and radial thrust forces when used for such purposes as compression of liquid or gaseous phase fluids while transporting them through a pump cavity (11,13). Each helical screw (10,12) has a shaft (17,17') which is actively suspended at opposite ends (11a,11b) of the pump cavity by a servo-controlled magnetic bearing assembly (19) and a servo-controlled rotary drive motor (20). Both bearing assemblies and drive motors are mounted on the outside of the pump cavity (11,13). Opto-electric angular position sensors (250) provide synchronization between radial orientation of the drive motors. The bearing assemblies and drive motors conjugately provide axial stabilization and radial centering of the helical screws during volumetric compression of aspirated liquid or gaseous phase fluids.

  5. Isochronic carrier-envelope phase-shift compensator.

    PubMed

    Görbe, Mihaly; Osvay, Karoly; Grebing, Christian; Steinmeyer, Günter

    2008-11-15

    A concept for orthogonal control of phase and group delay inside a laser cavity by a specially designed compensator assembly is discussed. Similar to the construction of variable polarization retarder, this assembly consists of two thin wedge prisms made from appropriately chosen optical materials. Being shifted as a whole, the assembly allows changing the phase delay with no influence on the cavity round-trip time, whereas relative shifting of the prisms enables adjustment of the latter. This scheme is discussed theoretically and verified experimentally, indicating a factor 30 reduction of the influence on the repetition rate compared to the commonly used silica wedge pair. For a 2pi adjustment of the carrier-envelope phase shift, single-pass timing differences are reduced to the single-femtosecond regime. With negligible distortions of timing and dispersion, the described compensator device greatly simplifies carrier-envelope phase control and experiments in extreme nonlinear optics. Copyright (c) 2008 Optical Society of America.

  6. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    PubMed

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  7. Activity induced phase transition in mixtures of active and passive agents

    NASA Astrophysics Data System (ADS)

    Sinha Mahapatra, Pallab; Kulkarni, Ajinkya

    2017-11-01

    Collective behaviors of self-propelling agents are ubiquitous in nature that produces interesting patterns. The objective of this study is to investigate the phase transition in mixtures of active and inert agents suspended in a liquid. A modified version of the Vicsek Model has been used (see Ref.), where the particles are modeled as soft disks with finite mass, confined in a square domain. The particles are required to align their local motion to their immediate neighborhood, similar to the Vicsek model. We identified the transition from disorganized thermal-like motion to an organized vortical motion. We analyzed the nature of the transition by using different order parameters. Furthermore the switching between the phases has been investigated via artificial nucleation of randomly picked active agents spanning the entire domain. Finally the motivation for this phase transition has been explained via average dissipation and the mean square displacement (MSD) of the agents.

  8. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly.

    PubMed

    Reyon, Deepak; Khayter, Cyd; Regan, Maureen R; Joung, J Keith; Sander, Jeffry D

    2012-10-01

    Engineered transcription activator-like effector nucleases (TALENs) are broadly useful tools for performing targeted genome editing in a wide variety of organisms and cell types including plants, zebrafish, C. elegans, rat, human somatic cells, and human pluripotent stem cells. Here we describe detailed protocols for the serial, hierarchical assembly of TALENs that require neither PCR nor specialized multi-fragment ligations and that can be implemented by any laboratory. These restriction enzyme and ligation (REAL)-based protocols can be practiced using plasmid libraries and user-friendly, Web-based software that both identifies target sites in sequences of interest and generates printable graphical guides that facilitate assembly of TALENs. With the described platform of reagents, protocols, and software, researchers can easily engineer multiple TALENs within 2 weeks using standard cloning techniques. 2012 by John Wiley & Sons, Inc.

  9. Tailored Assembly of 2D Heterostructures beyond Graphene

    DTIC Science & Technology

    2017-05-11

    liquid crystal and catalyst application. Another important approach we have explored during this project is the solution phase assembly of two...graphene oxide, and its potential functionalities in liquid crystal and catalyst application. Another important approach we have explored during...exfoliation, liquid phase exfoliation, and chemical vapor deposition, and opened up new opportunities to graphene based platform for novel

  10. Ternary blend polymer solar cells with self-assembled structure for enhancing power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhua; Li, Hongfei; Nam, Chang-Yong; Kisslinger, Kim; Satija, Sushil; Rafailovich, Miriam

    Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their advantages such as mechanical flexibility. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes. Here we report a self-assembled columnar structure formed by phase separation between (PCDTBT) and polystyrene (PS) for the active layer morphology optimization. The BHJ solar cell device based on this structure is promising for exhibiting higher performance due to the shorter carrier transportation pathway and larger interfacial area between donor and acceptor. The surface morphology is investigated with atomic force microscopy (AFM) and the columnar structure is studied by investigation of cross-section of the blend thin film of PCDTBT and PS under the transmission electron microscopy (TEM). The different morphological structures formed via phase segregation are correlated with the performance of the BHJ solar cells.

  11. Upregulated Op18/stathmin activity causes chromosomal instability through a mechanism that evades the spindle assembly checkpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmfeldt, Per; Sellin, Mikael E.; Gullberg, Martin, E-mail: Martin.Gullberg@molbiol.umu.se

    2010-07-15

    Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18{yields}E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis,more » conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.« less

  12. Iron loading site on the Fe-S cluster assembly scaffold protein is distinct from the active site.

    PubMed

    Rodrigues, Andria V; Kandegedara, Ashoka; Rotondo, John A; Dancis, Andrew; Stemmler, Timothy L

    2015-06-01

    Iron-sulfur (Fe-S) cluster containing proteins are utilized in almost every biochemical pathway. The unique redox and coordination chemistry associated with the cofactor allows these proteins to participate in a diverse set of reactions, including electron transfer, enzyme catalysis, DNA synthesis and signaling within several pathways. Due to the high reactivity of the metal, it is not surprising that biological Fe-S cluster assembly is tightly regulated within cells. In yeast, the major assembly pathway for Fe-S clusters is the mitochondrial ISC pathway. Yeast Fe-S cluster assembly is accomplished using the scaffold protein (Isu1) as the molecular foundation, with assistance from the cysteine desulfurase (Nfs1) to provide sulfur, the accessory protein (Isd11) to regulate Nfs1 activity, the yeast frataxin homologue (Yfh1) to regulate Nfs1 activity and participate in Isu1 Fe loading possibly as a chaperone, and the ferredoxin (Yah1) to provide reducing equivalents for assembly. In this report, we utilize calorimetric and spectroscopic methods to provide molecular insight into how wt-Isu1 from S. cerevisiae becomes loaded with iron. Isothermal titration calorimetry and an iron competition binding assay were developed to characterize the energetics of protein Fe(II) binding. Differential scanning calorimetry was used to identify thermodynamic characteristics of the protein in the apo state or under iron loaded conditions. Finally, X-ray absorption spectroscopy was used to characterize the electronic and structural properties of Fe(II) bound to Isu1. Current data are compared to our previous characterization of the D37A Isu1 mutant, and these suggest that when Isu1 binds Fe(II) in a manner not perturbed by the D37A substitution, and that metal binding occurs at a site distinct from the cysteine rich active site in the protein.

  13. A proposed simulation method for directed self-assembly of nanographene

    NASA Astrophysics Data System (ADS)

    Geraets, J. A.; Baldwin, J. P. C.; Twarock, R.; Hancock, Y.

    2017-09-01

    A methodology for predictive kinetic self-assembly modeling of bottom-up chemical synthesis of nanographene is proposed. The method maintains physical transparency in using a novel array format to efficiently store molecule information and by using array operations to determine reaction possibilities. Within a minimal model approach, the parameter space for the bond activation energies (i.e. molecule functionalization) at fixed reaction temperature and initial molecule concentrations is explored. Directed self-assembly of nanographene from functionalized tetrabenzanthracene and benzene is studied with regions in the activation energy phase-space showing length-to-width ratio tunability. The degree of defects and reaction reproducibility in the simulations is also determined, with the rate of functionalized benzene addition providing additional control of the dimension and quality of the nanographene. Comparison of the reaction energetics to available density functional theory data suggests the synthesis may be experimentally tenable using aryl-halide cross-coupling and noble metal surface-assisted catalysis. With full access to the intermediate reaction network and with dynamic coupling to density functional theory-informed tight-binding simulation, the method is proposed as a computationally efficient means towards detailed simulation-driven design of new nanographene systems.

  14. Nucleation by rRNA Dictates the Precision of Nucleolus Assembly.

    PubMed

    Falahati, Hanieh; Pelham-Webb, Bobbie; Blythe, Shelby; Wieschaus, Eric

    2016-02-08

    Membrane-less organelles are intracellular compartments specialized to carry out specific cellular functions. There is growing evidence supporting the possibility that such organelles form as a new phase, separating from cytoplasm or nucleoplasm. However, a main challenge to such phase separation models is that the initial assembly, or nucleation, of the new phase is typically a highly stochastic process and does not allow for the spatiotemporal precision observed in biological systems. Here, we investigate the initial assembly of the nucleolus, a membrane-less organelle involved in different cellular functions including ribosomal biogenesis. We demonstrate that the nucleolus formation is precisely timed in D. melanogaster embryos and follows the transcription of rRNA. We provide evidence that transcription of rRNA is necessary for overcoming the highly stochastic nucleation step in the formation of the nucleolus, through a seeding mechanism. In the absence of rDNA, the nucleolar proteins studied are able to form high-concentration assemblies. However, unlike the nucleolus, these assemblies are highly variable in number, location, and time at which they form. In addition, quantitative study of the changes in the nucleoplasmic concentration and distribution of these nucleolar proteins in the wild-type embryos is consistent with the role of rRNA in seeding the nucleolus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Conserved RhoGAP Limits M-phase Contractility and Coordinates with Microtubule Asters to Restrict Active RhoA to the Cell Equator During Cytokinesis

    PubMed Central

    Zanin, Esther; Desai, Arshad; Poser, Ina; Toyoda, Yusuke; Andree, Cordula; Moebius, Claudia; Bickle, Marc; Conradt, Barbara; Piekny, Alisa; Oegema, Karen

    2014-01-01

    SUMMARY During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M-phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis/cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M-phase leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions. PMID:24012485

  16. Printable Functional Chips Based on Nanoparticle Assembly.

    PubMed

    Huang, Yu; Li, Wenbo; Qin, Meng; Zhou, Haihua; Zhang, Xingye; Li, Fengyu; Song, Yanlin

    2017-01-01

    With facile manufacturability and modifiability, impressive nanoparticles (NPs) assembly applications were performed for functional patterned devices, which have attracted booming research attention due to their increasing applications in high-performance optical/electrical devices for sensing, electronics, displays, and catalysis. By virtue of easy and direct fabrication to desired patterns, high throughput, and low cost, NPs assembly printing is one of the most promising candidates for the manufacturing of functional micro-chips. In this review, an overview of the fabrications and applications of NPs patterned assembly by printing methods, including inkjet printing, lithography, imprinting, and extended printing techniques is presented. The assembly processes and mechanisms on various substrates with distinct wettabilities are deeply discussed and summarized. Via manipulating the droplet three phase contact line (TCL) pinning or slipping, the NPs contracted in ink are controllably assembled following the TCL, and generate novel functional chips and correlative integrate devices. Finally, the perspective of future developments and challenges is presented and widely exhibited. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-assembled biomimetic nanoreactors I: Polymeric template

    NASA Astrophysics Data System (ADS)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  18. Immune activation with peptide assemblies carrying Lewis y tumor-associated carbohydrate antigen.

    PubMed

    Yamazaki, Yuji; Watabe, Naoki; Obata, Hiroaki; Hara, Eri; Ohmae, Masashi; Kimura, Shunsaku

    2017-02-01

    Molecular assemblies varying morphologies in a wide range from spherical micelle, nanosheet, curved sheet, nanotube and vesicle were prepared and loaded with Lewis y (Le y ) tumor-associated carbohydrate antigen on the assembly surface. The molecular assemblies were composed of poly(sarcosine) m -block-poly(L-lactic acid) 30 (m = 15 or 50, Lactosome), poly(sarcosine) m -block-(D/L-Leu-Aib) n (m = 22 or 30, n = 6 or 8) and their combinations. The molecular assemblies carrying Le y on the surface were administered in BALB/c nu/nu mice. The major epitopes of the molecular assemblies are commonly Le y and poly(sarcosine). IgM productions upon administrations of the molecular assemblies were assayed by ELISA, showing that anti-poly(sarcosine) IgM was highly produced by Lactosome of spherical micelle but with a negligible amount of anti-Le y IgM. On the other hand, the nanosheet of the interdigitated monolayer triggered the production of anti-Le y IgM but with less anti-poly(sarcosine) IgM production. Taken together, IgM specificity differs according to the molecular environment of the epitopes in the molecular assemblies. The antigenicity of poly(sarcosine) was augmented in polymeric micelle providing loose environment for B cells to penetrate in, whereas a high density of Le y on the molecular assembly was required for anti-Le y IgM production. The antigenicity of Le y is therefore dependent on the molecular assemblies on which Le y is displayed on the surface. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  19. Assembly considerations for large reflectors

    NASA Technical Reports Server (NTRS)

    Bush, H.

    1988-01-01

    The technologies developed at LaRC in the area of erectable instructures are discussed. The information is of direct value to the Large Deployable Reflector (LDR) because an option for the LDR backup structure is to assemble it in space. The efforts in this area, which include development of joints, underwater assembly simulation tests, flight assembly/disassembly tests, and fabrication of 5-meter trusses, led to the use of the LaRC concept as the baseline configuration for the Space Station Structure. The Space Station joint is linear in the load and displacement range of interest to Space Station; the ability to manually assemble and disassemble a 45-foot truss structure was demonstrated by astronauts in space as part of the ACCESS Shuttle Flight Experiment. The structure was built in 26 minutes 46 seconds, and involved a total of 500 manipulations of untethered hardware. Also, the correlation of the space experience with the neutral buoyancy simulation was very good. Sections of the proposed 5-meter bay Space Station truss have been built on the ground. Activities at LaRC have included the development of mobile remote manipulator systems (which can traverse the Space Station 5-meter structure), preliminary LDR sun shield concepts, LDR construction scenarios, and activities in robotic assembly of truss-type structures.

  20. Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.

    PubMed

    Imura, Tomohiro; Ohta, Noboru; Inoue, Katsuaki; Yagi, Naoto; Negishi, Hideyuki; Yanagishita, Hiroshi; Kitamoto, Dai

    2006-03-08

    Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The

  1. In Vitro Assembly of Catalase*

    PubMed Central

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-01-01

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process. PMID:25148685

  2. Communication: Microphase equilibrium and assembly dynamics.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2017-09-07

    Despite many attempts, ordered equilibrium microphases have yet to be obtained in experimental colloidal suspensions. The recent computation of the equilibrium phase diagram of a microscopic, particle-based microphase former [Zhuang et al., Phys. Rev. Lett. 116, 098301 (2016)] has nonetheless found such mesoscale assemblies to be thermodynamically stable. Here, we consider their equilibrium and assembly dynamics. At intermediate densities above the order-disorder transition, we identify four different dynamical regimes and the structural changes that underlie the dynamical crossovers from one disordered regime to the next. Below the order-disorder transition, we also find that periodic lamellae are the most dynamically accessible of the periodic microphases. Our analysis thus offers a comprehensive view of the dynamics of disordered microphases and a route to the assembly of periodic microphases in a putative well-controlled, experimental system.

  3. The Bicycle Assembly Line Game

    ERIC Educational Resources Information Center

    Klotz, Dorothy

    2011-01-01

    "The Bicycle Assembly Line Game" is a team-based, in-class activity that helps students develop a basic understanding of continuously operating processes. Each team of 7-10 students selects one of seven prefigured bicycle assembly lines to operate. The lines are run in real-time, and the team that operates the line that yields the…

  4. Study on the kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin using the fluorescence probe thioflavin T.

    PubMed

    Yan, Mingyan; Wang, Xinping

    2018-05-27

    The kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin was characterized by the fluorescence method based on thioflavin T (ThT). The fluorescence probe could bind to the active monomeric collagen with a higher ordered degree of molecule, which displayed the pH and ionic strength dependence, the binding constant higher at neutral pH and proportional to the NaCl concentration. Compared to the turbidity method, ThT was more suitable to characterize the nucleation phase of collagen self-assembly. The nucleus size was determined through the ThT fluorescence and linear-polymerization model. At various pH and ionic strength, the nucleus size was nearly identical, either one or two monomers, demonstrating that one or two active monomeric collagen formed into the nucleus and different pH and ionic strength didn't alter the self-assembly mechanism of collagen. This approach was beneficial to advance the understanding of the kinetic self-assembly of the fish-sourced collagen in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Gas-phase kinetics modifies the CCN activity of a biogenic SOA.

