Science.gov

Sample records for active biopolymer network

  1. Coupled biopolymer networks

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.; Zhang, Tao

    2015-03-01

    The actin cytoskeleton provides the cell with structural integrity and allows it to change shape to crawl along a surface, for example. The actin cytoskeleton can be modeled as a semiflexible biopolymer network that modifies its morphology in response to both external and internal stimuli. Just inside the inner nuclear membrane of a cell exists a network of filamentous lamin that presumably protects the heart of the cell nucleus--the DNA. Lamins are intermediate filaments that can also be modeled as semiflexible biopolymers. It turns out that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins that bridge the outer and inner nuclear membranes. We, therefore, probe the consequences of such a coupling via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the cytoskeletal network. Such study could have implications for mechanical mechanisms of the regulation of transcription, since DNA--yet another semiflexible polymer--contains lamin-binding domains, and, thus, widen the field of epigenetics.

  2. Heterogeneous Force Chains in Cellularized Biopolymer Network

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher Allen Rucksack; Sun, Bo; Jiao, Yang

    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the focal adhesion sites. A force-based stochastic relaxation method is employed to obtain force-balanced network under cell contraction. We find that the majority of the forces are carried by a small number of heterogeneous force chains emerged from the contracting cells. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to the reorientation induced by cell contraction. Large fluctuations of the forces along different force chains are observed. Importantly, the decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure could support long-range mechanical signaling between cells.

  3. SOAX: A software for quantification of 3D biopolymer networks

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Tsai, Feng-Ching; Koenderink, Gijsje H.; Nie, Wei; Yusuf, Eddy; I-Ju Lee; Wu, Jian-Qiu; Huang, Xiaolei

    2015-01-01

    Filamentous biopolymer networks in cells and tissues are routinely imaged by confocal microscopy. Image analysis methods enable quantitative study of the properties of these curvilinear networks. However, software tools to quantify the geometry and topology of these often dense 3D networks and to localize network junctions are scarce. To fill this gap, we developed a new software tool called “SOAX”, which can accurately extract the centerlines of 3D biopolymer networks and identify network junctions using Stretching Open Active Contours (SOACs). It provides an open-source, user-friendly platform for network centerline extraction, 2D/3D visualization, manual editing and quantitative analysis. We propose a method to quantify the performance of SOAX, which helps determine the optimal extraction parameter values. We quantify several different types of biopolymer networks to demonstrate SOAX's potential to help answer key questions in cell biology and biophysics from a quantitative viewpoint. PMID:25765313

  4. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    NASA Astrophysics Data System (ADS)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I

  5. Micromechanics of cellularized biopolymer networks

    PubMed Central

    Jones, Christopher A. R.; Cibula, Matthew; Feng, Jingchen; Krnacik, Emma A.; McIntyre, David H.; Levine, Herbert; Sun, Bo

    2015-01-01

    Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen on the scale of tens to hundreds of microns by using holographic optical tweezers to apply pN forces to microparticles embedded in the collagen fiber network. We find that in response to optical forces, particle displacements are inhomogeneous, anisotropic, and asymmetric. Gels prepared at 21 °C and 37 °C show qualitative difference in their micromechanical characteristics. We also demonstrate that contracting cells remodel the micromechanics of their surrounding extracellular matrix in a strain- and distance-dependent manner. To further understand the micromechanics of cellularized extracellular matrix, we have constructed a computational model which reproduces the main experiment findings. PMID:26324923

  6. Nonlinear Mechanics of Athermal Branched Biopolymer Networks.

    PubMed

    Rens, R; Vahabi, M; Licup, A J; MacKintosh, F C; Sharma, A

    2016-07-01

    Naturally occurring biopolymers such as collagen and actin form branched fibrous networks. The average connectivity in branched networks is generally below the isostatic threshold at which central force interactions marginally stabilize the network. In the submarginal regime, for connectivity below this threshold, such networks are unstable toward small deformations unless stabilized by additional interactions such as bending. Here we perform a numerical study on the elastic behavior of such networks. We show that the nonlinear mechanics of branched networks is qualitatively similar to that of filamentous networks with freely hinged cross-links. In agreement with a recent theoretical study,1 we find that branched networks also exhibit nonlinear mechanics consistent with athermal critical phenomena controlled by strain. We obtain the critical exponents capturing the nonlinear elastic behavior near the critical point by performing scaling analysis of the stiffening curves. We find that the exponents evolve with the connectivity in the network. We show that the nonlinear mechanics of disordered networks, independent of the detailed microstructure, can be characterized by a strain-driven second-order phase transition, and that the primary quantitative differences among different architectures are in the critical exponents describing the transition. PMID:26901575

  7. Mechanically Induced Helix-Coil Transition in Biopolymer Networks

    PubMed Central

    Courty, Sebastien; Gornall, Joanne L.; Terentjev, Eugene M.

    2006-01-01

    The quasi-equilibrium evolution of the helical fraction occurring in a biopolymer network (gelatin gel) under an applied stress has been investigated by observing modulation in its optical activity. Its variation with the imposed chain extension is distinctly nonmonotonic and corresponds to the transition of initially coiled strands to induced left-handed helices. The experimental results are in qualitative agreement with theoretical predictions of helices induced on chain extension. This new effect of mechanically stimulated helix-coil transition has been studied further as a function of the elastic properties of the polymer network: crosslink density and network aging. PMID:16239334

  8. Constitutive modelling of composite biopolymer networks.

    PubMed

    Fallqvist, B; Kroon, M

    2016-04-21

    The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. PMID:26851172

  9. Coupled actin-lamin biopolymer networks and protecting DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Rocklin, D. Zeb; Mao, Xiaoming; Schwarz, J. M.

    The mechanical properties of cells are largely determined by networks of semiflexible biopolymers forming the cytoskeleton. Similarly, the mechanical properties of cell nuclei are also largely determined by networks of semiflexible biopolymers forming the nuclear cytoskeleton. In particular, a network of filamentous lamin sits just inside the inner nuclear membrane to presumably protect the heart of the cell nucleus--the DNA. It has been demonstrated over the past decade that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins bridging the outer and inner nuclear membranes, known as the LINC complex. We, therefore, probe the consequences of such a coupling in a model biopolymer network system via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the actin cytoskeletal network. We find, for example, that the force transmission across the coupled system can depend sensitively on the concentration of LINC complexes. Such study could have implications for mechanical mechanisms of the regulation of transcription since DNA couples to lamin via lamin-binding domains so that deformations in the lamin network may result in deformations in the DNA.

  10. [Neutrophil activation by sea hydrobiont biopolymers].

    PubMed

    Zaporozhets, T S

    2003-01-01

    Biopolymers of sea hydrobionts such as mytilan, alpha-1,4;1,6-D-glycan isolated from the muntle of the mussel Crenomytilus grayanus; translam, beta-1,3;1,6-D-glucan isolated from the seaweed Laminaria cichorioides; fucoidan, a sulfated polysccharide isolated from the algae Fucus evanescens; zosterin, a pectin isolated from sea grass of the family Zosteraceae were comparatively studied. The mechanisms of the phagocyte activation were investigated and the dose-dependent ability of the biopolymers to increase in vitro adhesion of the intact cells and to restore the neutrophil functions at cyclophosphamide-induced immunodepression was detected. The neutrophil activation by mytilan, zosterin and fucoidan linked with the adhesion potentiation was shown to be associated with their ability to increase the number of the adhesion receptors and in particular CD116b on the cell surface. The lower potential of the neutrophils preincubated in vitro with high doses of translam beta-glucan could be due to blockade of the beta-glucan receptors participating in the complex multicomponent adhesion process. The use of the biopolymers of the sea hydrobionts of the glycobiological nature for modulation of the immunity processes provided rather convenient in vivo management of intracellular processes through direct and competing carbohydrate specific interactions of the modifiers with the membrane receptors and formation of active and inactive lectin-glycoligand and carbohydrate-carbohydrate complexes. PMID:15002173

  11. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  12. Mechanical response of biopolymer double networks

    NASA Astrophysics Data System (ADS)

    Carroll, Joshua; Das, Moumita

    We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.

  13. Stretching and bending in cross-linked biopolymer networks

    NASA Astrophysics Data System (ADS)

    Heussinger, Claus; Frey, Erwin

    2007-03-01

    The elastic response of cross-linked biopolymer networks is usually interpreted in terms of affine stretching models, adopted from the theory of rubber-elasticity valid for flexible polymer gels. Unlike flexible polymers, however, stiff polymers have a highly anisotropic elastic response, where the low-energy elastic excitations are actually of bending nature. As a consequence, similar to springs connected in series, one would expect the softer bending mode to dominate the elastic energy rather than the stiff stretching mode. We propose a theory that, unlike recent affine models, properly accounts for the soft bending response of stiff polymers. It allows calculating the macroscopic elastic moduli starting from a microscopic characterization of the (non-affine) deformation field. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in simple two-dimensional model networks, and can also be applied to rationalize bulk rheological data in reconstituted actin networks.

  14. Nonlinear and heterogeneous elasticity of multiply-crosslinked biopolymer networks

    NASA Astrophysics Data System (ADS)

    Amuasi, H. E.; Heussinger, C.; Vink, R. L. C.; Zippelius, A.

    2015-08-01

    We simulate randomly crosslinked networks of biopolymers, characterizing linear and nonlinear elasticity under different loading conditions (uniaxial extension, simple shear, and pure shear). Under uniaxial extension, and upon entering the nonlinear regime, the network switches from a dilatant to contractile response. Analogously, under isochoric conditions (pure shear), the normal stresses change their sign. Both effects are readily explained with a generic weakly nonlinear elasticity theory. The elastic moduli display an intermediate super-stiffening regime, where moduli increase much stronger with applied stress σ than predicted by the force-extension relation of a single wormlike-chain ({G}{wlc}∼ {σ }3/2). We interpret this super-stiffening regime in terms of the reorientation of filaments with the maximum tensile direction of the deformation field. A simple model for the reorientation response gives an exponential stiffening, G∼ {{{e}}}σ , in qualitative agreement with our data. The heterogeneous, anisotropic structure of the network is reflected in correspondingly heterogeneous and anisotropic elastic properties. We provide a coarse-graining scheme to quantify the local anisotropy, the fluctuations of the elastic moduli, and the local stresses as a function of coarse-graining length. Heterogeneities of the elastic moduli are strongly correlated with the local density and increase with applied strain.

  15. Network and Nakamura tridiagonal computational simulation of electrically-conducting biopolymer micro-morphic transport phenomena.

    PubMed

    Anwar Bég, O; Zueco, J; Norouzi, M; Davoodi, M; Joneidi, A A; Elsayed, Assma F

    2014-01-01

    Magnetic fields have been shown to achieve excellent fabrication control and manipulation of conductive bio-polymer characteristics. To simulate magnetohydrodynamic effects on non-Newtonian electro-conductive bio-polymers (ECBPs) we present herein a theoretical and numerical simulation of free convection magneto-micropolar biopolymer flow over a horizontal circular cylinder (an "enrobing" problem). Eringen's robust micropolar model (a special case of the more general micro-morphic or "microfluid" model) is implemented. The transformed partial differential conservation equations are solved numerically with a powerful and new code based on NSM (Network Simulation Method) i.e. PSPICE. An extensive range of Hartmann numbers, Grashof numbers, micropolar parameters and Prandtl numbers are considered. Excellent validation is also achieved with earlier non-magnetic studies. Furthermore the present PSPICE code is also benchmarked with an implicit tridiagonal solver based on Nakamura's method (BIONAK) again achieving close correlation. The study highlights the excellent potential of both numerical methods described in simulating nonlinear biopolymer micro-structural flows. PMID:24377688

  16. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus.

    PubMed

    Yu, K W; Kim, Y S; Shin, K S; Kim, J M; Suh, H J

    2005-07-01

    To find a new use of rice bran, five fungi were examined for the production of exo-biopolymer with macrophage-stimulating activity from rice bran. Among the exo-biopolymers produced from the cultures, Monascus pilosus had the most potent macrophage stimulating activity in a liquid culture rather than in a solid culture. In order to improve the yield of exo-biopolymer with macrophage-stimulating activity, a suitable medium for exo-biopolymer was tested in submerged culture of M. pilosus. The highest amount of exo-biopolymer (13.9 mg/mL) was obtained in a medium containing rice bran as an only carbon source followed by media with additional maltose and sucrose (13.8 and 13.7 mg/mL, respectively). The addition of peptone resulted in the production of high amount of exo-biopolymer (15.1 mg/mL), meanwhile the addition of ammonium chloride resulted in 264.0 microg/mL of glucosamine content. Among eight different kinds of inorganic salts tested, potassium phosphate (0.1%) was the most effective inorganic salt for the mycelial growth and exo-biopolymer production. Therefore the optimal medium composition was as follows (g/L): 20 g of rice bran, 5 g of peptone, and 1 g of KH2PO4. The optimal culture pH and time for mycelial growth and exo-biopolymer production was pH 5.0 and 25 degrees C, respectively. The maximum exo-biopolymer (20.1 mg/mL) was observed at the fourth day of cultivation. Exo-biopolymer, a crude polysaccharide fraction, mainly contained neutral sugar (81.8%) with considerable amounts of uronic acid (18.2%). Component sugar analysis showed that the active fraction consisted mainly of arabinose, galactose, glucose, which was digested from starch of rice bran during cultivation, and uronic acid (molar ratio; 0.8:1.0:0.7:0.8). PMID:16014997

  17. Frequency-dependent micromechanics of cellularized biopolymer networks

    NASA Astrophysics Data System (ADS)

    Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo

    Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.

  18. Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks

    PubMed Central

    Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben

    2015-01-01

    When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839

  19. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening

    PubMed Central

    van Oosten, Anne S. G.; Vahabi, Mahsa; Licup, Albert J.; Sharma, Abhinav; Galie, Peter A.; MacKintosh, Fred C.; Janmey, Paul A.

    2016-01-01

    Gels formed by semiflexible filaments such as most biopolymers exhibit non-linear behavior in their response to shear deformation, e.g., with a pronounced strain stiffening and negative normal stress. These negative normal stresses suggest that networks would collapse axially when subject to shear stress. This coupling of axial and shear deformations can have particularly important consequences for extracellular matrices and collagenous tissues. Although measurements of uniaxial moduli have been made on biopolymer gels, these have not directly been related to the shear response. Here, we report measurements and simulations of axial and shear stresses exerted by a range of hydrogels subjected to simultaneous uniaxial and shear strains. These studies show that, in contrast to volume-conserving linearly elastic hydrogels, the Young’s moduli of networks formed by the biopolymers are not proportional to their shear moduli and both shear and uniaxial moduli are strongly affected by even modest degrees of uniaxial strain. PMID:26758452

  20. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening

    NASA Astrophysics Data System (ADS)

    van Oosten, Anne S. G.; Vahabi, Mahsa; Licup, Albert J.; Sharma, Abhinav; Galie, Peter A.; Mackintosh, Fred C.; Janmey, Paul A.

    2016-01-01

    Gels formed by semiflexible filaments such as most biopolymers exhibit non-linear behavior in their response to shear deformation, e.g., with a pronounced strain stiffening and negative normal stress. These negative normal stresses suggest that networks would collapse axially when subject to shear stress. This coupling of axial and shear deformations can have particularly important consequences for extracellular matrices and collagenous tissues. Although measurements of uniaxial moduli have been made on biopolymer gels, these have not directly been related to the shear response. Here, we report measurements and simulations of axial and shear stresses exerted by a range of hydrogels subjected to simultaneous uniaxial and shear strains. These studies show that, in contrast to volume-conserving linearly elastic hydrogels, the Young’s moduli of networks formed by the biopolymers are not proportional to their shear moduli and both shear and uniaxial moduli are strongly affected by even modest degrees of uniaxial strain.

  1. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    PubMed Central

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  2. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  3. Complex Coacervate Core Micelles with Spectroscopic Labels for Diffusometric Probing of Biopolymer Networks.

    PubMed

    Bourouina, Nadia; de Kort, Daan W; Hoeben, Freek J M; Janssen, Henk M; Van As, Henk; Hohlbein, Johannes; van Duynhoven, John P M; Kleijn, J Mieke

    2015-11-24

    We present the design, preparation, and characterization of two types of complex coacervate core micelles (C3Ms) with cross-linked cores and spectroscopic labels and demonstrate their use as diffusional probes to investigate the microstructure of percolating biopolymer networks. The first type consists of poly(allylamine hydrochloride) (PAH) and poly(ethylene oxide)-poly(methacrylic acid) (PEO-b-PMAA), labeled with ATTO 488 fluorescent dyes. We show that the size of these probes can be tuned by choosing the length of the PEO-PMAA chains. ATTO 488-labeled PEO113-PMAA15 micelles are very bright with 18 dye molecules incorporated into their cores. The second type is a (19)F-labeled micelle, for which we used PAH and a (19)F-labeled diblock copolymer tailor-made from poly(ethylene oxide)-poly(acrylic acid) (mPEO79-b-PAA14). These micelles contain approximately 4 wt % of (19)F and can be detected by (19)F NMR. The (19)F labels are placed at the end of a small spacer to allow for the necessary rotational mobility. We used these ATTO- and (19)F-labeled micelles to probe the microstructures of a transient gel (xanthan gum) and a cross-linked, heterogeneous gel (κ-carrageenan). For the transient gel, sensitive optical diffusometry methods, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, and super-resolution single nanoparticle tracking, allowed us to measure the diffusion coefficient in networks with increasing density. From these measurements, we determined the diameters of the constituent xanthan fibers. In the heterogeneous κ-carrageenan gels, bimodal nanoparticle diffusion was observed, which is a signpost of microstructural heterogeneity of the network. PMID:26535962

  4. Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite.

    PubMed

    Sharma, Anshu; Prakash, Prem; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-09-01

    In the present study, the antimicrobial properties of modified biopolymers such as gelatin and agar have been investigated. These biopolymers (agar and gelatin) are modified by dissolving in ionic liquid (IL) [1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-octyl-3-methyl imidazolium chloride ([C8mim][Cl])] solutions. It was noticed that agar-ionogel (Ag-IL), gelatin-ionogel (GB-IL), and gelatin organogel (gelatin-glycerol solution along with laponite, nanoclay) nanocomposite (GA-NC) formed are highly stable, optically clear, and transparent without any air bubbles. The antimicrobial activity of these (Ag-IL), (GB-IL), and GA-NC were analyzed for both gram-negative (Escherichia coli, Klebsiella pneumoniae) and gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus pyogenes) and fungus A. niger, C. albicans. Antibacterial and antifungal activity studies were carried out at different dilutions such as 100, 99, and 90 % (v/v). It was found that Ag-IL, GB-IL, and individual IL ([C8mim][Cl]) exhibited superior antimicrobial activities, indicating that longer IL chain enhance the cell membrane permeability of S. aureus, S. pyogenes, and E. coli cells. However, GA-NC nanocomposite and [C2mim][Cl]-based composites does not exhibit any bacterial inhibition activity for all bacterial strains. PMID:26142901

  5. Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material

    PubMed Central

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500°C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation. PMID:23831846

  6. Inorganic nanoparticles for the spatial and temporal control of organic reactions: Applications to radical degradation of biopolymer networks

    NASA Astrophysics Data System (ADS)

    Walker, Joan Marie

    Nanoparticles of gold and iron oxide not only possess remarkable optical and magnetic properties, respectively, but are also capable of influencing their local environment with an astounding degree of precision. Using nanoparticles to direct the reactivity of organic molecules near their surface provides a unique method of spatial and temporal control. Enediynes represent an exceptional class of compounds that are thermally reactive to produce a diradical intermediate via Bergman cycloaromatization. While natural product enediynes are famously cytotoxic, a rich chemistry of synthetic enediynes has developed utilizing creative means to control this reactivity through structure, electronics, metal chelation, and external triggering mechanisms. In a heretofore unexplored arena for Bergman cyclization, we have investigated the reactivity of enediynes in connection with inorganic nanoparticles in which the physical properties of the nanomaterial are directly excited to thermally promote aromatization. As the first example of this methodology, gold nanoparticles conjugated with (Z)-octa-4-en-2,6-diyne-1,8-dithiol were excited with 514 nm laser irradiation. The formation of aromatic and polymeric products was confirmed through Raman spectroscopy and electron microscopy. Water soluble analogues Au-PEG-EDDA and Fe3O4-PEG-EDDA (EDDA = (Z)-octa-4-en-2,6-diyne-1,8-diamine) show similar reactivity under laser irradiation or alternating magnetic field excitation, respectively. Furthermore, we have used these functionalized nanoparticles to attack proteinaceous substrates including fibrin and extracellular matrix proteins, capitalizing on the ability of diradicals to disrupt peptidic bonds. By delivering a locally high payload of reactive molecules and thermal energy to the large biopolymer, network restructuring and collapse is achieved. As a synthetic extension towards multifunctional nanoparticles, noble metal seed-decorated iron oxides have also been prepared and assessed for

  7. The Impact of Invasive Earthworm Activity on Biopolymer Character of ýDecayed Litter ý

    NASA Astrophysics Data System (ADS)

    Filley, T.; Crow, S.; Johnston, C.; McCormick, M.; Szlavecz, K.

    2007-12-01

    Over the last 400-500 years invasive European earthworm populations have ýmoved steadily into North American forests either previously devoid of ýearthworms or that contained their own native populations. This has profound ýimpacts upon litter decay and soil organic matter dynamics. To determine the ýimpact of earthworm activity on the biopolymer and stable isotope chemistry of ýlitter residues and the nature of organic carbon moved to the soil profile we ýanalyzed tulip poplar leaves from a multi-year addition experiment in open ýsurface decay litter and litter bag decay experiments, as well as the associated ýsoils among forest plots that varied in non-native earthworm density and ýbiomass. The chemical alteration of biopolymers was tracked with FTIR ýspectroscopy, 13C-TMAH thermochemolysis, alkaline CuO extraction, and stable ýisotope mass spectrometry. Earthworm activity resulted in residues and soil ýparticulate organic matter depleted in cuticular aliphatic components and ýpolyphenols but highly enriched in ether-linked lignin with respect to initial litter ýmaterial. Decay in low earthworm abundance plots, as well as all experiments ýwith earthworm-excluding litter bags, resulted in enrichment in cutin aliphatics ýand only minor increases in ether linked lignin phenols which was also reflected ýin the soils below the amendments. Additionally, the stable carbon and nitrogen ýisotope composition of tulip poplar residues became isotopically distinct. The ýresults from litter bag decays were only reflective of the chemistry at sites with ývery low earthworm abundances. ý

  8. Resolution of sub-element length scales in Brownian dynamics simulations of biopolymer networks with geometrically exact beam finite elements

    NASA Astrophysics Data System (ADS)

    Müller, Kei W.; Meier, Christoph; Wall, Wolfgang A.

    2015-12-01

    Networks of crosslinked biopolymer filaments such as the cytoskeleton are the subject of intense research. Oftentimes, mechanics on the scale of single monomers (∼ 5 nm) govern the mechanics of the entire network (∼ 10 μm). Until now, one either resolved the small scales and lost the big (network) picture or focused on mechanics above the single-filament scale and neglected the molecular architecture. Therefore, the study of network mechanics influenced by the entire spectrum of relevant length scales has been infeasible so far. We propose a method that reconciles both small and large length scales without the otherwise inevitable loss in either numerical efficiency or geometrical (molecular) detail. Both explicitly modeled species, filaments and their crosslinkers, are discretized with geometrically exact beam finite elements of Simo-Reissner type. Through specific coupling conditions between the elements of the two species, mechanical joints can be established anywhere along a beam's centerline, enabling arbitrary densities of chemical binding sites. These binding sites can be oriented to model the monomeric architecture of polymers. First, we carefully discuss the method and then demonstrate its capabilities by means of a series of numerical examples.

  9. Response of biopolymer networks governed by the physical properties of cross-linking molecules.

    PubMed

    Wei, Xi; Zhu, Qian; Qian, Jin; Lin, Yuan; Shenoy, V B

    2016-02-23

    In this study, we examine how the physical properties of cross-linking molecules affect the bulk response of bio-filament networks, an outstanding question in the study of biological gels and the cytoskeleton. We show that the stress-strain relationship of such networks typically undergoes linear increase - strain hardening - stress serration - total fracture transitions due to the interplay between the bending and stretching of individual filaments and the deformation and breakage of cross-linkers. Interestingly, the apparent network modulus is found to scale with the linear and rotational stiffness of the crosslinks to a power exponent of 0.78 and 0.13, respectively. In addition, the network fracture energy will reach its minimum at intermediate rotational compliance values, reflecting the fact that most of the strain energy will be stored in the distorted filaments with rigid cross-linkers while the imposed deformation will be "evenly" distributed among significantly more crosslinking molecules with high rotational compliance. PMID:26760315

  10. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    PubMed

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered. PMID:26497761

  11. Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity.

    PubMed

    Silva, Eric Keven; Zabot, Giovani L; Cazarin, Cinthia B B; Maróstica, Mário R; Meireles, M Angela A

    2016-06-25

    The objective of this study was to evaluate the use of inulin (IN), a prebiotic carbohydrate without superficial activity, as an encapsulating matrix of lipophilic bioactive compounds. For achieving the encapsulation, IN was associated with biopolymers that present superficial activity: modified starch (HiCap), whey protein isolate (WPI) and gum acacia (GA). Encapsulation was performed through emulsification assisted by ultrasound followed by freeze-drying (FD) process to dry the emulsions. All blends retained geranylgeraniol. GA-IN blend yielded the highest geranylgeraniol retention (96±2wt.%) and entrapment efficiency (94±3wt.%), whilst WPI-IN blend yielded the highest encapsulation efficiency (88±2wt.%). After encapsulation, composition of geranylgeraniol in the annatto seed oil was maintained (23.0±0.5g/100g of oil). Such findings indicate that the method of encapsulation preserved the active compound. All blends were also effective for maintaining the antioxidant activity of the oil through ORAC and DPPH analyses. PMID:27083804

  12. Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity.

    PubMed

    Wang, Yifeng; Guo, Xuecheng; Pan, Ruihao; Han, Di; Chen, Tao; Geng, Zenghua; Xiong, Yanfei; Chen, Yanjun

    2015-08-01

    Electrodeposition of chitosan provides a controllable means to simultaneously assemble biological materials and nanoparticles for various applications. Here, we present a new method to construct biopolymer/nanoparticle composite films with conductivity and antibacterial activity by electrodeposition of chitosan/gelatin/nanosilver. Besides, this method can be employed to build biopolymer/nanoparticle composite hydrogels or coatings on various electrodes or conductive substrates. We initially use a simple approach to prepare the aqueous nanosilver that can be well-dispersed in water. Then, the codeposition mixture containing chitosan, gelatin and nanosilver is prepared, and it can be electrodeposited onto different electrodes or conductive substrates in response to imposed electrical signals. After electrodeposition, it is found that the deposited hydrogels and their dried films are smooth and homogeneous due to the elimination of H2 bubbles by addition of H2O2 in electrodeposition process. Importantly, the composite films are strong enough to completely and readily peel from the electrodes after they reacted with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), which can build a type of biopolymer/nanoparticle film for further applications. Furthermore, the electrodeposition technique is able to offer controllable and convenient method to construct the composite films with diverse shapes. The composite films display improved conductivity and in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus, which may provide attractive applications in biomedical fields such as artificial muscles, skin biomaterials and neuroprosthetic implants. PMID:26042710

  13. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  14. Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Dorcioman, G.; Miroiu, F. M.; Socol, G.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Narayan, R. J.; Enculescu, M.; Chrisey, D. B.

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer-drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA-gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer-drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  15. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  16. Broken Detailed Balance of Filament Dynamics in Active Networks.

    PubMed

    Gladrow, J; Fakhri, N; MacKintosh, F C; Schmidt, C F; Broedersz, C P

    2016-06-17

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks. PMID:27367410

  17. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. PMID:24284260

  18. Recent advances and future challenges in the explanation and exploitation of the network glass transition of high sugar/biopolymer mixtures.

    PubMed

    Kasapis, Stefan

    2008-02-01

    Through the years, the concept of glassy phenomena evolved from non-science to a highly specialized subject following the appreciation that structural properties or product defects could be rationalized on the basis of this amorphous vitreous transition. Special reference will be made in this review to sugar glasses in the presence of biopolymers which, increasingly, are used to innovate (e.g., replace gelatin) in confections, ice cream, boiled down sweets, etc. Keeping in mind that the subject cuts across several conventional fields, this manuscript is written with several objectives in view. I deemed it necessary to provide a historic itinerary of the nature of the rubber-to-glass transition in association with the concepts of plasticizing and unfreezable water. That should facilitate comprehension and hopefully encourage young scientists to take an interest in the field that continues to offer considerable challenges, as well as opportunities. Second, the food scientist is exposed to the "sophisticated" synthetic polymer approach pioneered by J.D. Ferry and his colleagues via the WLF equation/free volume theoretical framework. Extension of this school of thought to biomaterials introduces the concept of mechanical or network glass transition temperature, which is contrasted to data obtained using differential scanning calorimetry. Applications of the network T(g) as a relevant indicator for evaluating the stability criteria and the quality-control aspects of foodstuffs are also discussed. All along, information available in the literature is critically presented ranging from the misuse of the WLF equation to a recent challenge to the theory mounted by the coupling model, which addresses in some detail the physics of interactions and the cooperativity of molecular mobility at the vicinity of T(g). PMID:18274972

  19. Fiber networks amplify active stress.

    PubMed

    Ronceray, Pierre; Broedersz, Chase P; Lenz, Martin

    2016-03-15

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  20. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  1. Fate of organic matter during moderate heat treatment of sludge: kinetics of biopolymer and hydrolytic activity release and impact on sludge reduction by anaerobic digestion.

    PubMed

    Lefebvre, D; Dossat-Létisse, V; Lefebvre, X; Girbal-Neuhauser, E

    2014-01-01

    Temperature-phased anaerobic digestion with a 50-70 °C pre-treatment is widely proposed for sludge. Here, such a sludge pre-treatment (65 °C) was studied against the physical, enzymatic and biodegradation processes. The soluble and particulate fractions were analysed in terms of biochemical composition and hydrolytic enzymatic activities. Two kinetics of organic matter solubilisation were observed: a rapid transfer of the weak-linked biopolymers to the water phase, including sugars, proteins or humic acid-like substances, to the water phase, followed by a slow and long-term solubilisation of proteins and humic acid-like substances. In addition, during the heat treatment a significant pool of thermostable hydrolytic enzymes including proteases, lipases and glucosidases remains active. Consequently, a global impact on organic matter was the transfer of the biodegradable chemical oxygen demand (COD) from the particulate to the soluble fraction as evaluated by the biological methane potential test. However, the total biodegradable COD content of the treated sludge remained constant. The heat process improves the bio-accessibility of the biodegradable molecules but doesn't increase the inherent sludge biodegradability, suggesting that the chemistry of the refractory proteins and humic acids seems to be the real limit to sludge digestion. PMID:24804656

  2. Theorizing Network-Centric Activity in Education

    ERIC Educational Resources Information Center

    HaLevi, Andrew

    2011-01-01

    Networks and network-centric activity are increasingly prevalent in schools and school districts. In addition to ubiquitous social network tools like Facebook and Twitter, educational leaders deal with a wide variety of network organizational forms that include professional development, advocacy, informational networks and network-centric reforms.…

  3. Production of novel microbial biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms are well known to produce a wide variety of biobased polymers. These biopolymers have found a wide range of commercial uses, including food, feed, and consumer and industrial products. The production and possible uses of several novel biopolymers from both bacteria and fungi will be d...

  4. Active Contraction of Microtubule Networks

    NASA Astrophysics Data System (ADS)

    Foster, Peter; Fürthauer, Sebastian; Shelley, Michael; Needleman, Daniel

    Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large scale behaviors of these systems. Here we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction.

  5. Active contraction of microtubule networks.

    PubMed

    Foster, Peter J; Fürthauer, Sebastian; Shelley, Michael J; Needleman, Daniel J

    2015-01-01

    Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction. PMID:26701905

  6. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and 14C-labeled plant residues as determined by enzyme activities

    NASA Astrophysics Data System (ADS)

    Mahmoud Awad, Yasser; Ok, Young Sik; Kuzyakov, Yakov

    2014-05-01

    Application of polymers for the improvement of aggregate structure and reduction of soil erosion may alter the availability and decomposition of plant residues. In this study, we assessed the effects of anionic polyacrylamide (PAM), synthesized biopolymer (BP), and biochar (BC) on the decomposition of 14C-labeled maize residue in sandy and sandy loam soils. Specifically, PAM and BP with or without 14C-labeled plant residue were applied at 400 kg ha-1, whereas BC was applied at 5000 kg ha-1, after which the soils were incubated for 80 days at 22 oC. Initially, plant residue decomposition was much higher in untreated sandy loam soil than in sandy soil. Nevertheless, the stimulating effects of BP and BC on the decomposition of plant residue were more pronounced in sandy soil, where it accounted for 13.4% and 23.4% of 14C input, respectively, whereas in sandy loam soil, the acceleration of plant residue decomposition by BP and BC did not exceed 2.6% and 14.1%, respectively, compared to untreated soil with plant residue. The stimulating effects of BP and BC on the decomposition of plant residue were confirmed based on activities of β-cellobiohydrolase, β-glucosidase, and chitinase in both soils. In contrast to BC and BP, PAM did not increase the decomposition of native or added C in both soils.

  7. Conformational changes in biopolymers

    NASA Astrophysics Data System (ADS)

    Ivanov, Vassili

    2005-12-01

    Biopolymer conformational changes are involved in many biological processes. This thesis summarizes some theoretical and experimental approaches which I have taken at UCLA to explore conformational changes in biopolymers. The reversible thermal denaturation of the DNA double helix is, perhaps, the simplest example of biopolymer conformational change. I have developed a statistical mechanics model of DNA melting with reduced degrees of freedom, which allows base stacking interaction to be taken into account and treat base pairing and stacking separately. Unlike previous models, this model describes both the unpairing and unstacking parts of the experimental melting curves and explains the observed temperature dependence of the effective thermodynamic parameters used in models of the nearest neighbor type. I developed a basic kinetic model for irreversible thermal denaturation of F-actin, which incorporates depolymerization of F-actin from the ends and breaking of F-actin fiber in the middle. The model explains the cooperativity of F-actin thermal denaturation observed by D. Pavlov et al. in differential calorimetry measurements. CG-rich DNA sequences form left-handed Z-DNA at high ionic strength or upon binding of polyvalent ions and some proteins. I studied experimentally the B-to-Z transition of the (CG)6 dodecamer. Improvement of the locally linearized model used to interpret the data gives evidence for an intermediate state in the B-to-Z transition of DNA, contrary to previous research on this subject. In the past 15 years it has become possible to study the conformational changes of biomolecules using single-molecule techniques. In collaboration with other lab members I performed a single-molecule experiment, where we monitored the displacement of a micrometer-size bead tethered to a surface by a DNA probe undergoing the conformational change. This technique allows probing of conformational changes with subnanometer accuracy. We applied the method to detect

  8. Adsorption of lead ions on composite biopolymer adsorbent

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1996-04-01

    A fundamental study about the application of biopolymers to the recovery of lead from dilute solution was carried out. A membranous composite biopolymer adsorbent containing two kind of biopolymers, alginic acid (AA) and humic acid (HA), was prepared. HA, which has high solubility in water, was almost completely immobilized in the adsorbent by a combination of calcium alginate gel and activated carbon powder. A general model for complexation between divalent metal ions and acidic sites on biopolymers was applied to explain the adsorption mechanism of lead on the adsorbent (HA-M). The results showed that the complexation constants and the complexation capacities of lead-AA and lead-HA systems were scarcely influenced by immobilization.

  9. Chemical stability of biopolymer solutions

    SciTech Connect

    Ash, S.G.; Calvert, R.; Clarke-Sturman, A.J.

    1983-10-01

    Biopolymers such as xanthan are being used increasingly in oilfield operations where the stability of the biopolymer is a prime consideration. The stability of xanthan depends on the brine salinity. Good viscosity retention over many months is observed in sea water at 90/sup 0/C. The successful application of xanthan at temperatures higher than 90/sup 0/C requires an understanding of the factors that limit stability. These factors include the nature of the polymer and the mechanisms of degradation. The stability features of a novel biopolymer are also described.

  10. Chemical stability of biopolymer solutions

    SciTech Connect

    Ash, S.G.; Clarke-Sturman, A.J.; Calvert, R.; Nisbet, T.M.

    1983-01-01

    Biopolymers such as xanthan are being used increasingly in oil field operations where the stability of the biopolymer is a prime consideration. The stability of xanthan depends on the brine salinity. Good viscosity retention over many months is observed in seawater at 90 C. The successful application of xanthan at temperatures higher than 90 C requires an understanding of the factors that limit stability. These factors include the nature of the polymer and the mechanisms of degradation. The stability features of a novel biopolymer are described also. 11 references.

  11. Polyanionic heteropolysaccharide biopolymers

    SciTech Connect

    Gutnick, D.L.; Rosenberg, E.; Belsky, I.; Zinaida, Z.

    1983-07-26

    Growth of Acinetobacter Sp. ATCC 31012 on various substrates and under varying conditions is used to produce 2 classes of extra cellular, microbial protein-associated lipopolysaccharides (the emulsans) which possess characteristics that permit them to be used in cleaning oil- contaminated vessels, oil spill management, and enhanced oil recovery by chemical flooding. Emulsans and apoemulsans, both of which biopolymers are strongly anionic, exhibit a high degree of specificity in the emulsification of hydrocarbon substrates which contain both aliphatic and cyclic components. In addition, these polysaccharides as well as their O-deacylated and N-deacylated derivatives are adsorbed on and capable of flocculating aluminosilicate ion-exchangers, such as kaolin and bentonite. 10 claims.

  12. An unnatural biopolymer

    SciTech Connect

    Cho, C.Y.; Moran, E.J.; Cherry, S.R.; Stephans, J.C.; Schultz, P.G. ); Fodor, S.P.A.; Adams, C.L.; Sundaram, A.; Jacobs, J.W. )

    1993-09-03

    A highly efficient method has been developed for the solid-phase synthesis of an [open quotes]unnatural biopolymer[close quotes] consisting of chiral aminocarbonate monomers linked via a carbamate backbone. Oligocarbamates were synthesized from N-protected p-nitrophenyl carbonate monomers, substituted with a variety of side chains, with greater than 99 percent overall coupling efficiencies per step. A spatially defined library of oligocarbamates was generated by using photochemical methods and screened for binding affinity to a monoclonal antibody. A number of high-affinity ligands were than synthesized and analyzed in solution with respect to their inhibition concentration values, water/octanol partitioning coefficients, and proteolytic stability. These and other unnatural polymers may provide new frameworks for drug development and for testing theories of protein and peptide folding and structure.

  13. Fluorescent derivatization of polysaccharides and carbohydrate-containing biopolymers for measurement of enzyme activities in complex media.

    PubMed

    Arnosti, C

    2003-08-01

    Fluorescence derivatization provides a means of tracing the dynamics of polysaccharides even in the presence of high concentrations of other organic compounds or salts. A method of labeling polysaccharides with fluoresceinamine was extended to polysaccharides of a wide range of chemical composition, and alternative means of preparation were established for polysaccharides not initially amenable to column chromatography. The polysaccharides were activated with cyanogen bromide, coupled to fluoresceinamine, and separated from unreacted fluorophore via gel filtration chromatography or dialysis. Since the resulting derivatized polysaccharides proved to be stable to further physical and chemical manipulation, methods were also developed for re-activation and labeling with a second fluorophore, as well as for tethering the labeled polysaccharides to agarose beads. As an example of the application of this approach, five distinct fluorescently-labeled polysaccharides (pullulan, laminarin, xylan, chondroitin sulfate, and alginic acid) were used to investigate the activities and structural specificities of extracellular enzymes produced in situ by marine microbial communities, providing a means of measuring specifically the activities of endo-acting extracellular enzymes and avoiding use of low molecular mass substrate proxies. These labeled polysaccharides could be used to explore the dynamics of polysaccharides in other types of complex media, as well as to investigate the activities and specificities of endo-acting enzymes in other systems. PMID:12880865

  14. Active contraction of microtubule networks

    PubMed Central

    Foster, Peter J; Fürthauer, Sebastian; Shelley, Michael J; Needleman, Daniel J

    2015-01-01

    Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction. DOI: http://dx.doi.org/10.7554/eLife.10837.001 PMID:26701905

  15. How Sleep Activates Epileptic Networks?

    PubMed Central

    Halász, Peter

    2013-01-01

    Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system. PMID:24159386

  16. Antifungal activity, experimental infections and nail permeation of an innovative ciclopirox nail lacquer based on a water-soluble biopolymer.

