Sample records for active catalytic site

  1. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  2. Ionizable side chains at catalytic active sites of enzymes.

    PubMed

    Jimenez-Morales, David; Liang, Jie; Eisenberg, Bob

    2012-05-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

  3. All the catalytic active sites of MoS 2 for hydrogen evolution

    DOE PAGES

    Li, Guoqing; Zhang, Du; Qiao, Qiao; ...

    2016-11-29

    MoS 2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS 2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated tomore » be 7.5 s –1 (65–75 mV/dec), 3.2 s –1 (65–85 mV/dec), and 0.1 s –1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS 2 is higher than that in low crystalline quality MoS 2, which may be related with the proximity of different local crystalline structures to the vacancies.« less

  4. Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes.

    PubMed

    Zastrow, Melissa L; Pecoraro, Vincent L

    2013-04-17

    While metalloprotein design has now yielded a number of successful metal-bound and even catalytically active constructs, the question of where to put a metal site along a linear, repetitive sequence has not been thoroughly addressed. Often several possibilities in a given sequence may exist that would appear equivalent but may in fact differ for metal affinity, substrate access, or protein dynamics. We present a systematic variation of active site location for a hydrolytically active ZnHis3O site contained within a de novo-designed three-stranded coiled coil. We find that the maximal rate, substrate access, and metal-binding affinity are dependent on the selected position, while catalytic efficiency for p-nitrophenyl acetate hydrolysis can be retained regardless of the location of the active site. This achievement demonstrates how efficient, tailor-made enzymes which control rate, pKa, substrate and solvent access (and selectivity), and metal-binding affinity may be realized. These findings may be applied to the more advanced de novo design of constructs containing secondary interactions, such as hydrogen-bonding channels. We are now confident that changes to location for accommodating such channels can be achieved without location-dependent loss of catalytic efficiency. These findings bring us closer to our ultimate goal of incorporating the secondary interactions we believe will be necessary in order to improve both active site properties and the catalytic efficiency to be competitive with the native enzyme, carbonic anhydrase.

  5. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites.

    PubMed

    Ribeiro, António J M; Holliday, Gemma L; Furnham, Nicholas; Tyzack, Jonathan D; Ferris, Katherine; Thornton, Janet M

    2018-01-04

    M-CSA (Mechanism and Catalytic Site Atlas) is a database of enzyme active sites and reaction mechanisms that can be accessed at www.ebi.ac.uk/thornton-srv/m-csa. Our objectives with M-CSA are to provide an open data resource for the community to browse known enzyme reaction mechanisms and catalytic sites, and to use the dataset to understand enzyme function and evolution. M-CSA results from the merging of two existing databases, MACiE (Mechanism, Annotation and Classification in Enzymes), a database of enzyme mechanisms, and CSA (Catalytic Site Atlas), a database of catalytic sites of enzymes. We are releasing M-CSA as a new website and underlying database architecture. At the moment, M-CSA contains 961 entries, 423 of these with detailed mechanism information, and 538 with information on the catalytic site residues only. In total, these cover 81% (195/241) of third level EC numbers with a PDB structure, and 30% (840/2793) of fourth level EC numbers with a PDB structure, out of 6028 in total. By searching for close homologues, we are able to extend M-CSA coverage of PDB and UniProtKB to 51 993 structures and to over five million sequences, respectively, of which about 40% and 30% have a conserved active site. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Direct instrumental identification of catalytically active surface sites

    NASA Astrophysics Data System (ADS)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  7. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes.

    PubMed

    Endrizzi, James A; Beernink, Peter T

    2017-11-01

    A classical model for allosteric regulation of enzyme activity posits an equilibrium between inactive and active conformations. An alternative view is that allosteric activation is achieved by increasing the potential for conformational changes that are essential for catalysis. In the present study, substitution of a basic residue in the active site of the catalytic (C) trimer of aspartate transcarbamoylase with a non-polar residue results in large interdomain hinge changes in the three chains of the trimer. One conformation is more open than the chains in both the wild-type C trimer and the catalytic chains in the holoenzyme, the second is closed similar to the bisubstrate-analog bound conformation and the third hinge angle is intermediate to the other two. The active-site 240s loop conformation is very different between the most open and closed chains, and is disordered in the third chain, as in the holoenzyme. We hypothesize that binding of anionic substrates may promote similar structural changes. Further, the ability of the three catalytic chains in the trimer to access the open and closed active-site conformations simultaneously suggests a cyclic catalytic mechanism, in which at least one of the chains is in an open conformation suitable for substrate binding whereas another chain is closed for catalytic turnover. Based on the many conformations observed for the chains in the isolated catalytic trimer to date, we propose that allosteric activation of the holoenzyme occurs by release of quaternary constraint into an ensemble of active-site conformations. © 2017 The Protein Society.

  8. Catalytic site identification--a web server to identify catalytic site structural matches throughout PDB.

    PubMed

    Kirshner, Daniel A; Nilmeier, Jerome P; Lightstone, Felice C

    2013-07-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov.

  9. Catalytic site identification—a web server to identify catalytic site structural matches throughout PDB

    PubMed Central

    Kirshner, Daniel A.; Nilmeier, Jerome P.; Lightstone, Felice C.

    2013-01-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov. PMID:23680785

  10. Active site structure and catalytic mechanism of phosphodiesterase for degradation of intracellular second messengers

    NASA Astrophysics Data System (ADS)

    Zhan, Chang-Guo

    2002-03-01

    Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by performing first-principles quantum chemical calculations on models of the active site. All the results obtained indicate that this critical bridging ligand in the active site of the reported X-ray crystal structure is a hydroxide ion, rather than a water molecule, expected to serve as the nucleophile to initialize the catalytic degradation of the intracellular second messengers.

  11. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    PubMed Central

    Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger

    2015-01-01

    Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407

  12. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase.

    PubMed

    Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G

    2017-11-01

    The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al{sub 2}Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped (211) surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir–Hinshelwood mechanism with themore » activation energy of 37 kJ/mol or via the CO–OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.« less

  14. Dynamics of the active site architecture in plant-type ferredoxin-NADP(+) reductases catalytic complexes.

    PubMed

    Sánchez-Azqueta, Ana; Catalano-Dupuy, Daniela L; López-Rivero, Arleth; Tondo, María Laura; Orellano, Elena G; Ceccarelli, Eduardo A; Medina, Milagros

    2014-10-01

    Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP(+) reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP(+) coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Catalytic site interactions in yeast OMP synthase.

    PubMed

    Hansen, Michael Riis; Barr, Eric W; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R

    2014-01-15

    The enigmatic kinetics, half-of-the-sites binding, and structural asymmetry of the homodimeric microbial OMP synthases (orotate phosphoribosyltransferase, EC 2.4.2.10) have been proposed to result from an alternating site mechanism in these domain-swapped enzymes [R.W. McClard et al., Biochemistry 45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal initial velocity plots. Replacement of Lys106, the postulated intersubunit communication device, produced intersecting lines in kinetic plots with a 2-fold reduction of kcat. Loop (R105G K109S H111G) and PRPP-binding motif (D131N D132N) mutant proteins, each without detectable enzymatic activity and ablated ability to bind PRPP, complemented to produce a heterodimer with a single fully functional active site showing intersecting initial velocity plots. Equilibrium binding of PRPP and orotidine 5'-monophosphate showed a single class of two binding sites per dimer in WT and K106S enzymes. Evidence here shows that the enzyme does not follow half-of-the-sites cooperativity; that interplay between catalytic sites is not an essential feature of the catalytic mechanism; and that parallel lines in steady-state kinetics probably arise from tight substrate binding. Copyright © 2013. Published by Elsevier Inc.

  16. Channeling by Proximity: The Catalytic Advantages of Active Site Colocalization Using Brownian Dynamics.

    PubMed

    Bauler, Patricia; Huber, Gary; Leyh, Thomas; McCammon, J Andrew

    2010-05-06

    Nature often colocalizes successive steps in a metabolic pathway. Such organization is predicted to increase the effective concentration of pathway intermediates near their recipient active sites and to enhance catalytic efficiency. Here, the pathway of a two-step reaction is modeled using a simple spherical approximation for the enzymes and substrate particles. Brownian dynamics are used to simulate the trajectory of a substrate particle as it diffuses between the active site zones of two different enzyme spheres. The results approximate distances for the most effective reaction pathways, indicating that the most effective reaction pathway is one in which the active sites are closely aligned. However, when the active sites are too close, the ability of the substrate to react with the first enzyme was hindered, suggesting that even the most efficient orientations can be improved for a system that is allowed to rotate or change orientation to optimize the likelihood of reaction at both sites.

  17. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.

    PubMed

    Liu, C Tony; Layfield, Joshua P; Stewart, Robert J; French, Jarrod B; Hanoian, Philip; Asbury, John B; Hammes-Schiffer, Sharon; Benkovic, Stephen J

    2014-07-23

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and (13)C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor-acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for

  18. Probing the Electrostatics of Active Site Microenvironments along the Catalytic Cycle for Escherichia coli Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and 13C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor–acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for

  19. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    DOE PAGES

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; ...

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO 2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO 2 catalyst, which is a lower energy pathway than that of CO oxidation at the interfacemore » with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less

  20. Correction: Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    PubMed

    Martínez-Araya, Jorge Ignacio; Grand, André; Glossman-Mitnik, Daniel

    2016-01-28

    Correction for 'Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges' by Jorge Ignacio Martínez-Araya et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp03822g.

  1. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase.

    PubMed

    Asgeirsson, Bjarni; Adalbjörnsson, Björn Vidar; Gylfason, Gudjón Andri

    2007-06-01

    Alkaline phosphatase is an extracellular enzyme that is membrane-bound in eukaryotes but resides in the periplasmic space of bacteria. It normally carries four cysteine residues that form two disulfide bonds, for instance in the APs of Escherichia coli and vertebrates. An AP variant from a Vibrio sp. has only one cysteine residue. This cysteine is second next to the nucleophilic serine in the active site. We have individually modified seven residues to cysteine that are on two loops predicted to be within a 5 A radius. Four of them formed a disulfide bond to the endogenous cysteine. Thermal stability was monitored by circular dichroism and activity measurements. Global stability was similar to the wild-type enzyme. However, a significant increase in heat-stability was observed for the disulfide-containing variants using activity as a measure, together with a large reduction in catalytic rates (k(cat)) and a general decrease in Km values. The results suggest that a high degree of mobility near the active site and in the helix carrying the endogenous cysteine is essential for full catalytic efficiency in the cold-adapted AP.

  2. Direct Visualization of Catalytically Active Sites at the FeO–Pt(111) Interface

    DOE PAGES

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; ...

    2015-05-31

    Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O 2 andmore » CO environments revealed catalytic activity occurring at the FeO–Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO–Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. As a result, the presented STM results are in accord with DFT+U calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.« less

  3. High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase.

    PubMed

    Romi, Erez; Baran, Nava; Gantman, Marina; Shmoish, Michael; Min, Bosun; Collins, Kathleen; Manor, Haim

    2007-05-22

    Telomerase is a cellular reverse transcriptase, which utilizes an integral RNA template to extend single-stranded telomeric DNA. We used site-specific photocrosslinking to map interactions between DNA primers and the catalytic protein subunit (tTERT) of Tetrahymena thermophila telomerase in functional enzyme complexes. Our assays reveal contact of the single-stranded DNA adjacent to the primer-template hybrid and tTERT residue W187 at the periphery of the N-terminal domain. This contact was detected in complexes with three different registers of template in the active site, suggesting that it is maintained throughout synthesis of a complete telomeric repeat. Substitution of nearby residue Q168, but not W187, alters the K(m) for primer elongation, implying that it plays a role in the DNA recognition. These findings are the first to directly demonstrate the physical location of TERT-DNA contacts in catalytically active telomerase and to identify amino acid determinants of DNA binding affinity. Our data also suggest a movement of the TERT active site relative to the template-adjacent single-stranded DNA binding site within a cycle of repeat synthesis.

  4. Anti-site defected MoS2 sheet for catalytic application

    NASA Astrophysics Data System (ADS)

    Sharma, Archana; Husain, Mushahid; Khan, Mohd. Shahid

    2018-04-01

    To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to investigate CO oxidation on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (anti-site defect). The stronger interaction between Mo metal with O2 molecule as compared with CO molecule suggests high catalytic activity. The complete oxidation of CO is studied in a two-step procedure using Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms with a low overall energy barrier of 0.35 eV. Creation of anti-site defect makes the surface of MoS2 nanosheet catalytically active for the CO oxidation to take place.

  5. A Phosphoenzyme Mimic, Overlapping Catalytic Sites and Reaction Coordinate Motion for Human NAMPT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgos, E.; Ho, M; Almo, S

    2009-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is highly evolved to capture nicotinamide (NAM) and replenish the nicotinamide adenine dinucleotide (NAD+) pool during ADP-ribosylation and transferase reactions. ATP-phosphorylation of an active-site histidine causes catalytic activation, increasing NAM affinity by 160,000. Crystal structures of NAMPT with catalytic site ligands identify the phosphorylation site, establish its role in catalysis, demonstrate unique overlapping ATP and phosphoribosyltransferase sites, and establish reaction coordinate motion. NAMPT structures with beryllium fluoride indicate a covalent H247-BeF3- as the phosphohistidine mimic. Activation of NAMPT by H247-phosphorylation causes stabilization of the enzyme-phosphoribosylpyrophosphate complex, permitting efficient capture of NAM. Reactant and product structures establish reactionmore » coordinate motion for NAMPT to be migration of the ribosyl anomeric carbon from the pyrophosphate leaving group to the nicotinamide-N1 while the 5-phosphoryl group, the pyrophosphate moiety, and the nicotinamide ring remain fixed in the catalytic site.« less

  6. Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm.

    PubMed

    Jinnouchi, Ryosuke; Asahi, Ryoji

    2017-09-07

    Catalytic activities are often dominated by a few specific surface sites, and designing active sites is the key to realize high-performance heterogeneous catalysts. The great triumphs of modern surface science lead to reproduce catalytic reaction rates by modeling the arrangement of surface atoms with well-defined single-crystal surfaces. However, this method has limitations in the case for highly inhomogeneous atomic configurations such as on alloy nanoparticles with atomic-scale defects, where the arrangement cannot be decomposed into single crystals. Here, we propose a universal machine-learning scheme using a local similarity kernel, which allows interrogation of catalytic activities based on local atomic configurations. We then apply it to direct NO decomposition on RhAu alloy nanoparticles. The proposed method can efficiently predict energetics of catalytic reactions on nanoparticles using DFT data on single crystals, and its combination with kinetic analysis can provide detailed information on structures of active sites and size- and composition-dependent catalytic activities.

  7. Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases.

    PubMed

    Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen

    2018-03-28

    Crystal structures of two bacterial metal (Zn) dependent D-fructose 1,6-bisphosphate (FBP) aldolases in complex with substrate, analogues, and triose-P reaction products were determined to 1.5-2.0 Å resolution. The ligand complexes cryotrapped in native or mutant H. pylori aldolase crystals enabled a novel mechanistic description of FBP C 3 -C 4 bond cleavage. The reaction mechanism uses active site remodelling during the catalytic cycle implicating relocation of the Zn cofactor that is mediated by conformational changes of active site loops. Substrate binding initiates conformational changes, triggered upon P 1 -phosphate binding, which liberates the Zn chelating His180, allowing it to act as a general base for the proton abstraction at the FBP C 4 -hydroxyl group. A second zinc chelating His83 hydrogen bonds the substrate C 4 - hydroxyl group and assists cleavage by stabilizing the developing negative charge during proton abstraction. Cleavage is concerted with relocation of the metal cofactor from an interior to a surface exposed site, thereby stabilizing the nascent enediolate form. Conserved residue Glu142 is essential for protonation of the enediolate form, prior to product release. A D-tagatose 1,6-bisphosphate enzymatic complex reveals how His180 mediated proton abstraction controls stereospecificity of the cleavage reaction. Recognition and discrimination of the reaction products, dihydroxyacetone-P and D-glyceraldehyde-3-P, occurs via charged hydrogen bonds between hydroxyl groups of the triose-Ps and conserved residues, Asp82 and Asp255, respectively, and are crucial aspects of the enzyme's role in gluconeogenesis. Conformational changes in mobile loops β5-α7 and β6-α8 (containing catalytic residues Glu142 and His180, respectively) drive active site remodelling enabling the relocation of the metal cofactor. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. To what extent do structural changes in catalytic metal sites affect enzyme function?

    PubMed

    Valasatava, Yana; Rosato, Antonio; Furnham, Nicholas; Thornton, Janet M; Andreini, Claudia

    2018-02-01

    About half of known enzymatic reactions involve metals. Enzymes belonging to the same superfamily often evolve to catalyze different reactions on the same structural scaffold. The work presented here investigates how functional differentiation, within superfamilies that contain metalloenzymes, relates to structural changes at the catalytic metal site. In general, when the catalytic metal site is unchanged across the enzymes of a superfamily, the functional differentiation within the superfamily tends to be low and the mechanism conserved. Conversely, all types of structural changes in the metal binding site are observed for superfamilies with high functional differentiation. Overall, the catalytic role of the metal ions appears to be one of the most conserved features of the enzyme mechanism within metalloenzyme superfamilies. In particular, when the catalytic role of the metal ion does not involve a redox reaction (i.e. there is no exchange of electrons with the substrate), this role is almost always maintained even when the site undergoes significant structural changes. In these enzymes, functional diversification is most often associated with modifications in the surrounding protein matrix, which has changed so much that the enzyme chemistry is significantly altered. On the other hand, in more than 50% of the examples where the metal has a redox role in catalysis, changes at the metal site modify its catalytic role. Further, we find that there are no examples in our dataset where metal sites with a redox role are lost during evolution. In this paper we investigate how functional diversity within superfamilies of metalloenzymes relates to structural changes at the catalytic metal site. Evolution tends to strictly conserve the metal site. When changes occur, they do not modify the catalytic role of non-redox metals whereas they affect the role of redox-active metals. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Quantum mechanical design of enzyme active sites.

    PubMed

    Zhang, Xiyun; DeChancie, Jason; Gunaydin, Hakan; Chowdry, Arnab B; Clemente, Fernando R; Smith, Adam J T; Handel, T M; Houk, K N

    2008-02-01

    The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.

  10. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jun; Shan, Shiyao; Yang, Lefu

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitormore » the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.« less

  11. Active Site Desolvation and Thermostability Trade-Offs in the Evolution of Catalytically Diverse Triazine Hydrolases.

    PubMed

    Sugrue, Elena; Carr, Paul D; Scott, Colin; Jackson, Colin J

    2016-11-15

    The desolvation of ionizable residues in the active sites of enzymes and the subsequent effects on catalysis and thermostability have been studied in model systems, yet little about how enzymes can naturally evolve to include active sites with highly reactive and desolvated charges is known. Variants of triazine hydrolase (TrzN) with significant differences in their active sites have been isolated from different bacterial strains: TrzN from Nocardioides sp. strain MTD22 contains a catalytic glutamate residue (Glu241) that is surrounded by hydrophobic and aromatic second-shell residues (Pro214 and Tyr215), whereas TrzN from Nocardioides sp. strain AN3 has a noncatalytic glutamine residue (Gln241) at an equivalent position, surrounded by hydrophilic residues (Thr214 and His215). To understand how and why these variants have evolved, a series of TrzN mutants were generated and characterized. These results show that desolvation by second-shell residues increases the pK a of Glu241, allowing it to act as a general acid at neutral pH. However, significant thermostability trade-offs are required to incorporate the ionizable Glu241 in the active site and to then enclose it in a hydrophobic microenvironment. Analysis of high-resolution crystal structures shows that there are almost no structural changes to the overall configuration of the active site due to these mutations, suggesting that the changes in activity and thermostability are purely based on the altered electrostatics. The natural evolution of these enzyme isoforms provides a unique system in which to study the fundamental process of charged residue desolvation in enzyme catalysis and its relative contribution to the creation and evolution of an enzyme active site.

  12. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    PubMed

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  13. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry uponmore » binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.« less

  14. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions

    PubMed Central

    Sengupta, Raghuvir N.; Van Schie, Sabine N.S.; Giambaşu, George; Dai, Qing; Yesselman, Joseph D.; York, Darrin; Piccirilli, Joseph A.; Herschlag, Daniel

    2016-01-01

    Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. PMID:26567314

  15. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions.

    PubMed

    Sengupta, Raghuvir N; Van Schie, Sabine N S; Giambaşu, George; Dai, Qing; Yesselman, Joseph D; York, Darrin; Piccirilli, Joseph A; Herschlag, Daniel

    2016-01-01

    Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathway" species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2'- and 3'-deoxy (-H) and -amino (-NH(2)) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3'-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2'-OH making no interaction. Upon S binding, a rearrangement occurs that allows both -OH groups to contact a different active site metal ion, termed M(C), to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. © 2015 Sengupta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Catalytic zinc site and mechanism of the metalloenzyme PR-AMP cyclohydrolase.

    PubMed

    D'Ordine, Robert L; Linger, Rebecca S; Thai, Carolyn J; Davisson, V Jo

    2012-07-24

    The enzyme N(1)-(5'-phosphoribosyl) adenosine-5'-monophosphate cyclohydrolase (PR-AMP cyclohydrolase) is a Zn(2+) metalloprotein encoded by the hisI gene. It catalyzes the third step of histidine biosynthesis, an uncommon ring-opening of a purine heterocycle for use in primary metabolism. A three-dimensional structure of the enzyme from Methanobacterium thermoautotrophicum has revealed that three conserved cysteine residues occur at the dimer interface and likely form the catalytic site. To investigate the functions of these cysteines in the enzyme from Methanococcus vannielii, a series of biochemical studies were pursued to test the basic hypothesis regarding their roles in catalysis. Inactivation of the enzyme activity by methyl methane thiosulfonate (MMTS) or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) also compromised the Zn(2+) binding properties of the protein inducing loss of up to 90% of the metal. Overall reaction stoichiometry and the potassium cyanide (KCN) induced cleavage of the protein suggested that all three cysteines were modified in the process. The enzyme was protected from DTNB-induced inactivation by inclusion of the substrate N(1)-(5'-phosphoribosyl)adenosine 5'-monophosphate; (PR-AMP), while Mg(2+), a metal required for catalytic activity, enhanced the rate of inactivation. Site-directed mutations of the conserved C93, C109, C116 and the double mutant C109/C116 were prepared and analyzed for catalytic activity, Zn(2+) content, and reactivity with DTNB. Substitution of alanine for each of the conserved cysteines showed no measurable catalytic activity, and only the C116A was still capable of binding Zn(2+). Reactions of DTNB with the C109A/C116A double mutant showed that C93 is completely modified within 0.5 s. A model consistent with these data involves a DTNB-induced mixed disulfide linkage between C93 and C109 or C116, followed by ejection of the active site Zn(2+) and provides further evidence that the Zn(2+) coordination site involves the

  17. Regulation of Catalytic and Non-catalytic Functions of the Drosophila Ste20 Kinase Slik by Activation Segment Phosphorylation.

    PubMed

    Panneton, Vincent; Nath, Apurba; Sader, Fadi; Delaunay, Nathalie; Pelletier, Ariane; Maier, Dominic; Oh, Karen; Hipfner, David R

    2015-08-21

    Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Remote site-selective C–H activation directed by a catalytic bifunctional template

    PubMed Central

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-01-01

    Converting C–H bonds directly into carbon-carbon and carbon-heteroatom bonds can significantly improve step-economy in synthesis by providing alternative disconnections to traditional functional group manipulations. In this context, directed C–H activation reactions have been extensively explored for regioselective functionalization1-5. Though applicability can be severely curtailed by distance from the directing group and the shape of the molecule, a number of approaches have been developed to overcome this limitation6-12. For instance, recognition of the distal and geometric relationship between an existing functional group and multiple C–H bonds has recently been exploited to achieve meta-selective C–H activation by use of a covalently attached U-shaped template13-17. However, stoichiometric installation of the template is not feasible in the absence of an appropriate functional group handle. Here we report the design of a catalytic, bifunctional template that binds heterocyclic substrate via reversible coordination instead of covalent linkage, allowing remote site-selective C–H olefination of heterocycles. The two metal centers coordinated to this template play different roles; anchoring substrates to the proximity of catalyst and cleaving the remote C–H bonds respectively. Using this strategy, we demonstrate remote site-selective C–H olefination of heterocyclic substrates which do not have functional group handles for covalently attaching templates. PMID:28273068

  19. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Ian

    Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO 2 is responsible for oxidative catalytic activity. O 2 molecules bind with Au atoms and Ti4+ ions in the TiO 2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atomsmore » which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO 2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO 2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO 2 catalysts with surface science on the TiO 2(110) and TiO 2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti 4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.« less

  20. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlits, Oksana; Wymore, Troy; Das, Amit

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less

  1. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    DOE PAGES

    Gerlits, Oksana; Wymore, Troy; Das, Amit; ...

    2016-03-09

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less

  2. A comparative theoretical study of the catalytic activities of Au2(-) and AuAg(-) dimers for CO oxidation.

    PubMed

    Liu, Peng; Song, Ke; Zhang, Dongju; Liu, Chengbu

    2012-05-01

    The detailed mechanisms of catalytic CO oxidation over Au(2)(-) and AuAg(-) dimers, which represent the simplest models for monometal Au and bimetallic Au-Ag nanoparticles, have been studied by performing density functional theory calculations. It is found that both Au(2)(-) and AuAg(-) dimers catalyze the reaction according to the similar mono-center Eley-Rideal mechanism. The catalytic reaction is of the multi-channel and multi-step characteristic, which can proceed along four possible pathways via two or three elementary steps. In AuAg(-), the Au site is more active than the Ag site, and the calculated energy barrier values for the rate-determining step of the Au-site catalytic reaction are remarkably smaller than those for both the Ag-site catalytic reaction and the Au(2)(-) catalytic reaction. The better catalytic activity of bimetallic AuAg(-) dimer is attributed to the synergistic effect between Au and Ag atom. The present results provide valuable information for understanding the higher catalytic activity of Au-Ag nanoparticles and nanoalloys for low-temperature CO oxidation than either pure metallic catalyst.

  3. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.

    PubMed

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey

    2016-04-11

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  5. Investigations into the development of catalytic activity in anti-acetylcholinesterase idiotypic and anti-idiotypic antibodies.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2009-01-01

    We have previously described anti-acetylcholinesterase antibodies that display acetylcholinesterase-like catalytic activity. No evidence of contaminating enzymes was found, and the antibodies are kinetically and apparently structurally distinct from both acetylcholinesterase (AChE) and butyrylcholinesterase. We have also mimicked the antibody catalytic sites in anti-anti-idiotypic (Ab3) antibodies. Independently from us, similar acetylcholinesterase-like antibodies have been raised as anti-idiotypic (Ab2) antibodies against a non-catalytic anti-acetylcholinesterase antibody, AE-2. In this paper, we describe an epitope analysis, using synthetic peptides in ELISA and competition ELISA, and a peptide array, of five catalytic anti-acetylcholinesterase antibodies (Ab1s), three catalytic Ab3s, as well as antibody AE-2 and a non-catalytic Ab2. The catalytic Ab1s and Ab3s recognized three Pro- and Gly-containing sequences ((40)PPMGPRRFL, (78)PGFEGTE, and (258)PPGGTGGNDTELVAC) on the AChE surface. As these sequences do not adjoin in the AChE structure, recognition would appear to be due to cross-reaction. This was confirmed by the observation that the sequences superimpose structurally. The non-catalytic antibodies, AE-2 and the Ab2, recognized AChE's peripheral anionic site (PAS), in particular, the sequence (70)YQYVD, which contains two of the site's residues. The crystal structure of the AChE tetramer (Bourne et al., 1999) shows direct interaction and high complementarity between the (257)CPPGGTGGNDTELVAC sequence and the PAS. Antibodies recognizing the sequence and the PAS may, in turn, be complementary; this may account for the apparent paradox of catalytic development in both Ab1s and Ab2s. The PAS binds, but does not hydrolyze, substrate. The catalytic Ab1s, therefore, recognize a site that may function as a substrate analog, and this, together with the presence of an Arg-Glu salt bridge in the epitope, suggests mechanisms whereby catalytic activity may have

  6. Direct 3D Printing of Catalytically Active Structures

    DOE PAGES

    Manzano, J. Sebastian; Weinstein, Zachary B.; Sadow, Aaron D.; ...

    2017-09-22

    3D printing of materials with active functional groups can provide custom-designed structures that promote chemical conversions. Catalytically active architectures were produced by photopolymerizing bifunctional molecules using a commercial stereolithographic 3D printer. Functionalities in the monomers included a polymerizable vinyl group to assemble the 3D structures and a secondary group to provide them with active sites. The 3D-printed architectures containing accessible carboxylic acid, amine, and copper carboxylate functionalities were catalytically active for the Mannich, aldol, and Huisgen cycloaddition reactions, respectively. The functional groups in the 3D-printed structures were also amenable to post-printing chemical modification. And as proof of principle, chemically activemore » cuvette adaptors were 3D printed and used to measure in situ the kinetics of a heterogeneously catalyzed Mannich reaction in a conventional solution spectrophotometer. In addition, 3D-printed millifluidic devices with catalytically active copper carboxylate complexes were used to promote azide-alkyne cycloaddition under flow conditions. The importance of controlling the 3D architecture of the millifluidic devices was evidenced by enhancing reaction conversion upon increasing the complexity of the 3D prints.« less

  7. Direct 3D Printing of Catalytically Active Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzano, J. Sebastian; Weinstein, Zachary B.; Sadow, Aaron D.

    3D printing of materials with active functional groups can provide custom-designed structures that promote chemical conversions. Catalytically active architectures were produced by photopolymerizing bifunctional molecules using a commercial stereolithographic 3D printer. Functionalities in the monomers included a polymerizable vinyl group to assemble the 3D structures and a secondary group to provide them with active sites. The 3D-printed architectures containing accessible carboxylic acid, amine, and copper carboxylate functionalities were catalytically active for the Mannich, aldol, and Huisgen cycloaddition reactions, respectively. The functional groups in the 3D-printed structures were also amenable to post-printing chemical modification. And as proof of principle, chemically activemore » cuvette adaptors were 3D printed and used to measure in situ the kinetics of a heterogeneously catalyzed Mannich reaction in a conventional solution spectrophotometer. In addition, 3D-printed millifluidic devices with catalytically active copper carboxylate complexes were used to promote azide-alkyne cycloaddition under flow conditions. The importance of controlling the 3D architecture of the millifluidic devices was evidenced by enhancing reaction conversion upon increasing the complexity of the 3D prints.« less

  8. Size and Site Dependence of the Catalytic Activity of Iridium Clusters toward Ethane Dehydrogenation.

    PubMed

    Ge, Yingbin; Jiang, Hao; Kato, Russell; Gummagatta, Prasuna

    2016-12-01

    This research focuses on optimizing transition metal nanocatalyst immobilization and activity to enhance ethane dehydrogenation. Ethane dehydrogenation, catalyzed by thermally stable Ir n (n = 8, 12, 18) atomic clusters that exhibit a cuboid structure, was studied using the B3LYP method with triple-ζ basis sets. Relativistic effects and dispersion corrections were included in the calculations. In the dehydrogenation reaction Ir n + C 2 H 6 → H-Ir n -C 2 H 5 → (H) 2 -Ir n -C 2 H 4 , the first H-elimination is the rate-limiting step, primarily because the reaction releases sufficient heat to facilitate the second H-elimination. The catalytic activity of the Ir clusters strongly depends on the Ir cluster size and the specific catalytic site. Cubic Ir 8 is the least reactive toward H-elimination in ethane: Ir 8 + C 2 H 6 → H-Ir 8 -C 2 H 5 has a large (65 kJ/mol) energy barrier, whereas Ir 12 (3 × 2 × 2 cuboid) and Ir 18 (3 × 3 × 2 cuboid) lower this energy barrier to 22 and 3 kJ/mol, respectively. The site dependence is as prominent as the size effect. For example, the energy barrier for the Ir 18 + C 2 H 6 → H-Ir 18 -C 2 H 5 reaction is 3, 48, and 71 kJ/mol at the corner, edge, or face-center sites of the Ir 18 cuboid, respectively. Energy release due to Ir cluster insertion into an ethane C-H bond facilitates hydrogen migration on the Ir cluster surface, and the second H-elimination of ethane. In an oxygen-rich environment, oxygen molecules may be absorbed on the Ir cluster surface. The oxygen atoms bonded to the Ir cluster surface may slightly increase the energy barrier for H-elimination in ethane. However, the adsorption of oxygen and its reaction with H atoms on the Ir cluster releases sufficient heat to yield an overall thermodynamically favored reaction: Ir n + C 2 H 6 + 1 / 2 O 2 → Ir n + C 2 H 4 + H 2 O. These results will be useful toward reducing the energy cost of ethane dehydrogenation in industry.

  9. Spontaneous chemical reversion of an active site mutation: deamidation of an asparagine residue replacing the catalytic aspartic acid of glutamate dehydrogenase.

    PubMed

    Paradisi, Francesca; Dean, Jonathan L E; Geoghegan, Kieran F; Engel, Paul C

    2005-03-08

    A mutant (D165N) of clostridial glutamate dehydrogenase (GDH) in which the catalytic Asp is replaced by Asn surprisingly showed a residual 2% of wild-type activity when purified after expression in Escherichia coli at 37 degrees C. This low-level activity also displayed Michaelis constants for substrates that were remarkably similar to those of the wild-type enzyme. Expression at 8 degrees C gave a mutant enzyme preparation 1000 times less active than the first preparation, but progressively, over 2 weeks' incubation at 37 degrees C in sealed vials, this enzyme regained 90% of the specific activity of wild type. This suggested that the mutant might undergo spontaneous deamidation. Mass spectrometric analysis of tryptic peptides derived from D165N samples treated in various ways showed (i) that the Asn is in place in D165N GDH freshly prepared at 8 degrees C; (ii) that there is a time-dependent reversion of this Asn to Asp over the 2-week incubation period; (iii) that detectable deamidation of other Asn residues, in Asn-Gly sequences, mainly occurred in sample workup rather than during the 2-week incubation; (iv) that there is no significant deamidation of other randomly chosen Asn residues in this mutant over the same period; and (v) that when the protein is denatured before incubation, no deamidation at Asn-165 is detectable. It appears that this deamidation depends on the residual catalytic machinery of the mutated GDH active site. A literature search indicates that this finding is not unique and that Asn may not be a suitable mutational replacement in the assessment of putative catalytic Asp residues by site-directed mutagenesis.

  10. Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties.

    PubMed

    Wan, Jiawei; Chen, Wenxing; Jia, Chuanyi; Zheng, Lirong; Dong, Juncai; Zheng, Xusheng; Wang, Yu; Yan, Wensheng; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2018-03-01

    Isolated single atomic site catalysts have attracted great interest due to their remarkable catalytic properties. Because of their high surface energy, single atoms are highly mobile and tend to form aggregate during synthetic and catalytic processes. Therefore, it is a significant challenge to fabricate isolated single atomic site catalysts with good stability. Herein, a gentle method to stabilize single atomic site metal by constructing defects on the surface of supports is presented. As a proof of concept, single atomic site Au supported on defective TiO 2 nanosheets is prepared and it is discovered that (1) the surface defects on TiO 2 nanosheets can effectively stabilize Au single atomic sites through forming the Ti-Au-Ti structure; and (2) the Ti-Au-Ti structure can also promote the catalytic properties through reducing the energy barrier and relieving the competitive adsorption on isolated Au atomic sites. It is believed that this work paves a way to design stable and active single atomic site catalysts on oxide supports. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis.

    PubMed

    Choutko, Alexandra; van Gunsteren, Wilfred F

    2012-11-01

    The protein chorismate mutase MtCM from Mycobacterium tuberculosis catalyzes one of the few pericyclic reactions known in biology: the transformation of chorismate to prephenate. Chorismate mutases have been widely studied experimentally and computationally to elucidate the transition state of the enzyme catalyzed reaction and the origin of the high catalytic rate. However, studies about substrate entry and product exit to and from the highly occluded active site of the enzyme have to our knowledge not been performed on this enzyme. Crystallographic data suggest a possible substrate entry gate, that involves a slight opening of the enzyme for the substrate to access the active site. Using multiple molecular dynamics simulations, we investigate the natural dynamic process of the product exiting from the binding pocket of MtCM. We identify a dominant exit pathway, which is in agreement with the gate proposed from the available crystallographic data. Helices H2 and H4 move apart from each other which enables the product to exit from the active site. Interestingly, in almost all exit trajectories, two residues arginine 72 and arginine 134, which participate in the burying of the active site, are accompanying the product on its exit journey from the catalytic site. Copyright © 2012 The Protein Society.

  12. Identification of an active acidic residue in the catalytic site of beta-hexosaminidase.

    PubMed

    Tse, R; Vavougios, G; Hou, Y; Mahuran, D J

    1996-06-11

    Human beta-hexosaminidases A and B (EC 3.2.1.52) are dimeric lysosomal glycosidases composed of evolutionarily related alpha and/or beta subunits. Both isozymes hydrolyze terminal beta-linked GalNAc or GlcNAc residues from numerous artificial and natural substrates; however, in vivo GM2 ganglioside is a substrate for only the heterodimeric A isozyme. Thus, mutations in either gene encoding its alpha or beta subunits can result in GM2 ganglioside storage and Tay-Sachs or Sandhoff disease, respectively. All glycosyl hydrolases ae believed to have one or more acidic residues in their catalytic site. We demonstrate that incubation of hexosaminidase with a chemical modifier specific for carboxyl side chains produces a time-dependent loss of activity, and that this effect can be blocked by the inclusion of a strong competitive inhibitor in the reaction mix. We hypothesized that the catalytic acid residue(s) should be located in a region of overall homology and be invariant within the aligned deduced primary sequences of the human alpha and beta subunits, as well as hexosaminidases from other species, including bacteria. Such a region is encoded by exons 5-6 of the HEXA and HEXB genes. This region includes beta Arg211 (invariant in 15 sequences), which we have previously shown to be an active residue. This region also contains two invariant and one conserved acidic residues. A fourth acidic residue, Asp alpha 258, beta 290, in exon 7 was also investigated because of its association with the B1 variant of Tay-Sachs disease. Conservative substitutions were made at each candidate residue by in vitro mutagenesis of a beta cDNA, followed by cellular expression. Of these, only the beta Asp196Asn substitution decreased the kcat (350-910-fold) without any noticeable effect on the K(m). Mutagenesis of either beta Asp240 or beta Asp290 to Asn decreased kcat by 10- or 1.4-fold but also raised the K(m) of the enzyme 11- of 3-fold, respectively. The above results strongly suggest that

  13. Catalytic efficiency and thermostability improvement of Suc2 invertase through rational site-directed mutagenesis.

    PubMed

    Mohandesi, Nooshin; Haghbeen, Kamahldin; Ranaei, Omid; Arab, Seyed Shahriar; Hassani, Sorour

    2017-01-01

    Engineering of invertases has come to attention because of increasing demand for possible applications of invertases in various industrial processes. Due to the known physicochemical properties, invertases from micro-organisms such as Saccharomyces cerevisiae carrying SUC2 gene are considered as primary models. To improve thermostability and catalytic efficiency of SUC2 invertase (SInv), six influential residues with Relative Solvent Accessibility<5% were selected through multiple-sequence alignments, molecular modelling, structural and computational analyses. Consequently, SInv and 5 mutants including three mutants with single point substitution [Mut1=P152V, Mut2=S85V and Mut3=K153F)], one mutant with two points [Mut4=S305V-N463V] and one mutant with three points [Mut5=S85V-K153F-T271V] were developed via site-directed mutagenesis and produced using Pichia pastoris as the host. Physicochemical studies on these enzymes indicated that the selected amino acids which were located in the active site region mainly influenced catalytic efficiency. The best improvement belonged to Mut1 (54% increase in K cat /K m ) and Mut3 exhibited the worst effect (90% increase in K m ). These results suggest that Pro152 and Lys153 play key role in preparation of the right substrate lodging in the active site of SInv. The best thermostability improvement (16%) was observed for Mut4 in which two hydrophilic residues located on the loops, far from the active site, were replaced by Valines. These results suggest that tactful simultaneous substitution of influential hydrophilic residues in both active site region and peripheral loops with hydrophobic amino acids could result in more thermostable invertases with enhanced catalytic efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Pt-Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites.