    PubMed

    Vizenor, A E; Asa-Awuku, A A

    2018-02-28

    Our current knowledge of cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. Here, we examine the CCN activation of 3 SOA systems (2 biogenic single precursor and 1 mixed precursor SOA system) in relation to gas-phase decay. Specifically, the relationship between time, gas-phase precursor decay and CCN activity of 100 nm SOA is studied. The studied SOA systems exhibit a time-dependent growth of CCN activity at an instrument supersaturation of ∼0.2%. As such, we define a critical activation time, t 50 , above which a 100 nm SOA particle will activate. The critical activation time for isoprene, longifolene and a mixture of the two precursor SOA is 2.01 hours, 2.53 hours and 3.17 hours, respectively. The activation times are then predicted with gas-phase kinetic data inferred from measurements of precursor decay. The gas-phase prediction of t 50 agrees well with CCN measured t 50 (within 0.05 hours of the actual critical times) and suggests that the gas-to-particle phase partitioning may be more significant for SOA CCN prediction than previously thought.

  6. Assembly: a resource for assembled genomes at NCBI

    PubMed Central

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  7. DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination

    PubMed Central

    Wei, Leizhen; Nakajima, Satoshi; Böhm, Stefanie; Bernstein, Kara A.; Shen, Zhiyuan; Tsang, Michael; Levine, Arthur S.; Lan, Li

    2015-01-01

    Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome. PMID:26100862

  8. DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination.

    PubMed

    Wei, Leizhen; Nakajima, Satoshi; Böhm, Stefanie; Bernstein, Kara A; Shen, Zhiyuan; Tsang, Michael; Levine, Arthur S; Lan, Li

    2015-07-07

    Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.

  9. Nonequilibrium phase transition in a self-activated biological network.

    PubMed

    Berry, Hugues

    2003-03-01

    We present a lattice model for a two-dimensional network of self-activated biological structures with a diffusive activating agent. The model retains basic and simple properties shared by biological systems at various observation scales, so that the structures can consist of individuals, tissues, cells, or enzymes. Upon activation, a structure emits a new mobile activator and remains in a transient refractory state before it can be activated again. Varying the activation probability, the system undergoes a nonequilibrium second-order phase transition from an active state, where activators are present, to an absorbing, activator-free state, where each structure remains in the deactivated state. We study the phase transition using Monte Carlo simulations and evaluate the critical exponents. As they do not seem to correspond to known values, the results suggest the possibility of a separate universality class.

  10. Hydrodynamic effects on phase transition in active matter

    NASA Astrophysics Data System (ADS)

    Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team

    2017-11-01

    Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.

  11. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    NASA Astrophysics Data System (ADS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L. S.; Tavolaro, A.

    2016-09-01

    In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al2O3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm2. The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  12. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    PubMed Central

    Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N.; Blank, Dave H.A.; van der Wiel, Wilfred G.; Rijnders, Guus; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices. PMID:20480007

  13. Surface mediated assembly of small, metastable gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  14. Stimulus background influences phase invariant coding by correlated neural activity

    PubMed Central

    Metzen, Michael G; Chacron, Maurice J

    2017-01-01

    Previously we reported that correlations between the activities of peripheral afferents mediate a phase invariant representation of natural communication stimuli that is refined across successive processing stages thereby leading to perception and behavior in the weakly electric fish Apteronotus leptorhynchus (Metzen et al., 2016). Here, we explore how phase invariant coding and perception of natural communication stimuli are affected by changes in the sinusoidal background over which they occur. We found that increasing background frequency led to phase locking, which decreased both detectability and phase invariant coding. Correlated afferent activity was a much better predictor of behavior as assessed from both invariance and detectability than single neuron activity. Thus, our results provide not only further evidence that correlated activity likely determines perception of natural communication signals, but also a novel explanation as to why these preferentially occur on top of low frequency as well as low-intensity sinusoidal backgrounds. DOI: http://dx.doi.org/10.7554/eLife.24482.001 PMID:28315519

  15. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors.

    PubMed

    Xiang, Yan; Lu, Shanfu; Jiang, San Ping

    2012-11-07

    As one of the most effective synthesis tools, layer-by-layer (LbL) self-assembly technology can provide a strong non-covalent integration and accurate assembly between homo- or hetero-phase compounds or oppositely charged polyelectrolytes, resulting in highly-ordered nanoscale structures or patterns with excellent functionalities and activities. It has been widely used in the developments of novel materials and nanostructures or patterns from nanotechnologies to medical fields. However, the application of LbL self-assembly in the development of highly efficient electrocatalysts, specific functionalized membranes for proton exchange membrane fuel cells (PEMFCs) and electrode materials for supercapacitors is a relatively new phenomenon. In this review, the application of LbL self-assembly in the development and synthesis of key materials of PEMFCs including polyelectrolyte multilayered proton-exchange membranes, methanol-blocking Nafion membranes, highly uniform and efficient Pt-based electrocatalysts, self-assembled polyelectrolyte functionalized carbon nanotubes (CNTs) and graphenes will be reviewed. The application of LbL self-assembly for the development of multilayer nanostructured materials for use in electrochemical supercapacitors will also be reviewed and discussed (250 references).

  16. Fuel injection assembly for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)

    2002-01-01

    A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.

  17. Organised surfactant assemblies in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa

    1999-02-01

    The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic

  18. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    PubMed

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  19. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids.

    PubMed

    Tran, Nhiem; Mulet, Xavier; Hawley, Adrian M; Fong, Celesta; Zhai, Jiali; Le, Tu C; Ratcliffe, Julian; Drummond, Calum J

    2018-02-27

    Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.

  20. Evaluation of Zr(Ni, Mn){sub 2} Laves phase alloys as negative active material for Ni-MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knosp, B.; Jordy, C.; Blanchard, P.

    1998-05-01

    Laves phase alloys of compositions (Zr, Ti)(Ni, Mn, M){sub x} where M = Cr, V, Co, Al, and 1.9 < x < 2.1 with hexagonal C14 or cubic C15 structure have been studied in order to select the most suitable AB{sub 2} alloys as an active material for nickel-metal hydride (Ni-MH) batteries. With the selected alloy, feasibility of MH negative electrodes using industrial technology and containing more than 97% of the alloy powder has been demonstrated. 22 Ah Ni-MH batteries for electric vehicle application have been assembled, and 600 cycles have been achieved at steady C/3 charge and discharge ratesmore » and 80% depth of discharge.« less

  1. Tools and Functions of Reconfigurable Colloidal Assembly.

    PubMed

    Solomon, Michael J

    2018-02-19

    We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii

  2. A Context-Aware Ubiquitous Learning Approach for Providing Instant Learning Support in Personal Computer Assembly Activities

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun; Hwang, Gwo-Jen

    2014-01-01

    Personal computer assembly courses have been recognized as being essential in helping students understand computer structure as well as the functionality of each computer component. In this study, a context-aware ubiquitous learning approach is proposed for providing instant assistance to individual students in the learning activity of a…

  3. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  4. Grooved nanowires from self-assembling hairpin molecules for solar cells.

    PubMed

    Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I

    2012-03-27

    One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society

  5. Photo-Responsive Soft Ionic Crystals: Ion-Pairing Assemblies of Azobenzene Carboxylates.

    PubMed

    Yamakado, Ryohei; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro; Maeda, Hiromitsu

    2017-07-12

    This report delineates the design and synthesis of negatively charged azobenzene derivatives that form photo-responsive ion-pairing assemblies. The azobenzene carboxylates possessing aliphatic chains were prepared as photo-responsive anions that promote the formation of ion-pairing dimension-controlled assemblies, including mesophases, when used in conjunction with a tetrabutylammonium (TBA) cation. The photo-responsive properties of the ion pairs and the precursory carboxylic acids in the bulk state were examined by polarized optical microscopy (POM) and X-ray diffraction (XRD), demonstrating that liquid crystal (LC)-liquid and crystal-liquid phase transitions occurred, depending on the number and lengths of the aliphatic chains of each assembly. An ion pair exhibited photo-induced crystal-crystal phase transitions upon switching between two irradiation wavelengths (365/436 nm). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Micromechanics and constitutive models for soft active materials with phase evolution

    NASA Astrophysics Data System (ADS)

    Wang, Binglian

    Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.

  7. Clustering and phase behaviour of attractive active particles with hydrodynamics.

    PubMed

    Navarro, Ricard Matas; Fielding, Suzanne M

    2015-10-14

    We simulate clustering, phase separation and hexatic ordering in a monolayered suspension of active squirming disks subject to an attractive Lennard-Jones-like pairwise interaction potential, taking hydrodynamic interactions between the particles fully into account. By comparing the hydrodynamic case with counterpart simulations for passive and active Brownian particles, we elucidate the relative roles of self-propulsion, interparticle attraction, and hydrodynamic interactions in determining clustering and phase behaviour. Even in the presence of an attractive potential, we find that hydrodynamic interactions strongly suppress the motility induced phase separation that might a priori have been expected in a highly active suspension. Instead, we find only a weak tendency for the particles to form stringlike clusters in this regime. At lower activities we demonstrate phase behaviour that is broadly equivalent to that of the counterpart passive system at low temperatures, characterized by regimes of gas-liquid, gas-solid and liquid-solid phase coexistence. In this way, we suggest that a dimensionless quantity representing the level of activity relative to the strength of attraction plays the role of something like an effective non-equilibrium temperature, counterpart to the (dimensionless) true thermodynamic temperature in the passive system. However there are also some important differences from the equilibrium case, most notably with regards the degree of hexatic ordering, which we discuss carefully.

  8. EVA manipulation and assembly of space structure columns

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Pruett, E. C.

    1980-01-01

    Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

  9. Surface mediated assembly of small, metastable gold nanoclusters.

    PubMed

    Pettibone, John M; Osborn, William A; Rykaczewski, Konrad; Talin, A Alec; Bonevich, John E; Hudgens, Jeffrey W; Allendorf, Mark D

    2013-07-21

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.

  10. Sulfur activation at the Little Boy-Comet Critical Assembly: a replica of the Hiroshima bomb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, G.D.; Emery, J.F.; Pace, J.V. III

    1985-04-01

    Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction on leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the pointmore » of explosion. 37 refs., 5 figs., 6 tabs.« less

  11. In vitro assembly of catalase.

    PubMed

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-10-10

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Self-assembled cyclodextrin-modified gold nanoparticles on silica beads as stationary phase for chiral liquid chromatography and hydrophilic interaction chromatography.

    PubMed

    Li, Yuanyuan; Wei, Manman; Chen, Tong; Zhu, Nan; Ma, Yulong

    2016-11-01

    A facile strategy based on self-assembly of Au nanoparticles (AuNPs) (60±10nm in size) on the surfaces of amino-functionalized porous silica spheres under mild conditions was proposed. The resulting material possessed a core-shell structure in which AuNPs were the shell and silica spheres were the core. Then, thiolated-β-cyclodextrin (SH-β-CD) was covalently attached onto the AuNPs as chiral selector for the enantioseparation. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC). The separations of nine pairs of enantiomers were achieved by using the new chiral stationary phase (CSP) in the reversed-phase liquid chromatography (RPLC) mode, respectively. The results showed the new CSP have more sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces, resulting in faster mass transfer rate, compared with β-CD modified silica column. The result shed light on potential usage of chemical modified NPs as chiral selector for enantioseparation based on HPLC. In addition, the new phase was also used in hydrophilic interaction liquid chromatography (HILIC) to separate polar compounds and highly hydrophilic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly

    PubMed Central

    Griffin, James S; Wells, George F

    2017-01-01

    Seasonal community structure and regionally synchronous population dynamics have been observed in natural microbial ecosystems, but have not been well documented in wastewater treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems facing similar meteorological conditions have been done to compare the importance of deterministic and neutral community assembly mechanisms. We subjected weekly activated sludge samples from six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All samples derived from reactors treating primarily municipal wastewater. Despite variation in operational characteristics and location, communities displayed temporal synchrony at the individual operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale. Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes, but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass migration driven by direct biomass transfers between reactors was investigated, but had no significant effect on community similarity or diversity in the sink community. Our results show that population dynamics in activated sludge bioreactors are consistent with niche-driven assembly guided by seasonal temperature fluctuations. PMID:27996980

  14. Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang

    2002-12-01

    In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.

  15. User assembly and servicing system for Space Station, an evolving architecture approach

    NASA Technical Reports Server (NTRS)

    Lavigna, Thomas A.; Cline, Helmut P.

    1988-01-01

    On-orbit assembly and servicing of a variety of scientific and applications hardware systems is expected to be one of the Space Station's primary functions. The hardware to be serviced will include the attached payloads resident on the Space Station, the free-flying satellites and co-orbiting platforms brought to the Space Station, and the polar orbiting platforms. The requirements for assembly and servicing such a broad spectrum of missions have led to the development of an Assembly and Servicing System Architecture that is composed of a complex array of support elements. This array is comprised of US elements, both Space Station and non-Space Station, and elements provided by Canada to the Space Station Program. For any given servicing or assembly mission, the necessary support elements will be employed in an integrated manner to satisfy the mission-specific needs. The structure of the User Assembly and Servicing System Architecture and the manner in which it will evolved throughout the duration of the phased Space Station Program are discussed. Particular emphasis will be placed upon the requirements to be accommodated in each phase, and the development of a logical progression of capabilities to meet these requirements.

  16. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities*

    PubMed Central

    Yao, Wei; Beckwith, Sean L.; Zheng, Tina; Young, Thomas; Dinh, Van T.; Ranjan, Anand; Morrison, Ashby J.

    2015-01-01

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement. PMID:26306040

  17. Seed Rain and Seed Bank Reveal that Seed Limitation Strongly Influences Plant Community Assembly in Grasslands

    PubMed Central

    Marteinsdóttir, Bryndís

    2014-01-01

    Dispersal is an important factor in plant community assembly, but assembly studies seldom include information on actual dispersal into communities, i.e. the local propagule pool. The aim of this study was to determine which factors influence plant community assembly by focusing on two phases of the assembly process: the dispersal phase and the establishment phase. At 12 study sites in grazed ex-arable fields in Sweden the local plant community was determined and in a 100-m radius around the centre of each site, the regional species pool was measured. The local seed bank and the seed rain was explored to estimate the local propagule pool. Trait-based models were then applied to investigate if species traits (height, seed mass, clonal abilities, specific leaf area and dispersal method) and regional abundance influenced which species from the regional species pool, dispersed to the local community (dispersal phase) and which established (establishment phase). Filtering of species during the dispersal phase indicates the effect of seed limitation while filtering during the establishment phase indicates microsite limitation. On average 36% of the regional species pool dispersed to the local sites and of those 78% did establish. Species with enhanced dispersal abilities, e.g. higher regional abundance, smaller seeds and dispersed by cattle, were more likely to disperse to the sites than other species. At half the sites, dispersal was influenced by species height. Species establishment was however mainly unlinked to the traits included in this study. This study underlines the importance of seed limitation in local plant community assembly. It also suggests that without information on species dispersal into a site, it is difficult to distinguish between the influence of dispersal and establishment abilities, and thus seed and microsite limitation, as both can be linked to the same trait. PMID:25057815

  18. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    DOEpatents

    Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  19. AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization.

    PubMed

    Mahboubi, Hicham; Koromilas, Antonis E; Stochaj, Ursula

    2016-10-01

    Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation. Our studies identified multiple steps of de novo SG assembly that are controlled by the kinase. Single-cell analyses demonstrated that pharmacological AMPK activation prior to stress exposure changed SG properties, because the granules became more abundant and smaller in size. These altered SG characteristics correlated with specific changes in cell survival, cell signaling, cytoskeletal organization, and the abundance of translation initiation factors. Specifically, AMPK activation increased stress-induced eukaryotic initiation factor (eIF) 2α phosphorylation and reduced the concentration of eIF4F complex subunits eIF4G and eIF4E. At the same time, the abundance of histone deacetylase 6 (HDAC6) was diminished. This loss of HDAC6 was accompanied by increased acetylation of α-tubulin on Lys40. Pharmacological studies further confirmed this novel AMPK-HDAC6 interplay and its importance for SG biology. Taken together, we provide mechanistic insights into the regulation of SG formation. We propose that AMPK activation stimulates oxidant-induced SG formation but limits their fusion into larger granules. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Self-assembling Gold Nanoparticle Monolayers in a Three-phase System - Overcoming Ligand Size Limitations

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T., Jr.