    PubMed

    Togni, Giuseppe; Mailland, Federico

    2010-05-01

    P-3051 is an innovative 8% ciclopirox nail lacquer, based on hydroxypropyl chitosan (HPCH) as a film-forming agent. The authors' aim was to investigate P-3051's in vitro antifungal activity, as well as its in vitro and in vivo nail permeation. The dilution susceptibility tests performed for Trichophyton rubrum (T. rubrum) and Candida parapsilosis (C. parapsilosis) showed that the minimum inhibitory concentrations (MICs) of P-3051, as percent of ciclopirox, was for both fungi < or = 0.0015% (equivalent to a concentration of 15.6 mg/ ml). In the biological assay of in vitro nail permeation and fungal inhibition, the authors observed that P-3051 permeated well through bovine hoof membranes and produced dose-dependent inhibitory effects on dermatophyte, yeast and mold strains. Moreover, the inhibition effects were higher than those obtained by equal amounts of the ciclopirox reference nail lacquer. P-3051 and the reference showed the same protective activity in experimental infections with strains of dermatophytes isolated from clinical samples. The amount of ciclopirox remained in cut fingernails washed six hours after in vivo application of P-3051 ranged between 18 and 35% of the applied dose. After in vitro application to cut human nails, 40-50% of the applied ciclopirox penetrated during the first six hours, independent of nails being infected or uninfected, intact or filed. In both experiments, the concentration of ciclopirox is largely higher (three to four orders of magnitude) than the MICs for nail pathogens. PMID:20480796

  17. Conformon-driven biopolymer shape changes in cell modeling.

    PubMed

    Ji, Sungchul; Ciobanu, Gabriel

    2003-07-01

    Conceptual models of the atom preceded the mathematical model of the hydrogen atom in physics in the second decade of the 20th century. The computer modeling of the living cell in the 21st century may follow a similar course of development. A conceptual model of the cell called the Bhopalator was formulated in the mid-1980s, along with its twin theories known as the conformon theory of molecular machines and the cell language theory of biopolymer interactions [Ann. N.Y. Acad. Sci. 227 (1974) 211; BioSystems 44 (1997) 17; Ann. N.Y. Acad. Sci. 870 (1999a) 411; BioSystems 54 (2000) 107; Semiotica 138 (1-4) (2002a) 15; Fundamenta Informaticae 49 (2002b) 147]. The conformon theory accounts for the reversible actions of individual biopolymers coupled to irreversible chemical reactions, while the cell language theory provides a theoretical framework for understanding the complex networks of dynamic interactions among biopolymers in the cell. These two theories are reviewed and further elaborated for the benefit of both computational biologists and computer scientists who are interested in modeling the living cell and its functions. One of the critical components of the mechanisms of cell communication and cell computing has been postulated to be space- and time-organized teleonomic (i.e. goal-directed) shape changes of biopolymers that are driven by exergonic (free energy-releasing) chemical reactions. The generalized Franck-Condon principle is suggested to be essential in resolving the apparent paradox arising when one attempts to couple endergonic (free energy-requiring) biopolymer shape changes to the exergonic chemical reactions that are catalyzed by biopolymer shape changes themselves. Conformons, defined as sequence-specific mechanical strains of biopolymers first invoked three decades ago to account for energy coupling in mitochondria, have been identified as shape changers, the agents that cause shape changes in biopolymers. Given a set of space- and time

  18. Characterization of actin filament deformation in response to actively driven microspheres propagated through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2014-03-01

    The semi-flexible biopolymer actin is a ubiquitous component of nearly all biological organisms, playing an important role in many biological processes such as cell structure and motility, cancer invasion and metastasis, muscle contraction, and cell signaling. Concentrated actin networks possess unique viscoelastic properties that have been the subject of much theoretical and experimental work. However, much is still unknown regarding the correlation of the applied stress on the network to the induced filament strain at the molecular level. Here, we use dual optical traps alongside fluorescence microscopy to carry out active microrheology measurements that link mechanical stress to structural response at the micron scale. Specifically, we actively drive microspheres through entangled actin networks while simultaneously measuring the force the surrounding filaments exert on the sphere and visualizing the deformation and subsequent relaxation of fluorescent labeled filaments within the network. These measurements, which provide much needed insight into the link between stress and strain in actin networks, are critical for clarifying our theoretical understanding of the complex viscoelastic behavior exhibited in actin networks.

  19. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallarés, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  20. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  1. Proton conduction in biopolymer exopolysaccharide succinoglycan

    SciTech Connect

    Kweon, Jin Jung; Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui; Jung, Seunho; Kwon, Chanho

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  2. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  3. Dynamics of active actin networks

    NASA Astrophysics Data System (ADS)

    Koehler, Simone

    2014-03-01

    Local mechanical and structural properties of a eukaryotic cell are determined by its cytoskeleton. To adapt to their environment, cells rely on constant self-organized rearrangement processes of their actin cytoskeleton. To shed light on the principles underlying these dynamic self-organization processes we investigate a minimal reconstituted active system consisting of actin filaments, crosslinking molecules and molecular motor filaments. Using quantitative fluorescence microscopy and image analysis, we show, that these minimal model systems exhibit a generic structure formation mechanism. The competition between force generation by molecular motors and the stabilization of the network by crosslinking proteins results in a highly dynamic reorganization process which is characterized by anomalous transport dynamics with a superdiffusive behavior also found in intracellular dynamics. In vitro, these dynamics are governed by chemical and physical parameters that alter the balance of motor and crosslinking proteins, such as pH. These findings can be expected to have broad implications in our understanding of cytoskeletal regulation in vivo.

  4. Shaping Neuronal Network Activity by Presynaptic Mechanisms

    PubMed Central

    Ashery, Uri

    2015-01-01

    Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048

  5. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  6. Crosslinking biopolymers for biomedical applications.

    PubMed

    Reddy, Narendra; Reddy, Roopa; Jiang, Qiuran

    2015-06-01

    Biomaterials made from proteins, polysaccharides, and synthetic biopolymers are preferred but lack the mechanical properties and stability in aqueous environments necessary for medical applications. Crosslinking improves the properties of the biomaterials, but most crosslinkers either cause undesirable changes to the functionality of the biopolymers or result in cytotoxicity. Glutaraldehyde, the most widely used crosslinking agent, is difficult to handle and contradictory views have been presented on the cytotoxicity of glutaraldehyde-crosslinked materials. Recently, poly(carboxylic acids) that can crosslink in both dry and wet conditions have been shown to provide the desired improvements in tensile properties, increase in stability under aqueous conditions, and also promote cell attachment and proliferation. Green chemicals and newer crosslinking approaches are necessary to obtain biopolymeric materials with properties desired for medical applications. PMID:25887334

  7. Scleroglucan biopolymer enhances WMB performances

    SciTech Connect

    Gallino, G.; Guarneri, A.; Poli, O.G.

    1996-12-31

    Xanthan Gum is the most popular biopolymer used today to provide hole cleaning and suspension capabilities to water based drilling fluids but it presents some limitations as regards temperature sensitivity and tolerance to field contaminants. In this paper a Scleroglucan is proposed as a better alternative to Xanthan Gum for drilling fluid compositions. Superior benefits offered by Scleroglucan on hole cleaning, rate of penetration, temperature sensitivity and mud tolerance to shale have been demonstrated by successful field applications and by extensive laboratory studies.

  8. Biocompatibility of plasma nanostructured biopolymers

    NASA Astrophysics Data System (ADS)

    Slepičková Kasálková, N.; Slepička, P.; Bačáková, L.; Sajdl, P.; Švorčík, V.

    2013-07-01

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell's adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  9. Competing activation mechanisms in epidemics on networks

    NASA Astrophysics Data System (ADS)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2012-04-01

    In contrast to previous common wisdom that epidemic activity in heterogeneous networks is dominated by the hubs with the largest number of connections, recent research has pointed out the role that the innermost, dense core of the network plays in sustaining epidemic processes. Here we show that the mechanism responsible of spreading depends on the nature of the process. Epidemics with a transient state are boosted by the innermost core. Contrarily, epidemics allowing a steady state present a dual scenario, where either the hub independently sustains activity and propagates it to the rest of the system, or, alternatively, the innermost network core collectively turns into the active state, maintaining it globally. In uncorrelated networks the former mechanism dominates if the degree distribution decays with an exponent larger than 5/2, and the latter otherwise. Topological correlations, rife in real networks, may perturb this picture, mixing the role of both mechanisms.

  10. Biopolymers as a flexible resource for nanochemistry.

    PubMed

    Schnepp, Zoe

    2013-01-21

    Biomass is an abundant source of chemically diverse macromolecules, including polysaccharides, polypeptides, and polyaromatics. Many of these biological polymers (biopolymers) are highly evolved for specific functions through optimized chain length, functionalization, and monomer sequence. As biopolymers are a chemical resource, much current effort is focused on the breakdown of these molecules into fuels or platform chemicals. However there is growing interest in using biopolymers directly to create functional materials. This Minireview uses recent examples to show how biopolymers are providing new directions in the synthesis of nanostructured materials. PMID:23239557

  11. Enhancing Biopolymer Dynamics through Destruction

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer

    2012-02-01

    Microtubules are cytoskeletal filaments that organize intracellular space structurally and through active transport along their lengths. They need to be organized and remodeled quickly during development of differentiated cells or in mitosis. Much work has focused on remodeling from the ends because these long polymers can stochastically disassemble through dynamic instability or be actively disassembled. Microtubule-severing enzymes are a novel class of microtubule regulators that create new ends by cutting the filament. Thus, these proteins add a new dimension to microtubule regulation by their ability to create new microtubule ends. Interestingly, despite their destructive capabilities, severing has the ability to create new microtubule networks in cells. We are interested in the inherent biophysical activities of these proteins and their ability to remodel cellular microtubule networks. Interestingly, despite their destructive capabilities, severing has the ability to create new microtubule networks in cells. We use two-color single molecule total internal reflection fluorescence imaging to visualize purified severing enzymes and microtubules in vitro. We have examined two families of severing enzymes to find that their biophysical activities are distinct giving them different network-regulating abilities.

  12. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  13. Earthquake networks based on similar activity patterns.

    PubMed

    Tenenbaum, Joel N; Havlin, Shlomo; Stanley, H Eugene

    2012-10-01

    Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully understood despite decades of research and analysis. We propose and develop a network approach to earthquake events. In this network, a node represents a spatial location while a link between two nodes represents similar activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake catalog spanning the 14-year period 1985-1998. We find strong links representing large correlations between patterns in locations separated by more than 1000 kilometers, corroborating prior observations that earthquake interactions have no characteristic length scale. We find network characteristics not attributable to chance alone, including a large number of network links, high node assortativity, and strong stability over time. PMID:23214652

  14. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review

    PubMed Central

    Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-01-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance. PMID:26501034

  15. Temporal percolation in activity-driven networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Pastor-Satorras, Romualdo

    2014-03-01

    We study the temporal percolation properties of temporal networks by taking as a representative example the recently proposed activity-driven-network model [N. Perra et al., Sci. Rep. 2, 469 (2012), 10.1038/srep00469]. Building upon an analytical framework based on a mapping to hidden variables networks, we provide expressions for the percolation time Tp marking the onset of a giant connected component in the integrated network. In particular, we consider both the generating function formalism, valid for degree-uncorrelated networks, and the general case of networks with degree correlations. We discuss the different limits of the two approaches, indicating the parameter regions where the correlated threshold collapses onto the uncorrelated case. Our analytical predictions are confirmed by numerical simulations of the model. The temporal percolation concept can be fruitfully applied to study epidemic spreading on temporal networks. We show in particular how the susceptible-infected-removed model on an activity-driven network can be mapped to the percolation problem up to a time given by the spreading rate of the epidemic process. This mapping allows us to obtain additional information on this process, not available for previous approaches.

  16. Chirality and equilibrium biopolymer bundles.

    PubMed

    Grason, Gregory M; Bruinsma, Robijn F

    2007-08-31

    We use continuum theory to show that chirality is a key thermodynamic control parameter for the aggregation of biopolymers: chirality produces a stable disperse phase of hexagonal bundles under moderately poor solvent conditions, as has been observed in in vitro studies of F actin [O. Pelletier et al., Phys. Rev. Lett. 91, 148102 (2003)]. The large characteristic radius of these chiral bundles is not determined by a mysterious long-range molecular interaction but by in-plane shear elastic stresses generated by the interplay between a chiral torque and an unusual, but universal, nonlinear gauge term in the strain tensor of ordered chains that is imposed by rotational invariance. PMID:17931038

  17. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  18. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  19. NETWORK ACTIVATION DURING BIMANUAL MOVEMENTS IN HUMANS

    PubMed Central

    Walsh, RR; Small, SL; Chen, EE; Solodkin, A.

    2008-01-01

    The coordination of movement between the upper limbs is a function highly distributed across the animal kingdom. How the central nervous system generates such bilateral, synchronous movements, and how this differs from the generation of unilateral movements, remains uncertain. Electrophysiologic and functional imaging studies support that the activity of many brain regions during bimanual and unimanual movement are quite similar. Thus, the same brain regions (and indeed the same neurons) respond similarly during unimanual and bimanual movements as measured by electrophysiological responses. How then are different motor behaviors generated? To address this question, we studied unimanual and bimanual movements using fMRI and constructed networks of activation using Structural Equation Modeling (SEM). Our results suggest that (1) the dominant hemisphere appears to initiate activity responsible for bimanual movement; (2) activation during bimanual movement does not reflect the sum of right and left unimanual activation; (3) production of unimanual movement involves a network that is distinct from, and not a mirror of, the network for contralateral unimanual movement; and (4) using SEM, it is possible to obtain robust group networks representative of a population and to identify individual networks which can be used to detect subtle differences both between subjects as well as within a single subject over time. In summary, these results highlight a differential role for the dominant and non-dominant hemispheres during bimanual movements, further elaborating the concept of handedness and dominance. This knowledge increases our understanding of cortical motor physiology in health and after neurological damage. PMID:18718872

  20. Film forming microbial biopolymers for commercial applications--a review.

    PubMed

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging

  1. Reconstructing Causal Biological Networks through Active Learning.

    PubMed

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  2. Reconstructing Causal Biological Networks through Active Learning

    PubMed Central

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  3. Preparation of Biopolymer Aerogels Using Green Solvents.

    PubMed

    Subrahmanyam, Raman; Gurikov, Pavel; Meissner, Imke; Smirnova, Irina

    2016-01-01

    Although the first reports on aerogels made by Kistler(1) in the 1930s dealt with aerogels from both inorganic oxides (silica and others) and biopolymers (gelatin, agar, cellulose), only recently have biomasses been recognized as an abundant source of chemically diverse macromolecules for functional aerogel materials. Biopolymer aerogels (pectin, alginate, chitosan, cellulose, etc.) exhibit both specific inheritable functions of starting biopolymers and distinctive features of aerogels (80-99% porosity and specific surface up to 800 m(2)/g). This synergy of properties makes biopolymer aerogels promising candidates for a wide gamut of applications such as thermal insulation, tissue engineering and regenerative medicine, drug delivery systems, functional foods, catalysts, adsorbents and sensors. This work demonstrates the use of pressurized carbon dioxide (5 MPa) for the ionic cross linking of amidated pectin into hydrogels. Initially a biopolymer/salt dispersion is prepared in water. Under pressurized CO2 conditions, the pH of the biopolymer solution is lowered to 3 which releases the crosslinking cations from the salt to bind with the biopolymer yielding hydrogels. Solvent exchange to ethanol and further supercritical CO2 drying (10 - 12 MPa) yield aerogels. Obtained aerogels are ultra-porous with low density (as low as 0.02 g/cm(3)), high specific surface area (350 - 500 m(2)/g) and pore volume (3 - 7 cm(3)/g for pore sizes less than 150 nm). PMID:27403649

  4. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.

    PubMed

    Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J

    2011-12-01

    The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process. PMID:22001054

  5. Coordinated network activity in the hippocampus.

    PubMed

    Draguhn, Andreas; Keller, Martin; Reichinnek, Susanne

    2014-01-01

    The hippocampus expresses a variety of highly organized network states which bind its individual neurons into collective modes of activity. These patterns go along with characteristic oscillations of extracellular potential known as theta, gamma, and ripple oscillations. Such network oscillations share some important features throughout the entire central nervous system of higher animals: they are restricted to a defined behavioral state, they are mostly generated by subthreshold synaptic activity, and they entrain active neurons to fire action potentials at strictly defined phases of the oscillation cycle, thereby providing a unifying 'zeitgeber' for coordinated multineuronal activity. Recent work from the hippocampus of rodents and humans has revealed how the resulting spatiotemporal patterns support the formation of neuronal assemblies which, in our present understanding, form the neuronal correlate of spatial, declarative, or episodic memories. In this review, we introduce the major types of spatiotemporal activity patterns in the hippocampus, describe the underlying neuronal mechanisms, and illustrate the concept of memory formation within oscillating networks. Research on hippocampus-dependent memory has become a key model system at the interface between cellular and cognitive neurosciences. The next step will be to translate our increasing insight into the mechanisms and systemic functions of neuronal networks into urgently needed new therapeutic strategies. PMID:24777128

  6. Topology and geometry of biopolymers

    SciTech Connect

    Janse Van Rensburg, E.J.; Orlandini, E.; Tesi, M.C.

    1996-12-31

    This paper is concerned with some simple lattice models of the entanglement complexity of polymers in dilute solution, with special reference to biopolymers such as DNA. We review a number of rigorous results about the asymptotic behavior of the knot probability, the entanglement complexity and the writhe of a lattice polygon (as a model of a ring polymer) and discuss Monte Carlo results for intermediate length polygons. In addition we discuss how this model can be augmented to include the effect of solvent quality and ionic strength. We also describe a lattice ribbon model which is able to capture the main properties of an oriented ribbon-like molecule (such as duplex DNA). 47 refs., 1 fig.

  7. Biopolymers Containing Unnatural Building Blocks

    SciTech Connect

    Schultz, Peter G.

    2013-06-30

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty amino acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins

  8. Sloppiness in Spontaneously Active Neuronal Networks

    PubMed Central

    Panas, Dagmara; Amin, Hayder; Maccione, Alessandro; Muthmann, Oliver; van Rossum, Mark; Berdondini, Luca

    2015-01-01

    Various plasticity mechanisms, including experience-dependent, spontaneous, as well as homeostatic ones, continuously remodel neural circuits. Yet, despite fluctuations in the properties of single neurons and synapses, the behavior and function of neuronal assemblies are generally found to be very stable over time. This raises the important question of how plasticity is coordinated across the network. To address this, we investigated the stability of network activity in cultured rat hippocampal neurons recorded with high-density multielectrode arrays over several days. We used parametric models to characterize multineuron activity patterns and analyzed their sensitivity to changes. We found that the models exhibited sloppiness, a property where the model behavior is insensitive to changes in many parameter combinations, but very sensitive to a few. The activity of neurons with sloppy parameters showed faster and larger fluctuations than the activity of a small subset of neurons associated with sensitive parameters. Furthermore, parameter sensitivity was highly correlated with firing rates. Finally, we tested our observations from cell cultures on an in vivo recording from monkey visual cortex and we confirm that spontaneous cortical activity also shows hallmarks of sloppy behavior and firing rate dependence. Our findings suggest that a small subnetwork of highly active and stable neurons supports group stability, and that this endows neuronal networks with the flexibility to continuously remodel without compromising stability and function. PMID:26041916

  9. Use of succinoglycan biopolymer for gravel packing

    SciTech Connect

    Sanz, G.P.; Gunningham, M.C.; Samuel, A.J. . E P Lab.); Lau, H.C.

    1994-06-01

    This paper presents the results of laboratory experiments and field trials on a polysaccharide biopolymer, succinoglycan, for use in gravel packing. This biopolymer causes minimal formation damage and has unique rheological properties that combine high shear-thinning behavior with temperature-induced viscosity breakback; thus, it can be used without breakers. A scouting study has been carried out at KSEPL to identify new viscosifiers with better rheological properties that cause minimal formation damage. Ideally, breakers should not be required and on-site polymer preparation procedures should be simple enough to give reliable, repeatable performances. For slurry-pack-type operations, the polysaccharide biopolymer succinoglycan was identified as the best candidate. The biopolymer was developed for EOR during 1980--83 at the Sittingbourne Research Centre, Shell Research Ltd., U.K., and is marketed by Shell Intl. Chemical Co. Ltd. as Shellflo-S.''

  10. Mixed biopolymer systems based on starch.

    PubMed

    Abd Elgadir, M; Akanda, Md Jahurul Haque; Ferdosh, Sahena; Mehrnoush, Amid; Karim, Alias A; Noda, Takahiro; Sarker, Md Zaidul Islam

    2012-01-01

    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch. PMID:22231495

  11. System for measuring radioactivity of labelled biopolymers

    SciTech Connect

    Gross, V.

    1980-07-08

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs.

  12. Pathological tau disrupts ongoing network activity.

    PubMed

    Menkes-Caspi, Noa; Yamin, Hagar G; Kellner, Vered; Spires-Jones, Tara L; Cohen, Dana; Stern, Edward A

    2015-03-01

    Pathological tau leads to dementia and neurodegeneration in tauopathies, including Alzheimer's disease. It has been shown to disrupt cellular and synaptic functions, yet its effects on the function of the intact neocortical network remain unknown. Using in vivo intracellular and extracellular recordings, we measured ongoing activity of neocortical pyramidal cells during various arousal states in the rTg4510 mouse model of tauopathy, prior to significant cell death, when only a fraction of the neurons show pathological tau. In transgenic mice, membrane potential oscillations are slower during slow-wave sleep and under anesthesia. Intracellular recordings revealed that these changes are due to longer Down states and state transitions of membrane potentials. Firing rates of transgenic neurons are reduced, and firing patterns within Up states are altered, with longer latencies and inter-spike intervals. By changing the activity patterns of a subpopulation of affected neurons, pathological tau reduces the activity of the neocortical network. PMID:25704951

  13. Networks of Task Co-Activations

    PubMed Central

    Laird, Angela R.; Eickhoff, Simon B.; Rottschy, Claudia; Bzdok, Danilo; Ray, Kimberly L.; Fox, Peter T.

    2013-01-01

    Recent progress in neuroimaging informatics and meta-analytic techniques has enabled a novel domain of human brain connectomics research that focuses on task-dependent co-activation patterns across behavioral tasks and cognitive domains. Here, we review studies utilizing the BrainMap database to investigate data trends in the activation literature using methods such as meta-analytic connectivity modeling (MACM), connectivity-based parcellation (CPB), and independent component analysis (ICA). We give examples of how these methods are being applied to learn more about the functional connectivity of areas such as the amygdala, the default mode network, and visual area V5. Methods for analyzing the behavioral metadata corresponding to regions of interest and to their intrinsically connected networks are described as a tool for local functional decoding. We finally discuss the relation of observed co-activation connectivity results to resting state connectivity patterns, and provide implications for future work in this domain. PMID:23631994

  14. Motor Behavior Activates Bergmann Glial Networks

    PubMed Central

    Nimmerjahn, Axel; Mukamel, Eran A.; Schnitzer, Mark J.

    2010-01-01

    SUMMARY Although it is firmly established neuronal activity is a prime determinant of animal behavior, relationships between astrocytic excitation and animal behavior have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are implicated in motor behavior and exhibit Ca2+-excitation. However, Ca2+-excitation in these cells has not previously been studied in behaving animals. Using two-photon microscopy we found that Bergmann glia exhibit three forms of Ca2+-excitation in awake behaving mice. Two of these are ongoing within the cerebellar vermis. During locomotor performance concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann glia extending across several hundred microns or more. Concerted Ca2+-excitation was abolished by anesthesia or blockade of either neural activity or glutamatergic transmission. Thus, large networks of Bergmann glia can be activated by specific animal behaviors and undergo excitation of sufficient magnitude to potentially initiate macroscopic changes in brain dynamics or blood flow. PMID:19447095

  15. Position paper on active countermeasures for computer networks.

    SciTech Connect

    Van Randwyk, Jamie A.

    2003-07-01

    Computer security professionals have used passive network countermeasures for several years in order to secure computer networks. Passive countermeasures such as firewalls and intrusion detection systems are effective but their use alone is not enough to protect a network. Active countermeasures offer new ways of protecting a computer network. Corporations and government entities should adopt active network countermeasures as a means of protecting their computer networks.

  16. Intruder Activity Analysis under Unreliable Sensor Networks

    SciTech Connect

    Tae-Sic Yoo; Humberto E. Garcia

    2007-09-01

    This paper addresses the problem of counting intruder activities within a monitored domain by a sensor network. The deployed sensors are unreliable. We characterize imperfect sensors with misdetection and false-alarm probabilities. We model intruder activities with Markov Chains. A set of Hidden Markov Models (HMM) models the imperfect sensors and intruder activities to be monitored. A novel sequential change detection/isolation algorithm is developed to detect and isolate a change from an HMM representing no intruder activity to another HMM representing some intruder activities. Procedures for estimating the entry time and the trace of intruder activities are developed. A domain monitoring example is given to illustrate the presented concepts and computational procedures.

  17. The activation of interactive attentional networks.

    PubMed

    Xuan, Bin; Mackie, Melissa-Ann; Spagna, Alfredo; Wu, Tingting; Tian, Yanghua; Hof, Patrick R; Fan, Jin

    2016-04-01

    Attention can be conceptualized as comprising the functions of alerting, orienting, and executive control. Although the independence of these functions has been demonstrated, the neural mechanisms underlying their interactions remain unclear. Using the revised attention network test and functional magnetic resonance imaging, we examined cortical and subcortical activity related to these attentional functions and their interactions. Results showed that areas in the extended frontoparietal network (FPN), including dorsolateral prefrontal cortex, frontal eye fields (FEF), areas near and along the intraparietal sulcus, anterior cingulate and anterior insular cortices, basal ganglia, and thalamus were activated across multiple attentional functions. Specifically, the alerting function was associated with activation in the locus coeruleus (LC) in addition to regions in the FPN. The orienting functions were associated with activation in the superior colliculus (SC) and the FEF. The executive control function was mainly associated with activation of the FPN and cerebellum. The interaction effect of alerting by executive control was also associated with activation of the FPN, while the interaction effect of orienting validity by executive control was mainly associated with the activation in the pulvinar. The current findings demonstrate that cortical and specific subcortical areas play a pivotal role in the implementation of attentional functions and underlie their dynamic interactions. PMID:26794640

  18. Evolutionary optimization of biopolymers and sequence structure maps

    SciTech Connect

    Reidys, C.M.; Kopp, S.; Schuster, P.

    1996-06-01

    Searching for biopolymers having a predefined function is a core problem of biotechnology, biochemistry and pharmacy. On the level of RNA sequences and their corresponding secondary structures we show that this problem can be analyzed mathematically. The strategy will be to study the properties of the RNA sequence to secondary structure mapping that is essential for the understanding of the search process. We show that to each secondary structure s there exists a neutral network consisting of all sequences folding into s. This network can be modeled as a random graph and has the following generic properties: it is dense and has a giant component within the graph of compatible sequences. The neutral network percolates sequence space and any two neutral nets come close in terms of Hamming distance. We investigate the distribution of the orders of neutral nets and show that above a certain threshold the topology of neutral nets allows to find practically all frequent secondary structures.

  19. Recurrent network activity drives striatal synaptogenesis.

    PubMed

    Kozorovitskiy, Yevgenia; Saunders, Arpiar; Johnson, Caroline A; Lowell, Bradford B; Sabatini, Bernardo L

    2012-05-31

    Neural activity during development critically shapes postnatal wiring of the mammalian brain. This is best illustrated by the sensory systems, in which the patterned feed-forward excitation provided by sensory organs and experience drives the formation of mature topographic circuits capable of extracting specific features of sensory stimuli. In contrast, little is known about the role of early activity in the development of the basal ganglia, a phylogenetically ancient group of nuclei fundamentally important for complex motor action and reward-based learning. These nuclei lack direct sensory input and are only loosely topographically organized, forming interlocking feed-forward and feed-back inhibitory circuits without laminar structure. Here we use transgenic mice and viral gene transfer methods to modulate neurotransmitter release and neuronal activity in vivo in the developing striatum. We find that the balance of activity between the two inhibitory and antagonist pathways in the striatum regulates excitatory innervation of the basal ganglia during development. These effects indicate that the propagation of activity through a multi-stage network regulates the wiring of the basal ganglia, revealing an important role of positive feedback in driving network maturation. PMID:22660328

  20. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    PubMed

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications. PMID:25305585

  1. Separation of biopolymer from fermentation broths

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Westmoreland, C.G.; Johnson, J.S. Jr.

    1981-01-01

    Application of recent developments in filtration separations have been applied to separation of biopolymers from fermentation broths. More economical production of biopolymers near the site of use would be especially attractive for use in micellar flood programs for enhanced oil recovery. Solutions of the organisms Sclerotium rolfsii producing scleroglucans were used for the tests because the organisms are genetically more stable than the organisms that produce xanthan gums and because their more acid broths are less apt to become contaminated. Three types of filtration, axial filtration, pleated ultrafiltration module, and microscreens were tested on the broth. Filtration results are reported for broths with various preparation histories. An economic comparison is presented for processing of a ton of biopolymer per day, and the microscreening process is shown to be the most efficient, but a polishing step would have to be added. (BLM)

  2. Seismic active control by neural networks.

    SciTech Connect

    Tang, Y.

    1998-01-01

    A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  3. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  4. Alignment and nonlinear elasticity in biopolymer gels

    NASA Astrophysics Data System (ADS)

    Feng, Jingchen; Levine, Herbert; Mao, Xiaoming; Sander, Leonard M.

    2015-04-01

    We present a Landau-type theory for the nonlinear elasticity of biopolymer gels with a part of the order parameter describing induced nematic order of fibers in the gel. We attribute the nonlinear elastic behavior of these materials to fiber alignment induced by strain. We suggest an application to contact guidance of cell motility in tissue. We compare our theory to simulation of a disordered lattice model for biopolymers. We treat homogeneous deformations such as simple shear, hydrostatic expansion, and simple extension, and obtain good agreement between theory and simulation. We also consider a localized perturbation which is a simple model for a contracting cell in a medium.

  5. Micellar solubilization of biopolymers in organic solvents. Part 5. Activity and conformation of. cap alpha. -chymotrypsin in isooctane-aot reverse micelles

    SciTech Connect

    Barbaric, S.; Luisi, P.L.

    1981-07-15

    The enzymatic activity of ..cap alpha..-chymotrypsin solubilized in reverse micelles formed in isooctane by bis(2-ethylhexyl)sodium sulfosuccinate and water (0.6 to 2.5% v:v) has been investigated with the use of n-glutaryl-l-phenylalanine p-nitroanilide as the substrate. The enzyme obeys Michaelis-Menten kinetics in the investigated concentration range, with Km values which are considerably higher than those in bulk water (when concentrations are referred to as water pools). Under certain conditions, there is an enhanced turnover number (up to a factor of 6) in micelles with respect to the aqueous solution. The pH profile of the enzyme activity in the hydrocarbon micellar solution is different from that in water, being shifted to higher pH values and the more so the lower the water content. Under conditions of low water content (0.6 to 1% v:v) the enzyme's stability is greater than in aqueous solution. Structure and activity changes are discussed in terms of the size and structure of the micellar aggregate. 29 references.

  6. Deep Neural Networks with Multistate Activation Functions

    PubMed Central

    Cai, Chenghao; Xu, Yanyan; Ke, Dengfeng; Su, Kaile

    2015-01-01

    We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates. PMID:26448739

  7. Sum Product Networks for Activity Recognition.

    PubMed

    Amer, Mohamed R; Todorovic, Sinisa

    2016-04-01

    This paper addresses detection and localization of human activities in videos. We focus on activities that may have variable spatiotemporal arrangements of parts, and numbers of actors. Such activities are represented by a sum-product network (SPN). A product node in SPN represents a particular arrangement of parts, and a sum node represents alternative arrangements. The sums and products are hierarchically organized, and grounded onto space-time windows covering the video. The windows provide evidence about the activity classes based on the Counting Grid (CG) model of visual words. This evidence is propagated bottom-up and top-down to parse the SPN graph for the explanation of the video. The node connectivity and model parameters of SPN and CG are jointly learned under two settings, weakly supervised, and supervised. For evaluation, we use our new Volleyball dataset, along with the benchmark datasets VIRAT, UT-Interactions, KTH, and TRECVID MED 2011. Our video classification and activity localization are superior to those of the state of the art on these datasets. PMID:26390445

  8. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.; Kuritz, Tanya

    2000-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  9. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.; Kurtiz,Tanya

    1999-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  10. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.

    2002-04-30

    The proposed research aimed to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government. We proposed to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) was to be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  11. Production of biopolymer composites by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes a new technology to produce biopolymer composites at room temperature. During the process, micrometer-scale raw material is coated with zein that has strong adhesive property, which is then compressed to form a rigid material. Since this technology does not require purificati...

  12. Production of biopolymer composites by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article describes a new process, particle-bonding technology, to produce biopolymer composites from agricultural commodities. In this technology, matrix-protein complexes are formed by the interaction of micrometer-scale matrix material with an adhesive protein, zein. This spontaneous process m...

  13. Exploring Modifications of Cotton with Biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biopolymers including starch, alginate, and chitosan were grafted on to both nonwoven and woven cotton fabrics to examine their hemostatic and antimcrobial properties. The development of cotton-based health care fabrics that promote blood clotting and prevent microbial growth have wide applicability...

  14. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications.

    PubMed

    Ghanbarzadeh, Babak; Oleyaei, Seyed Amir; Almasi, Hadi

    2015-01-01

    Most materials currently used for food packaging are nondegradable, generating environmental problems. Several biopolymers have been exploited to develop materials for ecofriendly food packaging. However, the use of biopolymers has been limited because of their usually poor mechanical and barrier properties, which may be improved by adding reinforcing compounds (fillers), forming composites. Most reinforced materials present poor matrix-filler interactions, which tend to improve with decreasing filler dimensions. The use of fillers with at least one nanoscale dimension (nanoparticles) produces nanocomposites. Nanoparticles have proportionally larger surface area than their microscale counterparts, which favors the filler-matrix interactions and the performance of the resulting material. Besides nanoreinforcements, nanoparticles can have other functions when added to a polymer, such as antimicrobial activity, etc. in this review paper, the structure and properties of main kinds of nanostructured materials which have been studied to use as nanofiller in biopolymer matrices are overviewed, as well as their effects and applications. PMID:24798951

  15. Biopolymer colloids for controlling and templating inorganic synthesis

    PubMed Central

    Preiss, Laura C; Landfester, Katharina

    2014-01-01

    Summary Biopolymers and biopolymer colloids can act as controlling agents and templates not only in many processes in nature, but also in a wide range of synthetic approaches. Inorganic materials can be either synthesized ex situ and later incorporated into a biopolymer structuring matrix or grown in situ in the presence of biopolymers. In this review, we focus mainly on the latter case and distinguish between the following possibilities: (i) biopolymers as controlling agents of nucleation and growth of inorganic materials; (ii) biopolymers as supports, either as molecular supports or as carrier particles acting as cores of core–shell structures; and (iii) so-called “soft templates”, which include on one hand stabilized droplets, micelles, and vesicles, and on the other hand continuous scaffolds generated by gelling biopolymers. PMID:25551041

  16. Dynamics of Actively Driven Crosslinked Microtubule Networks

    NASA Astrophysics Data System (ADS)

    Yadav, Vikrant; Stanhope, Kasimira; Evans, Arthur A.; Ross, Jennifer L.

    We have designed a model experiment to explore dynamics of crosslinked active microtubule clusters crosslinked with MAP65. Microtubule clusters are allowed to settle on a slide coated with kinesin-1 molecular motors, which move microtubules. We systematically tune either concentration of cross linkers bound to microtubule (ρc) or the global concentration of microtubules (ρMT) . We quantified the shape of the cluster by measuring the standard deviation (σ) of the cluster outline. At low ρMTor ρc the network is in an expanding state. At higher ρMTor ρc expansion slows down, reaches zero at a critical density, and become negative indicating contraction. Further increase of ρMTor ρc halts any kind of dynamics. The ρMT-ρc phase space shows distinct regions of extensile, contractile and static regimes. We model these results using active hydrodynamic theory. Microtubules are modeled as active rods whereas effect of crosslinkers is modeled using a collision term that prefers anti-parallel alignment of microtubules. A linearized analysis of hydrodynamic equation predicts existence of density driven expanding, contracting, and static phases for microtubule clusters.

  17. Rheology and interfacial tension of biopolymers

    NASA Astrophysics Data System (ADS)

    Kandadai, Madhuvanthi A.

    The rheology and interfacial tension of biomaterials are important factors governing their potential use in biomedical applications. This dissertation presents a study of the rheology and interfacial tension of three very different biomaterials: (1) A hydrophobically modified Hyaluronic acid (HA) with polypeptide side chains, (2) Actin fibers and (3) a highly hydrophobic fluoroalkane, Perfluoropentane, and the effect of various surfactants and their mixtures on lowering its interfacial tension in an aqueous interface. In Chapter 1, we present a description of the properties and applications of these materials and a detailed literature review relevant to our studies to better understand the motivation of our work. In Chapter 2 we describe the techniques used for our studies. In Chapter 3, we present our studies on the hydrophobically modified HA with polyleucine side chains and compare them to unmodified HA of same or similar backbone molecular weights. We found a significantly enhanced viscosity for the modified HA compared to unmodified HA at the same concentration. We also found a viscoelastic behavior that was dependent on the concentration of the solution and grafting ratio of the hydrophobic side chains. The associative thickening properties of modified HA investigated with various rheological experiments and simulation results are presented in this chapter. In Chapter 4, we present our studies on the properties of actin fibers. We used a novel microrheometer VROC(TM) (Viscometer-rheometer-on-a-chip) for studying actin fibers at very high shear rates. We show that at very high shear rats, the actin filaments show irreversible network breakdown. We also studied the surface tension of actin filaments and monomer solutions at the interface with air and report induction times of these materials. In Chapter 5, we study the interfacial tension of a highly hydrophobic fluoroalkane, Perfluoropentane, in the presence of different surfactants and their mixtures. The

  18. Network Patch Cables Demystified: A Super Activity for Computer Networking Technology

    ERIC Educational Resources Information Center

    Brown, Douglas L.

    2004-01-01

    This article de-mystifies network patch cable secrets so that people can connect their computers and transfer those pesky files--without screaming at the cables. It describes a network cabling activity that can offer students a great hands-on opportunity for working with the tools, techniques, and media used in computer networking. Since the…

  19. Competition and cooperation between active intra-network and passive extra-network transport processes

    PubMed Central

    Maruyama, Dan; Zochowski, Michal

    2014-01-01

    Many networks are embedded in physical space and often interact with it. This interaction can be exemplified through constraints exerted on network topology, or through interactions of processes defined on a network with those that are linked to the space that the network is embedded within, leading to complex dynamics. Here we discuss an example of such an interaction in which a signaling agent is actively transported through the network edges and, at the same time, spreads passively through space due to diffusion. We show that these two processes cooperate or compete depending on the network topology leading to complex dynamics. PMID:24920178

  20. Nanoconfinement and the strength of biopolymers.

    PubMed

    Giesa, Tristan; Buehler, Markus J

    2013-01-01

    This review examines size effects observed in the mechanical strength of biopolymers that are organized in microstructures such as fibrils, layered composites, or particle nanocomposites. We review the most important aspects that connect nanoconfinement of basic material constituents at critical length scales to the mechanical performance of the entire material system: elastic modulus, strength, extensibility, and robustness. We outline theoretical and computational analysis as well as experimentation by emphasizing two strategies found in abundant natural materials: confined fibrils as part of fibers and confined mineral platelets that transfer load through a biopolymer interface in nanocomposites. We also discuss the application of confinement as a mechanism to tailor specific material properties in biological systems. PMID:23654307

  1. Scleroglucan biopolymer production, properties, and economics

    SciTech Connect

    Compere, A. L.; Griffith, W. L.