    PubMed

    Ma, Yanxia; Yin, Lisi; Cao, Guojian; Huang, Qingli; He, Maoshuai; Wei, Wenxian; Zhao, Hong; Zhang, Dongen; Wang, Mingyan; Yang, Tao

    2018-04-01

    Exploration of highly efficient electrocatalysts is significantly urgent for the extensive adoption of the fuel cells. Because of their high activity and super stability, Pt-Pd bimetal nanocrystals have been widely recognized as one class of promising electrocatalysts for oxygen reduction. This article presents the synthesis of popcorn-shaped Pt-Pd bimetal nanoparticles with a wide composition range through a facile hydrothermal strategy. The hollow-centered nanoparticles are surrounded by several petals and concave surfaces. By exploring the oxygen reduction reaction on the carbon supported Pt-Pd popcorns in perchloric acid solution, it is found that compared with the commercial Pt/C catalyst the present catalysts display superior catalytic performances in aspects of catalytic activity and stability. More importantly, the Pt-Pd popcorns display minor performance degradations through prolonged potential cycling. The enhanced performances can be mainly attributed to the unique popcorn structure of the Pt-Pd components, which allows the appearance and long existence of the high active sites with more accessibility. The present work highlights the key roles of accessible high active sites in the oxygen reduction reaction, which will ultimately guide the design of highly durable Pt-Pd catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted thatmore » mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.« less

  16. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    PubMed

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  17. A Measure of the Promiscuity of Proteins and Characteristics of Residues in the Vicinity of the Catalytic Site That Regulate Promiscuity

    PubMed Central

    Chakraborty, Sandeep; Rao, Basuthkar J.

    2012-01-01

    Promiscuity, the basis for the evolution of new functions through ‘tinkering’ of residues in the vicinity of the catalytic site, is yet to be quantitatively defined. We present a computational method Promiscuity Indices Estimator (PROMISE) - based on signatures derived from the spatial and electrostatic properties of the catalytic residues, to estimate the promiscuity (PromIndex) of proteins with known active site residues and 3D structure. PromIndex reflects the number of different active site signatures that have congruent matches in close proximity of its native catalytic site, the quality of the matches and difference in the enzymatic activity. Promiscuity in proteins is observed to follow a lognormal distribution (μ = 0.28, σ = 1.1 reduced chi-square = 3.0E-5). The PROMISE predicted promiscuous functions in any protein can serve as the starting point for directed evolution experiments. PROMISE ranks carboxypeptidase A and ribonuclease A amongst the more promiscuous proteins. We have also investigated the properties of the residues in the vicinity of the catalytic site that regulates its promiscuity. Linear regression establishes a weak correlation (R2∼0.1) between certain properties of the residues (charge, polar, etc) in the neighborhood of the catalytic residues and PromIndex. A stronger relationship states that most proteins with high promiscuity have high percentages of charged and polar residues within a radius of 3 Å of the catalytic site, which is validated using one-tailed hypothesis tests (P-values∼0.05). Since it is known that these characteristics are key factors in catalysis, their relationship with the promiscuity index cross validates the methodology of PROMISE. PMID:22359655

  18. Remote site-selective C-H activation directed by a catalytic bifunctional template

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-01

    In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  19. Remote site-selective C-H activation directed by a catalytic bifunctional template.

    PubMed

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-23

    In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a 'directing' (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  20. SABER: A computational method for identifying active sites for new reactions

    PubMed Central

    Nosrati, Geoffrey R; Houk, K N

    2012-01-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were l-Ala d/l-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  1. SABER: a computational method for identifying active sites for new reactions.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. Copyright © 2012 The Protein Society.

  2. Enhancement of catalytic activity and thermostability of a thermostable cellobiohydrolase from Chaetomium thermophilum by site-directed mutagenesis.

    PubMed

    Han, Chao; Li, Weiguang; Hua, Chengyao; Sun, Fengqing; Bi, Pengsheng; Wang, Qunqing

    2018-05-20

    Enzymatic saccharification of lignocellulosic biomass is increasingly applied in agricultural and industrial applications. Nevertheless, low performance in the extreme environment severely prevents the utilization of commercial enzyme preparations. To obtain cellobiohydrolases with improved catalytic activity and thermostability, structure-based rational design was performed based on a thermostable cellobiohydrolase CtCel6 from Chaetomium thermophilum. In the present study, four conserved and noncatalytic residue substitutions were generated via site-directed mutagenesis. Mutations were heterologously expressed in yeast Pichia pastoris, purified, and ultimately assayed for enzymatic characteristics. The mutant Y119F increased the catalytic activity 1.82-, 1.65- and 1.43-fold against β-d-glucan, phosphoric acid swollen cellulose (PASC) and carboxymethylcellulose sodium (CMC-Na), respectively. In addition, S131 W effectively enhanced the enzyme's heat resistance to elevated temperatures. The half-life (t 1/2 ) of this mutant enzyme was increased 1.42- and 2.40-fold at 80 °C and 90 °C, respectively, compared to the wild-type. This study offers initial insight into the biological function of the conserved and noncatalytic residues of thermostable cellobiohydrolases and provides a valid approach to the improvement of enzyme redesign proposal. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Outstanding catalytic activity of ultra-pure platinum nanoparticles.

    PubMed

    Januszewska, Aneta; Dercz, Grzegorz; Piwowar, Justyna; Jurczakowski, Rafal; Lewera, Adam

    2013-12-09

    Small (4 nm) nanoparticles with a narrow size distribution, exceptional surface purity, and increased surface order, which exhibits itself as an increased presence of basal crystallographic planes, can be obtained without the use of any surfactant. These nanoparticles can be used in many applications in an as-received state and are threefold more active towards a model catalytic reaction (oxidation of ethylene glycol). Furthermore, the superior properties of this material are interesting not only due to the increase in their intrinsic catalytic activity, but also due to the exceptional surface purity itself. The nanoparticles can be used directly (i.e., as-received, without any cleaning steps) in biomedical applications (i.e., as more efficient drug carriers due to an increased number of adsorption sites) and in energy-harvesting/data-storage devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structural Basis for Catalytic Activation of a Serine Recombinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.

    2014-10-02

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggestingmore » roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.« less

  5. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    DOE PAGES

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; ...

    2015-03-25

    5'-Methylthioadenosine/S-adenosyl-l-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5'-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. Here, we mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation ofmore » altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. In conclusion, the overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences.« less

  6. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.

    5'-Methylthioadenosine/S-adenosyl-l-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5'-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. Here, we mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation ofmore » altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. In conclusion, the overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences.« less

  7. An Iron Reservoir to the Catalytic Metal

    PubMed Central

    Liu, Fange; Geng, Jiafeng; Gumpper, Ryan H.; Barman, Arghya; Davis, Ian; Ozarowski, Andrew; Hamelberg, Donald; Liu, Aimin

    2015-01-01

    The rubredoxin motif is present in over 74,000 protein sequences and 2,000 structures, but few have known functions. A secondary, non-catalytic, rubredoxin-like iron site is conserved in 3-hydroxyanthranilate 3,4-dioxygenase (HAO), from single cellular sources but not multicellular sources. Through the population of the two metal binding sites with various metals in bacterial HAO, the structural and functional relationship of the rubredoxin-like site was investigated using kinetic, spectroscopic, crystallographic, and computational approaches. It is shown that the first metal presented preferentially binds to the catalytic site rather than the rubredoxin-like site, which selectively binds iron when the catalytic site is occupied. Furthermore, an iron ion bound to the rubredoxin-like site is readily delivered to an empty catalytic site of metal-free HAO via an intermolecular transfer mechanism. Through the use of metal analysis and catalytic activity measurements, we show that a downstream metabolic intermediate can selectively remove the catalytic iron. As the prokaryotic HAO is often crucial for cell survival, there is a need for ensuring its activity. These results suggest that the rubredoxin-like site is a possible auxiliary iron source to the catalytic center when it is lost during catalysis in a pathway with metabolic intermediates of metal-chelating properties. A spare tire concept is proposed based on this biochemical study, and this concept opens up a potentially new functional paradigm for iron-sulfur centers in iron-dependent enzymes as transient iron binding and shuttling sites to ensure full metal loading of the catalytic site. PMID:25918158

  8. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells.

    PubMed

    Kramm, Ulrike I; Herranz, Juan; Larouche, Nicholas; Arruda, Thomas M; Lefèvre, Michel; Jaouen, Frédéric; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Mukerjee, Sanjeev; Dodelet, Jean-Pol

    2012-09-07

    Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by (57)Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH(3) at 950 °C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN(4)-like sites with their ferrous ions in a low (D1), intermediate (D2) or high (D3) spin state, and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (Fe(x)N, with x≤ 2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN(4)-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e(-) per site per s at 0.8 V vs. RHE. Moreover, all D1 sites and between 1/2 and 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials.

  9. Substituting Tyr138 in the active site loop of human phenylalanine hydroxylase affects catalysis and substrate activation.

    PubMed

    Leandro, João; Stokka, Anne J; Teigen, Knut; Andersen, Ole A; Flatmark, Torgeir

    2017-07-01

    Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l-phenylalanine (l-Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l-Phe is the key player in this transition. X-ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr 138 -loop to the active site in the presence of l-Phe. The mechanism by which the loop dynamics are coupled to substrate binding at the active site in tetrameric PAH is not fully understood. We have here conducted functional studies of four Tyr 138 point mutants. A high linear correlation ( r 2 = 0.99) was observed between their effects on the catalytic efficiency of the catalytic domain dimers and the corresponding effect on the catalytic efficiency of substrate-activated full-length tetramers. In the tetramers, a correlation ( r 2 = 0.96) was also observed between the increase in catalytic efficiency (activation) and the global conformational change (surface plasmon resonance signal response) at the same l-Phe concentration. The new data support a similar functional importance of the Tyr 138 -loop in the catalytic domain and the full-length enzyme homotetramer.

  10. Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.

    PubMed

    Tang, Lixia; Torres Pazmiño, Daniel E; Fraaije, Marco W; de Jong, René M; Dijkstra, Bauke W; Janssen, Dick B

    2005-05-03

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.

  11. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft.

    PubMed

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-10-14

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.

  12. Selenization of Cu2ZnSnS4 Enhanced the Performance of Dye-Sensitized Solar Cells: Improved Zinc-Site Catalytic Activity for I3.

    PubMed

    Wang, Xiuwen; Xie, Ying; Bateer, Buhe; Pan, Kai; Jiao, Yanqing; Xiong, Ni; Wang, Song; Fu, Honggang

    2017-11-01

    Cu 2 ZnSnS 4 (CZTS) and Cu 2 ZnSn(S,Se) 4 (CZTSSe) as promising photovoltaic materials have drawn much attention because they are environmentally benign and earth-abundant elements. In this work, the monodispersed, low-cost Cu 2 ZnSnS 4 nanocrystals with small size have been controllably synthesized via a wet chemical routine. And CZTSSe could be easily prepared after selenization of CZTS. When they are employed as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs), the power conversion efficiency (PCE) has been improved from 3.54% to 7.13% as CZTS is converted to CZTSSe, which is also compared to that of Pt (7.62%). The exact reason for the enhanced catalytic activity of I 3 - is discussed with the work function and density functional theory (DFT) when CZTSSe converted from CZTS. The results of a Kelvin probe suggest that the work function of CZTSSe (5.61 eV) is closer to that of Pt (5.65 eV) and higher than that of CZTS, which matched the redox shuttle potential better. According to the theory calculation, all the atomic and bond populations changed significantly when Se replaced partly the S on the CZTS system, especially in the Zn site. During the catalytic process as CEs, the adsorption energy obviously increased compared to those at other sites when I 3 - adsorbed on the Zn site in CZTSSe. So, Zn plays an important role for the reduction of I 3 - after CZTS is converted to CZTSSe. Based on above analysis, the reason for enhanced performance of DSSCs when CZTS converted to CZTSSe is mainly due to the enhancement of Zn-site activity. This work is beneficial for understanding the catalytic reaction mechanism of CZTS(Se) as CEs of DSSCs.

  13. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells

    PubMed Central

    Kramm, Ulrike I.; Herranz, Juan; Larouche, Nicholas; Arruda, Thomas M.; Lefèvre, Michel; Jaouen, Frédéric; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Mukerjee, Sanjeev; Dodelet, Jean-Pol

    2012-01-01

    Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by 57Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH3 at 950°C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN4-like sites with their ferrous ion in low (D1), medium (D2) or high spin state (D3), and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (FexN, with x≤2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥ 0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN4-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e− site−1 s−1 at 0.8V vs RHE. Moreover, all D1 sites and between 1/2 to 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials. PMID:22824866

  14. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    PubMed

    Marino Buslje, Cristina; Teppa, Elin; Di Doménico, Tomas; Delfino, José María; Nielsen, Morten

    2010-11-04

    Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  15. The characteristics of the (alpha V371C)3(beta R337C)3 gamma double mutant subcomplex of the TF1-ATPase indicate that the catalytic site at the alpha TP-beta TP interface with bound MgADP in crystal structures of MF1 represents a catalytic site containing inhibitory MgADP.

    PubMed

    Bandyopadhyay, Sanjay; Muneyuki, Eiro; Allison, William S

    2005-02-22

    In the MF(1) crystal structure with the MgADP-fluoroaluminate complex bound to two catalytic sites [Menz, R. I., Walker, J. E., and Leslie, A. G. W. (2001) Cell 106, 331-341], the guanidinium of betaR(337) is within 2.9 A of the alpha-oxygen of alphaS(370) and 3.7 A of a methyl group of alphaV(371) at the alpha(E)-beta(HC) interface. To examine the functional role of this contact, the (alphaV(371)C)(3)(betaR(337)C)(3)gamma subcomplex of the TF(1)-ATPase was prepared and characterized. Steady state ATPase activity of the reduced double-mutant is 30% of that of the wild type. Inactivation of the double mutant containing empty catalytic sites or MgADP bound to one catalytic site with CuCl(2) cross-linked two alpha-beta pairs, whereas a single alpha-beta pair cross-linked when at least two catalytic sites contained MgADP. The reduced double mutant hydrolyzed substoichiometric ATP 100-fold more rapidly than the enzyme containing two cross-linked alpha-beta pairs. Addition of AlCl(3) and NaF to the reduced double mutant after incubation with stoichiometric MgADP or 200 microM MgADP irreversibly inactivated the steady state ATPase activity with rate constants of 1.5 x10(-2) and 4.1 x 10(-2) min(-1), respectively. In contrast, addition of AlCl(3) and NaF to the cross-linked enzyme after incubation with stoichiometric or 200 microM MgADP irreversibly inactivated ATPase activity with a common rate constant of approximately 10(-4) min(-1). Correlation of these results with crystal structures of MF(1) suggests that the catalytic site at the alpha(TP)-beta(TP) interface is loaded first upon addition of nucleotides to nucleotide-depleted F(1)-ATPases and that the catalytic site at the alpha(TP)-beta(TP) interface with bound MgADP in crystal structures represents a catalytic site containing inhibitory MgADP.

  16. Synthesis and activity of histidine-containing catalytic peptide dendrimers.

    PubMed

    Delort, Estelle; Nguyen-Trung, Nhat-Quang; Darbre, Tamis; Reymond, Jean-Louis

    2006-06-09

    Peptide dendrimers built by iteration of the diamino acid dendron Dap-His-Ser (His = histidine, Ser = Serine, Dap = diamino propionic acid) display a strong positive dendritic effect for the catalytic hydrolysis of 8-acyloxypyrene 1,3,6-trisulfonates, which proceeds with enzyme-like kinetics in aqueous medium (Delort, E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126, 15642-3). Thirty-two mutants of the original third generation dendrimer A3 ((Ac-His-Ser)8(Dap-His-Ser)4(Dap-His-Ser)2Dap-His-Ser-NH2) were prepared by manual synthesis or by automated synthesis with use of a Chemspeed PSW1100 peptide synthesizer. Dendrimer catalysis was specific for 8-acyloxypyrene 1,3,6-trisulfonates, and there was no activity with other types of esters. While dendrimers with hydrophobic residues at the core and histidine residues at the surface only showed weak activity, exchanging serine residues in dendrimer A3 against alanine (A3A), beta-alanine (A3B), or threonine (A3C) improved catalytic efficiency. Substrate binding was correlated with the total number of histidines per dendrimer, with an average of three histidines per substrate binding site. The catalytic rate constant kcat depended on the placement of histidines within the dendrimers and the nature of the other amino acid residues. The fastest catalyst was the threonine mutant A3C ((Ac-His-Thr)8(Dap-His-Thr)4(Dap-His-Thr)2Dap-His-Thr-NH2), with kcat = 1.3 min(-1), kcat/k(uncat) = 90'000, KM = 160 microM for 8-bytyryloxypyrene 1,3,6-trisulfonate, corresponding to a rate acceleration of 18'000 per catalytic site and a 5-fold improvement over the original sequence A3.

  17. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes.

  18. Dual Active Site in the Endolytic Transglycosylase gp144 of Bacteriophage phiKZ.

    PubMed

    Chertkov, O V; Armeev, G A; Uporov, I V; Legotsky, S A; Sykilinda, N N; Shaytan, A K; Klyachko, N L; Miroshnikov, K A

    2017-01-01

    Lytic transglycosylases are abundant peptidoglycan lysing enzymes that degrade the heteropolymers of bacterial cell walls in metabolic processes or in the course of a bacteriophage infection. The conventional catalytic mechanism of transglycosylases involves only the Glu or Asp residue. Endolysin gp144 of Pseudomonas aeruginosa bacteriophage phiKZ belongs to the family of Gram-negative transglycosylases with a modular composition and C -terminal location of the catalytic domain. Glu115 of gp144 performs the predicted role of a catalytic residue. However, replacement of this residue does not completely eliminate the activity of the mutant protein. Site-directed mutagenesis has revealed the participation of Tyr197 in the catalytic mechanism, as well as the presence of a second active site involving Glu178 and Tyr147. The existence of the dual active site was supported by computer modeling and monitoring of the molecular dynamics of the changes in the conformation and surface charge distribution as a consequence of point mutations.

  19. Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.

    Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less

  20. Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene

    DOE PAGES

    Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.; ...

    2017-09-27

    Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less

  1. Comprehensive Characterization of AMP-activated Protein Kinase Catalytic Domain by Top-down Mass Spectrometry

    PubMed Central

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2015-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410

  2. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu2O/hexoctahedral Au inverse catalyst.

    PubMed

    Lee, Si Woo; Hong, Jong Wook; Lee, Hyunhwa; Wi, Dae Han; Kim, Sun Mi; Han, Sang Woo; Park, Jeong Young

    2018-06-14

    The intrinsic correlation between an enhancement of catalytic activity and the flow of hot electrons generated at metal-oxide interfaces suggests an intriguing way to control catalytic reactions and is a significant subject in heterogeneous catalysis. Here, we show surface plasmon-induced catalytic enhancement by the peculiar nanocatalyst design of hexoctahedral (HOH) Au nanocrystals (NCs) with Cu2O clusters. We found that this inverse catalyst comprising a reactive oxide for the catalytic portion and a metal as the source of electrons by localized surface plasmon resonance (localized SPR) exhibits a change in catalytic activity by direct hot electron transfer or plasmon-induced resonance energy transfer (PIRET) when exposed to light. We prepared two types of inverse catalysts, Cu2O at the vertex sites of HOH Au NCs (Cu2O/Au vertex site) and a HOH Au NC-Cu2O core-shell structure (HOH Au@Cu2O), to test the structural effect on surface plasmons. Under broadband light illumination, the Cu2O/Au vertex site catalyst showed 30-90% higher catalytic activity and the HOH Au@Cu2O catalyst showed 10-30% higher catalytic activity than when in the dark. Embedding thin SiO2 layers between the HOH Au NCs and the Cu2O verified that the dominant mechanism for the catalytic enhancement is direct hot electron transfer from the HOH Au to the Cu2O. Finite-difference time domain calculations show that a much stronger electric field was formed on the vertex sites after growing the Cu2O on the HOH Au NCs. These results imply that the catalytic activity is enhanced when hot electrons, created from photon absorption on the HOH Au metal and amplified by the presence of surface plasmons, are transferred to the reactive Cu2O.

  3. Modeling the heterogeneous catalytic activity of a single nanoparticle using a first passage time distribution formalism

    NASA Astrophysics Data System (ADS)

    Das, Anusheela; Chaudhury, Srabanti

    2015-11-01

    Metal nanoparticles are heterogeneous catalysts and have a multitude of non-equivalent, catalytic sites on the nanoparticle surface. The product dissociation step in such reaction schemes can follow multiple pathways. Proposed here for the first time is a completely analytical theoretical framework, based on the first passage time distribution, that incorporates the effect of heterogeneity in nanoparticle catalysis explicitly by considering multiple, non-equivalent catalytic sites on the nanoparticle surface. Our results show that in nanoparticle catalysis, the effect of dynamic disorder is manifested even at limiting substrate concentrations in contrast to an enzyme that has only one well-defined active site.

  4. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.

    PubMed

    Park, Kyung-Won; Sung, Yung-Eun

    2005-07-21

    Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state.

  5. Catalytic activity of certain antibodies as a potential tool for drug synthesis and for directed prodrug therapies.

    PubMed

    Wójcik, T; Kieć-Kononowicz, K

    2008-01-01

    Catalytic activity of certain antibodies was proposed by Linus Pauling for the very first time more than six decades ago. Since then few examples of catalytic antibodies (abzymes) were found in human organism. From late 80's many synthetic abzymes were obtained after immunization by Transition State Analogs (TSA). Another approach is based on functional mimicry of antibody to an active site of an enzyme. Detection of an abzymatic activity requires special immunoassays. This unique strategy can be employed for new methods of drug synthesis, as well as for in vivo therapies. Catalytic antibodies seem to be a promising tool for therapeutic purposes, because of their specifity and stereoselectivity.

  6. Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant.

    PubMed

    Kamal, Md Zahid; Mohammad, Tabrez Anwar Shamim; Krishnamoorthy, G; Rao, Nalam Madhusudhana

    2012-01-01

    Relationship between stability and activity of enzymes is maintained by underlying conformational flexibility. In thermophilic enzymes, a decrease in flexibility causes low enzyme activity while in less stable proteins such as mesophiles and psychrophiles, an increase in flexibility is associated with enhanced enzyme activity. Recently, we identified a mutant of a lipase whose stability and activity were enhanced simultaneously. In this work, we probed the conformational dynamics of the mutant and the wild type lipase, particularly flexibility of their active site using molecular dynamic simulations and time-resolved fluorescence techniques. In contrast to the earlier observations, our data show that active site of the mutant is more rigid than wild type enzyme. Further investigation suggests that this lipase needs minimal reorganization/flexibility of active site residues during its catalytic cycle. Molecular dynamic simulations suggest that catalytically competent active site geometry of the mutant is relatively more preserved than wild type lipase, which might have led to its higher enzyme activity. Our study implies that widely accepted positive correlation between conformation flexibility and enzyme activity need not be stringent and draws attention to the possibility that high enzyme activity can still be accomplished in a rigid active site and stable protein structures. This finding has a significant implication towards better understanding of involvement of dynamic motions in enzyme catalysis and enzyme engineering through mutations in active site.

  7. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  8. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  9. Design of activated serine-containing catalytic triads with atomic level accuracy

    PubMed Central

    Rajagopalan, Sridharan; Wang, Chu; Yu, Kai; Kuzin, Alexandre P.; Richter, Florian; Lew, Scott; Miklos, Aleksandr E.; Matthews, Megan L.; Seetharaman, Jayaraman; Su, Min; Hunt, John. F.; Cravatt, Benjamin F.; Baker, David

    2014-01-01

    A challenge in the computational design of enzymes is that multiple properties must be simultaneously optimized -- substrate-binding, transition state stabilization, and product release -- and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads, and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate-reactivity. Following optimization by yeast-display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest the designs could provide the basis for a new class of organophosphate captures agents. PMID:24705591

  10. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.

    PubMed

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with high catalytic

  11. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model

    PubMed Central

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with high catalytic

  12. Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics.

    PubMed

    Sripathi, Kamali N; Banáš, Pavel; Réblová, Kamila; Šponer, Jiří; Otyepka, Michal; Walter, Nils G

    2015-02-28

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.

  13. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  14. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    PubMed

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  15. Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase.

    PubMed

    Wang, Liang; Wang, Hong; Rice, Andrew E; Zhang, Wei; Li, Xiaokun; Chen, Mingshu; Meng, Xiangju; Lewis, James P; Xiao, Feng-Shou

    2015-06-18

    A synergistic effect between individual components is crucial for increasing the activity of metal/metal oxide catalysts. The greatest challenge is how to control the synergistic effect to obtain enhanced catalytic performance. Through density functional theory calculations of model Au/TiO2 catalysts, it is suggested that there is strong interaction between Au nanoparticles and Ti species at the edge/corner sites of anatase, which is favorable for the formation of stable oxygen vacancies. Motivated by this theoretical analysis, we have rationally prepared Au nanoparticles attached to edge/corner sites of anatase support (Au/TiO2-EC), confirmed by their HR-TEM images. As expected, this strong interaction is well characterized by Raman, UV-visible, and XPS techniques. Very interestingly, compared with conventional Au catalysts, Au/TiO2-EC exhibits superior catalytic activity in the oxidations using O2. Our approach to controlling Au nanoparticle positioning on anatase to obtain enhanced catalytic activity offers an efficient strategy for developing more novel supported metal catalysts.

  16. Structural Basis for the Catalytic Activity of Human SER/THR Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E.

    2004-01-01

    Serinekhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth. Here we report the 1.6 Angstrom resolution crystal structure of PP5 catalytic domain with metal and phosphate ions in the active site. The structure reveals a mechanism for PPS-mediated catalysis that requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1),-M(sub 2)-His(sup 427)-W(sup 2)-His(sup 304)-Asp(sup 274) catalytic motif, and provides a structural basis for the exceptional catalytic proficiency of protein phosphatases placing them among the most powerful catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of PP5 should aid development of specific inhibitors.

  17. ATP binding at noncatalytic sites of soluble chloroplast F1-ATPase is required for expression of the enzyme activity.

    PubMed

    Milgrom, Y M; Ehler, L L; Boyer, P D

    1990-11-05

    The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.

  18. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes.

  19. Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer.

    PubMed

    Sun, Qi; Aguila, Briana; Perman, Jason; Nguyen, Nicholas; Ma, Shengqian

    2016-12-07

    The combination of two or more reactive centers working in concert on a substrate to facilitate the reaction is now considered state of the art in catalysis, yet there still remains a tremendous challenge. Few heterogeneous systems of this sort have been exploited, as the active sites spatially separated within the rigid framework are usually difficult to cooperate. It is now shown that this roadblock can be surpassed. The underlying principle of the strategy presented here is the integration of catalytic components with excellent flexibility and porous heterogeneous catalysts, as demonstrated by the placement of linear ionic polymers in close proximity to surface Lewis acid active sites anchored on the walls of a covalent organic framework (COF). Using the cycloaddition of the epoxides and CO 2 as a model reaction, dramatic activity improvements have been achieved for the composite catalysts in relation to the individual catalytic component. Furthermore, they also clearly outperform the benchmark catalytic systems formed by the combination of the molecular organocatalysts and heterogeneous Lewis acid catalysts, while affording additional recyclability. The extraordinary flexibility and enriched concentration of the catalytically active moieties on linear polymers facilitate the concerted catalysis, thus leading to superior catalytic performance. This work therefore uncovers an entirely new strategy for designing bifunctional catalysts with double-activation behavior and opens a new avenue in the design of multicapable systems that mimic biocatalysis.

  20. The C terminus of the catalytic domain of type A botulinum neurotoxin may facilitate product release from the active site.

    PubMed

    Mizanur, Rahman M; Frasca, Verna; Swaminathan, Subramanyam; Bavari, Sina; Webb, Robert; Smith, Leonard A; Ahmed, S Ashraf

    2013-08-16

    Botulinum neurotoxins are the most toxic of all compounds. The toxicity is related to a poor zinc endopeptidase activity located in a 50-kDa domain known as light chain (Lc) of the toxin. The C-terminal tail of Lc is not visible in any of the currently available x-ray structures, and it has no known function but undergoes autocatalytic truncations during purification and storage. By synthesizing C-terminal peptides of various lengths, in this study, we have shown that these peptides competitively inhibit the normal catalytic activity of Lc of serotype A (LcA) and have defined the length of the mature LcA to consist of the first 444 residues. Two catalytically inactive mutants also inhibited LcA activity. Our results suggested that the C terminus of LcA might interact at or near its own active site. By using synthetic C-terminal peptides from LcB, LcC1, LcD, LcE, and LcF and their respective substrate peptides, we have shown that the inhibition of activity is specific only for LcA. Although a potent inhibitor with a Ki of 4.5 μm, the largest of our LcA C-terminal peptides stimulated LcA activity when added at near-stoichiometric concentration to three versions of LcA differing in their C-terminal lengths. The result suggested a product removal role of the LcA C terminus. This suggestion is supported by a weak but specific interaction determined by isothermal titration calorimetry between an LcA C-terminal peptide and N-terminal product from a peptide substrate of LcA. Our results also underscore the importance of using a mature LcA as an inhibitor screening target.

  1. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide.

    PubMed

    Zhang, Chunqiu; Shafi, Ramim; Lampel, Ayala; MacPherson, Douglas; Pappas, Charalampos G; Narang, Vishal; Wang, Tong; Maldarelli, Charles; Ulijn, Rein V

    2017-11-13

    The reversible regulation of catalytic activity is a feature found in natural enzymes which is not commonly observed in artificial catalytic systems. Here, we fabricate an artificial hydrolase with pH-switchable activity, achieved by introducing a catalytic histidine residue at the terminus of a pH-responsive peptide. The peptide exhibits a conformational transition from random coil to β-sheet by changing the pH from acidic to alkaline. The β-sheet self-assembles to form long fibrils with the hydrophobic edge and histidine residues extending in an ordered array as the catalytic microenvironment, which shows significant esterase activity. Catalytic activity can be reversible switched by pH-induced assembly/disassembly of the fibrils into random coils. At higher concentrations, the peptide forms a hydrogel which is also catalytically active and maintains its reversible (de-)activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.

    PubMed

    Hwa, Kuo Yuan; Subramani, Boopathi; Shen, San-Tai; Lee, Yu-May

    2015-09-01

    β-Glycosidase from Thermococcus kodakarensis KOD1 is a hyperthermophilic enzyme with β-glucosidase, β-mannosidase, β-fucosidase and β-galactosidase activities. Sequence alignment with other β-glycosidases from hyperthermophilic archaea showed two unique active site residues, Gln77 and Asp206. These residues were represented by Arg and Asp in all other hyperthermophilic β-glycosidases. The two active site residues were mutated to Q77R, D206N and D206Q, to study the role of these unique active site residues in catalytic activity and to alter the substrate specificity to enhance its β-glucosidase activity. The secondary structure analysis of all the mutants showed no change in their structure and exhibited in similar conformation like wild-type as they all existed in dimer form in an SDS-PAGE under non-reducing conditions. Q77R and D206Q affected the catalytic activity of the enzyme whereas the D206N altered the catalytic turn-over rate for glucosidase and mannosidase activities with fucosidase activity remain unchanged. Gln77 is reported to interact with catalytic nucleophile and Asp206 with axial C2-hydroxyl group of substrates. Q77R might have made some changes in three dimensional structure due to its electrostatic effect and lost its catalytic activity. The extended side chains of D206Q is predicted to affect the substrate binding during catalysis. The high-catalytic turn-over rate by D206N for β-glucosidase activity makes it a useful enzyme in cellulose degradation at high temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection.

    PubMed

    Gao, Yu-Fei; Li, Bi-Qing; Cai, Yu-Dong; Feng, Kai-Yan; Li, Zhan-Dong; Jiang, Yang

    2013-01-27

    Identification of catalytic residues plays a key role in understanding how enzymes work. Although numerous computational methods have been developed to predict catalytic residues and active sites, the prediction accuracy remains relatively low with high false positives. In this work, we developed a novel predictor based on the Random Forest algorithm (RF) aided by the maximum relevance minimum redundancy (mRMR) method and incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility to predict active sites of enzymes and achieved an overall accuracy of 0.885687 and MCC of 0.689226 on an independent test dataset. Feature analysis showed that every category of the features except disorder contributed to the identification of active sites. It was also shown via the site-specific feature analysis that the features derived from the active site itself contributed most to the active site determination. Our prediction method may become a useful tool for identifying the active sites and the key features identified by the paper may provide valuable insights into the mechanism of catalysis.

  4. The identity of the active site of oxalate decarboxylase and the importance of the stability of active-site lid conformations1

    PubMed Central

    Just, Victoria J.; Burrell, Matthew R.; Bowater, Laura; McRobbie, Iain; Stevenson, Clare E. M.; Lawson, David M.; Bornemann, Stephen

    2007-01-01

    Oxalate decarboxylase (EC 4.1.1.2) catalyses the conversion of oxalate into carbon dioxide and formate. It requires manganese and, uniquely, dioxygen for catalysis. It forms a homohexamer and each subunit contains two similar, but distinct, manganese sites termed sites 1 and 2. There is kinetic evidence that only site 1 is catalytically active and that site 2 is purely structural. However, the kinetics of enzymes with mutations in site 2 are often ambiguous and all mutant kinetics have been interpreted without structural information. Nine new site-directed mutants have been generated and four mutant crystal structures have now been solved. Most mutants targeted (i) the flexibility (T165P), (ii) favoured conformation (S161A, S164A, D297A or H299A) or (iii) presence (Δ162–163 or Δ162–164) of a lid associated with site 1. The kinetics of these mutants were consistent with only site 1 being catalytically active. This was particularly striking with D297A and H299A because they disrupted hydrogen bonds between the lid and a neighbouring subunit only when in the open conformation and were distant from site 2. These observations also provided the first evidence that the flexibility and stability of lid conformations are important in catalysis. The deletion of the lid to mimic the plant oxalate oxidase led to a loss of decarboxylase activity, but only a slight elevation in the oxalate oxidase side reaction, implying other changes are required to afford a reaction specificity switch. The four mutant crystal structures (R92A, E162A, Δ162–163 and S161A) strongly support the hypothesis that site 2 is purely structural. PMID:17680775

  5. Catalytically active nanorotor reversibly self-assembled by chemical signaling within an eight-component network.

    PubMed

    Goswami, Abir; Pramanik, Susnata; Schmittel, Michael

    2018-04-17

    A catalytically active three-component nanorotor is reversibly self-assembled and disassembled by remote control. When zinc(ii) ions (2 equiv.) are added as an external chemical trigger to the mixture of transmitter [Cu(1)]+ and pre-rotor assembly [(S)·(R)], two equiv. of copper(i) ions translocate from [Cu(1)]+ to the two phenanthroline sites of [(S)·(R)]. As a result, [Zn(1)]2+ forms along with the three-component assembly [Cu2(S)(R)]2+, which is both a nanorotor (k298 = 46 kHz, ΔH‡ = 49.1 ± 0.4 kJ mol-1, ΔS‡ = 9.5 ± 1.7 J mol-1 K-1) and a catalyst for click reactions (catalysis ON: A + B→AB). Removal of zinc from the mixture reverts the translocation sequence and thus commands disassembly of the catalytically active rotor (catalysis OFF). The ON/OFF catalytic cycle was run twice in situ in the full network.

  6. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  7. Effects of copper-precursors on the catalytic activity of Cu/graphene catalysts for the selective catalytic oxidation of ammonia

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Tang, Xiaolong; Yi, Honghong; Yu, Qingjun; Gao, Fengyu; Zhang, Runcao; Li, Chenlu; Chu, Chao

    2017-08-01

    Different copper-precursors were used to prepare Cu/graphene catalysts by an impregnation method. XRD, Raman spectra, TEM, BET, XPS, H2-TPR, NH3-TPD, DRIFTS and catalytic activity test were used to characterize and study the effect of precursors on the catalytic activity of Cu/graphene catalysts for NH3-SCO reaction. The large specific surface area of Cu/graphene catalysts and high dispersion of the metal particles on the graphene caused the well catalytic activity of NH3-SCO reaction. Compared to Cu/GE(AC), Cu/GE(N) showed better catalytic performance, and the complete NH3 removal efficiency was obtained at 250 °C with N2 selectivity of 85%. The copper-precursors had influence on the distribution of surface Cu species and further affected the catalytic activity of Cu/GE catalysts. The more amount of surface Cu species and highly dispersed CuO particles on the graphene surface formed by using copper nitrate as precursor could significantly improve the reducibility of catalysts and enhance NH3 adsorption, thereby improving the catalytic activity of Cu/graphene catalyst.

  8. Deletion of loop fragment adjacent to active site diminishes the stability and activity of exo-inulinase.

    PubMed

    Arjomand, Maryam Rezaei; Habibi-Rezaei, Mehran; Ahmadian, Gholamreza; Hassanzadeh, Malihe; Karkhane, Ali Asghar; Asadifar, Mandana; Amanlou, Massoud

    2016-11-01

    Inulinases are classified as hydrolases and widely used in the food and medical industries. Here, we report the deletion of a six-membered adjacent active site loop fragment ( 74 YGSDVT 79 sequence) from third Ω-loop of the exo-inulinase containing aspartate residue from Aspergillus niger to study its structural and functional importance. Site-directed mutagenesis was used to create the mutant of the exo-inulinase (Δ6SL). To investigate the stability of the region spanning this loop, MD simulations were performed 80ns for 20-85 residues. Molecular docking was performed to compare the interactions in the active sites of enzymes with fructose as a ligand. Accordingly, the functional thermostability of the exo-inulinase was significantly decreased upon loop fragment deletion. Evaluation of the kinetics parameters (V max , K m , k cat and, k cat /K m ) and activation energy (E a ) of the catalysis of enzymes indicated the importance of the deleted sequence on the catalytic performance of the enzyme. In conclusion, six-membered adjacent active site loop fragment not only plays a crucial role in the stability of the enzyme, but also it involves in the enzyme catalysis through lowering the activation energy of the catalysis and effective improving the catalytic performance. Copyright © 2016. Published by Elsevier B.V.

  9. Comparative Bioinformatic Analysis of Active Site Structures in Evolutionarily Remote Homologues of α,β-Hydrolase Superfamily Enzymes.

    PubMed

    Suplatov, D A; Arzhanik, V K; Svedas, V K

    2011-01-01

    Comparative bioinformatic analysis is the cornerstone of the study of enzymes' structure-function relationship. However, numerous enzymes that derive from a common ancestor and have undergone substantial functional alterations during natural selection appear not to have a sequence similarity acceptable for a statistically reliable comparative analysis. At the same time, their active site structures, in general, can be conserved, while other parts may largely differ. Therefore, it sounds both plausible and appealing to implement a comparative analysis of the most functionally important structural elements - the active site structures; that is, the amino acid residues involved in substrate binding and the catalytic mechanism. A computer algorithm has been developed to create a library of enzyme active site structures based on the use of the PDB database, together with programs of structural analysis and identification of functionally important amino acid residues and cavities in the enzyme structure. The proposed methodology has been used to compare some α,β-hydrolase superfamily enzymes. The insight has revealed a high structural similarity of catalytic site areas, including the conservative organization of a catalytic triad and oxyanion hole residues, despite the wide functional diversity among the remote homologues compared. The methodology can be used to compare the structural organization of the catalytic and substrate binding sites of various classes of enzymes, as well as study enzymes' evolution and to create of a databank of enzyme active site structures.

  10. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA

    NASA Technical Reports Server (NTRS)

    Opitz, J. G.; Ciglic, M. I.; Haugg, M.; Trautwein-Fritz, K.; Raillard, S. A.; Jermann, T. M.; Benner, S. A.

    1998-01-01

    Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic activity. These experiments have been guided in part by experimental reconstructions of ancestral RNases from extinct organisms that were intermediates in the evolution of the RNase superfamily. It is shown that the enhanced interactions between bovine seminal RNase and double-stranded nucleic acid do not arise from the increased number of basic residues carried by the seminal enzyme. Rather, a combination of a dimeric structure and the introduction of two glycine residues at positions 38 and 111 on the periphery of the active site confers the full catalytic activity of bovine seminal RNase against duplex RNA. A structural model is presented to explain these data, the use of evolutionary reconstructions to guide protein engineering experiments is discussed, and a new variant of RNase A, A(Q28L K31C S32C D38G E111G), which contains all of the elements identified in these experiments as being important for duplex activity, is prepared. This is the most powerful catalyst within this subfamily yet observed, some 46-fold more active against duplex RNA than RNase A.

  11. Evolution of a designed retro-aldolase leads to complete active site remodeling

    PubMed Central

    Giger, Lars; Caner, Sami; Obexer, Richard; Kast, Peter; Baker, David; Ban, Nenad; Hilvert, Donald

    2013-01-01

    Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that dramatic molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400 fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate, and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes. PMID:23748672

  12. Catalytic Activities Of [GADV]-Peptides

    NASA Astrophysics Data System (ADS)

    Oba, Takae; Fukushima, Jun; Maruyama, Masako; Iwamoto, Ryoko; Ikehara, Kenji

    2005-10-01

    We have previously postulated a novel hypothesis for the origin of life, assuming that life on the earth originated from “[GADV]-protein world”, not from the “RNA world” (see Ikehara's review, 2002). The [GADV]-protein world is constituted from peptides and proteins with random sequences of four amino acids (glycine [G], alanine [A], aspartic acid [D] and valine [V]), which accumulated by pseudo-replication of the [GADV]-proteins. To obtain evidence for the hypothesis, we produced [GADV]-peptides by repeated heat-drying of the amino acids for 30 cycles ([GADV]-P30) and examined whether the peptides have some catalytic activities or not. From the results, it was found that the [GADV]-P30 can hydrolyze several kinds of chemical bonds in molecules, such as umbelliferyl-β-D-galactoside, glycine-p-nitroanilide and bovine serum albumin. This suggests that [GADV]-P30 could play an important role in the accumulation of [GADV]-proteins through pseudo-replication, leading to the emergence of life. We further show that [GADV]-octapaptides with random sequences, but containing no cyclic compounds as diketepiperazines, have catalytic activity, hydrolyzing peptide bonds in a natural protein, bovine serum albumin. The catalytic activity of the octapeptides was much higher than the [GADV]-P30 produced through repeated heat-drying treatments. These results also support the [GADV]-protein-world hypothesis of the origin of life (see Ikehara's review, 2002). Possible steps for the emergence of life on the primitive earth are presented.