    An effective self-assembly technique was developed to prepare centimeter-scale monolayer gold nanoparticle (Au NP) films of long-range order with hydrophobic ligands. Aqueous Au NPs were entrapped in the organic/aqueous interface where the Au NP surface was in situ modified with different types of amine ligands, including amine-terminated polystyrene. The Au NPs then spontaneously relocated to the air/water interface to form an NP monolayer. The spontaneous formation of an Au NP film at the organic/water interface was due to the minimization of the system Helmholtz free energy. Self-assembled Au NP films has a hexagonal close packed structure. The interparticle spacing was dictated by the amine ligand length. Thus-assembled Au NP monolayers exhibit tunable surface plasma resonance and excellent spacial homogeneity of surface-enhanced Raman-scattering. The ``air/water/oil'' self-assembly method developed in this study not only benefits the fundamental understanding of NP ligand conformations, but is also promising to scale up the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. This study was financially supported by start-up funding supplied by the Florida State University and the FAMU-FSU College of Engineering.

  1. Ordered Nanostructured Amphiphile Self-Assembly Materials from Endogenous Nonionic Unsaturated Monoethanolamide Lipids in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena

    2010-08-23

    The self-assembly, solid state and lyotropic liquid crystalline phase behavior of a series of endogenous n-acylethanolamides (NAEs) with differing degrees of unsaturation, viz., oleoyl monoethanolamide, linoleoyl monoethanolamide, and linolenoyl monoethanolamide, have been examined. The studied molecules are known to possess inherent biological function. Both the monoethanolamide headgroup and the unsaturated hydrophobe are found to be important in dictating the self-assembly behavior of these molecules. In addition, all three molecules form lyotropic liquid crystalline phases in water, including the inverse bicontinuous cubic diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) phases. The ability of the NAE's to form inverse cubicmore » phases and to be dispersed into ordered nanostructured colloidal particles, cubosomes, in excess water, combined with their endogenous nature and natural medicinal properties, makes this new class of soft mesoporous amphiphile self-assembly materials suitable candidates for investigation in a variety of advanced multifunctional applications, including encapsulation and controlled release of therapeutic agents and incorporation of medical imaging agents.« less

  2. The MARVEL assembly for neutron multiplication.

    PubMed

    Chichester, David L; Kinlaw, Mathew T

    2013-10-01

    A new multiplying test assembly is under development at Idaho National Laboratory to support research, validation, evaluation, and learning. The item is comprised of three stacked, highly-enriched uranium (HEU) cylinders, each 11.4 cm in diameter and having a combined height of up to 11.7 cm. The combined mass of all three cylinders is 20.3 kg of HEU. Calculations for the bare configuration of the assembly indicate a multiplication level of >3.5 (k(eff)=0.72). Reflected configurations of the assembly, using either polyethylene or tungsten, are possible and have the capability of raising the assembly's multiplication level to greater than 10. This paper describes simulations performed to assess the assembly's multiplication level under different conditions and describes the resources available at INL to support the use of these materials. We also describe some preliminary calculations and test activities using the assembly to study neutron multiplication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Phased Development of Accident Tolerant Fue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, Shannon M.; Carmack, W. Jon

    2016-09-01

    The United States Department of Energy (U.S. DOE) Advanced Fuels Campaign (AFC) has adopted a three-phase approach for the development and eventual commercialization of enhanced, accident tolerant fuel (ATF) for light water reactors (LWRs). Extending from 2012 to 2016, AFC is currently coming to the end of Phase 1 research that has entailed Feasibility Assessment and Prioritization for a large number of proposed fuel systems (fuel and cladding) that could provide improved performance under accident conditions. Phase 1 activities will culminate with a prioritization of concepts for both near-term and long-term development based on the available experimental data and modelingmore » predictions. This process will provide guidance to DOE on what concepts should be prioritized for investment in Phase 2 Development/Qualification activities based on technical performance improvements and probability of meeting the aggressive schedule to insert a lead fuel rod (LFR) in a commercial power reactor by 2022. While Phase 1 activities include small-scale fabrication work, materials characterization, and limited irradiation of samples, Phase 2 will require development teams to expand to industrial fabrication methods, conduct irradiation tests under more prototypic reactor conditions (i.e. in contact with reactor primary coolant at LWR conditions and in-pile transient testing), conduct additional characterization and post-irradiation examination, and develop a fuel performance code for the candidate ATF. Phase 2 will culminate in the insertion of an LFR (or lead fuel assembly) in a commercial power reactor. The Phase 3 Commercialization work will extend past 2022. Following post-irradiation examination of LFRs, partial-core reloads will be demonstrated. The commercialization phase will further entail the establishment of commercial fabrication capabilities and the transition of LWR cores to the new fuel. The three development phases described roughly correspond to the

  4. Experiments to evolve toward a tangible user interface for computer-aided design parts assembly

    NASA Astrophysics Data System (ADS)

    Legardeur, Jeremy; Garreau, Ludovic; Couture, Nadine

    2004-05-01

    In this paper, we present the concepts of the ESKUA (Experimentation of a Kinesics System Usable for Assembly) platform that allows designers to carry out the assembly of mechanical CAD (Computer Aided Design) parts. This platform, based on tangible user interface lead taking into account assembly constraints from the beginning of the design phase and especially during the phase of CAD models manipulation. Our goal is to propose a working environment where the designer is confronted with real assembly constraints which are currently masked by existing CAD software functionalities. Thus, the platform is based on the handling of physical objects, called tangible interactors, which enable having a physical perception of the assembly constraints. In this goal, we have defined a typology of interactors based on concepts proposed in Design For Assembly methods. We present here the results of studies that led to the evolution of this first interactors set. One is concerning an experiment to evaluate the cognitive aspects of the use of interactors. The other is about an analysis of existing mechanical product and fasteners. We will show how these studies lead to the evolution of the interactors based on the functional surfaces use.

  5. Self-assembly strategies for the synthesis of functional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  6. Molecular Self-Assembly Strategy for Generating Catalytic Hybrid Polypeptides

    PubMed Central

    Ikezoe, Yasuhiro; Pike, Douglas H.; Nanda, Vikas; Matsui, Hiroshi

    2016-01-01

    Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β-sheets and amyloid fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. The enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality. PMID:27116246

  7. End Groups of Functionalized Siloxane Oligomers Direct Block-Copolymeric or Liquid-Crystalline Self-Assembly Behavior

    PubMed Central

    2016-01-01

    Monodisperse oligodimethylsiloxanes end-functionalized with the hydrogen-bonding ureidopyrimidinone (UPy) motif undergo phase separation between their aromatic end groups and dimethylsiloxane midblocks to form ordered nanostructures with domain spacings of <5 nm. The self-assembly behavior of these well-defined oligomers resembles that of high degree of polymerization (N)–high block interaction parameter (χ) linear diblock copolymers despite their small size. Specifically, the phase morphology varies from lamellar to hexagonal to body-centered cubic with increasing asymmetry in molecular volume fraction. Mixing molecules with different molecular weights to give dispersity >1.13 results in disorder, showing importance of molecular monodispersity for ultrasmall ordered phase separation. In contrast, oligodimethylsiloxanes end-functionalized with an O-benzylated UPy derivative self-assemble into lamellar nanostructures regardless of volume fraction because of the strong preference of the end groups to aggregate in a planar geometry. Thus, these molecules display more classically liquid-crystalline self-assembly behavior where the lamellar bilayer thickness is determined by the siloxane midblock. Here the lamellar nanostructure is tolerant to molecular polydispersity. We show the importance of end groups in high χ–low N block molecules, where block-copolymer-like self-assembly in our UPy-functionalized oligodimethylsiloxanes relies upon the dominance of phase separation effects over directional end group aggregation. PMID:27054381

  8. Redesigning Channel-Forming Peptides: Amino Acid Substitutions that Enhance Rates of Supramolecular Self-Assembly and Raise Ion Transport Activity

    PubMed Central

    Shank, Lalida P.; Broughman, James R.; Takeguchi, Wade; Cook, Gabriel; Robbins, Ashley S.; Hahn, Lindsey; Radke, Gary; Iwamoto, Takeo; Schultz, Bruce D.; Tomich, John M.

    2006-01-01

    Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor α1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 ± 5 to 390 ± 220 μM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis. PMID:16387776

  9. Geraniol modulates tongue and hepatic phase I and phase II conjugation activities and may contribute directly to the chemopreventive activity against experimental oral carcinogenesis.

    PubMed

    Madankumar, Arumugam; Jayakumar, Subramaniyan; Gokuladhas, Krishnan; Rajan, Balan; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam

    2013-04-05

    Xenobiotic metabolizing enzymes are chief determinants in both the susceptibility to mutagenic effect of chemical carcinogens and in the response of tumors to chemotherapy. The present study was aimed to analyze the effect of geraniol administration on the activity of phase I and phase II carcinogen metabolizing enzymes through the nuclear factor erythroid 2-related factor-2 (Nrf2) activation against 4-niroquinoline-1-oxide (4NQO) induced oral carcinogenesis. The well-known chemical carcinogen 4NQO (50 ppm) was used to induce oral carcinogenesis through drinking water for 4, 12, and 20 weeks. The degree of cancer progression at each stage was confirmed by histological examination. At the end of the experimental period, 100% tumor formation was observed in the oral cavity of 4NQO induced animals with significant (P<0.05) alteration in the status of tumor markers, tongue and liver phase I and phase II drug metabolizing enzymes indicating progression of disease. Oral administration of geraniol at the dose of 200 mg/kg b.wt., thrice a week to 4NQO induced animals was able to inhibit tumor formation and thereby delayed the progression of oral carcinogenesis by modulating tongue and liver phase I and phase II drug metabolizing enzymes, as substantiated further by the histological and transmission electron microscopic studies. Our results demonstrate that geraniol exerts its chemopreventive potential by altering activities of phases I and II drug metabolizing enzymes to achieve minimum bioactivation of carcinogen and maximum detoxification. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations.

    PubMed

    Khani, Shaghayegh; Jamali, Safa; Boromand, Arman; Hore, Michael J A; Maia, Joao

    2015-09-14

    Self-assembly of nanoparticles in polymer matrices is an interesting and growing subject in the field of nanoscience and technology. We report herein on modelling studies of the self-assembly and phase behavior of nanorods in a homopolymer matrix, with the specific goal of evaluating the role of deterministic entropic and enthalpic factors that control the aggregation/dispersion in such systems. Grafting polymer brushes from the nanorods is one approach to control/impact their self-assembly capabilities within a polymer matrix. From an energetic point of view, miscible interactions between the brush and the matrix are required for achieving a better dispersibility; however, grafting density and brush length are the two important parameters in dictating the morphology. Unlike in previous computational studies, the present Dissipative Particle Dynamics (DPD) simulation framework is able to both predict dispersion or aggregation of nanorods and determine the self-assembled structure, allowing for the determination of a phase diagram, which takes all of these factors into account. Three types of morphologies are predicted: dispersion, aggregation and partial aggregation. Moreover, favorable enthalpic interactions between the brush and the matrix are found to be essential for expanding the window for achieving a well-dispersed morphology. A three-dimensional phase diagram is mapped on which all the afore-mentioned parameters are taken into account. Additionally, in the case of immiscibility between brushes and the matrix, simulations predict the formation of some new and tunable structures.

  11. Formed platelet combustor liner construction feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Janke, D. E.

    1992-01-01

    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase

  12. Dynamic phases of active matter systems with quenched disorder

    DOE PAGES

    Sandor, Csand; Libal, Andras; Reichhardt, Charles; ...

    2017-03-16

    Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions withmore » the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Lastly, our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.« less

  13. Dynamic phases of active matter systems with quenched disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, Csand; Libal, Andras; Reichhardt, Charles

    Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions withmore » the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Lastly, our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.« less

  14. Particle self-assembly at ionic liquid-based interfaces.

    PubMed

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  15. Synthesis and evaluation of phase detectors for active bit synchronizers

    NASA Technical Reports Server (NTRS)

    Mcbride, A. L.

    1974-01-01

    Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.

  16. Continuum theory of phase separation kinetics for active Brownian particles.

    PubMed

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E

    2013-10-04

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  17. Microstructure and Thermal Reliability of Microcapsules Containing Phase Change Material with Self-Assembled Graphene/Organic Nano-Hybrid Shells.

    PubMed

    Wang, Xianfeng; Guo, Yandong; Su, Junfeng; Zhang, Xiaolong; Han, Ningxu; Wang, Xinyu

    2018-05-24

    In recent decades, microcapsules containing phase change materials (microPCMs) have been the center of much attention in the field of latent thermal energy storage. The aim of this work was to prepare and investigate the microstructure and thermal conductivity of microPCMs containing self-assembled graphene/organic hybrid shells. Paraffin was used as a phase change material, which was successfully microencapsulated by graphene and polymer forming hybrid composite shells. The physicochemical characters of microPCM samples were investigated including mean size, shell thickness, and chemical structure. Scanning electron microscope (SEM) results showed that the microPCMs were spherical particles and graphene enhanced the degree of smoothness of the shell surface. The existence of graphene in the shells was proved by using the methods of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). It was found that graphene hybrid shells were constructed by forces of electric charge absorption and long-molecular entanglement. MicroPCMs with graphene had a higher degradation temperature of 300 °C. Graphene greatly enhanced the thermal stability of microPCMs. The thermal conductivity tests indicated that the phase change temperature of microPCMs was regulated by the graphene additive because of enhancement of the thermal barrier of the hybrid shells. Differential scanning calorimetry (DSC) tests proved that the latent thermal energy capability of microPCMs had been improved with a higher heat conduction rate. In addition, infrared thermograph observations implied that the microPCMs had a sensitivity response to heat during the phase change cycling process because of the excellent thermal conductivity of graphene.

  18. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  19. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1988-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  20. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1989-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  1. TUMOR HAPLOTYPE ASSEMBLY ALGORITHMS FOR CANCER GENOMICS

    PubMed Central

    AGUIAR, DEREK; WONG, WENDY S.W.; ISTRAIL, SORIN

    2014-01-01

    The growing availability of inexpensive high-throughput sequence data is enabling researchers to sequence tumor populations within a single individual at high coverage. But, cancer genome sequence evolution and mutational phenomena like driver mutations and gene fusions are difficult to investigate without first reconstructing tumor haplotype sequences. Haplotype assembly of single individual tumor populations is an exceedingly difficult task complicated by tumor haplotype heterogeneity, tumor or normal cell sequence contamination, polyploidy, and complex patterns of variation. While computational and experimental haplotype phasing of diploid genomes has seen much progress in recent years, haplotype assembly in cancer genomes remains uncharted territory. In this work, we describe HapCompass-Tumor a computational modeling and algorithmic framework for haplotype assembly of copy number variable cancer genomes containing haplotypes at different frequencies and complex variation. We extend our polyploid haplotype assembly model and present novel algorithms for (1) complex variations, including copy number changes, as varying numbers of disjoint paths in an associated graph, (2) variable haplotype frequencies and contamination, and (3) computation of tumor haplotypes using simple cycles of the compass graph which constrain the space of haplotype assembly solutions. The model and algorithm are implemented in the software package HapCompass-Tumor which is available for download from http://www.brown.edu/Research/Istrail_Lab/. PMID:24297529

  2. The Temporal Regulation of S Phase Proteins During G1

    PubMed Central

    Grant, Gavin D.; Cook, Jeanette G.

    2018-01-01

    Successful DNA replication requires intimate coordination with cell cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and the assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell cycle entry and cell cycle progression. PMID:29357066

  3. Self-association of the APC tumor suppressor is required for the assembly, stability, and activity of the Wnt signaling destruction complex

    PubMed Central

    Kunttas-Tatli, Ezgi; Roberts, David M.; McCartney, Brooke M.

    2014-01-01

    The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3β, and CK1 that targets β-catenin/Armadillo (β-cat/Arm) for proteosomal degradation. The destruction complex forms macromolecular particles we termed the destructosome. Whereas APC functions in the complex through its ability to bind both β-cat and Axin, we hypothesize that APC proteins play an additional role in destructosome assembly through self-association. Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and plays an essential role in the assembly and stability of the destructosome that regulates β-cat degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from the Drosophila embryo results in β-cat/Arm accumulation and aberrant Wnt pathway activation. These results suggest that APC proteins are required not only for the activity of the destructosome, but also for the assembly and stability of this macromolecular machine. PMID:25208568

  4. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity

    NASA Astrophysics Data System (ADS)

    Sadilek, Maximilian; Thurner, Stefan

    2015-05-01

    We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters.