    1980-01-01

    Production and solution properties which may make scleroglucan polysaccharide economically advantageous for onsite production and use in tertiary oil recovery were investigated. Scleroglucan, which is similar in viscosity and shear thinning to xanthan, can be produced in a 3-day batch or 12 h continuous fermentation. Yield is nearly 50% based on input glucose. Gross biopolymer-biomass separation may be effected using microscreening, a low energy process, followed by polish filtration. Polymer flux may be improved by hydrolysis with an endolaminarinase from Rhizopus arrhizius QM 1032. Simple feedstock requirements and low growth pH, together with the difficulty of resuspending dried polymer, may encourage field biopolymer fermentation and use of purified culture broth.

  2. Spatially resolved electronic detection of biopolymers

    NASA Astrophysics Data System (ADS)

    Pouthas, F.; Gentil, C.; Côte, D.; Zeck, G.; Straub, B.; Bockelmann, U.

    2004-09-01

    An integrated array of field-effect transistor structures is used to detect two oppositely charged biopolymers: poly(L-lysine) and DNA. Local deposition of polymer solutions on part of the array induces sizeable variations in the dc current-voltage characteristics of the transistors exposed to the molecular charge. The whole transistor array is measured in the presence of a common electrolyte. Differential signals are studied as a function of electrolyte salt and polymer concentrations. The measurements provide information on the interface electrostatic potentials of the (semiconductor/biopolymer/electrolyte) system and the experimental data are compared to an analytical model which accounts for screening of the adsorbed charge by mobile ions.

  3. Long-range charge transfer in biopolymers

    NASA Astrophysics Data System (ADS)

    Astakhova, T. Yu; Likhachev, V. N.; Vinogradov, G. A.

    2012-11-01

    The results of theoretical and experimental studies on the charge transfer in biopolymers, namely, DNA and peptides, are presented. Conditions that ensure the efficient long-range charge transport (by several tens of nanometres) are considered. The known theoretical models of charge transfer mechanisms are discussed and the scopes of their application are analyzed. Attention is focused on the charge transport by the polaron mechanism. The bibliography includes 262 references.

  4. Biopolymer hairpin loops sustained by polarons

    NASA Astrophysics Data System (ADS)

    Chakrabarti, B.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2012-08-01

    We show that polarons can sustain looplike configurations in flexible biopolymers and that the size of the loops depend on both the flexural rigidity of the polymer and the electron-phonon coupling constant. In particular we show that for single stranded DNA (ssDNA) and polyacetylene such loops can have as few as seven monomers. We also show that these configurations are very stable under thermal fluctuations and so could facilitate the formation of hairpin loops of ssDNA.

  5. Nano-Fibrous Biopolymer Hydrogels via Biological Conjugation for Osteogenesis.

    PubMed

    Chen, Huinan; Xing, Xiaodong; Jia, Yang; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2016-06-01

    Nanostructured biopolymer hydrogels have great potential in the field of drug delivery and regenerative medicine. In this work, a nano-fibrous (NF) biopolymer hydrogel was developed for cell growth factors (GFs) delivery and in vitro osteogenesis. The nano-fibrous hydrogel was produced via biological conjugation of streptavidin functionalized hyaluronic acid (HA-Streptavidin) and biotin terminated star-shaped poly(ethylene glycol) (PEG-Biotin). In the present work, in vitro gelation, mechanical properties, degradation and equilibrium swelling of the NF hydrogel were examined. The potential application of this NF gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. Osteoblasts seeded directly in NF gel scaffold containing cell growth factor, e.g. bone morphogenetic protein 2 (BMP-2), was to mimic the in vivo microenvironment in which cells interface biomaterials and interact with BMP-2. In combination with BMP-2, the NF hydrogel exhibited beneficial effects on osteoblast activity and differentiation, which suggested a promising future for local treatment of pathologies involving bone loss. PMID:27427597

  6. Molecular entanglement and electrospinnability of biopolymers.

    PubMed

    Kong, Lingyan; Ziegler, Gregory R

    2014-01-01

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level. PMID:25226274

  7. Repairability of cross-linked biopolymers.

    PubMed

    Balkenhol, M; Michel, K; Stelzig, J; Wöstmann, B

    2009-02-01

    Repair of biopolymers is a critical issue, especially with aged restorations. Obtaining a chemical bond to the repair surface might solve this problem. We hypothesized that certain repair liquids are suitable to establish a strong bond to an artificially aged dimethacrylate-based biopolymer for temporary restorations. Specimens made of a self-curing temporary crown-and-bridge material were prepared and thermocycled for 7 days (5000x, 5-55 degrees C). Cylinders made of light-curing composites (n=10) were bonded onto the specimen surface, either after grinding or after the application of 4 different experimental repair liquids (Bis-GMA:TEGDMA mixture=bonding, methylmethacrylate=MMA, bonding & acetone, bonding & MMA). A shear bond strength test was performed 24 hrs after repair. The highest bond strength was obtained with the bonding & acetone liquid (20.1+/-2.2 MPa). The use of MMA significantly affected the bond strength (6.8+/-1.9 MPa). MMA is inadequate as a repair liquid on aged composite-based biopolymers. PMID:19278987

  8. Identities in flux: cognitive network activation in times of change.

    PubMed

    Menon, Tanya; Smith, Edward Bishop

    2014-05-01

    Using a dynamic cognitive model, we experimentally test two competing hypotheses that link identity and cognitive network activation during times of change. On one hand, affirming people's sense of power might give them confidence to think beyond the densest subsections of their social networks. Alternatively, if such power affirmations conflict with people's more stable status characteristics, this could create tension, deterring people from considering their networks' diversity. We test these competing hypotheses experimentally by priming people at varying levels of status with power (high/low) and asking them to report their social networks. We show that confirming identity-not affirming power-cognitively prepares people to broaden their social networks when the world is changing around them. The emotional signature of having a confirmed identity is feeling comfortable and in control, which mediates network activation. We suggest that stable, confirmed identities are the foundation from which people can exhibit greater network responsiveness. PMID:24576631

  9. Topological evolution of virtual social networks by modeling social activities

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang

    2015-09-01

    With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.

  10. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  11. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  12. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  13. Fate of biopolymers during rapeseed meal and wheat bran composting as studied by two-dimensional correlation spectroscopy in combination with multiple fluorescence labeling techniques.

    PubMed

    Wang, Li-Ping; Shen, Qi-Rong; Yu, Guang-Hui; Ran, Wei; Xu, Yang-Chun

    2012-02-01

    Detailed knowledge of the molecular events during composting is important in improving the efficiency of this process. By combining two-dimensional Fourier transform infrared (FTIR) correlation spectroscopy and multiple fluorescent labeling, it was possible to study the degradation of biopolymers during rapeseed meal and wheat bran composting. Two-dimensional FTIR correlation spectroscopy provided structural information and was used to deconvolute overlapping bands found in the compost FTIR spectra. The degradation of biopolymers in rapeseed meal and wheat bran composts followed the sequence: cellulose, heteropolysaccharides, and proteins. Fluorescent labeling suggested that cellulose formed an intact network-like structure and the other biopolymers were embedded in the core of this structure. The sequence of degradation of biopolymers during composting was related to their distribution patterns. PMID:22182472

  14. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  15. Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer st...

  16. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  17. Generating Coherent Patterns of Activity from Chaotic Neural Networks

    PubMed Central

    Sussillo, David; Abbott, L. F.

    2009-01-01

    Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. FORCE learning works even though the networks we train are spontaneously chaotic and we leave feedback loops intact and unclamped during learning. Using this approach, we construct networks that produce a wide variety of complex output patterns, input-output transformations that require memory, multiple outputs that can be switched by control inputs, and motor patterns matching human motion capture data. Our results reproduce data on pre-movement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated. PMID:19709635

  18. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  19. Structure and Properties of Polysaccharide Based BioPolymer Gels

    NASA Astrophysics Data System (ADS)

    Prud'Homme, Robert K.

    2000-03-01

    Nature uses the pyranose ring as the basic building unit for a wideclass of biopolymers. Because of their biological origin these biopolymers naturally find application as food additives, rheology modifiers. These polymers range from being rigid skeletal material, such as cellulose that resist dissolution in water, to water soluble polymers, such as guar or carrageenan. The flexibility of the basic pyranose ring structure to provide materials with such a wide range of properties comes from the specific interactions that can be engineered by nature into the structure. We will present several examples of specific interactions for these systems: hydrogen bonding, hydrophobic interactions, and specific ion interactions. The relationship between molecular interations and rheology will be emphasized. Hydrogen bonding mediated by steric interference is used to control of solubility of starch and the rheology of guar gels. A more interesting example is the hydrogen bonding induced by chemical modification in konjac glucomannan that results in a gel that melts upon cooling. Hydrogen bonding interactions in xanthan lead to gel formation at very low polymer concentrations which is a result of the fine tuning of the polymer persistence length and total contour length. Given the function of xanthan in nature its molecular architecture has been optimized. Hydrophobic interactions in methylcellulose show a reverse temperature dependence arising from solution entropy. Carrageenan gelation upon the addition of specific cations will be addressed to show the interplay of polymer secondary structure on chemical reactivity. And finally the cis-hydroxyls on galactomannans permit crosslinking by a variety of metal ions some of which lead to "living gels" and some of which lead to permanently crosslinked networks.

  20. Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery

    SciTech Connect

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    2015-11-02

    Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of network activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.

  1. Coalitions and networks: facilitating global physical activity promotion.

    PubMed

    Matsudo, Sandra Mahecha; Matsudo, Victor Rodrigues

    2006-01-01

    This article aims to synthesise the experience of coalitions and networks working for physical activity promotion. By introducing the concept of partnerships, especially within the Brazilian context, the authors outline the factors that comprise a successful partnership, describing key elements, such as, financing, membership and methods of empowerment. Agita São Paulo, the Physical Activity Network of the Americas-RAFA-PANA and Agita Mundo are used as examples. The article shows that local, national and global programmes, partnerships and networks at all levels are essential to guarantee the success of physical activity promotion as a public health strategy. PMID:17017291

  2. Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin.

    PubMed

    Zhao, Shanyu; Malfait, Wim J; Demilecamps, Arnaud; Zhang, Yucheng; Brunner, Samuel; Huber, Lukas; Tingaut, Philippe; Rigacci, Arnaud; Budtova, Tatiana; Koebel, Matthias M

    2015-11-23

    Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica-biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin-silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed "neck-free" nanoscale network structure with thicker struts. Such a design is superior to "neck-limited", classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica-biopolymer nanocomposite aerogels. PMID:26447457

  3. Botulinum Toxin Suppression of CNS Network Activity In Vitro

    PubMed Central

    Pancrazio, Joseph J.; Gopal, Kamakshi; Keefer, Edward W.; Gross, Guenter W.

    2014-01-01

    The botulinum toxins are potent agents which disrupt synaptic transmission. While the standard method for BoNT detection and quantification is based on the mouse lethality assay, we have examined whether alterations in cultured neuronal network activity can be used to detect the functional effects of BoNT. Murine spinal cord and frontal cortex networks cultured on substrate integrated microelectrode arrays allowed monitoring of spontaneous spike and burst activity with exposure to BoNT serotype A (BoNT-A). Exposure to BoNT-A inhibited spike activity in cultured neuronal networks where, after a delay due to toxin internalization, the rate of activity loss depended on toxin concentration. Over a 30 hr exposure to BoNT-A, the minimum concentration detected was 2 ng/mL, a level consistent with mouse lethality studies. A small proportion of spinal cord networks, but not frontal cortex networks, showed a transient increase in spike and burst activity with exposure to BoNT-A, an effect likely due to preferential inhibition of inhibitory synapses expressed in this tissue. Lastly, prior exposure to human-derived antisera containing neutralizing antibodies prevented BoNT-A induced inhibition of network spike activity. These observations suggest that the extracellular recording from cultured neuronal networks can be used to detect and quantify functional BoNT effects. PMID:24688538

  4. Botulinum toxin suppression of CNS network activity in vitro.

    PubMed

    Pancrazio, Joseph J; Gopal, Kamakshi; Keefer, Edward W; Gross, Guenter W

    2014-01-01

    The botulinum toxins are potent agents which disrupt synaptic transmission. While the standard method for BoNT detection and quantification is based on the mouse lethality assay, we have examined whether alterations in cultured neuronal network activity can be used to detect the functional effects of BoNT. Murine spinal cord and frontal cortex networks cultured on substrate integrated microelectrode arrays allowed monitoring of spontaneous spike and burst activity with exposure to BoNT serotype A (BoNT-A). Exposure to BoNT-A inhibited spike activity in cultured neuronal networks where, after a delay due to toxin internalization, the rate of activity loss depended on toxin concentration. Over a 30 hr exposure to BoNT-A, the minimum concentration detected was 2 ng/mL, a level consistent with mouse lethality studies. A small proportion of spinal cord networks, but not frontal cortex networks, showed a transient increase in spike and burst activity with exposure to BoNT-A, an effect likely due to preferential inhibition of inhibitory synapses expressed in this tissue. Lastly, prior exposure to human-derived antisera containing neutralizing antibodies prevented BoNT-A induced inhibition of network spike activity. These observations suggest that the extracellular recording from cultured neuronal networks can be used to detect and quantify functional BoNT effects. PMID:24688538

  5. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  6. Observations on Electronic Networks: Appropriate Activities for Learning.

    ERIC Educational Resources Information Center

    Levin, James A.; And Others

    1989-01-01

    Discussion of the use of electronic networks for learning activities highlights the Noon Observation Project in which students in various locations measured the length of a noontime shadow to determine the earth's circumference. Electronic pen pals are discussed, and the roles of the network and of the class are described. (LRW)

  7. The Global Space Geodesy Network: Activities Underway

    NASA Astrophysics Data System (ADS)

    Pearlman, Michael R.; Ipatov, Alexander; Long, James; Ma, Chopo; Merkowitz, Stephen; Neilan, Ruth; Noll, Carey; Pavlis, Erricos; Shargorodsky, Victor; Stowers, David; Wetzel, Scott

    2014-05-01

    Several initiatives are underway that should make substantial improvement over the next decade to the international space geodesy network as the international community works toward the GGOS 2020 goal of 32 globally distributed Core Sites with co-located VLBI, SLR, GNSS and DORIS. The Russian Space Agency and the Russian Academy of Sciences are moving forward with an implementation of six additional SLR systems and a number of GNSS receivers to sites outside Russia to expand GNSS tracking and support GGOS. The NASA Space Geodesy program has completed its prototype development phase and is now embarking on an implementation phase that is planning for deployment of 6 - 10 core sites in key geographic locations to support the global network. Additional sites are in the process of implementation in Europe and Asia. Site evaluation studies are in progress, looking at some new potential sites and there are ongoing discussions for partnership arrangements with interested agencies for new sites in South America and Africa. Work continues on the site layout design to avoid RF interference issues among co-located instruments and with external communications and media system. The placement of new and upgraded sites is guided by appropriate Observing System Simulation Experiments (OSSEs) conducted under the support of the interested international agencies. The results will help optimize the global distribution of core geodetic observatories and they will lead to the improvement of the data products from the future network. During this effort it is also recognized that co-located sites with less than the full core complement will continue to play an important and critical role in filling out the global network and strengthening the connection among the techniques. This talk will give an update on the current state of expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.

  8. Biopolymer based nanocomposites reinforced with graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Botta, L.; Scaffaro, R.; Mistretta, M. C.; La Mantia, F. P.

    2016-05-01

    In this work, biopolymer based nanocomposites filled with graphene nanoplatelets (GnP) were prepared by melt compounding in a batch mixer. The polymer used as matrix was a commercial biodegradable polymer-blend of PLA and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), rheological and mechanical measurements. Moreover, the effect of the GnP amount on the investigated properties was evaluated. The results indicated that the incorporation of GnP increased the stiffness of the biopolymeric matrix.

  9. Monitoring Biopolymer Degradation by Taylor Dispersion Analysis.

    PubMed

    Chamieh, Joseph; Biron, Jean Philippe; Cipelletti, Luca; Cottet, Hervé

    2015-12-14

    This work aims at demonstrating the interest of modern Taylor dispersion analysis (TDA), performed in narrow internal diameter capillary, for monitoring biopolymer degradations. Hydrolytic and enzymatic degradations of dendrigraft poly-l-lysine taken as model compounds have been performed and monitored by TDA at different degradation times. Different approaches for the data processing of the taylorgrams are compared, including simple integration of the taylorgram, curve fitting with a finite number of Gaussian peaks, cumulant-like method and Constrained Regularized Linear Inversion approach. Valuable information on the kinetics of the enzymatic/hydrolytic degradation reactions and on the degradation process can be obtained by TDA. PMID:26633075

  10. USING BIOPOLYMERS TO REMOVE HEAVY METALS FROM SOIL AND WATER

    EPA Science Inventory

    Chemical remediation of soils may involve the use of harsh chemicals that generate waste streams and may adversely affect the soil's integrity and ability to support vegetation. his paper reviews the promise of benign reagents such as biopolymers to extract metals. he biopolymers...

  11. Using biopolymers to remove heavy metals from soil and water

    SciTech Connect

    Krishnamurthy, S.; Frederick, R.M.

    1993-11-19

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy metals. The biopolymers discussed are chitin and chitosan, modified starch, cellulose, and polymer-containing algae. (Copyright (c) Remediation 1994.)

  12. Fine Structure of Starch-Clay Composites as Biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Midsol 50 wheat starch and 5% Cloisite clay with or without the addition of glycerin were used to prepare biopolymers in a twin-screw extruder. Early trials of sectioning the unembedded biopolymer resulted in the immediate absorption of water and subsequent dissolution of the sample due to the the ...

  13. Biopolymer capped silver nanoparticles with potential for multifaceted applications.

    PubMed

    Vanamudan, Ageetha; Sudhakar, P Padmaja

    2016-05-01

    A sustainable, green and low cost method for the synthesis of silver nanoparticles at room temperature has been developed using guargum as a reducing and stabilizing agent. The synthesized silver nanoparticles (GAg) were characterized by UV-vis spectroscopy, FTIR, EDS, Raman, XRD and TEM. The interaction of the functional groups present in the biopolymer Guargum (G) with the silver nanoparticles (GAg) were responsible for the nanoparticle surface to function as active substrates for Surface Enhanced Raman Spectroscopic (SERS) detection of cationic and anionic dyes. The catalytic degradation of a copper phthalocyanine based dye- Reactive blue - 21(RB-21), an azo dye- Reactive red 141(RR-141) and a xanthene dye- Rhodamine - 6G(Rh-6G) as well as binary mixtures of the three dyes was evaluated using the synthesized nanoparticles. The catalyst also caused a significant reduction in Total Organic Carbon (TOC) suggesting the formation of smaller degraded products. PMID:26800899

  14. Gold Nanoparticle-Polymer/Biopolymer Complexes for Protein Sensing

    PubMed Central

    Moyano, Daniel F.; Rana, Subinoy; Bunz, Uwe H. F.; Rotello, Vincent M.

    2014-01-01

    Nanoparticle-based sensor arrays have been used to distinguish a wide range of biomolecular targets through pattern recognition. Such biosensors require selective receptors that generate a unique response pattern for each analyte. The tunable surface properties of gold nanoparticles make these systems excellent candidates for the recognition process. Likewise, the metallic core makes these particles fluorescence superquenchers, facilitating transduction of the binding event. In this report we analyze the role of gold nanoparticles as receptors in differentiating a diversity of important human proteins different, and the role of the polymer/biopolymer fluorescent probes for transducing the binding event. A structure-activity relationship analysis of both the probes and the nanoparticles is presented, providing direction for the engineering of future sensor systems. PMID:22455037

  15. Active Sampling in Evolving Neural Networks.

    ERIC Educational Resources Information Center

    Parisi, Domenico

    1997-01-01

    Comments on Raftopoulos article (PS 528 649) on facilitative effect of cognitive limitation in development and connectionist models. Argues that the use of neural networks within an "Artificial Life" perspective can more effectively contribute to the study of the role of cognitive limitations in development and their genetic basis than can using…

  16. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  17. Epidemic spreading and immunization in node-activity networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Chen, Shufang

    2015-09-01

    In this paper, we study the epidemic spreading in node-activity networks, where an individual participates in social networks with a certain rate h. There are two cases for h: the state-independent case and the state-dependent case. We investigate the epidemic threshold as a function of h compared to the static network. Our results suggest the epidemic threshold cannot be exactly predicted by using the analysis approach in the static network. In addition, we further propose a local information-based immunization protocol on node-activity networks. Simulation analysis shows that the immunization can not only eliminate the infectious disease, but also change the epidemic threshold via increasing the immunization parameter.

  18. Active system area networks for data intensive computations. Final report

    SciTech Connect

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  19. How new biopolymers can improve muds

    SciTech Connect

    Dino, D.; Lindblad, D.E.; Moorhouse, R. )

    1993-11-01

    Xantham gum was introduced as a drilling-fluid component in the mid-1960s, but its use has risen noticeably since 1970, as prevalence of inhibitive polymeric drilling fluids has increased. Xanthan is known for its ability to build viscosity in both fresh water and salt solutions, its exceptional shear-thinning properties, and its tolerance to pH, all without environmental problems. Although biopolymers like xanthan typically represent only 0.25--1.5 lb/bbl of a drilling fluid, they are critical in building rheology, from spudding to the special demands of angled drilling and well completion. They add properties to muds which expand their use across a variety of formations and over a wide temperature range. Beyond xanthan, another useful class of biopolymers are the guar gums. Just as muds incorporating xanthan have been in the mainstay in rheology building over the years for many muds, fluids incorporating guar have long been the backbone of fracturing fluids. Guar and its derivatives are extremely versatile as rheology modifiers, particularly when used in conjunction with xanthans. In fact, xanthan/guar combinations have already been enhancing the effectiveness of muds at drill sites in the US. This paper reviews the performance of mixed xantham/guar additives to obtain an even better mud control system.

  20. Systematic fluctuation expansion for neural network activity equations

    PubMed Central

    Buice, Michael A.; Cowan, Jack D.; Chow, Carson C.

    2009-01-01

    Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate while leaving out higher order statistics like correlations between firing. A stochastic theory of neural networks which includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations, i.e. they depend only upon the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone. PMID:19852585

  1. Activator-inhibitor systems on heterogeneous ecological networks

    NASA Astrophysics Data System (ADS)

    Nicolaides, C.; Cueto-Felgueroso, L.; Juanes, R.

    2012-12-01

    The consideration of activator-inhibitor systems as complex networks has broadened our knowledge of non-equilibrium reaction-diffusion processes in heterogeneous systems. For example, the Turing mechanism represents a classical model for the formation of self-organized spatial structures in non-equilibrium activator-inhibitor systems. The study of Turing patterns in networks with heterogeneous connectivity has revealed that, contrary to other models and systems, the segregation process takes place mainly in vertices of low degree. In this paper, we study the formation of vegetation patterns in semiarid ecosystems from the perspective of a heterogeneous interacting ecological network. The structure of ecological networks yields fundamental insight into the ecosystem self-organization. Using simple rules for the short-range activation and global inhibition, we reconstruct the observed power-law distribution of vegetation patch size that has been observed in semiarid ecosystems like the Kalahari transect.

  2. pH-induced contrast in viscoelasticity imaging of biopolymers

    NASA Astrophysics Data System (ADS)

    Yapp, R. D.; Insana, M. F.

    2009-03-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  3. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    PubMed Central

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  4. Turing patterns in network-organized activator-inhibitor systems

    NASA Astrophysics Data System (ADS)

    Nakao, Hiroya; Mikhailov, Alexander S.

    2010-07-01

    Turing instability in activator-inhibitor systems provides a paradigm of non-equilibrium self-organization; it has been extensively investigated for biological and chemical processes. Turing instability should also be possible in networks, and general mathematical methods for its treatment have been formulated previously. However, only examples of regular lattices and small networks were explicitly considered. Here we study Turing patterns in large random networks, which reveal striking differences from the classical behaviour. The initial linear instability leads to spontaneous differentiation of the network nodes into activator-rich and activator-poor groups. The emerging Turing patterns become furthermore strongly reshaped at the subsequent nonlinear stage. Multiple coexisting stationary states and hysteresis effects are observed. This peculiar behaviour can be understood in the framework of a mean-field theory. Our results offer a new perspective on self-organization phenomena in systems organized as complex networks. Potential applications include ecological metapopulations, synthetic ecosystems, cellular networks of early biological morphogenesis, and networks of coupled chemical nanoreactors.

  5. Connectivity, excitability and activity patterns in neuronal networks

    NASA Astrophysics Data System (ADS)

    le Feber, Joost; Stoyanova, Irina I.; Chiappalone, Michela

    2014-06-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFPi,j) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFPi,j with the autocorrelation of i (i.e. CFPi,i), to obtain the single pulse response (SPRi,j)—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression.

  6. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts.

    PubMed

    Dranias, Mark R; Westover, M Brandon; Cash, Sidney; VanDongen, Antonius M J

    2015-01-01

    In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI. PMID:25755638

  7. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts

    PubMed Central

    Dranias, Mark R.; Westover, M. Brandon; Cash, Sidney; VanDongen, Antonius M. J.

    2015-01-01

    In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI. PMID:25755638

  8. A neural networks study of quinone compounds with trypanocidal activity.

    PubMed

    de Molfetta, Fábio Alberto; Angelotti, Wagner Fernando Delfino; Romero, Roseli Aparecida Francelin; Montanari, Carlos Alberto; da Silva, Albérico Borges Ferreira

    2008-10-01

    This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T5 (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency. PMID:18629551

  9. Probing mechanics and activity of cytoskeletal networks using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fakhri, Nikta

    2013-03-01

    We use single-walled carbon nanotubes (SWNTs) as multi-scale micro-probes to monitor transport and fluctuations in cytoskeletal networks. SWNTs are nanometer-diameter hollow carbon filaments with micrometer lengths and a tunable bending stiffness. Their persistence length varies between 20-100 microns. We study the motion of individual SWNTs in reconstituted actin networks by near-infrared fluorescence microscopy. At long times, SWNTs reptate through the networks. At short times, SWNTs sample the spectrum of thermal fluctuations in the networks. We can calculate complex shear moduli from recorded fluctuations and observe power-law scaling in equilibrium actin networks. In the non-equilibrium cytoskeleton of cells we have targeted SWNTs to kinesin motors and thereby to their microtubule tracks. We observe both transport along the tracks as well as active fluctuations of the tracks themselves. Human Frontier Science Program Cross-Disciplinary Fellow

  10. Chronic electrical stimulation homeostatically decreases spontaneous activity, but paradoxically increases evoked network activity

    PubMed Central

    Goel, Anubhuti

    2013-01-01

    Neural dynamics generated within cortical networks play a fundamental role in brain function. However, the learning rules that allow recurrent networks to generate functional dynamic regimes, and the degree to which these regimes are themselves plastic, are not known. In this study we examined plasticity of network dynamics in cortical organotypic slices in response to chronic changes in activity. Studies have typically manipulated network activity pharmacologically; we used chronic electrical stimulation to increase activity in in vitro cortical circuits in a more physiological manner. Slices were stimulated with “implanted” electrodes for 4 days. Chronic electrical stimulation or treatment with bicuculline decreased spontaneous activity as predicted by homeostatic learning rules. Paradoxically, however, whereas bicuculline decreased evoked network activity, chronic stimulation actually increased the likelihood that evoked stimulation elicited polysynaptic activity, despite a decrease in evoked monosynaptic strength. Furthermore, there was an inverse correlation between spontaneous and evoked activity, suggesting a homeostatic tradeoff between spontaneous and evoked activity. Within-slice experiments revealed that cells close to the stimulated electrode exhibited more evoked polysynaptic activity and less spontaneous activity than cells close to a control electrode. Collectively, our results establish that chronic stimulation changes the dynamic regimes of networks. In vitro studies of homeostatic plasticity typically lack any external input, and thus neurons must rely on “spontaneous” activity to reach homeostatic “set points.” However, in the presence of external input we propose that homeostatic learning rules seem to shift networks from spontaneous to evoked regimes. PMID:23324317

  11. Optical properties of DNA-CTMA biopolymers and applications in metal-biopolymer-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Kim, Sung Jin; Bartsch, Carrie M.; Heckman, Emily M.; Ouchen, Fahima; Cartwright, Alexander N.

    2011-09-01

    The potential of using a DNA biopolymer in an electro-optic device is presented. A complex of DNA with the cationic surfactant cetyltrimethylammonium-chloride (CTMA) was used to obtain an organic-soluble DNA material (DNA-CTMA). Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) was added to the DNACTMA to increase the electrical conductivity of the biopolymer. The CW absorbance and time-resolved photoluminescence of the resulting DNA-CTMA and DNA-CTMA-PEDOT:PSS were investigated. Both DNA materials have absorbance peaks at ~260 nm and a broad, Stokes shifted, photoluminescence peak around 470nm. The photoluminescence lifetime of the materials was observed to decrease with increasing UV excitation. Specifically, excitation with a high power ultrafast (~150fs) UV (266nm) laser pulse resulted in a drastic decrease in the photoluminescence lifetime decreases after a few minutes. Moreover, the observed decrease was faster in an air ambient than in a nitrogen ambient. This is most likely due to photo-oxidation that degrades the polymer surface resulting in an increase in the non-radiative recombination. In order to investigate the photoconductivity of these two materials, metal-biopolymer-metal (MBM) ultraviolet photodetectors with interdigitated electrodes were fabricated and characterized. The photoresponsivity of these devices was limited by the transport dynamics within the film. The prospects for the use of these materials in optical devices will be discussed.

  12. Locust bean gum: a versatile biopolymer.

    PubMed

    Prajapati, Vipul D; Jani, Girish K; Moradiya, Naresh G; Randeria, Narayan P; Nagar, Bhanu J

    2013-05-15

    Biopolymers or natural polymers are an attractive class of biodegradable polymers since they are derived from natural sources, easily available, relatively cheap and can be modified by suitable reagent. Locust bean gum is one of them that have a wide potentiality in drug formulations due to its extensive application as food additive and its recognized lack of toxicity. It can be tailored to suit its demands of applicants in both the pharmaceutical and biomedical areas. Locust bean gum has a wide application either in the field of novel drug delivery system as rate controlling excipients or in tissue engineering as scaffold formation. Through keen references of reported literature on locust bean gum, in this review, we have described critical aspects of locust bean gum, its manufacturing process, physicochemical properties and applications in various drug delivery systems. PMID:23544637

  13. Biopolymer-protected CdSe nanoparticles.

    PubMed

    Bozanić, D K; Djoković, V; Bibić, N; Sreekumari Nair, P; Georges, M K; Radhakrishnan, T

    2009-11-23

    A synthetic procedure for the encapsulation of cadmium selenide (CdSe) nanoparticles in a sago starch matrix is introduced. The nanocomposite was investigated using structural, spectroscopic, and thermal methods. TEM micrographs of the nanocomposite showed spherical CdSe particles of 4-5 nm in size coated with a biopolymer layer. The absorption edges of both the aqueous solution and the thin film of the CdSe-starch nanocomposite were shifted toward lower wavelengths in comparison to the value of the bulk semiconductor. Infrared measurements revealed that the interaction of CdSe nanoparticles and starch chains takes place via OH groups. Although the onset of the temperature of decomposition of CdSe-starch nanocomposite is lower than that of the pure matrix, thermogravimetric analysis also showed that introduction of CdSe nanoparticles significantly reduced starch degradation rate leading to high residual mass at the end of the degradation process. PMID:19772959

  14. Dual production of biopolymers from bacteria.

    PubMed

    Sukan, Artun; Roy, Ipsita; Keshavarz, Tajalli

    2015-08-01

    Rapid depletion of natural resources with continued demands of an increasing population and high consumption rates of today's world will cause serious problems in the future. This, along with environmental concerns, has directed research towards finding alternatives in variety of sectors including sustainable and environmentally friendly consumer goods. Biopolymers of bacterial origin, with their vast range of applications, biodegradability and eco-friendly manufacturing processes, are one of the alternatives for a more sustainable future. However, the cost of their production is a drawback. Simultaneous production processes have always been an option for researchers in order to reduce cost, but the variable requirements of microorganisms to produce both different and valuable products are a hindering factor. This review will look at some examples and identify ideas towards developing a successful strategy for simultaneous production of bio-products. PMID:25933521

  15. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  16. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    NASA Astrophysics Data System (ADS)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  17. Pattern Formation on Networks: from Localised Activity to Turing Patterns.

    PubMed

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  18. Submicro foaming in biopolymers by UV pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Oujja, Mohamed; Rebollar, Esther; Gaspard, Solenne; Abrusci, Concepción; Catalina, Fernando; Lazare, Sylvain; Castillejo, Marta

    2006-05-01

    Microstructuring of polymers and biopolymers is of application in medical technology and biotechnology. Using different fabrication techniques three-dimensionally shaped and micro structured constructs can be developed for drug release and tissue engineering. As an alternative method, laser microstructuring offers a series of advantages including high resolution capability, low heat deposition in the substrate and high level of flexibility. In this work we present evidence of laser microfoam formation in collagen and gelatine by nanosecond pulsed laser irradiation in the UV at 248 and 266 nm. Irradiation at 355 nm produces melting followed by resolidification of the substrate, whereas irradiation at 532 and 1064 nm induces the formation of craters of irregular contours. Single pulse irradiation of a collagen film with an homogenized KrF microbeam yields a 20 μm thick expanded layer, which displays the interesting features of a nanofibrous 3-dimensional network with open cells. In gelatine, irradiation at 248 and 266 nm produces similar morphological modifications. The effect of the structural properties of the substrate on the laser induced microfoam is studied by comparing gelatines differing in gel strength (Bloom values 225 and 75) and in crosslinking degree. While results are discussed on the basis of thermal and photomechanical mechanisms and of the role played by the water content of the substrates, it is thought that such structures could have a biomimic function in future 3D cell culture devices for research.

  19. Dynamic light-scattering monitoring of a transient biopolymer gel

    NASA Astrophysics Data System (ADS)

    Kostko, A. F.; Chen, T.; Payne, G. F.; Anisimov, M. A.

    2003-05-01

    We performed dynamic light-scattering (DLS) monitoring and a rheological study to characterize the formation and destruction of a transient (limited lifetime) gel formed from the biopolymers chitosan and gelatin. Gel formation, initiated by the enzyme tyrosinase, is followed by spontaneous gel breakage. Our DLS results demonstrate that this material passes through five stages in which the gel forms, consolidates, “lives”, softens, and eventually breaks. We speculate that the existence of the transient gel is caused by a competition between two processes: a fast-rate chemical reaction leading to formation of a branched-copolymer network and a slow-rate diffusion-like rearrangement of the gelatin branches resulting in eventual gel breakage. Despite a dramatic difference in the characteristic times of the gel formation ( tg) and gel breakage ( tb)-the ratio tb/ tg is of the order 10 3-DLS has revealed an intrinsic monitoring-time symmetry in the formation and destruction of the gel provided that a proper physical choice of the reduced temporal scale is used. In this scale the slow-mode relaxation time for both sides of the process, gel formation and gel destruction, exhibits a power law in the spirit of percolation theory.

  20. Collective versus hub activation of epidemic phases on networks

    NASA Astrophysics Data System (ADS)

    Ferreira, Silvio C.; Sander, Renan S.; Pastor-Satorras, Romualdo

    2016-03-01

    We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large degree exponent, at odds with canonical theoretical approaches.

  1. Correlated gene expression supports synchronous activity in brain networks

    PubMed Central

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M. Mallar; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun L.W.; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F.; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W.; Smolka, Michael N.; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D.

    2016-01-01

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  2. Non-equilibrium States of Active Filament Networks

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert A.; Betterton, Meredith D.; Sweezy, Oliver M.; Glaser, Matthew A.

    2014-03-01

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many cellular processes. Among the most important active networks is the mitotic spindle, an assembly of microtubules and crosslinking motor proteins that forms during cell division and that ultimately separates chromosomes into two daughter cells. To evolve a better understanding of spindle formation, structure, and dynamics, we have developed course-grained models of active networks composed of filaments, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of crosslinking motors, modeled as Hookean springs that can adsorb to microtubules and translocate at finite velocity along the microtubule axis. We explore the phase diagram and other characteristics of this model in two and three dimensions as a function of filament packing fraction, and of crosslink concentration, velocity, and adsorption and desorption rates. We observe a variety of interesting emergent behaviors including sorting of filaments into polar domains, generation of extensile stress, and superdiffusive transport. DMR-0820579

  3. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  4. Development of Budesonide Loaded Biopolymer Based Dry Powder Inhaler: Optimization, In Vitro Deposition, and Cytotoxicity Study

    PubMed Central

    Mali, Ashwin J.; Pawar, Atmaram P.; Purohit, Ravindra N.

    2014-01-01

    The progress in the development of DPI technology has boosted the use of sensitive drug molecules for lung diseases. However, delivery of these molecules from conventional DPI to the active site still poses a challenge with respect to deposition efficiency in the lung. At same time, serious systemic side effects of drugs have become a cause for concern. The developed budesonide loaded biopolymer based controlled release DPI had shown maximum in vitro lung deposition with least toxicity. The subject of present study, lactose-free budesonide loaded biopolymer based DPI, further corroborates the great potential of antiasthmatic drugs. This technology is expected to revolutionize the approaches towards enhanced therapeutic delivery of prospective drugs. PMID:26556201

  5. Coordinating Computing, Network and Archiving activities within INAF

    NASA Astrophysics Data System (ADS)

    Pasian, F.; Bodo, G.; Fini, L.; Garilli, B.; Longo, G.; Massimino, P.; Nanni, M.; Smareglia, R.

    When INAF was reformed, it was decided to create a `Computing, Network and Archives Service' within the Projects Department, in order to coordinate all computer-related activities and to properly harmonize management and development policies in the field. A `Computing, Network and Archives Committee' was immediately nominated for the duration of one year to cope with the immediate needs. The Committee has the task of identifying and making operational strategies to coordinate activities in the areas of interest, improving service to all users, implementing synergies and economies, while guaranteeing a single INAF contact point for all external institutions working in the field.

  6. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  7. End-of-life of starch-polyvinyl alcohol biopolymers.

    PubMed

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model. PMID:23131650

  8. Laser-induced periodic surface structuring of biopolymers

    NASA Astrophysics Data System (ADS)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  9. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  10. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed. PMID:26520406

  11. Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating.

    PubMed

    Greque de Morais, Michele; Greque de Morais, Etiele; Vaz, Bruna da Silva; Gonçalves, Carolina Ferrer; Lisboa, Cristiane; Costa, Jorge Alberto Vieira

    2016-01-01

    Microalgae have been studied in biotechnological processes due to the various biocompounds that can be obtained from their biomasses, including pigments, proteins, antioxidants, biopeptides, fatty acids and biopolymers. Microalgae biopolymers are biodegradable materials that present similar characteristics to traditional polymers, with the advantage of being rapidly degraded when discarded. In addition, nanoencapsulation is capable of increasing the availability of bioactive compounds by allowing the release of these biocompounds to occur slowly over time. The use of polymers in the nanoencapsulation of active ingredients can mask the undesired physicochemical properties of the compounds to be encapsulated, thereby enhancing consumer acceptability. This covering also acts as a barrier against several foreign substances that can react with bioactive compounds and reduce their activity. Studies of the development of poly-3-hydroxybutyrate (PHB) nanocapsules from microbial sources are little explored; this review addresses the use of nanotechnology to obtain bioactive compounds coated with biopolymer nanocapsules, both obtained from Spirulina biomasses. These microalgae are Generally Recognized as Safe (GRAS) certified, which guarantees that the biomass can be used to obtain high added value biocompounds, which can be used in human and animal supplementation. PMID:27398435

  12. Network effect of knowledge spillover: Scale-free networks stimulate R&D activities and accelerate economic growth

    NASA Astrophysics Data System (ADS)

    Konno, Tomohiko

    2016-09-01

    We study how knowledge spillover networks affect research and development (R&D) activities and economic growth. For this purpose, we extend a Schumpeterian growth model to the one on networks that depict the knowledge spillover relationships of R&D. We show that scale-free networks stimulate R&D activities and accelerate economic growth.