  13. The role of His-83 of yeast apurinic/apyrimidinic endonuclease Apn1 in catalytic incision of abasic sites in DNA.

    PubMed

    Dyakonova, Elena S; Koval, Vladimir V; Lomzov, Alexander A; Ishchenko, Alexander A; Fedorova, Olga S

    2015-06-01

    The apurinic/apyrimidinic (AP) endonuclease Apn1 from Saccharomyces cerevisiae is a key enzyme involved in the base excision repair (BER) at the cleavage stage of abasic sites (AP sites) in DNA. The crystal structure of Apn1 from S. cerevisiae is unresolved. Based on its high amino acid homology to Escherichia coli Endo IV, His-83 is believed to coordinate one of three Zn2+ ions in Apn1's active site similar to His-69 in Endo IV. Substituting His-83 with Ala is proposed to decrease the AP endonuclease activity of Apn1 owing to weak coordination of Zn2+ ions involved in enzymatic catalysis. The kinetics of recognition, binding, and incision of DNA substrates with the H83A Apn1 mutant was investigated. The stopped-flow method detecting fluorescence intensity changes of 2-aminopurine (2-aPu) was used to monitor the conformational dynamics of DNA at pre-steady-state conditions. We found substituting His-83 with Ala influenced catalytic complex formation and further incision of the damaged DNA strand. The H83A Apn1 catalysis depends not only on the location of the mismatch relative to the abasic site in DNA, but also on the nature of damage. We consider His-83 properly coordinates the active site Zn2+ ion playing a crucial role in catalytic incision stage. Our data prove suppressed enzymatic activity of H83A Apn1 results from the reduced number of active site Zn2+ ions. Our study provides insights into mechanistic specialty of AP site repair by yeast AP endonuclease Apn1 of Endo IV family, which members are not found in mammals, but are present in many microorganisms. The results will provide useful guidelines for design of new anti-fungal and anti-malarial agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Splitting of the O–O bond at the heme-copper catalytic site of respiratory oxidases

    PubMed Central

    Poiana, Federica; von Ballmoos, Christoph; Gonska, Nathalie; Blomberg, Margareta R. A.; Ädelroth, Pia; Brzezinski, Peter

    2017-01-01

    Heme-copper oxidases catalyze the four-electron reduction of O2 to H2O at a catalytic site that is composed of a heme group, a copper ion (CuB), and a tyrosine residue. Results from earlier experimental studies have shown that the O–O bond is cleaved simultaneously with electron transfer from a low-spin heme (heme a/b), forming a ferryl state (PR; Fe4+=O2−, CuB2+–OH−). We show that with the Thermus thermophilus ba3 oxidase, at low temperature (10°C, pH 7), electron transfer from the low-spin heme b to the catalytic site is faster by a factor of ~10 (τ ≅ 11 μs) than the formation of the PR ferryl (τ ≅110 μs), which indicates that O2 is reduced before the splitting of the O–O bond. Application of density functional theory indicates that the electron acceptor at the catalytic site is a high-energy peroxy state [Fe3+–O−–O−(H+)], which is formed before the PR ferryl. The rates of heme b oxidation and PR ferryl formation were more similar at pH 10, indicating that the formation of the high-energy peroxy state involves proton transfer within the catalytic site, consistent with theory. The combined experimental and theoretical data suggest a general mechanism for O2 reduction by heme-copper oxidases. PMID:28630929

  15. Competitive Inhibition Mechanism of Acetylcholinesterase without Catalytic Active Site Interaction: Study on Functionalized C60 Nanoparticles via in Vitro and in Silico Assays.

    PubMed

    Liu, Yanyan; Yan, Bing; Winkler, David A; Fu, Jianjie; Zhang, Aiqian

    2017-06-07

    Acetylcholinesterase (AChE) activity regulation by chemical agents or, potentially, nanomaterials is important for both toxicology and pharmacology. Competitive inhibition via direct catalytic active sites (CAS) binding or noncompetitive inhibition through interference with substrate and product entering and exiting has been recognized previously as an AChE-inhibition mechanism for bespoke nanomaterials. The competitive inhibition by peripheral anionic site (PAS) interaction without CAS binding remains unexplored. Here, we proposed and verified the occurrence of a presumed competitive inhibition of AChE without CAS binding for hydrophobically functionalized C 60 nanoparticles (NPs) by employing both experimental and computational methods. The kinetic inhibition analysis distinguished six competitive inhibitors, probably targeting the PAS, from the pristine and hydrophilically modified C 60 NPs. A simple quantitative nanostructure-activity relationship (QNAR) model relating the pocket accessible length of substituent to inhibition capacity was then established to reveal how the geometry of the surface group decides the NP difference in AChE inhibition. Molecular docking identified the PAS as the potential binding site interacting with the NPs via a T-shaped plug-in mode. Specifically, the fullerene core covered the enzyme gorge as a lid through π-π stacking with Tyr72 and Trp286 in the PAS, while the hydrophobic ligands on the fullerene surface inserted into the AChE active site to provide further stability for the complexes. The modeling predicted that inhibition would be severely compromised by Tyr72 and Trp286 deletions, and the subsequent site-directed mutagenesis experiments proved this prediction. Our results demonstrate AChE competitive inhibition of NPs without CAS participation to gain further understanding of both the neurotoxicity and the curative effect of NPs.

  16. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    PubMed Central

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  17. CASPASE-9 CARD:CORE DOMAIN INTERACTIONS REQUIRE A PROPERLY-FORMED ACTIVE SITE

    PubMed Central

    Huber, Kristen L.; Serrano, Banyuhay P.; Hardy, Jeanne A.

    2018-01-01

    Caspase-9 is a critical factor in the initiation of apoptosis, and as a result is tightly regulated by a number of mechanisms. Caspase-9 contains a Caspase Activation and Recruitment Domain (CARD), which enables caspase-9 to form a tight interaction with the apoptosome, a heptameric activating platform. The caspase-9 CARD has been thought to be principally involved in recruitment to the apoptosome, but its roles outside this interaction have yet to be uncovered. In this work we show that the CARD is involved in physical interactions with the catalytic core of caspase-9 in the absence of the apoptosome; this interaction requires a properly formed caspase-9 active site. The active sites of caspases are composed of four extremely mobile loops. When the active-site loops are not properly ordered, the CARD and core domains of caspase-9 do not interact and behave independently, like loosely tethered beads. When the active-site loop bundle is properly ordered, the CARD domain interacts with the catalytic core, forming a single folding unit. Together these findings provide mechanistic insight into a new level of caspase-9 regulation, prompting speculation that the CARD may also play a role in the recruitment or recognition of substrate. PMID:29500231

  18. Glycosyltransfer in mutants of putative catalytic residue Glu303 of the human ABO(H) A and B blood group glycosyltransferases GTA and GTB proceeds through a labile active site.

    PubMed

    Blackler, Ryan J; Gagnon, Susannah M L; Polakowski, Robert; Rose, Natisha L; Zheng, Ruixiang B; Letts, James A; Johal, Asha R; Schuman, Brock; Borisova, Svetlana N; Palcic, Monica M; Evans, Stephen V

    2017-04-01

    The homologous glycosyltransferases α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an SNi-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type. High-resolution single crystal X-ray diffraction studies reveal, surprisingly, that the mutated Cys, Asp and Gln functional groups are no more than 0.8 Å further from the anomeric carbon of donor substrate compared to wild type. However, complicating the analysis is the observation that Glu303 itself plays a critical role in maintaining the stability of a strained "double-turn" in the active site through several hydrogen bonds, and any mutation other than E303Q leads to significantly higher thermal motion or even disorder in the substrate recognition pockets. Thus, there is a remarkable juxtaposition of the mutants E303C and E303D, which retain significant activity despite disrupted active site architecture, with GTB/E303Q, which maintains active site architecture but exhibits zero activity. These findings indicate that nucleophilicity at position 303 is more catalytically valuable than active site stability and highlight the mechanistic elasticity of these enzymes. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Catalytic site of human protein-glucosylgalactosylhydroxylysine glucosidase: Three crucial carboxyl residues were determined by cloning and site-directed mutagenesis.

    PubMed

    Hamazaki, Hideaki; Hamazaki, Michiko Horikawa

    2016-01-15

    Protein-glucosylgalactosylhydroxylysine glucosidase (PGGHG; EC3.2.1.107) cleaves glucose from disaccharide unit (Glc-α1,2-Gal) linked to hydroxylysine residues of collagen. In the present paper we first show that PGGHG is the product of ATHL1 gene as follows. (1) PGGHG was purified from chick embryos and digested with trypsin. LC-MS/MS analysis suggested the tryptic-peptides were from the ATHL1 gene product. (2) Chick embryo ATHL1 cDNA was cloned to a cloning and expression vector and two plasmid clones with different ATHL1 CDS insert were obtained. (3) Each plasmid DNA was transformed into Escherichia coli cells for expression and two isoforms of chicken PGGHG were obtained. (4) Both isoforms effectively released glucose from type IV collagen. Next, we searched for carboxyl residues crucial for catalytic activity as follows; human ATHL1 cDNA was cloned into a cloning and expression vector and 18 mutants were obtained by site-directed mutagenesis for 15 carboxyl residues conserved in ATHL1 of jawed vertebrates. The expression analysis indicated that substitutions of Asp301, Glu430 and Glu574 with sterically conservative (D301N, E430Q, E574Q) or functionally conservative (D301E, E430D, E574D) residues led to the complete elimination of enzyme activity. These findings lead us to the conclusion that PGGHG is encoded by ATHL1 and three carboxyl residues (corresponding to Asp301, Glu430 and Glu574 of human PGGHG) might be involved in the catalytic site of PGGHG. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Asymmetric mutations in the tetrameric R67 dihydrofolate reductase reveal high tolerance to active-site substitutions.

    PubMed

    Ebert, Maximilian C C J C; Morley, Krista L; Volpato, Jordan P; Schmitzer, Andreea R; Pelletier, Joelle N

    2015-04-01

    Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such "half-native" tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation. © 2014 The Protein Society.

  1. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (~5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  2. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  3. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  4. Advantages of a distant cellulase catalytic base.

    PubMed

    Burgin, Tucker; Ståhlberg, Jerry; Mayes, Heather B

    2018-03-30

    The inverting glycoside hydrolase Trichoderma reesei ( Hypocrea jecorina ) Cel6A is a promising candidate for protein engineering for more economical production of biofuels. Until recently, its catalytic mechanism had been uncertain: The best candidate residue to serve as a catalytic base, Asp-175, is farther from the glycosidic cleavage site than in other glycoside hydrolase enzymes. Recent unbiased transition path sampling simulations revealed the hydrolytic mechanism for this more distant base, employing a water wire; however, it is not clear why the enzyme employs a more distant catalytic base, a highly conserved feature among homologs across different kingdoms. In this work, we describe molecular dynamics simulations designed to uncover how a base with a longer side chain, as in a D175E mutant, affects procession and active site alignment in the Michaelis complex. We show that the hydrogen bond network is tuned to the shorter aspartate side chain, and that a longer glutamate side chain inhibits procession as well as being less likely to adopt a catalytically productive conformation. Furthermore, we draw comparisons between the active site in Trichoderma reesei Cel6A and another inverting, processive cellulase to deduce the contribution of the water wire to the overall enzyme function, revealing that the more distant catalytic base enhances product release. Our results can inform efforts in the study and design of enzymes by demonstrating how counterintuitive sacrifices in chemical reactivity can have worthwhile benefits for other steps in the catalytic cycle. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crichlow, G.; Lubetsky, J; Leng, L

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic datamore » indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.« less

  6. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.

  7. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-typemore » enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.« less

  8. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases.

    PubMed

    Dutta, Saheb; Kundu, Soumya; Saha, Amrita; Nandi, Nilashis

    2018-03-01

    Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri ( mk SerRS) and histidyl tRNA synthetases from Thermus thermophilus ( tt HisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.

  9. Enhancement in the catalytic activity of Pd/USY in the heck reaction induced by H2 bubbling.

    PubMed

    Okumura, Kazu; Tomiyama, Takuya; Moriyama, Sayaka; Nakamichi, Ayaka; Niwa, Miki

    2010-12-24

    Pd was loaded on ultra stable Y (USY) zeolites prepared by steaming NH(4)-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H₂ bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc)₂. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H₂O gave the highest activity (TOF = 61,000 h⁻¹), which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OH(strong)) generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  10. Active-site protein dynamics and solvent accessibility in native Achromobacter cycloclastes copper nitrite reductase.

    PubMed

    Sen, Kakali; Horrell, Sam; Kekilli, Demet; Yong, Chin W; Keal, Thomas W; Atakisi, Hakan; Moreau, David W; Thorne, Robert E; Hough, Michael A; Strange, Richard W

    2017-07-01

    Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (Asp CAT and His CAT ) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the Asp CAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site 'capping residue' (Ile CAT ), a determinant of ligand binding, are influenced both by temperature and by the protonation state of Asp CAT . A previously unobserved conformation of Ile CAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.

  11. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  12. Amine binding and oxidation at the catalytic site for photosynthetic water oxidation

    PubMed Central

    Ouellette, Anthony J. A.; Anderson, Lorraine B.; Barry, Bridgette A.

    1998-01-01

    Photosynthetic water oxidation occurs at the Mn-containing catalytic site of photosystem II (PSII). By the use of 14C-labeled amines and SDS-denaturing PAGE, covalent adducts derived from primary amines and the PSII subunits, CP47, D2/D1, and the Mn-stabilizing protein, can be observed. When PSII contains the 18- and 24-kDa extrinsic proteins, which restrict access to the active site, no 14C labeling is obtained. NaCl, but not Na2SO4, competes with 14C labeling in Mn-containing PSII preparations, and the concentration dependence of this competition parallels the activation of oxygen evolution. Formation of 14C-labeled adducts is observed in the presence or in the absence of a functional manganese cluster. However, no significant Cl− effect on 14C labeling is observed in the absence of the Mn cluster. Isolation and quantitation of the 14C-labeled aldehyde product, produced from [14C]benzylamine, gives yields of 1.8 ± 0.3 mol/mol PSII and 2.9 ± 0.2 mol/mol in Mn-containing and Mn-depleted PSII, respectively. The corresponding specific activities are 0.40 ± 0.07 μmol(μmol PSII-hr)−1 and 0.64 ± 0.04 μmol(μmol PSII-hr)−1. Cl− suppresses the production of [14C]benzaldehyde in Mn-containing PSII, but does not suppress the production in Mn-depleted preparations. Control experiments show that these oxidation reactions do not involve the redox-active tyrosines, D and Z. Our results suggest the presence of one or more activated carbonyl groups in protein subunits that form the active site of PSII. PMID:9482863

  13. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanismmore » was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.« less

  14. A Redox 2-Cys Mechanism Regulates the Catalytic Activity of Divergent Cyclophilins1[W

    PubMed Central

    Campos, Bruna Medéia; Sforça, Mauricio Luis; Ambrosio, Andre Luis Berteli; Domingues, Mariane Noronha; Brasil de Souza, Tatiana de Arruda Campos; Barbosa, João Alexandre Ribeiro Gonçalvez; Leme, Adriana Franco Paes; Perez, Carlos Alberto; Whittaker, Sara Britt-Marie; Murakami, Mario Tyago; Zeri, Ana Carolina de Matos; Benedetti, Celso Eduardo

    2013-01-01

    The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism. PMID:23709667

  15. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  16. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    DOE PAGES

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; ...

    2015-04-22

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less

  17. Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine-ruthenium framework.

    PubMed

    Miura, Takashi; Naruto, Masayuki; Toda, Katsuaki; Shimomura, Taiki; Saito, Susumu

    2017-05-16

    Amides are ubiquitous and abundant in nature and our society, but are very stable and reluctant to salt-free, catalytic chemical transformations. Through the activation of a "sterically confined bipyridine-ruthenium (Ru) framework (molecularly well-designed site to confine adsorbed H 2 in)" of a precatalyst, catalytic hydrogenation of formamides through polyamide is achieved under a wide range of reaction conditions. Both C=O bond and C-N bond cleavage of a lactam became also possible using a single precatalyst. That is, catalyst diversity is induced by activation and stepwise multiple hydrogenation of a single precatalyst when the conditions are varied. The versatile catalysts have different structures and different resting states for multifaceted amide hydrogenation, but the common structure produced upon reaction with H 2 , which catalyzes hydrogenation, seems to be "H-Ru-N-H."

  18. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.

    PubMed

    Lv, Zongyang; Yuan, Lingmin; Atkison, James H; Aldana-Masangkay, Grace; Chen, Yuan; Olsen, Shaun K

    2017-07-21

    E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl s mall u biquitin-like mo difier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like.

  20. Molecular Self-Assembly Strategy for Generating Catalytic Hybrid Polypeptides

    PubMed Central

    Ikezoe, Yasuhiro; Pike, Douglas H.; Nanda, Vikas; Matsui, Hiroshi

    2016-01-01

    Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β-sheets and amyloid fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. The enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality. PMID:27116246

  1. Improved ethanol electrooxidation performance by shortening Pd–Ni active site distance in Pd–Ni–P nanocatalysts

    PubMed Central

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (∼5 nm) Pd–Ni–P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni–P heterodimers into Pd–Ni–P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites. PMID:28071650

  2. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity

    PubMed Central

    2010-01-01

    Background The Botrytis cinerea xylanase Xyn11A has been previously shown to be required for full virulence of this organism despite its poor contribution to the secreted xylanase activity and the low xylan content of B. cinerea hosts. Intriguingly, xylanases from other fungi have been shown to have the property, independent of the xylan degrading activity, to induce necrosis when applied to plant tissues, so we decided to test the hypothesis that secreted Xyn11A contributes to virulence by promoting the necrosis of the plant tissue surrounding the infection, therefore facilitating the growth of this necrotroph. Results We show here that Xyn11A has necrotizing activity on plants and that this capacity is conserved in site-directed mutants of the protein lacking the catalytic activity. Besides, Xyn11A contributes to the infection process with the necrotizing and not with the xylan hydrolyzing activity, as the catalytically-impaired Xyn11A variants were able to complement the lower virulence of the xyn11A mutant. The necrotizing activity was mapped to a 30-amino acids peptide in the protein surface, and this region was also shown to mediate binding to tobacco spheroplasts by itself. Conclusions The main contribution of the xylanase Xyn11A to the infection process of B. cinerea is to induce necrosis of the infected plant tissue. A conserved 30-amino acids region on the enzyme surface, away from the xylanase active site, is responsible for this effect and mediates binding to plant cells. PMID:20184750

  3. Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Tibbitts, Luke; Newell, Jaclyn; Panthi, Basu; Mukhopadhyay, Ahana; Rioux, Robert M.; Pursell, Christopher J.; Janik, Michael; Chandler, Bert D.

    2018-03-01

    Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal-support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.

  4. Effect of A-site deficiency in LaMn{sub 0.9}Co{sub 0.1}O{sub 3} perovskites on their catalytic performance for soot combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinamarca, Robinson; Garcia, Ximena; Jimenez, Romel

    Highlights: • A-site defective perovskites increases the oxidation state of the B-cation. • Not always non-stoichiometric perovskites exhibit higher catalytic activity in soot combustion. • The highly symmetric cubic crystalline structure diminishes the redox properties of perovskites. - Abstract: The influence of lanthanum stoichiometry in Ag-doped (La{sub 1-x}Ag{sub x}Mn{sub 0.9}Co{sub 0.1}O{sub 3}) and A-site deficient (La{sub 1-x}Mn{sub 0.9}Co{sub 0.1}O{sub 3-δ}) perovskites with x equal to 10, 20 and 30 at.% has been investigated in catalysts for soot combustion. The catalysts were prepared by the amorphous citrate method and characterized by XRD, nitrogen adsorption, XPS, O{sub 2}-TPD and TPR. The formationmore » of a rhombohedral excess-oxygen perovskite for Ag-doped and a cubic perovskite structure for an A-site deficient series is confirmed. The efficient catalytic performance of the larger Ag-doped perovskite structure is attributed to the rhombohedral crystalline structure, Ag{sub 2}O segregated phases and the redox pair Mn{sup 4+}/Mn{sup 3+}. A poor catalytic activity for soot combustion was observed with A-site deficient perovskites, despite the increase in the redox pair Mn{sup 4+}/Mn{sup 3+}, which is attributed to the cubic crystalline structure.« less

  5. Identification and characterization of the sodium-binding site of activated protein C.

    PubMed

    He, X; Rezaie, A R

    1999-02-19

    Activated protein C (APC) requires both Ca2+ and Na+ for its optimal catalytic function. In contrast to the Ca2+-binding sites, the Na+-binding site(s) of APC has not been identified. Based on a recent study with thrombin, the 221-225 loop is predicted to be a potential Na+-binding site in APC. The sequence of this loop is not conserved in trypsin. We engineered a Gla domainless form of protein C (GDPC) in which the 221-225 loop was replaced with the corresponding loop of trypsin. We found that activated GDPC (aGDPC) required Na+ (or other alkali cations) for its amidolytic activity with dissociation constant (Kd(app)) = 44.1 +/- 8.6 mM. In the presence of Ca2+, however, the requirement for Na+ by aGDPC was eliminated, and Na+ stimulated the cleavage rate 5-6-fold with Kd(app) = 2.3 +/- 0.3 mM. Both cations were required for efficient factor Va inactivation by aGDPC. In the presence of Ca2+, the catalytic function of the mutant was independent of Na+. Unlike aGDPC, the mutant did not discriminate among monovalent cations. We conclude that the 221-225 loop is a Na+-binding site in APC and that an allosteric link between the Na+ and Ca2+ binding loops modulates the structure and function of this anticoagulant enzyme.

  6. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.

    PubMed

    Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-06-14

    A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.

  7. Structural insights into the catalytic mechanism of a family 18 exo-chitinase

    PubMed Central

    van Aalten, D. M. F.; Komander, D.; Synstad, B.; Gåseidnes, S.; Peter, M. G.; Eijsink, V. G. H.

    2001-01-01

    Chitinase B (ChiB) from Serratia marcescens is a family 18 exo-chitinase whose catalytic domain has a TIM-barrel fold with a tunnel-shaped active site. We have solved structures of three ChiB complexes that reveal details of substrate binding, substrate-assisted catalysis, and product displacement. The structure of an inactive ChiB mutant (E144Q) complexed with a pentameric substrate (binding in subsites −2 to +3) shows closure of the “roof” of the active site tunnel. It also shows that the sugar in the −1 position is distorted to a boat conformation, thus providing structural evidence in support of a previously proposed catalytic mechanism. The structures of the active enzyme complexed to allosamidin (an analogue of a proposed reaction intermediate) and of the active enzyme soaked with pentameric substrate show events after cleavage of the glycosidic bond. The latter structure shows reopening of the roof of the active site tunnel and enzyme-assisted product displacement in the +1 and +2 sites, allowing a water molecule to approach the reaction center. Catalysis is accompanied by correlated structural changes in the core of the TIM barrel that involve conserved polar residues whose functions were hitherto unknown. These changes simultaneously contribute to stabilization of the reaction intermediate and alternation of the pKa of the catalytic acid during the catalytic cycle. PMID:11481469

  8. Analysis of the Mycoplasma bovis lactate dehydrogenase reveals typical enzymatic activity despite the presence of an atypical catalytic site motif.

    PubMed

    Masukagami, Yumiko; Tivendale, Kelly Anne; Browning, Glenn Francis; Sansom, Fiona Margaret

    2018-02-01

    The lactate dehydrogenase (LDH) of Mycoplasma genitalium has been predicted to also act as a malate dehydrogenase (MDH), but there has been no experimental validation of this hypothesized dual function for any mollicute. Our analysis of the metabolite profile of Mycoplasma bovis using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) detected malate, suggesting that there may be MDH activity in M. bovis. To investigate whether the putative l-LDH enzyme of M. bovis has a dual function (MDH and LDH), we performed bioinformatic and functional biochemical analyses. Although the amino acid sequence and predicted structural analysis of M. bovisl-LDH revealed unusual residues within the catalytic site, suggesting that it may have the flexibility to possess a dual function, our biochemical studies using recombinant M. bovis -LDH did not detect any MDH activity. However, we did show that the enzyme has typical LDH activity that could be inhibited by both MDH substrates oxaloacetate (OAA) and malate, suggesting that these substrates may be able to bind to M. bovis LDH. Inhibition of the conversion of pyruvate to lactate by OAA may be one method the mycoplasma cell uses to reduce the potential for accumulation of intracellular lactate.

  9. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    PubMed

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  10. Detection of Intracellular Reduced (Catalytically Active) SHP-1 and Analyses of Catalytically Inactive SHP-1 after Oxidation by Pervanadate or H2O2.

    PubMed

    Choi, Seeyoung; Love, Paul E

    2018-01-05

    Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.

  11. Aminoalcohols as Probes of the Two-subsite Active Site of Beta-D-xylosidase from Selenomonas ruminantium

    USDA-ARS?s Scientific Manuscript database

    Catalysis and inhibitor binding by the GH43 beta-xylosidase are governed by the protonation state of catalytic base (D14, pKa 5.0) and catalytic acid (E186, pKa 7.2) which reside in subsite -1 of the two-subsite active site. Cationic aminoalcohols are shown to bind exclusively to subsite -1 of the ...

  12. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the

  13. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  14. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deprez-Poulain, Rebecca; Hennuyer, Nathalie; Bosc, Damien

    Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-β. Knockout and genetic studies have linked IDE to Alzheimer’s disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisinglymore » impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.« less

  15. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice

    DOE PAGES

    Deprez-Poulain, Rebecca; Hennuyer, Nathalie; Bosc, Damien; ...

    2015-09-23

    Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-β. Knockout and genetic studies have linked IDE to Alzheimer’s disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisinglymore » impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.« less

  16. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site.

    PubMed

    Jacewicz, Agata; Trzemecka, Anna; Guja, Kip E; Plochocka, Danuta; Yakubovskaya, Elena; Bebenek, Anna; Garcia-Diaz, Miguel

    2013-01-01

    Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A), that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the Pol(D714A) mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced k pol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.

  17. Zinc is required for the catalytic activity of the human deubiquitinating isopeptidase T.

    PubMed

    Gabriel, Jean-Marc; Lacombe, Thierry; Carobbio, Stefania; Paquet, Nicole; Bisig, Ruth; Cox, Jos A; Jaton, Jean-Claude

    2002-11-19

    Two recombinant human isopeptidase T isoforms, ISOT-S and ISOT-L, differing by an insertion of 23 amino acids in ISOT-L, were previously classified as thiol proteases. Both contain one Zn2+-binding site of high-affinity, which is part of a cryptic nitrilo-triacetate-resistant pocket (site 1). A second Zn2+ site (site 2) was disclosed when both isoforms of the holoenzyme were incubated with an excess of Zn2+. The firmly bound Zn2+ of site 1 could be removed either slowly by dialysis against 1,10-phenanthroline at pH 5.5 or rapidly by treatment at pH 3.0 in the presence of 6 M urea followed by gel filtration at neutral pH. Zn2+ in site 1, but not in site 2, is essential for proteolytic activity because apoproteins were inactive. Inhibition of the catalytic activity was not due to a loss of ubiquitin binding capacity. CD spectra of both isoforms disclosed no major structural differences between the apo- and holoenzymes. The reconstitution of apoenzyme with Zn2+ under nondenaturing conditions at pH 5.5 completely restored enzymatic activity, which was indistinguishable from the reconstitution carried out in urea at pH 3.0. Thus, both human ISOTs are either thiol proteases with a local structural Zn2+ or monozinc metalloproteases that might use in catalysis a Zn2+-activated hydroxide ion polarized by Cys335.

  18. Molecular self-assembly strategy for generating catalytic hybrid polypeptides

    DOE PAGES

    Maeda, Yoshiaki; Fang, Justin; Ikezoe, Yasuhiro; ...

    2016-04-26

    Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β- sheets and amyloidmore » fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. Furthermore, the enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality.« less

  19. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less

  20. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity.

    PubMed

    Smith, Dayle M A; Raugei, Simone; Squier, Thomas C

    2014-11-21

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  1. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, J.; Warby, C; Whitby, F

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connectedmore » by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.« less

  2. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB.

    PubMed

    Tajwar, Razia; Shahid, Saher; Zafar, Rehan; Akhtar, Muhammad Waheed

    2017-11-01

    Xylanase XynB of the hyperthermophile Thermotoga maritima, which belongs to glycoside hydrolase family 10 (GH10), does not have an associated carbohydrate binding module (CBM) in the native state. CBM6 and CBM22 from a thermophile Clostridium thermocellum were fused to the catalytic domain of XynB (XynB-C) to determine the effects on activity and other properties. XynB-B22C and XynB-CB22, produced by fusing CBM22 to the N- and C-terminal of XynB-C, showed 1.7- and 3.24-fold increase in activity against the insoluble birchwood xylan, respectively. Similarly, CBM6 when attached to the C-terminal of XynB-C resulted in 2.0-fold increase in activity, whereas its attachment to the N-terminal did not show any increase of activity. XynB-B22C and XynB-CB22 retained all the activity, whereas XynB-B6C and XynB-CB6 lost 17 and 11% of activity, respectively, at 60°C for 4h. Thermostability data and the secondary structure contents obtained by molecular modelling are in agreement with the data from circular dichroism analysis. Molecular modelling analysis showed that the active site residues of the catalytic domain and the binding residues of CBM6 and CBM22 were located on the surface of molecule, except XynB-B6C, where the binding residues were found somewhat buried. In the case of XynB-CB22, the catalytic and the binding residues seem to be located favorably adjacent to each other, thus showing higher increase in activity. This study shows that the active site residues of the catalytic domain and the binding residues of the CBM are arranged in a unique fashion, not reported before. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.

  4. Characterization of the active site properties of CYP4F12.

    PubMed

    Eksterowicz, John; Rock, Dan A; Rock, Brooke M; Wienkers, Larry C; Foti, Robert S

    2014-10-01

    Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    PubMed

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  6. The enzymatic processing of α-dystroglycan by MMP-2 is controlled by two anchoring sites distinct from the active site

    PubMed Central

    Fasciglione, Giovanni Francesco; Sbardella, Diego; Sciandra, Francesca; Casella, MariaLuisa; Camerini, Serena; Crescenzi, Marco; Gori, Alessandro; Tarantino, Umberto; Cozza, Paola; Brancaccio, Andrea; Coletta, Massimo; Bozzi, Manuela

    2018-01-01

    Dystroglycan (DG) is a membrane receptor, belonging to the dystrophin-glycoprotein complex (DGC) and formed by two subunits, α-dystroglycan (α-DG) and β-dystroglycan (β -DG). The C-terminal domain of α-DG and the N-terminal extracellular domain of β -DG are connected, providing a link between the extracellular matrix and the cytosol. Under pathological conditions, such as cancer and muscular dystrophies, DG may be the target of metalloproteinases MMP-2 and MMP-9, contributing to disease progression. Previously, we reported that the C-terminal domain α-DG (483–628) domain is particularly susceptible to the catalytic activity of MMP-2; here we show that the α-DG 621–628 region is required to carry out its complete digestion, suggesting that this portion may represent a MMP-2 anchoring site. Following this observation, we synthesized an α-DG based-peptide, spanning the (613–651) C-terminal region. The analysis of the kinetic and thermodynamic parameters of the whole and the isolated catalytic domain of MMP-2 (cdMMP-2) has shown its inhibitory properties, indicating the presence of (at least) two binding sites for the peptide, both located within the catalytic domain, only one of the two being topologically distinct from the catalytic active groove. However, the different behavior between whole MMP-2 and cdMMP-2 envisages the occurrence of an additional binding site for the peptide on the hemopexin-like domain of MMP-2. Interestingly, mass spectrometry analysis has shown that α-DG (613–651) peptide is cleavable even though it is a very poor substrate of MMP-2, a feature that renders this molecule a promising template for developing a selective MMP-2 inhibitor. PMID:29447293

  7. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  8. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation.

    PubMed

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Kim, Young Dok

    2018-04-27

    NiO/NiCo 2 O 4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N 2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m 2 g -1 ) than expected for a flat-surface structure (<15 m 2 g -1 ). Herein, we present a study of the catalytic activity of our novel NiO/NiCo 2 O 4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo 2 O 4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo 2 O 4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo 2 O 4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  9. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  10. Activation of Phenylalanine Hydroxylase by Phenylalanine Does Not Require Binding in the Active Site

    PubMed Central

    2015-01-01

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein’s regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The kcat/Kphe value is down 104 for the mutant enzyme, and the Km value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain. PMID:25453233

  11. Surface structural-chemical characterization of a single-site d0 heterogeneous arene hydrogenation catalyst having 100% active sites

    PubMed Central

    Williams, Linda A.; Guo, Neng; Motta, Alessandro; Delferro, Massimiliano; Fragalà, Ignazio L.; Miller, Jeffrey T.; Marks, Tobin J.

    2013-01-01

    Structural characterization of the catalytically significant sites on solid catalyst surfaces is frequently tenuous because their fraction, among all sites, typically is quite low. Here we report the combined application of solid-state 13C-cross-polarization magic angle spinning nuclear magnetic resonance (13C-CPMAS-NMR) spectroscopy, density functional theory (DFT), and Zr X-ray absorption spectroscopy (XAS) to characterize the adsorption products and surface chemistry of the precatalysts (η5-C5H5)2ZrR2 (R = H, CH3) and [η5-C5(CH3)5]Zr(CH3)3 adsorbed on Brønsted superacidic sulfated alumina (AlS). The latter complex is exceptionally active for benzene hydrogenation, with ∼100% of the Zr sites catalytically significant as determined by kinetic poisoning experiments. The 13C-CPMAS-NMR, DFT, and XAS data indicate formation of organozirconium cations having a largely electrostatic [η5-C5(CH3)5]Zr(CH3)2+···AlS− interaction with greatly elongated Zr···OAlS distances of ∼2.35(2) Å. The catalytic benzene hydrogenation cycle is stepwise understandable by DFT, and proceeds via turnover-limiting H2 delivery to surface [η5-C5(CH3)5]ZrH2(benzene)+···AlS− species, observable by solid-state NMR and XAS. PMID:23269836

  12. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eren, Elif; Murphy, Megan; Goguen, Jon

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changesmore » of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.« less

  13. Cys-X scanning for expansion of active-site residues and modulation of catalytic functions in a glutathione transferase.

    PubMed

    Norrgård, Malena A; Hellman, Ulf; Mannervik, Bengt

    2011-05-13

    We propose Cys-X scanning as a semisynthetic approach to engineer the functional properties of recombinant proteins. As in the case of Ala scanning, key residues in the primary structure are identified, and one of them is replaced by Cys via site-directed mutagenesis. The thiol of the residue introduced is subsequently modified by alternative chemical reagents to yield diverse Cys-X mutants of the protein. This chemical approach is orthogonal to Ala or Cys scanning and allows the expansion of the repertoire of amino acid side chains far beyond those present in natural proteins. In its present application, we have introduced Cys-X residues in human glutathione transferase (GST) M2-2, replacing Met-212 in the substrate-binding site. To achieve selectivity of the modifications, the Cys residues in the wild-type enzyme were replaced by Ala. A suite of simple substitutions resulted in a set of homologous Met derivatives ranging from normethionine to S-heptyl-cysteine. The chemical modifications were validated by HPLC and mass spectrometry. The derivatized mutant enzymes were assayed with alternative GST substrates representing diverse chemical reactions: aromatic substitution, epoxide opening, transnitrosylation, and addition to an ortho-quinone. The Cys substitutions had different effects on the alternative substrates and differentially enhanced or suppressed catalytic activities depending on both the Cys-X substitution and the substrate assayed. As a consequence, the enzyme specificity profile could be changed among the alternative substrates. The procedure lends itself to large-scale production of Cys-X modified protein variants.

  14. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  15. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.

    PubMed

    Bate, Paul; Warwicker, Jim

    2004-07-02

    Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.

  17. A mobile loop near the active site acts as a switch between the dual activities of a viral protease/deubiquitinase

    PubMed Central

    Ayach, Maya; Fieulaine, Sonia

    2017-01-01

    The positive-strand RNA virus Turnip yellow mosaic virus (TYMV) encodes an ovarian tumor (OTU)-like protease/deubiquitinase (PRO/DUB) protein domain involved both in proteolytic processing of the viral polyprotein through its PRO activity, and in removal of ubiquitin chains from ubiquitylated substrates through its DUB activity. Here, the crystal structures of TYMV PRO/DUB mutants and molecular dynamics simulations reveal that an idiosyncratic mobile loop participates in reversibly constricting its unusual catalytic site by adopting "open", "intermediate" or "closed" conformations. The two cis-prolines of the loop form a rigid flap that in the most closed conformation zips up against the other side of the catalytic cleft. The intermediate and closed conformations also correlate with a reordering of the TYMV PRO/DUB catalytic dyad, that then assumes a classical, yet still unusually mobile, OTU DUB alignment. Further structure-based mutants designed to interfere with the loop's mobility were assessed for enzymatic activity in vitro and in vivo, and were shown to display reduced DUB activity while retaining PRO activity. This indicates that control of the switching between the dual PRO/DUB activities resides prominently within this loop next to the active site. Introduction of mutations into the viral genome revealed that the DUB activity contributes to the extent of viral RNA accumulation both in single cells and in whole plants. In addition, the conformation of the mobile flap was also found to influence symptoms severity in planta. Such mutants now provide powerful tools with which to study the specific roles of reversible ubiquitylation in viral infection. PMID:29117247

  18. Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*

    PubMed Central

    Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.

    2013-01-01

    The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628

  19. Investigating mycobacterial topoisomerase I mechanism from the analysis of metal and DNA substrate interactions at the active site.

    PubMed

    Cao, Nan; Tan, Kemin; Annamalai, Thirunavukkarasu; Joachimiak, Andrzej; Tse-Dinh, Yuk-Ching

    2018-06-14

    We have obtained new crystal structures of Mycobacterium tuberculosis topoisomerase I, including structures with ssDNA substrate bound to the active site, with and without Mg2+ ion present. Significant enzyme conformational changes upon DNA binding place the catalytic tyrosine in a pre-transition state position for cleavage of a specific phosphodiester linkage. Meanwhile, the enzyme/DNA complex with bound Mg2+ ion may represent the post-transition state for religation in the enzyme's multiple-step DNA relaxation catalytic cycle. The first observation of Mg2+ ion coordinated with the TOPRIM residues and DNA phosphate in a type IA topoisomerase active site allows assignment of likely catalytic role for the metal and draws a comparison to the proposed mechanism for type IIA topoisomerases. The critical function of a strictly conserved glutamic acid in the DNA cleavage step was assessed through site-directed mutagenesis. The functions assigned to the observed Mg2+ ion can account for the metal requirement for DNA rejoining but not DNA cleavage by type IA topoisomerases. This work provides new structural insights into a more stringent requirement for DNA rejoining versus cleavage in the catalytic cycle of this essential enzyme, and further establishes the potential for selective interference of DNA rejoining by this validated TB drug target.

  20. Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations

    PubMed Central

    McDowell, S. Elizabeth; Jun, Jesse M.; Walter, Nils G.

    2010-01-01

    Enzymes generally are thought to derive their functional activity from conformational motions. The limited chemical variation in RNA suggests that such structural dynamics may play a particularly important role in RNA function. Minimal hammerhead ribozymes are known to cleave efficiently only in ∼10-fold higher than physiologic concentrations of Mg2+ ions. Extended versions containing native loop–loop interactions, however, show greatly enhanced catalytic activity at physiologically relevant Mg2+ concentrations, for reasons that are still ill-understood. Here, we use Mg2+ titrations, activity assays, ensemble, and single molecule fluorescence resonance energy transfer (FRET) approaches, combined with molecular dynamics (MD) simulations, to ask what influence the spatially distant tertiary loop–loop interactions of an extended hammerhead ribozyme have on its structural dynamics. By comparing hammerhead variants with wild-type, partially disrupted, and fully disrupted loop–loop interaction sequences we find that the tertiary interactions lead to a dynamic motional sampling that increasingly populates catalytically active conformations. At the global level the wild-type tertiary interactions lead to more frequent, if transient, encounters of the loop-carrying stems, whereas at the local level they lead to an enrichment in favorable in-line attack angles at the cleavage site. These results invoke a linkage between RNA structural dynamics and function and suggest that loop–loop interactions in extended hammerhead ribozymes—and Mg2+ ions that bind to minimal ribozymes—may generally allow more frequent access to a catalytically relevant conformation(s), rather than simply locking the ribozyme into a single active state. PMID:20921269

  1. Preparation and Characterization of Mesoporous Nickel derived from Liquid crystalline Template and Evaluation of its Electro catalytic activity towards Methanol Oxidation

    NASA Astrophysics Data System (ADS)

    Mohanapriya, S.; Renuka devi, R.; Raj, V.