  5. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity.

    PubMed

    Sadilek, Maximilian; Thurner, Stefan

    2015-05-21

    We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters.

  6. Technology resource document for the assembled chemical weapons assessment environmental impact statement. Vol. 4 : assembled systems for weapons destruction at Pueblo Chemical Depot.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmell, T.; Folga, S., Frey, G.; Molberg, J.

    2001-04-30

    This volume of the Technical Resource Document (TRD) for the ''Environmental Impact Statement (EIS) for the Design, Construction and Operation of One or More Pilot Test Facilities for Assembled Chemical Weapons Destruction Technologies at One or More Sites'' (PMACWA 2001c) pertains to the destruction of assembled chemical weapons (ACW) stored at Pueblo Chemical Depot (PCD), located outside Pueblo, Colorado. This volume presents technical and process information on each of the destruction technologies applicable to treatment of the specific ACW stored at PCD. The destruction technologies described are those that have been demonstrated during Phase I of the Assembled Chemical Weaponsmore » Assessment (ACWA) demonstration process (see Volume 1).« less

  7. Somatostatin, acting at receptor subtype 1, inhibits Rho activity, the assembly of actin stress fibers, and cell migration.

    PubMed

    Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L

    2002-08-09

    Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.

  8. Modular space station, phase B extension. Information management advanced development. Volume 4: Data processing assembly

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The computation and logical functions which are performed by the data processing assembly of the modular space station are defined. The subjects discussed are: (1) requirements analysis, (2) baseline data processing assembly configuration, (3) information flow study, (4) throughput simulation, (5) redundancy study, (6) memory studies, and (7) design requirements specification.

  9. Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability.

    PubMed

    Nadar, Shamraja S; Gawas, Sarita D; Rathod, Virendra K

    2016-11-01

    An organic-inorganic hybrid glucoamylase nanoflower was prepared in single pot by simple, facile and highly efficient method. The stepwise formation of enzyme-embedded hybrid nanoflowers and influence of experimental parameters viz. pH of solution mixture, enzyme and copper ion concentration on the activity of prepared hybrid nanoflowers were systematically investigated. The self-assembled hybrid glucoamylase nanoflowers were synthesized by mixing aqueous solution of copper sulphate (200mM) with PBS (pH 7.5, 5mM) containing glucoamylase (1mg/mL) in 24h at room temperature. These prepared nanoflowers were further characterized by FT-IR, SEM and XRD. The hybrid nanoflowers exhibited 204% enhanced activity recovery and two folds improvement in thermal stability in terms of half-life (in the range of 50-70°C) with respect to the free form. The hybrid glucoamylase nanoflowers retained 70% residual activity after eight successive cycles indicating their excellent durability. Additionally, the nanoflowers retained up to 91% residual activity upto 25 days of storage. Moreover, the conformational changes occurred in glucoamylase structure after preparing hybrid nanoflowers were evaluated by FT-IR spectroscopy data tools. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  11. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  12. Photo-induced optical activity in phase-change memory materials.

    PubMed

    Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I

    2015-03-05

    We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.

  13. A latchable thermally activated phase change actuator for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.

    2016-03-01

    Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.

  14. Assessing the electrochemical performance of a supercapacitor electrode made of copper oxide and activated carbon using liquid phase plasma

    NASA Astrophysics Data System (ADS)

    Ki, Seo Jin; Lee, Heon; Park, Young-Kwon; Kim, Sun-Jae; An, Kay-Hyeok; Jung, Sang-Chul

    2018-07-01

    Successful modification of surface properties of a nanocomposite electrode is prerequisite to enhancing the overall performance of electrochemical supercapacitors. The present study was designed to describe the microstructural and electrochemical characteristics of a new composite electrode assembled by activated carbon (AC) powder (as a host) and copper precursor (as a guest) using liquid phase plasma. The fabrication processes were conducted by changing plasma discharge time from 30 to 90 min in the presence and absence of (thermal) oxidation. We observed that merging plasma and oxidation treatments raised the content of copper oxide nanoparticles precipitated (evenly) on the AC surface, along with oxygen. A mixed valence state of copper oxides (in the forms of Cuo, Cu2O, and CuO) was found in different composites with and without oxidation, where CuO and Cuo affected a specific capacitance in positive and negative ways, respectively. This led to the difference of electrochemical stability and resistance among the assembled composites. For instance, the best cycling performance was observed in the plasma-treated composite for 90 min with oxidation, whereas that of 60 min without oxidation recorded the lowest resistance. Therefore, a proper balance between the capacitance and resistance appears to be required for effective fabrication of the supercapacitor electrode, specifically in cases involving copper oxides.

  15. Two men with multiple disabilities carry out an assembly work activity with the support of a technology system.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Oliva, Doretta; Campodonico, Francesca

    2013-10-01

    To assess whether two persons with multiple disabilities could learn a work activity (i.e., assembling trolley wheels) with the support of a technology system. After an initial baseline, the study compared the effects of intervention sessions relying on the technology system (which called the participants to the different workstations and provided feedback and final stimulation) with the effects of intervention sessions carried out without technology. The two types of intervention sessions were conducted according to an alternating treatments design. Eventually, only intervention sessions relying on the technology system were used. Both participants managed to assemble wheels independently during intervention sessions relying on the technology system while they failed during sessions without the system. Their performance was strengthened during the final part of the study, in which only sessions with the system occurred. Technology may be critical in helping persons with multiple disabilities manage multi-step work activities.

  16. Reaction of gas phase OH with unsaturated self-assembled monolayers and relevance to atmospheric organic oxidations.

    PubMed

    Moussa, Samar G; Finlayson-Pitts, Barbara J

    2010-08-28

    The kinetics and mechanisms of the reaction of gas phase OH radicals with organics on surfaces are of fundamental chemical interest, as well as relevant to understanding the degradation of organics on tropospheric surfaces or when they are components of airborne particles. We report here studies of the oxidation of a terminal alkene self-assembled monolayer (7-octenyltrichlorosilane, C8= SAM) on a germanium attenuated total reflectance crystal by OH radicals at a concentration of 2.1 x 10(5) cm(-3) at 1 atm total pressure and 298 K in air. Loss of the reactant SAM and the formation of surface products were followed in real time using infrared spectroscopy. From the rate of loss of the C=C bond, a reaction probability within experimental error of unity was derived. The products formed on the surface include organic nitrates and carbonyl compounds, with yields of 10 +/- 4% and < or = 7 +/- 4%, respectively, and there is evidence for the formation of organic products with C-O bonds such as alcohols, ethers and/or alkyl peroxides and possibly peroxynitrates. The yield of organic nitrates relative to carbonyl compounds is higher than expected based on analogous gas phase mechanisms, suggesting that the branching ratio for the RO(2) + NO reaction is shifted to favor the formation of organic nitrates when the reaction occurs on a surface. Water uptake onto the surface was only slightly enhanced upon oxidation, suggesting that oxidation per se cannot be taken as a predictor of increased hydrophilicity of atmospheric organics. These experiments indicate that the mechanisms for the surface reactions are different from gas phase reactions, but the OH oxidation of surface species will still be a significant contributor to determining their lifetimes in air.

  17. Highly selective and sensitive method for Cu2 + detection based on chiroptical activity of L-Cysteine mediated Au nanorod assemblies

    NASA Astrophysics Data System (ADS)

    Abbasi, Shahryar; Khani, Hamzeh

    2017-11-01

    Herein, we demonstrated a simple and efficient method to detect Cu2 + based on amplified optical activity in the chiral nanoassemblies of gold nanorods (Au NRs). L-Cysteine can induce side-by-side or end-to-end assembly of Au NRs with an evident plasmonic circular dichroism (PCD) response due to coupling between surface plasmon resonances (SPR) of Au NRs and the chiral signal of L-Cys. Because of the obvious stronger plasmonic circular dichrosim (CD) response of the side-by-side assembly compared with the end-to-end assemblies, SS assembled Au NRs was selected as a sensitive platform and used for Cu2 + detection. In the presence of Cu2 +, Cu2 + can catalyze O2 oxidation of cysteine to cystine. With an increase in Cu2 + concentration, the L-Cysteine-mediated assembly of Au NRs decreased because of decrease in the free cysteine thiol groups, and the PCD signal decreased. Taking advantage of this method, Cu2 + could be detected in the concentration range of 20 pM-5 nM. Under optimal conditions, the calculated detection limit was found to be 7 pM.

  18. Highly selective and sensitive method for Cu2+ detection based on chiroptical activity of L-Cysteine mediated Au nanorod assemblies.

    PubMed

    Abbasi, Shahryar; Khani, Hamzeh

    2017-11-05

    Herein, we demonstrated a simple and efficient method to detect Cu 2+ based on amplified optical activity in the chiral nanoassemblies of gold nanorods (Au NRs). L-Cysteine can induce side-by-side or end-to-end assembly of Au NRs with an evident plasmonic circular dichroism (PCD) response due to coupling between surface plasmon resonances (SPR) of Au NRs and the chiral signal of L-Cys. Because of the obvious stronger plasmonic circular dichrosim (CD) response of the side-by-side assembly compared with the end-to-end assemblies, SS assembled Au NRs was selected as a sensitive platform and used for Cu 2+ detection. In the presence of Cu 2+ , Cu 2+ can catalyze O 2 oxidation of cysteine to cystine. With an increase in Cu 2+ concentration, the L-Cysteine-mediated assembly of Au NRs decreased because of decrease in the free cysteine thiol groups, and the PCD signal decreased. Taking advantage of this method, Cu 2+ could be detected in the concentration range of 20pM-5nM. Under optimal conditions, the calculated detection limit was found to be 7pM. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  20. Simulation Of Assembly Processes With Technical Of Virtual Reality

    NASA Astrophysics Data System (ADS)

    García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel

    2009-11-01

    Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.

  1. Molecular self-assembly strategy for generating catalytic hybrid polypeptides

    DOE PAGES

    Maeda, Yoshiaki; Fang, Justin; Ikezoe, Yasuhiro; ...

    2016-04-26

    Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β- sheets and amyloidmore » fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. Furthermore, the enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality.« less

  2. Verification Test of Automated Robotic Assembly of Space Truss Structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  3. Low-noise phase of a two-dimensional active nematic system

    NASA Astrophysics Data System (ADS)

    Shankar, Suraj; Ramaswamy, Sriram; Marchetti, M. Cristina

    2018-01-01

    We consider a collection of self-driven apolar particles on a substrate that organize into an active nematic phase at sufficiently high density or low noise. Using the dynamical renormalization group, we systematically study the two-dimensional fluctuating ordered phase in a coarse-grained hydrodynamic description involving both the nematic director and the conserved density field. In the presence of noise, we show that the system always displays only quasi-long-ranged orientational order beyond a crossover scale. A careful analysis of the nonlinearities permitted by symmetry reveals that activity is dangerously irrelevant over the linearized description, allowing giant number fluctuations to persist although now with strong finite-size effects and a nonuniversal scaling exponent. Nonlinear effects from the active currents lead to power-law correlations in the density field, thereby preventing macroscopic phase separation in the thermodynamic limit.

  4. Consensus generation and variant detection by Celera Assembler.

    PubMed

    Denisov, Gennady; Walenz, Brian; Halpern, Aaron L; Miller, Jason; Axelrod, Nelson; Levy, Samuel; Sutton, Granger

    2008-04-15

    We present an algorithm to identify allelic variation given a Whole Genome Shotgun (WGS) assembly of haploid sequences, and to produce a set of haploid consensus sequences rather than a single consensus sequence. Existing WGS assemblers take a column-by-column approach to consensus generation, and produce a single consensus sequence which can be inconsistent with the underlying haploid alleles, and inconsistent with any of the aligned sequence reads. Our new algorithm uses a dynamic windowing approach. It detects alleles by simultaneously processing the portions of aligned reads spanning a region of sequence variation, assigns reads to their respective alleles, phases adjacent variant alleles and generates a consensus sequence corresponding to each confirmed allele. This algorithm was used to produce the first diploid genome sequence of an individual human. It can also be applied to assemblies of multiple diploid individuals and hybrid assemblies of multiple haploid organisms. Being applied to the individual human genome assembly, the new algorithm detects exactly two confirmed alleles and reports two consensus sequences in 98.98% of the total number 2,033311 detected regions of sequence variation. In 33,269 out of 460,373 detected regions of size >1 bp, it fixes the constructed errors of a mosaic haploid representation of a diploid locus as produced by the original Celera Assembler consensus algorithm. Using an optimized procedure calibrated against 1 506 344 known SNPs, it detects 438 814 new heterozygous SNPs with false positive rate 12%. The open source code is available at: http://wgs-assembler.cvs.sourceforge.net/wgs-assembler/

  5. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Miller, Teresa Y. (Inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  6. Biomimetics with a self-assembled monolayer of catalytically active tethered isoalloxazine on Au.

    PubMed

    Calvo, Ernesto J; Rothacher, M Silvina; Bonazzola, Cecilia; Wheeldon, Ian R; Salvarezza, Roberto C; Vela, Maria Elena; Benitez, Guillermo

    2005-08-16

    A new biomimetic nanostructured electrocatalyst comprised of a self-assembled monolayer (SAM) of flavin covalently attached to Au by reaction of methylformylisoalloxazine with chemisorbed cysteamine is introduced. Examinations by Fourier transform infrared spectroscopy and scanning tunneling microscopy (STM) show that the flavin molecules are oriented perpendicular to the surface with a 2 nm separation between flavin molecules. As a result of the contrast observed in the STM profiles between areas only covered by unreacted cysteamine and those covered by flavin-cysteamine moieties, it can be seen that the flavin molecules rise 0.7 nm above the chemisorbed cysteamines. The SAM flavin electrocatalyst undergoes fast electron transfer with the underlying Au and shows activity toward the oxidation of enzymatically active beta-NADH at pH 7 and very low potential (-0.2 V vs Ag/AgCl), a requirement for use in an enzymatic biofuel cell, and a 100-fold increase in activity with respect to the collisional reaction in solution.

  7. Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids.

    PubMed

    Brunel, Frédéric; Lautard, Christelle; Garzino, Frédéric; Giorgio, Suzanne; Raimundo, Jean M; Bolla, Jean M; Camplo, Michel

    2016-08-01

    Staphylococcus aureus, a Gram positive coccal bacterium is a major cause of nosocomial infection. We report the synthesis of new triphenylamine phosphonium ionic liquids which are able to self-assemble into multiwall nanoassemblies and to reveal a strong bactericidal activity (MIC=0.5mg/L) for Gram positive bacteria (including resistant strains) comparable to that of standard antibiotics. Time kill, metabolism and fluorescence confocal microscopy studies show a quasi-instantaneously penetration of the nanoassemblies inside the bacteria resulting of a rapid blocking (30min) of their proliferation. As confirmed by rezasurin reduction monitoring, these compounds strongly affect the bacterial metabolism and a Gram positive versus Gram negative selectivity is clearly observed. These fluorescent phosphonium ionic liquid might constitute a useful tool for both translocation studies and to tackle infectious diseases related to the field of implantology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Functional Nanostructured Materials Based on Polymerized Surfactant Liquid Crystal Assemblies Liquid Crystal Assemblies

    NASA Astrophysics Data System (ADS)

    Gin, Douglas

    2003-03-01

    The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for

  9. A model for the sustainable selection of building envelope assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huedo, Patricia, E-mail: huedo@uji.es; Mulet, Elena, E-mail: emulet@uji.es; López-Mesa, Belinda, E-mail: belinda@unizar.es

    2016-02-15

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate themore » impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.« less

  10. Hearing Aid Assembly

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N. (Inventor)

    2002-01-01

    Progress in hearing aids has come a long way. Yet despite such progress hearing aids are not the perfect answer to many hearing problems. Some adult ears cannot accommodate tightly fitting hearing aids. Mouth movements such as chewing, talking, and athletic or other active endeavors also lead to loosely fitting ear molds. It is well accepted that loosely fitting hearing aids are the cause of feedback noise. Since feedback noise is the most common complaint of hearing aid wearers it has been the subject of various patents. Herein a hearing aid assembly is provided eliminating feedback noise. The assembly includes the combination of a hearing aid with a headset developed to constrict feedback noise.