  13. Persistent Activity in Neural Networks with Dynamic Synapses

    PubMed Central

    Barak, Omri; Tsodyks, Misha

    2007-01-01

    Persistent activity states (attractors), observed in several neocortical areas after the removal of a sensory stimulus, are believed to be the neuronal basis of working memory. One of the possible mechanisms that can underlie persistent activity is recurrent excitation mediated by intracortical synaptic connections. A recent experimental study revealed that connections between pyramidal cells in prefrontal cortex exhibit various degrees of synaptic depression and facilitation. Here we analyze the effect of synaptic dynamics on the emergence and persistence of attractor states in interconnected neural networks. We show that different combinations of synaptic depression and facilitation result in qualitatively different network dynamics with respect to the emergence of the attractor states. This analysis raises the possibility that the framework of attractor neural networks can be extended to represent time-dependent stimuli. PMID:17319739

  14. Patterns of Neural Activity in Networks with Complex Connectivity

    NASA Astrophysics Data System (ADS)

    Solla, Sara A.

    2008-03-01

    An understanding of emergent dynamics on complex networks requires investigating the interplay between the intrinsic dynamics of the node elements and the connectivity of the network in which they are embedded. In order to address some of these questions in a specific scenario of relevance to the dynamical states of neural ensembles, we have studied the collective behavior of excitable model neurons in a network with small-world topology. The small-world network has local lattice order, but includes a number of randomly placed connections that may provide connectivity shortcuts. This topology bears a schematic resemblance to the connectivity of the cerebral cortex, in which neurons are most strongly coupled to nearby cells within fifty to a hundred micrometers, but also make projections to cells millimeters away. We find that the dynamics of this small-world network of excitable neurons depend mostly on both the density of shortcuts and the delay associated with neuronal projections. In the regime of low shortcut density, the system exhibits persistent activity in the form of propagating waves, which annihilate upon collision and are spawned anew via the re-injection of activity through shortcut connections. As the density of shortcuts reaches a critical value, the system undergoes a transition to failure. The critical shortcut density results from matching the time associated with a recurrent path through the network to an intrinsic recovery time of the individual neurons. Furthermore, if the delay associated with neuronal interactions is sufficiently long, activity reemerges above the critical density of shortcuts. The activity in this regime exhibits long, chaotic transients composed of noisy, large-amplitude population bursts.

  15. Impact of Network Activity on the Spread of Infectious Diseases through the German Pig Trade Network

    PubMed Central

    Lebl, Karin; Lentz, Hartmut H. K.; Pinior, Beate; Selhorst, Thomas

    2016-01-01

    The trade of livestock is an important and growing economic sector, but it is also a major factor in the spread of diseases. The spreading of diseases in a trade network is likely to be influenced by how often existing trade connections are active. The activity α is defined as the mean frequency of occurrences of existing trade links, thus 0 < α ≤ 1. The observed German pig trade network had an activity of α = 0.11, thus each existing trade connection between two farms was, on average, active at about 10% of the time during the observation period 2008–2009. The aim of this study is to analyze how changes in the activity level of the German pig trade network influence the probability of disease outbreaks, size, and duration of epidemics for different disease transmission probabilities. Thus, we want to investigate the question, whether it makes a difference for a hypothetical spread of an animal disease to transport many animals at the same time or few animals at many times. A SIR model was used to simulate the spread of a disease within the German pig trade network. Our results show that for transmission probabilities <1, the outbreak probability increases in the case of a decreased frequency of animal transports, peaking range of α from 0.05 to 0.1. However, for the final outbreak size, we find that a threshold exists such that finite outbreaks occur only above a critical value of α, which is ~0.1, and therefore in proximity of the observed activity level. Thus, although the outbreak probability increased when decreasing α, these outbreaks affect only a small number of farms. The duration of the epidemic peaks at an activity level in the range of α = 0.2–0.3. Additionally, the results of our simulations show that even small changes in the activity level of the German pig trade network would have dramatic effects on outbreak probability, outbreak size, and epidemic duration. Thus, we can conclude and recommend that the network activity

  16. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity

    PubMed Central

    Evers, Jan Felix; Eglen, Stephen J.

    2016-01-01

    Developing neuronal networks display spontaneous bursts of action potentials that are necessary for circuit organization and tuning. While spontaneous activity has been shown to instruct map formation in sensory circuits, it is unknown whether it plays a role in the organization of motor networks that produce rhythmic output. Using computational modeling, we investigate how recurrent networks of excitatory and inhibitory neuronal populations assemble to produce robust patterns of unidirectional and precisely timed propagating activity during organism locomotion. One example is provided by the motor network in Drosophila larvae, which generates propagating peristaltic waves of muscle contractions during crawling. We examine two activity-dependent models, which tune weak network connectivity based on spontaneous activity patterns: a Hebbian model, where coincident activity in neighboring populations strengthens connections between them; and a homeostatic model, where connections are homeostatically regulated to maintain a constant level of excitatory activity based on spontaneous input. The homeostatic model successfully tunes network connectivity to generate robust activity patterns with appropriate timing relationships between neighboring populations. These timing relationships can be modulated by the properties of spontaneous activity, suggesting its instructive role for generating functional variability in network output. In contrast, the Hebbian model fails to produce the tight timing relationships between neighboring populations required for unidirectional activity propagation, even when additional assumptions are imposed to constrain synaptic growth. These results argue that homeostatic mechanisms are more likely than Hebbian mechanisms to tune weak connectivity based on spontaneous input in a recurrent network for rhythm generation and robust activity propagation. SIGNIFICANCE STATEMENT How are neural circuits organized and tuned to maintain stable function

  17. Citation Networks as Indicators of Journalism Research Activity.

    ERIC Educational Resources Information Center

    Tankard, James W.; And Others

    1984-01-01

    Reviews citation networks and discovers that the six major areas of activity in mass communication research are (1) television and politics, (2) sociological studies of journalists, (3) agenda setting, (4) the effects of mass communication, (5) the credibility of various news media, and (6) the characteristics of users and nonusers of mass media.…

  18. Kainate-induced network activity in the anterior cingulate cortex.

    PubMed

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. PMID:26993576

  19. California Health Services/Educational Activities. Consortium Network.

    ERIC Educational Resources Information Center

    White, Charles H.

    Profiles are presented of each of the 10 consortia that make up the California Health Services/Education Activities (HS/EA) network (new relationships between educational facilities where health care manpower is trained in the community settings where they practice). The first part of the booklet is a comparative analysis of (1) Area Health…

  20. Photonic network R and D activities in Japan

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-ichi; Onaka, Hiroshi; Namiki, Shu; Aovama, Tomonori

    2005-11-01

    R and D activities on photonic networks in Japan are presented. First, milestones in current, ongoing R and D programs supported by Japanese government agencies are introduced, including long-distance and WDM fiber transmission, wavelength routing, optical burst switching, and control plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP over WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R and D programs for photonic networks over the next five years until 2010, by focusing on the report which has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R and D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis through the customer's initiative, to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  1. Biopolymers production with carbon source from the wastes of a beer brewery industry

    NASA Astrophysics Data System (ADS)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  2. Detection of interplanetary activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gothoskar, Pradeep; Khobragade, Shyam

    1995-12-01

    Early detection of interplanetary activity is important when attempting to associate, with better accuracy, interplanetary phenomena with solar activity and geomagnetic disturbances. However, for a large number of interplanetary observations to be done every day, extensive data analysis is required, leading to a delay in the detection of transient interplanetary activity. In particular, the interplanetary scintillation (IPS) observations done with Ooty Radio Telescope (ORT) need extensive human effort to reduce the data and to model, often subjectively, the scintillation power spectra. We have implemented an artificial neural network (ANN) to detect interplanetary activity using the power spectrum scintillation. The ANN was trained to detect the disturbed power spectra, used as an indicator of the interplanetary activity, and to recognize normal and strong scattering spectra from a large data base of IPS spectra. The coincidence efficiency of classification by the network compared with the experts' judgement to detect the normal, disturbed and strong scattering spectra was found to be greater than 80 per cent. The neural network, when applied during the IPS mapping programme to provide early indication of interplanetary activity, would significantly help the ongoing efforts to predict geomagnetic disturbances.

  3. Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives.

    PubMed

    Tudorache, Madalina; Gheorghe, Andreea; Negoi, Alina; Enache, Madalin; Maria, Gabriel-Mihai; Parvulescu, Vasile I

    2016-11-01

    Bifunctional catalysts designed as carbohydrate biopolymers entrapping lipase have been investigated for the biotransformation of a natural compound (α-pinene) to oxy-derivatives. Lipases assisted the epoxidation of α-pinene using H2O2 as oxidation reagent and ethyl acetate as both acetate-supplier and solvent affording α-pinene oxide as the main product. Further, the biopolymer promoted the isomerization of α-pinene oxide to campholenic aldehyde and trans-carenol. In this case, the biopolymers played double roles of the support and also active part of the bifunctional catalyst. Screening of enzymes and their entrapping in a biopolymeric matrix (e.g. Ca-alginate and κ-carrageenan) indicated the lipase extracted from Aspergillus niger as the most efficient. In addition, the presence of biopolymers enhanced the catalytic activity of the immobilized lipase (i.e. 13.39×10(3), 19.76×10(3)and 26.46×10(3) for the free lipase, lipase-carrageenan and lipase-alginate, respectively). The catalysts stability and reusability were confirmed in eight consecutively reaction runs. PMID:27516324

  4. Optimal active power dispatch by network flow approach

    SciTech Connect

    Carvalho, M.F. ); Soares, S.; Ohishi, T. )

    1988-11-01

    In this paper the optimal active power dispatch problem is formulated as a nonlinear capacitated network flow problem with additional linear constraints. Transmission flow limits and both Kirchhoff's laws are taken into account. The problem is solved by a Generalized Upper Bounding technique that takes advantage of the network flow structure of the problem. The new approach has potential applications on power systems problems such as economic dispatch, load supplying capability, minimum load shedding, and generation-transmission reliability. The paper also reviews the use of transportation models for power system analysis. A detailed illustrative example is presented.

  5. Dynamic Elasticity Model of Resilin Biopolymers

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Duki, Solomon

    2013-03-01

    Resilin proteins are `super elastic rubbers' in the flight and jumping systems of most insects, and can extend and retract millions of times. Natural resilin exhibits high resilience (> 95%) under high-frequency conditions, and could be stretched to over 300% of its original length with a low elastic modulus of 0.1-3 MPa. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. We report on the dynamic structure transitions and functions of full length resilin from fruit fly (D. melanogaster CG15920) and its different functional domains. A dynamic computational model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for resilins, as well as other elastomeric proteins. A strong beta-turn transition was experimentally identified in the full length resilin and its non-elastic domains (Exon III). Changes in periodic long-range order were demonstrated during this transition, induced either by thermal or mechanical inputs, to confirm the universality of proposed mechanism. Further, this model offers new options for designing protein-based biopolymers with tunable material applications.

  6. Formatting and ligating biopolymers using adjustable nanoconfinement

    NASA Astrophysics Data System (ADS)

    Berard, Daniel J.; Shayegan, Marjan; Michaud, Francois; Henkin, Gil; Scott, Shane; Leslie, Sabrina

    2016-07-01

    Sensitive visualization and conformational control of long, delicate biopolymers present critical challenges to emerging biotechnologies and biophysical studies. Next-generation nanofluidic manipulation platforms strive to maintain the structural integrity of genomic DNA prior to analysis but can face challenges in device clogging, molecular breakage, and single-label detection. We address these challenges by integrating the Convex Lens-induced Confinement (CLiC) technique with a suite of nanotopographies embedded within thin-glass nanofluidic chambers. We gently load DNA polymers into open-face nanogrooves in linear, concentric circular, and ring array formats and perform imaging with single-fluorophore sensitivity. We use ring-shaped nanogrooves to access and visualize confinement-enhanced self-ligation of long DNA polymers. We use concentric circular nanogrooves to enable hour-long observations of polymers at constant confinement in a geometry which eliminates the confinement gradient which causes drift and can alter molecular conformations and interactions. Taken together, this work opens doors to myriad biophysical studies and biotechnologies which operate on the nanoscale.

  7. Proton Conductivity Studies on Biopolymer Electrolytes

    SciTech Connect

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-07-07

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH{sub 4}NO{sub 3}) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R{sub b}) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10{sup -4} Scm{sup -1} for the sample with composition ratio of MC(50): NH{sub 4}NO{sub 3}(50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH{sub 4}NO{sub 3}-PC was enhanced up to 4.91x10{sup -3} Scm{sup -1} while for the MC-NH{sub 4}NO{sub 3}-EC system, the highest conductivity was 1.74x10{sup -2} Scm{sup -1}. The addition of more plasticizer however decreases in mechanical stability of the membranes.

  8. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  9. Reactivation of visual-evoked activity in human cortical networks.

    PubMed

    Chelaru, Mircea I; Hansen, Bryan J; Tandon, Nitin; Conner, Chris R; Szukalski, Susann; Slater, Jeremy D; Kalamangalam, Giridhar P; Dragoi, Valentin

    2016-06-01

    In the absence of sensory input, neuronal networks are far from being silent. Whether spontaneous changes in ongoing activity reflect previous sensory experience or stochastic fluctuations in brain activity is not well understood. Here we demonstrate reactivation of stimulus-evoked activity that is distributed across large areas in the human brain. We performed simultaneous electrocorticography recordings from occipital, parietal, temporal, and frontal areas in awake humans in the presence and absence of sensory stimulation. We found that, in the absence of visual input, repeated exposure to brief natural movies induces robust stimulus-specific reactivation at individual recording sites. The reactivation sites were characterized by greater global connectivity compared with those sites that did not exhibit reactivation. Our results indicate a surprising degree of short-term plasticity across multiple networks in the human brain as a result of repeated exposure to unattended information. PMID:26984423

  10. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity

    PubMed Central

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  11. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  12. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  13. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  14. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  15. CRAFFT: An Activity Prediction Model based on Bayesian Networks

    PubMed Central

    Nazerfard, Ehsan; Cook, Diane J.

    2014-01-01

    Recent advances in the areas of pervasive computing, data mining, and machine learning offer unique opportunities to provide health monitoring and assistance for individuals facing difficulties to live independently in their homes. Several components have to work together to provide health monitoring for smart home residents including, but not limited to, activity recognition, activity discovery, activity prediction, and prompting system. Compared to the significant research done to discover and recognize activities, less attention has been given to predict the future activities that the resident is likely to perform. Activity prediction components can play a major role in design of a smart home. For instance, by taking advantage of an activity prediction module, a smart home can learn context-aware rules to prompt individuals to initiate important activities. In this paper, we propose an activity prediction model using Bayesian networks together with a novel two-step inference process to predict both the next activity features and the next activity label. We also propose an approach to predict the start time of the next activity which is based on modeling the relative start time of the predicted activity using the continuous normal distribution and outlier detection. To validate our proposed models, we used real data collected from physical smart environments. PMID:25937847

  16. Inorganic polymers: morphogenic inorganic biopolymers for rapid prototyping chain.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Shen, Zhijian; Feng, Qingling; Wang, Xiaohong

    2013-01-01

    In recent years, considerable progress has been achieved towards the development of customized scaffold materials, in particular for bone tissue engineering and repair, by the introduction of rapid prototyping or solid freeform fabrication techniques. These new fabrication techniques allow to overcome many problems associated with conventional bone implants, such as inadequate external morphology and internal architecture, porosity and interconnectivity, and low reproducibility. However, the applicability of these new techniques is still hampered by the fact that high processing temperature or a postsintering is often required to increase the mechanical stability of the generated scaffold, as well as a post-processing, i.e., surface modification/functionalization to enhance the biocompatibility of the scaffold or to bind some bioactive component. A solution might be provided by the introduction of novel inorganic biopolymers, biosilica and polyphosphate, which resist harsh conditions applied in the RP chain and are morphogenetically active and do not need supplementation by growth factors/cytokines to stimulate the growth and the differentiation of bone-forming cells. PMID:24420716

  17. COMMUNICATION: Neuron network activity scales exponentially with synapse density

    NASA Astrophysics Data System (ADS)

    Brewer, G. J.; Boehler, M. D.; Pearson, R. A.; DeMaris, A. A.; Ide, A. N.; Wheeler, B. C.

    2009-02-01

    Neuronal network output in the cortex as a function of synapse density during development has not been explicitly determined. Synaptic scaling in cortical brain networks seems to alter excitatory and inhibitory synaptic inputs to produce a representative rate of synaptic output. Here, we cultured rat hippocampal neurons over a three-week period to correlate synapse density with the increase in spontaneous spiking activity. We followed the network development as synapse formation and spike rate in two serum-free media optimized for either (a) neuron survival (Neurobasal/B27) or (b) spike rate (NbActiv4). We found that while synaptophysin synapse density increased linearly with development, spike rates increased exponentially in developing neuronal networks. Synaptic receptor components NR1, GluR1 and GABA-A also increase linearly but with more excitatory receptors than inhibitory. These results suggest that the brain's information processing capability gains more from increasing connectivity of the processing units than increasing processing units, much as Internet information flow increases much faster than the linear number of nodes and connections.

  18. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus

  19. Force spectroscopy of complex biopolymers with heterogeneous elasticity.

    PubMed

    Valdman, David; Lopez, Benjamin J; Valentine, Megan T; Atzberger, Paul J

    2013-01-21

    Cellular biopolymers can exhibit significant compositional heterogeneities as a result of the non-uniform binding of associated proteins, the formation of microstructural defects during filament assembly, or the imperfect bundling of filaments into composite structures of variable diameter. These can lead to significant variations in the local mechanical properties of biopolymers along their length. Existing spectral analysis methods assume filament homogeneity and therefore report only a single average stiffness for the entire filament. However, understanding how local effects modulate biopolymer mechanics in a spatially resolved manner is essential to understanding how binding and bundling proteins regulate biopolymer stiffness and function in cellular contexts. Here, we present a new method to determine the spatially varying material properties of individual complex biopolymers from the observation of passive thermal fluctuations of the filament conformation. We develop new statistical mechanics-based approaches for heterogeneous filaments that estimate local bending elasticities as a function of the filament arc-length. We validate this methodology using simulated polymers with known stiffness distributions, and find excellent agreement between derived and expected values. We then determine the bending elasticity of microtubule filaments of variable composition generated by repeated rounds of tubulin polymerization using either GTP or GMPCPP, a nonhydrolyzable GTP analog. Again, we find excellent agreement between mechanical and compositional heterogeneities. PMID:24049545

  20. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  1. Active transport and cluster formation on 2D networks.

    PubMed

    Greulich, P; Santen, L

    2010-06-01

    We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered. PMID:20556462

  2. Time-resolved microrheology of actively remodeling actomyosin networks

    NASA Astrophysics Data System (ADS)

    Silva, Marina Soares e.; Stuhrmann, Björn; Betz, Timo; Koenderink, Gijsje H.

    2014-07-01

    Living cells constitute an extraordinary state of matter since they are inherently out of thermal equilibrium due to internal metabolic processes. Indeed, measurements of particle motion in the cytoplasm of animal cells have revealed clear signatures of nonthermal fluctuations superposed on passive thermal motion. However, it has been difficult to pinpoint the exact molecular origin of this activity. Here, we employ time-resolved microrheology based on particle tracking to measure nonequilibrium fluctuations produced by myosin motor proteins in a minimal model system composed of purified actin filaments and myosin motors. We show that the motors generate spatially heterogeneous contractile fluctuations, which become less frequent with time as a consequence of motor-driven network remodeling. We analyze the particle tracking data on different length scales, combining particle image velocimetry, an ensemble analysis of the particle trajectories, and finally a kymograph analysis of individual particle trajectories to quantify the length and time scales associated with active particle displacements. All analyses show clear signatures of nonequilibrium activity: the particles exhibit random motion with an enhanced amplitude compared to passive samples, and they exhibit sporadic contractile fluctuations with ballistic motion over large (up to 30 μm) distances. This nonequilibrium activity diminishes with sample age, even though the adenosine triphosphate level is held constant. We propose that network coarsening concentrates motors in large clusters and depletes them from the network, thus reducing the occurrence of contractile fluctuations. Our data provide valuable insight into the physical processes underlying stress generation within motor-driven actin networks and the analysis framework may prove useful for future microrheology studies in cells and model organisms.

  3. Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks.

    SciTech Connect

    Huang, H.; Chen, M.; Bruno, P.; Lam, R.; Robinson, E.; Gruen, D.; Ho, D.; Materials Science Division; Northwestern Univ.

    2009-01-01

    The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery. UNCD oxidation coupled with a pH-mediated collagen adsorption process generated a comprehensive interface between the two materials, and subsequent Dex integration, activity, and elution were confirmed through inflammatory gene expression assays. These studies confer a translational relevance to the biofunctionalized UNCD in its role as an active therapeutic network for potent regulation of cellular activity toward applications in nanomedicine.

  4. Energy-aware Activity Classification using Wearable Sensor Networks.

    PubMed

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2013-05-29

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors. PMID:25075266

  5. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  6. Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks

    NASA Astrophysics Data System (ADS)

    Milczarek, Grzegorz; Inganäs, Olle

    2012-03-01

    Renewable and cheap materials in electrodes could meet the need for low-cost, intermittent electrical energy storage in a renewable energy system if sufficient charge density is obtained. Brown liquor, the waste product from paper processing, contains lignin derivatives. Polymer cathodes can be prepared by electrochemical oxidation of pyrrole to polypyrrole in solutions of lignin derivatives. The quinone group in lignin is used for electron and proton storage and exchange during redox cycling, thus combining charge storage in lignin and polypyrrole in an interpenetrating polypyrrole/lignin composite.

  7. Surface enhaced raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biopolymer encapsulated with silver nanoparticles was prepared using polyvinyl alcohol (PVA) solution, silver nitrate, and trisodium citrate. Biopolymer based nanosubstrates were deposited on a mica sheet for SERS. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus a...

  8. Optically controlled multiple switching operations of DNA biopolymer devices

    NASA Astrophysics Data System (ADS)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-01

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  9. Optically controlled multiple switching operations of DNA biopolymer devices

    SciTech Connect

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  10. Network feedback regulates motor output across a range of modulatory neuron activity.

    PubMed

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. PMID:27030739

  11. A neural network model for olfactory glomerular activity prediction

    NASA Astrophysics Data System (ADS)

    Soh, Zu; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    2012-12-01

    Recently, the importance of odors and methods for their evaluation have seen increased emphasis, especially in the fragrance and food industries. Although odors can be characterized by their odorant components, their chemical information cannot be directly related to the flavors we perceive. Biological research has revealed that neuronal activity related to glomeruli (which form part of the olfactory system) is closely connected to odor qualities. Here we report on a neural network model of the olfactory system that can predict glomerular activity from odorant molecule structures. We also report on the learning and prediction ability of the proposed model.

  12. A study of epidemic spreading on activity-driven networks

    NASA Astrophysics Data System (ADS)

    Zou, Yijiang; Deng, Weibing; Li, Wei; Cai, Xu

    2016-03-01

    The epidemic spreading was explored on activity-driven networks (ADNs), accounting for the study of dynamics both on and of the ADN. By employing the susceptible-infected-susceptible (SIS) model, two aspects were considered: (1) the infection rate of susceptible agent (depending on the number of its infected neighbors) evolves due to the temporal structure of ADN, rather than being a constant number; (2) the susceptible and infected agents generate unequal links while being activated, namely, the susceptible agent gets few contacts with others in order to protect itself. Results show that, in both cases, the larger epidemic threshold and smaller outbreak size were obtained.

  13. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  14. Active defense scheme against DDoS based on mobile agent and network control in network confrontation

    NASA Astrophysics Data System (ADS)

    Luo, Rong; Li, Junshan; Ye, Xia; Wang, Rui

    2013-03-01

    In order to effective defend DDoS attacks in network confrontation, an active defense scheme against DDoS is built based on Mobile Agent and network control. A distributed collaborative active defense model is constructed by using mobile agent technology and encapsulating a variety of DDoS defense techniques. Meanwhile the network control theory is applied to establish a network confrontation's control model for DDoS to control the active defense process. It provides a new idea to solve the DDoS problem.

  15. Adhesion of pancreatic beta cells to biopolymer films.

    PubMed

    Williams, S Janette; Wang, Qun; Macgregor, Ronal R; Siahaan, Teruna J; Stehno-Bittel, Lisa; Berkland, Cory

    2009-08-01

    Dramatic reversal of Type 1 diabetes in patients receiving pancreatic islet transplants continues to prompt vigorous research concerning the basic mechanisms underlying patient turnaround. At the most fundamental level, transplanted islets must maintain viability and function in vitro and in vivo and should be protected from host immune rejection. Our previous reports showed enhancement of islet viability and insulin secretion per tissue mass for small islets (<125 mum) as compared with large islets (>125 mum), thus, demonstrating the effect of enhancing the mass transport of islets (i.e. increasing tissue surface area to volume ratio). Here, we report the facile dispersion of rat islets into individual cells that are layered onto the surface of a biopolymer film towards the ultimate goal of improving mass transport in islet tissue. The tightly packed structure of intact islets was disrupted by incubating in calcium-free media resulting in fragmented islets, which were further dispersed into individual or small groups of cells by using a low concentration of papain. The dispersed cells were screened for adhesion to a range of biopolymers and the nature of cell adhesion was characterized for selected groups by quantifying adherent cells, measuring the surface area coverage of the cells, and immunolabeling cells for adhesion proteins interacting with selected biopolymers. Finally, beta cells in suspension were centrifuged to form controlled numbers of cell layers on films for future work determining the mass transport limitations in the adhered tissue constructs. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 676-685, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:19353639

  16. Taurine activates GABAergic networks in the neocortex of immature mice

    PubMed Central

    Sava, Bogdan A.; Chen, Rongqing; Sun, Haiyan; Luhmann, Heiko J.; Kilb, Werner

    2014-01-01

    Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-green fluorescent protein (GFP) transgenic mice (postnatal days 2–4). In 46% of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 μM significantly enhanced the frequency of postsynaptic currents (PSCs) by 744.3 ± 93.8% (n = 120 cells). This taurine-induced increase of PSC frequency was abolished by 0.2 μM tetrodotoxin (TTX), 1 μM strychnine or 3 μM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (±) R(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP), suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials (APs) in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate APs in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors. PMID:24550782

  17. The contribution of raised intraneuronal chloride to epileptic network activity.

    PubMed

    Alfonsa, Hannah; Merricks, Edward M; Codadu, Neela K; Cunningham, Mark O; Deisseroth, Karl; Racca, Claudia; Trevelyan, Andrew J

    2015-05-20

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl(-). Brief (1-10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl(-) level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). PMID:25995461

  18. The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity

    PubMed Central

    Alfonsa, Hannah; Merricks, Edward M.; Codadu, Neela K.; Cunningham, Mark O.; Deisseroth, Karl; Racca, Claudia

    2015-01-01

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl−. Brief (1–10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl− level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). PMID:25995461

  19. Models of the solvent-accessible surface of biopolymers

    SciTech Connect

    Smith, R.E.

    1996-09-01

    Many biopolymers such as proteins, DNA, and RNA have been studied because they have important biomedical roles and may be good targets for therapeutic action in treating diseases. This report describes how plastic models of the solvent-accessible surface of biopolymers were made. Computer files containing sets of triangles were calculated, then used on a stereolithography machine to make the models. Small (2 in.) models were made to test whether the computer calculations were done correctly. Also, files of the type (.stl) required by any ISO 9001 rapid prototyping machine were written onto a CD-ROM for distribution to American companies.

  20. Nonlinearities of biopolymer gels increase the range of force transmission

    NASA Astrophysics Data System (ADS)

    Xu, Xinpeng; Safran, Samuel A.

    2015-09-01

    We present a model of biopolymer gels that includes two types of elastic nonlinearities, stiffening under extension and softening (due to buckling) under compression, to predict the elastic anisotropy induced by both external as well as internal (e.g., due to cell contractility) stresses in biopolymer gels. We show how the stretch-induced anisotropy and the strain-stiffening nonlinearity increase both the amplitude and power-law range of transmission of internal, contractile, cellular forces, and relate this to recent experiments.

  1. Nonlinearities of biopolymer gels increase the range of force transmission.

    PubMed

    Xu, Xinpeng; Safran, Samuel A

    2015-09-01

    We present a model of biopolymer gels that includes two types of elastic nonlinearities, stiffening under extension and softening (due to buckling) under compression, to predict the elastic anisotropy induced by both external as well as internal (e.g., due to cell contractility) stresses in biopolymer gels. We show how the stretch-induced anisotropy and the strain-stiffening nonlinearity increase both the amplitude and power-law range of transmission of internal, contractile, cellular forces, and relate this to recent experiments. PMID:26465519

  2. Conducting and non-conducting biopolymer composites produced by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this report, we introduce two types of processes for the production of biopolymer composites: one is fabricated by bonding biopolymers with corn protein or wheat protein and the other by bonding starch with a synthetic polymer. These two types of biopolymer composites make use of the strong bon...

  3. Active multi-point microrheology of cytoskeletal networks

    PubMed Central

    Paust, Tobias; Mertens, Lina Katinka; Martin, Ines; Beil, Michael; Walther, Paul; Schimmel, Thomas; Marti, Othmar

    2016-01-01

    Summary Active microrheology is a valuable tool to determine viscoelastic properties of polymer networks. Observing the response of the beads to the excitation of a reference leads to dynamic and morphological information of the material. In this work we present an expansion of the well-known active two-point microrheology. By measuring the response of multiple particles in a viscoelastic medium in response to the excitation of a reference particle, we are able to determine the force propagation in the polymer network. For this purpose a lock-in technique is established that allows for extraction of the periodical motion of embedded beads. To exert a sinusoidal motion onto the reference bead an optical tweezers setup in combination with a microscope is used to investigate the motion of the response beads. From the lock-in data the so called transfer tensor can be calculated, which is a direct measure for the ability of the network to transmit mechanical forces. We also take a closer look at the influence of noise on lock-in measurements and state some simple rules for improving the signal-to-noise ratio. PMID:27335739

  4. Innovation diffusion on time-varying activity driven networks

    NASA Astrophysics Data System (ADS)

    Rizzo, Alessandro; Porfiri, Maurizio

    2016-01-01

    Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.

  5. Extraction of Multilayered Social Networks from Activity Data

    PubMed Central

    Bródka, Piotr; Kazienko, Przemysław; Gaworecki, Jarosław

    2014-01-01

    The data gathered in all kinds of web-based systems, which enable users to interact with each other, provides an opportunity to extract social networks that consist of people and relationships between them. The emerging structures are very complex due to the number and type of discovered connections. In web-based systems, the characteristic element of each interaction between users is that there is always an object that serves as a communication medium. This can be, for example, an e-mail sent from one user to another or post at the forum authored by one user and commented on by others. Based on these objects and activities that users perform towards them, different kinds of relationships can be identified and extracted. Additional challenge arises from the fact that hierarchies can exist between objects; for example, a forum consists of one or more groups of topics, and each of them contains topics that finally include posts. In this paper, we propose a new method for creation of multilayered social network based on the data about users activities towards different types of objects between which the hierarchy exists. Due to the flattening, preprocessing procedure of new layers and new relationships in the multilayered social network can be identified and analysed. PMID:25105159

  6. Unconscious activation of the prefrontal no-go network.

    PubMed

    van Gaal, Simon; Ridderinkhof, K Richard; Scholte, H Steven; Lamme, Victor A F

    2010-03-17

    Cognitive control processes involving prefrontal cortex allow humans to overrule and inhibit habitual responses to optimize performance in new and challenging situations, and traditional views hold that cognitive control is tightly linked with consciousness. We used functional magnetic resonance imaging to investigate to what extent unconscious "no-go" stimuli are capable of reaching cortical areas involved in inhibitory control, particularly the inferior frontal cortex (IFC) and the pre-supplementary motor area (pre-SMA). Participants performed a go/no-go task that included conscious (weakly masked) no-go trials, unconscious (strongly masked) no-go trials, as well as go trials. Replicating typical neuroimaging findings, response inhibition on conscious no-go stimuli was associated with a (mostly right-lateralized) frontoparietal "inhibition network." Here, we demonstrate, however, that an unconscious no-go stimulus also can activate prefrontal control networks, most prominently the IFC and the pre-SMA. Moreover, if it does so, it brings about a substantial slowdown in the speed of responding, as if participants attempted to inhibit their response but just failed to withhold it completely. Interestingly, overall activation in this "unconscious inhibition network" correlated positively with the amount of slowdown triggered by unconscious no-go stimuli. In addition, neural differences between conscious and unconscious control are revealed. These results expand our understanding of the limits and depths of unconscious information processing in the human brain and demonstrate that prefrontal cognitive control functions are not exclusively influenced by conscious information. PMID:20237284

  7. Application of neural networks to seismic active control

    SciTech Connect

    Tang, Yu

    1995-07-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads.

  8. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  9. Social status modulates neural activity in the mentalizing network

    PubMed Central

    Muscatell, Keely A.; Morelli, Sylvia A.; Falk, Emily B.; Way, Baldwin M.; Pfeifer, Jennifer H.; Galinsky, Adam D.; Lieberman, Matthew D.; Dapretto, Mirella; Eisenberger, Naomi I.

    2013-01-01

    The current research explored the neural mechanisms linking social status to perceptions of the social world. Two fMRI studies provide converging evidence that individuals lower in social status are more likely to engage neural circuitry often involved in ‘mentalizing’ or thinking about others' thoughts and feelings. Study 1 found that college students' perception of their social status in the university community was related to neural activity in the mentalizing network (e.g., DMPFC, MPFC, precuneus/PCC) while encoding social information, with lower social status predicting greater neural activity in this network. Study 2 demonstrated that socioeconomic status, an objective indicator of global standing, predicted adolescents' neural activity during the processing of threatening faces, with individuals lower in social status displaying greater activity in the DMPFC, previously associated with mentalizing, and the amygdala, previously associated with emotion/salience processing. These studies demonstrate that social status is fundamentally and neurocognitively linked to how people process and navigate their social worlds. PMID:22289808

  10. Temporary seismic networks on active volcanoes of Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Jakovlev, Andrey; Koulakov, Ivan; Abkadyrov, Ilyas; Shapiro, Nikolay; Kuznetsov, Pavel; Deev, Evgeny; Gordeev, Evgeny; Chebrov, Viktor

    2016-04-01

    We present details of four field campaigns carried out on different volcanoes of Kamchatka in 2012-2015. Each campaign was performed in three main steps: (i) installation of the temporary network of seismic stations; (ii) autonomous continuous registration of three component seismic signal; (III) taking off the network and downloading the registered data. During the first campaign started in September 2012, 11 temporary stations were installed over the Avacha group of volcanoes located 30 km north to Petropavlovsk-Kamchatsky in addition to the seven permanent stations operated by the Kamchatkan Branch of the Geophysical Survey (KBGS). Unfortunately, with this temporary network we faced with two obstacles. The first problem was the small amount of local earthquakes, which were detected during operation time. The second problem was an unexpected stop of several stations only 40 days after deployment. Nevertheless, after taking off the network in August 2013, the collected data appeared to be suitable for analysis using ambient noise. The second campaign was conducted in period from August 2013 to August 2014. In framework of the campaign, 21 temporary stations were installed over Gorely volcano, located 70 km south to Petropavlovsk-Kamchatsky. Just in time of the network deployment, Gorely Volcano became very seismically active - every day occurred more than 100 events. Therefore, we obtain very good dataset with information about thousands of local events, which could be used for any type of seismological analysis. The third campaign started in August 2014. Within this campaign, we have installed 19 temporary seismic stations over Tolbachik volcano, located on the south side of the Klyuchevskoy volcano group. In the same time on Tolbachik volcano were installed four temporary stations and several permanent stations operated by the KBGS. All stations were taking off in July 2015. As result, we have collected a large dataset, which is now under preliminary analysis

  11. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention.

    PubMed

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)-the default mode network (DMN), the dorsal attention, the right and the left WM network-were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be "online" synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals. PMID:25999828

  12. Wireless sensor networks for active vibration control in automobile structures

    NASA Astrophysics Data System (ADS)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  13. Xanthomonas biopolymer for use in displacement of oil from partially depleted reservoirs

    SciTech Connect

    Wernau, W.C.

    1982-10-05

    A mutant strain of the genus xanthomonas produces a pyruvatefree biopolymer. This biopolymer and the deacetylated form of this new biopolymer provide mobility control solutions which are especially useful for enhanced oil recovery where high brine applications are involved. The mobility control solutions of the present invention may be made from whole or filtered fermentation broth containing the pyrvuate-free biopolymer or its deacetylated form. Alternatively, the biopolymer or its deacetylated form may be recovered from the broth and the recovered product used to form the desired mobility control solutions.

  14. Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyanophycin is a poly(arginyl-aspartate) biopolymer produced and stored intracellularly by bacteria. Cyanophycin has been proposed as a renewable replacement for petrochemical-based industrial products. An abundant source of amino acids and nitrogen such as in the form of protein hydrolysates is n...

  15. Development of correlations to predict biopolymer mobility in porous media

    SciTech Connect

    Hejri, S.; Willhite, G.P.; Green, D.W. )

    1991-02-01

    This paper describes the flow and rheological behavior of biopolymer solutions in sandpacks over a wide range of permeability and frontal advance rates. Empirical correlations were developed to estimate polymer mobility in porous media. The correlations are based on porous medium properties, polymer concentration, and rheological parameters for the polymer derived from steady-shear measurements.

  16. Production of a Biopolymer at Reactor Scale: A Laboratory Experience

    ERIC Educational Resources Information Center

    Genc, Rukan; Rodriguez-Couto, Susana

    2011-01-01

    Undergraduate students of biotechnology became familiar with several aspects of bioreactor operation via the production of xanthan gum, an industrially relevant biopolymer, by "Xanthomonas campestris" bacteria. The xanthan gum was extracted from the fermentation broth and the yield coefficient and productivity were calculated. (Contains 2 figures.)

  17. Production of Degradable Biopolymer Composites by Particle-bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventionally, polymer composites had been manufactured by mixing the component materials in the extruder at high temperature. Agricultural biopolymers are usually mixtures of many types of compounds; when used as raw materials, however, high-temperature process causes unwanted consequences such a...

  18. Biopolymers in controlled release devices for agricultural applications.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of biopolymers such as starch for agricultural applications including controlled release devices is growing due the environmental benefits. Recently, concerns have grown about the worldwide spread of parasitic mites (Varroa destructor) that infect colonies of honey bees (Apis mellifera L.). ...

  19. Biopolymers produced from gelatin and other sustainable resources using polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several researchers have recently demonstrated the feasibility of producing biopolymers from the reaction of polyphenolics with gelatin in combination with other proteins (e.g. whey) or with carbohydrates (e.g. chitosan and pectin). These combinations would take advantage of the unique properties o...

  20. USING BIOPOLYMERS TO REMOVE HEAVY METALS FROM SOIL AND WATER

    EPA Science Inventory

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy me...

  1. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  2. Role of Native and Exotic Earthworms in Plant Biopolymer Dynamics in Forest Soil

    NASA Astrophysics Data System (ADS)

    Filley, Timothy

    2010-05-01

    Many forests within northern North America are experiencing the introduction of earthworms for the first time, presumably since before the last major glaciation. Forest dynamics are undergoing substantial changes because of the activity of the mainly European lumbricid species. Documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations have all been documented in invaded zones. Two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) lie within the zones of invasion and exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. Considerations of carbon accrual dynamics and relative input of above vs. below ground plant input in these young successional systems do not consider the potential impact of these ecosystem engineers. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicates how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA

  3. Temporal dynamics of spontaneous MEG activity in brain networks.

    PubMed

    de Pasquale, Francesco; Della Penna, Stefania; Snyder, Abraham Z; Lewis, Christopher; Mantini, Dante; Marzetti, Laura; Belardinelli, Paolo; Ciancetta, Luca; Pizzella, Vittorio; Romani, Gian Luca; Corbetta, Maurizio

    2010-03-30

    Functional MRI (fMRI) studies have shown that low-frequency (<0.1 Hz) spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal during restful wakefulness are coherent within distributed large-scale cortical and subcortical networks (resting state networks, RSNs). The neuronal mechanisms underlying RSNs remain poorly understood. Here, we describe magnetoencephalographic correspondents of two well-characterized RSNs: the dorsal attention and the default mode networks. Seed-based correlation mapping was performed using time-dependent MEG power reconstructed at each voxel within the brain. The topography of RSNs computed on the basis of extended (5 min) epochs was similar to that observed with fMRI but confined to the same hemisphere as the seed region. Analyses taking into account the nonstationarity of MEG activity showed transient formation of more complete RSNs, including nodes in the contralateral hemisphere. Spectral analysis indicated that RSNs manifest in MEG as synchronous modulation of band-limited power primarily within the theta, alpha, and beta bands-that is, in frequencies slower than those associated with the local electrophysiological correlates of event-related BOLD responses. PMID:20304792

  4. New GPS Network on the Active Fault System in Taiwan

    NASA Astrophysics Data System (ADS)

    Hou, C.; Chen, Y.; Hu, J.; Lin, C.; Chen, C.; Wang, J.; Chung, L.; Chung, W.; Hsieh, C.; Chen, Y.