    2018-02-01

    Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.

  2. Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme

    DOE PAGES

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...

    2014-12-09

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the

  3. Extending Thymidine Kinase Activity to the Catalytic Repertoire of Human Deoxycytidine Kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Saugata; Sabini, Eliszbetta; Ort, Stephan

    Salvage of nucleosides in the cytosol of human cells is carried out by deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1). Whereas TK1 is only responsible for thymidine phosphorylation, dCK is capable of converting dC, dA, and dG into their monophosphate forms. Using structural data on dCK, we predicted that select mutations at the active site would, in addition to making the enzyme faster, expand the catalytic repertoire of dCK to include thymidine. Specifically, we hypothesized that steric repulsion between the methyl group of the thymine base and Arg104 is the main factor preventing the phosphorylation of thymidine by wild-typemore » dCK. Here we present kinetic data on several dCK variants where Arg104 has been replaced by select residues, all performed in combination with the mutation of Asp133 to an alanine. We show that several hydrophobic residues at position 104 endow dCK with thymidine kinase activity. Depending on the exact nature of the mutations, the enzyme's substrate preference is modified. The R104M-D133A double mutant is a pyrimidine-specific enzyme due to large K{sub m} values with purines. The crystal structure of the double mutant R104M-D133A in complex with the L-form of thymidine supplies a structural explanation for the ability of this variant to phosphorylate thymidine and thymidine analogs. The replacement of Arg104 by a smaller residue allows L-dT to bind deeper into the active site, making space for the C5-methyl group of the thymine base. The unique catalytic properties of several of the mutants make them good candidates for suicide-gene/protein-therapy applications.« less

  4. Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines

    NASA Astrophysics Data System (ADS)

    Zhou, Peipei; Jia, Sisi; Pan, Dun; Wang, Lihua; Gao, Jimin; Lu, Jianxin; Shi, Jiye; Tang, Zisheng; Liu, Huajie

    2015-09-01

    Reversible catalysis regulation has gained much attention and traditional strategies utilized reversible ligand coordination for switching catalyst’s conformations. However, it remains challenging to regulate the catalytic activity of metal nanoparticle-based catalysts. Herein, we report a new DNA nanomachine-driven reversible nano-shield strategy for circumventing this problem. The basic idea is based on the fact that the conformational change of surface-attached DNA nanomachines will cause the variation of the exposed surface active area on metal nanoparticles. As a proof-of-concept study, we immobilized G-rich DNA strands on gold nanoparticles (AuNPs) which have glucose oxidase (GOx) like activity. Through the reversible conformational change of the G-rich DNA between a flexible single-stranded form and a compact G-quadruplex form, the catalytic activity of AuNPs has been regulated reversibly for several cycles. This strategy is reliable and robust, which demonstrated the possibility of reversibly adjusting catalytic activity with external surface coverage switching, rather than coordination interactions.

  5. Probing active cocaine vaccination performance through catalytic and noncatalytic hapten design.

    PubMed

    Cai, Xiaoqing; Whitfield, Timothy; Hixon, Mark S; Grant, Yanabel; Koob, George F; Janda, Kim D

    2013-05-09

    Presently, there are no FDA-approved medications to treat cocaine addiction. Active vaccination has emerged as one approach to intervene through the rapid sequestering of the circulating drug, thus terminating both psychoactive effects and drug toxicity. Herein, we report our efforts examining two complementary, but mechanistically distinct active vaccines, i.e., noncatalytic and catalytic, for cocaine treatment. A cocaine-like hapten GNE and a cocaine transition-state analogue GNT were used to generate the active vaccines, respectively. GNE-KLH (keyhole limpet hemocyannin) was found to elicit persistent high-titer, cocaine-specific antibodies and blunt cocaine-induced locomotor behaviors. Catalytic antibodies induced by GNT-KLH were also shown to produce potent titers and suppress locomotor response in mice; however, upon repeated cocaine challenges, the vaccine's protecting effects waned. In depth kinetic analysis suggested that loss of catalytic activity was due to antibody modification by cocaine. The work provides new insights for the development of active vaccines for the treatment of cocaine abuse.

  6. Probing Active Cocaine Vaccination Performance through Catalytic and Noncatalytic Hapten Design

    PubMed Central

    Cai, Xiaoqing; Whitfield, Timothy; Hixon, Mark S.; Grant, Yanabel; Koob, George F.; Janda, Kim D.

    2013-01-01

    Presently, there are no FDA-approved medications to treat cocaine addiction. Active vaccination has emerged as one approach to intervene through the rapid sequestering of the circulating drug, thus terminating both psychoactive effects and drug toxicity. Herein, we report our efforts examining two complimentary, but mechanistically distinct active vaccines, i.e., noncatalytic and catalytic, for cocaine treatment. A cocaine-like hapten GNE and a cocaine transition-state analogue GNT were used to generate the active vaccines, respectively. GNE-KLH was found to elicit persistent high-titer, cocaine-specific antibodies, and blunt cocaine induced locomotor behaviors. Catalytic antibodies induced by GNT-KLH were also shown to produce potent titers and suppress locomotor response in mice; however, upon repeated cocaine challenges the vaccine’s protecting effects waned. In depth kinetic analysis suggested that loss of catalytic activity was due to antibody modification by cocaine. The work provides new insights for the development of active vaccines for the treatment of cocaine abuse. PMID:23627877

  7. Effects of Detergents on Catalytic Activity of Human Endometase/Matrilysin-2, a Putative Cancer Biomarker†

    PubMed Central

    Park, Hyun I.; Lee, Seakwoo; Ullah, Asad; Cao, Qiang; Sang, Qing-Xiang Amy

    2009-01-01

    Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration-dependent exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matirilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (~90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was mixed-type as determined by Dixon’s plot, however, that of endometase was non-competitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block substrate binding site to impede catalysis. Under physiological conditions lipid or membrane microenvironment may regulate enzymatic activity. PMID:19818727

  8. Epoxyethylglycyl peptides as inhibitors of oligosaccharyltransferase: double-labelling of the active site.

    PubMed

    Bause, E; Wesemann, M; Bartoschek, A; Breuer, W

    1997-02-15

    Pig liver oligosaccharyltransferase (OST) is inactivated irreversibly by a hexapeptide in which threonine has been substituted by epoxyethylglycine in the Asn-Xaa-Thr glycosylation triplet. Incubation of the enzyme in the presence of Dol-PP-linked [14C]oligosaccharides and the N-3,5-dinitrobenzoylated epoxy derivative leads to the double-labelling of two subunits (48 and 66 kDa) of the oligomeric OST complex, both of which are involved in the catalytic activity. Labelling of both subunits was blocked competitively by the acceptor peptide N-benzoyl-Asu-Gly-Thr-NHCH3 and by the OST inhibitor N-benzoyl-alpha,gamma-diaminobutyric acid-Gly-Thr-NHCH3, but not by an analogue derived from the epoxy-inhibitor by replacing asparagine with glutamine. Our data clearly show that double-labelling is an active-site-directed modification, involving inhibitor glycosylation at asparagine and covalent attachment of the glycosylated inhibitor, via the epoxy group, to the enzyme. Double-labelling of OST can occur as the result of either a consecutive or a syn-catalytic reaction sequence. The latter mechanism, during the course of which OST catalyses its own 'suicide' inactivation, is more likely, as suggested by indirect experimental evidence. The syn-catalytic mechanism corresponds with our current view of the functional role of the acceptor site Thr/Ser acting as a hydrogen-bond acceptor, not a donor, during transglycosylation.

  9. Enhancing catalytic activity by narrowing local energy gaps--X-ray studies of a manganese water oxidation catalyst.

    PubMed

    Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F

    2015-03-01

    Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. LETTER TO THE EDITOR: Single-species reactions on a random catalytic chain

    NASA Astrophysics Data System (ADS)

    Oshanin, G.; Burlatsky, S. F.

    2002-11-01

    We present an exact solution for a catalytically activated annihilation A + A → 0 reaction taking place on a one-dimensional chain in which some segments (placed at random, with mean concentration p) possess special, catalytic properties. An annihilation reaction takes place as soon as any two A particles land from the reservoir onto two vacant sites at the extremities of the catalytic segment, or when any A particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another A particle. We find that the disorder-average pressure P(quen) per site of such a chain is given by P(quen) = P(Lan) + β-1F, where P(Lan) = β-1 ln(1 + z) is the Langmuir adsorption pressure, (z being the activity and β-1 the temperature), while β-1F is the reaction-induced contribution, which can be expressed, under appropriate change of notation, as the Lyapunov exponent for the product of 2 × 2 random matrices, obtained exactly by Derrida and Hilhorst (1983 J. Phys. A: Math. Gen. 16 2641). Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.

  11. Analysis of in vitro evolution reveals the underlying distribution of catalytic activity among random sequences.

    PubMed

    Pressman, Abe; Moretti, Janina E; Campbell, Gregory W; Müller, Ulrich F; Chen, Irene A

    2017-08-21

    The emergence of catalytic RNA is believed to have been a key event during the origin of life. Understanding how catalytic activity is distributed across random sequences is fundamental to estimating the probability that catalytic sequences would emerge. Here, we analyze the in vitro evolution of triphosphorylating ribozymes and translate their fitnesses into absolute estimates of catalytic activity for hundreds of ribozyme families. The analysis efficiently identified highly active ribozymes and estimated catalytic activity with good accuracy. The evolutionary dynamics follow Fisher's Fundamental Theorem of Natural Selection and a corollary, permitting retrospective inference of the distribution of fitness and activity in the random sequence pool for the first time. The frequency distribution of rate constants appears to be log-normal, with a surprisingly steep dropoff at higher activity, consistent with a mechanism for the emergence of activity as the product of many independent contributions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase.

    PubMed

    Smith, Andrew T; Doyle, Wendy A; Dorlet, Pierre; Ivancich, Anabella

    2009-09-22

    The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.

  13. Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure.

    PubMed

    Anderson, Michael; Schultz, Eric P; Martick, Monika; Scott, William G

    2013-10-23

    We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na(+) ion binding in the ribozyme's active site. At least two such Na(+) ions are observed. The first Na(+) ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na(+) ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na(+), but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na(+) directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase.

    PubMed

    Fecker, Tobias; Galaz-Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto P; Ramírez-Sarmiento, César A

    2018-03-27

    Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic

  15. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  16. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  17. Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

    PubMed

    Bjelic, Sinisa; Kipnis, Yakov; Wang, Ling; Pianowski, Zbigniew; Vorobiev, Sergey; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Kornhaber, Gregory; Hunt, John F; Tong, Liang; Hilvert, Donald; Baker, David

    2014-01-09

    Designed retroaldolases have utilized a nucleophilic lysine to promote carbon-carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid. Five out of seven designs expressed solubly and exhibited catalytic efficiencies similar to previously designed retroaldolases for the conversion of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone to 6-methoxy-2-naphthaldehyde and acetone. After one round of site-directed saturation mutagenesis, improved variants of the two best designs, RA114 and RA117, exhibited among the highest kcat (>10(-3)s(-1)) and kcat/KM (11-25M(-1)s(-1)) values observed for retroaldolase designs prior to comprehensive directed evolution. In both cases, the >10(5)-fold rate accelerations that were achieved are within 1-3 orders of magnitude of the rate enhancements reported for the best catalysts for related reactions, including catalytic antibodies (kcat/kuncat=10(6) to 10(8)) and an extensively evolved computational design (kcat/kuncat>10(7)). The catalytic sites, revealed by X-ray structures of optimized versions of the two active designs, are in close agreement with the design models except for the catalytic lysine in RA114. We further improved the variants by computational remodeling of the loops and yeast display selection for reactivity of the catalytic lysine with a diketone probe, obtaining an additional order of magnitude enhancement in activity with both approaches. © 2013.

  18. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE PAGES

    Zugic, Branko; Wang, Lucun; Heine, Christian; ...

    2016-12-19

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  19. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugic, Branko; Wang, Lucun; Heine, Christian

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  20. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Liu, Xiao; Chang, Jiuli; Wu, Dapeng; Xu, Fang; Zhang, Lingcui; Du, Weimin; Jiang, Kai

    2017-01-01

    Graphene incorporated, N doped activated carbons (GNACs) are synthesized by alkali activation of graphene-polypyrrole composite (G-PPy) at different temperatures for application as electrode materials of supercapacitors. Under optimal activation temperature of 700 °C, the resultant samples, labeled as GNAC700, owns hierarchically porous texture with high specific surface area and efficient ions diffusion channels, N, O functionalized surface with apparent pseudocapacitance contribution and high wettability, thus can deliver a moderate capacitance, a high rate capability and a good cycleability when used as supercapacitor electrode. Additionally, the GNAC700 electrode demonstrates high catalytic activity for the redox reaction of pyrocatechol/o-quinone pair in H2SO4 electrolyte, thus enables a high pseudocapacitance from electrolyte. Under optimal pyrocatechol concentration in H2SO4 electrolyte, the electrode capacitance of GNAC700 increases by over 4 folds to 512 F g-1 at 1 A g-1, an excellent cycleability is also achieved simultaneously. Pyridinic- N is deemed to be responsible for the high catalytic activity. This work provides a promising strategy to ameliorate the capacitive performances of supercapacitors via the synergistic interaction between redox-active electrolyte and catalytic electrodes.

  1. Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla.

    PubMed

    Woo, Jongchan; Howell, Matthew H; von Arnim, Albrecht G

    2008-04-01

    Renilla luciferase (RLUC) is a versatile tool for gene expression assays and in vivo biosensor applications, but its catalytic mechanism remains to be elucidated. RLUC is evolutionarily related to the alpha/beta hydrolase family. Its closest known homologs are bacterial dehalogenases, raising the question of how a protein with a hydrolase fold can function as a decarboxylating oxygenase. Molecular docking simulations with the coelenterazine substrate against an RLUC homology model as well as a recently determined RLUC crystal structure were used to build hypotheses to identify functionally important residues, which were subsequently tested by site-directed mutagenesis, heterologous expression, and bioluminescence emission spectroscopy. The data highlighted two triads of residues that are critical for catalysis. The putative catalytic triad residues D120, E144, and H285 bear only limited resemblance to those found in the active site of aequorin, a coelenterazine-utilizing photoprotein, suggesting that the reaction scheme employed by RLUC differs substantially from the one established for aequorin. The role of H285 in catalysis was further supported by inhibition using diethylpyrocarbonate. Multiple substitutions of N53, W121, and P220--three other residues implicated in product binding in the homologous dehalogenase Sphingomonas LinB--also supported their involvement in catalysis. Together with luminescence spectra, our data lead us to propose that the conserved catalytic triad of RLUC is directly involved in the decarboxylation reaction of coelenterazine to produce bioluminescence, while the other active-site residues are used for binding of the substrate.

  2. Probing catalytic rate enhancement during intramembrane proteolysis.

    PubMed

    Arutyunova, Elena; Smithers, Cameron C; Corradi, Valentina; Espiritu, Adam C; Young, Howard S; Tieleman, D Peter; Lemieux, M Joanne

    2016-09-01

    Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6-3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis.

  3. W-incorporated CoMo/{lambda}-Al{sub 2}O{sub 3} hydrodesulfurization catalyst. I. Catalytic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.K.; Lee, I.C.; Park, S.K.

    1996-03-01

    The promotional effect of tungsten in the CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst was studied for series of W-incorporated CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts with different content of tungsten. Two series of the catalysts were prepared by changing the impregnation order of cobalt and tungsten onto a base Mo/{gamma}-Al{sub 2}O{sub 3} catalyst. Impregnation of tungsten was achieved under the condition that the pH of an aqueous impregnating solution of W anion was controlled to 9.5. The hydrodesulfurization (HDS) and hydrogenation (HYD) activities of the sulfided catalysts were evaluated by thiophene HDS and ethylene HYD reactions at atmospheric pressure, respectively. Low-temperature O{sub 2} chemisorptionmore » at 195 K was conducted for the sulfided catalysts in order to determine the W-incorporation effects on the surface concentration of coordinatively unsaturated sites related to the catalytic activities. The dependence of catalytic activities on tungsten content showed initially an increase and subsequent decrease with increasing tungsten content. The maximum promotion of HDS and HYD activities occurred at a low content of tungsten corresponding to 0.025 in W/(W + Mo) atomic ratio regardless of the impregnation order of tungsten and cobalt. Oxygen uptake correlated well with catalytic activities. In general, the catalysts prepared by impregnating tungsten onto the CoMo/{gamma}-Al{sub 2}O{sub 3} showed higher activities than the catalysts prepared by impregnating tungsten onto Mo/{gamma}-Al{sub 2}O{sub 3} prior to impregnation of cobalt. 37 refs., 7 figs., 2 tabs.« less

  4. [New iron-porphyrin/vanadium-substituted polyoxometalate catalyst: synthesis, characterization and catalytic activity].

    PubMed

    Dong, Xiao-li; Zhang, Zhen-cheng; An, Qing-da; Zhang, Shao-yin; Wang, Shao-jun

    2007-12-01

    A new kind of iron-porphyrin/vanadium-substituted polyoxometalate coordination compound was synthesized by the ion exchange reaction of FeTTMAPPI and H5PMo10V2o40 in solution. The new catalyst was characterized by IR spectrometry and UV-Vis spectrometry. As an excellent catalyst, its effects on benzene hydroxylation and catalytic capabilities were studied with H2O2 solution as the oxidant. The results indicated that the products contained the conjugated structure of porphyrin and the cage structure of polyoxometalate, the V atom in polyoxometalate is the main centre of catalytic activity, meanwhile the presence of iron-porphyrin could increase its catalytic activity greatly.

  5. Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions.

    PubMed

    Hoque, Md Anarul; Zhang, Yong; Chen, Liuqing; Yang, Guangyu; Khatun, Mst Afroza; Chen, Haifeng; Hao, Liu; Feng, Yan

    2017-05-19

    The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >10 7 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.

  6. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    NASA Astrophysics Data System (ADS)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  7. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.

    PubMed

    Yang, Juntang; Wang, Rong; Liu, Binyan; Xue, Qizhen; Zhong, Mengyu; Zeng, Hao; Zhang, Huidong

    2015-09-01

    Abasic sites (Apurinic/apyrimidinic (AP) sites), produced ∼ 50,000 times/cell/day, are very blocking and miscoding. To better understand miscoding mechanisms of abasic site for yeast DNA polymerase η, pre-steady-state nucleotide incorporation and LC-MS/MS sequence analysis of extension product were studied using pol η(core) (catalytic core, residues 1-513), which can completely eliminate the potential effects of the C-terminal C2H2 motif of pol η on dNTP incorporation. The extension beyond the abasic site was very inefficient. Compared with incorporation of dCTP opposite G, the incorporation efficiencies opposite abasic site were greatly reduced according to the order of dGTP > dATP > dCTP and dTTP. Pol η(core) showed no fast burst phase for any incorporation opposite G or abasic site, suggesting that the catalytic step is not faster than the dissociation of polymerase from DNA. LC-MS/MS sequence analysis of extension products showed that 53% products were dGTP misincorporation, 33% were dATP and 14% were -1 frameshift, indicating that Pol η(core) bypasses abasic site by a combined G-rule, A-rule and -1 frameshift deletions. Compared with full-length pol η, pol η(core) relatively reduced the efficiency of incorporation of dCTP opposite G, increased the efficiencies of dNTP incorporation opposite abasic site and the exclusive incorporation of dGTP opposite abasic site, but inhibited the extension beyond abasic site, and increased the priority in extension of A: abasic site relative to G: abasic site. This study provides further understanding in the mutation mechanism of abasic sites for yeast DNA polymerase η. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE PAGES

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less

  9. Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

    PubMed Central

    Chakraborty, Sandeep; Minda, Renu; Salaye, Lipika; Bhattacharjee, Swapan K.; Rao, Basuthkar J.

    2011-01-01

    Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - C ata L ytic A ctive S ite P rediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro

  10. Solution structure of the catalytic domain of RICH protein from goldfish.

    PubMed

    Kozlov, Guennadi; Denisov, Alexey Y; Pomerantseva, Ekaterina; Gravel, Michel; Braun, Peter E; Gehring, Kalle

    2007-03-01

    Regeneration-induced CNPase homolog (RICH) is an axonal growth-associated protein, which is induced in teleost fish upon optical nerve injury. RICH consists of a highly acidic N-terminal domain, a catalytic domain with 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity and a C-terminal isoprenylation site. In vitro RICH and mammalian brain CNPase specifically catalyze the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate remains unknown. Here, we report the NMR structure of the catalytic domain of goldfish RICH and describe its binding to CNPase inhibitors. The structure consists of a twisted nine-stranded antiparallel beta-sheet surrounded by alpha-helices on both sides. Despite significant local differences mostly arising from a seven-residue insert in the RICH sequence, the active site region is highly similar to that of human CNPase. Likewise, refinement of the catalytic domain of rat CNPase using residual dipolar couplings gave improved agreement with the published crystal structure. NMR titrations of RICH with inhibitors point to a similar catalytic mechanism for RICH and CNPase. The results suggest a functional importance for the evolutionarily conserved phosphodiesterase activity and hint of a link with pre-tRNA splicing.

  11. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon

    NASA Astrophysics Data System (ADS)

    Xu, Yanli; Sang, Huanxin; Wang, Kang; Wang, Xitao

    2014-10-01

    In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Nisbnd C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.

  12. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations.

    PubMed

    Chughtai, Adeel H; Ahmad, Nazir; Younus, Hussein A; Laypkov, A; Verpoort, Francis

    2015-10-07

    Novel catalytic materials are highly demanded to perform a variety of catalytic organic reactions. MOFs combine the benefits of heterogeneous catalysis like easy post reaction separation, catalyst reusability, high stability and homogeneous catalysis such as high efficiency, selectivity, controllability and mild reaction conditions. The possible organization of active centers like metallic nodes, organic linkers, and their chemical synthetic functionalization on the nanoscale shows potential to build up MOFs particularly modified for catalytic challenges. In this review, we have summarized the recent research progress in heterogeneous catalysis by MOFs and their catalytic behavior in various organic reactions, highlighting the key features of MOFs as catalysts based on the active sites in the framework. Examples of their post functionalization, inclusion of active guest species and metal nanoparticles have been discussed. Finally, the use of MOFs as catalysts for asymmetric heterogeneous catalysis and stability of MOFs has been presented as separate sections.

  13. Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from M. tuberculosis

    PubMed Central

    Pegan, Scott D.; Rukseree, Kamolchanok; Capodagli, Glenn C.; Baker, Erica A; Krasnykh, Olga; Franzblau, Scott G; Mesecar, Andrew D

    2014-01-01

    Class II fructose 1,6-bisphosphate aldolases (FBA; E.C. 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff-base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs has been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies on class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation/deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI/DHAP bound form of the enzyme and determined the X-ray structure of MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information plus site-directed mutagenesis and kinetic studies conducted on a series of residues within the active-site loop revealed that E169 facilitates a water mediated deprotonation/protonation step of the MtFBA reaction mechanism. Also, secondary isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form. PMID:23298222

  14. Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis.

    PubMed

    Pegan, Scott D; Rukseree, Kamolchanok; Capodagli, Glenn C; Baker, Erica A; Krasnykh, Olga; Franzblau, Scott G; Mesecar, Andrew D

    2013-02-05

    Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation-deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation-protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.

  15. Multiple Glycogen-binding Sites in Eukaryotic Glycogen Synthase Are Required for High Catalytic Efficiency toward Glycogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, Sulochanadevi; Chikwana, Vimbai M.; Contreras, Christopher J.

    2012-12-10

    Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V{sub max}/S{sub 0.5} for glycogen by 40- and 70-fold,more » respectively. Combined mutation of site-1 and site-2 decreased the V{sub max}/S{sub 0.5} for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells ({Delta}gsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a 'toehold mechanism,' keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.« less

  16. Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study

    PubMed Central

    Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J.; Martínez, Angel T.

    2014-01-01

    Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant. PMID:25495127

  17. Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study.

    PubMed

    Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J; Martínez, Angel T

    2015-03-01

    Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H₂O₂-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (k(cat) > 200 s⁻¹) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 k(cat) ~20 s⁻¹) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.

  18. Catalytic conversion of methane to methanol using Cu-zeolites.

    PubMed

    Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2012-01-01

    The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.

  19. Importance of the lid and cap domains for the catalytic activity of gastric lipases.

    PubMed

    Miled, N; Bussetta, C; De caro, A; Rivière, M; Berti, L; Canaan, S

    2003-09-01

    Human gastric lipase (HGL) is an enzyme secreted by the stomach, which is stable and active despite the highly acidic environment. It has been clearly established that this enzyme is responsible for 30% of the fat digestion processes occurring in human. This globular protein belongs to the alpha/beta hydrolase fold family and its catalytic serine is deeply buried under a domain called the extrusion domain, which is composed of a 'cap' domain and a segment consisting of 58 residues, which can be defined as a lid. The exact roles played by the cap and the lid domains during the catalytic step have not yet been elucidated. We have recently solved the crystal structure of the open form of the dog gastric lipase in complex with a covalent inhibitor. The detergent molecule and the inhibitor were mimicking a triglyceride substrate that would interact with residues belonging to both the cap and the lid domains. In this study, we have investigated the role of the cap and the lid domains, using site-directed mutagenesis procedures. We have produced truncated mutants lacking the lid and the cap. After expressing these mutants and purifying them, their activity was found to have decreased drastically in comparison with the wild type HGL. The lid and the cap domains play an important role in the catalytic reaction mechanism. Based on these results and the structural data (open form of DGL), we have pointed out the cap and the lid residues involved in the binding with the lipidic substrate.

  20. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like. This invention was made with Government support under Grant Contract No. AI-24695, awarded by the Department of health and Human Services, and under Grant Contract No. N 00014-87-K-0256, awarded by the Office of Naval Research. The Government has certain rights in this invention.

  1. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst

    NASA Astrophysics Data System (ADS)

    Chung, Hoon T.; Cullen, David A.; Higgins, Drew; Sneed, Brian T.; Holby, Edward F.; More, Karren L.; Zelenay, Piotr

    2017-08-01

    Platinum group metal-free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)-based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H2)-air fuel cell. Herein, we demonstrate H2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. Current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater than ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The proposed catalytic active site, carbon-embedded nitrogen-coordinated iron (FeN4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.

  2. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst

    DOE PAGES

    Chung, Hoon T.; Cullen, David A.; Higgins, Drew; ...

    2017-08-04

    Platinum group metal–free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)–based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H 2)–air fuel cell. We demonstrate H 2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. In current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater thanmore » ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The catalytic active site we proposed, carbon-embedded nitrogen-coordinated iron (FeN 4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.« less

  3. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarilymore » at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.« less

  4. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation.

    PubMed

    Shields, Kaitlyn M; Tooley, John G; Petkowski, Janusz J; Wilkey, Daniel W; Garbett, Nichola C; Merchant, Michael L; Cheng, Alan; Schaner Tooley, Christine E

    2017-08-01

    A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation. © 2017 The Protein Society.

  5. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis.

    PubMed

    Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G

    1993-08-05

    The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.

  6. Characterization of Oxygen-Induced Retinopathy in Mice Carrying an Inactivating Point Mutation in the Catalytic Site of ADAM15

    PubMed Central

    Maretzky, Thorsten; Blobel, Carl P.; Guaiquil, Victor

    2014-01-01

    Purpose. Retinal neovascularization is found in diseases such as macular degeneration, diabetic retinopathy, or retinopathy of prematurity and is usually caused by alterations in oxygen supply. We have previously described that mice lacking the membrane-anchored metalloproteinase ADAM15 (a Disintegrin and Metalloprotease 15) have decreased pathological neovascularization of the retina in the oxygen-induced retinopathy (OIR) model. The main purpose of the present study was to determine the contribution of the catalytic activity of ADAM15 to OIR. Methods. To address this question, we generated knock-in mice carrying an inactivating Glutamate to Alanine (E>A) point mutation in the catalytic site of ADAM15 (Adam15E>A mice) and subjected these animals to the OIR model and a heterotopic tumor model. Moreover, we used cell-based assays to determine whether ADAM15 can process cell surface receptors involved in angiogenesis. Results. We found that pathological neovascularization in the OIR model in Adam15E>A mice was comparable to that observed in wild type mice, but tumor implantation by heterotopically injected melanoma cells was reduced. In cell-based assays, overexpressed ADAM15 could process the FGFR2iiib, but was unable to process several receptors with roles in angiogenesis. Conclusions. Collectively, these results suggest that the catalytic activity of ADAM15 is not crucial for its function in promoting pathological neovascularization in the mouse OIR model, most likely because of the very limited substrate repertoire of ADAM15. Instead, other noncatalytic functions of ADAM15 must be important for its role in the OIR model. PMID:25249606

  7. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-02-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.

  8. Active-site solvent replenishment observed during human carbonic anhydrase II catalysis.

    PubMed

    Kim, Jin Kyun; Lomelino, Carrie L; Avvaru, Balendu Sankara; Mahon, Brian P; McKenna, Robert; Park, SangYoun; Kim, Chae Un

    2018-01-01

    Human carbonic anhydrase II (hCA II) is a zinc metalloenzyme that catalyzes the reversible hydration/dehydration of CO 2 /HCO 3 - . Although hCA II has been extensively studied to investigate the proton-transfer process that occurs in the active site, its underlying mechanism is still not fully understood. Here, ultrahigh-resolution crystallographic structures of hCA II cryocooled under CO 2 pressures of 7.0 and 2.5 atm are presented. The structures reveal new intermediate solvent states of hCA II that provide crystallographic snapshots during the restoration of the proton-transfer water network in the active site. Specifically, a new intermediate water (W I ') is observed next to the previously observed intermediate water W I , and they are both stabilized by the five water molecules at the entrance to the active site (the entrance conduit). Based on these structures, a water network-restructuring mechanism is proposed, which takes place at the active site after the nucleophilic attack of OH - on CO 2 . This mechanism explains how the zinc-bound water (W Zn ) and W1 are replenished, which are directly responsible for the reconnection of the His64-mediated proton-transfer water network. This study provides the first 'physical' glimpse of how a water reservoir flows into the hCA II active site during its catalytic activity.

  9. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    PubMed

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase

    PubMed Central

    Harijan, Rajesh K.; Zoi, Ioanna; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.

    2017-01-01

    Heavy-enzyme isotope effects (15N-, 13C-, and 2H-labeled protein) explore mass-dependent vibrational modes linked to catalysis. Transition path-sampling (TPS) calculations have predicted femtosecond dynamic coupling at the catalytic site of human purine nucleoside phosphorylase (PNP). Coupling is observed in heavy PNPs, where slowed barrier crossing caused a normal heavy-enzyme isotope effect (kchem light/kchem heavy > 1.0). We used TPS to design mutant F159Y PNP, predicted to improve barrier crossing for heavy F159Y PNP, an attempt to generate a rare inverse heavy-enzyme isotope effect (kchem light/kchem heavy < 1.0). Steady-state kinetic comparison of light and heavy native PNPs to light and heavy F159Y PNPs revealed similar kinetic properties. Pre–steady-state chemistry was slowed 32-fold in F159Y PNP. Pre–steady-state chemistry compared heavy and light native and F159Y PNPs and found a normal heavy-enzyme isotope effect of 1.31 for native PNP and an inverse effect of 0.75 for F159Y PNP. Increased isotopic mass in F159Y PNP causes more efficient transition state formation. Independent validation of the inverse isotope effect for heavy F159Y PNP came from commitment to catalysis experiments. Most heavy enzymes demonstrate normal heavy-enzyme isotope effects, and F159Y PNP is a rare example of an inverse effect. Crystal structures and TPS dynamics of native and F159Y PNPs explore the catalytic-site geometry associated with these catalytic changes. Experimental validation of TPS predictions for barrier crossing establishes the connection of rapid protein dynamics and vibrational coupling to enzymatic transition state passage. PMID:28584087

  11. The Active Sites of a Rod-Shaped Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Schuster, Manfred Erwin; Huang, Zhiwei; Xu, Fei; Jin, Shifeng; Chen, Yaxin; Hua, Weiming; Su, Dang Sheng; Tang, Xingfu

    2015-06-26

    The identification of catalytically active sites (CASs) in heterogeneous catalysis is of vital importance to design and develop improved catalysts, but remains a great challenge. The CASs have been identified in the low-temperature selective catalytic reduction of nitrogen oxides by ammonia (SCR) over a hollandite manganese oxide (HMO) catalyst with a rod-shaped morphology and one-dimensional tunnels. Electron microscopy and synchrotron X-ray diffraction determine the surface and crystal structures of the one-dimensional HMO rods closed by {100} side facets and {001} top facets. A combination of X-ray absorption spectra, molecular probes with potassium and nitric oxide, and catalytic tests reveals that the CASs are located on the {100} side facets of the HMO rods rather than on the top facets or in the tunnels, and hence semi-tunnel structural motifs on the {100} facets are evidenced to be the CASs of the SCR reaction. This work paves the way to further investigate the intrinsic mechanisms of SCR reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An evolutionary analysis identifies a conserved pentapeptide stretch containing the two essential lysine residues for rice L-myo-inositol 1-phosphate synthase catalytic activity

    PubMed Central

    Basak, Papri; Maitra-Majee, Susmita; Das, Jayanta Kumar; Mukherjee, Abhishek; Ghosh Dastidar, Shubhra; Pal Choudhury, Pabitra

    2017-01-01

    A molecular evolutionary analysis of a well conserved protein helps to determine the essential amino acids in the core catalytic region. Based on the chemical properties of amino acid residues, phylogenetic analysis of a total of 172 homologous sequences of a highly conserved enzyme, L-myo-inositol 1-phosphate synthase or MIPS from evolutionarily diverse organisms was performed. This study revealed the presence of six phylogenetically conserved blocks, out of which four embrace the catalytic core of the functional protein. Further, specific amino acid modifications targeting the lysine residues, known to be important for MIPS catalysis, were performed at the catalytic site of a MIPS from monocotyledonous model plant, Oryza sativa (OsMIPS1). Following this study, OsMIPS mutants with deletion or replacement of lysine residues in the conserved blocks were made. Based on the enzyme kinetics performed on the deletion/replacement mutants, phylogenetic and structural comparison with the already established crystal structures from non-plant sources, an evolutionarily conserved peptide stretch was identified at the active pocket which contains the two most important lysine residues essential for catalytic activity. PMID:28950028

  13. Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegan, Scott D.; Rukseree, Kamolchanok; Capodagli, Glenn C.

    The class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprises one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported,more » the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Furthermore, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.« less

  14. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-09-12

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.

  15. GASS-WEB: a web server for identifying enzyme active sites based on genetic algorithms.

    PubMed

    Moraes, João P A; Pappa, Gisele L; Pires, Douglas E V; Izidoro, Sandro C

    2017-07-03

    Enzyme active sites are important and conserved functional regions of proteins whose identification can be an invaluable step toward protein function prediction. Most of the existing methods for this task are based on active site similarity and present limitations including performing only exact matches on template residues, template size restraints, despite not being capable of finding inter-domain active sites. To fill this gap, we proposed GASS-WEB, a user-friendly web server that uses GASS (Genetic Active Site Search), a method based on an evolutionary algorithm to search for similar active sites in proteins. GASS-WEB can be used under two different scenarios: (i) given a protein of interest, to match a set of specific active site templates; or (ii) given an active site template, looking for it in a database of protein structures. The method has shown to be very effective on a range of experiments and was able to correctly identify >90% of the catalogued active sites from the Catalytic Site Atlas. It also managed to achieve a Matthew correlation coefficient of 0.63 using the Critical Assessment of protein Structure Prediction (CASP 10) dataset. In our analysis, GASS was ranking fourth among 18 methods. GASS-WEB is freely available at http://gass.unifei.edu.br/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  17. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  18. Turning Biodiesel Waste Glycerol into 1,3-Propanediol: Catalytic Performance of Sulphuric acid-Activated Montmorillonite Supported Platinum Catalysts in Glycerol Hydrogenolysis.

    PubMed

    Samudrala, Shanthi Priya; Kandasamy, Shalini; Bhattacharya, Sankar

    2018-05-10

    Direct C-O hydrogenolysis of bioglycerine to produce 1,3-propanediol selectively is a vital technology that can expand the scope of biodiesel industry and green chemical production from biomass. Herein we report sulphuric acid-activated montmorillonite clay supported platinum nanoparticles as highly effective solid acid catalysts for the selective production of 1,3-propanediol from glycerol. The catalytic performances of the catalysts were investigated in the hydrogenolysis of glycerol with a fixed bed reactor under ambient pressure. The results were found promising and showed that the activation of montmorillonite by sulphuric acid incorporated Brønsted acidity in the catalyst and significantly improved the selectivity to 1,3-propanediol. The catalytic performance of different platinum loaded catalysts was examined and 2 wt% Pt/S-MMT catalyst presented superior activity among others validating 62% 1,3-propanediol selectivity at 94% glycerol conversion. The catalytic activity of 2Pt/S-MMT was systematically investigated under varying reaction parameters including reaction temperature, hydrogen flow rate, glycerol concentration, weight hourly space velocity, and contact time to derive the optimum conditions for the reaction. The catalyst stability, reusability and structure-activity correlation were also elucidated. The high performance of the catalyst could be ascribed to well disperse Pt nanoparticles immobilized on acid-activated montmorillonite, wider pore-structure and appropriate acid sites of the catalyst.

  19. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    NASA Astrophysics Data System (ADS)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  20. HIGH-THROUGHPUT IDENTIFICATION OF CATALYTIC REDOX-ACTIVE CYSTEINE RESIDUES

    EPA Science Inventory

    Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by se...

  1. Crystal Structure of the Catalytic Domain of a Serine Threonine Protein Phosphatase

    NASA Technical Reports Server (NTRS)

    Swinglel, Mark; Honkanel, Richard; Ciszak, Ewa

    2003-01-01

    Reversible phosphorylation of serine and threonine residues is a well-recognized mechanism in eukaryotic cells for the regulation of cell-cycle progression, cell growth and metabolism. Human serine/threonine phosphatases can be placed into two major families, PPP and PPM. To date the structure on one PPP family member (PPl) has been determined. Here we present the structure of a 323-residue catalytic domain of a second phosphatase belonging to the PPP family of enzyme. catalytic domain of the enzyme has been determined to 1.60Angstrom resolution and refined to R=17.5 and Rfree = 20.8%. The catalytic domain possesses a unique fold consisting of a largely monolithic structure, divisible into closely-associated helical and sheet regions. The catalytic site contains two manganese ions that are involved in substrate binding and catalysis. The enzyme crystallizes as a dimer that completely buries catalytic surfaces of both monomers, Also, the structure shows evidence of some flexibility around the active site cleft that may be related to substrate specificity of this enzyme.

  2. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    PubMed Central

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  3. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  4. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species.

    PubMed

    Zhao, Yuefang; Niu, Congwei; Wen, Xin; Xi, Zhen

    2013-04-15

    Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mapping the lipoylation site of Arabidopsis thaliana plastidial dihydrolipoamide S-acetyltransferase using mass spectrometry and site-directed mutagenesis

    USDA-ARS?s Scientific Manuscript database

    Background: The catalytic enhancement achieved by the pyruvate dehydrogenase complex (PDC) results from a combination of substrate channeling plus active-site coupling. The mechanism for active-site coupling involves lipoic acid prosthetic groups covalently attached to Lys residues in the primary ...

  6. Key feature of the catalytic cycle of TNF-α converting enzyme involves communication between distal protein sites and the enzyme catalytic core

    PubMed Central

    Solomon, Ariel; Akabayov, Barak; Frenkel, Anatoly; Milla, Marcos E.; Sagi, Irit

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal–protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design. PMID:17360351

  7. ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism.

    PubMed

    Parke, Courtney L; Wojcik, Edward J; Kim, Sunyoung; Worthylake, David K

    2010-02-19

    Motor proteins couple steps in ATP binding and hydrolysis to conformational switching both in and remote from the active site. In our kinesin.AMPPPNP crystal structure, closure of the active site results in structural transformations appropriate for microtubule binding and organizes an orthosteric two-water cluster. We conclude that a proton is shared between the lytic water, positioned for gamma-phosphate attack, and a second water that serves as a general base. To our knowledge, this is the first experimental detection of the catalytic base for any ATPase. Deprotonation of the second water by switch residues likely triggers subsequent large scale structural rearrangements. Therefore, the catalytic base is responsible for initiating nucleophilic attack of ATP and for relaying the positive charge over long distances to initiate mechanotransduction. Coordination of switch movements via sequential proton transfer along paired water clusters may be universal for nucleotide triphosphatases with conserved active sites, such as myosins and G-proteins.

  8. Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers.