  11. Hi-rel lead-free printed wiring assemblies

    NASA Technical Reports Server (NTRS)

    Mehta, A. C.; Bonner, J. K.; Castillo, L. del

    2002-01-01

    The use of lead in electronics has come under increasing scrutiny. Given the trends in both Japan and Europe, it is highly likely that the U.S. will be driven by commercial interests to phase out of lead in electronics usage. This paper presents data collected on a recent NASA project to focus on finding suitable alternatives to eutectic tin-lead solders and solder pastes. The first phase of this project dealt with determining the most feasible candidates to replace tin-lead and to determine suitable processing operations in assemblies printed wiring boards.

  12. Application of the Modular Automated Reconfigurable Assembly System (MARAS) concept to adaptable vision gauging and parts feeding

    NASA Technical Reports Server (NTRS)

    By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic

    1994-01-01

    This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.

  13. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  14. Recovery Efficiency Test Project: Phase 1, Activity report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.

    1988-04-01

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  15. Optimal use of human and machine resources for Space Station assembly operations

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1988-01-01

    This paper investigates the issues involved in determining the best mix of human and machine resources for assembly of the Space Station. It presents the current Station assembly sequence, along with descriptions of the available assembly resources. A number of methodologies for optimizing the human/machine tradeoff problem have been developed, but the Space Station assembly offers some unique issues that have not yet been addressed. These include a strong constraint on available EVA time for early flights and a phased deployment of assembly resources over time. A methodology for incorporating the previously developed decision methods to the special case of the Space Station is presented. This methodology emphasizes an application of multiple qualitative and quantitative techniques, including simulation and decision analysis, for producing an objective, robust solution to the tradeoff problem.

  16. Dynamic-Active Flow Control - Phase I

    DTIC Science & Technology

    2006-10-18

    effective in controlling the flow. In altering the orifice shape to one with a lower aspect ratio , for example a circular hole, the effect of the...DYNAMIC-ACTIVE FLOW CONTROL - PHASE I By ASHLEY TUCK AND JULIO SORIA 1 Laboratory for Turbulence Research...comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

  17. Hierarchical assembly of Sm2Co7/Co magnetic nanoparticles into highly stable and uniform nanospheres.

    PubMed

    Saravanan, P; Sreedhar, B; Mishra, D; Perumal, A; Chandrasekaran, V

    2011-04-01

    Hierarchical assembly of colloidal Sm2Co7/Co clusters in the form of nanospheres has been processed through a polyol process. The SmCo nanospheres are found to be robust, uniform ( 100 nm) and tend to self-assemble in the form of ordered superstructures. Each nanosphere consists of large number of discrete fine particles ( 6.0 nm), having two-phase structure of both Sm2Co7 and Co-phases. Upon annealing, these phases transform into Sm2Co17 phase with very high magnetization (169 emu/g). A possible mechanism on the formation of nanospheres from the individual Sm2Co2o7 and Co nanoparticles is also discussed.

  18. Self-Assembly of Optical Molecules with Supramolecular Concepts

    PubMed Central

    Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko

    2009-01-01

    Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931

  19. Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current

    DOE PAGES

    Park, Woon Ik; Kim, Jong Min; Jeong, Jae Won; ...

    2015-03-17

    Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge 2Sb 2Te 5) and amore » heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.« less

  20. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  1. Hybrid reduced order modeling for assembly calculations

    DOE PAGES

    Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; ...

    2015-08-14

    While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the usemore » of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.« less

  2. Neural syntax: cell assemblies, synapsembles and readers

    PubMed Central

    Buzsáki, György

    2010-01-01

    Summary A widely discussed hypothesis in neuroscience is that transiently active ensembles of neurons, known as ‘cell assemblies’, underlie numerous operations of the brain, from encoding memories to reasoning. However, the mechanisms responsible for the formation and disbanding of cell assemblies and temporal evolution of cell assembly sequences are not well understood. I introduce and review three interconnected topics, which could facilitate progress in defining cell assemblies, identifying their neuronal organization and revealing causal relationships between assembly organization and behavior. First, I hypothesize that cell assemblies are best understood in light of their output product, as detected by ‘reader-actuator’ mechanisms. Second, I suggest that the hierarchical organization of cell assemblies may be regarded as a neural syntax. Third, constituents of the neural syntax are linked together by dynamically changing constellations of synaptic weights (‘synapsembles’). Existing support for this tripartite framework is reviewed and strategies for experimental testing of its predictions are discussed. PMID:21040841

  3. Labour management and Obstetric outcomes among pregnant women admitted in latent phase compared to active phase of labour at Bugando Medical Centre in Tanzania.

    PubMed

    Chuma, Clotrida; Kihunrwa, Albert; Matovelo, Dismas; Mahendeka, Marietha

    2014-02-12

    Interventions given to women admitted in latent or active phase of labor may influence the outcomes of labor and ameliorate complications which can affect the mother and fetus. Labour management, maternal and fetal outcomes among low risk women presenting both in latent phase and active phase of labour in Tanzania have not recently been explored. This was a descriptive cross-sectional study. It was done from February to April 2013. Case notes were collected serially until the sample size was reached. A structured checklist was used to extract data. Data was analyzed using SPSS version 17. A p < 0.05 was considered significant at 95% confidence interval. Five hundred case notes of low risk pregnant women were collected, half of each presented in latent phase and active phase of labour. Key interventions including augmentation with oxytocin, artificial rupture of membranes and caesarean section were significantly higher in the latent phase group than the active phase group 84(33.6%) versus 52(20.8%) p < 0.05; 96(38.6%) versus 56(22.4%) p < 0.05 and 87(34.8%) versus 60(24.0%) p < 0.05 respectively. Spontaneous vertex delivery was higher among pregnant women admitted initially in active phase than in latent phase groups 180(72.0%), versus 153(61.2%) p > 0.01). There were more women in the active phase group who sustained genital tract tear and postpartum haemorrhage than in the latent phase group 101(18.6%), versus 38(15.6%) p < 0.01 and 46(18.4%), versus 17(6.6%) p < 0.05 respectively. Pregnant women admitted at BMC in latent phase of labour are subjected to more obstetric interventions than those admitted in the active phase. There is need to produce guidelines on management of women admitted in latent phase of labour at BMC to reduce the risk of unnecessary interventions.

  4. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields.

    PubMed

    Ferrick, Adam; Wang, Mei; Woehl, Taylor J

    2018-05-29

    Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.

  5. Team assembly mechanisms determine collaboration network structure and team performance.

    PubMed

    Guimerà, Roger; Uzzi, Brian; Spiro, Jarrett; Amaral, Luís A Nunes

    2005-04-29

    Agents in creative enterprises are embedded in networks that inspire, support, and evaluate their work. Here, we investigate how the mechanisms by which creative teams self-assemble determine the structure of these collaboration networks. We propose a model for the self-assembly of creative teams that has its basis in three parameters: team size, the fraction of newcomers in new productions, and the tendency of incumbents to repeat previous collaborations. The model suggests that the emergence of a large connected community of practitioners can be described as a phase transition. We find that team assembly mechanisms determine both the structure of the collaboration network and team performance for teams derived from both artistic and scientific fields.

  6. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.

    PubMed

    Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J

    2012-10-05

    A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.

  7. Development of soy lecithin based novel self-assembled emulsion hydrogels.

    PubMed

    Singh, Vinay K; Pandey, Preeti M; Agarwal, Tarun; Kumar, Dilip; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2015-03-01

    The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Astronauts Jerry Ross and Sherwood Spring assemble ACCESS components

    NASA Image and Video Library

    1985-12-01

    Astronauts Jerry L. Ross (left) and Sherwood C. (Woody) Spring are photographed as they assemble pieces of the Experimental Assembly of Structures in Extravehicular Activities (EASE) device in the open payload bay. The Canadian-built remote manipulator system (RMS) arm (partially obscured in the right portion of the frame) is in position to allow television cameras to record the activity.

  9. Motor adaptation capacity as a function of age in carrying out a repetitive assembly task at imposed work paces.

    PubMed

    Gilles, Martine Annie; Guélin, Jean-Charles; Desbrosses, Kévin; Wild, Pascal

    2017-10-01

    The working population is getting older. Workers must adapt to changing conditions to respond to the efforts required by the tasks they have to perform. In this laboratory-based study, we investigated the capacities of motor adaptation as a function of age and work pace. Two phases were identified in the task performed: a collection phase, involving dominant use of the lower limbs; and an assembly phase, involving bi-manual motor skills. Results showed that senior workers were mainly limited during the collection phase, whereas they had less difficulty completing the assembly phase. However, senior workers did increase the vertical force applied while assembling parts, whatever the work pace. In younger and middle-aged subjects, vertical force was increased only for the faster pace. Older workers could adapt to perform repetitive tasks under different time constraints, but adaptation required greater effort than for younger workers. These results point towards a higher risk of developing musculoskeletal disorders among seniors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Assembly of filopodia by the formin FRL2 (FMNL3)

    PubMed Central

    Harris, Elizabeth S.; Gauvin, Timothy J.; Heimsath, Ernest G.; Higgs, Henry N.

    2010-01-01

    Actin-dependent finger-like protrusions such as filopodia and microvilli are widespread in eukaryotes, but their assembly mechanisms are poorly understood. Filopodia assembly requires at least three biochemical activities on actin: actin filament nucleation, prolonged actin filament elongation, and actin filament bundling. These activities are shared by several mammalian formin proteins, including mDia2, FRL1 (also called FMNL1), and FRL2 (FMNL3). In this paper, we compare the abilities of constructs from these three formins to induce filopodia. FH1-FH2 constructs of both FRL2 and mDia2 stimulate potent filopodia assembly in multiple cell types, and enrich strongly at filopodia tips. In contrast, FRL1 FH1-FH2 lacks this activity, despite possessing similar biochemical activities and being highly homologous to FRL2. Chimeric FH1-FH2 experiments between FRL1 and FRL2 show that, while both an FH1 and an FH2 are needed, either FH1 domain supports filopodia assembly but only FRL2’s FH2 domain allows this activity. A mutation that compromises FRL2’s barbed end binding ability abolishes filopodia assembly. FRL2’s ability to stimulate filopodia assembly is not altered by additional domains (GBD, DID, DAD), but is significantly reduced in the full-length construct, suggesting that FRL2 is subject to inhibitory regulation. The data suggest that the FH2 domain of FRL2 possesses properties not shared by FRL1 that allow it to generate filopodia. PMID:20862687

  11. Phosphoinositides Regulate Membrane-dependent Actin Assembly by Latex Bead Phagosomes

    PubMed Central

    Defacque, Hélène; Bos, Evelyne; Garvalov, Boyan; Barret, Cécile; Roy, Christian; Mangeat, Paul; Shin, Hye-Won; Rybin, Vladimir; Griffiths, Gareth

    2002-01-01

    Actin assembly on membrane surfaces is an elusive process in which several phosphoinositides (PIPs) have been implicated. We have reconstituted actin assembly using a defined membrane surface, the latex bead phagosome (LBP), and shown that the PI(4,5)P2-binding proteins ezrin and/or moesin were essential for this process (Defacque et al., 2000b). Here, we provide several lines of evidence that both preexisting and newly synthesized PI(4,5)P2, and probably PI(4)P, are essential for phagosomal actin assembly; only these PIPs were routinely synthesized from ATP during in vitro actin assembly. Treatment of LBP with phospholipase C or with adenosine, an inhibitor of type II PI 4-kinase, as well as preincubation with anti-PI(4)P or anti-PI(4,5)P2 antibodies all inhibited this process. Incorporation of extra PI(4)P or PI(4,5)P2 into the LBP membrane led to a fivefold increase in the number of phagosomes that assemble actin. An ezrin mutant mutated in the PI(4,5)P2-binding sites was less efficient in binding to LBPs and in reconstituting actin assembly than wild-type ezrin. Our data show that PI 4- and PI 5-kinase, and under some conditions also PI 3-kinase, activities are present on LBPs and can be activated by ATP, even in the absence of GTP or cytosolic components. However, PI 3-kinase activity is not required for actin assembly, because the process was not affected by PI 3-kinase inhibitors. We suggest that the ezrin-dependent actin assembly on the LBP membrane may require active turnover of D4 and D5 PIPs on the organelle membrane. PMID:11950931

  12. Cluster-assembled materials based on M12N12 (M = Al, Ga) fullerene-like clusters.

    PubMed

    Yong, Yongliang; Song, Bin; He, Pimo

    2011-09-28

    We report the results of density functional theory calculations on cluster-assembled materials based on M(12)N(12) (M = Al, Ga) fullerene-like clusters. Our results show that the M(12)N(12) fullerene-like structure with six isolated four-membered rings (4NRs) and eight six-membered rings (6NRs) has a T(h) symmetry and a large HOMO-LUMO gap, indicating that the M(12)N(12) cluster would be ideal building blocks for the synthesis of cluster-assembled materials. Via the coalescence of M(12)N(12) building blocks, we find that the M(12)N(12) clusters can bind into stable assemblies by either 6NR or 4NR face coalescence, which enables the construction of rhombohedral or cubic nanoporous framework of varying porosity. The rhombohedral-MN phase is energetically more favorable than the cubic-MN phase. The M(12)N(12) fullerene-like structures in both phases are maintained and the M-N bond lengths between M(12)N(12) monomers are slightly larger than that in isolated M(12)N(12) clusters and the bulk wurtzite phases. The band analysis of both phases reveals that they are all wide-gap semiconductors. Because of the nanoporous character of these phases, they could be used for gas storage, heterogeneous catalysis, filtration and so on.

  13. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo

    PubMed Central

    2016-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  14. On-Orbit Autonomous Assembly from Nanosatellites

    NASA Technical Reports Server (NTRS)

    Murchison, Luke S.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.

  15. Muscle activation patterns in acceleration-based phases during reach-to-grasp movement.

    PubMed

    Tokuda, Keisuke; Lee, Bumsuk; Shiihara, Yasufumi; Takahashi, Kazuhiro; Wada, Naoki; Shirakura, Kenji; Watanabe, Hideomi

    2016-11-01

    [Purpose] An earlier study divided reaching activity into characteristic phases based on hand velocity profiles. By synchronizing muscle activities and the acceleration profile, a phasing approach for reaching movement, based on hand acceleration profiles, was attempted in order to elucidate the roles of individual muscle activities in the different phases of the acceleration profile in reaching movements. [Subjects and Methods] Ten healthy volunteer subjects participated in this study. The aim was to electromyographically evaluate muscles around the shoulder, the upper trapezius, the anterior deltoid, the biceps brachii, and the triceps brachii, most of which have been used to evaluate arm motion, as well as the acceleration of the upper limb during simple reaching movement in the reach-to-grasp task. [Results] Analysis showed the kinematic trajectories of the acceleration during a simple biphasic profile of the reaching movement could be divided into four phases: increasing acceleration (IA), decreasing acceleration (DA), increasing deceleration (ID), and decreasing deceleration (DD). Muscles around the shoulder showed different activity patterns, which were closely associated with these acceleration phases. [Conclusion] These results suggest the important role of the four phases, derived from the acceleration trajectory, in the elucidation of the muscular mechanisms which regulate and coordinate the muscles around the shoulder in reaching movements.

  16. 40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Staged-assembly and delegated assembly... Staged-assembly and delegated assembly exemptions. (a) Staged assembly. You may ask us to provide a... assembly. This paragraph (b) applies where the engine manufacturer/remanufacturer does not complete...

  17. 40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Staged-assembly and delegated assembly... Staged-assembly and delegated assembly exemptions. (a) Staged assembly. You may ask us to provide a... assembly. This paragraph (b) applies where the engine manufacturer/remanufacturer does not complete...

  18. 40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Staged-assembly and delegated assembly... Staged-assembly and delegated assembly exemptions. (a) Staged assembly. You may ask us to provide a... assembly. This paragraph (b) applies where the engine manufacturer/remanufacturer does not complete...

  19. 40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Staged-assembly and delegated assembly... Staged-assembly and delegated assembly exemptions. (a) Staged assembly. You may ask us to provide a... assembly. This paragraph (b) applies where the engine manufacturer/remanufacturer does not complete...