    2004-12-01

    According to the historical records, disastrous earthquakes occurred in Taiwan were caused by reactivations of active faults. In last century, there were five with the surface rupture: 1906 Meishan Eq. (the Meishan F.), 1935 Hsihchu Eq. (the Shihtan and the Tuntzuchiao F.), 1946 Hsinhua Eq. (Hsinhua F.), 1951 Hualien-Taitung Eq. (Longitudinal Valley F.), and 1999 Chi-Chi Eq. (the Chelungpu F.). In order to identify earthquake associated surface rupture and further to mitigate potential hazards, the investigation and monitoring on the active fault system are of great urgency. Central Geological Survey (CGS) of Taiwan is currently executing a 5-year (2002-2006) project, integrating geological and geodetic data to better characterize short-term and long-term spatial and temporal variations in deformation across major already-known active faults of Taiwan. For the former, we use field survey, drilling, geophysical exploration, and trenching to recognize the long-term slip rate and recurrence interval of each fault. For the latter, we deploy near-fault campaign-style GPS and leveling monitoring networks. Here we further combine the result of other GPS networks including continuous-mode. This project is actually concentrated on fault-specific investigation.. Until Dec. 2004, we have set up 756 GPS stations and 27 precise leveling lines including 1024 leveling benchmarks. For the purpose of understanding temporal variability and receive continuous record, the CGS began to deploy 6~10 new GPS stations of continuous mode since 2004. Upon the completion of the geodetic project, we are supposed to provide information on short-term slip rates of major active faults. By integrating other geological datasets we will also evaluate the short-term and long-term behavior of the active faults, and further offer insight into spatial and temporal variability in deformation processes.

  5. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    PubMed

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. PMID:26794772

  6. Functional Language Networks in Sedentary and Physically Active Older Adults

    PubMed Central

    Zlatar, Zvinka Z.; Towler, Stephen; McGregor, Keith M.; Dzierzewski, Joseph M.; Bauer, Andrew; Phan, Stephanie; Cohen, Matthew; Marsiske, Michael; Manini, Todd M.; Crosson, Bruce

    2013-01-01

    Functional magnetic resonance imaging (fMRI) studies have identified consistent age-related changes during various cognitive tasks, such that older individuals display more positive and less negative task-related activity than young adults. Recently, evidence shows that chronic physical exercise may alter aging-related changes in brain activity; however, the effect of exercise has not been studied for the neural substrates of language function. Additionally, the potential mechanisms by which aging alters neural recruitment remain understudied. To address these points, the present study enrolled elderly adults who were either sedentary or physically active to characterize the neural correlates of language function during semantic fluency between these groups in comparison to a young adult sample. Participants underwent fMRI during semantic fluency and transcranial magnetic stimulation to collect the ipsilateral silent period, a measure of interhemispheric inhibition. Results indicated that sedentary older adults displayed reductions in negative task-related activity compared to the active old group in areas of the attention network. Longer interhemispheric inhibition was associated with more negative task-related activity in the right and left posterior perisylvian cortex, suggesting that sedentary aging may result in losses in task facilitatory cortical inhibition. However, these losses may be mitigated by regular engagement in physical exercise. PMID:23458438

  7. Contractile network models for adherent cells.

    PubMed

    Guthardt Torres, P; Bischofs, I B; Schwarz, U S

    2012-01-01

    Cells sense the geometry and stiffness of their adhesive environment by active contractility. For strong adhesion to flat substrates, two-dimensional contractile network models can be used to understand how force is distributed throughout the cell. Here we compare the shape and force distribution for different variants of such network models. In contrast to Hookean networks, cable networks reflect the asymmetric response of biopolymers to tension versus compression. For passive networks, contractility is modeled by a reduced resting length of the mechanical links. In actively contracting networks, a constant force couple is introduced into each link in order to model contraction by molecular motors. If combined with fixed adhesion sites, all network models lead to invaginated cell shapes, but only actively contracting cable networks lead to the circular arc morphology typical for strongly adhering cells. In this case, shape and force distribution are determined by local rather than global determinants and thus are suited to endow the cell with a robust sense of its environment. We also discuss nonlinear and adaptive linker mechanics as well as the relation to tissue shape. PMID:22400597

  8. Contractile network models for adherent cells

    NASA Astrophysics Data System (ADS)

    Guthardt Torres, P.; Bischofs, I. B.; Schwarz, U. S.

    2012-01-01

    Cells sense the geometry and stiffness of their adhesive environment by active contractility. For strong adhesion to flat substrates, two-dimensional contractile network models can be used to understand how force is distributed throughout the cell. Here we compare the shape and force distribution for different variants of such network models. In contrast to Hookean networks, cable networks reflect the asymmetric response of biopolymers to tension versus compression. For passive networks, contractility is modeled by a reduced resting length of the mechanical links. In actively contracting networks, a constant force couple is introduced into each link in order to model contraction by molecular motors. If combined with fixed adhesion sites, all network models lead to invaginated cell shapes, but only actively contracting cable networks lead to the circular arc morphology typical for strongly adhering cells. In this case, shape and force distribution are determined by local rather than global determinants and thus are suited to endow the cell with a robust sense of its environment. We also discuss nonlinear and adaptive linker mechanics as well as the relation to tissue shape.

  9. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention

    PubMed Central

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)—the default mode network (DMN), the dorsal attention, the right and the left WM network—were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be “online” synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals. PMID

  10. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food. PMID:24721068

  11. Stock price change rate prediction by utilizing social network activities.

    PubMed

    Deng, Shangkun; Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques. PMID:24790586

  12. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    PubMed Central

    Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques. PMID:24790586

  13. In vitro neuronal network activity in NMDA receptor encephalitis

    PubMed Central

    2013-01-01

    Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR) and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF) from an anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patient on in vitro neuronal network activity (ivNNA). In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA) system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF) taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes. PMID:23379293

  14. Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori

    2005-10-01

    R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  15. Predictive relationships between crosslinker unbinding kinetics, gel stiffness, and plasticity in adhesive biopolymers

    NASA Astrophysics Data System (ADS)

    Valentine, Megan

    2014-03-01

    We determine the viscoelastic responses of rigid rod polymer networks that have been strongly bonded by labile crosslinkers. Experimentally, we use microtubules, extremely stiff biopolymers that play important roles in maintaining the strength and organization of cells. We generate controllable adhesive bonds using well-characterized protein chemistries, such as biotin-streptavidin bonds, or using recombinant microtubule-associated proteins. Networks are visualized using confocal scanning fluorescence microscopy or transmission electron microscopy, and custom-built, high-force magnetic tweezers devices are used to apply localized forces to the gels. For rigid crosslinkers, we find that at short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a softening regime, which we attribute to the force-induced unbinding of crosslinkers. At long time scales, force-induced bond breakage leads to local network rearrangement and significant bead creep. Interestingly, the material retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. These results provide important insight into the determinants of gel toughness, elasticity, and plastic deformation in rigid networks, but also suggest new avenues for materials optimization based on modulation of crosslinker kinetics. In particular, the incorporation of crosslinkers that break under force, but are competent to reform when the force is removed, significantly enhance gel toughness while minimizing material fatigue under cyclic loading.

  16. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    PubMed

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. PMID:26097169

  17. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.

    PubMed

    Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen

    2015-01-01

    Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence. PMID:26089794

  18. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles.

    PubMed

    Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R

    2015-03-01

    In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. PMID:25481742

  19. Design of biomimetic super-lubricants by hydrogel-biopolymer aggregates

    NASA Astrophysics Data System (ADS)

    Seekell, Raymond; Dever, Rachel; Zhu, Yingxi

    2013-03-01

    Inspired by the superb lubricity of natural synovial fluids for moving articular cartilage joints, we investigate a biomimetic artificial lubricant based on a hydrogel-biopolymer mixture with optimized rheological properties at a microscopic level. Specifically, we examine the structure and rheological relationship of stimuli-responsive poly (N-isopropylacrylamide) (PNIPAM) hydrogel added with hyaluronic acid (HA) to simulate the complexes of HA with a globule protein, lubricin, which are credited as the two key lubricious constituents in natural synovial fluids. By combined microscopic structural characterization and rheology measurement, we tune the rheological and frictional behaviors of HA solutions by optimizing the content of added micron-sized PNIPAM hydrogel particles to form stable PNIPAM-HA network. In a recent work on using zwitterionic hydrogel particles instead of negatively charged PNIPAM, comparable structure and rheological properties of hydrogel-HA aggregates are observed, which may give insight to design new biocompatible lubricants and lubricious coatings for medical ramification.

  20. Water flow based geometric active deformable model for road network

    NASA Astrophysics Data System (ADS)

    Leninisha, Shanmugam; Vani, Kaliaperumal

    2015-04-01

    A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.

  1. Enzymatic activity preservation through entrapment within degradable hydrogel networks

    NASA Astrophysics Data System (ADS)

    Mariani, Angela Marie

    This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small

  2. Natural lecithin promotes neural network complexity and activity.

    PubMed

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called "essential" fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  3. Natural lecithin promotes neural network complexity and activity

    PubMed Central

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called “essential” fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  4. Epidemic process on activity-driven modular networks

    NASA Astrophysics Data System (ADS)

    Han, Dun; Sun, Mei; Li, Dandan

    2015-08-01

    In this paper, we propose two novel models of epidemic spreading by considering the activity-driven and the network modular. Firstly, we consider the susceptible-infected-susceptible (SIS) contagion model and derive analytically the epidemic threshold. The results indicate that the epidemic threshold only involves with the value of the spread rate and the recovery rate. In addition, the asymptotic refractory density of infected nodes in the different communities exhibits different trends with the change of the modularity-factor. Then, the infected-driven vaccination model is presented. Simulation results illustrate that the final density of vaccination will increase with the increase of the response strength of vaccination. Moreover, the final infected density in the original-infected-community shows different trends with the change of the response strength of vaccination and the spreading rate. The infected-driven vaccination is a good way to control the epidemic spreading.

  5. Antituberculosis Activity of the Molecular Libraries Screening Center Network Library

    PubMed Central

    MADDRY, JOSEPH A.; ANANTHAN, SUBRAMANIAM; GOLDMAN, ROBERT C.; HOBRATH, JUDITH V.; KWONG, CECIL D.; MADDOX, CLINTON; RASMUSSEN, LYNN; REYNOLDS, ROBERT C.; SECRIST, JOHN A.; SOSA, MELINDA I.; WHITE, E. LUCILE; ZHANG, WEI

    2009-01-01

    SUMMARY There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against M. tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein. PMID:19783214

  6. Early network activity propagates bidirectionally between hippocampus and cortex.

    PubMed

    Barger, Zeke; Easton, Curtis R; Neuzil, Kevin E; Moody, William J

    2016-06-01

    Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus-neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca(2+) waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca(2+) elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves-the hippocampus and the piriform cortex-can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 661-672, 2016. PMID:26385616

  7. Active colonization dynamics and diversity patterns are influenced by dendritic network connectivity and species interactions

    PubMed Central

    Seymour, Mathew; Altermatt, Florian

    2014-01-01

    Habitat network connectivity influences colonization dynamics, species invasions, and biodiversity patterns. Recent theoretical work suggests dendritic networks, such as those found in rivers, alter expectations regarding colonization and dispersal dynamics compared with other network types. As many native and non-native species are spreading along river networks, this may have important ecological implications. However, experimental studies testing the effects of network structure on colonization and diversity patterns are scarce. Up to now, experimental studies have only considered networks where sites are connected with small corridors, or dispersal was experimentally controlled, which eliminates possible effects of species interactions on colonization dynamics. Here, we tested the effect of network connectivity and species interactions on colonization dynamics using continuous linear and dendritic (i.e., river-like) networks, which allow for active dispersal. We used a set of six protist species and one rotifer species in linear and dendritic microcosm networks. At the start of the experiment, we introduced species, either singularly or as a community within the networks. Species subsequently actively colonized the networks. We periodically measured densities of species throughout the networks over 2 weeks to track community dynamics, colonization, and diversity patterns. We found that colonization of dendritic networks was faster compared with colonization of linear networks, which resulted in higher local mean species richness in dendritic networks. Initially, community similarity was also greater in dendritic networks compared with linear networks, but this effect vanished over time. The presence of species interactions increased community evenness over time, compared with extrapolations from single-species setups. Our experimental findings confirm previous theoretical work and show that network connectivity, species-specific dispersal ability, and species

  8. Size-dependent regulation of synchronized activity in living neuronal networks

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (˜20 cells), medium (˜100 cells), and large (˜400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  9. Size-dependent regulation of synchronized activity in living neuronal networks.

    PubMed

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this. PMID:27575164

  10. Kinetic study of lead adsorption to composite biopolymer adsorbent

    SciTech Connect

    Seki, H.; Suzuki, A.

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M.G. Rao and A.K. Gupta was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for both the cases was well described and average apparent lead diffusion coefficients of about 6 {times} 10{sup {minus}6} and 7 {times} 10{sup {minus}6} cm{sup 2}/s were found for the spherical and membranous adsorbents, respectively.

  11. Mobility Enhancement of Red Blood Cells with Biopolymers

    NASA Astrophysics Data System (ADS)

    Tahara, Daiki; Oikawa, Noriko; Kurita, Rei

    2016-03-01

    Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.

  12. Kinetic Study of Lead Adsorption to Composite Biopolymer Adsorbent.

    PubMed

    Seki; Suzuki

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M. G. Rao and A. K. Gupta (Chem. Eng. J. 24, 181, 1982) was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for the both cases was well described and average apparent lead diffusion coefficients of about 6 x 10(-6) and 7 x 10(-6) cm2 s-1 were found for the spherical and membranous adsorbents, respectively. Copyright 1999 Academic Press. PMID:10049553

  13. Mucin biopolymers as broad-spectrum antiviral agents

    PubMed Central

    Lieleg, Oliver; Lieleg, Corinna; Bloom, Jesse; Buck, Christopher B.; Ribbeck, Katharina

    2012-01-01

    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system. PMID:22475261

  14. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  15. Interaction between polymer constituents and the structure of biopolymers

    NASA Technical Reports Server (NTRS)

    Rein, R.

    1974-01-01

    The paper reviews the current status of methods for calculating intermolecular interactions between biopolymer units. The nature of forces contributing to the various domains of intermolecular separations is investigated, and various approximations applicable in the respective regions are examined. The predictive value of current theory is tested by establishing a connection with macroscopic properties and comparing the theoretical predicted values with those derived from experimental data. This has led to the introduction of a statistical model describing DNA.

  16. Removal of selenium and arsenic by animal biopolymers.

    PubMed

    Ishikawa, Shin-ichi; Sekine, Shiho; Miura, Noriko; Suyama, Kyozo; Arihara, Keizo; Itoh, Makoto

    2004-01-01

    The animal biopolymers prepared from hen eggshell membrane and broiler chicken feathers, which are byproducts of the poultry-processing industry, were evaluated for the removal of the oxyanions selenium [Se(IV) and Se(VI)] and arsenic [As(III) and As(V)] from aqueous solutions. The biopolymers were found to be effective at removing Se(VI) from solution. Optimal Se(IV) and Se(VI) removal was achieved at pH 2.5-3.5. At an initial Se concentration of 100 mg/L (1.3 mM), the eggshell membrane removed approx 90% Se(VI) from the solution. Arsenic was removed less effectively than Se, but the chemical modification of biopolymer carboxyl groups dramatically enhanced the As(V) sorption capacity. Se(VI) and As(V) sorption isotherms were developed at optimal conditions and sorption equilibrium data fitted the Langmuir isotherm model. The maximum uptakes by the Langmuir model were about 37.0 mg/g and 20.7 mg/g of Se(VI) and 24.2 mg/g and 21.7 mg/g of As(V) for eggshell membrane and chicken feathers, respectively. PMID:15621933

  17. Disordered, stretched, and semiflexible biopolymers in two dimensions.

    PubMed

    Zhou, Zicong; Joós, Béla

    2009-12-01

    We study the effects of intrinsic sequence-dependent curvature for a two-dimensional semiflexible biopolymer with short-range correlation in intrinsic curvatures. We show exactly that when not subjected to any external force, such a system is equivalent to a system with a well-defined intrinsic curvature and a proper renormalized persistence length. We find the exact expression for the distribution function of the equivalent system. However, we show that such an equivalent system does not always exist for the polymer subjected to an external force. We find that under an external force, the effect of sequence disorder depends upon the averaging order, the degree of disorder, and the experimental conditions, such as the boundary conditions. Furthermore, a short to moderate length biopolymer may be much softer or has a smaller apparent persistent length than what would be expected from the "equivalent system." Moreover, under a strong stretching force and for a long biopolymer, the sequence disorder is immaterial for elasticity. Finally, the effect of sequence disorder may depend upon the quantity considered. PMID:20365194

  18. Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes.

    PubMed

    Liew, Chiam-Wen; Ramesh, S

    2015-06-25

    Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. PMID:25839815

  19. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  20. Recent Progress in Some Active Topics on Complex Networks

    NASA Astrophysics Data System (ADS)

    Gu, J.; Zhu, Y.; Guo, L.; Jiang, J.; Chi, L.; Li, W.; Wang, Q. A.; Cai, X.

    2015-04-01

    Complex networks have been extensively studied across many fields, especially in interdisciplinary areas. It has since long been recognized that topological structures and dynamics are important aspects for capturing the essence of complex networks. The recent years have also witnessed the emergence of several new elements which play important roles in network study. By combining the results of different research orientations in our group, we provide here a review of the recent advances in regards to spectral graph theory, opinion dynamics, interdependent networks, graph energy theory and temporal networks. We hope this will be helpful for the newcomers of those fields to discover new intriguing topics.

  1. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  2. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  3. A quantitative analysis of contractility in active cytoskeletal protein networks.

    PubMed

    Bendix, Poul M; Koenderink, Gijsje H; Cuvelier, Damien; Dogic, Zvonimir; Koeleman, Bernard N; Brieher, William M; Field, Christine M; Mahadevan, L; Weitz, David A

    2008-04-15

    Cells actively produce contractile forces for a variety of processes including cytokinesis and motility. Contractility is known to rely on myosin II motors which convert chemical energy from ATP hydrolysis into forces on actin filaments. However, the basic physical principles of cell contractility remain poorly understood. We reconstitute contractility in a simplified model system of purified F-actin, muscle myosin II motors, and alpha-actinin cross-linkers. We show that contractility occurs above a threshold motor concentration and within a window of cross-linker concentrations. We also quantify the pore size of the bundled networks and find contractility to occur at a critical distance between the bundles. We propose a simple mechanism of contraction based on myosin filaments pulling neighboring bundles together into an aggregated structure. Observations of this reconstituted system in both bulk and low-dimensional geometries show that the contracting gels pull on and deform their surface with a contractile force of approximately 1 microN, or approximately 100 pN per F-actin bundle. Cytoplasmic extracts contracting in identical environments show a similar behavior and dependence on myosin as the reconstituted system. Our results suggest that cellular contractility can be sensitively regulated by tuning the (local) activity of molecular motors and the cross-linker density and binding affinity. PMID:18192374

  4. Canadian Network for International Surgery: development activities and strategies.

    PubMed

    Lett, R

    2000-10-01

    The Canadian Network for International Surgery (CNIS) is a surgical development and research organization, whose objective is to reduce death and disability from surgical disorders in low income countries. The organization has 4 main activities: (1) the Essential Surgical Skills (ESS) program teaches surgery to general practitioners and is predicated on the assumption that there will not be enough surgeons in Africa in the foreseeable future and therefore nonsurgeons must do surgery; (2) the injury control program, which is predicated on the conclusion that the incidence of injury in Africa is unacceptably high, therefore injury prevention is an imperative surgical strategy; (3) the library project, which sends new and recent books and journals to the surgical libraries of our African partners; and (4) the members' projects, which encourage individual or organization members to use their own creativity in meeting CNIS objectives. The CNIS has direct activity in 4 African countries and presents its project check list as a means to help others succeed. Canadian surgical and allied specialists can help in the reduction of needless suffering by supporting the CNIS. PMID:11045098

  5. Fabrication and characterization of an inkjet-printed DNA biopolymer-based UV photodetector

    NASA Astrophysics Data System (ADS)

    Lombardi, J. P.; Aga, Roberto S.; Heckman, Emily M.; Bartsch, Carrie M.

    2015-10-01

    An ultraviolet (UV) photodetector utilizing an inkjet printable , UV photoconducting biopolymer was fabricated and the performance of the photodetector was characterized for varying thickness layers of the biopolymer. The biopolymer was formed of deoxyribonucleic acid (DNA), the Clevios P formulation of poly(3,4-ethylenedioxythiophene)- poly(styrenesulfonate) (PEDOT:PSS), and hexadecyltrimethyl-ammonium chloride (CTMA); this was then combined with phenyl-C61-butyric acid methyl (PCBM) to form the printable, UV photoconducting biopolymer. Using a 260-nm source, the highest measured responsivity of the photodetectors is 1.2 mA/W at 20 V bias.

  6. Dopaminergic correlates of metabolic network activity in Parkinson's disease.

    PubMed

    Holtbernd, Florian; Ma, Yilong; Peng, Shichun; Schwartz, Frank; Timmermann, Lars; Kracht, Lutz; Fink, Gereon R; Tang, Chris C; Eidelberg, David; Eggers, Carsten

    2015-09-01

    Parkinson's disease (PD) is associated with distinct metabolic covariance patterns that relate to the motor and cognitive manifestations of the disorder. It is not known, however, how the expression of these patterns relates to measurements of nigrostriatal dopaminergic activity from the same individuals. To explore these associations, we studied 106 PD subjects who underwent cerebral PET with both (18) F-fluorodeoxyglucose (FDG) and (18) F-fluoro-L-dopa (FDOPA). Expression values for the PD motor- and cognition-related metabolic patterns (PDRP and PDCP, respectively) were computed for each subject; these measures were correlated with FDOPA uptake on a voxel-by-voxel basis. To explore the relationship between dopaminergic function and local metabolic activity, caudate and putamen FDOPA PET signal was correlated voxel-wise with FDG uptake over the entire brain. PDRP expression correlated with FDOPA uptake in caudate and putamen (P < 0.001), while PDCP expression correlated with uptake in the anterior striatum (P < 0.001). While statistically significant, the correlations were only of modest size, accounting for less than 20% of the overall variation in these measures. After controlling for PDCP expression, PDRP correlations were significant only in the posterior putamen. Of note, voxel-wise correlations between caudate/putamen FDOPA uptake and whole-brain FDG uptake were significant almost exclusively in PDRP regions. Overall, the data indicate that PDRP and PDCP expression correlates significantly with PET indices of presynaptic dopaminergic functioning obtained in the same individuals. Even so, the modest size of these correlations suggests that in PD patients, individual differences in network activity cannot be explained solely by nigrostriatal dopamine loss. PMID:26037537

  7. Muscle networks: Connectivity analysis of EMG activity during postural control.

    PubMed

    Boonstra, Tjeerd W; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F; Breakspear, Michael

    2015-01-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures. PMID:26634293

  8. Muscle networks: Connectivity analysis of EMG activity during postural control

    PubMed Central

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-01-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures. PMID:26634293

  9. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  10. Impact of amylases on biopolymer dynamics during storage of straight-dough wheat bread.

    PubMed

    Bosmans, Geertrui M; Lagrain, Bert; Fierens, Ellen; Delcour, Jan A

    2013-07-01

    When Bacillus stearothermophilus α-amylase (BStA), Pseudomonas saccharophila α-amylase (PSA), or Bacillus subtilis α-amylase (BSuA) was added to a bread recipe to impact bread firming, amylose crystal formation was facilitated, leading to lower initial crumb resilience. Bread loaves that best retained their quality were those obtained when BStA was used. The enzyme hindered formation of an extended starch network, resulting in less water immobilization and smaller changes in crumb firmness and resilience. BSuA led to extensive degradation of the starch network during bread storage with release of immobilized water, eventually resulting in partial structure collapse and poor crumb resilience. The most important effect of PSA was an increased bread volume, resulting in smaller changes in crumb firmness and resilience. A negative linear relation was found between NMR proton mobilities of water and biopolymers in the crumb and crumb firmness. The slope of that relation gave an indication of the strength of the starch network. PMID:23777249

  11. Flocculation performance of a cationic biopolymer derived from a cellulosic source in mild aqueous solution.

    PubMed

    Liimatainen, Henrikki; Sirviö, Juho; Sundman, Ola; Visanko, Miikka; Hormi, Osmo; Niinimäki, Jouko

    2011-10-01

    The flocculation behavior of cationic, quaternary ammonium groups containing cellulosic biopolymers, CDACs, synthesized by cationizing dialdehyde cellulose in mild aqueous solution was studied in a kaolin suspension. In particular, the role of CDAC dosage and solution pH, NaCl concentration, and temperature were clarified. In addition, the initial apparent charge densities (CDs), particle sizes, ζ-potential, and stability of CDs were determined. CDACs possessed a high flocculation activity in neutral and acidic solutions, but a significant decrease was observed in alkaline solutions (pH >9). This was also seen as a decline in the apparent CD and particle size of the CDACs in alkaline conditions. The measurements also indicated that the apparent CD decreased to a constant level of 3 mmol/g in aqueous solutions. However, no notable decrease in flocculation performance was obtained after several days of storage. Moreover, the variation of NaCl concentration and temperature did not affect the flocculation activity. PMID:21862324

  12. Rheological and Tribological Properties of Complex Biopolymer Solutions

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca Reese

    2011-12-01

    The rheological and tribological properties of an experimental synovial fluid model were investigated in order to determine the solution dynamics of the three most abundant macromolecules present in synovial fluid, the fluid that lubricates freely moving (synovial) joints. These components, hyaluronic acid (HA) and the plasma proteins, albumin and gamma-globulins are combined in a phosphate buffered saline solution (PBS) and subjected to steady shear rheology testing, as well as nanoindenter-based scratch testing, which allows for the study of the lubrication properties of the experimental synovial fluid model. Steady shear experiments, where the shear rate was increased from low to high, and then decreased from high to low, showed hysteresis in only protein containing solutions, whereas samples of HA in PBS behaved as a "typical" polyelectrolyte in solution. Subsequent rheological experiments on the synovial fluid model exhibited an increase in viscosity at low shear stresses, indicating that a structure was present at these low shear stresses, which was not found at higher shear stresses. This result is in agreement with studies conducted on the same model which show unusual rheological behavior at low shear rates. Low shear stresses can cause modifications to the external protein surface, resulting in their unfolding and creating many opportunities for the molecules to reorder themselves. As the proteins reorder themselves, the newly exposed hydrophobic patches will have a tendency to aggregate together, creating a network within the fluid, and, in turn causing the observed increased viscosity at low shear stresses. Additionally, an anti-inflammatory drug, hydroxychloroquine (HCQ) was added to the solutions. This addition diminishes the protein aggregation process substantially. Finally, the HA component of the synovial fluid model was replaced with a neutral polymer in order to examine the role of HA in synovial fluid. As suspected, the HA appears to have

  13. Data on the distribution of physical activities in the Shenzhen greenway network with volunteered geographic information.

    PubMed

    Liu, Kun; Siu, Kin Wai Michael; Gong, Yong Xi; Gao, Yuan; Lu, Dan

    2016-09-01

    This data presents the distribution of physical activities in the Shenzhen greenway network (GN) in January, April and July, 2014. The volunteered geographic on physical activity is overlaid with the greenways data, to describe the distribution of physical activities in the greenways. The data are summarized to show the distribution characteristics geographically from different aspects in Shenzhen, China. Data were used to explore the effect of the Shenzhen GN on supporting physical activities, "Where do networks really work? The effects of Shenzhen greenway network on supporting physical activities" (Liu et al., 2016) [2]. PMID:27257616

  14. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  15. Dynamics on Networks: The Role of Local Dynamics and Global Networks on the Emergence of Hypersynchronous Neural Activity

    PubMed Central

    Schmidt, Helmut; Petkov, George; Richardson, Mark P.; Terry, John R.

    2014-01-01

    Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3–6 Hz) and low-alpha (6–9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80 predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people

  16. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  17. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    PubMed

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  18. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    PubMed Central

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  19. Finding Influential Spreaders from Human Activity beyond Network Location

    PubMed Central

    Min, Byungjoon; Liljeros, Fredrik; Makse, Hernán A.

    2015-01-01

    Most centralities proposed for identifying influential spreaders on social networks to either spread a message or to stop an epidemic require the full topological information of the network on which spreading occurs. In practice, however, collecting all connections between agents in social networks can be hardly achieved. As a result, such metrics could be difficult to apply to real social networks. Consequently, a new approach for identifying influential people without the explicit network information is demanded in order to provide an efficient immunization or spreading strategy, in a practical sense. In this study, we seek a possible way for finding influential spreaders by using the social mechanisms of how social connections are formed in real networks. We find that a reliable immunization scheme can be achieved by asking people how they interact with each other. From these surveys we find that the probabilistic tendency to connect to a hub has the strongest predictive power for influential spreaders among tested social mechanisms. Our observation also suggests that people who connect different communities is more likely to be an influential spreader when a network has a strong modular structure. Our finding implies that not only the effect of network location but also the behavior of individuals is important to design optimal immunization or spreading schemes. PMID:26323015

  20. Citation Networks as Indicators of Journalism Research Activity.

    ERIC Educational Resources Information Center

    Tankard, James W., Jr.; And Others

    One method of identifying important areas and books within a field is through citation counts--noting the number of times a work is referred to in the literature. These counts can be supplemented with citation networks, in which links between articles are formed by such methods as direct citation and cocitation. Citation counts and networks were…

  1. Finding Influential Spreaders from Human Activity beyond Network Location.

    PubMed

    Min, Byungjoon; Liljeros, Fredrik; Makse, Hernán A

    2015-01-01

    Most centralities proposed for identifying influential spreaders on social networks to either spread a message or to stop an epidemic require the full topological information of the network on which spreading occurs. In practice, however, collecting all connections between agents in social networks can be hardly achieved. As a result, such metrics could be difficult to apply to real social networks. Consequently, a new approach for identifying influential people without the explicit network information is demanded in order to provide an efficient immunization or spreading strategy, in a practical sense. In this study, we seek a possible way for finding influential spreaders by using the social mechanisms of how social connections are formed in real networks. We find that a reliable immunization scheme can be achieved by asking people how they interact with each other. From these surveys we find that the probabilistic tendency to connect to a hub has the strongest predictive power for influential spreaders among tested social mechanisms. Our observation also suggests that people who connect different communities is more likely to be an influential spreader when a network has a strong modular structure. Our finding implies that not only the effect of network location but also the behavior of individuals is important to design optimal immunization or spreading schemes. PMID:26323015

  2. Activity induced phase separation in particles and (bio)polymers

    NASA Astrophysics Data System (ADS)

    Grosberg, Alexander

    It was recently shown that the non-equilibrium steady state of the mixture of two types of particles exposed to two different thermostats can phase separate (A.Y.Grosberg, J.-F.Joanny, PRE, v. 91, 032118, 2015). similar result is valid also in the case when particles in question are monomers of two different polymer chains, or blocks of a co-polymer. We discuss the implications of these results for the physics of chromatin.

  3. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  4. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors

    PubMed Central

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-01-01

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3−/− but not in mGluR2−/− mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity. PMID:21628565

  5. Social networks of experientially similar others: Formation, activation, and consequences of network ties on the health care experience

    PubMed Central

    Gage, Elizabeth A.

    2013-01-01

    Research documents that interactions among experientially similar others (individuals facing a common stressor) shape health care behavior and ultimately health outcomes. However, we have little understanding of how ties among experientially similar others are formed, what resources and information flows through these networks, and how network embeddedness shapes health care behavior. This paper uses in-depth interviews with 76 parents of pediatric cancer patients to examine network ties among experientially similar others after a serious medical diagnosis. Interviews were conducted between August 2009 and May 2011. Findings demonstrate that many parents formed ties with other families experiencing pediatric cancer, and that information and resources were exchanged during the everyday activities associated with their child’s care. Network flows contained emotional support, caregiving strategies, information about second opinions, health-related knowledge, and strategies for navigating the health care system. Diffusion of information, resources, and support occurred through explicit processes (direct information and support exchanges) and implicit processes (parents learning through observing other families). Network flows among parents shaped parents’ perceptions of the health care experience and their role in their child’s care. These findings contribute to the social networks and social support literatures by elucidating the mechanisms through which network ties among experientially similar others influence health care behavior and experiences. PMID:22999229

  6. Enhancement of visual responsiveness by spontaneous local network activity in vivo.

    PubMed

    Haider, Bilal; Duque, Alvaro; Hasenstaub, Andrea R; Yu, Yuguo; McCormick, David A

    2007-06-01

    Spontaneous activity within local circuits affects the integrative properties of neurons and networks. We have previously shown that neocortical network activity exhibits a balance between excitatory and inhibitory synaptic potentials, and such activity has significant effects on synaptic transmission, action potential generation, and spike timing. However, whether such activity facilitates or reduces sensory responses has yet to be clearly determined. We examined this hypothesis in the primary visual cortex in vivo during slow oscillations in ketamine-xylazine anesthetized cats. We measured network activity (Up states) with extracellular recording, while simultaneously recording postsynaptic potentials (PSPs) and action potentials in nearby cells. Stimulating the receptive field revealed that spiking responses of both simple and complex cells were significantly enhanced (>2-fold) during network activity, as were spiking responses to intracellular injection of varying amplitude artificial conductance stimuli. Visually evoked PSPs were not significantly different in amplitude during network activity or quiescence; instead, spontaneous depolarization caused by network activity brought these evoked PSPs closer to firing threshold. Further examination revealed that visual responsiveness was gradually enhanced by progressive membrane potential depolarization. These spontaneous depolarizations enhanced responsiveness to stimuli of varying contrasts, resulting in an upward (multiplicative) scaling of the contrast response function. Our results suggest that small increases in ongoing balanced network activity that result in depolarization may provide a rapid and generalized mechanism to control the responsiveness (gain) of cortical neurons, such as occurs during shifts in spatial attention. PMID:17409168

  7. Amplified spontaneous emission in the spiropyran-biopolymer based system

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Sznitko, Lech; Bartkiewicz, Stanislaw; Miniewicz, Andrzej; Essaidi, Zacaria; Kajzar, Francois; Sahraoui, Bouchta

    2009-06-01

    Amplified spontaneous emission (ASE) phenomenon in the 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indolin] organic dye dispersed in a solid matrix has been observed. The biopolymer system deoxyribonucleic acid blended with cationic surfactant molecule cetyltrimethyl-ammonium chloride served as a matrix. ASE appeared under sample excitation by UV light pulses (λ =355 nm) coming from nanosecond or picosecond neodymium doped yttrium aluminum garnet lasers and has been reinforced with green (λ =532 nm) light excitation followed UV light pulse. The ASE characteristics in function of different excitation pulse energies as well as signal gain were measured.

  8. Peptide-based Biopolymers in Biomedicine and Biotechnology

    PubMed Central

    Chow, Dominic; Nunalee, Michelle L.; Lim, Dong Woo; Simnick, Andrew J.; Chilkoti, Ashutosh

    2008-01-01

    Peptides are emerging as a new class of biomaterials due to their unique chemical, physical, and biological properties. The development of peptide-based biomaterials is driven by the convergence of protein engineering and macromolecular self-assembly. This review covers the basic principles, applications, and prospects of peptide-based biomaterials. We focus on both chemically synthesized and genetically encoded peptides, including poly-amino acids, elastin-like polypeptides, silk-like polymers and other biopolymers based on repetitive peptide motifs. Applications of these engineered biomolecules in protein purification, controlled drug delivery, tissue engineering, and biosurface engineering are discussed. PMID:19122836

  9. The complexity of the overlap method for sequencing biopolymers.

    PubMed

    Gallant, J K

    1983-03-01

    The problem of trying to reconstruct the sequence of a biopolymer by using overlapping fragments obtained from cleaving agents is shown to be computationally intractable. This strongly suggests that any computer program for overlap sequencing, even though it may work well for a limited number of inputs, will not work sufficiently for all inputs. However, if the problem is restricted so that certain crucial fragments are known, called prime strings, a sequence can be found efficiently in all cases. Graph theory techniques for doing so can also be used to count the number of sequences consistent with the fragment data to determine whether a unique sequence has been obtained. PMID:6876820

  10. Enhanced brightness from all solution processable biopolymer LED

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Namboothiry, M. A. G.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Biopolymer light emitting diodes were fabricated by using all solution processable polymers incorporating biomaterials such as deoxyribonucleic acid lipid complex as an electron blocking layer. Light emission is from a blend of fluorene based copolymers. The devices with electron blocking layer exhibited higher brightness and luminous efficiency. The increased luminance of the multilayer polymer LED is attributed to the contribution from DNA:CTMA as electron blocking layer and PFN, a derivative of polyfluorene, as electron injection layer. Our results show four fold increase in luminance values when DNA is used as electron blocking layer.

  11. Scaling Equations for a Biopolymer in Salt Solution

    NASA Astrophysics Data System (ADS)

    Geissler, Erik; Hecht, Anne-Marie; Horkay, Ferenc

    2007-12-01

    The effect of the simultaneous presence of monovalent and divalent cations on the thermodynamics of polyelectrolyte solutions is an incompletely solved problem. In physiological conditions, combinations of these ions affect structure formation in biopolymer systems. Dynamic light scattering measurements of the collective diffusion coefficient D and the osmotic compressibility of semidilute hyaluronan solutions containing different ratios of sodium and calcium ions are compared with simple polyelectrolyte models. Scaling relationships are proposed in terms of polymer concentration and ionic strength J of the added salt. Differences in the effects of sodium and calcium ions are found to be expressed only through J.

  12. Social network activation: The role of health discussion partners in recovery from mental illness

    PubMed Central

    Perry, Brea L.; Pescosolido, Bernice A.