    PubMed

    Domènech, Berta; Ziegler, Kharla K; Carrillo, Fernando; Muñoz, Maria; Muraviev, Dimitri N; Macanás, Jorge

    2013-05-16

    In this paper, we report the intermatrix synthesis of Ag nanoparticles in different polymeric matrices such as polyurethane foams and polyacrylonitrile or polyamide fibers. To apply this technique, the polymer must bear functional groups able to bind and retain the nanoparticle ion precursors while ions should diffuse through the matrix. Taking into account the nature of some of the chosen matrices, it was essential to try to activate the support material to obtain an acceptable value of ion exchange capacity. To evaluate the catalytic activity of the developed nanocomposites, a model catalytic reaction was carried out in batch experiments: the reduction of p-nitrophenol by sodium borohydride.

  9. Preparation of raspberry-like γ-Fe2O3/crackled nitrogen-doped carbon capsules and their application as supports to improve catalytic activity.

    PubMed

    Zhang, Junshuai; Yao, Tongjie; Zhang, Hui; Zhang, Xiao; Wu, Jie

    2016-11-10

    In this manuscript, we have introduced a novel method to improve the catalytic activity of metal nanoparticles via optimizing the support structure. To this end, raspberry-like γ-Fe 2 O 3 /crackled nitrogen-doped carbon (CNC) capsules were prepared by a two-step method. Compared with traditional magnetic capsules, in γ-Fe 2 O 3 /CNC capsules, the γ-Fe 2 O 3 nanoparticles were embedded in a CNC shell; therefore, they neither occupied the anchoring sites for metal nanoparticles nor came into contact with them, which was beneficial for increasing the metal nanoparticle loading. Numerous tiny cracks appeared on the porous CNC shell, which effectively improved the mass diffusion and transport in catalytic reactions. Additionally, the coordination interaction could be generated between the precursor metal ions and doped-nitrogen atoms in the capsule shell. With the help of these structural merits, γ-Fe 2 O 3 /CNC capsules were ideal supports for Pd nanoparticles, because they were beneficial for improving the Pd loading, reducing the nanoparticle size, increasing their dispersity and maximizing the catalytic performance of Pd nanoparticles anchored on the inner shell surface. As expected, γ-Fe 2 O 3 /CNC@Pd catalysts exhibited a dramatically enhanced catalytic activity towards hydrophilic 4-nitrophenol and hydrophobic nitrobenzene. The reaction rate constant k was compared with recent work and the corresponding reference samples. Moreover, they could be easily recycled by using a magnet and reused without an obvious loss of catalytic activity.

  10. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Heather B.; Knott, Brandon C.; Crowley, Michael F.

    In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase ( TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleavingmore » the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2S O ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less

  11. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases

    DOE PAGES

    Mayes, Heather B.; Knott, Brandon C.; Crowley, Michael F.; ...

    2016-06-01

    In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase ( TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleavingmore » the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2S O ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less

  12. Probing the catalytic roles of n2-site glutamate residues in Escherichia coli glutamine synthetase by mutagenesis.

    PubMed Central

    Witmer, M. R.; Palmieri-Young, D.; Villafranca, J. J.

    1994-01-01

    The contribution of metal ion ligand type and charge to catalysis and regulation at the lower affinity metal ion site (n2 site) of Escherichia coli glutamine synthetase (GS) was tested by mutagenesis and kinetic analysis. The 2 glutamate residues at the n2 site, E129 and E357, were changed to E129D, E129H, E357H, E357Q, and E357D, representing conservative and nonconservative alterations. Unadenylylated and fully adenylylated enzyme forms were studied. The Mn(2+)-KD values, UV-cis and fluorescence emission properties were similar for all mutants versus WTGS, except E129H. For kinetic determinations with both Mn2+ and Mg2+, nonconservative mutants (E357H, E129H, E357Q) showed lower biosynthetic activities than conservative mutants (E129D, E357D). Relative to WTGS, all the unadenylylated Mn(2+)-activated enzymes showed reduced kcat/Km values for ATP (> 7-fold) and for glutamate (> 10-fold). Of the unadenylylated Mg(2+)-activated enzymes, only E129D showed kinetic parameters competitive with WTGS, and adenylylated E129D was a 20-fold better catalyst than WTGS. We propose the n2-site metal ion activates ADP for departure in the phosphorylation of glutamate by ATP to generate gamma-glutamyl phosphate. Alteration of the charge density at this metal ion alters the transition-state energy for phosphoryl group transfer and may affect ATP binding and/or ADP release. Thus, the steady-state kinetic data suggest that modifying the charge density increases the transition-state energies for chemical steps. Importantly, the data demonstrate that each ligand position has a specialized spatial environment and the charge of the ligand modulates the catalytic steps occurring at the metal ion. The data are discussed in the context of the known X-ray structures of GS. PMID:7849593

  13. Comparative study of activated carbon, natural zeolite, and green sand supports for CuOX and ZnO sites as ozone decomposition catalyst

    NASA Astrophysics Data System (ADS)

    Azhariyah, A. S.; Pradyasti, A.; Dianty, A. G.; Bismo, S.

    2018-03-01

    This research was based on ozone decomposition in industrial environment. Ozone is harmful to human. Therefore, catalysts were made as a mask filter to decompose ozone. Comparison studies of catalyst supports were done using Granular Activated Carbon (GAC), Natural Zeolite (NZ), and Green Sand (GS). GAC showed the highest catalytic activity compared to other supports with conversion of 98%. Meanwhile, the conversion using NZ was only 77% and GS had been just 27%. GAC had the highest catalytic activity because it had the largest pore volume, which is 0.478 cm3/g. So GAC was used as catalyst supports. To have a higher conversion in ozone decomposition, GAC was impregnated with metal oxide as the active site of the catalyst. Active site comparison was made using CuOX and ZnO as the active site. Morphology, composition, and crystal phase were analyzed using SEM-EDX, XRF, and XRD methods. Mask filter, which contained catalysts for ozone decomposition, was tested using a fixed bed reactor at room temperature and atmospheric pressure. The result of conversion was analyzed using iodometric method. CuOX/GAC and ZnO/GAC 2%-w showed the highest catalytic activity and conversion reached 100%. From the durability test, CuOX/GAC 2%-w was better than ZnO/GAC 2%-w because the conversion of ozone to oxygen reached 100% with the lowest conversion was 70% for over eight hours.

  14. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization.

    PubMed

    Lenz, Stefan A P; Wetmore, Stacey D

    2016-02-09

    Human alkyladenine DNA glycosylase (AAG) functions as part of the base excision repair (BER) pathway by cleaving the N-glycosidic bond that connects nucleobases to the sugar-phosphate backbone in DNA. AAG targets a range of structurally diverse purine lesions using nonspecific DNA-protein π-π interactions. Nevertheless, the enzyme discriminates against the natural purines and is inhibited by pyrimidine lesions. This study uses molecular dynamics simulations and seven different neutral or charged substrates, inhibitors, or canonical purines to probe how the bound nucleotide affects the conformation of the AAG active site, and the role of active site residues in dictating substrate selectivity. The neutral substrates form a common DNA-protein hydrogen bond, which results in a consistent active site conformation that maximizes π-π interactions between the aromatic residues and the nucleobase required for catalysis. Nevertheless, subtle differences in DNA-enzyme contacts for different neutral substrates explain observed differential catalytic efficiencies. In contrast, the exocyclic amino groups of the natural purines clash with active site residues, which leads to catalytically incompetent DNA-enzyme complexes due to significant reorganization of active site water. Specifically, water resides between the A nucleobase and the active site aromatic amino acids required for catalysis, while a shift in the position of the general base (E125) repositions (potentially nucleophilic) water away from G. Despite sharing common amino groups, the methyl substituents in cationic purine lesions (3MeA and 7MeG) exhibit repulsion with active site residues, which repositions the damaged bases in the active site in a manner that promotes their excision. Overall, we provide a structural explanation for the diverse yet discriminatory substrate selectivity of AAG and rationalize key kinetic data available for the enzyme. Specifically, our results highlight the complex interplay of many

  15. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1993-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the bi.

  16. Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation

    DOE PAGES

    Personick, Michelle L.; Zugic, Branko; Biener, Monika M.; ...

    2015-05-28

    We report a new method for facile and reproducible activation of nanoporous gold (npAu) materials of different forms for the catalytic selective partial oxidation of alcohols under ambient pressure, steady flow conditions. This method, based on the surface cleaning of npAu ingots with ozone to remove carbon documented in ultrahigh vacuum conditions, produces active npAu catalysts from ingots, foils, and shells by flowing an ozone/dioxygen mixture over the catalyst at 150 °C, followed by a temperature ramp from 50 to 150 °C in a flowing stream of 10% methanol and 20% oxygen. With this treatment, all three materials (ingots, foils,more » and shells) can be reproducibly activated, despite potential carbonaceous poisons resulting from their synthesis, and are highly active for the selective oxidation of primary alcohols over prolonged periods of time. The npAu materials activated in this manner exhibit catalytic behavior substantially different from those activated under different conditions previously reported. Once activated in this manner, they can be stored and easily reactivated by flow of reactant gases at 150 °C for a few hours. They possess improved selectivity for the coupling of higher alcohols, such as 1-butanol, and are not active for carbon monoxide oxidation. As a result, this ozone-treated npAu is a functionally new catalytic material.« less

  17. Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Personick, Michelle L.; Zugic, Branko; Biener, Monika M.

    We report a new method for facile and reproducible activation of nanoporous gold (npAu) materials of different forms for the catalytic selective partial oxidation of alcohols under ambient pressure, steady flow conditions. This method, based on the surface cleaning of npAu ingots with ozone to remove carbon documented in ultrahigh vacuum conditions, produces active npAu catalysts from ingots, foils, and shells by flowing an ozone/dioxygen mixture over the catalyst at 150 °C, followed by a temperature ramp from 50 to 150 °C in a flowing stream of 10% methanol and 20% oxygen. With this treatment, all three materials (ingots, foils,more » and shells) can be reproducibly activated, despite potential carbonaceous poisons resulting from their synthesis, and are highly active for the selective oxidation of primary alcohols over prolonged periods of time. The npAu materials activated in this manner exhibit catalytic behavior substantially different from those activated under different conditions previously reported. Once activated in this manner, they can be stored and easily reactivated by flow of reactant gases at 150 °C for a few hours. They possess improved selectivity for the coupling of higher alcohols, such as 1-butanol, and are not active for carbon monoxide oxidation. As a result, this ozone-treated npAu is a functionally new catalytic material.« less

  18. Enhanced enzyme kinetic stability by increasing rigidity within the active site.

    PubMed

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-03-14

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.

  19. Comparison of Two Preparation Methods on Catalytic Activity and Selectivity of Ru-Mo/HZSM5 for Methane Dehydroaromatization

    DOE PAGES

    Petkovic, Lucia M.; Ginosar, Daniel M.

    2014-01-01

    Catalytic performance of Mo/HZSM5 and Ru-Mo/HZSM5 catalysts prepared by vaporization-deposition of molybdenum trioxide and impregnation with ammonium heptamolybdate was analyzed in terms of catalyst activity and selectivity, nitrogen physisorption analyses, temperature-programmed oxidation of carbonaceous residues, and temperature-programmed reduction. Vaporization-deposition rendered the catalyst more selective to ethylene and coke than the catalyst prepared by impregnation. This result was assigned to lower interaction of molybdenum carbide with the zeolite acidic sites.

  20. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  1. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon.

    PubMed

    Li, Laisheng; Ye, Weiying; Zhang, Qiuyun; Sun, Fengqiang; Lu, Ping; Li, Xukai

    2009-10-15

    Cerium supported on activated carbon (Ce/AC), which was prepared by dipping method, was employed to degrade dimethyl phthalate (DMP) in water. The mineral matter present in the activated carbon positively contributes to its activity to enhance DMP ozonation process. A higher dipping Ce(NO(3))(3) concentration and calcination process increase its microporous volume and surface area, and decreases its exterior surface area. The catalytic activity reaches optimal when 0.2% (w/w) cerium is deposited on activated carbon. Ce/AC catalyst was characterized by XRD, SEM and BET. The presence of either activated carbon or Ce/AC catalyst considerably improves their degradation and mineralization in the ozonation of DMP. During the ozonation (50mg/h ozone flow rate) of a 30 mg/L DMP (initial pH 5.0) with the presence of Ce/AC catalyst, TOC removal rate reaches 68% at 60 min oxidation time, 48% using activated carbon as catalyst, only 22% with ozonation alone. The presence of tert-butanol (a well known OH radical scavenger) strongly inhibits DMP degradation by activated carbon or Ce/AC catalytic ozonation. TOC removal rate follows the second-order kinetics model well. In the ozonation of DMP with 50mg/h ozone flow rate, its mineralization rate constant with the presence of Ce/AC catalyst is 2.5 times higher than that of activated carbon, 7.5 times higher than that of O(3) alone. Ce/AC catalyst shows the better catalytic activity and stability based on 780 min sequential reaction in the ozonation of DMP. Ce/AC was a promising catalyst for ozonizing organic pollutants in the aqueous solution.

  2. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu-Cun; Friend, C. M.; Fushimi, Rebecca

    The activation of molecular O 2as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O 2activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O 2dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O 2dissociationmore » is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O 2dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.« less

  3. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu-Cun; Friend, C. M.; Fushimi, Rebecca

    2016-01-01

    The activation of molecular O 2as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O 2activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O 2dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O 2dissociationmore » is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O 2dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.« less

  4. LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 - 2014).

    PubMed

    Demeulemeester, Jonas; Chaltin, Patrick; Marchand, Arnaud; De Maeyer, Marc; Debyser, Zeger; Christ, Frauke

    2014-06-01

    Integration of the viral genome into the host cell chromatin is a central step in the replication cycle of the HIV. Blocking the viral integrase (IN) enzyme therefore provides an attractive therapeutic strategy, as evidenced by the recent clinical approval of three IN strand transfer inhibitors. Viral resistance and cross-resistance among these inhibitors, however, warrant the search for compounds targeting HIV integration through alternative mechanisms of action. The most potent class of allosteric IN inhibitors was independently identified at the University of Leuven, Belgium, and at Boehringer Ingelheim, Canada. These compounds, coined LEDGINs (after the lens epithelium-derived growth factor/p75 cofactor binding pocket on IN) or non-catalytic site IN inhibitors (NCINIs) by the respective groups, have shown remarkable antiviral activity. This review provides a brief introduction to the compound class and discusses the recent patent literature (2006 to the present). LEDGINs are still early in development. Trials with clinical candidate BI-224436 were put on hold despite promising results. Literature, however, reveals that almost all major pharmaceutical companies active in the treatment of HIV/AIDS have taken a significant interest in this class. As a result, several of these inhibitors may soon enter clinical trials.

  5. Characterisation of [Cu4S], the catalytic site in nitrous oxide reductase, by EPR spectroscopy.

    PubMed

    Oganesyan, Vasily S; Rasmussen, Tim; Fairhurst, Shirley; Thomson, Andrew J

    2004-04-07

    The enzyme nitrous oxide reductase (N(2)OR) has a unique tetranuclear copper centre [Cu(4)S], called Cu(Z), at the catalytic site for the two-electron reduction of N(2)O to N(2). The X- and Q-band EPR spectra have been recorded from two forms of the catalytic site of the enzyme N(2)OR from Paracoccus pantotrophus, namely, a form prepared anaerobically, Cu(Z), that undergoes a one-electron redox cycle and Cu(Z)*, prepared aerobically, which cannot be redox cycled. The spectra of both species are axial with that of Cu(Z) showing a rich hyperfine splitting in the g||-region at X-band. DFT calculations were performed to gain insight into the electronic configuration and ground-state properties of Cu(Z) and to calculate EPR parameters. The results for the oxidation state [Cu(+1)(3)Cu(+2)(1)S](3+) are in good agreement with values obtained from the fitting of experimental spectra, confirming the absolute oxidation state of Cu(Z). The unpaired spin density in this configuration is delocalised over four copper ions, thus, Cu(I) 20.1%, Cu(II) 9.5%, Cu(III) 4.8% and Cu(IV) 9.2%, the mu(4)-sulfide ion and oxygen ligand. The three copper ions carrying the highest spin density plus the sulfide ion lie approximately in the same plane while the fourth copper ion is perpendicular to this plane and carries only 4.8% spin density. It is suggested that the atoms in this plane represent the catalytic core of Cu(Z), allowing electron redistribution within the plane during interaction with the substrate, N(2)O.

  6. Detection of human Dicer and Argonaute 2 catalytic activity

    PubMed Central

    Perron, Marjorie P.; Landry, Patricia; Plante, Isabelle; Provost, Patrick

    2013-01-01

    The microRNA (miRNA)-guided RNA silencing pathway is a central and well-defined cellular process involved in messenger RNA (mRNA) translational control. This complex regulatory process is achieved by a well orchestrated machinery composed of a relatively few protein components, among which the ribonuclease III (RNase III) Dicer and Argonaute 2 (Ago2) play a central role. These two proteins are essential and it is of particular interest to measure and detect their catalytic activity under various situations and/or conditions. In this chapter, we describe different protocols that aim to study and determine the catalytic activity of Dicer and Ago2 in cell extracts, immune complexes and size-fractionated cell extracts. Another protocol aimed at assessing miRNA binding to Ago2 is also described. These experimental approaches are likely to be useful to researchers investigating the main steps of miRNA biogenesis and function in human health and diseases. PMID:21528451

  7. Coupling between Catalytic Loop Motions and Enzyme Global Dynamics

    PubMed Central

    Kurkcuoglu, Zeynep; Bakan, Ahmet; Kocaman, Duygu; Bahar, Ivet; Doruker, Pemra

    2012-01-01

    Catalytic loop motions facilitate substrate recognition and binding in many enzymes. While these motions appear to be highly flexible, their functional significance suggests that structure-encoded preferences may play a role in selecting particular mechanisms of motions. We performed an extensive study on a set of enzymes to assess whether the collective/global dynamics, as predicted by elastic network models (ENMs), facilitates or even defines the local motions undergone by functional loops. Our dataset includes a total of 117 crystal structures for ten enzymes of different sizes and oligomerization states. Each enzyme contains a specific functional/catalytic loop (10–21 residues long) that closes over the active site during catalysis. Principal component analysis (PCA) of the available crystal structures (including apo and ligand-bound forms) for each enzyme revealed the dominant conformational changes taking place in these loops upon substrate binding. These experimentally observed loop reconfigurations are shown to be predominantly driven by energetically favored modes of motion intrinsically accessible to the enzyme in the absence of its substrate. The analysis suggests that robust global modes cooperatively defined by the overall enzyme architecture also entail local components that assist in suitable opening/closure of the catalytic loop over the active site. PMID:23028297

  8. Well-Defined Metal-O6 in Metal-Catecholates as a Novel Active Site for Oxygen Electroreduction.

    PubMed

    Liu, Xuan-He; Hu, Wei-Li; Jiang, Wen-Jie; Yang, Ya-Wen; Niu, Shuai; Sun, Bing; Wu, Jing; Hu, Jin-Song

    2017-08-30

    Metal-nitrogen coordination sites, M-N x (M = Fe, Co, Ni, etc.), have shown great potential to replace platinum group materials as electrocatalysts for oxygen reduction reaction (ORR). However, the real active site in M-N x is still vague to date due to their complicated structure and composition. It is therefore highly desirable but challenging to develop ORR catalysts with novel and clear active sites, which could meet the needs of comprehensive understanding of structure-function relationships and explore new cost-effective and efficient ORR electrocatalysts. Herein, well-defined M-O 6 coordination in metal-catecholates (M-CATs, M = Ni or Co) is discovered to be catalytically active for ORR via a four-electron-dominated pathway. In view of no pyrolysis involved and unambiguous crystalline structure of M-CATs, the M-O 6 octahedral coordination site with distinct structure is determined as a new type of active site for ORR. These findings extend the scope of metal-nonmetal coordination as an active site for ORR and pave a way for bottom-up design of novel electrocatalysts containing M-O 6 coordination.

  9. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    PubMed

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  10. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Kimi, Melody; Jaidie, Mohd Muazmil Hadi; Pang, Suh Cem

    2018-01-01

    A series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5 and 1) nanoparticles supported on activated carbon (AC) were prepared by deposition-precipitation method for the oxidation of benzyl alcohol to benzaldehyde using hydrogen peroxide as oxidising agent. Analyses by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) confirmed that Cu and Ni was successfully added on the surface of activated carbon. CuNi1/AC showed the best catalytic activity for the oxidation of benzyl alcohols to the corresponding aldehyde within a short reaction period at 80 °C. The catalytic performance is significantly enhanced by the addition of equal amount of Ni as compared to the monometallic counterpart. This result indicates the synergistic effect between Ni and Cu particles in the catalytic oxidation reaction.

  11. Effects of protonation state of Asp181 and position of active site water molecules on the conformation of PTP1B.

    PubMed

    Ozcan, Ahmet; Olmez, Elif Ozkirimli; Alakent, Burak

    2013-05-01

    In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed ) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen ) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. Copyright © 2013 Wiley Periodicals, Inc.

  12. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  13. Catalytic activation of carbon–carbon bonds in cyclopentanones

    PubMed Central

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2017-01-01

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon–carbon single bonds (C–C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds1–13. The challenge in achieving such activation is the kinetic inertness of C–C bonds and the relative weakness of newly formed carbon–metal bonds6,14. The most common tactic starts with a three- or four-membered carbon-ring system9–13, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C–C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C–C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C–C bond can be activated; this is followed by activation of a carbon–hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones—a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate. PMID:27806379

  14. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons.

    PubMed

    Huang, Hsu-Hui; Lu, Ming-Chun; Chen, Jong-Nan; Lee, Cheng-Te

    2003-06-01

    The objective of this research was to examine the heterogeneous catalytic decomposition of H(2)O(2) and 4-chlorophenol (4-CP) in the presence of activated carbons modified with chemical pretreatments. The decomposition of H(2)O(2) was suppressed significantly by the change of surface properties including the decreased pH(pzc) modified with oxidizing agent and the reduced active sites occupied by the adsorption of 4-CP. The apparent reaction rate of H(2)O(2) decomposition was dominated by the intrinsic reaction rates on the surface of activated carbon rather than the mass transfer rate of H(2)O(2) to the solid surface. By the detection of chloride ion in suspension, the reduction of 4-CP was not only attributed to the advanced adsorption but also the degradation of 4-CP. The catalytic activity toward 4-CP for the activated carbon followed the inverse sequence of the activity toward H(2)O(2), suggesting that acidic surface functional group could retard the H(2)O(2) loss and reduce the effect of surface scavenging resulting in the increase of the 4-CP degradation efficiency. Few effective radicals were expected to react with 4-CP for the strong effect of surface scavenging, which could explain why the degradation rate of 4-CP observed in this study was so slow and the dechlorination efficiency was independent of the 4-CP concentration in aqueous phase. Results show that the combination of H(2)O(2) and granular activated carbon (GAC) did increase the total removal of 4-CP than that by single GAC adsorption.

  15. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lulu; Nguyen, Van Hoa; Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electronmore » microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.« less

  16. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation.

    PubMed

    Friedt, Jenna; Leavens, Fern M V; Mercier, Evan; Wieden, Hans-Joachim; Kothe, Ute

    2014-04-01

    Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB's catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism.

  17. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation

    PubMed Central

    Friedt, Jenna; Leavens, Fern M. V.; Mercier, Evan; Wieden, Hans-Joachim; Kothe, Ute

    2014-01-01

    Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB’s catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism. PMID:24371284

  18. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.

  19. A Cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases.

    PubMed

    Roussel, Alain; Amara, Sawsan; Nyyssölä, Antti; Mateos-Diaz, Eduardo; Blangy, Stéphanie; Kontkanen, Hanna; Westerholm-Parvinen, Ann; Carrière, Frédéric; Cambillau, Christian

    2014-11-11

    Cutinases belong to the α/β-hydrolase fold family of enzymes and degrade cutin and various esters, including triglycerides, phospholipids and galactolipids. Cutinases are able to degrade aggregated and soluble substrates because, in contrast with true lipases, they do not have a lid covering their catalytic machinery. We report here the structure of a cutinase from the fungus Trichoderma reesei (Tr) in native and inhibitor-bound conformations, along with its enzymatic characterization. A rare characteristic of Tr cutinase is its optimal activity at acidic pH. Furthermore, Tr cutinase, in contrast with classical cutinases, possesses a lid covering its active site and requires the presence of detergents for activity. In addition to the presence of the lid, the core of the Tr enzyme is very similar to other cutinase cores, with a central five-stranded β-sheet covered by helices on either side. The catalytic residues form a catalytic triad involving Ser164, His229 and Asp216 that is covered by the two N-terminal helices, which form the lid. This lid opens in the presence of surfactants, such as β-octylglucoside, and uncovers the catalytic crevice, allowing a C11Y4 phosphonate inhibitor to bind to the catalytic serine. Taken together, these results reveal Tr cutinase to be a member of a new group of lipolytic enzymes resembling cutinases but with kinetic and structural features of true lipases and a heightened specificity for long-chain triglycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Brown spider phospholipase-D containing a conservative mutation (D233E) in the catalytic site: identification and functional characterization.

    PubMed

    Vuitika, Larissa; Gremski, Luiza Helena; Belisário-Ferrari, Matheus Regis; Chaves-Moreira, Daniele; Ferrer, Valéria Pereira; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2013-11-01

    Brown spider (Loxosceles genus) bites have been reported worldwide. The venom contains a complex composition of several toxins, including phospholipases-D. Native or recombinant phospholipase-D toxins induce cutaneous and systemic loxoscelism, particularly necrotic lesions, inflammatory response, renal failure, and hematological disturbances. Herein, we describe the cloning, heterologous expression and purification of a novel phospholipase-D toxin, LiRecDT7 in reference to six other previously described in phospholipase-D toxin family. The complete cDNA sequence of this novel brown spider phospholipase-D isoform was obtained and the calculated molecular mass of the predicted mature protein is 34.4 kDa. Similarity analyses revealed that LiRecDT7 is homologous to the other dermonecrotic toxin family members particularly to LiRecDT6, sharing 71% sequence identity. LiRecDT7 possesses the conserved amino acid residues involved in catalysis except for a conservative mutation (D233E) in the catalytic site. Purified LiRecDT7 was detected as a soluble 36 kDa protein using anti-whole venom and anti-LiRecDT1 sera, indicating immunological cross-reactivity and evidencing sequence-epitopes identities similar to those of other phospholipase-D family members. Also, LiRecDT7 exhibits sphingomyelinase activity in a concentration dependent-manner and induces experimental skin lesions with swelling, erythema and dermonecrosis. In addition, LiRecDT7 induced a massive inflammatory response in rabbit skin dermis, which is a hallmark of brown spider venom phospholipase-D toxins. Moreover, LiRecDT7 induced in vitro hemolysis in human erythrocytes and increased blood vessel permeability. These features suggest that this novel member of the brown spider venom phospholipase-D family, which naturally contains a mutation (D233E) in the catalytic site, could be useful for future structural and functional studies concerning loxoscelism and lipid biochemistry. 1- Novel brown spider

  1. Real-Time Visualization of Active Species in a Single-Site Metal–Organic Framework Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Sizhuo; Pattengale, Brian; Lee, Sungsik

    In this work, we report a new single-site photocatalyst (Co-Ru-UIO- 67(bpy)) based on a metal-organic framework platform with incorporated molecular photosensitizer and catalyst. We show that this catalyst not only demonstrates exceptional activity for light-driven H2 production but also can be recycled without loss of activity. Using the combination of optical transient absorption spectroscopy and in situ X-ray absorption spectroscopy, we not only captured the key CoI intermediate species formed after ultrafast charge transfer from the incorporated photosensitizer but also identified the rate-limiting step in the catalytic cycle, providing insight into the catalysis mechanism of these single-site metal-organic framework photocatalysts.

  2. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant

    PubMed Central

    Hamasy, A; Wang, Q; Blomberg, K E M; Mohammad, D K; Yu, L; Vihinen, M; Berglöf, A; Smith, C I E

    2017-01-01

    Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance. PMID:27282255

  3. Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region.

    PubMed

    Pandey, Bharati; Grover, Sonam; Goyal, Sukriti; Kumari, Anchala; Singh, Aditi; Jamal, Salma; Kaur, Jagdeep; Grover, Abhinav

    2018-01-17

    The enzyme Pantothenate synthetase (PS) represents a potential drug target in Mycobacterium tuberculosis. Its X-ray crystallographic structure has demonstrated the significance and importance of conserved active site residues including His44, His47, Asn69, Gln72, Lys160 and Gln164 in substrate binding and formation of pantoyl adenylate intermediate. In the current study, molecular mechanism of decreased affinity of the enzyme for ATP caused by alanine mutations was investigated using molecular dynamics (MD) simulations and free energy calculations. A total of seven systems including wild-type + ATP, H44A + ATP, H47A + ATP, N69A + ATP, Q72A + ATP, K160A + ATP and Q164A + ATP were subjected to 50 ns MD simulations. Docking score, MM-GBSA and interaction profile analysis showed weak interactions between ATP (substrate) and PS (enzyme) in H47A and H160A mutants as compared to wild-type, leading to reduced protein catalytic activity. However, principal component analysis (PCA) and free energy landscape (FEL) analysis revealed that ATP was strongly bound to the catalytic core of the wild-type, limiting its movement to form a stable complex as compared to mutants. The study will give insight about ATP binding to the PS at the atomic level and will facilitate in designing of non-reactive analogue of pantoyl adenylate which will act as a specific inhibitor for PS.

  4. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    PubMed Central

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  5. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    PubMed

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  6. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-,more » and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.« less

  7. Molecular imprint of enzyme active site by camel nanobodies: rapid and efficient approach to produce abzymes with alliinase activity.

    PubMed

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-04-20

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach.

  8. Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation

    DOE PAGES

    Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...

    2017-01-17

    Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less

  9. Structure of the catalytic domain of the colistin resistance enzyme MCR-1

    DOE PAGES

    Stojanoski, Vlatko; Sankaran, Banumathi; Prasad, B. V. Venkataram; ...

    2016-09-21

    Due to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity. The structure of the catalytic domain of MCR-1 at 1.32 Å reveals the active site is similar to that of relatedmore » phosphoethanolamine transferases. The putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain.« less

  10. Effect of preparation procedures on catalytic activity and selectivity of copper-based mixed oxides in selective catalytic oxidation of ammonia into nitrogen and water vapour

    NASA Astrophysics Data System (ADS)

    Jabłońska, Magdalena; Nocuń, Marek; Gołąbek, Kinga; Palkovits, Regina

    2017-11-01

    The selective oxidation of ammonia into nitrogen and water vapour (NH3-SCO) was studied over Cu-Mg(Zn)-Al-(Zr) mixed metal oxides, obtained by coprecipitation and their subsequent calcination. The effect of acid-base properties of Cu-Mg-Al-Ox on catalytic activity was investigated by changing the Mg/Al molar ratio. Other Cu-containing oxides were prepared by rehydration of calcined Mg-Al hydrotalcite-like compounds or thermal decomposition of metal nitrate precursors. XRD, BET, NH3-TPD, H2-TPR, XPS, FTIR with adsorption of pyridine and CO as well as TEM techniques were used for catalysts characterization. The results of catalytic tests revealed a crucial role of easily reducible highly dispersed copper oxide species to obtain enhanced activity and N2 selectivity in NH3-SCO. The selective catalytic reduction of NO by NH3 (NH3-SCR) and in situ DRIFT of NH3 sorption indicated that NH3-SCO proceeds according to the internal selective catalytic reduction mechanism (i-SCR).

  11. Non-active site mutation (Q123A) in New Delhi metallo-β-lactamase (NDM-1) enhanced its enzyme activity.

    PubMed

    Ali, Abid; Azam, Mohd W; Khan, Asad U

    2018-06-01

    New Delhi metallo β-lactamase-1 is one of the carbapenemases, causing hydrolysis of almost all β-lactamase antibiotics. Seventeen different NDM variants have been reported so far, they varied in their sequences either by single or multiple amino acid substitutions. Hence, it is important to understand its structural and functional relation. In the earlier studies role of active site residues has been studied but non-active site residues has not studied in detail. Therefore, we have initiated to further comprehend its structure and function relation by mutating some of its non-active site residues. A laboratory mutant of NDM-1 was generated by PCR-based site-directed mutagenesis, replacing Q to A at 123 position. The MICs of imipenem and meropenem for NDM-1 Q123A were found increased by 2 fold as compare to wild type and so the hydrolytic activity was enhanced (Kcat/Km) as compared to NDM-1 wild type. GOLD fitness scores were also found in favour of kinetics data. Secondary structure for α-helical content was determined by Far-UV circular dichroism (CD), which showed significant conformational changes. We conclude a noteworthy role of non-active-site amino acid residues in the catalytic activity of NDM-1. This study also provides an insight of emergence of new variants through natural evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Analysis of the activation of acetylcholinesterase by carbon nanoparticles using a monolithic immobilized enzyme microreactor: role of the water molecules in the active site gorge.

    PubMed

    Ibrahim, Firas; Andre, Claire; Iutzeler, Anne; Guillaume, Yves Claude

    2013-10-01

    A biochromatographic system was used to study the direct effect of carbon nanoparticles (CNPs) on the acetylcholinesterase (AChE) activity. The AChE enzyme was covalently immobilized on a monolithic CIM-disk via its NH2 residues. Our results showed an increase in the AChE activity in presence of CNPs. The catalytic constant (k(cat)) was increased while the Michaelis constant (K(m)) was slightly decreased. This indicated an increase in the enzyme efficiency with increase of the substrate affinity to the active site. The thermodynamic data of the activation mechanism of the enzyme, i.e. ΔH* and ΔS*, showed no change in the substrate interaction mechanism with the anionic binding site. The increase of the enthalpy (ΔH*) and the entropy (ΔS*) with decrease in the free energy of activation (Ea) was related to structural conformation change in the active site gorge. This affected the stability of water molecules in the active site gorge and facilitated water displacement by substrate for entering to the active site of the enzyme.

  13. Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria–Zirconia Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Christopher D.; Lu, Li; Jia, Yue

    Biomineralization is an intriguing approach to the synthesis of functional inorganic materials for energy applications whereby biological systems are engineered to mineralize inorganic materials and control their structure over multiple length scales under mild reaction conditions. Herein we demonstrate a single-enzyme-mediated biomineralization route to synthesize crystalline, catalytically active, quantum-confined ceria (CeO2–x) and ceria–zirconia (Ce1–yZryO2–x) nanocrystals for application as environmental catalysts. In contrast to typical anthropogenic synthesis routes, the crystalline oxide nanoparticles are formed at room temperature from an otherwise inert aqueous solution without the addition of a precipitant or additional reactant. An engineered form of silicatein, rCeSi, as a singlemore » enzyme not only catalyzes the direct biomineralization of the nanocrystalline oxides but also serves as a templating agent to control their morphological structure. The biomineralized nanocrystals of less than 3 nm in diameter are catalytically active toward carbon monoxide oxidation following an oxidative annealing step to remove carbonaceous residue. The introduction of zirconia into the nanocrystals leads to an increase in Ce(III) concentration, associated catalytic activity, and the thermal stability of the nanocrystals.« less

  14. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  15. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE PAGES

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert; ...

    2018-03-15

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  16. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase

    PubMed Central

    2012-01-01

    Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop

  17. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity.

    PubMed

    Kumar, Atul; Chaugule, Viduth K; Condos, Tara E C; Barber, Kathryn R; Johnson, Clare; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Knebel, Axel; Shaw, Gary S; Walden, Helen

    2017-05-01

    RING-between-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR ligase is Parkin, mutations in which lead to early-onset hereditary Parkinsonism. Parkin and other RBR ligases share a catalytic RBR module but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during Parkin activation. However, current data on active RBR ligases reflect the absence of regulatory domains. Therefore, it remains unclear how individual RBR ligases are activated, and whether they share a common mechanism. We now report the crystal structure of a human Parkin-phosphoubiquitin complex, which shows that phosphoubiquitin binding induces movement in the 'in-between RING' (IBR) domain to reveal a cryptic ubiquitin-binding site. Mutation of this site negatively affects Parkin's activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, which suggests a role for interdomain association in the RBR ligase mechanism.

  18. Catalytic bioreactors and methods of using same

    DOEpatents

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  19. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  20. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1.

    PubMed

    Blaha-Nelson, David; Krüger, Dennis M; Szeler, Klaudia; Ben-David, Moshe; Kamerlin, Shina Caroline Lynn

    2017-01-25

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70-81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1's lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1's lactonase activity is minimal, whereas the k cat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1's active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar "gating loop" or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates.

  1. MgATP-concentration dependence of protection of yeast vacuolar V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole supports a bi-site catalytic mechanism of ATP hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milgrom, Elena M.; Milgrom, Yakov M., E-mail: milgromy@upstate.edu

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer MgATP protects V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Black-Right-Pointing-Pointer V-ATPase activity saturation with MgATP is not sufficient for complete protection. Black-Right-Pointing-Pointer The results support a bi-site catalytic mechanism for V-ATPase. -- Abstract: Catalytic site occupancy of the yeast vacuolar V-ATPase during ATP hydrolysis in the presence of an ATP-regenerating system was probed using sensitivity of the enzyme to inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). The results show that, regardless of the presence or absence of the proton-motive force across the vacuolar membrane, saturation of V-ATPase activity at increasing MgATP concentrations is accompanied by only partial protection of the enzyme from inhibitionmore » by NBD-Cl. Both in the presence and absence of an uncoupler, complete protection of V-ATPase from inhibition by NBD-Cl requires MgATP concentrations that are significantly higher than those expected from the K{sub m} values for MgATP. The results are inconsistent with a tri-site model and support a bi-site model for a mechanism of ATP hydrolysis by V-ATPase.« less

  2. The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations.

    PubMed

    Mlýnský, Vojtěch; Walter, Nils G; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2015-01-07

    The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H(+) in the active site, which acts as the general acid, and a partially hydrated Mg(2+) ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with a distinct position and coordination of the catalytically important active site Mg(2+) ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal mol(-1), indicating that the specific position of the Mg(2+) ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2'-OH) nucleophile and the nucleophilic attack of the resulting U-1(2'-O(-)) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimate the pKa of the U-1(2'-OH) group to range from 8.8 to 11.2, suggesting that it is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg(2+) ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg(2+) ion, facilitate deprotonation and activation of the 2'-OH nucleophile.

  3. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity

    PubMed Central

    Yang, Guang; Yao, Hua; Mozzicafreddo, Matteo; Ballarini, Patrizia; Pucciarelli, Sandra

    2017-01-01

    ABSTRACT The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii (EfAmy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, EfAmy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active EfAmy with improved thermostability and catalytic efficiency at low temperatures. We engineered two EfAmy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of EfAmy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the

  4. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.

    PubMed

    Yang, Guang; Yao, Hua; Mozzicafreddo, Matteo; Ballarini, Patrizia; Pucciarelli, Sandra; Miceli, Cristina

    2017-07-01

    The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii ( Ef Amy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, Ef Amy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active Ef Amy with improved thermostability and catalytic efficiency at low temperatures. We engineered two Ef Amy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of Ef Amy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the

  5. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes

    PubMed Central

    Jack, Benjamin R.; Meyer, Austin G.; Echave, Julian; Wilke, Claus O.

    2016-01-01

    Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein–protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes. PMID:27138088

  6. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site

    PubMed Central

    Stafford, Kate A.; Palmer III, Arthur G.

    2014-01-01

    Ribonuclease H1 (RNase H) enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold. PMID:25075292

  7. On the dynamical nature of the active center in a single-site photocatalyst visualized by 4D ultrafast electron microscopy

    PubMed Central

    Yoo, Byung-Kuk; Su, Zixue; Thomas, John Meurig; Zewail, Ahmed H.

    2016-01-01

    Understanding the dynamical nature of the catalytic active site embedded in complex systems at the atomic level is critical to developing efficient photocatalytic materials. Here, we report, using 4D ultrafast electron microscopy, the spatiotemporal behaviors of titanium and oxygen in a titanosilicate catalytic material. The observed changes in Bragg diffraction intensity with time at the specific lattice planes, and with a tilted geometry, provide the relaxation pathway: the Ti4+=O2− double bond transformation to a Ti3+−O1− single bond via the individual atomic displacements of the titanium and the apical oxygen. The dilation of the double bond is up to 0.8 Å and occurs on the femtosecond time scale. These findings suggest the direct catalytic involvement of the Ti3+−O1− local structure, the significance of nonthermal processes at the reactive site, and the efficient photo-induced electron transfer that plays a pivotal role in many photocatalytic reactions. PMID:26729878

  8. Unique Kinase Catalytic Mechanism of AceK with a Single Magnesium Ion

    PubMed Central

    Li, Quanjie; Zheng, Jimin; Tan, Hongwei; Li, Xichen; Chen, Guangju; Jia, Zongchao

    2013-01-01

    Isocitrate dehydrogenase kinase/phosphatase (AceK) is the founding member of the protein phosphorylation system in prokaryotes. Based on the novel and unique structural characteristics of AceK recently uncovered, we sought to understand its kinase reaction mechanism, along with other features involved in the phosphotransfer process. Herein we report density functional theory QM calculations of the mechanism of the phosphotransfer reaction catalysed by AceK. The transition states located by the QM calculations indicate that the phosphorylation reaction, catalysed by AceK, follows a dissociative mechanism with Asp457 serving as the catalytic base to accept the proton delivered by the substrate. Our results also revealed that AceK prefers a single Mg2+-containing active site in the phosphotransfer reaction. The catalytic roles of conserved residues in the active site are discussed. PMID:23977203

  9. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution

    PubMed Central

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-01-01

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525

  10. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution.