  20. Effect of menstrual cycle phase on corticolimbic brain activation by visual food cues.

    PubMed

    Frank, Tamar C; Kim, Ginah L; Krzemien, Alicja; Van Vugt, Dean A

    2010-12-02

    Food intake is decreased during the late follicular phase and increased in the luteal phase of the menstrual cycle. While a changing ovarian steroid milieu is believed to be responsible for this behavior, the specific mechanisms involved are poorly understood. Brain activity in response to visual food stimuli was compared during the estrogen dominant peri-ovulatory phase and the progesterone dominant luteal phase of the menstrual cycle. Twelve women underwent functional magnetic resonance imaging during the peri-ovulatory and luteal phases of the menstrual cycle in a counterbalanced fashion. Whole brain T2* images were collected while subjects viewed pictures of high calorie (HC) foods, low calorie (LC) foods, and control (C) pictures presented in a block design. Blood oxygen level dependent (BOLD) signal in the late follicular phase and luteal phase was determined for the contrasts HC-C, LC-C, HC-LC, and LC-HC. Both HC and LC stimuli activated numerous corticolimbic brain regions in the follicular phase, whereas only HC stimuli were effective in the luteal phase. Activation of the nucleus accumbens (NAc), amygdala, and hippocampus in response to the HC-C contrast and the hippocampus in response to the LC-C contrast was significantly increased in the late follicular phase compared to the luteal phase. Activation of the orbitofrontal cortex and mid cingulum in response to the HC-LC contrast was greater during the luteal phase. These results demonstrate for the first time that brain responses to visual food cues are influenced by menstrual cycle phase. We postulate that ovarian steroid modulation of the corticolimbic brain contributes to changes in ingestive behavior during the menstrual cycle. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    PubMed

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability.

    PubMed

    Kafaie Shirmanesh, Ghazaleh; Sokhoyan, Ruzan; Pala, Ragip A; Atwater, Harry A

    2018-05-09

    Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.

  3. Self-Assembled Tea Tannin Graft Copolymer as Nanocarriers for Antimicrobial Drug Delivery and Wound Healing Activity.

    PubMed

    Mahata, Denial; Nag, Ahindra; Nando, Golok B; Mandal, Santi M; Franco, Octavio L

    2018-04-01

    Green chemistry polymers from renewable resources have recently received much more attention from pharmaceutical researchers. However, the appropriate application of a polymer depends on its chemical nature, biocompatibility and microstructure. Here, tannin polyphenols from the common beverage, tea, are used to develop a novel self-assembled porous capsule as a microstructure of hydrogel for versatile biological applications, such as drug delivery, antioxidant and wound healing activity. Hydrogel has been successfully used for the delivery of both anticancer and antimicrobial drugs. The developed material shows excellent biocompatibility and antioxidant activity in vitro. The scratch assay for in vitro wound healing activity reveals their higher potential to repair the damaged cells in comparison to control.

  4. Self-assembly of silk fibroin under osmotic stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  5. Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Gabacz, L. E.

    1973-01-01

    The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.

  6. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable secondmore » maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.« less

  7. Electrochemical cell and method of assembly

    DOEpatents

    Shimotake, Hiroshi; Voss, Ernst C. H.; Bartholme, Louis G.

    1979-01-01

    A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.

  8. Simulations of polymorphic icosahedral shells assembling around many cargo molecules

    NASA Astrophysics Data System (ADS)

    Mohajerani, Farzaneh; Perlmutter, Jason; Hagan, Michael

    Bacterial microcompartments (BMCs) are large icosahedral shells that sequester the enzymes and reactants responsible for particular metabolic pathways in bacteria. Although different BMCs vary in size and encapsulate different cargoes, they are constructed from similar pentameric and hexameric shell proteins. Despite recent groundbreaking experiments which visualized the formation of individual BMCs, the detailed assembly pathways and the factors which control shell size remain unclear. In this talk, we describe theoretical and computational models that describe the dynamical encapsulation of hundreds of cargo molecules by self-assembling icosahedral shells. We present phase diagrams and analysis of dynamical simulation trajectories showing how the thermodynamics, assembly pathways, and emergent structures depend on the interactions among shell proteins and cargo molecules. Our model suggests a mechanism for controlling insertion of the 12 pentamers required for a closed shell topology, and the relationship between assembly pathway and BMC size polydispersity. In addition to elucidating how native BMCs assemble,our results establish principles for reengineering BMCs or viral capsids as customizable nanoreactors that can assemble around a programmable set of enzymes and reactants. Supported by NIH R01GM108021 and Brandeis MRSEC DMR-1420382.

  9. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces

    NASA Astrophysics Data System (ADS)

    Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana

    2017-07-01

    One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and

  10. Coarse-grained Simulations of Viral Assembly

    NASA Astrophysics Data System (ADS)

    Elrad, Oren M.

    2011-12-01

    The formation of viral capsids is a marvel of natural engineering and design. A large number (from 60 to thousands) of protein subunits assemble into complete, reproducible structures under a variety of conditions while avoiding kinetic and thermodynamic traps. Small single-stranded RNA viruses not only assemble their coat proteins in this fashion but also package their genome during the self-assembly process. Recent experiments have shown that the coat proteins are competent to assemble not merely around their own genomes but heterologous RNA, synthetic polyanions and even functionalized gold nanoparticles. Remarkably these viruses can even assemble around cargo not commensurate with their native state by adopting different morphologies. Understanding the properties that confer such exquisite precision and flexibility to the assembly process could aid biomedical research in the search for novel antiviral remedies, drug-delivery vehicles and contrast agents used in bioimaging. At the same time, viral assembly provides an excellent model system for the development of a statistical mechanical understanding of biological self-assembly, in the hopes of that we will identify some universal principles that underly such processes. This work consists of computational studies using coarse-grained representations of viral coat proteins and their cargoes. We find the relative strength of protein-cargo and protein-protein interactions has a profound effect on the assembly pathway, in some cases leading to assembly mechanisms that are markedly different from those found in previous work on the assembly of empty capsids. In the case of polymeric cargo, we find the first evidence for a previously theorized mechanism in which the polymer actively participates in recruiting free subunits to the assembly process through cooperative polymer-protein motions. We find that successful assembly is non-monotonic in protein-cargo affinity, such affinity can be detrimental to assembly if it

  11. An Assembly Funnel Makes Biomolecular Complex Assembly Efficient

    PubMed Central

    Zenk, John; Schulman, Rebecca

    2014-01-01

    Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818

  12. A High Resolution Phase Shifting Interferometer.

    NASA Astrophysics Data System (ADS)

    Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen

    1997-03-01

    Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation

  13. Self-assembly of protein-based biomaterials initiated by titania nanotubes.

    PubMed

    Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue

    2013-12-03

    Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.

  14. Labour management and Obstetric outcomes among pregnant women admitted in latent phase compared to active phase of labour at Bugando Medical Centre in Tanzania

    PubMed Central

    2014-01-01

    Background Interventions given to women admitted in latent or active phase of labor may influence the outcomes of labor and ameliorate complications which can affect the mother and fetus. Labour management, maternal and fetal outcomes among low risk women presenting both in latent phase and active phase of labour in Tanzania have not recently been explored. Methods This was a descriptive cross-sectional study. It was done from February to April 2013. Case notes were collected serially until the sample size was reached. A structured checklist was used to extract data. Data was analyzed using SPSS version 17. A p < 0.05 was considered significant at 95% confidence interval. Results Five hundred case notes of low risk pregnant women were collected, half of each presented in latent phase and active phase of labour. Key interventions including augmentation with oxytocin, artificial rupture of membranes and caesarean section were significantly higher in the latent phase group than the active phase group 84(33.6%) versus 52(20.8%) p < 0.05; 96(38.6%) versus 56(22.4%) p < 0.05 and 87(34.8%) versus 60(24.0%) p < 0.05 respectively. Spontaneous vertex delivery was higher among pregnant women admitted initially in active phase than in latent phase groups 180(72.0%), versus 153(61.2%) p > 0.01). There were more women in the active phase group who sustained genital tract tear and postpartum haemorrhage than in the latent phase group 101(18.6%), versus 38(15.6%) p < 0.01 and 46(18.4%), versus 17(6.6%) p < 0.05 respectively. Conclusions Pregnant women admitted at BMC in latent phase of labour are subjected to more obstetric interventions than those admitted in the active phase. There is need to produce guidelines on management of women admitted in latent phase of labour at BMC to reduce the risk of unnecessary interventions. PMID:24521301

  15. SHARC: Space Habitat, Assembly and Repair Center

    NASA Technical Reports Server (NTRS)

    Colangelo, Todd; Hoetger, Debora; Kuo, Addison; Lo, Michael; Marcus, Leland; Tran, Philip; Tutt, Chris; Wassmuth, Chad; Wildgrube, Gregory

    1992-01-01

    Integrated Space Systems (ISS) has taken on the task of designing a Space Habitat, Assembly and Repair Center (SHARC) in Low Earth Orbit to meet the future needs of the space program. Our goal is to meet the general requirements given by the 1991/1992 AIAA/LORAL Team Space Design competition with an emphasis on minimizing the costs of such a design. A baseline structural configuration along with preliminary designs of the major subsystems was created. Our initial mission requirements, which were set by AIAA, were that the facility be able to: support simultaneous assembly of three major vehicles; conduct assembly operations and minimal extra vehicular activity (EVA); maintain orbit indefinitely; and assemble components 30 feet long with a 10 foot diameter in a shirtsleeve environment.

  16. pH-Controlled Assembly of DNA Tiles

    DOE PAGES

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo; ...

    2016-09-15

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  17. pH-Controlled Assembly of DNA Tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  18. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    PubMed

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  19. DNA-guided nanoparticle assemblies

    DOEpatents

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  20. Hydrodynamic suppression of phase separation in active suspensions.

    PubMed

    Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M

    2014-09-01

    We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.

  1. Electric-field–induced assembly and propulsion of chiral colloidal clusters

    PubMed Central

    Ma, Fuduo; Wang, Sijia; Wu, David T.; Wu, Ning

    2015-01-01

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport. PMID:25941383

  2. Electric-field-induced assembly and propulsion of chiral colloidal clusters.

    PubMed

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning

    2015-05-19

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.

  3. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Liang, Jun F.

    2016-12-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  4. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid.

    PubMed

    Zhan, Honglei; Liang, Jun F

    2016-12-09

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC 50  < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  5. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    PubMed Central

    Zhan, Honglei; Liang, Jun F.

    2016-01-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field. PMID:27934922

  6. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The fulfillment of the new US. National Vision for Space Exploration requires many new enabling technologies to accomplish the goal of utilizing space for commercial activities and for returning humans to the moon and extraterrestrial environments. Traditionally, flight structures are manufactured as complete systems and require humans to complete the integration and assembly in orbit. These structures are bulky and require the use of heavy launch vehicles to send the units to the desired location, e.g. International Space Station (ISS). This method requires a high degree of safety, numerous space walks and significant cost for the humans to perform the assembly in orbit. For example, for assembly and maintenance of the ISS, 52 Extravehicular Activities (EVA's) have been performed so far with a total EVA time of approximately 322 hours. Sixteen (16) shuttle flights haw been to the ISS to perform these activities with an approximate cost of $450M per mission. For future space missions, costs have to be reduced to reasonably achieve the exploration goals. One concept that has been proposed is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly operations. Assembly is autonomously performed when two components containing onboard electronics join after recognizing that the joint is appropriate and in the precise position and orientation required for assembly. The mechanism only activates when the specifications are correct and m a nominal range. After assembly, local sensors and electronics monitor the integrity of the joint for feedback to a master controller. To achieve this concept will require a shift in the methods for designing space structures. In addition, innovative techniques will be required to perform the assembly autonomously. Monitoring of the assembled joint will be necessary for safety and structural integrity. If a very large structure is to be assembled in orbit, then

  7. Electrostatically Driven Large Aperture Micro-Mirror Actuator Assemblies for High Fill-Factor, Agile Optical Phase Arrays

    DTIC Science & Technology

    2015-06-18

    platform assembly 2, with micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...beam micro-mirror platform assembly 1; micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...side ( PFa ) and side opposite actuation (PFo) ........................................................ 106 xiv Figure 73: Graph of measured 10-beam

  8. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    NASA Technical Reports Server (NTRS)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called digital materials. We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  9. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    NASA Technical Reports Server (NTRS)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called "digital materials." We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  10. Self Assembly of Hard, Space-Filling Polytopes

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin; Damasceno, Pablo; Engel, Michael; Glotzer, Sharon

    2012-02-01

    The thermodynamic behavior of systems of hard particles in the limit of infinite pressure is known to yield the densest possible packing [1,2]. Hard polytopes that tile or fill space in two or three spatial dimensions are guaranteed to obtain packing fractions of unity in the infinite pressure limit. Away from this limit, however, other structures may be possible [3]. We present the results of a simulation study of the thermodynamic self-assembly of hard, space-filling particles from disordered initial conditions. We show that for many polytopes, the infinite pressure structure readily assembles at intermediate pressures and packing fractions significantly less than one; in others, assembly of the infinite pressure structure is foiled by mesophases, jamming and phase separation. Common features of these latter systems are identified and strategies for enhancing assembly of the infinite pressure structure at intermediate pressures through building block modification are discussed.[4pt] [1] P. F. Damasceno, M. Engel, S.C. Glotzer arXiv:1109.1323v1 [cond-mat.soft][0pt] [2] A. Haji-Akbari, M. Engel, S.C. Glotzer arXiv:1106.4765v2 [cond-mat.soft][0pt] [3] U. Agarwal, F.A. Escobedo, Nature Materials 10, 230--235 (2011)

  11. Cell-cycle regulation of formin-mediated actin cable assembly

    PubMed Central

    Miao, Yansong; Wong, Catherine C. L.; Mennella, Vito; Michelot, Alphée; Agard, David A.; Holt, Liam J.; Yates, John R.; Drubin, David G.

    2013-01-01

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation. PMID:24133141

  12. Technological development of multispectral filter assemblies for micro bolometer

    NASA Astrophysics Data System (ADS)

    Le Goff, Roland; Tanguy, François; Fuss, Philippe; Etcheto, Pierre

    2017-11-01

    Since 2007 Sodern has successfully developed visible and near infrared multispectral filter assemblies for Earth remote sensing imagers. Filter assembly is manufactured by assembling several sliced filter elements (so-called strips), each corresponding to one spectral band. These strips are cut from wafers using a two dimensional accuracy precision process. In the frame of a 2011 R&T preparatory initiative undertaken by the French agency CNES, the filter assembly concept was adapted by Sodern to the long wave infrared spectral band taken into account the germanium substrate, the multilayer bandpass filters and the F-number of the optics. Indeed the current trend in space instrumentation toward more compact uncooled infrared radiometer leads to replace the filter wheel with a multispectral filter assembly mounted directly above the micro bolometer window. The filter assembly was customized to fit the bolometer size. For this development activity we consider a ULIS VGA LWIR micro bolometer with 640 by 480 pixels and 25 microns pixel pitch. The feasibility of the concept and the ability to withstand space environment were investigated and demonstrated by bread boarding activities. The presentation will contain a detailed description of the bolometer and filter assembly design, the stray light modeling analysis assessing the crosstalk between adjacent spectral bands and the results of the manufacturing and environmental tests (damp heat and thermal vacuum cycling).

  13. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    PubMed Central

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-01-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  14. An attack aimed at active phase compensation in one-way phase-encoded QKD systems

    NASA Astrophysics Data System (ADS)

    Dong, Zhao-Yue; Yu, Ning-Na; Wei, Zheng-Jun; Wang, Jin-Dong; Zhang, Zhi-Ming

    2014-08-01

    Phase drift is an inherent problem in one-way phase-encoded quantum key distribution (QKD) systems. Although combining passive with active phase compensation (APC) processes can effectively compensate for the phase drift, the security problems brought about by these processes are rarely considered. In this paper, we point out a security hole in the APC process and put forward a corresponding attack scheme. Under our proposed attack, the quantum bit error rate (QBER) of the QKD can be close to zero for some conditions. However, under the same conditions the ratio r of the key "0" and the key "1" which Bob (the legal communicators Alice and Bob) gets is no longer 1:1 but 2:1, which may expose Eve (the eavesdropper). In order to solve this problem, we modify the resend strategy of the attack scheme, which can force r to reach 1 and the QBER to be lower than the tolerable QBER.