    2014-01-01

    In response to health problems, individuals may strategically activate their social network ties to help manage crisis and uncertainty. While it is well-established that social relationships provide a crucial safety net, little is known about who is chosen to help during an episode of illness. Guided by the Network Episode Model, two aspects of consulting others in the face of mental illness are considered. First, we ask who activates ties, and what kinds of ties and networks they attempt to leverage for discussing health matters. Second, we ask about the utility of activating health-focused network ties. Specifically, we examine the consequences of network activation at time of entry into treatment for individuals' quality of life, social satisfaction, ability to perform social roles, and mental health functioning nearly one year later. Using interview data from the longitudinal Indianapolis Network Mental Health Study (INMHS, N = 171), we focus on a sample of new patients with serious mental illness and a group with less severe disorders who are experiencing their first contact with the mental health treatment system. Three findings stand out. First, our results reveal the nature of agency in illness response. Whether under a rational choice or habitus logic, individuals appear to evaluate support needs, identifying the best possible matches among a larger group of potential health discussants. These include members of the core network and those with prior mental health experiences. Second, selective activation processes have implications for recovery. Those who secure adequate network resources report better outcomes than those who injudiciously activate network ties. Individuals who activate weaker relationships and those who are unsupportive of medical care experience poorer functioning, limited success in fulfilling social roles, and lower social satisfaction and quality of life later on. Third, the evidence suggests that social networks matter above and

  13. Social network activation: the role of health discussion partners in recovery from mental illness.

    PubMed

    Perry, Brea L; Pescosolido, Bernice A

    2015-01-01

    In response to health problems, individuals may strategically activate their social network ties to help manage crisis and uncertainty. While it is well-established that social relationships provide a crucial safety net, little is known about who is chosen to help during an episode of illness. Guided by the Network Episode Model, two aspects of consulting others in the face of mental illness are considered. First, we ask who activates ties, and what kinds of ties and networks they attempt to leverage for discussing health matters. Second, we ask about the utility of activating health-focused network ties. Specifically, we examine the consequences of network activation at time of entry into treatment for individuals' quality of life, social satisfaction, ability to perform social roles, and mental health functioning nearly one year later. Using interview data from the longitudinal Indianapolis Network Mental Health Study (INMHS, N = 171), we focus on a sample of new patients with serious mental illness and a group with less severe disorders who are experiencing their first contact with the mental health treatment system. Three findings stand out. First, our results reveal the nature of agency in illness response. Whether under a rational choice or habitus logic, individuals appear to evaluate support needs, identifying the best possible matches among a larger group of potential health discussants. These include members of the core network and those with prior mental health experiences. Second, selective activation processes have implications for recovery. Those who secure adequate network resources report better outcomes than those who injudiciously activate network ties. Individuals who activate weaker relationships and those who are unsupportive of medical care experience poorer functioning, limited success in fulfilling social roles, and lower social satisfaction and quality of life later on. Third, the evidence suggests that social networks matter above and

  14. Evaluation of Techniques to Detect Significant Network Performance Problems using End-to-End Active Network Measurements

    SciTech Connect

    Cottrell, R.Les; Logg, Connie; Chhaparia, Mahesh; Grigoriev, Maxim; Haro, Felipe; Nazir, Fawad; Sandford, Mark

    2006-01-25

    End-to-End fault and performance problems detection in wide area production networks is becoming increasingly hard as the complexity of the paths, the diversity of the performance, and dependency on the network increase. Several monitoring infrastructures are built to monitor different network metrics and collect monitoring information from thousands of hosts around the globe. Typically there are hundreds to thousands of time-series plots of network metrics which need to be looked at to identify network performance problems or anomalous variations in the traffic. Furthermore, most commercial products rely on a comparison with user configured static thresholds and often require access to SNMP-MIB information, to which a typical end-user does not usually have access. In our paper we propose new techniques to detect network performance problems proactively in close to realtime and we do not rely on static thresholds and SNMP-MIB information. We describe and compare the use of several different algorithms that we have implemented to detect persistent network problems using anomalous variations analysis in real end-to-end Internet performance measurements. We also provide methods and/or guidance for how to set the user settable parameters. The measurements are based on active probes running on 40 production network paths with bottlenecks varying from 0.5Mbits/s to 1000Mbit/s. For well behaved data (no missed measurements and no very large outliers) with small seasonal changes most algorithms identify similar events. We compare the algorithms' robustness with respect to false positives and missed events especially when there are large seasonal effects in the data. Our proposed techniques cover a wide variety of network paths and traffic patterns. We also discuss the applicability of the algorithms in terms of their intuitiveness, their speed of execution as implemented, and areas of applicability. Our encouraging results compare and evaluate the accuracy of our detection

  15. Micro-heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Z-trim is a zero calorie cellulosic fiber biopolymer produced from corn hulls. The micro-structural heterogeneities of Z-trim biopolymer were investigated by monitoring the thermally driven displacements of well-dispersed micro-spheres via video fluorescence microscopy named multiple-particle track...

  16. Micro-Heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Z-trim is a zero calorie cellulosic fiber biopolymer produced from corn hulls. The micro-structural heterogeneities of Z-trim biopolymer were investigated by monitoring the thermally driven displacements of well-dispersed micro-spheres via video fluorescence microscopy named multiple-particle track...

  17. Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity

    PubMed Central

    Minerbi, Amir; Kahana, Roni; Goldfeld, Larissa; Kaufman, Maya; Marom, Shimon; Ziv, Noam E.

    2009-01-01

    Synaptic plasticity is widely believed to constitute a key mechanism for modifying functional properties of neuronal networks. This belief implicitly implies, however, that synapses, when not driven to change their characteristics by physiologically relevant stimuli, will maintain these characteristics over time. How tenacious are synapses over behaviorally relevant time scales? To begin to address this question, we developed a system for continuously imaging the structural dynamics of individual synapses over many days, while recording network activity in the same preparations. We found that in spontaneously active networks, distributions of synaptic sizes were generally stable over days. Following individual synapses revealed, however, that the apparently static distributions were actually steady states of synapses exhibiting continual and extensive remodeling. In active networks, large synapses tended to grow smaller, whereas small synapses tended to grow larger, mainly during periods of particularly synchronous activity. Suppression of network activity only mildly affected the magnitude of synaptic remodeling, but dependence on synaptic size was lost, leading to the broadening of synaptic size distributions and increases in mean synaptic size. From the perspective of individual neurons, activity drove changes in the relative sizes of their excitatory inputs, but such changes continued, albeit at lower rates, even when network activity was blocked. Our findings show that activity strongly drives synaptic remodeling, but they also show that significant remodeling occurs spontaneously. Whereas such spontaneous remodeling provides an explanation for “synaptic homeostasis” like processes, it also raises significant questions concerning the reliability of individual synapses as sites for persistently modifying network function. PMID:19554080

  18. Production of novel biopolymers in plants: recent technological advances and future prospects.

    PubMed

    Snell, Kristi D; Singh, Vijay; Brumbley, Stevens M

    2015-04-01

    The production of novel biopolymers in plants has the potential to provide renewable sources of industrial materials through agriculture. In this review we will highlight recent progress with plant-based production of polyhydroxyalkanoates (PHAs), silk, elastin, collagen, and cyanophycin with an emphasis on the synthesis of poly[(R)-3-hydroxybutyrate] (PHB), a renewable biodegradable PHA polymer with potential commercial applications in plastics, chemicals, and feed markets. Improved production of PHB has required manipulation of promoters driving expression of transgenes, reduction in activity of endogenous enzymes in competing metabolic pathways, insertion of genes to increase carbon flow to polymer, and basic plant biochemistry to understand metabolic limitations. These experiments have increased our understanding of carbon availability and partitioning in different plant organelles, cell types, and organs, information that is useful for the production of other novel molecules in plants. PMID:25437636

  19. Biopolymer as an electron selective layer for inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Jin Tan, Mein; Zhong, Shu; Wang, Rui; Zhang, Zhongxing; Chellappan, Vijila; Chen, Wei

    2013-08-01

    In this work, a solution-processable electron selective layer is introduced for inverted polymer solar cells (PSCs). Cationic biopolymer poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) is used as a solution-processable work function modifier of indium-tin-oxide transparent conducting electrode to yield efficient inverted PSCs of 3.3% under AM1.5G illumination, with poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester as the active layer. Devices using PDMAEMA exhibit greater stability in ambient "working conditions" as compared to devices using ZnO, retaining 90% of peak power conversion efficiency after 8 weeks. Therefore, PDMAEMA has great potential as a universal work function modifier material with high robustness.

  20. Chitosan: a propitious biopolymer for drug delivery.

    PubMed

    Duttagupta, Dibyangana S; Jadhav, Varsha M; Kadam, Vilasrao J

    2015-01-01

    Scientists have always been interested in the use of natural polymers for drug delivery. Chitosan, being a natural cationic polysaccharide has received a great deal of attention in the past few years. It is obtained by deacetylation of chitin and is regarded as the second most ubiquitous polymer subsequent to cellulose on earth. Unlike other natural polymers, the cationic charge possessed by chitosan is accountable for imparting interesting physical and chemical properties. Chitosan has been widely exploited for its mucoadhesive character, permeation enhancing properties and controlled release of drugs. Moreover it's non-toxic, biocompatible and biodegradable properties make it a good candidate for novel drug delivery system. This review provides an insight on various chitosan based formulations for drug delivery. Some of the current applications of chitosan in areas like ophthalmic, nasal, buccal, sublingual, gastro-retentive, pulmonary, transdermal, colon-specific and vaginal drug delivery have been discussed. In addition, active targeting of drugs to tumor cells using chitosan has been described. Lastly a brief section covering the safety aspects of chitosan has also been reviewed. PMID:25761010

  1. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics.

    PubMed

    Jones, Owen Griffith; McClements, David Julian

    2010-03-01

    Biopolymer nanoparticles can be formed by heating globular protein-ionic polysaccharide electrostatic complexes above the thermal denaturation temperature of the protein. This study examined how the size and concentration of biopolymer particles formed by heating beta-lactoglobulin-pectin complexes could be manipulated by controlling preparation conditions: pH, ionic strength, protein concentration, holding time, and holding temperature. Biopolymer particle size and concentration increased with increasing holding time (0 to 30 min), decreasing holding temperature (90 to 70 degrees C), increasing protein concentration (0 to 2 wt/wt%), increasing pH (4.5 to 5), and increasing salt concentration (0 to 50 mol/kg). The influence of these factors on biopolymer particle size was attributed to their impact on protein-polysaccharide interactions, and on the kinetics of nucleation and particle growth. The knowledge gained from this study will facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes. PMID:20492252

  2. Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces

    SciTech Connect

    Roe, F.L.; Lewandowski, Z.; Funk, T.

    1996-10-01

    Electrochemical properties of corroding mild steel (MS) surfaces were measured in real time using three closely spaced microelectrodes. Dissolved oxygen, pH, and ion currents were mapped simultaneously and noninvasively above a MS coupon partially coated with biopolymer gels. Calcium alginate (Ca-Alg [an extracellular biopolymer containing carboxylate functional groups]) and agarose (one without carboxylate functional groups) were tested. Corrosion occurred at approximately the same rate under the two biopolymer spots on the same coupon. Corrosion rates under these biopolymers were {approx} 4 mpy in a weak saline solution. Results suggested corrosion was not influenced by chemical properties of the biopolymer but possibly was controlled by oxygen reduction in noncoated regions of the coupon (i.e., a differential aeration cell).

  3. A Social Network Analysis Approach to Detecting Suspicious Online Financial Activities

    NASA Astrophysics Data System (ADS)

    Tang, Lei; Barbier, Geoffrey; Liu, Huan; Zhang, Jianping

    Social network analysis techniques can be applied to help detect financial crimes. We discuss the relationship between detecting financial crimes and the social web, and use select case studies to illustrate the potential for applying social network analysis techniques. With the increasing use of online financing services and online financial activities, it becomes more challenging to find suspicious activities among massive numbers of normal and legal activities.

  4. Simulating ensembles of nonlinear continuous time dynamical systems via active ultra wideband wireless network

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Gerasimov, Mark Yu.; Itskov, Vadim V.

    2016-06-01

    The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.

  5. Young adolescents' perceived activity space risk, peer networks, and substance use.

    PubMed

    Mason, Michael; Mennis, Jeremy; Way, Thomas; Light, John; Rusby, Julie; Westling, Erika; Crewe, Stephanie; Flay, Brian; Campbell, Leah; Zaharakis, Nikola; McHenry, Chantal

    2015-07-01

    Adolescent substance use is a developmentally contingent social practice that is constituted within the routine social-environment of adolescents' lives. Few studies have examined peer networks, perceived activity space risk (risk of substance use at routine locations), and substance use. We examined the moderating influence of peer network characteristics on the relationship between perceived activity space risk and substance use among a sample of 250 urban adolescents. Significant interactions were found between peer networks and perceived activity space risk on tobacco and marijuana use, such that protective peer networks reduced the effect of activity place risk on substance use. A significant 3-way interaction was found on marijuana use indicating that gender moderated peer network's effect on activity space risk. Conditional effect analysis found that boys' peer networks moderated the effect of perceived activity space risk on marijuana use, whereas for girls, the effect of perceived activity space risk on marijuana use was not moderated by their peer networks. These findings could advance theoretical models to inform social-environmental research among adolescents. PMID:26026598

  6. P and S wave responses of bacterial biopolymer formation in unconsolidated porous media

    NASA Astrophysics Data System (ADS)

    Noh, Dong-Hwa; Ajo-Franklin, Jonathan B.; Kwon, Tae-Hyuk; Muhunthan, Balasingam

    2016-04-01

    This study investigated the P and S wave responses and permeability reduction during bacterial biopolymer formation in unconsolidated porous media. Column experiments with fine sands, where the model bacteria Leuconostoc mesenteroides were stimulated to produce insoluble biopolymer, were conducted while monitoring changes in permeability and P and S wave responses. The bacterial biopolymer reduced the permeability by more than 1 order of magnitude, occupying ~10% pore volume after 38 days of growth. This substantial reduction was attributed to the bacterial biopolymer with complex internal structures accumulated at pore throats. S wave velocity (VS) increased by more than ~50% during biopolymer accumulation; this indicated that the bacterial biopolymer caused a certain level of stiffening effect on shear modulus of the unconsolidated sediment matrix at low confining stress conditions. Whereas replacing pore water by insoluble biopolymer was observed to cause minimal changes in P wave velocity (VP) due to the low elastic moduli of insoluble biopolymer. The spectral ratio analyses revealed that the biopolymer formation caused a ~50-80% increase in P wave attenuation (1/QP) at the both ultrasonic and subultrasonic frequency ranges, at hundreds of kHz and tens of kHz, respectively, and a ~50-60% increase in S wave attenuation (1/QS) in the frequency band of several kHz. Our results reveal that in situ biopolymer formation and the resulting permeability reduction can be effectively monitored by using P and S wave attenuation in the ultrasonic and subultrasonic frequency ranges. This suggests that field monitoring using seismic logging techniques, including time-lapse dipole sonic logging, may be possible.

  7. Direct adhesive measurements between wood biopolymer model surfaces.

    PubMed

    Gustafsson, Emil; Johansson, Erik; Wågberg, Lars; Pettersson, Torbjörn

    2012-10-01

    For the first time the dry adhesion was measured for an all-wood biopolymer system using Johnson-Kendall-Roberts (JKR) contact mechanics. The polydimethylsiloxane hemisphere was successfully surface-modified with a Cellulose I model surface using layer-by-layer assembly of nanofibrillated cellulose and polyethyleneimine. Flat surfaces of cellulose were equally prepared on silicon dioxide substrates, and model surfaces of glucomannan and lignin were prepared on silicon dioxide using spin-coating. The measured work of adhesion on loading and the adhesion hysteresis was found to be very similar between cellulose and all three wood polymers, suggesting that the interaction between these biopolymers do not differ greatly. Surface energy calculations from contact angle measurements indicated similar dispersive surface energy components for the model surfaces. The dispersive component was dominating the surface energy for all surfaces. The JKR work of adhesion was lower than that calculated from contact angle measurements, which partially can be ascribed to surface roughness of the model surfaces and overestimation of the surface energies from contact angle determinations. PMID:22924973

  8. Biopolymer solution viscosity stabilization-polymer degradation and antioxidant use

    SciTech Connect

    Wellington, S.L.

    1983-12-01

    Dilute solutions of polymers used to provide mobility control for EOR often lose viscosity, especially at higher temperatures. This loss of viscosity with time brings into question the feasibility of using polymers as mobility control agents. A literature study of the many possible reaction mechanisms indicated that oxidation/reduction (redox) reactions involving free radicals probably caused polymer degradation and concomitant viscosity loss. A preliminary search for antioxidants known to retard free-radical reactions located several types and positive synergistic formulations that significantly retarded biopolymer solution viscosity loss during accelerated tests at high temperature. The most effective type formulation found contained (1) a radical transfer agent; (2) a sacrificial, easily oxidizable alcohol; (3) a compatible oxygen scavenger; and (4) sufficient brine concentration. Samples prepared with this technology have not lost viscosity after 1-year storage at 207/sup 0/F (97/sup 0/C). A high-surface-area effect (so-called ''wall effect''), known to retard radical propagation, was also found to operate in the presence of sandpacks; this should be beneficial in porous media. The variables and beneficial antioxidant formulations identified in this study allow tentative conclusions and recommendations regarding biopolymer mixing and handling procedures prior to injection.

  9. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  10. Modelling temporal networks of human face-to-face contacts with public activity and individual reachability

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang

    2016-02-01

    Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.

  11. Active patterning and asymmetric transport in a model actomyosin network

    SciTech Connect

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  12. Intrinsic network activity in tinnitus investigated using functional MRI.

    PubMed

    Leaver, Amber M; Turesky, Ted K; Seydell-Greenwald, Anna; Morgan, Susan; Kim, Hung J; Rauschecker, Josef P

    2016-08-01

    Tinnitus is an increasingly common disorder in which patients experience phantom auditory sensations, usually ringing or buzzing in the ear. Tinnitus pathophysiology has been repeatedly shown to involve both auditory and non-auditory brain structures, making network-level studies of tinnitus critical. In this magnetic resonance imaging (MRI) study, two resting-state functional connectivity (RSFC) approaches were used to better understand functional network disturbances in tinnitus. First, we demonstrated tinnitus-related reductions in RSFC between specific brain regions and resting-state networks (RSNs), defined by independent components analysis (ICA) and chosen for their overlap with structures known to be affected in tinnitus. Then, we restricted ICA to data from tinnitus patients, and identified one RSN not apparent in control data. This tinnitus RSN included auditory-sensory regions like inferior colliculus and medial Heschl's gyrus, as well as classically non-auditory regions like the mediodorsal nucleus of the thalamus, striatum, lateral prefrontal, and orbitofrontal cortex. Notably, patients' reported tinnitus loudness was positively correlated with RSFC between the mediodorsal nucleus and the tinnitus RSN, indicating that this network may underlie the auditory-sensory experience of tinnitus. These data support the idea that tinnitus involves network dysfunction, and further stress the importance of communication between auditory-sensory and fronto-striatal circuits in tinnitus pathophysiology. Hum Brain Mapp 37:2717-2735, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27091485

  13. Active patterning and asymmetric transport in a model actomyosin network

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-01

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  14. A diversity of localized timescales in network activity

    PubMed Central

    Chaudhuri, Rishidev; Bernacchia, Alberto; Wang, Xiao-Jing

    2014-01-01

    Neurons show diverse timescales, so that different parts of a network respond with disparate temporal dynamics. Such diversity is observed both when comparing timescales across brain areas and among cells within local populations; the underlying circuit mechanism remains unknown. We examine conditions under which spatially local connectivity can produce such diverse temporal behavior. In a linear network, timescales are segregated if the eigenvectors of the connectivity matrix are localized to different parts of the network. We develop a framework to predict the shapes of localized eigenvectors. Notably, local connectivity alone is insufficient for separate timescales. However, localization of timescales can be realized by heterogeneity in the connectivity profile, and we demonstrate two classes of network architecture that allow such localization. Our results suggest a framework to relate structural heterogeneity to functional diversity and, beyond neural dynamics, are generally applicable to the relationship between structure and dynamics in biological networks. DOI: http://dx.doi.org/10.7554/eLife.01239.001 PMID:24448407

  15. A 57Fe Mössbauer characterization of Fe-biopolymer complexes and their relevance to biological molecules

    NASA Astrophysics Data System (ADS)

    Bhatia, Subhash C.; Cardelino, Beatriz H.; Ravi, Natarajan

    2005-09-01

    57Fe Mössbauer spectroscopy is used to study the interactions, geometry, and the coordination characteristics of the Fe-complexes of biopolymers such as chitosan, glucosamine, and chondritin sulfate. In addition, a computational effort is undertaken for predicting the geometries and energies of the metal complexes by the Density Functional Theory (DFT) methods as implemented in the Gaussian 2003 quantum mechanical program. Both experimental and computational results suggest that the structure of the metal complexes resemble closely the structure of the active sites of metalloenzymes in 2+ or 3+ oxidation states and is at least tetracoordinated and can possibly have six ligands.

  16. AST: Activity-Security-Trust driven modeling of time varying networks

    PubMed Central

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  17. AST: Activity-Security-Trust driven modeling of time varying networks

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-02-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.

  18. AST: Activity-Security-Trust driven modeling of time varying networks.

    PubMed

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  19. Enzymatically activated emulsions stabilised by interfacial nanofibre networks.

    PubMed

    Moreira, Inês P; Sasselli, Ivan Ramos; Cannon, Daniel A; Hughes, Meghan; Lamprou, Dimitrios A; Tuttle, Tell; Ulijn, Rein V

    2016-03-01

    We report on-demand formation of emulsions stabilised by interfacial nanoscale networks. These are formed through biocatalytic dephosphorylation and self-assembly of Fmoc(9-fluorenylmethoxycarbonyl)dipeptide amphiphiles in aqueous/organic mixtures. This is achieved by using alkaline phosphatase which transforms surfactant-like phosphorylated precursors into self-assembling aromatic peptide amphiphiles (Fmoc-tyrosine-leucine, Fmoc-YL) that form nanofibrous networks. In biphasic organic/aqueous systems, these networks form preferentially at the interface thus providing a means of emulsion stabilisation. We demonstrate on-demand emulsification by enzyme addition, even after storage of the biphasic mixture for several weeks. Experimental (Fluorescence, FTIR spectroscopy, fluorescence microscopy, electron microscopy, atomic force microscopy) and computational techniques (atomistic molecular dynamics) are used to characterise the interfacial self-assembly process. PMID:26905042

  20. DELTAMETHRIN AND ESFENVALERATE INHIBIT SPONTANEOUS NETWORK ACTIVITY IN RAT CORTICAL NEURONS IN VITRO.

    EPA Science Inventory

    Understanding pyrethroid actions on neuronal networks will help to establish a mode of action for these compounds, which is needed for cumulative risk decisions under the Food Quality Protection Act of 1996. However, pyrethroid effects on spontaneous activity in networks of inter...

  1. "Who Do You Talk to about Your Teaching?": Networking Activities among University Teachers

    ERIC Educational Resources Information Center

    Pataraia, Nino; Falconer, Isobel; Margaryan, Anoush; Littlejohn, Allison; Fincher, Sally

    2014-01-01

    As the higher education environment changes, there are calls for university teachers to change and enhance their teaching practices to match. Networking practices are known to be deeply implicated in studies of change and diffusion of innovation, yet academics' networking activities in relation to teaching have been little studied. This paper…

  2. Noise influence on spike activation in a Hindmarsh–Rose small-world neural network

    NASA Astrophysics Data System (ADS)

    Zhe, Sun; Micheletto, Ruggero

    2016-07-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh‑Rose (H‑R) neural networks.

  3. Research Activities Within the Professional Development Center Network.

    ERIC Educational Resources Information Center

    Abram, Marie J.; And Others

    A cooperative program to improve education in the public schools involving the combined resources of the state department of education, a state university, and the local school districts is described. This Professional Development Center Network (PDC) conducts research to produce decision-making information to upgrade inservice programs in the…

  4. SAN-RL: combining spreading activation networks and reinforcement learning to learn configurable behaviors

    NASA Technical Reports Server (NTRS)

    White, J.; Gaines, D. M.; Wilkes, M.; Kusumalnukool, K.; Thongchai, S.; Kawamura, K.

    2001-01-01

    This approach provides the agent with a causal structure, the spreading activation network, relating goals to the actions that can achieve those goals. This enables the agent to select actions relative to the goal priorities.

  5. Topic-Aware Physical Activity Propagation in a Health Social Network

    PubMed Central

    Phan, Nhathai; Ebrahimi, Javid; Kil, Dave; Piniewski, Brigitte; Dou, Dejing

    2016-01-01

    Modeling physical activity propagation, such as physical exercise level and intensity, is the key to preventing the conduct that can lead to obesity; it can also help spread wellness behavior in a social network. PMID:27087794

  6. Gold nanowire networks: synthesis, characterization, and catalytic activity.

    PubMed

    Chirea, Mariana; Freitas, Andreia; Vasile, Bogdan S; Ghitulica, Cristina; Pereira, Carlos M; Silva, Fernando

    2011-04-01

    Gold nanowire networks (AuNWNs) with average widths of 17.74 nm (AuNWN(1)) or 23.54 nm (AuNWN(2)) were synthesized by direct reduction of HAuCl(4) with sodium borohydride powder in deep eutectic solvents, such as ethaline or reline, at 40 °C. Their width and length were dependent on the type of solvent and the NaBH(4)/HAuCl(4) molar ratio (32 in ethaline and 5.2 in reline). High resolution transmission electron microscopy (HR-TEM) analysis of the gold nanowire networks showed clear lattice fringes of polycrystalline nanopowder of d = 2.36, 2.04, 1.44, and 1.23 Å corresponding to the (111), (200), (220), or (311) crystallographic planes of face centered cubic gold. The purified AuNWNs were used as catalysts for the chemical reduction of p-nitroaniline to diaminophenylene with sodium borohydride in aqueous solution. The reaction was monitored in real time by UV-vis spectroscopy. The results show that the reduction process is six times faster in the presence of gold nanowire networks stabilized by urea from the reline (AuNWN(2)) than in the presence of gold nanowire networks stabilized by ethylene glycol from ethaline (AuNWN(1)). This is due to a higher number of corners and edges on the gold nanowires synthesized in reline than on those synthesized in ethaline as proven by X-ray diffraction (XRD) patterns recorded for both types of gold nanowire networks. Nevertheless, both types of nanomaterials determined short times of reaction and high conversion of p-nitroaniline to diaminophenylene. These gold nanomaterials represent a new addition to a new generation of catalysts: gold based catalysts. PMID:21348463

  7. Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks.

    PubMed

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A; Mullins, R Dyche

    2016-01-14

    Branched actin networks--created by the Arp2/3 complex, capping protein, and a nucleation promoting factor--generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487

  8. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  9. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities

    PubMed Central

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D.; Correia, Cristina; Li, Hu

    2016-01-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  10. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions

    PubMed Central

    Luhmann, Heiko J.; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C.; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits. PMID:27252626

  11. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions.

    PubMed

    Luhmann, Heiko J; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits. PMID:27252626

  12. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity.

    PubMed

    Egorov, Alexei V; Draguhn, Andreas

    2013-01-01

    Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully

  13. Friendship networks and physical activity and sedentary behavior among youth: a systematized review

    PubMed Central

    2013-01-01

    Background Low levels of physical activity and increased participation in sedentary leisure-time activities are two important obesity-risk behaviors that impact the health of today’s youth. Friend’s health behaviors have been shown to influence individual health behaviors; however, current evidence on the specific role of friendship networks in relation to levels of physical activity and sedentary behavior is limited. The purpose of this review was to summarize evidence on friendship networks and both physical activity and sedentary behavior among children and adolescents. Method After a search of seven scientific databases and reference scans, a total of thirteen articles were eligible for inclusion. All assessed the association between friendship networks and physical activity, while three also assessed sedentary behavior. Results Overall, higher levels of physical activity among friends are associated with higher levels of physical activity of the individual. Longitudinal studies reveal that an individual’s level of physical activity changes to reflect his/her friends’ higher level of physical activity. Boys tend to be influenced by their friendship network to a greater extent than girls. There is mixed evidence surrounding a friend’s sedentary behavior and individual sedentary behavior. Conclusion Friends’ physical activity level appears to have a significant influence on individual’s physical activity level. Evidence surrounding sedentary behavior is limited and mixed. Results from this review could inform effective public health interventions that harness the influence of friends to increase physical activity levels among children and adolescents. PMID:24289113

  14. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks.

    PubMed

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627

  15. Ripples make waves: binding structured activity and plasticity in hippocampal networks.

    PubMed

    Sadowski, Josef H L P; Jones, Matthew W; Mellor, Jack R

    2011-01-01

    Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR) oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus. PMID:21961073

  16. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks

    PubMed Central

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627

  17. Temporal Sequence of Hemispheric Network Activation during Semantic Processing: A Functional Network Connectivity Analysis

    ERIC Educational Resources Information Center

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey

    2009-01-01

    To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…

  18. Real-time Neural Network predictions of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Bala, R.; Reiff, P. H.

    2009-12-01

    The Boyle potential or the Boyle Index (BI), Φ (kV)=10-4 (V/(km/s))2 + 11.7 (B/nT) sin3(θ/2), is an empirically-derived formula that can characterize the Earth's polar cap potential, which is readily derivable in real time using the solar wind data from ACE (Advanced Composition Explorer). The BI has a simplistic form that utilizes a non-magnetic "viscous" and a magnetic "merging" component to characterize the magnetospheric behavior in response to the solar wind. We have investigated its correlation with two of conventional geomagnetic activity indices in Kp and the AE index. We have shown that the logarithms of both 3-hr and 1-hr averages of the BI correlate well with the subsequent Kp: Kp = 8.93 log10(BI) - 12.55 along with 1-hr BI correlating with the subsequent log10(AE): log10(AE) = 1.78 log10(BI) - 3.6. We have developed a new set of algorithms based on Artificial Neural Networks (ANNs) suitable for short term space weather forecasts with an enhanced lead-time and better accuracy in predicting Kp and AE over some leading models; the algorithms omit the time history of its targets to utilize only the solar wind data. Inputs to our ANN models benefit from the BI and its proven record as a forecasting parameter since its initiation in October, 2003. We have also performed time-sensitivity tests using cross-correlation analysis to demonstrate that our models are as efficient as those that incorporates the time history of the target indices in their inputs. Our algorithms can predict the upcoming full 3-hr Kp, purely from the solar wind data and achieve a linear correlation coefficient of 0.840, which means that it predicts the upcoming Kp value on average to within 1.3 step, which is approximately the resolution of the real-time Kp estimate. Our success in predicting Kp during a recent unexpected event (22 July ’09) is shown in the figure. Also, when predicting an equivalent "one hour Kp'', the correlation coefficient is 0.86, meaning on average a prediction

  19. Information content of neural networks with self-control and variable activity

    NASA Astrophysics Data System (ADS)

    Bollé, D.; Amari, S. I.; Dominguez Carreta, D. R. C.; Massolo, G.

    2001-02-01

    A self-control mechanism for the dynamics of neural networks with variable activity is discussed using a recursive scheme for the time evolution of the local field. It is based upon the introduction of a self-adapting time-dependent threshold as a function of both the neural and pattern activity in the network. This mechanism leads to an improvement of the information content of the network as well as an increase of the storage capacity and the basins of attraction. Different architectures are considered and the results are compared with numerical simulations.

  20. The optimization of force inputs for active structural acoustic control using a neural network

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Lester, H. C.; Silcox, R. J.

    1992-01-01

    This paper investigates the use of a neural network to determine which force actuators, of a multi-actuator array, are best activated in order to achieve structural-acoustic control. The concept is demonstrated using a cylinder/cavity model on which the control forces, produced by piezoelectric actuators, are applied with the objective of reducing the interior noise. A two-layer neural network is employed and the back propagation solution is compared with the results calculated by a conventional, least-squares optimization analysis. The ability of the neural network to accurately and efficiently control actuator activation for interior noise reduction is demonstrated.

  1. Large-Scale Coronal Heating from "Cool" Activity in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1999-01-01

    In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of

  2. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  3. Wrestling model of the repertoire of activity propagation modes in quadruple neural networks.

    PubMed

    Shteingart, Hanan; Raichman, Nadav; Baruchi, Itay; Ben-Jacob, Eshel

    2010-01-01

    The spontaneous activity of engineered quadruple cultured neural networks (of four-coupled sub-networks) exhibits a repertoire of different types of mutual synchronization events. Each event corresponds to a specific activity propagation mode (APM) defined by the order of activity propagation between the sub-networks. We statistically characterized the frequency of spontaneous appearance of the different types of APMs. The relative frequencies of the APMs were then examined for their power-law properties. We found that the frequencies of appearance of the leading (most frequent) APMs have close to constant algebraic ratio reminiscent of Zipf's scaling of words. We show that the observations are consistent with a simplified "wrestling" model. This model represents an extension of the "boxing arena" model which was previously proposed to describe the ratio between the two activity modes in two coupled sub-networks. The additional new element in the "wrestling" model presented here is that the firing within each network is modeled by a time interval generator with similar intra-network Lévy distribution. We modeled the different burst-initiation zones' interaction by competition between the stochastic generators with Gaussian inter-network variability. Estimation of the model parameters revealed similarity across different cultures while the inter-burst-interval of the cultures was similar across different APMs as numerical simulation of the model predicts. PMID:20890451

  4. Mathematical analysis techniques for modeling the space network activities

    NASA Technical Reports Server (NTRS)

    Foster, Lisa M.

    1992-01-01

    The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.

  5. Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios

    NASA Astrophysics Data System (ADS)

    Başağaoğlu, Hakan; Succi, Sauro; Manepally, Chandrika; Fedors, Randall; Wyrick, Danielle Y.

    2009-09-01

    Active fractures refer to the portions of unsaturated, connected fractures that actively conduct water. The active fracture model parameter accounts for the reduction in the number of fractures carrying water and in the fracture-matrix interface area in field-scale simulations of flow and transport in unsaturated fractured rocks. One example includes the numerical analyses of the fault test results at the Yucca Mountain site, Nevada (USA). In such applications, the active fracture model parameter is commonly used as a calibration parameter without relating it to fracture network orientations and infiltration rates. A two-dimensional, multiphase lattice-Boltzmann model was used in this study to investigate the sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios for an unsaturated, variable dipping, and geometrically simple fracture network. The active fracture model parameter differed by as much as 0.11-0.44 when the effects of fracture network orientation, injection rate, and injection mode were included in the simulations. Hence, the numerical results suggest that the sensitivity of the active fracture model parameter to fracture network orientation, injection rates, and injection modes should be explored at the field-scale to strengthen the technical basis and range of applicability of the active fracture model.

  6. Sulfated biopolymers for use in recovering petroleum from a subterranean formation

    SciTech Connect

    Tyler, T.N.

    1982-03-09

    Disclosed is a novel sulfated biopolymer, a method for synthesizing the sulfated biopolymer and an oil recovery method employing an aqueous fluid containing the material. The sulfated biopolymer is made by reacting polysaccharides with sulfuric acid in the presence of an aliphatic alcohol at a temperature of from 350 to 750 F, in order to avoid degradation of the polymer by the sulfuric acid. The polymer produces a viscous solution which is less prone to increasing viscosities as shear rate is decreased, which makes it especially suitable for use as a viscosifying polymer in a polymer flooding enhanced oil recovery process.

  7. Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit

    PubMed Central

    Spielberg, Jeffrey M.; Heller, Wendy; Miller, Gregory A.

    2013-01-01

    Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures. PMID:23785328

  8. Biopolymer immobilization during the crystalline growth of layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Leroux, Fabrice; Gachon, Julien; Besse, Jean-Pierre

    2004-01-01

    Alginic acid, a biopolymer produced by brown seaweed, is incorporated between the sheets of a layered double hydroxide (LDH) via direct coprecipitation. The growth of the inorganic crystalline seeds over the polymer gives rise to a lamellar structure. The obtained nanocomposite presents a basal spacing in agreement with the ideal picture of the polymer lying perpendicularly to the inorganic sheets. A study using FTIR and 13C CP-MAS spectroscopies suggests that the interaction between the organic guest and the inorganic framework is weak. However, the polymer has a stabilizing effect in temperature, since ZnO is observed at 350°C, whereas it appears at 200°C for the chloride LDH pristine material.

  9. Biopolymers Confined in Surface-Modified Silicon Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pfohl, T.; Yasa, M.; Safinya, C. R.; Kim, J. H.; Kim, M. W.; Wen, Z.

    2001-03-01

    We have developed surface modification techniques for control of wettability and surface charge in lithographically fabricated Si microfluidic channels. Surface microstructures (patterns) with contrasting wetting properties were created using a combination of microcontact printing and polyelectrolyte adsorption. The selective control of the surface property enabled us to devise various techniques for loading and processing biomaterials in the channels. Using fluorescence and laser scanning confocal microscopy, we studied the structure of biopolymers including DNA, F-Actin and microtubules confined in the surface-modified microchannels. The polymers were observed to align linearly along the channels, which suggests that the channel arrays can be used as effective substrates for aligning filamentous proteins for structural characterization by x-ray diffraction. (Work supported by NSF-DMR-9972246, NSF-DMR-0076357, ONR-N00014-00-1-0214, UC-Biotech 99-14, and CULAR 99-216)

  10. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    PubMed Central

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  11. LassoProt: server to analyze biopolymers with lassos

    PubMed Central

    Dabrowski-Tumanski, Pawel; Niemyska, Wanda; Pasznik, Pawel; Sulkowska, Joanna I.

    2016-01-01

    The LassoProt server, http://lassoprot.cent.uw.edu.pl/, enables analysis of biopolymers with entangled configurations called lassos. The server offers various ways of visualizing lasso configurations, as well as their time trajectories, with all the results and plots downloadable. Broad spectrum of applications makes LassoProt a useful tool for biologists, biophysicists, chemists, polymer physicists and mathematicians. The server and our methods have been validated on the whole PDB, and the results constitute the database of proteins with complex lassos, supported with basic biological data. This database can serve as a source of information about protein geometry and entanglement-function correlations, as a reference set in protein modeling, and for many other purposes. PMID:27131383

  12. The Rheological Properties of the Biopolymers in Synovial Fluid

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Klossner, Rebecca R.; Wetsch, Julie; Oates, Katherine M. N.; Colby, Ralph H.

    2005-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid and the synovial fluid model indicate that the fluids are highly viscoeleastic and rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine affect the rheology of the synovial fluid model and its components. The potential implications of these results will be discussed.

  13. Quercetin as natural stabilizing agent for bio-polymer

    NASA Astrophysics Data System (ADS)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  14. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    PubMed

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds. PMID:27266255

  15. Quercetin as natural stabilizing agent for bio-polymer

    SciTech Connect

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  16. Biopolymer nanostructures induced by plasma irradiation and metal sputtering

    NASA Astrophysics Data System (ADS)

    Slepička, P.; Juřík, P.; Malinský, P.; Macková, A.; Kasálková, N. Slepičková; Švorčík, V.

    2014-08-01

    Modification based on polymer surface exposure to plasma treatment exhibits an easy and cheap technique for polymer surface nanostructuring. The influence of argon plasma treatment on biopolymer poly(L-lactide acid (PLLA) will be presented in this paper. The combination of Ar+ ion irradiation, consequent sputter metallization (platinum) and thermal annealing of polymer surface will be summarized. The surface morphology was studied using atomic force microscopy. The Rutherford Backscattering Spectroscopy and X-ray Photoelectron Spectroscopy were used as analytical methods. The combination of plasma treatment with consequent thermal annealing and/or metal sputtering led to the change of surface morphology and its elemental ratio. The surface roughness and composition has been strongly influenced by the modification parameters and metal layer thickness. By plasma treatment of polymer surface combined with consequent annealing or metal deposition can be prepared materials applicable both in tissue engineering as cell carriers, but also in integrated circuit manufacturing.

  17. Is there a field-theoretic explanation for precursor biopolymers?

    PubMed

    Rosen, Gerald

    2002-08-01

    A Hu-Barkana-Gruzinov cold dark matter scalar field phi may enter a weak isospin invariant derivative interaction that causes the flow of right-handed electrons to align parallel to (inverted delta phi). Hence, in the outer regions of galaxies where (inverted delta phi) is large, as in galactic halos, the derivative interaction may induce a chirality-imbued quantum chemistry. Such a chirality-imbued chemistry would in turn be conducive to the formation of abundant precursor biopolymers on interstellar dust grains, comets and meteors in galactic halo regions, with subsequent delivery to planets in the inner galactic regions where phi and (inverted delta phi) are concomitantly near zero and left-right symmetric terrestrial quantum chemistry prevails. PMID:12458734

  18. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution.

    PubMed

    Wijeratne, Sithara S; Penev, Evgeni S; Lu, Wei; Li, Jingqiang; Duque, Amanda L; Yakobson, Boris I; Tour, James M; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  19. Interpretation of fluorescence correlation spectra of biopolymer solutions.