    PubMed

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-10-12

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co(3+/4+) ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.

  11. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    DOE PAGES

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; ...

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less

  12. Site-Specific Measurement of Water Dynamics in the Substrate Pocket of Ketosteroid Isomerase Using Time-Resolved Vibrational Spectroscopy

    PubMed Central

    Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.

    2012-01-01

    Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297

  13. Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.

    2014-04-01

    Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.

  14. Relevance of Local Flexibility Near the Active Site for Enzymatic Catalysis: Biochemical Characterization and Engineering of Cellulase Cel5A From Bacillus agaradherans.

    PubMed

    Saavedra, Juan M; Azócar, Mauricio A; Rodríguez, Vida; Ramírez-Sarmiento, César A; Andrews, Barbara A; Asenjo, Juan A; Parra, Loreto P

    2018-03-25

    Detailed molecular mechanisms underpinning enzymatic reactions are still a central problem in biochemistry. The need for active site flexibility to sustain catalytic activity constitutes a notion of wide acceptance, although its direct influence remains to be fully understood. With the aim of studying the relationship between structural dynamics and enzyme catalysis, the cellulase Cel5A from Bacillus agaradherans is used as a model for in silico comparative analysis with mesophilic and psychrophilic counterparts. Structural features that determine flexibility are related to kinetic and thermodynamic parameters of catalysis. As a result, three specific positions in the vicinity of the active site of Cel5A are selected for protein engineering via site-directed mutagenesis. Three Cel5A variants are generated, N141L, A137Y and I102A/A137Y, showing a concomitant increase in the catalytic activity at low temperatures and a decrease in activation energy and activation enthalpy, similar to cold-active enzymes. These results are interpreted in structural terms by molecular dynamics simulations, showing that disrupting a hydrogen bond network in the vicinity of the active site increases local flexibility. These results provide a structural framework for explaining the changes in thermodynamic parameters observed between homologous enzymes with varying temperature adaptations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  16. An active site-tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    DOE PAGES

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph

    2015-10-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an `open'more » structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. In conclusion, as a polar but almost neutral ligand, the active site-tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.« less

  17. An active site-tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase.

    PubMed

    Murphy, Jesse R; Donini, Stefano; Kappock, T Joseph

    2015-10-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an `open' structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site-tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.

  18. Determining the Catalytic Activity of Transition Metal-Doped TiO2 Nanoparticles Using Surface Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Yang, Sena; Lee, Hangil

    2017-11-01

    The modified TiO2 nanoparticles (NPs) to enhance their catalytic activities by doping them with the five transition metals (Cr, Mn, Fe, Co, and Ni) have been investigated using various surface analysis techniques such as scanning electron microscopy (SEM), Raman spectroscopy, scanning transmission X-ray microscopy (STXM), and high-resolution photoemission spectroscopy (HRPES). To compare catalytic activities of these transition metal-doped TiO2 nanoparticles (TM-TiO2) with those of TiO2 NPs, we monitored their performances in the catalytic oxidation of 2-aminothiophenol (2-ATP) by using HRPES and on the oxidation of 2-ATP in aqueous solution by taking electrochemistry (EC) measurements. As a result, we clearly investigate that the increased defect structures induced by the doped transition metal are closely correlated with the enhancement of catalytic activities of TiO2 NPs and confirm that Fe- and Co-doped TiO2 NPs can act as efficient catalysts.

  19. Catalytic Activity of a Binary Informational Macromolecule

    NASA Technical Reports Server (NTRS)

    Reader, John S.; Joyce, Gerald F.

    2003-01-01

    RNA molecules are thought to have played a prominent role in the early history of life on Earth based on their ability both to encode genetic information and to exhibit catalytic function. The modern genetic alphabet relies on two sets of complementary base pairs to store genetic information. However, due to the chemical instability of cytosine, which readily deaminates to uracil, a primitive genetic system composed of the bases A, U, G and C may have been difficult to establish. It has been suggested that the first genetic material instead contained only a single base-pairing unie'. Here we show that binary informational macromolecules, containing only two different nucleotide subunits, can act as catalysts. In vitro evolution was used to obtain ligase ribozymes composed of only 2,6-diaminopurine and uracil nucleotides, which catalyze the template-directed joining of two RNA molecules, one bearing a 5'-triphosphate and the other a 3'-hydroxyl. The active conformation of the fastest isolated ribozyme had a catalytic rate that was about 36,000-fold faster than the uncatalyzed rate of reaction. This ribozyme is specific for the formation of biologically relevant 3',5'-phosphodiester linkages.

  20. Optical manipulation and catalytic activity enhanced by surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui

    2017-02-01

    For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.

  1. WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity.

    PubMed

    Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David

    2016-09-20

    The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin-RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1(WD40)). To understand how Apc1(WD40) contributes to APC/C activity, a mutant form of the APC/C with Apc1(WD40) deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1(WD40) abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C-Cdh1 complex with Apc1(WD40) deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1(WD40) is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C.

  2. WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity

    PubMed Central

    Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David

    2016-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin–RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1WD40). To understand how Apc1WD40 contributes to APC/C activity, a mutant form of the APC/C with Apc1WD40 deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1WD40 abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C–Cdh1 complex with Apc1WD40 deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1WD40 is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C. PMID:27601667

  3. A saposin-like domain influences the intracellular localization, stability, and catalytic activity of human acyloxyacyl hydrolase.

    PubMed

    Staab, J F; Ginkel, D L; Rosenberg, G B; Munford, R S

    1994-09-23

    Acyloxyacyl hydrolase, a leukocyte enzyme that acts on bacterial lipopolysaccharides (LPSs) and many glycerolipids, is synthesized as a precursor polypeptide that undergoes internal disulfide linkage before being proteolytically processed into two subunits. The larger subunit contains an amino acid sequence (Gly-X-Ser-X-Gly) that is found at the active sites of many lipases, while the smaller subunit has amino acid sequence similarity to saposins (sphingolipid activator proteins), cofactors for sphingolipid glycohydrolases. We show here that both acyloxyacyl hydrolase subunits are required for catalytic activity toward LPS and glycerophosphatidylcholine. In addition, mutations that truncate or delete the small subunit have profound effects on the intracellular localization, proteolytic processing, and stability of the enzyme in baby hamster kidney cells. Remarkably, proteolytic cleavage of the precursor protein increases the activity of the enzyme toward LPS by 10-20-fold without altering its activity toward glycerophosphatidylcholine. Proper orientation of the two subunits thus seems very important for the substrate specificity of this unusual enzyme.

  4. Baicalin and scutellarin are proteasome inhibitors that specifically target chymotrypsin-like catalytic activity.

    PubMed

    Wu, Yi-Xin; Sato, Eiji; Kimura, Wataru; Miura, Naoyuki

    2013-09-01

    Baicalin and scutellarin are the major active principal flavonoids extracted from the Chinese herbal medicines Scutellaria baicalensis and Erigeron breviscapus (Vant.) Hand-Mazz. It has recently been reported that baicalin and scutellarin have antitumor activity. However, the mechanisms of action are unknown. We previously reported that some flavonoids have a specific role in the inhibition of the activity of proteasome subunits and induced apoptosis in tumor cells. To further investigate these pharmacological effects, we examined the inhibitory activity of baicalin and scutellarin on the extracted proteasomes from mice and cancer cells. Using fluorogenic substrates for proteasome catalytic subunits, we found that baicalin and scutellarin specifically inhibited chymotrypsin-like activity but did not inhibit trypsin-like and peptidyl-glutamyl peptide hydrolyzing activities. These data suggested that baicalin and scutellarin specifically inhibit chymotrypsin-like catalytic activity in the proteasome. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Constitutive production of catalytic antibodies to a Staphylococcus aureus virulence factor and effect of infection.

    PubMed

    Brown, Eric L; Nishiyama, Yasuhiro; Dunkle, Jesse W; Aggarwal, Shreya; Planque, Stephanie; Watanabe, Kenji; Csencsits-Smith, Keri; Bowden, M Gabriela; Kaplan, Sheldon L; Paul, Sudhir

    2012-03-23

    Antibodies that recognize microbial B lymphocyte superantigenic epitopes are produced constitutively with no requirement for adaptive immune maturation. We report cleavage of the Staphylococcus aureus virulence factor extracellular fibrinogen-binding protein (Efb) by catalytic antibodies produced with no exposure to the bacterium and reduction of the catalytic antibody activity following infection. IgG catalytic antibodies that specifically hydrolyzed Efb via a nucleophilic catalytic mechanism were found in the blood of healthy humans and aseptic mice free of S. aureus infection. IgG hydrolyzed peptide bonds on the C-terminal side of basic amino acids, including a bond located within the C3b-binding domain of Efb. Efb digested with the IgG lost its ability to bind C3b and inhibit complement-dependent antibody-mediated red blood cell lysis. In addition to catalysis, the IgG expressed saturable Efb binding activity. IgG from S. aureus-infected mice displayed reduced Efb cleaving activity and increased Efb binding activity compared with uninfected controls, suggesting differing effects of the infection on the antibody subsets responsible for the two activities. IgG from children hospitalized for S. aureus infection also displayed reduced Efb cleavage compared with healthy children. These data suggest a potential defense function for constitutively produced catalytic antibodies to a putative superantigenic site of Efb, but an adaptive catalytic response appears to be proscribed.

  6. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    PubMed

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H 2 O 2 ). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains ( katA H56A and katA Y339A ) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H 2 O 2 -dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The DNA Maturation Domain of gpA, the DNA Packaging Motor Protein of Bacteriophage Lambda, Contains an ATPase Site Associated with Endonuclease Activity

    PubMed Central

    Ortega, Marcos E.; Gaussier, Helene; Catalano, Carlos E.

    2007-01-01

    Summary Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N-terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in E. coli. Biochemical characterization of gpA-ΔN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N-terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A “P-loop” sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme – DNA maturation and DNA packaging – are discussed. PMID:17870092

  8. Identification of essential active-site residues in the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz) by site-directed mutagenesis.

    PubMed Central

    Keresztessy, Z; Brown, K; Dunn, M A; Hughes, M A

    2001-01-01

    The coding sequence of the mature cyanogenic beta-glucosidase (beta-glucoside glucohydrolase, EC 3.2.1.21; linamarase) was cloned into the vector pYX243 modified to contain the SUC2 yeast secretion signal sequence and expressed in Saccharomyces cerevisiae. The recombinant enzyme is active, glycosylated and showed similar stability to the plant protein. Michaelis constants for hydrolysis of the natural substrate, linamarin (K(m)=1.06 mM) and the synthetic p-nitrophenyl beta-D-glucopyranoside (PNP-Glc; K(m)=0.36 mM), as well as apparent pK(a) values of the free enzyme and the enzyme-substrate complexes (pK(E)(1)=4.4-4.8, pK(E)(2)=6.7-7.2, pK(ES)(1)=3.9-4.4, pK(ES)(2)=8.3) were very similar to those of the plant enzyme. Site-directed mutagenesis was carried out to study the function of active-site residues based on a homology model generated for the enzyme using the MODELLER program. Changing Glu-413 to Gly destroyed enzyme activity, consistent with it being the catalytic nucleophile. The Gln-339Glu mutation also abolished activity, confirming a function in positioning the catalytic diad. The Ala-201Val mutation shifted the pK(a) of the acid/base catalyst Glu-198 from 7.22 to 7.44, reflecting a change in its hydrophobic environment. A Phe-269Asn change increased K(m) for linamarin hydrolysis 16-fold (16.1 mM) and that for PNP-Glc only 2.5-fold (0.84 mM), demonstrating that Phe-269 contributes to the cyanogenic specificity of the cassava beta-glucosidase. PMID:11139381

  9. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    PubMed

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  10. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    DOE PAGES

    Graciani, J.; Stacchiola, D.; Yang, F.; ...

    2015-09-09

    Nanostructured RuO x/TiO 2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO 2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO 2(110) to 0.66 eV in RuO x/TiO 2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed COmore » and O species to give CO 2 (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO 2(110) to 0.55 eV in RuO x/TiO 2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.« less

  11. New Insights into the Role of T3 Loop in Determining Catalytic Efficiency of GH28 Endo-Polygalacturonases

    PubMed Central

    Tu, Tao; Meng, Kun; Luo, Huiying; Turunen, Ossi; Zhang, Lujia; Cheng, Yanli; Su, Xiaoyun; Ma, Rui; Shi, Pengjun; Wang, Yaru; Yang, Peilong; Yao, Bin

    2015-01-01

    Intramolecular mobility and conformational changes of flexible loops have important roles in the structural and functional integrity of proteins. The Achaetomium sp. Xz8 endo-polygalacturonase (PG8fn) of glycoside hydrolase (GH) family 28 is distinguished for its high catalytic activity (28,000 U/mg). Structure modeling indicated that PG8fn has a flexible T3 loop that folds partly above the substrate in the active site, and forms a hydrogen bond to the substrate by a highly conserved residue Asn94 in the active site cleft. Our research investigates the catalytic roles of Asn94 in T3 loop which is located above the catalytic residues on one side of the substrate. Molecular dynamics simulation performed on the mutant N94A revealed the loss of the hydrogen bond formed by the hydroxyl group at O34 of pentagalacturonic acid and the crucial ND2 of Asn94 and the consequent detachment and rotation of the substrate away from the active site, and that on N94Q caused the substrate to drift away from its place due to the longer side chain. In line with the simulations, site-directed mutagenesis at this site showed that this position is very sensitive to amino acid substitutions. Except for the altered K m values from 0.32 (wild type PG8fn) to 0.75–4.74 mg/ml, all mutants displayed remarkably lowered k cat (~3–20,000 fold) and k cat/K m (~8–187,500 fold) values and significantly increased △(△G) values (5.92–33.47 kJ/mol). Taken together, Asn94 in the GH28 T3 loop has a critical role in positioning the substrate in a correct way close to the catalytic residues. PMID:26327390

  12. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  13. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiguchi, Satoshi, E-mail: kamigu@riken.jp; Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198; Okumura, Kazu

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is storedmore » in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.« less

  14. Parkin-phosphoubiquitin complex reveals a cryptic ubiquitin binding site required for RBR ligase activity

    PubMed Central

    Kumar, Atul; Chaugule, Viduth K; Condos, Tara E C; Barber, Kathryn R; Johnson, Clare; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Knebel, Axel; Shaw, Gary S; Walden, Helen

    2017-01-01

    RING-BETWEENRING-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR is Parkin, mutations in which lead to early onset hereditary Parkinsonism. Parkin and other RBRs share a catalytic RBR module, but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during activation of Parkin. However, current data on active RBRs are in the absence of regulatory domains. Therefore, how individual RBRs are activated, and whether they share a common mechanism remains unclear. We now report the crystal structure of a human Parkin-phosphoubiquitin complex, which shows that phosphoubiquitin binding induces a movement in the IBR domain to reveal a cryptic ubiquitin binding site. Mutation of this site negatively impacts on Parkin’s activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, suggesting a role for interdomain association in RBR ligase mechanism. PMID:28414322

  15. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  16. Replacement of Tyrosine 181 by Phenylalanine in Gentisate 1,2-Dioxygenase I from Pseudomonas alcaligenes NCIMB 9867 Enhances Catalytic Activities

    PubMed Central

    Tan, Chew Ling; Yeo, Chew Chieng; Khoo, Hoon Eng; Poh, Chit Laa

    2005-01-01

    xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (kcat/Km) on Y181F towards 3-methylgentisate than that of the wild-type enzyme. PMID:16237038

  17. Enhanced catalytic activity without the use of an external light source using microwave-synthesized CuO nanopetals

    PubMed Central

    Bajaj, Sonal; Nayak, Arpan Kumar; Pradhan, Debabrata; Tekade, Pradip

    2017-01-01

    We report enhanced catalytic activity of CuO nanopetals synthesized by microwave-assisted wet chemical synthesis. The catalytic reaction of CuO nanopetals and H2O2 was studied with the application of external light source and also under dark conditions for the degradation of the hazardous dye methylene blue. The CuO nanopetals showed significant catalytic activity for the fast degradation of methylene blue and rhodamine B (RhB) under dark conditions, without the application of an external light source. This increased catalytic activity was attributed to the co-operative role of H2O2 and the large specific surface area (≈40 m2·g−1) of the nanopetals. We propose a detail mechanism for this fast degradation. A separate study of the effect of different H2O2 concentrations for the degradation of methylene blue under dark conditions is also illustrated. PMID:28685117

  18. Probes of the catalytic site of cysteine dioxygenase.

    PubMed

    Chai, Sergio C; Bruyere, John R; Maroney, Michael J

    2006-06-09

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.

  19. Dynamic asymmetry and the role of the conserved active-site thiol in rabbit muscle creatine kinase.

    PubMed

    Londergan, Casey H; Baskin, Rachel; Bischak, Connor G; Hoffman, Kevin W; Snead, David M; Reynoso, Christopher

    2015-01-13

    Symmetric and asymmetric crystal structures of the apo and transition state analogue forms, respectively, of the dimeric rabbit muscle creatine kinase have invoked an "induced fit" explanation for asymmetry between the two subunits and their active sites. However, previously reported thiol reactivity studies at the dual active-site cysteine 283 residues suggest a more latent asymmetry between the two subunits. The role of that highly conserved active-site cysteine has also not been clearly determined. In this work, the S-H vibrations of Cys283 were observed in the unmodified MM isoform enzyme via Raman scattering, and then one and both Cys283 residues in the same dimeric enzyme were modified to covalently attach a cyano group that reports on the active-site environment via its infrared CN stretching absorption band while maintaining the catalytic activity of the enzyme. Unmodified and Cys283-modified enzymes were investigated in the apo and transition state analogue forms of the enzyme. The narrow and invariant S-H vibrational bands report a homogeneous environment for the unmodified active-site cysteines, indicating that their thiols are hydrogen bonded to the same H-bond acceptor in the presence and absence of the substrate. The S-H peak persists at all physiologically relevant pH's, indicating that Cys283 is protonated at all pH's relevant to enzymatic activity. Molecular dynamics simulations identify the S-H hydrogen bond acceptor as a single, long-resident water molecule and suggest that the role of the conserved yet catalytically unnecessary thiol may be to dynamically rigidify that part of the active site through specific H-bonding to water. The asymmetric and broad CN stretching bands from the CN-modified Cys283 suggest an asymmetric structure in the apo form of the enzyme in which there is a dynamic exchange between spectral subpopulations associated with water-exposed and water-excluded probe environments. Molecular dynamics simulations indicate a

  20. Active site-directed double mutants of dihydrofolate reductase.

    PubMed

    Ercikan-Abali, E A; Mineishi, S; Tong, Y; Nakahara, S; Waltham, M C; Banerjee, D; Chen, W; Sadelain, M; Bertino, J R

    1996-09-15

    Variants of dihydrofolate reductase (DHFR), which confer resistance to antifolates, are used as dominant selectable markers in vitro and in vivo and may be useful in the context of gene therapy. To identify improved mutant human DHFRs with increased catalytic efficiency and decreased binding to methotrexate, we constructed by site-directed mutagenesis four variants with substitutions at both Leu22 and Phe31 (i.e., Phe22-Ser31, Tyr22-Ser31, Phe22-Gly31, and Tyr22-Gly31). Antifolate resistance has been observed previously when individual changes are made at these active-site residues. Substrate and antifolate binding properties of these "double" mutants revealed that each have greatly diminished affinity for antifolates (> 10,000-fold) yet only slightly reduced substrate affinity. Comparison of in vitro measured properties with those of single-residue variants indicates that double mutants are indeed significantly superior. This was verified for one of the double mutants that provided high-level methotrexate resistance following retrovirus-mediated gene transfer in NIH3T3 cells.

  1. Cardiac HDAC6 Catalytic Activity is Induced in Response to Chronic Hypertension

    PubMed Central

    Lemon, Douglas D.; Horn, Todd R.; Cavasin, Maria A.; Jeong, Mark Y.; Haubold, Kurt W.; Long, Carlin S.; Irwin, David C.; McCune, Sylvia A.; Chung, Eunhee; Leinwand, Leslie A.; McKinsey, Timothy A.

    2011-01-01

    Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models of heart failure. The efficacious compounds target class I, class IIb and, to a lesser extent, class IIa HDACs. It is hypothesized that a selective inhibitor of a specific HDAC class (or an isoform within that class) will provide a favorable therapeutic window for the treatment of heart failure, although the optimal selectivity profile for such a compound remains unknown. Genetic studies have suggested that class I HDACs promote pathological cardiac remodeling, while class IIa HDACs are protective. In contrast, nothing is known about the function or regulation of class IIb HDACs in the heart. We developed assays to quantify catalytic activity of distinct HDAC classes in left and right ventricular cardiac tissue from animal models of hypertensive heart disease. Class I and IIa HDAC activity was elevated in some but not all diseased tissues. In contrast, catalytic activity of the class IIb HDAC, HDAC6, was consistently increased in stressed myocardium, but not in a model of physiologic hypertrophy. HDAC6 catalytic activity was also induced by diverse extracellular stimuli in cultured cardiac myocytes and fibroblasts. These findings suggest an unforeseen role for HDAC6 in the heart, and highlight the need for pre-clinical evaluation of HDAC6-selective inhibitors to determine whether this HDAC isoform is pathological or protective in the setting of cardiovascular disease. PMID:21539845

  2. Engineering streptokinase for generation of active site-labeled plasminogen analogs*

    PubMed Central

    Laha, Malabika; Panizzi, Peter; Nahrendorf, Matthias; Bock, Paul E.

    2011-01-01

    We previously demonstrated that streptokinase (SK) can be used to generate active site-labeled fluorescent analogs of plasminogen (Pg) by virtue of its non-proteolytic activation of the zymogen. The method is versatile and allows for stoichiometric and active site-specific incorporation of any one of many molecular probes. The limitation of the labeling approach is that it is both time-consuming and low yield. Here we demonstrate an improved method for the preparation of labeled Pg analogs by the use of an engineered SK mutant fusion protein with both COOH- and NH2-terminal His6-tags. The NH2-terminal tag is followed by a tobacco etch virus proteinase cleavage site to ensure that the SK Ile1 residue, essential for conformational activation of Pg, is preserved. The SK COOH-terminal Lys414 residue and residues Arg253-Leu260 in the SK β-domain were deleted to prevent cleavage by plasmin (Pm), and to disable Pg substrate binding to the SK·Pg*/Pm catalytic complexes, respectively. Near-elimination of Pm generation with the SKΔ(R253-L260)ΔK414-His6 mutant increased the yield of labeled Pg 2.6-fold and reduced the time required >2-fold. The versatility of the labeling method was extended to the application of Pg labeled with a near-infrared probe to quantitate Pg receptors on immune cells by flow cytometry. PMID:21570944

  3. Al-doped TiO{sub 2} mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com

    Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction andmore » increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.« less

  4. Catalytic activity in lithium-treated core–shell MoO x/MoS 2 nanowires

    DOE PAGES

    Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; ...

    2015-09-22

    Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoO x/MoS 2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H 2 evolution. The 1D nanowires exhibit significant improvement in H 2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS 2 layersmore » in the outer shell, leading to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less

  5. Short-term hyperthyroidism modulates adenosine receptors and catalytic activity of adenylate cyclase in adipocytes.

    PubMed Central

    Rapiejko, P J; Malbon, C C

    1987-01-01

    The effects of short-term hyperthyroidism in vivo on the status of the components of the fat-cell hormone-sensitive adenylate cyclase were investigated. The number of beta-adrenergic receptors was elevated by about 25% in membranes of fat-cells isolated from hyperthyroid rats as compared with euthyroid rats, but their affinity for radioligand was unchanged. Membranes of hyperthyroid-rat fat-cells displayed less than 65% of the normal complement of receptors for [3H]cyclohexyladenosine. The affinity of the receptors for this ligand was normal. In contrast with the marked increase in the amounts of the alpha-subunits of the guanine nucleotide-binding proteins Gi (Mr 41,000) and Go (Mr 39,000) observed in the hypothyroid state [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564], the amounts of alpha-Gi, alpha-Go as well as alpha-Gs subunits [Mr 42,000 (major) and 46,000/48,000 (minor)] were not changed by hyperthyroidism. Adenylate cyclase activity in response to forskolin, guanosine 5'-[gamma-thio]triphosphate or isoprenaline, in contrast, was decreased by 30-50% in fat-cell membranes from hyperthyroid rats. Fat-cells isolated from hyperthyroid rats accumulated cyclic AMP to less than 50% of the extent in their euthyroid counterparts in the presence of adenosine deaminase and either adrenaline or forskolin, suggesting a decrease in the amount or activity of the catalytic subunit of adenylate cyclase. In the absence of exogenous adenosine deaminase, cyclic AMP accumulation in response to adrenaline was elevated rather than decreased in fat-cells from hyperthyroid rats. The inhibitory influence of adenosine is apparently limited in the hyperthyroid state by the decreased complement of inhibitory R-site purinergic receptors in these fat-cells. Short-term hyperthyroidism modulates the fat-cell adenylate cyclase system at the receptor level (beta-receptor number increased, R-site purinergic-receptor number decreased) and the catalytic subunit of adenylate

  6. Evolution of Active Sites in Pt-Based Nanoalloy Catalysts for the Oxidation of Carbonaceous Species by Combined in Situ Infrared Spectroscopy and Total X-ray Scattering.

    PubMed

    Petkov, Valeri; Maswadeh, Yazan; Lu, Aolin; Shan, Shiyao; Kareem, Haval; Zhao, Yinguang; Luo, Jin; Zhong, Chuan-Jian; Beyer, Kevin; Chapman, Karena

    2018-04-04

    We present results from combined in situ infrared spectroscopy and total X-ray scattering studies on the evolution of catalytically active sites in exemplary binary and ternary Pt-based nanoalloys during a sequence of CO oxidation-reactivation-CO oxidation reactions. We find that when within a particular compositional range, the fresh nanoalloys may exhibit high catalytic activity for low-temperature CO oxidation. Using surface-specific atomic pair distribution functions (PDFs) extracted from the in situ total X-ray scattering data, we find that, regardless of their chemical composition and initial catalytic activity, the fresh nanoalloys suffer a significant surface structural disorder during CO oxidation. Upon reactivation in oxygen atmosphere, the surface of used nanoalloy catalysts both partially oxidizes and orders. Remarkably, it largely retains its structural state when the nanoalloys are reused as CO oxidation catalysts. The seemingly inverse structural changes of studied nanoalloy catalysts occurring under CO oxidation and reactivation conditions affect the active sites on their surface significantly. In particular, through different mechanisms, both appear to reduce the CO binding strength to the nanoalloy's surface and thus increase the catalytic stability of the nanoalloys. The findings provide clues for further optimization of nanoalloy catalysts for the oxidation of carbonaceous species through optimizing their composition, activation, and reactivation. Besides, the findings demonstrate the usefulness of combined in situ infrared spectroscopy and total X-ray scattering coupled to surface-specific atomic PDF analysis to the ongoing effort to produce advanced catalysts for environmentally and technologically important applications.

  7. Exploring the Active Site of the Tungsten, Iron-Sulfur Enzyme Acetylene Hydratase▿ †

    PubMed Central

    tenBrink, Felix; Schink, Bernhard; Kroneck, Peter M. H.

    2011-01-01

    The soluble tungsten, iron-sulfur enzyme acetylene hydratase (AH) from mesophilic Pelobacter acetylenicus is a member of the dimethyl sulfoxide (DMSO) reductase family. It stands out from its class as it catalyzes a nonredox reaction, the addition of H2O to acetylene (H—C☰C—H) to form acetaldehyde (CH3CHO). Caught in its active W(IV) state, the high-resolution three-dimensional structure of AH offers an excellent starting point to tackle its unique chemistry and to identify catalytic amino acid residues within the active site cavity: Asp13 close to W(IV) coordinated to two molybdopterin-guanosine-dinucleotide ligands, Lys48 which couples the [4Fe-4S] cluster to the W site, and Ile142 as part of a hydrophobic ring at the end of the substrate access channel designed to accommodate the substrate acetylene. A protocol was developed to express AH in Escherichia coli and to produce active-site variants which were characterized with regard to activity and occupancy of the tungsten and iron-sulfur centers. By this means, fusion of the N-terminal chaperone binding site of the E. coli nitrate reductase NarG to the AH gene improved the yield and activity of AH and its variants significantly. Results from site-directed mutagenesis of three key residues, Asp13, Lys48, and Ile142, document their important role in catalysis of this unusual tungsten enzyme. PMID:21193613

  8. Probing the Catalytic Mechanism of Vibrio harveyi GH20 β-N-Acetylglucosaminidase by Chemical Rescue

    PubMed Central

    Meekrathok, Piyanat; Suginta, Wipa

    2016-01-01

    Background Vibrio harveyi GH20 β-N-acetylglucosaminidase (VhGlcNAcase) is a chitinolytic enzyme responsible for the successive degradation of chitin fragments to GlcNAc monomers, activating the onset of the chitin catabolic cascade in marine Vibrios. Methods Two invariant acidic pairs (Asp303-Asp304 and Asp437-Glu438) of VhGlcNAcase were mutated using a site-directed mutagenesis strategy. The effects of these mutations were examined and the catalytic roles of these active-site residues were elucidated using a chemical rescue approach. Enhancement of the enzymic activity of the VhGlcNAcase mutants was evaluated by a colorimetric assay using pNP-GlcNAc as substrate. Results Substitution of Asp303, Asp304, Asp437 or Glu438 with Ala/Asn/Gln produced a dramatic loss of the GlcNAcase activity. However, the activity of the inactive D437A mutant was recovered in the presence of sodium formate. Our kinetic data suggest that formate ion plays a nucleophilic role by mimicking the β-COO-side chain of Asp437, thereby stabilizing the reaction intermediate during both the glycosylation and the deglycosylation steps. Conclusions Chemical rescue of the inactive D437A mutant of VhGlcNAcase by an added nucleophile helped to identify Asp437 as the catalytic nucleophile/base, and hence its acidic partner Glu438 as the catalytic proton donor/acceptor. General Significance Identification of the catalytic nucleophile of VhGlcNAcases supports the proposal of a substrate-assisted mechanism of GH20 GlcNAcases, requiring the catalytic pair Asp437-Glu438 for catalysis. The results suggest the mechanistic basis of the participation of β-N-acetylglucosaminidase in the chitin catabolic pathway of marine Vibrios. PMID:26870945

  9. Reversible active site sulfoxygenation can explain the oxygen tolerance of a NAD+-reducing [NiFe] hydrogenase and its unusual infrared spectroscopic properties.

    PubMed

    Horch, Marius; Lauterbach, Lars; Mroginski, Maria Andrea; Hildebrandt, Peter; Lenz, Oliver; Zebger, Ingo

    2015-02-25

    Oxygen-tolerant [NiFe] hydrogenases are metalloenzymes that represent valuable model systems for sustainable H2 oxidation and production. The soluble NAD(+)-reducing [NiFe] hydrogenase (SH) from Ralstonia eutropha couples the reversible cleavage of H2 with the reduction of NAD(+) and displays a unique O2 tolerance. Here we performed IR spectroscopic investigations on purified SH in various redox states in combination with density functional theory to provide structural insights into the catalytic [NiFe] center. These studies revealed a standard-like coordination of the active site with diatomic CO and cyanide ligands. The long-lasting discrepancy between spectroscopic data obtained in vitro and in vivo could be solved on the basis of reversible cysteine oxygenation in the fully oxidized state of the [NiFe] site. The data are consistent with a model in which the SH detoxifies O2 catalytically by means of an NADH-dependent (per)oxidase reaction involving the intermediary formation of stable cysteine sulfenates. The occurrence of two catalytic activities, hydrogen conversion and oxygen reduction, at the same cofactor may inspire the design of novel biomimetic catalysts performing H2-conversion even in the presence of O2.

  10. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    PubMed

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  11. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 β-lactamase

    PubMed Central

    Marciano, David C; Brown, Nicholas G; Palzkill, Timothy

    2009-01-01

    A large number of β-lactamases have emerged that are capable of conferring bacterial resistance to β-lactam antibiotics. Comparison of the structural and functional features of this family has refined understanding of the catalytic properties of these enzymes. An arginine residue present at position 244 in TEM-1 β-lactamase interacts with the carboxyl group common to penicillin and cephalosporin antibiotics and thereby stabilizes both the substrate and transition state complexes. A comparison of class A β-lactamase sequences reveals that arginine at position 244 is not conserved, although a positive charge at this structural location is conserved and is provided by an arginine at positions 220 or 276 for those enzymes lacking arginine at position 244. The plasticity of the location of positive charge in the β-lactamase active site was experimentally investigated by relocating the arginine at position 244 in TEM-1 β-lactamase to positions 220, 272, and 276 by site-directed mutagenesis. Kinetic analysis of the engineered β-lactamases revealed that removal of arginine 244 by alanine mutation reduced catalytic efficiency against all substrates tested and restoration of an arginine at positions 272 or 276 partially suppresses the catalytic defect of the Arg244Ala substitution. These results suggest an evolutionary mechanism for the observed divergence of the position of positive charge in the active site of class A β-lactamases. PMID:19672877

  12. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    PubMed

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects.

    PubMed

    Li, Di; Li, Xinyu; Gong, Jinlong

    2016-10-12

    This Review describes recent advances in the design, synthesis, reactivity, selectivity, structural, and electronic properties of the catalysts for reforming of a variety of oxygenates (e.g., from simple monoalcohols to higher polyols, then to sugars, phenols, and finally complicated mixtures like bio-oil). A comprehensive exploration of the structure-activity relationship in catalytic reforming of oxygenates is carried out, assisted by state-of-the-art characterization techniques and computational tools. Critical emphasis has been given on the mechanisms of these heterogeneous-catalyzed reactions and especially on the nature of the active catalytic sites and reaction pathways. Similarities and differences (reaction mechanisms, design and synthesis of catalysts, as well as catalytic systems) in the reforming process of these oxygenates will also be discussed. A critical overview is then provided regarding the challenges and opportunities for research in this area with a focus on the roles that systems of heterogeneous catalysis, reaction engineering, and materials science can play in the near future. This Review aims to present insights into the intrinsic mechanism involved in catalytic reforming and provides guidance to the development of novel catalysts and processes for the efficient utilization of oxygenates for energy and environmental purposes.

  14. Investigating the effects of alkali metal Na addition on catalytic activity of HZSM-5 for methyl mercaptan elimination

    NASA Astrophysics Data System (ADS)

    Yu, Jie; He, Dedong; Chen, Dingkai; Liu, Jiangping; Lu, Jichang; Liu, Feng; Liu, Pan; Zhao, Yutong; Xu, Zhizhi; Luo, Yongming

    2017-10-01

    Na-modified HZSM-5 catalysts with different Na loading amounts were prepared by incipient-wetness impregnation method and their catalytic activities for methyl mercaptan catalytic elimination were analyzed. XRD, N2 adsorption-desorption, NH3-TPD, CO2-TPD and FT-IR measurements were carried out to investigate the effects of modification of alkali metal Na on the physicochemical properties of the HZSM-5 zeolite catalyst. Research results illustrated that the introduction of alkali metal Na can improve catalytic activity for CH3SH catalytic elimination. CH3SH can be almost completely converted over 3%-Na/HZSM-5 at 450 °C compared to pure HZSM-5 at 600 °C based on our experimental results and the results from previous research. The improved catalytic activity could be attributed to the regulated acid-base properties of the HZSM-5 catalysts by doping with alkali metal Na. High alkali concentration treatment, however, may destroy the framework structure of the catalyst sample, thus causing the poor stability performance of the obtained catalyst.

  15. Near-IR MCD of the nonheme ferrous active site in naphthalene 1,2-dioxygenase: correlation to crystallography and structural insight into the mechanism of Rieske dioxygenases.

    PubMed

    Ohta, Takehiro; Chakrabarty, Sarmistha; Lipscomb, John D; Solomon, Edward I

    2008-02-06

    Near-IR MCD and variable temperature, variable field (VTVH) MCD have been applied to naphthalene 1,2-dioxygenase (NDO) to describe the coordination geometry and electronic structure of the mononuclear nonheme ferrous catalytic site in the resting and substrate-bound forms with the Rieske 2Fe2S cluster oxidized and reduced. The structural results are correlated with the crystallographic studies of NDO and other related Rieske nonheme iron oxygenases to develop molecular level insights into the structure/function correlation for this class of enzymes. The MCD data for resting NDO with the Rieske center oxidized indicate the presence of a six-coordinate high-spin ferrous site with a weak axial ligand which becomes more tightly coordinated when the Rieske center is reduced. Binding of naphthalene to resting NDO (Rieske oxidized and reduced) converts the six-coordinate sites into five-coordinate (5c) sites with elimination of a water ligand. In the Rieske oxidized form the 5c sites are square pyramidal but transform to a 1:2 mixture of trigonal bipyramial/square pyramidal sites when the Rieske center is reduced. Thus the geometric and electronic structure of the catalytic site in the presence of substrate can be significantly affected by the redox state of the Rieske center. The catalytic ferrous site is primed for the O2 reaction when substrate is bound in the active site in the presence of the reduced Rieske site. These structural changes ensure that two electrons and the substrate are present before the binding and activation of O2, which avoids the uncontrolled formation and release of reactive oxygen species.

  16. Mutagenesis of threonine to serine in the active site of Mycobacterium tuberculosis fructose-1,6-bisphosphatase (Class II) retains partial enzyme activity.

    PubMed

    Bondoc, Jasper Marc G; Wolf, Nina M; Ndichuck, Michael; Abad-Zapatero, Celerino; Movahedzadeh, Farahnaz

    2017-09-01

    The glpX gene encodes for the Class II fructose-1,6-bisphosphatase enzyme in Mycobacterium tuberculosis ( Mt ), an essential enzyme for pathogenesis. We have performed site directed mutagenesis to introduce two mutations at residue Thr84, T84A and T84S, to explore the binding affinity of the substrate and the catalytic mechanism. The T84A mutant fully abolishes enzyme activity while retaining substrate binding affinity. In contrast, the T84S mutant retains some activity having a 10 times reduction in V max and exhibited similar sensitivity to lithium when compared to the wildtype. Homology modeling using the Escherichia coli enzyme structure suggests that the replacement of the critical nucleophile OH - in the Thr84 residue of the wildtype of Mt FBPase by Ser84 results in subtle alterations of the position and orientation that reduce the catalytic efficiency. This mutant could be used to trap reaction intermediates, through crystallographic methods, facilitating the design of potent inhibitors via structure-based drug design.

  17. Three critical hydrogen bonds determine the catalytic activity of the Diels–Alderase ribozyme

    PubMed Central

    Kraut, Stefanie; Bebenroth, Dirk; Nierth, Alexander; Kobitski, Andrei Y.; Nienhaus, G. Ulrich; Jäschke, Andres

    2012-01-01

    Compared to protein enzymes, our knowledge about how RNA accelerates chemical reactions is rather limited. The crystal structures of a ribozyme that catalyzes Diels–Alder reactions suggest a rich tertiary architecture responsible for catalysis. In this study, we systematically probe the relevance of crystallographically observed ground-state interactions for catalytic function using atomic mutagenesis in combination with various analytical techniques. The largest energetic contribution apparently arises from the precise shape complementarity between transition state and catalytic pocket: A single point mutant that folds correctly into the tertiary structure but lacks one H-bond that normally stabilizes the pocket is completely inactive. In the rate-limiting chemical step, the dienophile is furthermore activated by two weak H-bonds that contribute ∼7–8 kJ/mol to transition state stabilization, as indicated by the 25-fold slower reaction rates of deletion mutants. These H-bonds are also responsible for the tight binding of the Diels–Alder product by the ribozyme that causes product inhibition. For high catalytic activity, the ribozyme requires a fine-tuned balance between rigidity and flexibility that is determined by the combined action of one inter-strand H-bond and one magnesium ion. A sharp 360° turn reminiscent of the T-loop motif observed in tRNA is found to be important for catalytic function. PMID:21976731

  18. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.

    PubMed

    Petrillo, Teodolinda; O'Donohoe, Catrina A; Howe, Nicole; Malthouse, J Paul G

    2012-08-07

    Two new inhibitors in which the terminal α-carboxyl groups of Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH have been replaced with a proton to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H, respectively, have been synthesized. Using these inhibitors, we estimate that for α-chymotrypsin and subtilisin Carlsberg the terminal carboxylate group decreases the level of inhibitor binding 3-4-fold while a glyoxal group increases the level of binding by 500-2000-fold. We show that at pH 7.2 the effective molarities of the catalytic hydroxyl group of the active site serine are 41000-229000 and 101000-159000 for α-chymotrypsin and subtilisin Carlsberg, respectively. It is estimated that oxyanion stabilization and the increased effective molarity of the catalytic serine hydroxyl group can account for the catalytic efficiency of the reaction. We argue that substrate binding induces the formation of a strong hydrogen bond or low-barrier hydrogen bond between histidine-57 and aspartate-102 that increases the pK(a) of the active site histidine, allowing it to be an effective general base catalyst for the formation of the tetrahedral intermediate and increasing the effective molarity of the catalytic hydroxyl group of serine-195. A catalytic mechanism for acyl intermediate formation in the serine proteases is proposed.