  15. Microwave-Assisted Rapid Synthesis of Self-Assembled T-Nb2 O5 Nanowires for High-Energy Hybrid Supercapacitors.

    PubMed

    Yang, Huiling; Xu, Henghui; Wang, Libin; Zhang, Lei; Huang, Yunhui; Hu, Xianluo

    2017-03-23

    Recently ion-intercalation hybrid supercapacitors, with high energy density at high power density, have been widely investigated to meet ever-increasing practical demands. Here, a unique hybrid supercapacitor has been designed and fabricated using self-assembled orthorhombic-phase niobium oxide@carbon (T-Nb 2 O 5 @C) nanowires as an anode and commercially available activated carbon as a cathode. The 3D-interconnected T-Nb 2 O 5 @C nanowires have been synthesized through a highly efficient microwave-solvothermal method, combined with subsequent thermal treatment. The experimental parameters (e.g., time and temperature) can be easily programmed, and the synthesis time can be significantly shortened, thus enabling the buildup of abundant recipes for the engineering of scaled-up production. The Li-ion intercalation pseudocapacitance electrode, made from the as-formed self-assembled T-Nb 2 O 5 @C nanowires, shows excellent charge storage and transfer capability. When assembled into a hybrid supercapacitor with a cathode of activated carbon, a high energy density of 60.6 Wh kg -1 and a high power density of 8.5 kW kg -1 with outstanding stability are achieved. In virtue of easy optimization and programmability of the synthetic strategy, and the remarkable electrochemical performance, the self-assembled T-Nb 2 O 5 @C nanowires offer a promising anode for asymmetric hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity.

    PubMed

    Meloche, S; Seuwen, K; Pagès, G; Pouysségur, J

    1992-05-01

    We have examined the phosphorylation and protein kinase activity of p44 mitogen-activated protein kinase (p44mapk) in growth factor-stimulated hamster fibroblasts using a specific antiserum. The activity of p44mapk was stimulated both by receptor tyrosine kinases and G protein-coupled receptors. Detailed kinetics revealed that alpha-thrombin induces a biphasic activation of p44mapk in CCL39 cells: a rapid phase appearing at 5-10 min was followed by a late and sustained phase still elevated after 4 h. Inactivation of alpha-thrombin with hirudin after 30 sec, which prevented DNA synthesis, did not alter the early p44mapk response but completely abolished the late phase. Pretreatment of the cells with pertussis toxin, which inhibits by more than 95% alpha-thrombin-induced mitogenicity, resulted in the complete loss of late phase activity, while the early peak was partially attenuated. Treatment of CCL39 cells with basic fibroblast growth factor also induced a strong activation of p44mapk. Serotonin, which is not a mitogen by its own, had no effect on late phase p44mapk activity, but synergized with basic fibroblast growth factor to induce late kinase response and DNA synthesis. Both early and late phase activation of p44mapk were accompanied by tyrosine phosphorylation of the enzyme. Together, the results indicate that there is a very close correlation between the ability of a growth factor to induce late and sustained p44mapk activation and its mitogenic potential. Therefore, we propose that sustained p44mapk activation is an obligatory event for growth factor-induced cell cycle progression.

  17. Charge patterns as templates for the assembly of layered biomolecular structures.

    PubMed

    Naujoks, Nicola; Stemmer, Andreas

    2006-08-01

    Electric fields are used to guide the assembly of biomolecules in predefined geometric patterns on solid substrates. Local surface charges serve as templates to selectively position proteins on thin-film polymeric electret layers, thereby creating a basis for site-directed layered assembly of biomolecular structures. Charge patterns are created using the lithographic capabilities of an atomic force microscope, namely by applying voltage pulses between a conductive tip and the sample. Samples consist of a poly(methyl methacrylate) layer on a p-doped silicon support. Subsequently, the sample is developed in a water-in-oil emulsion, consisting of a dispersed aqueous phase containing biotin-modified immunoglobulinG molecules, and a continuous nonpolar, insulating oil phase. The electrostatic fields cause a net force of (di)electrophoretic nature on the droplet, thereby guiding the proteins to the predefined locations. Due to the functionalization of the immunoglobulinG molecules with biotin-groups, these patterns can now be used to initiate the localized layer-by-layer assembly of biomolecules based on the avidin-biotin mechanism. By binding 40 nm sized biotin-labelled beads to the predefined locations via a streptavidin linker, we verify the functionality of the previously deposited immunoglobulinG-biotin. All assembly steps following the initial deposition of the immunoglobulinG from emulsion can conveniently be conducted in aqueous solutions. Results show that pattern definition is maintained after immersion into aqueous solution.

  18. Depletion forces drive polymer-like self-assembly in vibrofluidized granular materials†

    PubMed Central

    Nossal, Ralph

    2011-01-01

    Ranging from nano- to granular-scales, control of particle assembly can be achieved by limiting the available free space, for example by increasing the concentration of particles (“crowding”) or through their restriction to 2D environments. It is unclear, however, if self-assembly principles governing thermally-equilibrated molecules can also apply to mechanically-excited macroscopic particles in non-equilibrium steady-state. Here we show that low densities of vibrofluidized steel rods, when crowded by high densities of spheres and confined to quasi-2D planes, can self-assemble into linear polymer-like structures. Our 2D Monte Carlo simulations show similar finite sized aggregates in thermally equilibrated binary mixtures. Using theory and simulations, we demonstrate how depletion interactions create oriented “binding” forces between rigid rods to form these “living polymers.” Unlike rod-sphere mixtures in 3D that can demonstrate well-defined equilibrium phases, our mixtures confined to 2D lack these transitions because lower dimensionality favors the formation of linear aggregates, thus suppressing a true phase transition. The qualitative and quantitative agreement between equilibrium and granular patterning for these mixtures suggests that entropy maximization is the determining driving force for bundling. Furthermore, this study uncovers a previously unknown patterning behavior at both the granular and nanoscales, and may provide insights into the role of crowding at interfaces in molecular assembly. PMID:22039392

  19. Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates

    PubMed Central

    Xie, Yujiao; Liu, Xiaofeng; Hu, Zhuang; Hou, Zhipeng; Chen, Zhangpei; Hu, Jianshe; Yang, Liqun

    2018-01-01

    New amphiphilic liquid crystal (LC) polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR) spectrum, 1H NMR, gel permeation chromatographic (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarizing optical microscope (POM), and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td), glass temperature (Tg), and isotropic temperature (Ti) increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX), together with drug release tracking, were evaluated by dynamic light scattering (DLS), SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications. PMID:29584691

  20. Light/dark phase-dependent spontaneous activity is maintained in dopamine-deficient mice.

    PubMed

    Fujita, Masayo; Hagino, Yoko; Takeda, Taishi; Kasai, Shinya; Tanaka, Miho; Takamatsu, Yukio; Kobayashi, Kazuto; Ikeda, Kazutaka

    2017-10-16

    Dopamine is important for motor control and involved in the regulation of circadian rhythm. We previously found that dopamine-deficient (DD) mice became hyperactive in a novel environment 72 h after the last injection of L-3,4-dihydroxyphenylalanine (L-DOPA) when dopamine was almost completely depleted. DD mice did not initially exhibit hyperactivity in their home cages, but the animals exhibited hyperactivity several hours after the last L-DOPA injection. The regulation of motor activity in a novel environment and in home cages may be different. A previous study reported that DD mice became active again approximately 24 h after the last L-DOPA injection. One speculation was that light/dark phase-dependent spontaneous activity might be maintained despite dopamine deficiency. The present study investigated whether spontaneous home cage activity is maintained in DD mice 24-43 h and 72-91 h after the last L-DOPA injection. Spontaneous activity was almost completely suppressed during the light phase of the light/dark cycle in DD mice 24 and 72 h after the last L-DOPA injection. After the dark phase began, DD mice became active 24 and 72 h after the last L-DOPA injection. DD mice exhibited a similar amount of locomotor activity as wildtype mice 24 h after the last L-DOPA injection. Although DD mice presented a decrease in activity 72 h after the last L-DOPA injection, they maintained dark phase-stimulated locomotor activation. Despite low levels of dopamine in DD mice, they exhibited feeding behavior that was similar to wildtype mice. Although grooming and rearing behavior significantly decreased, DD mice retained their ability to perform these activities. Haloperidol treatment significantly suppressed all of these behaviors in wildtype mice but not in DD mice. These results indicate that DD mice maintain some aspects of light/dark phase-dependent spontaneous activity despite dopamine depletion, suggesting that compensatory dopamine-independent mechanisms might

  1. Different roles for the cyclic nucleotide binding domain and amino terminus in assembly and expression of hyperpolarization-activated, cyclic nucleotide-gated channels.

    PubMed

    Proenza, Catherine; Tran, Neil; Angoli, Damiano; Zahynacz, Kristin; Balcar, Petr; Accili, Eric A

    2002-08-16

    In mammalian heart and brain, pacemaker currents are produced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which probably exist as heteromeric assemblies of different subunit isoforms. To investigate the molecular domains that participate in assembly and membrane trafficking of HCN channels, we have used the yeast two-hybrid system, patch clamp electrophysiology, and confocal microscopy. We show here that the N termini of the HCN1 and HCN2 isoforms interacted and were essential for expression of functional homo- or heteromeric channels on the plasma membrane of Chinese hamster ovary cells. We also show that the cyclic nucleotide binding domain (CNBD) of HCN2 was required for the expression of functional homomeric channels. This expression was dependent on a 12-amino acid domain corresponding to the B-helix in the CNBD of the catabolite activator protein. However, co-expression with HCN1 of an HCN2 deletion mutant lacking the CNBD rescued surface immunofluorescence and currents, indicating that a CNBD need not be present in each subunit of a heteromeric HCN channel. Furthermore, neither CNBDs nor other COOH-terminal domains of HCN1 and HCN2 interacted in yeast two-hybrid assays. Thus, interaction between NH(2)-terminal domains is important for HCN subunit assembly, whereas the CNBD is important for functional expression, but its absence from some subunits will still allow for the assembly of functional channels.

  2. Solid phase microextraction field kit

    DOEpatents

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  3. Analysis of large space structures assembly: Man/machine assembly analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Procedures for analyzing large space structures assembly via three primary modes: manual, remote and automated are outlined. Data bases on each of the assembly modes and a general data base on the shuttle capabilities to support structures assembly are presented. Task element times and structure assembly component costs are given to provide a basis for determining the comparative economics of assembly alternatives. The lessons learned from simulations of space structures assembly are detailed.

  4. PsB multiprotein complex of Dictyostelium discoideum. Demonstration of cellulose binding activity and order of protein subunit assembly.

    PubMed

    McGuire, V; Alexander, S

    1996-06-14

    The differentiated spores of Dictyostelium are surrounded by an extracellular matrix, the spore coat, which protects them from environmental factors allowing them to remain viable for extended periods of time. This presumably is a major evolutionary advantage. This unique extracellular matrix is composed of cellulose and glycoproteins. Previous work has shown that some of these spore coat glycoproteins exist as a preassembled multiprotein complex (the PsB multiprotein complex) which is stored in the prespore vesicles (Watson, N., McGuire, V., and Alexander, S (1994) J. Cell Sci. 107, 2567-2579). Later in development, the complex is synchronously secreted from the prespore vesicles and incorporated into the spore coat. We now have shown that the PsB complex has a specific in vitro cellulose binding activity. The analysis of mutants lacking individual subunits of the PsB complex revealed the relative order of assembly of the subunit proteins and demonstrated that the protein subunits must be assembled for cellulose binding activity. These results provide a biochemical explanation for the localization of this multiprotein complex in the spore coat.

  5. A new biochromatography model based on DNA origami assembled PPARγ: construction and evaluation.

    PubMed

    Zhou, Jie; Meng, Lingchang; Sun, Chong; Chen, Shanshan; Sun, Fang; Luo, Pei; Zhao, Yongxing

    2017-05-01

    As drug targets, receptors have potential to screen drugs. Silica is an attractive support to immobilize receptors; however, the lack of biocompatibility makes it easier for receptors to lose bioactivity, which remains an obstacle to its widespread use. With the advantage of biocompatibility, DNA origami can be used as a biological carrier to improve the biocompatibility of silica and assemble receptors. In this study, a new biochromatography model based on DNA origami was constructed. A large quantity of M13ssDNA was used as a scaffold, leading to significant costs, so M13ssDNA was self-produced from the bacteriophage particles. This approach is demonstrated using the ligand binding domain of gamma isoform peroxisome proliferator-activated receptor (PPARγ-LBD) as a research object. PPARγ-LBD was assembled on DNA origami carrier and then coupled on the surface of silica. The products were packed into the column as stationary phase to construct the biochromatography with the ability to recognize drugs. Affinity and specificity of the biochromatography model were evaluated by HPLC. The final results showed that the biochromatography could recognize rosiglitazone specifically, which further proved that the model could screen chemical compositions interacted with PPARγ. It was the first time to take advantage of DNA origami to assemble PPARγ to construct biochromatography. The new biochromatography model has the advantages of being efficient, convenient, and high-throughput. This method affords a new way to rapidly and conveniently screen active ingredients from complex sample plant extracts and natural product-like libraries.

  6. Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity

    NASA Astrophysics Data System (ADS)

    Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri

    2018-04-01

    A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.

  7. Dewetting-mediated pattern formation in nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Stannard, Andrew

    2011-03-01

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  8. Dewetting-mediated pattern formation in nanoparticle assemblies.

    PubMed

    Stannard, Andrew

    2011-03-02

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  9. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.

    PubMed

    Brown, Noam; Lei, Jiangtao; Zhan, Chendi; Shimon, Linda J W; Adler-Abramovich, Lihi; Wei, Guanghong; Gazit, Ehud

    2018-04-24

    Self-assembly is a process of key importance in natural systems and in nanotechnology. Peptides are attractive building blocks due to their relative facile synthesis, biocompatibility, and other unique properties. Diphenylalanine (FF) and its derivatives are known to form nanostructures of various architectures and interesting and varied characteristics. The larger triphenylalanine peptide (FFF) was found to self-assemble as efficiently as FF, forming related but distinct architectures of plate-like and spherical nanostructures. Here, to understand the effect of triaromatic systems on the self-assembly process, we examined carboxybenzyl-protected diphenylalanine (z-FF) as a minimal model for such an arrangement. We explored different self-assembly conditions by changing solvent compositions and peptide concentrations, generating a phase diagram for the assemblies. We discovered that z-FF can form a variety of structures, including nanowires, fibers, nanospheres, and nanotoroids, the latter were previously observed only in considerably larger or co-assembly systems. Secondary structure analysis revealed that all assemblies possessed a β-sheet conformation. Additionally, in solvent combinations with high water ratios, z-FF formed rigid and self-healing hydrogels. X-ray crystallography revealed a "wishbone" structure, in which z-FF dimers are linked by hydrogen bonds mediated by methanol molecules, with a 2-fold screw symmetry along the c-axis. All-atom molecular dynamics (MD) simulations revealed conformations similar to the crystal structure. Coarse-grained MD simulated the assembly of the peptide into either fibers or spheres in different solvent systems, consistent with the experimental results. This work thus expands the building block library for the fabrication of nanostructures by peptide self-assembly.

  10. Supramolecular Nanocomposites Under Confinement: Chiral Optically Active Nanoparticle Assemblies and Beyond

    NASA Astrophysics Data System (ADS)

    Bai, Peter; Yang, Sui; Bao, Wei; Salmeron, Miquel; Zhang, Xiang; Xu, Ting

    2015-03-01

    Block copolymer-based supramolecules provide a versatile platform to direct the self-assembly of nanoparticles (NPs) into precisely controlled nanostructures in bulk and thin film geometries. A supramolecule, PS-b-P4VP(PDP), composed of the small molecule 3-pentadecylphenol (PDP) hydrogen bonded to a diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), was subjected to 2-D volume confinement in cylindrical anodic aluminum oxide (AAO) membrane pores. TEM and 3-D TEM tomography reveal that the morphologies accessible by the supramolecule and supramolecule/NP composites, such as NP clusters, arrays, stacked rings, and single and double helical ribbons, are significantly different from those in the bulk or thin film. Furthermore, single molecule dark field scattering measurements demonstrate strong chiral optical response of single helical Au NP ribbon nanostructures in the near infrared wavelength regime. These studies demonstrate 2-D confinement to be an effective means to tailor self-assembled NP structure within supramolecule nanocomposites and pave the way for this assembly approach to be applied towards next generation chiral metamaterials and optoelectronic devices.

  11. Synthesis of pH-responsive β-CD-based star polymer and impact of its self-assembly behavior on pectinase activity.

    PubMed

    Hu, Dong; Yang, Hong; Liu, Jiangtao; Lei, Zhongli

    2017-03-01

    A novel type of pH-responsive star polymer based on β-cyclodextrin (β-CD) was synthesized and further covalently conjugated with enzyme. The impact of its self-assembly behavior on enzyme activity was investigated. In our design, azide containing the polymer (N 3 ) 7 -β-CD-(PtBA) 14 was synthesized via atom transfer radical polymerization of tert-butyl acrylate using (N 3 ) 7 -β-CD-(Br) 14 as the multifunctional initiator. The final product (N 3 ) 7 -β-CD-(PAA) 14 was obtained via hydrolysis and covalently conjugating pectinase onto pH-responsive polyacrylic acid (PAA) arms. PAA can change its conformation with the self-assembly by altered pH, leading its nanostructure into micellar nanoparticles in aqueous solution and further affecting the activity of immobilized pectinase. The results were proved by fluorescence spectroscopy and dynamic light scattering. This system proves that the activity of immobilized enzyme can be tailored predictably, and this pH-responsive polymer holds great potential for controllable delivery of enzymes. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  12. Clean then Assemble Versus Assemble then Clean: Several Comparisons

    NASA Technical Reports Server (NTRS)

    Welker, Roger W.