    PubMed

    Phillies, George D J

    2016-05-01

    Fluorescence correlation spectroscopy (FCS) is regularly used to study diffusion in non-dilute "crowded" biopolymer solutions, including the interior of living cells. For fluorophores in dilute solution, the relationship between the FCS spectrum G(t) and the diffusion coefficient D is well-established. However, the dilute-solution relationship between G(t) and D has sometimes been used to interpret FCS spectra of fluorophores in non-dilute solutions. Unfortunately, the relationship used to interpret FCS spectra in dilute solutions relies on an assumption that is not always correct in non-dilute solutions. This paper obtains the correct form for interpreting FCS spectra of non-dilute solutions, writing G(t) in terms of the statistical properties of the fluorophore motions. Approaches for applying this form are discussed. PMID:26756528

  20. Topologically ordered magnesium-biopolymer hybrid composite structures.

    PubMed

    Oosterbeek, Reece N; Seal, Christopher K; Staiger, Mark P; Hyland, Margaret M

    2015-01-01

    Magnesium and its alloys are intriguing as possible biodegradable biomaterials due to their unique combination of biodegradability and high specific mechanical properties. However, uncontrolled biodegradation of magnesium during implantation remains a major challenge in spite of the use of alloying and protective coatings. In this study, a hybrid composite structure of magnesium metal and a biopolymer was fabricated as an alternative approach to control the corrosion rate of magnesium. A multistep process that combines metal foam production and injection molding was developed to create a hybrid composite structure that is topologically ordered in all three dimensions. Preliminary investigations of the mechanical properties and corrosion behavior exhibited by the hybrid Mg-polymer composite structures suggest a new potential approach to the development of Mg-based biomedical devices. PMID:24659540

  1. Fabrication of Biopolymer Nanofibers of Hyaluronic Acid via Electrospinning

    NASA Astrophysics Data System (ADS)

    Young, Denice; Queen, Hailey; Krause, Wendy

    2006-03-01

    Electrospinning is a novel technology that uses an electric field to form fibrous materials from a polymer solution. Unlike traditional spinning techniques, electrospinning can produce fibers on the order of 100 nm that can be utilized in applications where nanoscale fibers are necessary for successful implementation, including tissue engineering. Hyaluronic acid (HA) is a widely used biopolymer found in the extracellular matrix and currently marketed in medical applications for joint lubrications and tissue engineering. The high viscosity and surface tension of HA make it an unlikely candidate for electrospinning processes as viscosity is an important parameter in successful electrospinning. To promote HA fiber formation by electrospinning, the effects of salt (NaCl), which is used to reduce the viscosity of aqueous HA solutions; molecular weight of the HA; and an additional biocompatible polymer (e.g., PEO) are under investigation.

  2. LassoProt: server to analyze biopolymers with lassos.

    PubMed

    Dabrowski-Tumanski, Pawel; Niemyska, Wanda; Pasznik, Pawel; Sulkowska, Joanna I

    2016-07-01

    The LassoProt server, http://lassoprot.cent.uw.edu.pl/, enables analysis of biopolymers with entangled configurations called lassos. The server offers various ways of visualizing lasso configurations, as well as their time trajectories, with all the results and plots downloadable. Broad spectrum of applications makes LassoProt a useful tool for biologists, biophysicists, chemists, polymer physicists and mathematicians. The server and our methods have been validated on the whole PDB, and the results constitute the database of proteins with complex lassos, supported with basic biological data. This database can serve as a source of information about protein geometry and entanglement-function correlations, as a reference set in protein modeling, and for many other purposes. PMID:27131383

  3. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-08-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces.

  4. Synthesis and characterization of CaCO3-biopolymer hybrid nanoporous microparticles for controlled release of doxorubicin.

    PubMed

    Bosio, Valeria E; Cacicedo, Maximiliano L; Calvignac, Brice; León, Ignacio; Beuvier, Thomas; Boury, Frank; Castro, Guillermo R

    2014-11-01

    Doxorubicin (Dox) is a hydrophilic drug extensively used for treatment of breast, lung, and ovarian cancer, among others; it is highly toxic and can cause serious side effects on nontargeted tissues. We developed and studied a hybrid nanoporous microparticle (hNP) carrier based on calcium carbonate and biopolymers derivatized with folic acid (FA) and containing Dox as a chemotherapeutic drug model. The hNPs were characterized by X-ray diffraction, and Raman and Fourier transform infrared (FTIR) spectroscopies. The X-ray diffraction patterns of calcium carbonate particles showed about 30-70% vaterite-calcite polymorphisms and up to 95% vaterite, depending on the absence or the presence of biopolymers as well as their type. Scanning electron microcopy images revealed that all types of hNPs were approximately spherical and porous with average diameter 1-5 μm, and smaller than CaCO3 microparticles. The presence of biopolymers in the matrices was confirmed after derivatization with a fluorescein isothiocyanate probe by means of confocal microscopy and FTIR synchrotron beamline analysis. In addition, the coupling of lambda carrageenan (λ-Car) to FA in the microparticles (FA-λ-Car-hNPs) increased the cancer-cell targeting and also extended the specific surface area by up to ninefold (26.6 m2 g(-1)), as determined by the Brunauer-Emmett-Teller isotherm. A nanostructured porous surface was found in all instances, and the FA-λ-Car-hNP pore size was about 30 nm, as calculated by means of the Barrett-Joyner-Halenda adsorption average. The test of FA-λ-Car-hNP anticancer activity on human osteosarcoma MG-63 cell line showed cell viabilities of 13% and 100% with and without Dox, respectively, as determined by crystal violet staining after 24 h of incubation. PMID:25260219

  5. Development and in vitro evaluation of biopolymers as a delivery system against periodontopathogen microorganisms.

    PubMed

    Rodriguez-Garcia, Aida; Galan-Wong, Luis J; Arevalo-Niño, Katiushka

    2010-01-01

    Periodontal disease is the major cause of tooth loss in adults. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are considered key pathogens in periodontitis. The treatment consists of oral hygiene education, instrumentation for removal of calculus (scaling), chemotherapy and periodontal surgery. Several agents are commercially available; these chemicals can alter oral microbiota and have undesirable side-effects such as vomiting, diarrhea and tooth staining. Hence, the search for alternative products continues and natural phytochemicals isolated from plants used as traditional medicine and the use of biomaterials are considered good alternatives. Chitosan and pullulan are polymers that have been proposed due to their favorable properties such as biocompatibility, biodegradability, and adhesion ability. They can be used as local delivery systems of active principles of plant extracts. Thymus vulgaris, Matricaria chamomilla, Croton lechleri, Calendula officinalis L. and Juliana adstringens Schl. are known to have medicinal activity, and they are used in Mexican traditional medicine. Their extracts were tested in vitro for antimicrobial activity against P. gingivalis and A. actinomycetemcomitans, using agar diffusion and microdilution methods. The antimicrobial activity of films from biopolymers with plant extracts was evaluated by measuring the zones of inhibition against the tested organisms. The aim of this study was to develop bioadhesive films from chitosan and pullulan with added plant extracts and determine the antimicrobial activity of films against periodontal pathogens. PMID:21053691

  6. Load sharing in the growth of bundled biopolymers.

    PubMed

    Wang, Ruizhe; Carlsson, A E

    2014-11-01

    To elucidate the nature of load sharing in the growth of multiple biopolymers, we perform stochastic simulations of the growth of biopolymer bundles against obstacles under a broad range of conditions and varying assumptions. The obstacle motion due to thermal fluctuations is treated explicitly. We assume the "Perfect Brownian Ratchet" (PBR) model, in which the polymerization rate equals the free-filament rate as soon as the filament-obstacle distance exceeds the monomer size. Accurate closed-form formulas are obtained for the case of a rapidly moving obstacle. We find the following: (1) load sharing is usually sub-perfect in the sense that polymerization is slower than for a single filament carrying the same average force; (2) the sub-perfect behavior becomes significant at a total force proportional to the logarithm or the square root of the number of filaments, depending on the alignment of the filaments; (3) for the special case of slow barrier diffusion and low opposing force, an enhanced obstacle velocity for an increasing number of filaments is possible; (4) the obstacle velocity is very sensitive to the alignment of the filaments in the bundle, with a staggered alignment being an order of magnitude faster than an unstaggered one at forces of only 0.5 pN per filament for 20 filaments; (5) for large numbers of filaments, the power is maximized at a force well below 1 pN per filament; (6) for intermediate values of the obstacle diffusion coefficient, the shape of the force velocity relation is very similar to that for rapid obstacle diffusion. PMID:25489273

  7. Communication Status and Semantic Network of Students in Small Group Activity

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho

    2014-05-01

    The purpose of the study was to investigate the relationship between the communication status in group and the semantic network of science gifted students. Seven small groups, 5 members in each, participated in small group activities, in which they discussed the calculation of earth density. Both the communication status in group and the semantic network of science gifted students were analyzed using KrKwic, Ucinet 6.0 for Windows. As a result, the semantic network of prime movers in group represented more frequently used words, lesser rate of component, and higher density than that of out lookers. It means that the prime movers have coherent knowledge compared to out lookers, and they output more knowledge for problem solving than out lookers. Therefore, the results of this study may be applied to evaluating the cognitive level of science gifted students and group organization for small group activity. Keywords: small group activity, science gifted students, communication status, semantic network

  8. Network burst activity in hippocampal neuronal cultures: the role of synaptic and intrinsic currents.

    PubMed

    Suresh, Jyothsna; Radojicic, Mihailo; Pesce, Lorenzo L; Bhansali, Anita; Wang, Janice; Tryba, Andrew K; Marks, Jeremy D; van Drongelen, Wim

    2016-06-01

    The goal of this work was to define the contributions of intrinsic and synaptic mechanisms toward spontaneous network-wide bursting activity, observed in dissociated rat hippocampal cell cultures. This network behavior is typically characterized by short-duration bursts, separated by order of magnitude longer interburst intervals. We hypothesize that while short-timescale synaptic processes modulate spectro-temporal intraburst properties and network-wide burst propagation, much longer timescales of intrinsic membrane properties such as persistent sodium (Nap) currents govern burst onset during interburst intervals. To test this, we used synaptic receptor antagonists picrotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP) to selectively block GABAA, AMPA, and NMDA receptors and riluzole to selectively block Nap channels. We systematically compared intracellular activity (recorded with patch clamp) and network activity (recorded with multielectrode arrays) in eight different synaptic connectivity conditions: GABAA + NMDA + AMPA, NMDA + AMPA, GABAA + AMPA, GABAA + NMDA, AMPA, NMDA, GABAA, and all receptors blocked. Furthermore, we used mixed-effects modeling to quantify the aforementioned independent and interactive synaptic receptor contributions toward spectro-temporal burst properties including intraburst spike rate, burst activity index, burst duration, power in the local field potential, network connectivity, and transmission delays. We found that blocking intrinsic Nap currents completely abolished bursting activity, demonstrating their critical role in burst onset within the network. On the other hand, blocking different combinations of synaptic receptors revealed that spectro-temporal burst properties are uniquely associated with synaptic functionality and that excitatory connectivity is necessary for the presence of network-wide bursting. In addition to confirming the critical contribution of direct

  9. Active microrheology with optical tweezers: a versatile tool to investigate anisotropies in intermediate filament networks

    NASA Astrophysics Data System (ADS)

    Neckernuss, T.; Mertens, L. K.; Martin, I.; Paust, T.; Beil, M.; Marti, O.

    2016-02-01

    Mechanical properties of cells are determined by the cytoskeleton and especially by intermediate filaments (IFs). To measure the contribution of IFs to the mechanics of the cytoskeleton, we determine the shear moduli of in vitro assembled IF networks consisting of keratin 8/18 and MgCl2, serving as a crosslinker. In this study we want to present a new method, a combination of active and passive microrheology, to characterize these networks. We also show the applicability of the new method and discuss new findings on the organization and force transmission in keratin networks gained by the new method. We trap and move embedded polystyrene particles with an optical tweezers setup in an oscillatory manner. The amplitude response of the trapped particle is measured and evaluated with a lock-in approach in order to suppress random motions. With this technique we determine the degree of isotropy of the assembled network and sense preferred directions due to inhomogeneities of the network. Furthermore, we show that we can deliberately create anisotropic networks by adjusting the assembly process and chamber geometry. To determine whether there are local network anisotropies in a globally isotropic network, we altered the evaluation method and included the motion of embedded particles in the vicinity of the trapped one. The correlations of the observed motions enable us to map local network anisotropies. Finally, we compare mechanical properties determined from passive with ones from active microrheology. We find the networks measured with the active technique to be approximately 20% more compliant than the ones from passive measurements.

  10. Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network.

    PubMed

    Grady, Cheryl L; Mondloch, Catherine J; Lewis, Terri L; Maurer, Daphne

    2014-05-01

    The development of the face-processing network has been examined with functional neuroimaging, but the effect of visual deprivation early in life on this network is not known. We examined this question in a group of young adults who had been born with dense, central cataracts in both eyes that blocked all visual input to the retina until the cataracts were removed during infancy. We used functional magnetic resonance imaging to examine regions in the "core" and "extended" face networks as participants viewed faces and other objects, and performed a face discrimination task. This task required matching faces on the basis of facial features or on the spacing between the facial features. The Cataract group (a) had reduced discrimination performance on the Spacing task relative to Controls; (b) used the same brain regions as Controls when passively viewing faces or making judgments about faces, but showed reduced activation during passive viewing of faces, especially in extended face-network regions; and (c) unlike Controls, showed activation in face-network regions for objects. In addition, the functional connections of the fusiform gyri with the rest of the face network were altered, and these brain changes were related to Cataract participants' performance on the face discrimination task. These results provide evidence that early visual input is necessary to set up or preserve activity and functional connectivity in the face-processing network that will later mediate expert face processing. PMID:24657305

  11. Biopolymers under large external forces and mean-field RNA virus evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Ahsan, Syed Amir

    The modeling of the mechanical response of single-molecules of DNA and RNA under large external forces through statistical mechanical methods is central to this thesis with a small portion devoted to modeling the evolutionary dynamics of positive-sense single-stranded RNA viruses. In order to develop and test models of biopolymer mechanics and illuminate the mechanisms underlying biological processes where biopolymers undergo changes in energy on the order of the thermal energy, , entails measuring forces and lengths on the scale of piconewtons (pN) and nanometers (nm), respectively. A capacity achieved in the past two decades at the single-molecule level through the development of micromanipulation techniques such as magnetic and optical tweezers, atomic force microscopy, coupled with advances in micro- and nanofabrication. The statistical mechanical models of biopolymers developed in this dissertation are dependent upon and the outcome of these advancements and resulting experiments. The dissertation begins in chapter 1 with an introduction to the structure and thermodynamics of DNA and RNA, highlighting the importance and effectiveness of simple, two-state models in their description as a prelude to the emergence of two-state models in the research manuscripts. In chapter 2 the standard models of the elasticity of polymers and of a polymer gel are reviewed, characterizing the continuum and mean-field models, including the scaling behavior of DNA in confined spaces. The research manuscript presented in the last section of chapter 2 (section 2.5), subsequent to a review of a Flory gel and in contrast to it, is a model of the elasticity of RNA as a gel, with viral RNA illustrating an instance of such a network, and shown to exhibit anomalous elastic behavior, a negative Poisson ratio, and capable of facilitating viral RNA encapsidation with further context provided in section 5.1. In chapter 3 the experimental methods and behavior of DNA and RNA under mechanical

  12. Hierarchical self-organization of cytoskeletal active networks

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel; Bernheim-Groswasser, Anne; Keasar, Chen; Farago, Oded

    2012-04-01

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in ‘oligoclusters’ (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light on the mechanisms involved in processes such as cytokinesis and cellular contractility, where myosin motors organized in clusters operate cooperatively to induce the structural organization of cytoskeletal networks.

  13. ModuleBlast: identifying activated sub-networks within and across species

    PubMed Central

    Zinman, Guy E.; Naiman, Shoshana; O'Dee, Dawn M.; Kumar, Nishant; Nau, Gerard J.; Cohen, Haim Y.; Bar-Joseph, Ziv

    2015-01-01

    Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein. PMID:25428368

  14. ModuleBlast: identifying activated sub-networks within and across species.

    PubMed

    Zinman, Guy E; Naiman, Shoshana; O'Dee, Dawn M; Kumar, Nishant; Nau, Gerard J; Cohen, Haim Y; Bar-Joseph, Ziv

    2015-02-18

    Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein. PMID:25428368

  15. Frequency Count Attribute Oriented Induction of Corporate Network Data for Mapping Business Activity

    NASA Astrophysics Data System (ADS)

    Tanutama, Lukas

    2014-03-01

    Companies increasingly rely on Internet for effective and efficient business communication. As Information Technology infrastructure backbone for business activities, corporate network connects the company to Internet and enables its activities globally. It carries data packets generated by the activities of the users performing their business tasks. Traditionally, infrastructure operations mainly maintain data carrying capacity and network devices performance. It would be advantageous if a company knows what activities are running in its network. The research provides a simple method of mapping the business activity reflected by the network data. To map corporate users' activities, a slightly modified Attribute Oriented Induction (AOI) approach to mine the network data was applied. The frequency of each protocol invoked were counted to show what the user intended to do. The collected data was samples taken within a certain sampling period. Samples were taken due to the enormous data packets generated. Protocols of interest are only Internet related while intranet protocols are ignored. It can be concluded that the method could provide the management a general overview of the usage of its infrastructure and lead to efficient, effective and secure ICT infrastructure.

  16. FINAL REPORT. "GREEN" BIOPOLYMERS FOR IMPROVED DECONTAMINATION OF METALS FROM SURFACES: SORPTIVE CHARACTERIZATION AND COATING PROPERTIES

    EPA Science Inventory

    The proposed research aimed to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating bio...

  17. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Lytvyn, O. S.; Karachevtsev, V. A.

    2014-06-01

    The influence of biopolymer wrapped around nanotube on the enhancement of the semiconducting single-walled carbon nanotube (SWNT) photoluminescence (PL) in aqueous suspension which increases due to the reducing agent dithiothreitol (DTT) doping effect was revealed. The greatest enhancement of PL was observed for SWNTs covered with double- or single stranded DNA (above 170%) and DTT weak influence was revealed for SWNTs:polyC suspension (∼45%). The magnitude of the PL enhancement depends also on nanotube chirality and sample aging. The behavior of PL from SWNTs covered with various polymers is explained by the different biopolymers ordering on the nanotube surface. The ordered polymer conformation on the nanotube weakens the reducing agent doping effect. The method of reducing agent doping of nanotube:biopolymer aqueous suspension can serve as a sensitive luminescent probe of the biopolymer ordering on the carbon nanotube and can be used to increase the sensitivity of luminescent biosensors.

  18. "GREEN" BIOPOLYMERS FOR IMPROVED DECONTAMINATION OF METALS FROM SURFACES: SORPTIVE CHARACTERIZATION AND COATING PROPERTIES

    EPA Science Inventory

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal- chelating bio...

  19. Binary and Ternary Mixtures of Biopolymers and Water: Viscosity, Refractive Index, and Density

    NASA Astrophysics Data System (ADS)

    Silva, Bárbara Louise L. D.; Costa, Bernardo S.; Garcia-Rojas, Edwin E.

    2016-08-01

    Biopolymers have been the focus of intense research because of their wide applicability. The thermophysical properties of solutions containing biopolymers have fundamental importance for engineering calculations, as well as for thermal load calculations, energy expenditure, and development of new products. In this work, the thermophysical properties of binary and ternary solutions of carboxymethylcellulose and/or high methoxylation pectin and water at different temperatures have been investigated taking into consideration different biopolymer concentrations. The experimental data related to the thermophysical properties were correlated to obtain empirical models that can describe the temperature-concentration combined effect on the density, refractive index, and dynamic viscosity. From data obtained from the experiments, the density, refractive index, and dynamic viscosity increase with increasing biopolymer concentration and decrease with increasing temperature. The polynomial models showed a good fit to the experimental data and high correlation coefficients (R2ge 0.98) for each studied system.

  20. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T.; Gelperin, Alan; Staii, Cristian

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  1. Network-Based Business Simulation Activities in Technical Professional Education

    ERIC Educational Resources Information Center

    Vescoukis, Vassilios C.; Retalis, Symeon; Anagnostopoulos, Dimosthenis

    2003-01-01

    For a long time on-the-job training has been considered as the single point of contact of technical education with the real world job market. Indeed, traditional on-the-job training activities are of great educational value and complement uniquely any classroom-based learning activity. However, it has been observed that several obstacles arise…

  2. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  3. Controlling self-sustained spiking activity by adding or removing one network link

    NASA Astrophysics Data System (ADS)

    Xu, Kesheng; Huang, Wenwen; Li, Baowen; Dhamala, Mukesh; Liu, Zonghua

    2013-06-01

    Being able to control the neuronal spiking activity in specific brain regions is central to a treatment scheme in several brain disorders such as epileptic seizures, mental depression, and Parkinson's diseases. Here, we present an approach for controlling self-sustained oscillations by adding or removing one directed network link in coupled neuronal oscillators, in contrast to previous approaches of adding stimuli or noise. We find that such networks can exhibit a variety of activity patterns such as on-off switch, sustained spikes, and short-term spikes. We derive the condition for a specific link to be the controller of the on-off effect. A qualitative analysis is provided to facilitate the understanding of the mechanism for spiking activity by adding one link. Our findings represent the first report on generating spike activity with the addition of only one directed link to a network and provide a deeper understanding of the microscopic roots of self-sustained spiking.

  4. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure. PMID:19883801

  5. Nanoscale charge transport in cytochrome c3/DNA network: Comparative studies between redox-active molecules

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Harumasa; Che, Dock-Chil; Hirano, Yoshiaki; Suzuki, Masayuki; Higuchi, Yoshiki; Matsumoto, Takuya

    2015-09-01

    The redox-active molecule of a cytochrome c3/DNA network exhibits nonlinear current-voltage (I-V) characteristics with a threshold bias voltage at low temperature and zero-bias conductance at room temperature. I-V curves for the cytochrome c3/DNA network are well matched with the Coulomb blockade network model. Comparative studies of the Mn12 cluster, cytochrome c, and cytochrome c3, which have a wide variety of redox potentials, indicate no difference in charge transport, which suggests that the conduction mechanism is not directly related to the redox states. The charge transport mechanism has been discussed in terms of the newly-formed electronic energy states near the Fermi level, induced by the ionic interaction between redox-active molecules with the DNA network.

  6. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  7. The Contribution of Extracurricular Activities to Adolescent Friendships: New Insights through Social Network Analysis

    ERIC Educational Resources Information Center

    Schaefer, David R.; Simpkins, Sandra D.; Vest, Andrea E.; Price, Chara D.

    2011-01-01

    Extracurricular activities are settings that are theorized to help adolescents maintain existing friendships and develop new friendships. The overarching goal of the current investigation was to examine whether coparticipating in school-based extracurricular activities supported adolescents' school-based friendships. We used social network methods…

  8. Microscopic theory of the glassy dynamics of passive and active network materials

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2013-03-01

    Signatures of glassy dynamics have been identified experimentally for a rich variety of materials in which molecular networks provide rigidity. Here we present a theoretical framework to study the glassy behavior of both passive and active network materials. We construct a general microscopic network model that incorporates nonlinear elasticity of individual filaments and steric constraints due to crowding. Based on constructive analogies between structural glass forming liquids and random field Ising magnets implemented using a heterogeneous self-consistent phonon method, our scheme provides a microscopic approach to determine the mismatch surface tension and the configurational entropy, which compete in determining the barrier for structural rearrangements within the random first order transition theory of escape from a local energy minimum. The influence of crosslinking on the fragility of inorganic network glass formers is recapitulated by the model. For active network materials, the mapping, which correlates the glassy characteristics to the network architecture and properties of nonequilibrium motor processes, is shown to capture several key experimental observations on the cytoskeleton of living cells: Highly connected tense networks behave as strong glass formers; intense motor action promotes reconfiguration. The fact that our model assuming a negative motor susceptibility predicts the latter suggests that on average the motorized processes in living cells do resist the imposed mechanical load. Our calculations also identify a spinodal point where simultaneously the mismatch penalty vanishes and the mechanical stability of amorphous packing disappears.

  9. Microscopic theory of the glassy dynamics of passive and active network materials.

    PubMed

    Wang, Shenshen; Wolynes, Peter G

    2013-03-28

    Signatures of glassy dynamics have been identified experimentally for a rich variety of materials in which molecular networks provide rigidity. Here we present a theoretical framework to study the glassy behavior of both passive and active network materials. We construct a general microscopic network model that incorporates nonlinear elasticity of individual filaments and steric constraints due to crowding. Based on constructive analogies between structural glass forming liquids and random field Ising magnets implemented using a heterogeneous self-consistent phonon method, our scheme provides a microscopic approach to determine the mismatch surface tension and the configurational entropy, which compete in determining the barrier for structural rearrangements within the random first order transition theory of escape from a local energy minimum. The influence of crosslinking on the fragility of inorganic network glass formers is recapitulated by the model. For active network materials, the mapping, which correlates the glassy characteristics to the network architecture and properties of nonequilibrium motor processes, is shown to capture several key experimental observations on the cytoskeleton of living cells: Highly connected tense networks behave as strong glass formers; intense motor action promotes reconfiguration. The fact that our model assuming a negative motor susceptibility predicts the latter suggests that on average the motorized processes in living cells do resist the imposed mechanical load. Our calculations also identify a spinodal point where simultaneously the mismatch penalty vanishes and the mechanical stability of amorphous packing disappears. PMID:23556772

  10. Contagion processes on the static and activity-driven coupling networks

    NASA Astrophysics Data System (ADS)

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2016-03-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.

  11. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients.

    PubMed

    Kim, Da-Hye; Kim, Leahyun; Park, Wanjoo; Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  12. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  13. Central European MetEor NeTwork: Current status and future activities

    NASA Astrophysics Data System (ADS)

    Srba, J.; Koukal, J.; Ferus, M.; Lenža, L.; Gorková, S.; Civiš, S.; Simon, J.; Csorgei, T.; Jedlièka, M.; Korec, M.; Kaniansky, S.; Polák, J.; Spurný, M.; Brázdil, T.; Mäsiar, J.; Zima, M.; Delinèák, P.; Popek, M.; Bahýl, V.; Piffl, R.; Èechmánek, M.

    2016-06-01

    The Central European video Meteor Network (CEMeNt) established in 2010 is a platform for cross-border cooperation in the field of video meteor observations between Czech Republic and Slovakia. During five years of operation the CEMeNt network went through an extensive development. In total, 37 video systems were working on 20 permanent stations located in Czech Republic and Slovakia during 2015. In this paper we summarize CEMeNt current status and introduce some future activities.

  14. A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    PubMed Central

    Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-01-01

    Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for

  15. Online Social Networks That Connect Users to Physical Activity Partners: A Review and Descriptive Analysis

    PubMed Central

    Passarella, Ralph Joseph; Appel, Lawrence J

    2014-01-01

    Background The US Centers for Disease Control and Prevention have identified a lack of encouragement, support, or companionship from family and friends as a major barrier to physical activity. To overcome this barrier, online social networks are now actively leveraging principles of companion social support in novel ways. Objective The aim was to evaluate the functionality, features, and usability of existing online social networks which seek to increase physical activity and fitness among users by connecting them to physical activity partners, not just online, but also face-to-face. Methods In September 2012, we used 3 major databases to identify the website addresses for relevant online social networks. We conducted a Google search using 8 unique keyword combinations: the common keyword “find” coupled with 1 of 4 prefix terms “health,” “fitness,” “workout,” or “physical” coupled with 1 of 2 stem terms “activity partners” or “activity buddies.” We also searched 2 prominent technology start-up news sites, TechCrunch and Y Combinator, using 2 unique keyword combinations: the common keyword “find” coupled with 1 of 2 stem terms “activity partners” and “activity buddies.” Sites were defined as online social health activity networks if they had the ability to (1) actively find physical activity partners or activities for the user, (2) offer dynamic, real-time tracking or sharing of social activities, and (3) provide virtual profiles to users. We excluded from our analysis sites that were not Web-based, publicly available, in English, or free. Results Of the 360 initial search results, we identified 13 websites that met our complete criteria of an online social health activity network. Features such as physical activity creation (13/13, 100%) and private messaging (12/13, 92%) appeared almost universally among these websites. However, integration with Web 2.0 technologies such as Facebook and Twitter (9/13, 69%) and the option of

  16. Ubiquitous Displays: A Distributed Network of Active Displays

    NASA Astrophysics Data System (ADS)

    Majumder, Aditi

    In this chapter we present our work-in-progress on developing a new display paradigm where displays are not mere carriers of information, but active members of the workspace interacting with data, user, environment and other displays. The goal is to integrate such active displays seamlessly with the environment making them ubiquitous to multiple users and data. Such ubiquitous display can be a critical component of the future collaborative workspace.

  17. Networking.

    ERIC Educational Resources Information Center

    Duvall, Betty

    Networking is an information giving and receiving system, a support system, and a means whereby women can get ahead in careers--either in new jobs or in current positions. Networking information can create many opportunities: women can talk about how other women handle situations and tasks, and previously established contacts can be used in…

  18. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  19. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder

    PubMed Central

    Wu, Ping; Yu, Huan; Peng, Shichun; Dauvilliers, Yves; Wang, Jian; Ge, Jingjie; Zhang, Huiwei; Eidelberg, David

    2014-01-01

    Rapid eye movement sleep behaviour disorder has been evaluated using Parkinson’s disease-related metabolic network. It is unknown whether this disorder is itself associated with a unique metabolic network. 18F-fluorodeoxyglucose positron emission tomography was performed in 21 patients (age 65.0 ± 5.6 years) with idiopathic rapid eye movement sleep behaviour disorder and 21 age/gender-matched healthy control subjects (age 62.5 ± 7.5 years) to identify a disease-related pattern and examine its evolution in 21 hemi-parkinsonian patients (age 62.6 ± 5.0 years) and 16 moderate parkinsonian patients (age 56.9 ± 12.2 years). We identified a rapid eye movement sleep behaviour disorder-related metabolic network characterized by increased activity in pons, thalamus, medial frontal and sensorimotor areas, hippocampus, supramarginal and inferior temporal gyri, and posterior cerebellum, with decreased activity in occipital and superior temporal regions. Compared to the healthy control subjects, network expressions were elevated (P < 0.0001) in the patients with this disorder and in the parkinsonian cohorts but decreased with disease progression. Parkinson’s disease-related network activity was also elevated (P < 0.0001) in the patients with rapid eye movement sleep behaviour disorder but lower than in the hemi-parkinsonian cohort. Abnormal metabolic networks may provide markers of idiopathic rapid eye movement sleep behaviour disorder to identify those at higher risk to develop neurodegenerative parkinsonism. PMID:25338949

  20. Drug target identification using network analysis: Taking active components in Sini decoction as an example.

    PubMed

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  1. Recognition of Physical Activities in Overweight Hispanic Youth Using KNOWME Networks

    PubMed Central

    Emken, BA; Li, M; Thatte, G; Lee, S; Annavaram, M; Mitra, U; Narayanan, S; Spruijt-Metz, D

    2011-01-01

    Background KNOWME Networks is a wireless body area network with two tri-axial accelerometers, a heart rate monitor, and mobile phone that acts as the data collection hub. One function of KNOWME Networks is to detect physical activity (PA) in overweight Hispanic youth. The purpose of this study was to evaluate the in-lab recognition accuracy of KNOWME. Methods Twenty overweight Hispanic participants (10 males; age 14.6±1.8 years), underwent four data collection sessions consisting of nine activities/session: lying down, sitting, sitting fidgeting, standing, standing fidgeting, standing playing an active video game, slow walking, brisk walking, and running. Data was used to train activity recognition models. The accuracy of personalized and generalized models is reported. Results Overall accuracy for personalized models was 84%. The most accurately detected activity was running (96%). The models had difficulty distinguishing between the static and fidgeting categories of sitting and standing. When static and fidgeting activity categories were collapsed, the overall accuracy improved to 94%. Personalized models demonstrated higher accuracy than generalized models. Conclusions KNOWME Networks can accurately detect a range of activities. KNOWME has the ability to collect and process data in real-time, building the foundation for tailored, real-time interventions to increase PA or decrease sedentary time. PMID:21934162

  2. Signal Enhancement of Abiotically-Synthesized RNA Oligonucleotides and other Biopolymers using Unmodified Fused Silica in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Cassidy, Lauren M.; Dong, Yingying; Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.; McGown, Linda B.

    2011-06-01

    Metal is the standard desorption platform for MALDI-MS but other surfaces have been shown to offer advantages for particular types of analytes or applications. One such substrate is fused silica, which has been employed for matrix-free detection of low mass analytes and for affinity MALDI-MS in which binding ligands are immobilized at the fused silica surface. The present work reports improved MALDI-MS detection of RNA oligonucleotides, including polyA, polyU, and polyA/U, at the high end of the mass range when unmodified fused silica is used instead of stainless steel as the MALDI target. The RNA oligonucleotides were abiotically synthesized from activated monomers on catalytic clay surfaces. Further investigation found enhanced signals as well for other anionic biopolymers, including DNA oligonucleotides and heparin. Enhancement also was observed for dextran, which is neutral, indicating that the effect is not restricted to anionic biopolymers. Among more general analytical applications, the results are particularly relevant to rapid screening of abiotic RNA polymerization toward elucidating pathways to life on Earth.

  3. Clay nanotube-biopolymer composite scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Naumenko, Ekaterina A.; Guryanov, Ivan D.; Yendluri, Raghuvara; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2016-03-01

    Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur without changes in viability and cytoskeleton formation. In vivo biocompatibility and biodegradability evaluation in rats has confirmed that the scaffolds promote the formation of novel blood vessels around the implantation sites. The scaffolds show excellent resorption within six weeks after implantation in rats. Neo-vascularization observed in newly formed connective tissue placed near the scaffold allows for the complete restoration of blood flow. These phenomena indicate that the halloysite-doped scaffolds are biocompatible as demonstrated both in vitro and in vivo. The chitosan-gelatine-agarose doped clay nanotube nanocomposite scaffolds fabricated in this work are promising candidates for tissue engineering applications.Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur

  4. Dynamic transcription factor activity networks in response to independently altered mechanical and adhesive microenvironmental cues.

    PubMed

    Peñalver Bernabé, Beatriz; Shin, Seungjin; Rios, Peter D; Broadbelt, Linda J; Shea, Lonnie D; Seidlits, Stephanie K

    2016-08-01

    Multiple aspects of the local extracellular environment profoundly affect cell phenotype and function. Physical and chemical cues in the environment trigger intracellular signaling cascades that ultimately activate transcription factors (TFs) - powerful regulators of the cell phenotype. TRACER (TRanscriptional Activity CEll aRrays) was employed for large-scale, dynamic quantification of TF activity in human fibroblasts cultured on hydrogels with a controlled elastic modulus and integrin ligand density. We identified three groups of TFs: responders to alterations in ligand density alone, substrate stiffness or both. Dynamic networks of regulatory TFs were constructed computationally and revealed distinct TF activity levels, directionality (i.e., activation or inhibition), and dynamics for adhesive and mechanical cues. Moreover, TRACER networks predicted conserved hubs of TF activity across multiple cell types, which are significantly altered in clinical fibrotic tissues. Our approach captures the distinct and overlapping effects of adhesive and mechanical stimuli, identifying conserved signaling mechanisms in normal and disease states. PMID:27470442

  5. EHRA research network surveys: 6 years of EP wires activity.

    PubMed

    Bongiorni, Maria Grazia; Chen, Jian; Dagres, Nikolaos; Estner, Heidi; Hernandez-Madrid, Antonio; Hocini, Meleze; Larsen, Torben Bjerregaard; Pison, Laurent; Potpara, Tatjana; Proclemer, Alessandro; Sciaraffia, Elena; Todd, Derick; Blomstrom-Lundqvist, Carina

    2015-11-01

    Clinical practice should follow guidelines and recommendations mainly based on the results of controlled trials, which are often conducted in selected populations and special conditions, whereas clinical practice may be influenced by factors different from controlled scientific studies. Hence, the real-world setting is better assessed by the observational registries enrolling patients for longer periods of time. However, this may be difficult, expensive, and time-consuming. In 2009, the Scientific Initiatives Committee of the European Heart Rhythm Association (EHRA) has instigated a series of surveys covering the controversial issues in clinical electrophysiology (EP). With this in mind, an EHRA EP research network has been created, which included EP centres in Europe among which the surveys on 'hot topic' were circulated. This review summarizes the overall experience conducting EP wires over the past 6 years, categorizing and assessing the topics regarding clinical EP, and evaluating the acceptance and feedback from the responding centres, in order to improve participation in the surveys and better address the research needs and aspirations of the European EP community. PMID:26589904

  6. Lactate Effectively Covers Energy Demands during Neuronal Network Activity in Neonatal Hippocampal Slices

    PubMed Central

    Ivanov, Anton; Mukhtarov, Marat; Bregestovski, Piotr; Zilberter, Yuri

    2011-01-01

    Although numerous experimental data indicate that lactate is efficiently used for energy by the mature brain, the direct measurements of energy metabolism parameters during neuronal network activity in early postnatal development have not been performed. Therefore, the role of lactate in the energy metabolism of neurons at this age remains unclear. In this study, we monitored field potentials and contents of oxygen and NAD(P)H in correlation with oxidative metabolism during intense network activity in the CA1 hippocampal region of neonatal brain slices. We show that in the presence of glucose, lactate is effectively utilized as an energy substrate, causing an augmentation of oxidative metabolism. Moreover, in the absence of glucose lactate is fully capable of maintaining synaptic function. Therefore, during network activity in neonatal slices, lactate can be an efficient energy substrate capable of sustaining and enhancing aerobic energy metabolism. PMID:21602909

  7. The exclusion of glycine betaine from anionic biopolymer surface: why glycine betaine is an effective osmoprotectant but also a compatible solute.

    PubMed

    Felitsky, Daniel J; Cannon, Jonathan G; Capp, Michael W; Hong, Jiang; Van Wynsberghe, Adam W; Anderson, Charles F; Record, M Thomas

    2004-11-23

    Paradoxically, glycine betaine (N,N,N-trimethyl glycine; GB) in vivo is both an effective osmoprotectant (efficient at increasing cytoplasmic osmolality and growth rate) and a compatible solute (without deleterious effects on biopolymer function, including stability and activity). For GB to be an effective osmoprotectant but not greatly affect biopolymer stability, we predict that it must interact very differently with folded protein surface than with that exposed in unfolding. To test this hypothesis, we quantify the preferential interaction of GB with the relatively uncharged surface exposed in unfolding the marginally stable lacI helix-turn-helix (HTH) DNA binding domain using circular dichroism and with the more highly charged surfaces of folded hen egg white lysozyme (HEWL) and bovine serum albumin (BSA) using all-gravimetric vapor pressure osmometry (VPO) and compare these results with results of VPO studies (Hong et al. (2004), Biochemistry, 43, 14744-14758) of the interaction of GB with polyanionic duplex DNA. For these four biopolymer surfaces, we observe that the extent of exclusion of GB per unit of biopolymer surface area increases strongly with increasing fraction of anionic oxygen (protein carboxylate or DNA phosphate) surface. In addition, GB is somewhat more excluded from the surface exposed in unfolding the lacI HTH and from the folded surface of HEWL than expected from their small fraction of anionic surface, consistent with moderate exclusion of GB from polar amide surface, as predicted by the osmophobic model of protein stability (Bolen and Baskakov (2001) J. Mol. Biol. 310, 955-963). Strong exclusion of GB from anionic surface explains how it can be both an effective osmoprotectant and a compatible solute; analysis of this exclusion yields a lower bound on the hydration of anionic protein carboxylate surface of two layers of water (>or=0.22 H(2)O A(-)(2)). PMID:15544344

  8. Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation

    PubMed Central

    Isom, Daniel G.; Dohlman, Henrik G.