  19. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.

  20. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  1. Pt3Co concave nanocubes: synthesis, formation understanding, and enhanced catalytic activity toward hydrogenation of styrene.

    PubMed

    Wang, Chenyu; Lin, Cuikun; Zhang, Lihua; Quan, Zewei; Sun, Kai; Zhao, Bo; Wang, Feng; Porter, Nathan; Wang, Yuxuan; Fang, Jiye

    2014-02-03

    We report a facile synthesis route to prepare high-quality Pt3Co nanocubes with a concave structure, and further demonstrate that these concave Pt3Co nanocubes are terminated with high-index crystal facets. The success of this preparation is highly dependent on an appropriate nucleation process with a successively anisotropic overgrowth and a preservation of the resultant high-index planes by control binding of oleyl-amine/oleic acid with a fine-tuned composition. Using a hydrogenation of styrene as a model reaction, these Pt3Co concave nanocubes as a new class of nanocatalysts with more open structure and active atomic sites located on their high-index crystallographic planes exhibit an enhanced catalytic activity in comparison with low-indexed surface terminated Pt3Co nanocubes in similar size. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Directed evolution of a β-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions.

    PubMed

    Li, Yan-Xiao; Yi, Ping; Yan, Qiao-Juan; Qin, Zhen; Liu, Xue-Qiang; Jiang, Zheng-Qiang

    2017-01-01

    β-Mannanase randomly cleaves the β-1,4-linked mannan backbone of hemicellulose, which plays the most important role in the enzymatic degradation of mannan. Although the industrial applications of β-mannanase have tremendously expanded in recent years, the wild-type β-mannanases are still defective for some industries. The glycoside hydrolase (GH) family 5 β-mannanase ( Rm Man5A) from Rhizomucor miehei shows many outstanding properties, such as high specific activity and hydrolysis property. However, owing to the low catalytic activity in acidic and thermophilic conditions, the application of Rm Man5A to the biorefinery of mannan biomasses is severely limited. To overcome the limitation, Rm Man5A was successfully engineered by directed evolution. Through two rounds of screening, a mutated β-mannanase (m Rm Man5A) with high catalytic activity in acidic and thermophilic conditions was obtained, and then characterized. The mutant displayed maximal activity at pH 4.5 and 65 °C, corresponding to acidic shift of 2.5 units in optimal pH and increase by 10 °C in optimal temperature. The catalytic efficiencies ( k cat / K m ) of m Rm Man5A towards many mannan substrates were enhanced more than threefold in acidic and thermophilic conditions. Meanwhile, the high specific activity and excellent hydrolysis property of Rm Man5A were inherited by the mutant m Rm Man5A after directed evolution. According to the result of sequence analysis, three amino acid residues were substituted in m Rm Man5A, namely Tyr233His, Lys264Met, and Asn343Ser. To identify the function of each substitution, four site-directed mutations (Tyr233His, Lys264Met, Asn343Ser, and Tyr233His/Lys264Met) were subsequently generated, and the substitutions at Tyr233 and Lys264 were found to be the main reason for the changes of m Rm Man5A. Through directed evolution of Rm Man5A, two key amino acid residues that controlled its catalytic efficiency under acidic and thermophilic conditions were identified

  3. Enhancement of Catalytic Activity of Reduced Graphene Oxide Via Transition Metal Doping Strategy

    NASA Astrophysics Data System (ADS)

    Lee, Hangil; Hong, Jung A.

    2017-06-01

    To compare the catalytic oxidation activities of reduced graphene oxide (rGO) and rGO samples doped with five different transition metals (TM-rGO), we determine their effects on the oxidation of L-cysteine (Cys) in aqueous solution by performing electrochemistry (EC) measurements and on the photocatalytic oxidation of Cys by using high-resolution photoemission spectroscopy (HRPES) under UV illumination. Our results show that Cr-, Fe-, and Co-doped rGO with 3+ charge states (stable oxide forms: Cr3+, Fe3+, and Co3+) exhibit enhanced catalytic activities that are due to the charge states of the doped metal ions as we compare them with Cr-, Fe-, and Co-doped rGO with 2+ charge states.

  4. Size control and catalytic activity of bio-supported palladium nanoparticles.

    PubMed

    Søbjerg, Lina Sveidal; Lindhardt, Anders T; Skrydstrup, Troels; Finster, Kai; Meyer, Rikke Louise

    2011-07-01

    The development of nanoparticles has greatly improved the catalytic properties of metals due to the higher surface to volume ratio of smaller particles. The production of nanoparticles is most commonly based on abiotic processes, but in the search for alternative protocols, bacterial cells have been identified as excellent scaffolds of nanoparticle nucleation, and bacteria have been successfully employed to recover and regenerate platinum group metals from industrial waste. We report on the formation of bio-supported palladium (Pd) nanoparticles on the surface of two bacterial species with distinctly different surfaces: the gram positive Staphylococcus sciuri and the gram negative Cupriavidus necator. We investigated how the type of bacterium and the amount of biomass affected the size and catalytic properties of the nanoparticles formed. By increasing the biomass:Pd ratio, we could produce bio-supported Pd nanoparticles smaller than 10nm in diameter, whereas lower biomass:Pd ratios resulted in particles ranging from few to hundreds of nm. The bio-supported Pd nanoparticle catalytic properties were investigated towards the Suzuki-Miyaura cross coupling reaction and hydrogenation reactions. Surprisingly, the smallest nanoparticles obtained at the highest biomass:Pd ratio showed no reactivity towards the test reactions. The lack of reactivity appears to be caused by thiol groups, which poison the catalyst by binding strongly to Pd. Different treatments intended to liberate particles from the biomass, such as burning or rinsing in acetone, did not re-establish their catalytic activity. Sulphur-free biomaterials should therefore be explored as more suitable scaffolds for Pd(0) nanoparticle formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A hybrid QM/MM simulation study of intramolecular proton transfer in the pyridoxal 5'-phosphate in the active site of transaminase: influence of active site interaction on proton transfer.

    PubMed

    Dutta Banik, Sindrila; Chandra, Amalendu

    2014-09-25

    Pyridoxal 5'-phosphate (PLP) Schiff base, a versatile cofactor, exhibits a tautomeric equilibrium that involves an intramolecular proton transfer between the N-protonated zwitterionic ketoenamine tautomer and the O-protonated covalent enolimine tautomer. It has been postulated that for the catalytic activity, the PLP has to be in the zwitterionic ketoenamine tautomeric form. However, the exact position of the tautomeric equilibrium of Schiff base in the active site of PLP-dependent enzyme is not known yet. In the present work, we investigated the tautomeric equilibrium for the external aldimine state of PLP aspartate (PLP-Asp) Schiff base in the active site of aspartate aminotransferase (AspAT) using combined quantum mechanical and molecular mechanical simulations. The main focus of the present study is to analyze the factors that control the tautomeric equilibrium in the active sites of various PLP-dependent enzymes. The results show that the ketoenamine tautomer is more preferred than the enolimine tautomer both in the gas and aqueous phases as well as in the active site of AspAT. Current simulations show that the active site of AspAT is more suitable for the ketoenamine tautomer compared to the enolimine tautomer. Interestingly, the Tyr225 acts as a proton donor to the phenolic oxygen in the ketoenamine tautomer, while in the covalent enolimine tautomer, it acts as a proton acceptor to the phenolic oxygen. Finally, the metadynamics study confirms this result. The calculated free energy barrier is about 7.5 kcal/mol. A comparative analysis of the microenvironment created by the active site residues of three different PLP-dependent enzymes (aspartate aminotransferase, Dopa decarboxylase, and Ala-racemase) has been carried out to understand the controlling factor(s) of the tautomeric equilibrium. The analysis shows that the intermolecular hydrogen bonding between active site residues and the phenolic oxygen of PLP shifts the tautomeric equilibrium toward the N

  6. A catalytic approach to estimate the redox potential of heme-peroxidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-06-08

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalyticmore » approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple.« less

  7. Self-propulsion and interactions of catalytic particles in a chemically active medium.

    PubMed

    Banigan, Edward J; Marko, John F

    2016-01-01

    Enzymatic "machines," such as catalytic rods or colloids, can self-propel and interact by generating gradients of their substrates. We theoretically investigate the behaviors of such machines in a chemically active environment where their catalytic substrates are continuously synthesized and destroyed, as occurs in living cells. We show how the kinetic properties of the medium modulate self-propulsion and pairwise interactions between machines, with the latter controlled by a tunable characteristic interaction range analogous to the Debye screening length in an electrolytic solution. Finally, we discuss the effective force arising between interacting machines and possible biological applications, such as partitioning of bacterial plasmids.

  8. Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease.

    PubMed

    Nandi, Tapas K; Bairagya, Hridoy R; Mukhopadhyay, Bishnu P; Sekar, K; Sukul, Dipankar; Bera, Asim K

    2009-03-01

    The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the O b atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study,it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.

  9. Tuning the Catalytic Activity of Subcellular Nanoreactors.

    PubMed

    Jakobson, Christopher M; Chen, Yiqun; Slininger, Marilyn F; Valdivia, Elias; Kim, Edward Y; Tullman-Ercek, Danielle

    2016-07-31

    Bacterial microcompartments are naturally occurring subcellular organelles of bacteria and serve as a promising scaffold for the organization of heterologous biosynthetic pathways. A critical element in the design of custom biosynthetic organelles is quantitative control over the loading of heterologous enzymes to the interior of the organelles. We demonstrate that the loading of heterologous proteins to the 1,2-propanediol utilization microcompartment of Salmonella enterica can be controlled using two strategies: by modulating the transcriptional activation of the microcompartment container and by coordinating the expression of the microcompartment container and the heterologous cargo. These strategies allow general control over the loading of heterologous proteins localized by two different N-terminal targeting peptides and represent an important step toward tuning the catalytic activity of bacterial microcompartments for increased biosynthetic productivity. Copyright © 2016. Published by Elsevier Ltd.

  10. Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xiao; Yang, Hanjing; Arutiunian, Vagan

    The catalytic activity of human cytidine deaminase APOBEC3B (A3B) has been correlated with kataegic mutational patterns within multiple cancer types. The molecular basis of how the N-terminal non-catalytic CD1 regulates the catalytic activity and consequently, biological function of A3B remains relatively unknown. Here, we report the crystal structure of a soluble human A3B-CD1 variant and delineate several structural elements of CD1 involved in molecular assembly, nucleic acid interactions and catalytic regulation of A3B. We show that (i) A3B expressed in human cells exists in hypoactive high-molecular-weight (HMW) complexes, which can be activated without apparent dissociation into low-molecular-weight (LMW) species aftermore » RNase A treatment. (ii) Multiple surface hydrophobic residues of CD1 mediate the HMW complex assembly and affect the catalytic activity, including one tryptophan residue W127 that likely acts through regulating nucleic acid binding. (iii) One of the highly positively charged surfaces on CD1 is involved in RNA-dependent attenuation of A3B catalysis. (iv) Surface hydrophobic residues of CD1 are involved in heterogeneous nuclear ribonucleoproteins (hnRNPs) binding to A3B. The structural and biochemical insights described here suggest that unique structural features on CD1 regulate the molecular assembly and catalytic activity of A3B through distinct mechanisms.« less

  11. Comparative Characterization of CTX-M-64 and CTX-M-14 Provides Insights into the Structure and Catalytic Activity of the CTX-M Class of Enzymes

    PubMed Central

    He, Dandan; Chiou, Jiachi; Zeng, Zhenling; Chan, Edward Wai-Chi

    2016-01-01

    Clinical isolates producing hybrid CTX-M β-lactamases, presumably due to recombination between the blaCTX-M-15 and blaCTX-M-14 elements, have emerged in recent years. Among the hybrid enzymes, CTX-M-64 and CTX-M-14 display the most significant difference in catalytic activity. This study aims to investigate the mechanisms underlying such differential enzymatic activities in order to provide insight into the structure/function relationship of this class of enzymes. Sequence alignment analysis showed that the major differences between the amino acid composition of CTX-M-64 and CTX-M-14 lie at both the N and C termini of the enzymes. Single or multiple amino acid substitutions introduced into CTX-M-64 and CTX-M-14 were found to produce only minor effects on hydrolytic functions; such a finding is consistent with the notion that the discrepancy between the functional activities of the two enzymes is not the result of only a few amino acid changes but is attributable to interactions between a unique set of amino acid residues in each enzyme. This theory is supported by the results of the thermal stability assay, which confirmed that CTX-M-64 is significantly more stable than CTX-M-14. Our data confirmed that, in addition to the important residues located in the active site, residues distal to the active site also contribute to the catalytic activity of the enzyme through stabilizing its structural integrity. PMID:27480856

  12. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide

    PubMed Central

    Tran, Phong D.; Tran, Thu V.; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2017-01-01

    Molybdenum sulfides are very attractive noble-metal free electrocatalysts for the hydrogen evolution reaction (HER) from water. Atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx) which displays significantly higher HER activity compared to its crystalline counterpart. Here we show that HER–active a-MoSx, prepared either as nanoparticles or as films, is a molecular–based coordination polymer consisting of discrete [Mo3S13]2– building blocks. Of the three terminal disulfide (S22–) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimisation of this HER electrocatalyst as an alternative to platinum. PMID:26974410

  13. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress*♦

    PubMed Central

    Benoit, Stéphane L.; Maier, Robert J.

    2016-01-01

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. PMID:27605666

  14. Greener synthesis of Cu-MOF-74 and its catalytic use for the generation of vanillin.

    PubMed

    Flores, J Gabriel; Sánchez-González, Elí; Gutiérrez-Alejandre, Aída; Aguilar-Pliego, Julia; Martínez, Ana; Jurado-Vázquez, Tamara; Lima, Enrique; González-Zamora, Eduardo; Díaz-García, Manuel; Sánchez-Sánchez, Manuel; Ibarra, Ilich A

    2018-03-26

    A greener synthesis of Cu-MOF-74 was obtained, for the first time, in methanol as the unique solvent and at room temperature. Full characterisation of the MOF material showed its purity and also its nanocrystalline nature. Complete activation (150 °C for 1 h and 10-3 bar) of Cu-MOF-74 afforded unsaturated Cu metal sites and this was corroborated by in situ DRIFT spectroscopy. The access to these Cu open metal sites was tested for the catalytic transformation of trans-ferulic acid to vanillin (yield of 71% and 97% selectivity) and a plausible catalytic reaction mechanism was postulated based on quantum chemical calculations.

  15. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports

    NASA Astrophysics Data System (ADS)

    Camposeco, R.; Castillo, S.; Mejía-Centeno, Isidro; Navarrete, J.; Nava, N.

    2015-11-01

    In this study, titanate nanotubes (NT) and titanate nanotubes with alumina (NT-Al) were studied as solid acid catalytic supports to show the relationship between the kind of acidity and catalytic activity. The supports were characterized by XRD, TEM, FTIR, XPS, and tested in the SCR-NO with NH3. It was found that the amount of Brönsted acid sites was maintained and the Lewis acid sites were significantly affected by the addition of alumina (1, 3, 5 and 10 wt.%); such acidity was higher than that of the titanate nanotubes (NT) by two-fold. To confirm the formation of titanate nanotubes and titanate nanotubes with alumina, transmission electron microscopy (TEM) was used. X-ray diffraction (XRD) revealed the formation of the H2Ti4O9·H2O phase. All NT and NT-Al supports presented catalytic activity to remove NO with NH3 under lean conditions, confirming the presence of an important amount of Brönsted and Lewis acid sites in both NT and NT-Al supports.

  16. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    PubMed

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  17. Identification of N-Terminal Lobe Motifs that Determine the Kinase Activity of the Catalytic Domains and Regulatory Strategies of Src and Csk Protein Tyrosine Kinases†

    PubMed Central

    Huang, Kezhen; Wang, Yue-Hao; Brown, Alex; Sun, Gongqin

    2009-01-01

    Csk and Src protein tyrosine kinases are structurally homologous, but use opposite regulatory strategies. The isolated catalytic domain of Csk is intrinsically inactive and is activated by interactions with the regulatory SH3 and SH2 domains, while the isolated catalytic domain of Src is intrinsically active and is suppressed by interactions with the regulatory SH3 and SH2 domains. The structural basis for why one isolated catalytic domain is intrinsically active while the other is inactive is not clear. In this current study, we identify the structural elements in the N-terminal lobe of the catalytic domain that render the Src catalytic domain active. These structural elements include the α-helix C region, a β-turn between the β-4 and β-5 strands, and an Arg residue at the beginning of the catalytic domain. These three motifs interact with each other to activate the Src catalytic domain, but the equivalent motifs in Csk directly interact with the regulatory domains that are important for Csk activation. The Src motifs can be grafted to the Csk catalytic domain to obtain an active Csk catalytic domain. These results, together with available Src and Csk tertiary structures, reveal an important structural switch that determines the kinase activity of a catalytic domain and dictates the regulatory strategy of a kinase. PMID:19244618

  18. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting.

    PubMed

    Wang, Mengfan; Lv, Yuqi; Liu, Xiaojing; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-06-08

    In this study, an artificial hydrolase was developed by combining the catalytic Ser/His/Asp triad with N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF), followed by coassembly of the peptides into nanofibers (CoA-HSD). The peptide-based nanofibers provide an ideal supramolecular framework to support the functional groups. Compared with the self-assembled catalytic nanofibers (SA-H), which contain only the catalytic histidine residue, the highest activity of CoA-HSD occurs when histidine, serine, and aspartate residues are at a ratio of 40:1:1. This indicates that the well-ordered nanofiber structure and the synergistic effects of serine and aspartate residues contribute to the enhancement in activity. Additionally, for the first time, molecular imprinting was applied to further enhance the activity of the peptide-based artificial enzyme (CoA-HSD). p-NPA was used as the molecular template to arrange the catalytic Ser/His/Asp triad residues in the proper orientation. As a result, the activity of imprinted coassembled CoA-HSD nanofibers is 7.86 times greater than that of nonimprinted CoA-HSD and 13.48 times that of SA-H.

  19. The Role of Low-coordinate Oxygen on Co3O4(110) in Catalytic Oxidation of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Deen; Dai, Sheng

    2011-01-01

    A complete catalytic cycle for carbon monoxide (CO) oxidation to carbon dioxide (CO{sub 2}) by molecular oxygen on the Co{sub 3}O{sub 4}(110) surface was obtained by density functional theory plus the on-site Coulomb repulsion (DFT + U). Previously observed high activity of Co{sub 3}O{sub 4} to catalytically oxidize CO at very low temperatures is explained by a unique twofold-coordinate oxygen site on Co{sub 3}O{sub 4}(110). The CO molecule extracts this oxygen with a computed barrier of 27 kJ/mol. The extraction leads to CO{sub 2} formation and an oxygen vacancy on Co{sub 3}O{sub 4}(110). Then, the O{sub 2} molecule dissociates withoutmore » a barrier between two neighboring oxygen vacancies (which are shown to have high surface mobility), thereby replenishing the twofold-coordinate oxygen sites on the surface and enabling the catalytic cycle. In contrast, extracting the threefold-coordinate oxygen site on Co{sub 3}O{sub 4}(110) has a higher barrier. Our work furnishes a molecular-level mechanism of Co{sub 3}O{sub 4}'s catalytic power, which may help understand previous experimental results and oxidation catalysis by transition metal oxides.« less

  20. Chaperones are necessary for the expression of catalytically active potato apyrases in prokaryotic cells.

    PubMed

    Porowińska, Dorota; Czarnecka, Joanna; Komoszyński, Michał

    2014-07-01

    NTPDases (nucleoside triphosphate diphosphohydrolases) (also called in plants apyrases) hydrolyze nucleoside 5'-tri- and/or diphosphate bonds producing nucleosides di or monophosphate and inorganic phosphate. For years, studies have been carried out to use both plant and animal enzymes for medicine. Therefore, there is a need to develop an efficient method for the quick production of large amounts of homogeneous proteins with high catalytic activity. Expression of proteins in prokaryotic cells is the most common way for the protein production. The aim of our study was to develop a method of expression of potato apyrase (StAPY4, 5, and 6) genes in bacterial cells under conditions that allowed the production of catalytically active form of these enzymes. Apyrase 4 and 6 were overexpressed in BL21-CodonPlus (DE3) bacteria strain but they were accumulated in inclusion bodies, regardless of the culture conditions and induction method. Co-expression of potato apyrases with molecular chaperones allowed the expression of catalytically active apyrase 5. However, its high nucleotidase activity could be toxic for bacteria and is therefore synthesized in small amounts in cells. Our studies show that each protein requires other conditions for maturation and even small differences in amino acid sequence can essentially affect protein folding regardless of presence of chaperones.

  1. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    PubMed

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Crystal Structures of the Open and Catalytically Competent Closed Conformation of Escherichia coli Glycogen Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Fang; Jia, Xiaofei; Yep, Alejandra

    2009-07-06

    Escherichia coli glycogen synthase (EcGS, EC 2.4.1.21) is a retaining glycosyltransferase (GT) that transfers glucose from adenosine diphosphate glucose to a glucan chain acceptor with retention of configuration at the anomeric carbon. EcGS belongs to the GT-B structural superfamily. Here we report several EcGS x-ray structures that together shed considerable light on the structure and function of these enzymes. The structure of the wild-type enzyme bound to ADP and glucose revealed a 15.2 degrees overall domain-domain closure and provided for the first time the structure of the catalytically active, closed conformation of a glycogen synthase. The main chain carbonyl groupmore » of His-161, Arg-300, and Lys-305 are suggested by the structure to act as critical catalytic residues in the transglycosylation. Glu-377, previously thought to be catalytic is found on the alpha-face of the glucose and plays an electrostatic role in the active site and as a glucose ring locator. This is also consistent with the structure of the EcGS(E377A)-ADP-HEPPSO complex where the glucose moiety is either absent or disordered in the active site« less

  3. Growth of Nanoparticles with Desired Catalytic Functions by Controlled Doping-Segregation of Metal in Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiyuan; Yan, Binhang; Cen, Jiajie

    Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less

  4. Growth of Nanoparticles with Desired Catalytic Functions by Controlled Doping-Segregation of Metal in Oxide

    DOE PAGES

    Wu, Qiyuan; Yan, Binhang; Cen, Jiajie; ...

    2018-02-05

    Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less

  5. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  6. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.

    PubMed

    Kracher, Daniel; Andlar, Martina; Furtmüller, Paul G; Ludwig, Roland

    2018-02-02

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-containing enzymes that oxidatively degrade insoluble plant polysaccharides and soluble oligosaccharides. Upon reductive activation, they cleave the substrate and promote biomass degradation by hydrolytic enzymes. In this study, we employed LPMO9C from Neurospora crassa , which is active toward cellulose and soluble β-glucans, to study the enzyme-substrate interaction and thermal stability. Binding studies showed that the reduction of the mononuclear active-site copper by ascorbic acid increased the affinity and the maximum binding capacity of LPMO for cellulose. The reduced redox state of the active-site copper and not the subsequent formation of the activated oxygen species increased the affinity toward cellulose. The lower affinity of oxidized LPMO could support its desorption after catalysis and allow hydrolases to access the cleavage site. It also suggests that the copper reduction is not necessarily performed in the substrate-bound state of LPMO. Differential scanning fluorimetry showed a stabilizing effect of the substrates cellulose and xyloglucan on the apparent transition midpoint temperature of the reduced, catalytically active enzyme. Oxidative auto-inactivation and destabilization were observed in the absence of a suitable substrate. Our data reveal the determinants of LPMO stability under turnover and non-turnover conditions and indicate that the reduction of the active-site copper initiates substrate binding. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Engineering of isoamylase: improvement of protein stability and catalytic efficiency through semi-rational design.

    PubMed

    Li, Youran; Zhang, Liang; Ding, Zhongyang; Gu, Zhenghua; Shi, Guiyang

    2016-01-01

    Isoamylase catalyzes the hydrolysis of α-1,6-glycosidic linkages in glycogen, amylopectin and α/β-limit dextrins. A semi-rational design strategy was performed to improve catalytic properties of isoamylase from Bacillus lentus. Three residues in vicinity of the essential residues, Arg505, Asn513, and Gly608, were chosen as the mutation sites and were substituted by Ala, Pro, Glu, and Lys, respectively. Thermal stability of the mutant R505P and acidic stability of the mutant R505E were enhanced. The k cat /K m values of the mutant G608V have been promoted by 49%, and the specific activity increased by 33%. This work provides an effective strategy for improving the catalytic activity and stability of isoamylase, and the results obtained here may be useful for the improvement of catalytic properties of other α/β barrel enzymes.

  8. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.

    PubMed

    Pedroso, Marcelo M; Ely, Fernanda; Carpenter, Margaret C; Mitić, Nataša; Gahan, Lawrence R; Ollis, David L; Wilcox, Dean E; Schenk, Gerhard

    2017-07-05

    Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase with a high affinity for metal ions at its α site but a lower affinity at its β site in the absence of a substrate. Isothermal titration calorimetry (ITC) has been used to quantify the Co(II) and Mn(II) binding affinities and thermodynamics of the two sites in wild-type GpdQ and two mutants, both in the absence and in the presence of phosphate. Metal ions bind to the six-coordinate α site in an entropically driven process with loss of a proton, while binding at the β site is not detected by ITC. Phosphate enhances the metal affinity of the α site by increasing the binding entropy and the metal affinity of the β site by enthalpic (Co) or entropic (Mn) contributions, but no additional loss of protons. Mutations of first- and second-coordination sphere residues at the β site increase the metal affinity of both sites by enhancing the binding enthalpy. In particular, loss of the hydrogen bond from second-sphere Ser127 to the metal-coordinating Asn80 has a significant effect on the metal binding thermodynamics that result in a resting binuclear active site with high catalytic activity. While structural and spectroscopic data with excess metal ions have indicated a bridging hydroxide in the binuclear GpdQ site, analysis of ITC data here reveals the loss of a single proton in the assembly of this site, indicating that the metal-bound hydroxide nucleophile is formed in the resting inactive mononuclear form, which becomes catalytically competent upon binding the second metal ion.

  9. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  10. Syk Inhibits the Activity of Protein Kinase A by Phosphorylating Tyrosine 330 of the Catalytic Subunit*

    PubMed Central

    Yu, Shuai; Huang, He; Iliuk, Anton; Wang, Wen-Horng; Jayasundera, Keerthi B.; Tao, W. Andy; Post, Carol B.; Geahlen, Robert L.

    2013-01-01

    The Syk protein-tyrosine kinase can have multiple effects on cancer cells, acting in some as a tumor suppressor by inhibiting motility and in others as a tumor promoter by enhancing survival. Phosphoproteomic analyses identified PKA as a Syk-specific substrate. Syk catalyzes the phosphorylation of the catalytic subunit of PKA (PKAc) both in vitro and in cells on Tyr-330. Tyr-330 lies within the adenosine-binding motif in the C-terminal tail of PKAc within a cluster of acidic amino acids (DDYEEEE), which is a characteristic of Syk substrates. The phosphorylation of PKAc on Tyr-330 by Syk strongly inhibits its catalytic activity. Molecular dynamics simulations suggest that this additional negative charge prevents the C-terminal tail from interacting with the substrate and the nucleotide-binding site to stabilize the closed conformation of PKAc, thus preventing catalysis from occurring. Phosphoproteomic analyses and Western blotting studies indicate that Tyr-330 can be phosphorylated in a Syk-dependent manner in MCF7 breast cancer cells and DT40 B cells. The phosphorylation of a downstream substrate of PKAc, cAMP-responsive element-binding protein (CREB), is inhibited in cells expressing Syk but can be rescued by a selective inhibitor of Syk. Modulation of CREB activity alters the expression of the CREB-regulated gene BCL2 and modulates cellular responses to genotoxic agents. Thus, PKA is a novel substrate of Syk, and its phosphorylation on Tyr-330 inhibits its participation in downstream signaling pathways. PMID:23447535

  11. The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake

    Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants atmore » position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density

  12. Relationship of Catalysis and Active Site Loop Dynamics in the (βα)8-Barrel Enzyme Indole-3-glycerol Phosphate Synthase.

    PubMed

    Schlee, Sandra; Klein, Thomas; Schumacher, Magdalena; Nazet, Julian; Merkl, Rainer; Steinhoff, Heinz-Jürgen; Sterner, Reinhard

    2018-03-08

    It is important to understand how the catalytic activity of enzymes is related to their conformational flexibility. We have studied this activity-flexibility correlation using the example of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (ssIGPS), which catalyzes the fifth step in the biosynthesis of tryptophan. ssIGPS is a thermostable representative of enzymes with the frequently encountered and catalytically versatile (βα) 8 -barrel fold. Four variants of ssIGPS with increased catalytic turnover numbers were analyzed by transient kinetics at 25 °C, and wild-type ssIGPS was likewise analyzed both at 25 °C and at 60 °C. Global fitting with a minimal three-step model provided the individual rate constants for substrate binding, chemical transformation, and product release. The results showed that in both cases, namely, the application of activating mutations and temperature increase, the net increase in the catalytic turnover number is afforded by acceleration of the product release rate relative to the chemical transformation steps. Measurements of the solvent viscosity effect at 25 °C versus 60 °C confirmed this change in the rate-determining step with temperature, which is in accordance with a kink in the Arrhenius diagram of ssIGPS at ∼40 °C. When rotational diffusion rates of electron paramagnetic spin-labels attached to active site loop β1α1 are plotted in the form of an Arrhenius diagram, kinks are observed at the same temperature. These findings, together with molecular dynamics simulations, demonstrate that a different degree of loop mobility correlates with different rate-limiting steps in the catalytic mechanism of ssIGPS.

  13. Enhancement of catalytic activity of enzymes by heating in anhydrous organic solvents: 3D structure of a modified serine proteinase at high resolution.

    PubMed

    Sharma, S; Tyagi, R; Gupta, M N; Singh, T P

    2001-01-01

    For the first time, it is demonstrated that exposure of an enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes, namely, proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin were exposed to acetonitrile at 70 degrees C for three hr. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, proteinase K was analyzed in detail using X-ray diffraction method. The overall structure of the enzyme was found to be similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad remained intact after the treatment. However, the water structure in the substrate binding site underwent some rearrangement as some of the water molecules were either displaced or completely absent. The most striking observation concerning the water structure was the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules were located in the recognition site. Interlinked through water molecules, the sites occupied by acetonitrile molecules were independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu 96, Ile 107 and Leu 133. The development of such a hydrophobic environment at the recognition site introduced a striking conformation change in Ile 107 by rotating its side chain about C alpha-C beta bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar

  14. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  15. Light chain separated from the rest of the type a botulinum neurotoxin molecule is the most catalytically active form.

    PubMed

    Gul, Nizamettin; Smith, Leonard A; Ahmed, S Ashraf

    2010-09-22

    Botulinum neurotoxins (BoNT) are the most potent of all toxins. The 50 kDa N-terminal endopeptidase catalytic light chain (LC) of BoNT is located next to its central, putative translocation domain. After binding to the peripheral neurons, the central domain of BoNT helps the LC translocate into cytosol where its proteolytic action on SNARE (soluble NSF attachment protein receptor) proteins blocks exocytosis of acetyl choline leading to muscle paralysis and eventual death. The translocation domain also contains 105 Å -long stretch of ∼100 residues, known as "belt," that crosses over and wraps around the LC to shield the active site from solvent. It is not known if the LC gets dissociated from the rest of the molecule in the cytosol before catalysis. To investigate the structural identity of the protease, we prepared four variants of type A BoNT (BoNT/A) LC, and compared their catalytic parameters with those of BoNT/A whole toxin. The four variants were LC + translocation domain, a trypsin-nicked LC + translocation domain, LC + belt, and a free LC. Our results showed that K(m) for a 17-residue SNAP-25 (synaptosomal associated protein of 25 kDa) peptide for these constructs was not very different, but the turnover number (k(cat)) for the free LC was 6-100-fold higher than those of its four variants. Moreover, none of the four variants of the LC was prone to autocatalysis. Our results clearly demonstrated that in vitro, the LC minus the rest of the molecule is the most catalytically active form. The results may have implication as to the identity of the active, toxic moiety of BoNT/A in vivo.

  16. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.

    PubMed

    Hjörleifsson, Jens G; Ásgeirsson, Bjarni

    2017-09-26

    The effect of ionic strength on enzyme activity and stability varies considerably between enzymes. Ionic strength is known to affect the catalytic activity of some alkaline phosphatases (APs), such as Escherichia coli AP, but how ions affect APs is debated. Here, we studied the effect of various ions on a cold-adapted AP from Vibrio splendidus (VAP). Previously, we have found that the active form of VAP is extremely unstable at low ionic strengths. Here we show that NaCl increased the activity and stability of VAP and that the effect was pH-dependent in the range of pH 7-10. The activity profile as a function of pH formed two maxima, indicating a possible conformational change. Bringing the pH from the neutral to the alkaline range was accompanied by a large increase in both the K i for inorganic phosphate (product inhibition) and the K M for p-nitrophenyl phosphate. The activity transitions observed as the pH was varied correlated with structural changes as monitored by tryptophan fluorescence. Thermal and urea-induced inactivation was shown to be accompanied by neither dissociation of the active site metal ions nor dimer dissociation. This would suggest that the inactivation involved subtle changes in active site conformation. Furthermore, the VAP dimer equilibrium was studied for the first time and shown to highly favor dimerization, which was dependent on pH and NaCl concentration. Taken together, the data support a model in which anions bind to some specific acceptor in the active site of VAP, resulting in great stabilization and catalytic rate enhancement, presumably through a different mechanism.

  17. A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase.

    PubMed

    Dementin, Sébastien; Burlat, Bénédicte; De Lacey, Antonio L; Pardo, Alejandro; Adryanczyk-Perrier, Géraldine; Guigliarelli, Bruno; Fernandez, Victor M; Rousset, Marc

    2004-03-12

    Kinetic, EPR, and Fourier transform infrared spectroscopic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase mutants targeted to Glu-25 indicated that this amino acid participates in proton transfer between the active site and the protein surface during the catalytic cycle. Replacement of that glutamic residue by a glutamine did not modify the spectroscopic properties of the enzyme but cancelled the catalytic activity except the para-H(2)/ortho-H(2) conversion. This mutation impaired the fast proton transfer from the active site that allows high turnover numbers for the oxidation of hydrogen. Replacement of the glutamic residue by the shorter aspartic acid slowed down this proton transfer, causing a significant decrease of H(2) oxidation and hydrogen isotope exchange activities, but did not change the para-H(2)/ortho-H(2) conversion activity. The spectroscopic properties of this mutant were totally different, especially in the reduced state in which a non-photosensitive nickel EPR spectrum was obtained.

  18. Effect of nitrogen-containing impurities on the activity of perovskitic catalysts for the catalytic combustion of methane.

    PubMed

    Buchneva, Olga; Gallo, Alessandro; Rossetti, Ilenia

    2012-11-05

    LaMnO(3), either pure or doped with 10 mol % Sr, has been prepared by flame pyrolysis in nanostructured form. Such catalysts have been tested for the catalytic flameless combustion of methane, achieving very high catalytic activity. The resistance toward poisoning by some model N-containing impurities has been checked in order to assess the possibility of operating the flameless catalytic combustion with biogas, possibly contaminated by S- or N-based compounds. This would be a significant improvement from the environmental point of view because the application of catalytic combustion to gas turbines would couple improved energy conversion efficiency and negligible noxious emissions, while the use of biogas would open the way to energy production from a renewable source by means of very efficient technologies. A different behavior has been observed for the two catalysts; namely, the undoped sample was more or less heavily poisoned, whereas the Sr-doped sample showed slightly increasing activity upon dosage of N-containing compounds. A possible reaction mechanism has been suggested, based on the initial oxidation of the organic backbone, with the formation of NO. The latter may adsorb more or less strongly depending on the availability of surface oxygen vacancies (i.e., depending on doping). Decomposition of NO may leave additional activated oxygen species on the surface, available for low-temperature methane oxidation and so improving the catalytic performance.

  19. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-enabled Catalytic Conversion by Site Blocking

    DOE PAGES

    Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.; ...

    2018-05-28

    The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less

  20. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-enabled Catalytic Conversion by Site Blocking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.

    The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less

  1. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    PubMed Central

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  2. A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase*

    PubMed Central

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L.; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-01-01

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  3. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase.

    PubMed

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-03-27

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Insights into the glycyl radical enzyme active site of benzylsuccinate synthase: a computational study.

    PubMed

    Bharadwaj, Vivek S; Dean, Anthony M; Maupin, C Mark

    2013-08-21

    The fumarate addition reaction, catalyzed by the enzyme benzylsuccinate synthase (BSS), is considered to be one of the most intriguing and energetically challenging reactions in biology. BSS belongs to the glycyl radical enzyme family and catalyzes the fumarate addition reaction, which enables microorganisms to utilize hydrocarbons as an energy source under anaerobic conditions. Unfortunately, the extreme sensitivity of the glycyl radical to oxygen has hampered the structural and kinetic characterization of BSS, thereby limiting our knowledge on this enzyme. To enhance our molecular-level understanding of BSS, a computational approach involving homology modeling, docking studies, and molecular dynamics (MD) simulations has been used to deduce the structure of BSS's catalytic subunit (BSSα) and illuminate the molecular basis for the fumarate addition reaction. We have identified two conserved and distinct binding pockets at the BSSα active site: a hydrophobic pocket for toluene binding and a polar pocket for fumaric acid binding. Subsequent dynamical and energetic evaluations have identified Glu509, Ser827, Leu390, and Phe384 as active site residues critical for substrate binding. The orientation of substrates at the active site observed in MD simulations is consistent with experimental observations of the syn addition of toluene to fumaric acid. It is also found that substrate binding tightens the active site and restricts the conformational flexibility of the thiyl radical, leading to hydrogen transfer distances conducive to the proposed reaction mechanism. The stability of substrates at the active site and the occurrence of feasible radical transfer distances between the thiyl radical, substrates, and the active site glycine indicate a substrate-assisted radical transfer pathway governing fumarate addition.

  5. Remote Exosites of the Catalytic Domain of Matrix Metalloproteinase-12 Enhance Elastin Degradation┼

    PubMed Central

    Fulcher, Yan G.; Van Doren, Steven R.

    2011-01-01

    How does matrix metalloproteinase-12 (MMP-12 or metalloelastase) degrade elastin with high specific activity? NMR suggested soluble elastin to cover surfaces of MMP-12 far from its active site. Two of these surfaces have been found, by mutagenesis guided by the BINDSIght approach, to affect degradation and affinity for elastin substrates but not a small peptide substrate. Main exosite 1 has been extended out to Asp124 that binds calcium. Novel exosite 2 comprises residues from the II–III loop and β-strand I near the back of the catalytic domain. The high exposure of these distal exosites may make them accessible to elastin made more flexible by partial hydrolysis. Importantly, combination of a lesion at each of exosites 1 and 2 and active site decreased catalytic competence towards soluble elastin by 13- to 18-fold to the level of MMP-3, homologue and poor elastase. Double mutant cycle analysis of conservative mutations of Met156 (exosite 2) and either Asp124 (exosite 1) or Ile180 (active site) had additive effects. Compared to polar substitutions observed in other MMPs, Met156 enhanced affinity and Ile180 kcat for soluble elastin. Both residues detracted from the higher folding stability with polar mutations. This resembles the trend in enzymes of an inverse relationship between folding stability and activity. Restoring Asp124 from combination mutants enhanced kcat for soluble elastin. In elastin degradation, exosites 1 and 2 contributed independently of each other and Ile180 at the active site, but with partial coupling to Ala182 near the active site. The concept of weak, separated interactions coalescing somewhat independently can be extended to this proteolytic digestion of a protein from fibrils. PMID:21967233

  6. Triblock copolymer-mediated synthesis of catalytically active gold nanostructures

    NASA Astrophysics Data System (ADS)

    Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine

    2018-04-01

    The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.

  7. Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke.

    PubMed

    Li, Xukai; Zhang, Qiuyun; Tang, Lili; Lu, Ping; Sun, Fengqiang; Li, Laisheng

    2009-04-15

    The aim of this research was to investigate catalytic activity of petroleum coke, activated carbon (AC) prepared from this material, Ni supported catalyst on activated carbon (Ni/AC) in the ozonation of aqueous phase p-chlorobenzoic acid (p-CBA). Activated carbon and Ni/AC catalyst were characterized by XRD and SEM. The presence of petroleum coke did not improve the degradation of p-CBA compared to ozonation alone, but it was advantageous for p-CBA mineralization (total organic carbon, TOC, reduction), indicating the generation of highly oxidant species (*OH) in the medium. The presence of either activated carbon or Ni/AC considerably improves TOC removal during p-CBA ozonation. Ni/AC catalyst shows the better catalytic activity and stability based on five repeated tests during p-CBA ozonation. During the ozonation (50 mg/h ozone flow rate) of a 10 mg/L p-CBA (pH 4.31), it can be more mineralized in the presence of Ni/AC catalyst (5.0 g/L), TOC removal rate is over 60% in 60 min, 43% using activated carbon as catalyst, only 30% with ozonation alone.