    2004-01-01

    Cleanliness of manufactured parts and assemblies is a significant issue in many industries including disk drives, semiconductors, aerospace, and medical devices. Clean manufacturing requires cleanroom floor space and cleaning technology that are both expensive to own and expensive to operate. Strategies to reduce these costs are an important consideration. One strategy shown to be effective at reducing costs is to assemble parts into subassemblies and then clean the subassembly, rather than clean the individual parts first and then assemble them. One advantage is that assembly outside of the cleanroom reduces the amount of cleanroom floor space and its associated operating cost premium. A second advantage is that this strategy reduces the number of individual parts that must be cleaned prior to assembly, reducing the number of cleaning baskets, handling and, possibly, reducing the number of cleaners. The assemble then clean strategy also results in a part that is significantly cleaner because contamination generated during the assembly steps are more effectively removed that normally can be achieved by hand wiping after assembly in the cleanroom.

  13. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    PubMed

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput. © 2013 by John Wiley & Sons, Inc.

  14. Engineering Customized TALE Nucleases (TALENs) and TALE Transcription Factors by Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) Assembly

    PubMed Central

    Reyon, Deepak; Maeder, Morgan L.; Khayter, Cyd; Tsai, Shengdar Q.; Foley, Jonathan E.; Sander, Jeffry D.; Joung, J. Keith

    2013-01-01

    Customized DNA-binding domains made using Transcription Activator-Like Effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in multiple different organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or down-regulate expression of endogenous genes in human cells and plants. Here we describe a detailed protocol for practicing the recently described Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multi-channel pipet. With the automated version of FLASH, a single researcher can construct up to 96 DNA fragments encoding various length TALE repeat arrays in one day and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in one week or less. Plas-mids required to practice FLASH are available by request from the Joung Lab (http://www.jounglab.org/). We also describe here improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) webserver (http://ZiFiTBeta.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high-throughput. PMID:23821439

  15. The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase.

    PubMed

    Vieler, Astrid; Scheidt, Holger A; Schmidt, Peter; Montag, Cindy; Nowoisky, Janine F; Lohr, Martin; Wilhelm, Christian; Huster, Daniel; Goss, Reimund

    2008-04-01

    In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.

  16. Generalized thermodynamics of phase equilibria in scalar active matter

    NASA Astrophysics Data System (ADS)

    Solon, Alexandre P.; Stenhammar, Joakim; Cates, Michael E.; Kafri, Yariv; Tailleur, Julien

    2018-02-01

    Motility-induced phase separation (MIPS) arises generically in fluids of self-propelled particles when interactions lead to a kinetic slowdown at high densities. Starting from a continuum description of scalar active matter akin to a generalized Cahn-Hilliard equation, we give a general prescription for the mean densities of coexisting phases in flux-free steady states that amounts, at a hydrodynamics scale, to extremizing an effective free energy. We illustrate our approach on two well-known models: self-propelled particles interacting either through a density-dependent propulsion speed or via direct pairwise forces. Our theory accounts quantitatively for their phase diagrams, providing a unified description of MIPS.

  17. Lipid dip-pen nanolithography on self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-02-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (~10-1 μm3 s-1), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ~20 times slower, nonlinear, and the obtained stable dots of ~1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats.

  18. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  19. Phase separation and emergent structures in an active nematic fluid.

    PubMed

    Putzig, Elias; Baskaran, Aparna

    2014-10-01

    We consider a phenomenological continuum theory for an active nematic fluid and show that there exists a universal, model-independent instability which renders the homogeneous nematic state unstable to order fluctuations. Using numerical and analytic tools we show that, in the vicinity of a critical point, this instability leads to a phase-separated state in which the ordered regions form bands in which the direction of nematic order is perpendicular to the direction of the density gradient. We argue that the underlying mechanism that leads to this phase separation is a universal feature of active fluids of different symmetries.

  20. A Computer Model for Analyzing Volatile Removal Assembly

    NASA Technical Reports Server (NTRS)

    Guo, Boyun

    2010-01-01

    A computer model simulates reactional gas/liquid two-phase flow processes in porous media. A typical process is the oxygen/wastewater flow in the Volatile Removal Assembly (VRA) in the Closed Environment Life Support System (CELSS) installed in the International Space Station (ISS). The volatile organics in the wastewater are combusted by oxygen gas to form clean water and carbon dioxide, which is solved in the water phase. The model predicts the oxygen gas concentration profile in the reactor, which is an indicator of reactor performance. In this innovation, a mathematical model is included in the computer model for calculating the mass transfer from the gas phase to the liquid phase. The amount of mass transfer depends on several factors, including gas-phase concentration, distribution, and reaction rate. For a given reactor dimension, these factors depend on pressure and temperature in the reactor and composition and flow rate of the influent.

  1. A theory for the phase behavior of mixtures of active particles.

    PubMed

    Takatori, Sho C; Brady, John F

    2015-10-28

    Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.

  2. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    PubMed

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the

  3. Relative phase asynchrony and long-range correlation of long-term solar magnetic activity

    NASA Astrophysics Data System (ADS)

    Deng, Linhua

    2017-07-01

    Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.

  4. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    PubMed

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  5. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells

    PubMed Central

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard

    2017-01-01

    ABSTRACT The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  6. Modelling of phase transformations occurring in low activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Brachet, J.-C.; Gavard, L.; Boussidan, C.; Lepoittevin, C.; Denis, S.; Servant, C.

    1998-10-01

    The main objective of this paper is to summarize modelling of on-heating and on-cooling phase transformations occurring in Low Activation Martensitic (LAM) steels. Calculations of thermodynamic equilibrium phase fractions and kinetic aspects of phase transformations have been performed by using different approaches from experimental data (CCT and TTT diagrams obtained by dilatometry). All the calculated data have been compared to an important and systematic set of experimental data obtained on different LAM steels of the 7.5-11% CrWVT a type.

  7. In situ microscopy of the self-assembly of branched nanocrystals in solution

    DOE PAGES

    Sutter, Eli; Tkachenko, Alexei V.; Sutter, Peter; ...

    2016-04-04

    Here, solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifiesmore » the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.« less

  8. In situ microscopy of the self-assembly of branched nanocrystals in solution

    NASA Astrophysics Data System (ADS)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  9. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid.

    PubMed

    Gowrishankar, Kripa; Rao, Madan

    2016-02-21

    We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".

  10. Mechanism Underlying IκB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex

    PubMed Central

    Fujita, Hiroaki; Akita, Mariko; Kato, Ryuichi; Sasaki, Yoshiteru; Wakatsuki, Soichi

    2014-01-01

    The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex. PMID:24469399

  11. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals.

    PubMed

    Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2017-02-28

    An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.

  12. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    NASA Astrophysics Data System (ADS)

    Song, Minseok

    complementary ssDNA functionality on individual particles ('multi-flavoring') as opposed to functionalization of particles with the same type of ssDNA ('uni-flavoring') is explored as a possible design handle for tuning interparticle interactions and, thereby, accessing diverse structures. We employ a combination of simulations, theory, and experimental validation toward establishing 'multi-flavoring' as a rational design strategy. Firstly, MD simulations are carried out using effective pair potentials to describe interparticle interactions that are representative of different degrees of ssDNA 'multi-flavoring'. These simulations reveal the template-free assembly of a diversity of 2D crystal polymorphs that is apparently tunable by controlling the relative attractive strengths between like and unlike functionalized particles. The resulting phase diagrams predict conditions (i.e., strengths of relative interparticle interactions) for obtaining crystalline phases with lattice symmetries ranging among square, alternating string hexagonal, random hexagonal, rhombic, honeycomb, and even kagome. Finally, these model findings are translated to experiments, in which binary microparticles are decorated with a tailored mixture of two different complementary ssDNA strands as a straight-forward means to realize tunable particle interactions. Guided by simple statistical mechanics and the detailed MD simulations, 'multi-flavoring' and control of solution phase particle stoichiometry resulted in experimental realization of structurally diverse 2D microparticle assemblies consistent with predictions, such as square, pentagonal and hexagonal lattices (honeycomb, kagome). The combined simulation, theory, and experimental findings reveal how control of interparticle interactions via DNA-functionalized particle "multi-flavoring" can lead to an even wider range of accessible colloidal crystal structures. The 2D experiments coupled with the model predictions may be used to provide new fundamental

  13. Influence of Geometries on the Assembly of Snowman-Shaped Janus Nanoparticles.

    PubMed

    Kang, Chengjun; Honciuc, Andrei

    2018-04-24

    The self-assembly of micro/nanoparticles into suprastructures is a promising way to develop reconfigurable materials and to gain insights into the fundamental question of how matter organizes itself. The geometry of particles, especially those deviating from perfectly spherical shapes, is of significant importance in colloidal assembly because it influences the particle "recognition", determines the particle packing, and ultimately dictates the formation of assembled suprastructures. In order to organize particles into desired structures, it is of vital importance to understand the relationship between the shape of the colloidal building blocks and the assembled suprastructures. This fundamental issue is an enduring topic in the assembly of molecular surfactants, but it remained elusive in colloidal assembly. To address this issue, we use snowman-shaped Janus nanoparticles (JNPs) as a model to systematically study the effect of colloidal geometries on their assembled suprastructures. Ten types of JNPs with identical chemical compositions but with different geometries were synthesized. Specifically, the synthesized JNPs differ in their lobe size ratios, phase separation degrees, and overall sizes. We show that by altering these parameters, both finite suprastructures, such as capsules with different curvatures, and nonfinite suprastructures, including free-standing single-layered or double-layered JNPs sheets, can be obtained via self-assembly. All these different types of suprastructures are constituted by highly oriented and hexagonally packed JNPs. These findings demonstrate the significance of geometries in colloidal assembly, such that slightly changing the building block geometries could result in a large variety of very different assembled structures, without altering the chemistry of the particles.

  14. Self-assembly of ordered nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Jinsong

    2000-10-01

    Several different kinds of nanostructure materials were studied in this thesis: self-assembled monodispersive nanocrystals, photonic crystals, ordered mesoporous silica and hierarchically ordered nanostructured materials. Tetrahedral nanocrystals of CoO, with edge-lengths of 4.4 +/- 0.2 nm, were synthesized at high purity and monodispersity. The size, shape and phase selections of the nanocrystals were performed using a novel magnetic field separation technique. These nanocrystals behave like molecules, forming a face-centered cubic self-assembly of nanocrystal superlattices. In-situ behavior of self-assembled CoO nanocrystal arrays was also analyzed using transmission electron microscopy and associated techniques. The surface passivation layer started to evaporate/decompose at temperatures as low as ˜200°C, but the exposed cores of nanocrystals preserved the geometrical configuration of the assembly due to the strong adhesion of the carbon substrate. As the temperature is further increased from 300 to 600°C, the intrinsic crystal structure of the CoO nanoparticles experiences a replacement reaction, resulting in the formation of cobalt carbides. Two-dimensional self-assembling of cobalt nanocrystals with an average particle size of 9.2 nm and polydispersity of 9% is processed. Phtonic crystals were processed by a template-assisted method. Ordered self-assembly of pores of titania nanocrystals formed a face-centered cubic packing structure. The walls of the pores were made of anatase nanocrystals of ˜8 nm in diameter. Cobalt can be doped into the walls of the pores by solution infiltration of cobalt carbonyl. Cobalt titanium oxide may be formed on the internal surface of the ordered pore structure. This type of structure is likely to be an excellent supporting material for catalysis. The experimental results suggest that transition metal elements can be incorporated into porous titania without blocking the interconnected pores. Hierarchically ordered

  15. Translating Thermal Response of Triblock Copolymer Assemblies in Dilute Solution to Macroscopic Gelation and Phase Separation

    DOE PAGES

    Sun, Zhe; Tian, Ye; Hom, Wendy L.; ...

    2016-12-28

    The thermal response of semi-dilute solutions (5 w/w%) of two amphiphilic thermoresponsive poly(ethylene oxide)-b-poly(N,N-diethylacrylamide)-b-poly(N,N-dibutylacrylamide) (PEO 45-PDEAm x-PDBAm 12) triblock copolymers, which differ only in the size of the central responsive block, in water was examined in this paper. Aqueous PEO45-PDEAm41-PDBAm12 solutions, which undergo a thermally induced sphere-to-worm transition in dilute solution, were found to reversibly form soft (G'≈10 Pa) free-standing physical gels after 10 min at 55 °C. PEO 45-PDEAm 89-PDBAm 12 copolymer solutions, which undergo a thermally induced transition from spheres to large compound micelles (LCM) in dilute solution, underwent phase separation after heating at 55 °C for 10more » min owing to sedimentation of LCMs. The reversibility of LCM formation was investigated as a non-specific method for removal of a water-soluble dye from aqueous solution. Finally, the composition and size of the central responsive block in these polymers dictate the microscopic and macroscopic response of the polymer solutions as well as the rates of transition between assemblies.« less

  16. New self-assembly strategies for next generation lithography

    NASA Astrophysics Data System (ADS)

    Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.

    2010-04-01

    Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.

  17. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    PubMed

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase

  18. Feedback-induced phase transitions in active heterogeneous conductors.

    PubMed

    Ocko, Samuel A; Mahadevan, L

    2015-04-03

    An active conducting medium is one where the resistance (conductance) of the medium is modified by the current (flow) and in turn modifies the flow, so that the classical linear laws relating current and resistance, e.g., Ohm's law or Darcy's law, are modified over time as the system itself evolves. We consider a minimal model for this feedback coupling in terms of two parameters that characterize the way in which addition or removal of matter follows a simple local (or nonlocal) feedback rule corresponding to either flow-seeking or flow-avoiding behavior. Using numerical simulations and a continuum mean field theory, we show that flow-avoiding feedback causes an initially uniform system to become strongly heterogeneous via a tunneling (channel-building) phase separation; flow-seeking feedback leads to an immuring (wall-building) phase separation. Our results provide a qualitative explanation for the patterning of active conducting media in natural systems, while suggesting ways to realize complex architectures using simple rules in engineered systems.

  19. Gingival crevicular fluid protein content and alkaline phosphatase activity in relation to pubertal growth phase.

    PubMed

    Perinetti, Giuseppe; Franchi, Lorenzo; Castaldo, Attilio; Contardo, Luca

    2012-11-01

    To evaluate gingival crevicular fluid (GCF) protein content and alkaline phosphatase (ALP) activity in growing subjects in relation to stages of skeletal maturation, ie, the growth phase, as prepubertal, pubertal, and postpubertal. Fifty healthy growing subjects (31 girls and 19 boys; age range, 7.8-17.7 years) were enrolled in this study that followed a double-blind, prospective, cross-sectional design. Collection of GCF was performed at the mesial and distal sites of both central incisors, for the maxilla and mandible. Growth phase was assessed through the cervical vertebral maturation method. GCF parameters were expressed as total protein content, total ALP activity, and normalized ALP activity. The total GCF protein content was similar between the different growth phases. On the contrary, the total ALP activity showed a peak for the pubertal growth phase. The normalized GCF ALP activity was only poorly associated with growth phase. No differences were seen between the maxillary and mandibular sites, or between the sexes, for any GCF parameter. The total GCF protein content is not sensitive to the growth phase. However, GCF ALP activity has potential as a diagnostic aid for identification of the pubertal growth phase in individual subjects when expressed as total, but not normalized, values.

  20. Thermally activated phase slips of one-dimensional Bose gases in shallow optical lattices

    NASA Astrophysics Data System (ADS)

    Kunimi, Masaya; Danshita, Ippei

    2017-03-01

    We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation rate of a thermally activated phase slip for various values of the filling factor and flow velocity in the absence of a harmonic trapping potential. Within the local density approximation, we derive a formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare our theory with the recent experiment done by the LENS group [L. Tanzi et al., Sci. Rep. 6, 25965 (2016), 10.1038/srep25965]. From the comparison, the observed damping of dipole oscillations in a weakly correlated and small velocity regime is attributed dominantly to thermally activated phase slips rather than quantum phase slips.