    2015-01-01

    Seven-transmembrane receptors (7TMRs) have evolved in prokaryotes and eukaryotes over hundreds of millions of years. Comparative structural analysis suggests that these receptors may share a remote evolutionary origin, despite their lack of sequence similarity. Here we used structure-based computations to compare 221 7TMRs from all domains of life. Unexpectedly, we discovered that these receptors contain spatially conserved networks of buried ionizable groups. In microbial 7TMRs these networks are used to pump ions across the cell membrane in response to light. In animal 7TMRs, which include light- and ligand-activated G protein-coupled receptors (GPCRs), homologous networks were found to be characteristic of activated receptor conformations. These networks are likely relevant to receptor function because they connect the ligand-binding pocket of the receptor to the nucleotide-binding pocket of the G protein. We propose that agonist and G protein binding facilitate the formation of these electrostatic networks and promote important structural rearrangements such as the displacement of transmembrane helix-6. We anticipate that robust classification of activated GPCR structures will aid the identification of ligands that target activated GPCR structural states. PMID:25902551

  9. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity

    PubMed Central

    Savtchenko, Leonid; Megalogeni, Maria; Rusakov, Dmitri A.; Walker, Matthew C.; Pavlov, Ivan

    2015-01-01

    GABA transporters control extracellular GABA, which regulates the key aspects of neuronal and network behaviour. A prevailing view is that modest neuronal depolarization results in GABA transporter type-1 (GAT-1) reversal causing non-vesicular GABA release into the extracellular space during intense network activity. This has important implications for GABA uptake-targeting therapies. Here we combined a realistic kinetic model of GAT-1 with experimental measurements of tonic GABAA receptor currents in ex vivo hippocampal slices to examine GAT-1 operation under varying network conditions. Our simulations predict that synaptic GABA release during network activity robustly prevents GAT-1 reversal. We test this in the 0 Mg2+ model of epileptiform discharges using slices from healthy and chronically epileptic rats and find that epileptiform activity is associated with increased synaptic GABA release and is not accompanied by GAT-1 reversal. We conclude that sustained efflux of GABA through GAT-1 is unlikely to occur during physiological or pathological network activity. PMID:25798861

  10. Information Retrieval by Constrained Spreading Activation in Semantic Networks.

    ERIC Educational Resources Information Center

    Cohen, Paul R.; Kjeldsen, Rick

    1987-01-01

    Describes GRANT, an expert system for finding sources of funding given research proposals. The architecture of GRANT and the implementation of constrained spreading activation (a modified search algorithm based on semantic memory) are described, and recall and precision rates are analyzed. (Author/LRW)

  11. Fractal Patterns of Neural Activity Exist within the Suprachiasmatic Nucleus and Require Extrinsic Network Interactions

    PubMed Central

    Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285

  12. Improved training of neural networks for the nonlinear active control of sound and vibration.

    PubMed

    Bouchard, M; Paillard, B; Le Dinh, C T

    1999-01-01

    Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers. PMID:18252535

  13. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    PubMed

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed. PMID:24790975

  14. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    PubMed Central

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed. PMID:24790975

  15. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    NASA Astrophysics Data System (ADS)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  16. Selective attention modulates high-frequency activity in the face-processing network.

    PubMed

    Müsch, Kathrin; Hamamé, Carlos M; Perrone-Bertolotti, Marcela; Minotti, Lorella; Kahane, Philippe; Engel, Andreas K; Lachaux, Jean-Philippe; Schneider, Till R

    2014-11-01

    Face processing depends on the orchestrated activity of a large-scale neuronal network. Its activity can be modulated by attention as a function of task demands. However, it remains largely unknown whether voluntary, endogenous attention and reflexive, exogenous attention to facial expressions equally affect all regions of the face-processing network, and whether such effects primarily modify the strength of the neuronal response, the latency, the duration, or the spectral characteristics. We exploited the good temporal and spatial resolution of intracranial electroencephalography (iEEG) and recorded from depth electrodes to uncover the fast dynamics of emotional face processing. We investigated frequency-specific responses and event-related potentials (ERP) in the ventral occipito-temporal cortex (VOTC), ventral temporal cortex (VTC), anterior insula, orbitofrontal cortex (OFC), and amygdala when facial expressions were task-relevant or task-irrelevant. All investigated regions of interest (ROI) were clearly modulated by task demands and exhibited stronger changes in stimulus-induced gamma band activity (50-150 Hz) when facial expressions were task-relevant. Observed latencies demonstrate that the activation is temporally coordinated across the network, rather than serially proceeding along a processing hierarchy. Early and sustained responses to task-relevant faces in VOTC and VTC corroborate their role for the core system of face processing, but they also occurred in the anterior insula. Strong attentional modulation in the OFC and amygdala (300 msec) suggests that the extended system of the face-processing network is only recruited if the task demands active face processing. Contrary to our expectation, we rarely observed differences between fearful and neutral faces. Our results demonstrate that activity in the face-processing network is susceptible to the deployment of selective attention. Moreover, we show that endogenous attention operates along the whole

  17. Active influence in dynamical models of structural balance in social networks

    NASA Astrophysics Data System (ADS)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  18. Introducing Co-Activation Pattern Metrics to Quantify Spontaneous Brain Network Dynamics

    PubMed Central

    Chen, Jingyuan E.; Chang, Catie; Greicius, Michael D.; Glover, Gary H.

    2015-01-01

    Recently, fMRI researchers have begun to realize that the brain's intrinsic network patterns may undergo substantial changes during a single resting state (RS) scan. However, despite the growing interest in brain dynamics, metrics that can quantify the variability of network patterns are still quite limited. Here, we first introduce various quantification metrics based on the extension of co-activation pattern (CAP) analysis, a recently proposed point-process analysis that tracks state alternations at each individual time frame and relies on very few assumptions; then apply these proposed metrics to quantify changes of brain dynamics during a sustained 2-back working memory (WM) task compared to rest. We focus on the functional connectivity of two prominent RS networks, the default-mode network (DMN) and executive control network (ECN). We first demonstrate less variability of global Pearson correlations with respect to the two chosen networks using a sliding-window approach during WM task compared to rest; then we show that the macroscopic decrease in variations in correlations during a WM task is also well characterized by the combined effect of a reduced number of dominant CAPs, increased spatial consistency across CAPs, and increased fractional contributions of a few dominant CAPs. These CAP metrics may provide alternative and more straightforward quantitative means of characterizing brain network dynamics than time-windowed correlation analyses. PMID:25662866

  19. Update on the activities of the GGOS Bureau of Networks and Observations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.; Pavlis, Erricos C.; Ma, Chopo; Noll, Carey; Thaller, Daniela; Richter, Bernd; Gross, Richard; Neilan, Ruth; Mueller, Juergen; Barzaghi, Ricardo; Bergstrand, Sten; Saunier, Jerome; Tamisiea, Mark

    2016-01-01

    The recently reorganized GGOS Bureau of Networks and Observations has many elements that are associated with building and sustaining the infrastructure that supports the Global Geodetic Observing System (GGOS) through the development and maintenance of the International Terrestrial and Celestial Reference Frames, improved gravity field models and their incorporation into the reference frame, the production of precision orbits for missions of interest to GGOS, and many other applications. The affiliated Service Networks (IVS, ILRS, IGS, IDS, and now the IGFS and the PSMSL) continue to grow geographically and to improve core and co-location site performance with newer technologies. Efforts are underway to expand GGOS participation and outreach. Several groups are undertaking initiatives and seeking partnerships to update existing sites and expand the networks in geographic areas void of coverage. New satellites are being launched by the Space Agencies in disciplines relevant to GGOS. Working groups now constitute an integral part of the Bureau, providing key service to GGOS. Their activities include: projecting future network capability and examining trade-off options for station deployment and technology upgrades, developing metadata collection and online availability strategies; improving coordination and information exchange with the missions for better ground-based network response and space-segment adequacy for the realization of GGOS goals; and standardizing site-tie measurement, archiving, and analysis procedures. This poster will present the progress in the Bureau's activities and its efforts to expand the networks and make them more effective in supporting GGOS.

  20. DNA-gold nanoparticles network based electrochemical biosensors for DNA MTase activity.

    PubMed

    Hong, Lu; Wan, Jing; Zhang, Xiaojun; Wang, Guangfeng

    2016-05-15

    In this work, a highly sensitive electrochemical DNA methyltransferase (MTase) activity assay was fabricated with DNA-gold nanoparticles (Au NPs) network as signal amplification unit and an easy assembly method by the linkage of benzenedithiol bridge. By two complementary AuNPs modified single-stranded DNA, DNA-gold nanoparticles network was self-assembled. With the linkage of benzenedithiol bridge, the DNA network structure was immobilized on the surface of gold electrode through the covalent Au-S bond. In the presence of Dam MTase, the special sites of DNA-AuNPs network were methylated and could not be digested by restriction endonuclease Mbo I. Thus the loaded electrochemical indicator Methylene blue (MB) was MB molecules still remained on the DNA-Au NPs network. The electrochemical response depended on the methylated degree, which could be used to detect MTase activity. By the differential pulse voltammetry (DPV), it was demonstrated that a linear relationship between the DPV response and logarithm of Dam concentration ranged from 0.075 to 30U/mL, achieving a low detection limit of 0.02U/mL. The use of benzenedithiol avoided the direct incubation of the solid electrode with the capture DNA probe under complex and harsh conditions. Therefore the immobilization of DNA-AuNPs network was easy to be carried out, which is favorable for the specially high stability and reproducibility of the electrochemical biosensor. PMID:26992515

  1. Optimal Recognition Method of Human Activities Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Oniga, Stefan; József, Sütő

    2015-12-01

    The aim of this research is an exhaustive analysis of the various factors that may influence the recognition rate of the human activity using wearable sensors data. We made a total of 1674 simulations on a publically released human activity database by a group of researcher from the University of California at Berkeley. In a previous research, we analyzed the influence of the number of sensors and their placement. In the present research we have examined the influence of the number of sensor nodes, the type of sensor node, preprocessing algorithms, type of classifier and its parameters. The final purpose is to find the optimal setup for best recognition rates with lowest hardware and software costs.

  2. Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer.

    PubMed

    Ahmed, Hanan B; Zahran, M K; Emam, Hossam E

    2016-10-01

    Due to its potency to utilize in enormous applications, preparation of nanogold is of interest. Moreover, getting of highly dispersed nanogold with small size is extremely needful in specific fields. Herein, Au nanocolloid was prepared using alkali catalyzed pectin biopolymer. Pectin was concurrently used as reductant for Au ions and stabilizer for the produced Au nanoparticles (AuNPs). Reducing sugars were evaluated in the colloidal solution reflecting the role alkali in catalytic degradation of pectin to produce much powerful reducing moieties. The obtained Au nanocolloid was monitored via changing in color, UV-visible spectral and transmission electron microscopy. Using of NaOH as strong alkali achieving rapid rate of degradation reaction, resulted in 0.45g/L reducing sugars from 0.2g/L pectin which produced AuNPs with mean size of 6.5nm. In case of Na2CO3 which attained slow degradation rate led to, slightly low reducing sugar content (0.41g/L), fabricated comparatively size of AuNPs (7.5nm). In both cases, well distributed AuNPs was obtained with suitable stabilization up to 5 months and Na2CO3 exhibited higher stability. The current successful method used to produce small sized AuNPs with high dispersion is an innovative, one-step, easily, costless, energy saving and eco-friendly method. PMID:27212212

  3. Confined semiflexible biopolymers suppress fluctuations of soft membrane tubes

    NASA Astrophysics Data System (ADS)

    Abel, Steven; Mirzaeifard, Sina

    Membrane nanotubes are tubular membrane structures that contain actin and connect cells over long distances. Disrupting the actin cytoskeleton abrogates membrane nanotubes, making them an interesting model system for studying membrane-biopolymer interactions. In this study, we use Monte Carlo computer simulations to investigate tubular, elastic membrane structures with and without semiflexible polymers confined inside. At small values of membrane bending rigidity, fluid membranes adopt irregular, highly fluctuating shapes while non-fluid membranes maintain extended tube-like structures. With increasing bending rigidity, fluid membranes exhibit a local maximum in specific heat that is coincident with a transition to extended tube-like structures. We further find that confining a semiflexible polymer within a fluid membrane tube suppresses membrane shape fluctuations and reduces the specific heat of the membrane. Polymers with a sufficiently large persistence length can significantly deform the membrane tube, leading to localized bulges in the membrane that accommodate regions in which the polymer forms loops. Analytical calculations of the energies of idealized polymer-membrane configurations provide additional insight into the formation of polymer-induced membrane deformations.

  4. Dynamic light scattering of xanthan gum biopolymer in colloidal dispersion.

    PubMed

    Rahdar, Abbas; Almasi-Kashi, Mohammad

    2016-09-01

    The dynamical properties of nanogels of xanthan gum (XG) with hydrodynamic radius controlled in a size range from 5 nm to 35 nm, were studied at the different XG concentrations in water/sodium bis-2-ethylhexyl-sulfosuccinate (AOT)/decane reverse micelles (RMs) vs. mass fraction of nano-droplet (MFD) at W = 40, using dynamic light scattering (DLS). The diffusion study of nanometer-sized droplets by DLS technique indicated that enhancing concentration of the XG polysaccharide resulted in exchanging the attractive interaction between nano-gels to repulsive interaction, as the mass fraction of nano-droplets increased. The reorientation time (τr ) of water nanodroplets decreased with MFD for water-in-oil AOT micro-emulsion comprising high concentration (0.0000625) of XG. On the other hand, decreasing concentration of biopolymer led to increasing the rotational correlation time of water nanodroplets with MFD. In conclusion, a single relaxation curve was observed for AOT inverse microemulsions containing different XG concentrations. Furthermore, the interaction between nanogels was changed from attractive to repulsive versus concentration of XG in the AOT RMs. PMID:27489730

  5. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    PubMed Central

    Abdullah, Md Farooque; Das, Suvadra; Roy, Partha; Datta, Sriparna; Mukherjee, Arup

    2013-01-01

    Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA) for wound healing applications. Biologically synthesized silver nanoparticles (Agnp) were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P < 0.05). Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation. PMID:24175306

  6. Injectable biopolymer based hydrogels for drug delivery applications.

    PubMed

    Atta, Sadia; Khaliq, Shaista; Islam, Atif; Javeria, Irtaza; Jamil, Tahir; Athar, Muhammad Makshoof; Shafiq, Muhammad Imtiaz; Ghaffar, Abdul

    2015-09-01

    Biopolymer based pH-sensitive hydrogels were prepared using chitosan (CS) with polyethylene glycol (PEG) of different molecular weights in the presence of silane crosslinker. The incorporated components remain undissolved in different swelling media as they are connected by siloxane linkage which was confirmed by Fourier transform infrared spectroscopy. The swelling in water was enhanced by the addition of higher molecular weight PEG. The swelling behaviour of the hydrogels against pH showed high swelling in acidic and basic pH, whereas, low swelling was examined at pH 6 and 7. This characteristic pH responsive behaviour at neutral pH made them suitable for injectable controlled drug delivery. The controlled release analysis of Cefixime (CFX) (model drug) loaded CS/PEG hydrogel exhibited that the entire drug was released in 30 min in simulated gastric fluid (SGF) while in simulated intestinal fluid (SIF), 85% of drug was released in controlled manner within 80 min. This inferred that the developed hydrogels can be an attractive biomaterial for injectable drug delivery with physiological pH and other biomedical applications. PMID:26118484

  7. Phase Segregation in Individually Dried Particles Composed of Biopolymers.

    PubMed

    Nuzzo, Marine; Sloth, Jakob; Bergenstahl, Björn; Millqvist-Fureby, Anna

    2015-10-13

    Mixing of two biopolymers can results in phase separation due to their thermodynamically incompatibility under certain conditions. This phenomenon was first reported when the solution was allowed to equilibrate, but it has later been observed also as a consequence of drying. The challenges of this study were to observe phase segregation by confocal Raman microscopy and LV-SEM on dried film, individually dried particles, and spray dried particles. The influence of the solid content and the phase ratio (composition) of a HPMC/maltodextrin mixture on the localization of the ingredients in the individually dried particles was investigated. We observed that phase segregation of HPMC and maltodextrin is induced by solvent evaporation in film drying, single particle drying, as well as spray drying. The phase ratio is an important parameter that influences the localization of the HPMC-enriched phase and maltodextrin-enriched phase, i.e., to the particle surface, to the core, or in a more or less bicontinuous pattern. The drying time, affected by the solids content, was found to control the level of advancement of the phase segregation. PMID:26397315

  8. Optimization of Analytical Potentials for Coarse-Grained Biopolymer Models.

    PubMed

    Mereghetti, Paolo; Maccari, Giuseppe; Spampinato, Giulia Lia Beatrice; Tozzini, Valentina

    2016-08-25

    The increasing trend in the recent literature on coarse grained (CG) models testifies their impact in the study of complex systems. However, the CG model landscape is variegated: even considering a given resolution level, the force fields are very heterogeneous and optimized with very different parametrization procedures. Along the road for standardization of CG models for biopolymers, here we describe a strategy to aid building and optimization of statistics based analytical force fields and its implementation in the software package AsParaGS (Assisted Parameterization platform for coarse Grained modelS). Our method is based on the use and optimization of analytical potentials, optimized by targeting internal variables statistical distributions by means of the combination of different algorithms (i.e., relative entropy driven stochastic exploration of the parameter space and iterative Boltzmann inversion). This allows designing a custom model that endows the force field terms with a physically sound meaning. Furthermore, the level of transferability and accuracy can be tuned through the choice of statistical data set composition. The method-illustrated by means of applications to helical polypeptides-also involves the analysis of two and three variable distributions, and allows handling issues related to the FF term correlations. AsParaGS is interfaced with general-purpose molecular dynamics codes and currently implements the "minimalist" subclass of CG models (i.e., one bead per amino acid, Cα based). Extensions to nucleic acids and different levels of coarse graining are in the course. PMID:27150459

  9. Structural damages of maxillofacial biopolymers under solar aging.

    PubMed

    Eleni, P N; Krokida, M K; Frangou, M J; Polyzois, G L; Maroulis, Z B; Marinos-Kouris, D

    2007-09-01

    Additional types of silicone biopolymers are widely used in maxillofacial prosthetics. Therefore, the knowledge of the solar radiation's effect on their structural stability is highly important. Four different industrially synthesized biomaterials were examined, called Episil Europe 1, Europe 2, Europe 3 and Africa 3, which were exposed to solar radiation (UVA, UVB) for eight different time periods (from 8 to 168 h). Structural damages due to irradiation exposure were investigated by mechanical tests (compression) and differential scanning calorimetry (DSC) methods. Simple mathematical models were developed, containing parameters with physical meaning such as maximum stress (sigma(max)), maximum strain (epsilon), elasticity parameter (E), and viscoelastic parameter (p), for the compression test, and melting temperature (T (m)) and Enthalpy in melting point (Heat) for DSC. With increasing irradiation time their maximum stress and strain decreased significantly, and the materials lost their elasticity and molecular stability. A decrement in their melting points and heats was observed as irradiation time was increasing. Finally, experimental results demonstrated that solar radiation has a severe effect on the structural stability of the examined biomaterials. PMID:17483904

  10. Reciprocal Reinforcement Between Wearable Activity Trackers and Social Network Services in Influencing Physical Activity Behaviors

    PubMed Central

    2016-01-01

    Background Wearable activity trackers (WATs) are emerging consumer electronic devices designed to support physical activities (PAs), which are based on successful behavior change techniques focusing on goal-setting and frequent behavioral feedbacks. Despite their utility, data from both recent academic and market research have indicated high attrition rates of WAT users. Concurrently, evidence shows that social support (SS), delivered/obtained via social network services or sites (SNS), could increase adherence and engagement of PA intervention programs. To date, relatively few studies have looked at how WATs and SS may interact and affect PAs. Objective The purpose of this study was to explore how these two Internet and mobile technologies, WATs and SNS, could work together to foster sustainable PA behavior changes and habits among middle-aged adults (40-60 years old) in Taiwan. Methods We used purposive sampling of Executive MBA Students from National Taiwan University of Science and Technology to participate in our qualitative research. In-depth interviews and focus groups were conducted with a total of 15 participants, including 9 WAT users and 6 nonusers. Analysis of the collected materials was done inductively using the thematic approach with no preset categories. Two authors from different professional backgrounds independently annotated and coded the transcripts, and then discussed and debated until consensus was reached on the final themes. Results The thematic analysis revealed six themes: (1) WATs provided more awareness than motivation in PA with goal-setting and progress monitoring, (2) SS, delivered/obtained via SNS, increased users’ adherence and engagement with WATs and vice versa, (3) a broad spectrum of configurations would be needed to deliver WATs with appropriately integrated SS functions, (4) WAT design, style, and appearance mattered even more than those of smartphones, as they are body-worn devices, (5) the user interfaces of WATs left a

  11. Differential activation of the default mode network in jet lagged individuals.

    PubMed

    Coutinho, Joana Fernandes; Gonçalves, Oscar Filipe; Maia, Liliana; Fernandes Vasconcelos, Cristiana; Perrone-McGovern, Kristin; Simon-Dack, Stephanie; Hernandez, Kristina; Oliveira-Silva, Patricia; Mesquita, Ana Raquel; Sampaio, Adriana

    2015-02-01

    Long-term exposure to transmeridian flights has been shown to impact cognitive functioning. Nevertheless, the immediate effects of jet lag in the activation of specific brain networks have not been investigated. We analyzed the impact of short-term jet lag on the activation of the default mode network (DMN). A group of individuals who were on a transmeridian flight and a control group went through a functional magnetic resonance imaging acquisition. Statistical analysis was performed to test for differences in the DMN activation between groups. Participants from the jet lag group presented decreased activation in the anterior nodes of the DMN, specifically in bilateral medial prefrontal and anterior cingulate cortex. No areas of increased activation were observed for the jet lag group. These results may be suggestive of a negative impact of jet lag on important cognitive functions such as introspection, emotional regulation and decision making in a few days after individuals arrive at their destination. PMID:25180985

  12. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    NASA Astrophysics Data System (ADS)

    Smith, Elliott; Schnepp, Zoe; Wimbush, Stuart C.; Hall, Simon R.

    2008-11-01

    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized.

  13. A decaying factor accounts for contained activity in neuronal networks with no need of hierarchical or modular organization

    NASA Astrophysics Data System (ADS)

    Amancio, Diego R.; Oliveira, Osvaldo N., Jr.; Costa, Luciano da F.

    2012-11-01

    The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabási-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists. .

  14. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    PubMed

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste. PMID:20724061

  15. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices

    PubMed Central

    Ivanov, Anton I; Malkov, Anton E; Waseem, Tatsiana; Mukhtarov, Marat; Buldakova, Svetlana; Gubkina, Olena; Zilberter, Misha; Zilberter, Yuri

    2014-01-01

    Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pHi, [Ca2+]i or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices—instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes. PMID:24326389

  16. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    PubMed Central

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  17. Magnetic flux transport of decaying active regions and enhanced magnetic network. [of solar supergranulation

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1991-01-01

    Several series of coordinated observations on decaying active regions and enhanced magnetic network regions on the sun were carried out jointly at Big Bear Solar Observatory and at the Huairou Solar Observing Station of the Bejing Astronomical Observatory in China. The magnetic field evolution in several regions was followed closely for three to seven days. The magnetic flux transport from the remnants of decayed active regions was studied, along with the evolution and lifetime of the magnetic network which defines the boundaries of supergranules. The magnetic flux transport in an enhanced network region was studied in detail and found to be negative. Also briefly described are some properties of moving magnetic features around a sunspot. Results of all of the above studies are presented.

  18. Default-Mode Network Activity Identified by Group Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Conghui; Zhuang, Jie; Peng, Danling; Yu, Guoliang; Yang, Yanhui

    Default-mode network activity refers to some regional increase in blood oxygenation level-dependent (BOLD) signal during baseline than cognitive tasks. Recent functional imaging studies have found co-activation in a distributed network of cortical regions, including ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PPC) that characterize the default mode of human brain. In this study, general linear model and group independent component analysis (ICA) were utilized to analyze the fMRI data obtained from two language tasks. Both methods yielded similar, but not identical results and detected a resting deactivation network at some midline regions including anterior and posterior cingulate cortex and precuneus. Particularly, the group ICA method segregated functional elements into two separate maps and identified ventral cingulate component and fronto-parietal component. These results suggest that these two components might be linked to different mental function during "resting" baseline.

  19. Memory-induced mechanism for self-sustaining activity in networks

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Steeg, G. Ver; Galstyan, A.

    2015-12-01

    We study a mechanism of activity sustaining on networks inspired by a well-known model of neuronal dynamics. Our primary focus is the emergence of self-sustaining collective activity patterns, where no single node can stay active by itself, but the activity provided initially is sustained within the collective of interacting agents. In contrast to existing models of self-sustaining activity that are caused by (long) loops present in the network, here we focus on treelike structures and examine activation mechanisms that are due to temporal memory of the nodes. This approach is motivated by applications in social media, where long network loops are rare or absent. Our results suggest that under a weak behavioral noise, the nodes robustly split into several clusters, with partial synchronization of nodes within each cluster. We also study the randomly weighted version of the models where the nodes are allowed to change their connection strength (this can model attention redistribution) and show that it does facilitate the self-sustained activity.

  20. Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes

    NASA Astrophysics Data System (ADS)

    Isa, M. I. N.; Noor, N. A. M.

    2015-12-01

    In this paper, a proton conducting solid biopolymer electrolytes (SBE) comprises of carboxymethyl cellulose (CMC) as polymer host, ammonium thiocyanate (NH4SCN) as doping salt and ethylene carbonate (EC) as plasticizer has been prepared via solution casting technique. Electrical Impedance Spectroscopy (EIS) was carried out to study the conductivity and electrical properties of plasticized CMC-NH4SCN SBE system over a wide range of frequency between 50 Hz and 1 MHz at temperature range of 303 to 353 K. Upon addition of plasticizer into CMC-NH4SCN SBE system, the conductivity increased from 10-5 to 10-2 Scm-1. The highest conductivity was obtained by the electrolyte containing 10 wt.% of EC. The conductivity of plasticized CMC-NH4SCN SBE system by various temperatures obeyed Arrhenius law where the ionic conductivity increased as the temperature increased. The activation energy, Ea was found to decrease with enhancement of EC concentration. Dielectric studies for the highest conductivity electrolyte obeyed non-Debye behavior. The conduction mechanism for the highest conductivity electrolyte was determined by employing Jonsher's universal power law and thus, can be represented by the quantum mechanical tunneling (QMT) model.

  1. Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5%bentonite/chitosan.

    PubMed

    Moussout, Hamou; Ahlafi, Hammou; Aazza, Mustapha; Zegaoui, Omar; El Akili, Charaf

    2016-01-01

    Chitosan (CS) and nanocomposite 5%bentonite/chitosan (5%Bt/CS) prepared from the natural biopolymer CS were tested to remove Cu(II) ions using a batch adsorption experiment at various temperatures (25, 35 and 45°C). X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis (TGA/DTA) were used in CS and the nanocomposite characterisation. This confirmed the exfoliation of bentonite (Bt) to form the nanocomposite. The adsorption kinetics of copper on both solids was found to follow a pseudo-second-order law at each studied temperature. The Cu(II) adsorption capacity increased as the temperature increased from 25 to 45°C for nanocomposite adsorbent but slightly increased for CS. The data were confronted to the nonlinear Langmuir, Freundlich and Redlich-Peterson models. It was found that the experimental data fitted very well the Langmuir isotherm over the whole temperature and concentration ranges. The maximum monolayer adsorption capacity for the Cu(II) was 404-422 mg/g for CS and 282-337 mg/g for 5%Bt/CS at 25-45°C. The thermodynamic study showed that the adsorption process was spontaneous and endothermic. The complexation of Cu(II) with NH(2) and C = O groups as active sites was found to be the main mechanism in the adsorption processes. PMID:27148722

  2. Adolescent Friendships, BMI, and Physical Activity: Untangling Selection and Influence Through Longitudinal Social Network Analysis

    PubMed Central

    Simpkins, Sandra D.; Schaefer, David R.; Price, Chara D.; Vest, Andrea E.

    2012-01-01

    Bioecological theory suggests that adolescents’ health is a result of selection and socialization processes occurring between adolescents and their microsettings. This study examines the association between adolescents’ friends and health using a social network model and data from the National Longitudinal Study of Adolescent Health (N = 1,896, mean age = 15.97 years). Results indicated evidence of friend influence on BMI and physical activity. Friendships were more likely among adolescents who engaged in greater physical activity and who were similar to one another in BMI and physical activity. These effects emerged after controlling for alternative friend selection factors, such as endogenous social network processes and propinquity through courses and activities. Some selection effects were moderated by gender, popularity, and reciprocity. PMID:24222971

  3. GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo.

    PubMed

    Kirmse, Knut; Kummer, Michael; Kovalchuk, Yury; Witte, Otto W; Garaschuk, Olga; Holthoff, Knut

    2015-01-01

    A large body of evidence from in vitro studies suggests that GABA is depolarizing during early postnatal development. However, the mode of GABA action in the intact developing brain is unknown. Here we examine the in vivo effects of GABA in cells of the upper cortical plate using a combination of electrophysiological and Ca(2+)-imaging techniques. We report that at postnatal days (P) 3-4, GABA depolarizes the majority of immature neurons in the occipital cortex of anaesthetized mice. At the same time, GABA does not efficiently activate voltage-gated Ca(2+) channels and fails to induce action potential firing. Blocking GABA(A) receptors disinhibits spontaneous network activity, whereas allosteric activation of GABA(A) receptors has the opposite effect. In summary, our data provide evidence that in vivo GABA acts as a depolarizing neurotransmitter imposing an inhibitory control on network activity in the neonatal (P3-4) neocortex. PMID:26177896

  4. Modeling self-sustained activity cascades in socio-technical networks

    NASA Astrophysics Data System (ADS)

    Piedrahita, P.; Borge-Holthoefer, J.; Moreno, Y.; Arenas, A.

    2013-11-01

    The ability to understand and eventually predict the emergence of information and activation cascades in social networks is core to complex socio-technical systems research. However, the complexity of social interactions makes this a challenging enterprise. Previous works on cascade models assume that the emergence of this collective phenomenon is related to the activity observed in the local neighborhood of individuals, but do not consider what determines the willingness to spread information in a time-varying process. Here we present a mechanistic model that accounts for the temporal evolution of the individual state in a simplified setup. We model the activity of the individuals as a complex network of interacting integrate-and-fire oscillators. The model reproduces the statistical characteristics of the cascades in real systems, and provides a framework to study the time evolution of cascades in a state-dependent activity scenario.

  5. Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo

    PubMed Central

    Chevalier, Marc; De Sa, Rafaël; Cardoit, Laura; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature) affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo. PMID:27239348

  6. A Model of Active Ageing through Elder Learning: The Elder Academy Network in Hong Kong

    ERIC Educational Resources Information Center

    Tam, Maureen

    2013-01-01

    This article presents the Elder Academy (EA) Network as the policy and practice in promoting active ageing through elder learning in Hong Kong. First, the article examines how the change in demographics and the prevalent trend of an ageing population have propelled the government in Hong Kong to tackle issues and challenges brought about by an…

  7. Enterococcus faecalis reconfigures its gene regulatory network activation under copper exposure

    PubMed Central

    Latorre, Mauricio; Galloway-Peña, Jessica; Roh, Jung Hyeob; Budinich, Marko; Reyes-Jara, Angélica; Murray, Barbara E.; Maass, Alejandro; González, Mauricio

    2014-01-01

    A gene regulatory network was generated in the bacterium Enterococcus faecalis in order to understand how this organism can activate its expression under different copper concentrations. The topological evaluation of the network showed common patterns described in other organisms. Integrating microarray experiments allowed the identification of sub-networks activated under low (0.05 mM CuSO4) and high (0.5 mM CuSO4) copper concentrations. The analysis indicates the presence of specific functionally activated modules induced by copper, highlighting the regulons LysR, ArgR as global regulators and CopY, Fur and LexA as local regulators. Taking advantage of the fact that E. faecalis presented a homeostatic module isolated, we produced an in vivo intervention removing this system from the cell without affecting the connectivity of the global transcriptional network. This strategy led us to find that this bacterium can reconfigure its gene expression to maintain cellular homeostasis, activating new modules principally related to glucose metabolism and transcriptional processes. Finally, these results position E. faecalis as the organism having the most complete and controllable systemic model of copper homeostasis available to date. PMID:24382465

  8. Analytically tractable studies of traveling waves of activity in integrate-and-fire neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Osan, Remus

    2016-05-01

    In contrast to other large-scale network models for propagation of electrical activity in neural tissue that have no analytical solutions for their dynamics, we show that for a specific class of integrate and fire neural networks the acceleration depends quadratically on the instantaneous speed of the activity propagation. We use this property to analytically compute the network spike dynamics and to highlight the emergence of a natural time scale for the evolution of the traveling waves. These results allow us to examine other applications of this model such as the effect that a nonconductive gap of tissue has on further activity propagation. Furthermore we show that activity propagation also depends on local conditions for other more general connectivity functions, by converting the evolution equations for network dynamics into a low-dimensional system of ordinary differential equations. This approach greatly enhances our intuition into the mechanisms of the traveling waves evolution and significantly reduces the simulation time for this class of models.

  9. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    ERIC Educational Resources Information Center

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  10. Effects of Organophosphorus Flame Retardants on Spontaneous Activity in Neuronal Networks Grown on Microelectrode Arrays

    EPA Science Inventory

    EFFECTS OF ORGANOPHOSPHORUS FLAME RETARDANTS ON SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS GROWN ON MICROELECTRODE ARRAYS TJ Shafer1, K Wallace1, WR Mundy1, M Behl2,. 1Integrated Systems Toxicology Division, NHEERL, USEPA, RTP, NC, USA, 2National Toxicology Program, NIEHS, RTP, NC...

  11. The Role of Peer Social Network Factors and Physical Activity in Adolescent Girls

    ERIC Educational Resources Information Center

    Voorhees, Carolyn C.; Murray, David; Welk, Greg; Birnbaum, Amanda; Ribisl, Kurt M.; Johnson, Carolyn C.; Pfeiffer, Karin Allor; Saksvig, Brit; Jobe, Jared B.

    2005-01-01

    This report studies the relationship between peer-related physical activity (PA) social networks and the PA of adolescent girls. Methods: Cross-sectional, convenience sample of adolescent girls. Mixed-model linear regression analyses to identify significant correlates of self-reported PA while accounting for correlation of girls in the same…

  12. Bismuth coordination networks containing deferiprone: synthesis, characterisation, stability and antibacterial activity.

    PubMed

    Burrows, Andrew D; Jurcic, Monika; Mahon, Mary F; Pierrat, Sandrine; Roffe, Gavin W; Windle, Henry J; Spencer, John

    2015-08-21

    A series of bismuth-dicarboxylate-deferiprone coordination networks have been prepared and structurally characterised. The new compounds have been demonstrated to release the iron overload drug deferiprone on treatment with PBS and have also been shown to have antibacterial activity against H. pylori. PMID:26172618

  13. A putative neuronal network controlling the activity of the leg motoneurons of the stick insect.

    PubMed

    Toth, Tibor I; Daun-Gruhn, Silvia

    2011-12-21

    It is widely accepted that the electrical activity of motoneurons that drive locomotion in the stick insect are controlled by two separate mechanisms: (i) the frequency of the activity through the central pattern generator, which provides the rhythm of movement during locomotion and (ii) the 'magnitude' through circuits distinct from the earlier one. In this study, we show a possible way of how this control mechanism might be implemented in the nervous system of the stick insect by means of a network model. To do this, we had to define the 'magnitude' of the neuronal activity more precisely as the average number of spikes per unit time. The model was constructed on the basis of relevant electrophysiological and morphological data. However, only their integration in the model led to the novel properties that enable the network quickly to adapt the motoneuronal activity to central commands or sensory signals by changing both the firing pattern and intensity of the motoneuron discharges. The network would thus act as the controlling network for each of the muscle pairs that move the individual joints in each of the legs. Our model may contribute to a better understanding of the mechanisms that underlie the fast adaptive control of locomotion in this, and possibly in other types of locomotor systems. PMID:22089647

  14. Model for a flexible motor memory based on a self-active recurrent neural network.

    PubMed

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement. PMID:24120277

  15. Analytically tractable studies of traveling waves of activity in integrate-and-fire neural networks.

    PubMed

    Zhang, Jie; Osan, Remus

    2016-05-01

    In contrast to other large-scale network models for propagation of electrical activity in neural tissue that have no analytical solutions for their dynamics, we show that for a specific class of integrate and fire neural networks the acceleration depends quadratically on the instantaneous speed of the activity propagation. We use this property to analytically compute the network spike dynamics and to highlight the emergence of a natural time scale for the evolution of the traveling waves. These results allow us to examine other applications of this model such as the effect that a nonconductive gap of tissue has on further activity propagation. Furthermore we show that activity propagation also depends on local conditions for other more general connectivity functions, by converting the evolution equations for network dynamics into a low-dimensional system of ordinary differential equations. This approach greatly enhances our intuition into the mechanisms of the traveling waves evolution and significantly reduces the simulation time for this class of models. PMID:27300901

  16. Social Networks and Daily Activities of Street Youth in Belo Horizonte, Brazil.

    ERIC Educational Resources Information Center

    Campos, Regina; And Others

    1994-01-01

    Studied the social networks and daily activities of children and adolescents living or working on the streets of Belo Horizonte, Brazil. Found that youngsters who lived at home and worked on the street appeared to be experiencing orderly development despite their impoverished circumstances. Youngsters who lived on the streets, however, showed…

  17. A Networking Guide on Teenage Pregnancy & Parenting in Maryland. Local Activities and Contact People.

    ERIC Educational Resources Information Center

    Interdepartmental Committee on Teenage Pregnancy and Parenting in Maryland, Baltimore.

    This networking guide is intended to encourage public agencies and the private sector throughout Maryland to share information, concerns, and strategies with one another regarding teenage pregnancy and parenting. The first section, a summary of local-level activities regarding teenage pregnancy and parenting, emphasizes efforts undertaken in…

  18. Active rc networks of low sensitivity for integrated circuit transfer function

    NASA Technical Reports Server (NTRS)

    Huelsman, L. P.; Kerwin, W. J.; Newcomb, R. W.

    1968-01-01

    Active RC network is capable of extremely high Q performance with exceptional stability and has independently adjustable zeros and poles. The circuit consists of two integrators and two summers that are interconnected to produce a complete second-order numerator and a second-order denominator.

  19. Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films.

    PubMed

    Iturriaga, L; Olabarrieta, I; de Marañón, I Martínez

    2012-08-01

    The antimicrobial activity of twelve natural extracts was tested against two fish spoilage bacteria (Pseudomonas fluorescens and Aeromonas hydrophila/caviae) and Listeria innocua, in order to assess their potential utilization in the preservation and safety of minimally processed fish products. After a screening of the active extracts by agar diffusion and vapour diffusion methods, oregano and thyme essential oils and citrus extract were selected. The minimum inhibitory concentration (MIC) of the selected extracts was determined by disc diffusion method against target bacteria and at two temperatures: bacteria's optimal growth temperature (30 °C or 37 °C) and refrigeration temperature (4 °C). Due to its better solubility, lack of odour and greater inhibitory effect obtained against L. innocua at refrigerated temperature, citrus extract was selected and incorporated at 1% (v/v) into different biopolymer film forming solutions (gelatin, methyl cellulose and their blend 50:50 w/w). The antimicrobial activity of the developed films was then evaluated, just after preparation of the films and after one month of storage at 43±3% relative humidity and 24±3 °C. Regardless of the biopolymer matrix, all the developed films showed antimicrobial activity against the target bacteria. The most sensitive bacterium towards active films was L. innocua while P. fluorescens appeared as the most resistant one, in accordance with the previously performed antimicrobial tests for pure extracts. The differences in activity of the films between the tested two temperatures were not significant except for L. innocua, for which three times higher inhibition diameters were observed at refrigerated temperature. The inhibitory effectiveness of the films against the tested strains was maintained regardless of the biopolymer matrix for at least one month. Therefore, these edible films show potential for their future use in fresh fish fillets preservation. PMID:22824340

  20. EXTRACTION AND ANALYSIS OF ACTIN NETWORKS BASED ON OPEN ACTIVE CONTOUR MODELS

    PubMed Central

    Xu, Ting; Li, Hongsheng; Shen, Tian; Ojkic, Nikola; Vavylonis, Dimitrios; Huang, Xiaolei

    2011-01-01

    Network structures formed by actin filaments are present in many kinds of fluorescence microscopy images. In order to quantify the conformations and dynamics of such actin filaments, we propose a fully automated method to extract actin networks from images and analyze network topology. The method handles well intersecting filaments and, to some extent, overlapping filaments. First we automatically initialize a large number of Stretching Open Active Contours (SOACs) from ridge points detected by searching for plus-to-minus sign changes in the gradient map of the image. These initial SOACs then elongate simultaneously along the bright center-lines of filaments by minimizing an energy function. During their evolution, they may merge or stop growing, thus forming a network that represents the topology of the filament ensemble. We further detect junction points in the network and break the SOACs at junctions to obtain “SOAC segments”. These segments are then re-grouped using a graph-cut spectral clustering method to represent the configuration of actin filaments. The proposed approach is generally applicable to extracting intersecting curvilinear structures in noisy images. We demonstrate its potential using two kinds of data: (1) actin filaments imaged by Total Internal Reflection Fluorescence Microscopy (TIRFM) in vitro; (2) actin cytoskeleton networks in fission yeast imaged by spinning disk confocal microscopy. PMID:21822463