  8. High-spatial-resolution mapping of catalytic reactions on single particles

    DOE PAGES

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan; ...

    2017-01-26

    We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less

  9. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner

    PubMed Central

    Lee, Mi Eun; Kim, So Ra; Lee, Seungkoo; Jung, Yu-Jin; Choi, Sun Shim; Kim, Woo Jin

    2012-01-01

    It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1. PMID:22771771

  10. Forecasting the zeolite-containing catalyst activity in catalytic cracking technology taking into account the feedstock composition

    NASA Astrophysics Data System (ADS)

    Ivashkina, Elena; Nazarova, Galina; Shafran, Tatyana; Stebeneva, Valeriya

    2017-08-01

    The effect of the feedstock composition and the process conditions on the current catalyst activity in catalytic cracking technology using a mathematical model is performed in this research. The mathematical model takes into account the catalyst deactivation by coke for primary and secondary cracking reactions. The investigation results have shown that the feedstock has significant effect on the yield and the content of coke on the catalyst. Thus, the relative catalyst activity is significantly reduced by 7.5-10.7 %. With increasing the catalytic cracking temperature due to the catalyst flow temperature rising, the coke content and the yield per feedstock increase and the catalyst activity decreases by 5.3-7.7%. Rising the process temperature together with the catalyst circulation ratio contributes to increase of the coke yield per feedstock in the catalytic cracking and decrease of the coke content on the catalyst. It is connected with the catalyst flow rising to the riser and the contact time decreasing in the reaction zone. Also, the catalyst activity decreases in the range of 3.8-5.5% relatively to the regenerated catalyst activity (83 %).

  11. A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity.

    PubMed

    Mills, Jamie E; Whitford, Paul C; Shaffer, Jennifer; Onuchic, Jose N; Adams, Joseph A; Jennings, Patricia A

    2007-02-02

    The SH2 domain of the C-terminal Src kinase [Csk] contains a unique disulfide bond that is not present in other known SH2 domains. To investigate whether this unusual disulfide bond serves a novel function, the effects of disulfide bond formation on catalytic activity of the full-length protein and on the structure of the SH2 domain were investigated. The kinase activity of full-length Csk decreases by an order of magnitude upon formation of the disulfide bond in the distal SH2 domain. NMR spectra of the fully oxidized and fully reduced SH2 domains exhibit similar chemical shift patterns and are indicative of similar, well-defined tertiary structures. The solvent-accessible disulfide bond in the isolated SH2 domain is highly stable and far from the small lobe of the kinase domain. However, reduction of this bond results in chemical shift changes of resonances that map to a cluster of residues that extend from the disulfide bond across the molecule to a surface that is in direct contact with the small lobe of the kinase domain in the intact molecule. Normal mode analyses and molecular dynamics calculations suggest that disulfide bond formation has large effects on residues within the kinase domain, most notably within the active-site cleft. Overall, the data indicate that reversible cross-linking of two cysteine residues in the SH2 domain greatly impacts catalytic function and interdomain communication in Csk.

  12. Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes.

    PubMed

    Urban, Philippe; Truan, Gilles; Pompon, Denis

    2015-04-01

    A cytochrome P450 active site is buried within the protein molecule and several channels connect the catalytic cavity to the protein surface. Their role in P450 catalysis is still matter of debate. The aim of this study was to understand the possible relations existing between channels and substrate specificity. Time course studies were carried out with a collection of polycyclic substrates of increasing sizes assayed with a library of wild-type and chimeric CYP1A enzymes. This resulted in a matrix of activities sufficiently large to allow statistical analysis. Multivariate statistical tools were used to decipher the correlation between observed activity shifts and sequence segment swaps. The global kinetic behavior of CYP1A enzymes toward polycyclic substrates is significantly different depending on the size of the substrate. Mutations which are close or lining the P450 channels significantly affect this discrimination, whereas mutations distant from the P450 channels do not. Size discrimination is taking place for polycyclic substrates at the entrance of the different P450 access channels. It is thus hypothesized that channels differentiate small from large substrates in CYP1A enzymes, implying that residues located at the surface of the protein may be implied in this differential recognition. Catalysis thus occurs after a two-step recognition process, one at the surface of the protein and the second within the catalytic cavity in enzymes with a buried active site. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mapping Catalytically Relevant Edge Electronic States of MoS2

    PubMed Central

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  14. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles.

    PubMed

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-02-02

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh., E-mail: mshabaan90@yahoo.com; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef

    2016-03-15

    Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and opticalmore » characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.« less

  16. Comparative Characterization of CTX-M-64 and CTX-M-14 Provides Insights into the Structure and Catalytic Activity of the CTX-M Class of Enzymes.

    PubMed

    He, Dandan; Chiou, Jiachi; Zeng, Zhenling; Chan, Edward Wai-Chi; Liu, Jian-Hua; Chen, Sheng

    2016-10-01

    Clinical isolates producing hybrid CTX-M β-lactamases, presumably due to recombination between the blaCTX-M-15 and blaCTX-M-14 elements, have emerged in recent years. Among the hybrid enzymes, CTX-M-64 and CTX-M-14 display the most significant difference in catalytic activity. This study aims to investigate the mechanisms underlying such differential enzymatic activities in order to provide insight into the structure/function relationship of this class of enzymes. Sequence alignment analysis showed that the major differences between the amino acid composition of CTX-M-64 and CTX-M-14 lie at both the N and C termini of the enzymes. Single or multiple amino acid substitutions introduced into CTX-M-64 and CTX-M-14 were found to produce only minor effects on hydrolytic functions; such a finding is consistent with the notion that the discrepancy between the functional activities of the two enzymes is not the result of only a few amino acid changes but is attributable to interactions between a unique set of amino acid residues in each enzyme. This theory is supported by the results of the thermal stability assay, which confirmed that CTX-M-64 is significantly more stable than CTX-M-14. Our data confirmed that, in addition to the important residues located in the active site, residues distal to the active site also contribute to the catalytic activity of the enzyme through stabilizing its structural integrity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity.

    PubMed

    Shi, Jiafu; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi

    2014-10-25

    Open-mouthed hybrid microcapsules (HMCs) are synthesized through a hard-templating method. When utilized for enzyme immobilization and enzymatic catalysis, the open-mouthed HMCs show high enzyme loading capability, enhanced catalytic activity and desirable recycling stability, due to their fully exposed outer and inner surfaces.

  18. Structures of the Mycobacterium tuberculosis GlpX protein (class II fructose-1,6-bisphosphatase): implications for the active oligomeric state, catalytic mechanism and citrate inhibition

    DOE PAGES

    Wolf, Nina M.; Gutka, Hiten J.; Movahedzadeh, Farahnaz; ...

    2018-04-03

    The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus . This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and ismore » probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis ( Mt FBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of Mt FBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of Mt FBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.« less

  19. Structures of the Mycobacterium tuberculosis GlpX protein (class II fructose-1,6-bisphosphatase): implications for the active oligomeric state, catalytic mechanism and citrate inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Nina M.; Gutka, Hiten J.; Movahedzadeh, Farahnaz

    The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus . This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and ismore » probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis ( Mt FBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of Mt FBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of Mt FBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.« less

  20. Catalytic degradation of organophosphorous nerve agent simulants by polymer beads@graphene oxide with organophosphorus hydrolase-like activity based on rational design of functional bimetallic nuclear ligand.

    PubMed

    Ma, Xuejuan; Zhang, Lin; Xia, Mengfan; Zhang, Xiaohong; Zhang, Yaodong

    2018-05-15

    The degradation of organophosphorous nerve agents is of primary concern due to the severe toxicity of these agents. Based on the active center of organophosphorus hydrolase (OPH), a bimetallic nuclear ligand, (5-vinyl-1,3-phenylene)bis(di(1H-imidazol-2-yl) methanol) (VPIM), was designed and synthesized, which contains four imidazole groups to mimic the four histidines at OPH active center. By grafting VPIM on graphene oxide (GO) surface via polymerization, the VPIM-polymer beads@GO was produced. The obtained OPH mimics has an impressive activity in dephosphorylation reactions (turnover frequency (TOF) towards paraoxon: 2.3 s -1 ). The synergistic catalytic effect of the bimetallic Zn 2+ nuclear center and carboxyl groups on surface of GO possibly contributes to the high hydrolysis on organophosphate substrate. Thus, a biomimetic catalyst for efficient degradation of some organophosphorous nerve agent simulants, such as paraoxon and chlorpyrifos, was prepared by constructing catalytic active sites. The proposed mechanism and general synthetic strategy open new avenues for the engineering of functional GOs for biomimetic catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Critical Role of Interdomain Interactions in the Conformational Change and Catalytic Mechanism of Endoplasmic Reticulum Aminopeptidase 1.

    PubMed

    Stamogiannos, Athanasios; Maben, Zachary; Papakyriakou, Athanasios; Mpakali, Anastasia; Kokkala, Paraskevi; Georgiadis, Dimitris; Stern, Lawrence J; Stratikos, Efstratios

    2017-03-14

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that is important for the generation of antigenic epitopes and major histocompatibility class I-restricted adaptive immune responses. ERAP1 processes a vast variety of different peptides but still shows length and sequence selectivity, although the mechanism behind these properties is poorly understood. X-ray crystallographic analysis has revealed that ERAP1 can assume at least two distinct conformations in which C-terminal domain IV is either proximal or distal to active site domain II. To improve our understanding of the role of this conformational change in the catalytic mechanism of ERAP1, we used site-directed mutagenesis to perturb key salt bridges between domains II and IV. Enzymatic analysis revealed that these mutations, although located away from the catalytic site, greatly reduce the catalytic efficiency and change the allosteric kinetic behavior. The variants were more efficiently activated by small peptides and bound a competitive inhibitor with weaker affinity and faster dissociation kinetics. Molecular dynamics analysis suggested that the mutations affect the conformational distribution of ERAP1, reducing the population of closed states. Small-angle X-ray scattering indicated that both the wild type and the ERAP1 variants are predominantly in an open conformational state in solution. Overall, our findings suggest that electrostatic interactions between domains II and IV in ERAP1 are crucial for driving a conformational change that regulates the structural integrity of the catalytic site. The extent of domain opening in ERAP1 probably underlies its specialization for antigenic peptide precursors and should be taken into account in inhibitor development efforts.

  2. Α-amylase from wheat (Triticum aestivum) seeds: its purification, biochemical attributes and active site studies.

    PubMed

    Singh, Kritika; Kayastha, Arvind M

    2014-11-01

    Glycosylated α-amylase from germinated wheat seeds (Triticum aestivum) has been purified to apparent electrophoretic homogeneity with a final specific activity of 1,372 U/mg. The enzyme preparation when analysed on SDS-PAGE, displayed a single protein band with Mr 33 kDa; Superdex 200 column showed Mr of 32 kDa and MS/MS analysis further provided support for these values. The enzyme displayed its optimum catalytic activity at pH 5.0 and 68 °C with an activation energy of 6.66 kcal/mol and Q10 1.42. The primary substrate for this hydrolase appears to be starch with Km 1.56 mg/mL, Vmax 1666.67 U/mg and kcat 485 s(-1) and hence is suitable for application in starch based industries. Thermal inactivation of α-amylase at 67 °C resulted in first-order kinetics with rate constant (k) 0.0086 min(-1) and t1/2 80 min. The enzyme was susceptible to EDTA (10mM) with irreversible loss of hydrolytic power. In the presence of 1.0mM SDS, the enzyme lost only 14% and 23% activity in 24 and 48 h, respectively. Chemical modification studies showed that the enzyme contains histidine and carboxylic residues at its active site for its catalytic activity and possibly conserved areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles.

    PubMed

    Lee, Hyosun; Lim, Juhyung; Lee, Changhwan; Back, Seoin; An, Kwangjin; Shin, Jae Won; Ryoo, Ryong; Jung, Yousung; Park, Jeong Young

    2018-06-08

    Despite numerous studies, the origin of the enhanced catalytic performance of bimetallic nanoparticles (NPs) remains elusive because of the ever-changing surface structures, compositions, and oxidation states of NPs under reaction conditions. An effective strategy for obtaining critical clues for the phenomenon is real-time quantitative detection of hot electrons induced by a chemical reaction on the catalysts. Here, we investigate hot electrons excited on PtCo bimetallic NPs during H 2 oxidation by measuring the chemicurrent on a catalytic nanodiode while changing the Pt composition of the NPs. We reveal that the presence of a CoO/Pt interface enables efficient transport of electrons and higher catalytic activity for PtCo NPs. These results are consistent with theoretical calculations suggesting that lower activation energy and higher exothermicity are required for the reaction at the CoO/Pt interface.

  4. Rubisco Activity: Effects of Drought Stress

    PubMed Central

    PARRY, MARTIN A. J.; ANDRALOJC, P. JOHN; KHAN, SHAHNAZ; LEA, PETER J.; KEYS, ALFRED J.

    2002-01-01

    Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) activity is modulated in vivo either by reaction with CO2 and Mg2+ to carbamylate a lysine residue in the catalytic site, or by the binding of inhibitors within the catalytic site. Binding of inhibitors blocks either activity or the carbamylation of the lysine residue that is essential for activity. At night, in many species, 2‐carboxyarabinitol‐1‐phosphate (CA1P) is formed which binds tightly to Rubisco, inhibiting catalytic activity. Recent work has shown that tight‐binding inhibitors can also decrease Rubisco activity in the light and contribute to the regulation of Rubisco activity. Here we determine the influence that such inhibitors of Rubisco exert on catalytic activity during drought stress. In tobacco plants, ‘total Rubisco activity’, i.e. the activity following pre‐incubation with CO2 and Mg2+, was positively correlated with leaf relative water content. However, ‘total Rubisco activity’ in extracts from leaves with low water potential increased markedly when tightly bound inhibitors were removed, thus increasing the number of catalytic sites available. This suggests that in tobacco the decrease of Rubisco activity under drought stress is not primarily the result of changes in activation by CO2 and Mg2+ but due rather to the presence of tight‐binding inhibitors. The amounts of inhibitor present in leaves of droughted tobacco based on the decrease in Rubisco activity per mg soluble protein were usually much greater than the amounts of the known inhibitors (CA1P and ‘daytime inhibitor’) that can be recovered in acid extracts. Alternative explanations for the difference between maximal and total activities are discussed. PMID:12102509

  5. The Design, Synthesis, and Characterization of Open Sites on Metal Clusters

    NASA Astrophysics Data System (ADS)

    Nigra, Michael Mark

    Coordinatively unsaturated corner and edge atoms have been hypothesized to have the highest activity of sites responsible for many catalytic reactions on a metal surface. Recent studies have validated this hypothesis in varied reaction systems. However, quantification of different types of coordinatively unsaturated sites, and elucidation of their individual catalytic rates has remained a largely unresolved challenge when understanding catalysis on metal surfaces. Yet such structure-function knowledge would be invaluable to the design of more active and selective metal-surface catalysts in the future. I investigated the catalytic contributions of undercoordinated sites such as corner and edge atoms are investigated in a model reaction system using organic ligands bound to the gold nanoparticle surface. The catalyst consisted of 4 nm gold nanoparticles on a metal oxide support, using resazurin to resorufin as a model reaction system. My results demonstrate that in this system, corner atom sites are the most undercoordinated sites, and are over an order of magnitude more active when compared to undercoordinated edge atom sites, while terrace sites remain catalytically inactive for the reduction reaction of resazurin to resorufin. Catalytic activity has been also demonstrated for calixarene-bound gold nanoparticles using the reduction of 4-nitrophenol. With the 4-nitrophenol reduction reaction, a comparative study was undertaken to compare calixarene phosphine and calixarene thiol bound 4 nm gold particles. The results of the study suggested that a leached site was responsible for catalysis and not sites on the original gold nanoparticles. Future experiments with calixarene bound gold clusters could investigate ligand effects in reactions where the active site is not a leached or aggregated gold species, possibly in oxidation reactions, where electron-rich gold is hypothesized to be a good catalyst. The results that emphasize the enhanced catalytic activity of

  6. Imidazolium- and Triazine-Based Porous Organic Polymers for Heterogeneous Catalytic Conversion of CO2 into Cyclic Carbonates.

    PubMed

    Zhong, Hong; Su, Yanqing; Chen, Xingwei; Li, Xiaoju; Wang, Ruihu

    2017-12-22

    CO 2 adsorption and concomitant catalytic conversion into useful chemicals are promising approaches to alleviate the energy crisis and effects of global warming. This is highly desirable for developing new types of heterogeneous catalytic materials containing CO 2 -philic groups and catalytic active sites for CO 2 chemical transformation. Here, we present an imidazolium- and triazine-based porous organic polymer with counter chloride anion (IT-POP-1). The porosity and CO 2 affinity of IT-POP-1 may be modulated at the molecular level through a facile anion-exchange strategy. Compared with the post-modified polymers with iodide and hexafluorophosphate anions, IT-POP-1 possesses the highest surface area and the best CO 2 uptake capacity with excellent adsorption selectivity over N 2 . The roles of the task-specific components such as triazine, imidazolium, hydroxyl, and counter anions in CO 2 absorption and catalytic performance were illustrated. IT-POP-1 exhibits the highest catalytic activity and excellent recyclability in solvent- and additive-free cycloaddition reaction of CO 2 with epoxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Catalytic wet peroxide oxidation of benzoic acid over Fe/AC catalysts: Effect of nitrogen and sulfur co-doped activated carbon.

    PubMed

    Qin, Hangdao; Xiao, Rong; Chen, Jing

    2018-06-01

    The parent activated carbon (ACP) was modified with urea and thiourea to obtain N-doped activated carbon (ACN) and N, S co-doped activated carbon (ACNS), respectively. Iron supported on activated carbon (Fe/ACP, Fe/ACN and Fe/ACNS) were prepared and worked as catalyst for catalytic wet peroxide oxidation of benzoic acid (BA). The catalysts were characterized by N 2 adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM), and their performance was evaluated in terms of benzoic acid and TOC removal. The results indicated the doped N and S improved the adsorption capacity as well as catalytic activity of activated carbon. Besides, the catalytic activity toward benzoic acid degradation was found to be enhanced by Fe/ACNS compared to that of Fe/ACP and Fe/ACN. The enhanced catalytic performance was attributed to the presence of the nitrogen and sulfur atoms may serve to improve the relative amount of Fe 2+ on iron oxide surface and also help prevent leaching of Fe. It was also observed that the stability or reutilization of Fe/ACNS catalyst was fairly good. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Asymmetry of the three catalytic sites on beta subunits of TF1 from a thermophilic Bacillus strain PS3.

    PubMed

    Hisabori, T; Kobayashi, H; Kaibara, C; Yoshida, M

    1994-03-01

    F1-ATPase isolated from plasma membrane of a thermophilic Bacillus strain PS3 (TF1) has very little or no endogenously bound adenine nucleotides. However, it can bind one ADP per mol of the enzyme on one of three beta subunits to form a stable TF1.ADP complex when incubated with a high concentration of ADP [Yoshida, M. & Allison, W.S. (1986) J. Biol. Chem. 261, 5714-5721]. The same TF1.ADP complex was recovered after filling all ADP binding sites with [3H]ADP and repeated gel filtration. Direct binding assay revealed that the TF1.ADP complex had lost the highest affinity site for TNP-ADP. When a substoichiometric amount of TNP-ATP was added, the complex hydrolyzed TNP-ATP slowly (single site hydrolysis), like native TF1. However, this hydrolysis was not promoted by chase-addition of excess ATP. The optimal pH of the ATPase activity of TF1 or the TF1.ADP complex measured with a short reaction period, 6.5, was lower than the reported value, 9.0, under the steady-state condition. Although the bound ADP was released from the complex only when the enzyme underwent multiple catalytic turnover, the rate of this release was much slower than the turnover. These results suggest that when one ADP binds to a site on one of the beta subunits and stays there for a long time, the enzyme will change form and the bound ADP will become a special species which is not able to be directly involved in the enzyme catalysis. This binding site for ADP appears to be the first site responsible for the single-site catalysis reaction observed for native TF1.

  9. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    PubMed

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  10. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase*

    PubMed Central

    Chen, Yaozong; Sun, Yueru; Song, Haigang; Guo, Zhihong

    2015-01-01

    o-Succinylbenzoyl-CoA synthetase, or MenE, is an essential adenylate-forming enzyme targeted for development of novel antibiotics in the menaquinone biosynthesis. Using its crystal structures in a ligand-free form or in complex with nucleotides, a conserved pattern is identified in the interaction between ATP and adenylating enzymes, including acyl/aryl-CoA synthetases, adenylation domains of nonribosomal peptide synthetases, and luciferases. It involves tight gripping interactions of the phosphate-binding loop (P-loop) with the ATP triphosphate moiety and an open-closed conformational change to form a compact adenylation active site. In MenE catalysis, this ATP-enzyme interaction creates a new binding site for the carboxylate substrate, allowing revelation of the determinants of substrate specificities and in-line alignment of the two substrates for backside nucleophilic substitution reaction by molecular modeling. In addition, the ATP-enzyme interaction is suggested to play a crucial catalytic role by mutation of the P-loop residues hydrogen-bonded to ATP. Moreover, the ATP-enzyme interaction has also clarified the positioning and catalytic role of a conserved lysine residue in stabilization of the transition state. These findings provide new insights into the adenylation half-reaction in the domain alteration catalytic mechanism of the adenylate-forming enzymes. PMID:26276389

  11. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.

    PubMed

    Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin

    2016-04-01

    Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).

  12. Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila.

    PubMed Central

    Brumlik, M J; Buckley, J T

    1996-01-01

    Aeromonas hydrophila secretes a lipolytic enzyme that has several properties in common with the mammalian enzyme lecithin-cholesterol acyltransferase. We have recently shown that it is a member of a newly described group of proteins that contain five similar blocks of sequence arranged in the same order in their primary structures (C. Upton and J. T. Buckley, Trends Biochem. Sci. 233:178-179, 1995). Assuming that, like other lipases, these enzymes have a Ser-Asp-His catalytic triad, we used these blocks to predict which aspartic acid and histidine would be at the active site of the Aeromonas enzyme. Targeted residues were replaced with other amino acids by site-directed mutagenesis, and the effects on secretion and activity were assessed. Changing His-291 to asparagine completely abolished enzyme activity, although secretion by the bacteria was not affected. Only very small amounts of the D116N mutant appeared in the culture supernatant, likely because it is sensitive to periplasmic proteases it encounters en route. Assays of crude preparations containing this variant showed no detectable enzyme activity. We conclude that, together with Ser-16, which we have identified previously, Asp-116 and His-291 compose the catalytic triad of the enzyme. PMID:8606184

  13. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon.

    PubMed

    Huang, Yuanxing; Cui, Chenchen; Zhang, Daofang; Li, Liang; Pan, Ding

    2015-01-01

    Iron-loaded activated carbon was prepared and used as catalyst in heterogeneous catalytic ozonation of dibutyl phthalate (DBP). The catalytic activity of iron-loaded activated carbon was investigated under various conditions and the mechanisms of DBP removal were deduced. Characterization of catalyst indicated that the iron loaded on activated carbon was mainly in the form of goethite, which reduced its surface area, pore volume and pore diameter. The presence of metals on activated carbon positively contributed to its catalytic activity in ozonation of DBP. Iron loading content of 15% and initial water pH of 8 achieved highest DBP removal among all the tried conditions. Catalyst dosage of 10 mg L(-1) led to approximately 25% of increase in DBP (initial concentration 2 mg L(-1)) removal in 60 min as compared with ozone alone, and when catalyst dosage increased to 100 mg L(-1), the DBP removal was further improved by 46%. Based on a comparison of reaction rates for direct and indirect transformation of DBP, the increased removal of DBP in this study likely occurred via transformation of ozone into hydroxyl radicals on the catalyst surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy

    PubMed Central

    2017-01-01

    Catalysis of H2 production and oxidation reactions is critical in renewable energy systems based around H2 as a clean fuel, but the present reliance on platinum-based catalysts is not sustainable. In nature, H2 is oxidized at minimal overpotential and high turnover frequencies at [NiFe] catalytic sites in hydrogenase enzymes. Although an outline mechanism has been established for the [NiFe] hydrogenases involving heterolytic cleavage of H2 followed by a first and then second transfer of a proton and electron away from the active site, details remain vague concerning how the proton transfers are facilitated by the protein environment close to the active site. Furthermore, although [NiFe] hydrogenases from different organisms or cellular environments share a common active site, they exhibit a broad range of catalytic characteristics indicating the importance of subtle changes in the surrounding protein in controlling their behavior. Here we review recent time-resolved infrared (IR) spectroscopic studies and IR spectroelectrochemical studies carried out in situ during electrocatalytic turnover. Additionally, we re-evaluate the significant body of IR spectroscopic data on hydrogenase active site states determined through more conventional solution studies, in order to highlight mechanistic steps that seem to apply generally across the [NiFe] hydrogenases, as well as steps which so far seem limited to specific groups of these enzymes. This analysis is intended to help focus attention on the key open questions where further work is needed to assess important aspects of proton and electron transfer in the mechanism of [NiFe] hydrogenases. PMID:28413691

  15. Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic Core Entrance1[OPEN

    PubMed Central

    Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee; Badger, John

    2017-01-01

    The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecular envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery. PMID:27879387

  16. The influence of desilication on high-silica MFI and its catalytic performance for N2O decomposition

    NASA Astrophysics Data System (ADS)

    Shen, Qun; Wu, Minfang; Wang, Hui; Sun, Nannan; He, Chi; Wei, Wei

    2018-05-01

    A series of MFI zeolites with different Si/Al ratios were pretreated by a basic solution and their catalytic activity was evaluated in N2O decomposition after iron exchange. The performance of Fe-ZSM-5 catalysts could be improved by alkaline pretreatment. Among these samples, the activity curve of Fe-Z5-250-S sample could move to low temperature by >100 °C with a good preservation of hydrothermal stability. It is found that with the meso-microporous hybrid structure, the content of iron as active metal is significantly increased. Additionally, well preservation of the chemical environment around the tetrahedral aluminum and the site accessibility probably may be the other important factors to influence the catalytic activity.

  17. Characterization and Catalytic Upgrading of Aqueous Stream Carbon from Catalytic Fast Pyrolysis of Biomass

    DOE PAGES

    Starace, Anne K.; Black, Brenna A.; Lee, David D.; ...

    2017-10-23

    Catalytic fast pyrolysis (CFP) of biomass produces a liquid product consisting of organic and aqueous streams. The organic stream is typically slated for hydrotreating to produce hydrocarbon biofuels, while the aqueous stream is considered a waste stream, resulting in the loss of residual biogenic carbon. Here, we report the detailed characterization and catalytic conversion of a CFP wastewater stream with the ultimate aim to improve overall biomass utilization within a thermochemical biorefinery. An aqueous stream derived from CFP of beech wood was comprehensively characterized, quantifying 53 organic compounds to a total of 17% organics. The most abundant classes of compoundsmore » are acids, aldehydes, and alcohols. The most abundant components identified in the aqueous stream were C1-C2 organics, comprising 6.40% acetic acid, 2.16% methanol, and 1.84% formaldehyde on wet basis. The CFP aqueous stream was catalytically upgraded to olefins and aromatic hydrocarbons using a Ga/HZSM-5 catalyst at 500 degrees C. When the conversion yield of the upgraded products was measured with fresh, active catalyst, 33% of the carbon in the aqueous stream was recovered as aromatic hydrocarbons and 29% as olefins. The majority of the experiments were conducted using a molecular beam mass spectrometer and separate GC-MS/FID experiments were used to confirm the assignments and quantification of products with fresh excess catalyst. The recovered 62% carbon in the form of olefins and aromatics can be used to make coproducts and/or fuels potentially improving biorefinery economics and sustainability. Spent catalysts were collected after exposure to varying amounts of the feed, and were characterized using multipoint-Brunauer-Emmett-Teller (BET) adsorption, ammonia temperature programmed desorption (TPD), and thermogravimetric analysis (TGA) to monitor deactivation of Ga/HZSM-5. These characterization data revealed that deactivation was caused by coke deposits, which blocked access

  18. Characterization and Catalytic Upgrading of Aqueous Stream Carbon from Catalytic Fast Pyrolysis of Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starace, Anne K.; Black, Brenna A.; Lee, David D.

    Catalytic fast pyrolysis (CFP) of biomass produces a liquid product consisting of organic and aqueous streams. The organic stream is typically slated for hydrotreating to produce hydrocarbon biofuels, while the aqueous stream is considered a waste stream, resulting in the loss of residual biogenic carbon. Here, we report the detailed characterization and catalytic conversion of a CFP wastewater stream with the ultimate aim to improve overall biomass utilization within a thermochemical biorefinery. An aqueous stream derived from CFP of beech wood was comprehensively characterized, quantifying 53 organic compounds to a total of 17% organics. The most abundant classes of compoundsmore » are acids, aldehydes, and alcohols. The most abundant components identified in the aqueous stream were C1-C2 organics, comprising 6.40% acetic acid, 2.16% methanol, and 1.84% formaldehyde on wet basis. The CFP aqueous stream was catalytically upgraded to olefins and aromatic hydrocarbons using a Ga/HZSM-5 catalyst at 500 degrees C. When the conversion yield of the upgraded products was measured with fresh, active catalyst, 33% of the carbon in the aqueous stream was recovered as aromatic hydrocarbons and 29% as olefins. The majority of the experiments were conducted using a molecular beam mass spectrometer and separate GC-MS/FID experiments were used to confirm the assignments and quantification of products with fresh excess catalyst. The recovered 62% carbon in the form of olefins and aromatics can be used to make coproducts and/or fuels potentially improving biorefinery economics and sustainability. Spent catalysts were collected after exposure to varying amounts of the feed, and were characterized using multipoint-Brunauer-Emmett-Teller (BET) adsorption, ammonia temperature programmed desorption (TPD), and thermogravimetric analysis (TGA) to monitor deactivation of Ga/HZSM-5. These characterization data revealed that deactivation was caused by coke deposits, which blocked access

  19. Role of coupled dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA synthetases.

    PubMed

    Sanford, Brianne; Cao, Bach; Johnson, James M; Zimmerman, Kurt; Strom, Alexander M; Mueller, Robyn M; Bhattacharyya, Sudeep; Musier-Forsyth, Karin; Hati, Sanchita

    2012-03-13

    Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNA(Pro) substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In this study, experimental and computational approaches were used to test the hypothesis that deletion of the INS alters the internal protein dynamics leading to reduced catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199-206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Altogether, this study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity.

  20. Catalytic activity of CuOn-La2O3/gamma-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater.

    PubMed

    Bi, Xiaoyi; Wang, Peng; Jiang, Hong

    2008-06-15

    In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/gamma-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of gamma-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/gamma-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/gamma-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/gamma-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process.

  1. Perovskite-type catalytic materials for environmental applications.

    PubMed

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-06-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N 2 O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

  2. Perovskite-type catalytic materials for environmental applications

    PubMed Central

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-01-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications. PMID:27877813

  3. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein–DNA Complex

    PubMed Central

    2016-01-01

    Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446

  4. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    PubMed

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  5. Impregnated active carbons to control atmospheric emissions: influence of impregnation methodology and raw material on the catalytic activity.

    PubMed

    Alvim-Ferraz, Maria C M; Gaspar, Carla M T B

    2005-08-15

    Previous studies have reported the influence of raw material on the catalytic activity of metal oxides impregnated in activated carbons. However, knowledge was as yet quite scarce for impregnation performed before activation. The main objective of the study here reported was the development of such knowledge. Olive stones, pinewood sawdust, nutshells, and almond shells were recycled to prepare the activated carbons. Transition metal oxides (CoO, Co3O4, and CrO3) were impregnated aiming to prepare activated carbons to be used for the complete catalytic oxidation of benzene. When impregnation was performed after activation the impregnated species were deposited on the internal surface, blocking part of the initial porous texture. When impregnation was performed before activation, the metal species acted as catalysts during the activation step, allowing better catalyst distribution on a more well-developed mesoporous texture. Co3O4 was the best catalyst and almond shells were the best support. With this catalyst/support pair a conversion of 90% was possible at 404 K, the lowest temperature of all the carbons studied. Good conversions were obtained at temperatures that guarantee carbon stability (lower than 575 K). It was concluded that activated carbon was a suitable support for metal oxide catalysts aiming for the complete oxidation of benzene, especially when a suitable porous texture is induced, by performing the impregnation step before activation.

  6. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.

    PubMed

    Sautner, Viktor; Friedrich, Mascha Miriam; Lehwess-Litzmann, Anja; Tittmann, Kai

    2015-07-28

    Transaldolase (TAL) and fructose-6-phosphate aldolase (FSA) both belong to the class I aldolase family and share a high degree of structural similarity and sequence identity. The molecular basis of the different reaction specificities (transferase vs aldolase) has remained enigmatic. A notable difference between the active sites is the presence of either a TAL-specific Glu (Gln in FSA) or a FSA-specific Tyr (Phe in TAL). Both residues seem to have analoguous multifunctional catalytic roles but are positioned at different faces of the substrate locale. We have engineered a TAL double variant (Glu to Gln and Phe to Tyr) with an active site resembling that of FSA. This variant indeed exhibits aldolase activity as its main activity with a catalytic efficiency even larger than that of authentic FSA, while TAL activity is greatly impaired. Structural analysis of this variant in complex with the dihydroxyacetone Schiff base formed upon substrate cleavage identifies the introduced Tyr (genuine in FSA) to catalyze protonation of the central carbanion-enamine intermediate as a key determinant of the aldolase reaction. Our studies pinpoint that the Glu in TAL and the Tyr in FSA, although located at different positions at the active site, similarly act as bona fide acid-base catalysts in numerous catalytic steps, including substrate binding, dehydration of the carbinolamine, and substrate cleavage. We propose that the different spatial positions of the multifunctional Glu in TAL and of the corresponding multifunctional Tyr in FSA relative to the substrate locale are critically controlling reaction specificity through either unfavorable (TAL) or favorable (FSA) geometry of proton transfer onto the common carbanion-enamine intermediate. The presence of both potential acid-base residues, Glu and Tyr, in the active site of TAL has deleterious effects on substrate binding and cleavage, most likely resulting from a differently organized H-bonding network. Large-scale motions of the

  7. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation.

    PubMed

    Shu, Yajie; Xu, Yin; Huang, Haibao; Ji, Jian; Liang, Shimin; Wu, Muyan; Leung, Dennis Y C

    2018-06-04

    Volatile organic compounds (VOCs) are regarded as the major contributors to air pollution, and should be strictly regulated. Photocatalytic oxidation (PCO) is of great interest for the removal of VOCs owing to its strong oxidation capability. However, its application is greatly limited by catalytic deactivation. Vacuum Ultraviolet (VUV) irradiation provides a novel way to improve the photocatalytic activity while much O 3 will be generated which may cause secondary pollution. In this study, a multi-functional catalyst of Mn/TiO 2 /activated carbon (AC) was developed to eliminate and utilize O 3 , as well as enhance catalytic oxidation of VOC degradation via ozone-assisted catalytic oxidation (OZCO). The results indicate that Mn modified TiO 2 /AC (i.e. 0.1%Mn/20%TiO 2 /AC) achieved a toluene removal efficiency of nearly 86% with 100% elimination rate of O 3 . With the help of Mn/TiO 2 /AC catalyst, O 3 was catalytically decomposed and transformed into active species of O ( 1 D) and OH, thus enhancing toluene removal. The combination of VUV irradiation with multi-functional catalyst provides a novel and efficient way for the degradation of VOCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation

    NASA Astrophysics Data System (ADS)

    Mao, Bao-Hua; Liu, Chang-Hai; Gao, Xu; Chang, Rui; Liu, Zhi; Wang, Sui-Dong

    2013-10-01

    The room-temperature ionic liquid assisted sputtering method is utilized to achieve the Pd-nanoparticle (NP)-graphene hybrid. The supported Pd NPs possess uniformly small sizes of 1-2 nm, which create huge surface area with ultralow Pd consumption and high NP stability. The Pd-NP-graphene hybrid is in situ characterized by the ambient pressure X-ray photoelectron spectroscopy using synchrotron radiation, and the results demonstrate high catalytic activity of the hybrid for CO oxidation. The catalytic behavior is reproducible for several catalytic cycles. The present simple and clean approach is promising to produce metal-NP-based high-efficiency catalysts for CO oxidation.

  9. Reaction mechanism of the ε subunit of E. coli DNA polymerase III: Insights into active site metal coordination and catalytically significant residues

    PubMed Central

    Cisneros, G. Andrés; Perera, Lalith; Schaaper, Roel M.; Pedersen, Lars C.; London, Robert E.; Pedersen, Lee G.; Darden, Thomas A.

    2009-01-01

    The 28kDa ε subunit of Escherichia coli DNA polymerase III is the exonucleotidic proofreader responsible for editing polymerase insertion errors. Here, we study the mechanism by which ε carries out the exonuclease activity. We performed quantum mechanics/molecular mechanics calculations on the N–terminal domain containing the exonuclease activity. Both the free–ε and a complex, ε bound to a θ homolog (HOT), were studied. For the ε–HOT complex, Mg2+ or Mn2+ were investigated as the essential divalent metal cofactors, while only Mg2+ was used for free–ε. In all calculations, a water molecule bound to the catalytic metal acts as the nucleophile for the hydrolysis of the phosphate bond. Initially, a direct proton transfer to H162 is observed. Subsequently, the nucleophilic attack takes place, followed by a second proton transfer to E14. Our results show that the reaction catalyzed with Mn2+ is faster than with Mg2+, in agreement with experiment. In addition, the ε–HOT complex shows a slightly lower energy barrier compared to free–ε. In all cases the catalytic metal is observed to be penta–coordinated. Charge and frontier orbital analyses suggest that charge transfer may stabilize the penta–coordination. Energy decomposition analysis to study the contribution of each residue to catalysis suggests that there are several important residues. Among these, H98, D103, D129 and D146 have been implicated in catalysis by mutagenesis studies. Some of these residues were found to be structurally conserved on human TREX1, the exonuclease domains from E. coli DNA–Pol I, and the DNA polymerase of bacteriophage RB69. PMID:19119875

  10. Block copolymer hollow fiber membranes with catalytic activity and pH-response.

    PubMed

    Hilke, Roland; Pradeep, Neelakanda; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes.

  11. Preparation, characterization, and catalytic activity of zirconocene bridged on surface of silica gel

    NASA Astrophysics Data System (ADS)

    El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong

    2015-10-01

    Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.

  12. The DUSP–Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange

    PubMed Central

    Clerici, Marcello; Luna-Vargas, Mark P. A.; Faesen, Alex C.; Sixma, Titia K.

    2014-01-01

    Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-β response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP–Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP–Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP–Ubl domain promotes a change of a switching loop near the active site. This ‘allosteric regulation of product discharge’ provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes. PMID:25404403

  13. The catalytic activity of CoMo/USY on deoxygenation reaction of anisole in a batch reactor

    NASA Astrophysics Data System (ADS)

    Nugrahaningtyas, K. D.; Putri, I. F.; Heraldy, E.; Hidayat, Y.

    2018-04-01

    The catalytic hydrodeoxigenation of the bio oil model compounds (biomass pyrolysis results) typically uses sulphide catalysts. In this study, we studied the activity of non-sulphide catalyst, the effect of temperature and reaction time on anisole deoxygenation. The catalytic activity was performed in a batch reactor, using N2 gas at 1 bar of pressure. The product was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The result showed that the Co-Mo/USY catalyst perform a highest activity and produce pentamethylbenzene, an oxygen free products, when reaction time is 2 hours. The Co-Mo/USY catalysts has the value of the total yield of the product increased with time increase drastically.

  14. Investigation into the morphology and structure of magnetic bentonite nanocomposites with their catalytic activity

    NASA Astrophysics Data System (ADS)

    Wan, Dong; Wang, Guanghua; Li, Wenbing; Wei, Xiaobi

    2017-08-01

    Al pillared bentonite-Fe3O4 nanocomposites (Fe3O4/Al-B) with controllable Fe3O4 particle sizes and loadings were synthesized by a simple in situ oxidation-precipitation method. The obtained samples were characterized by XRD, SEM, TEM, FTIR, XPS, VSM and N2 sorption. These results suggested that Fe3O4 was chemically anchored to the bentonite sheets via Fe-O-Si bonds, resulting in the formation of secondary pore structure. Three types of structure of Fe3O4/Al-B nanocomposites were proposed at different Fe3O4 loadings, varying from 40 to 80 wt%. The catalytic activity of the Fe3O4/Al-B nanocomposites was investigated in the heterogeneous Fenton-like oxidation of rhodamine B (RhB). The 50 nm Fe3O4/Al-B nanocomposite showed enhanced degradation of RhB over the control catalyst, benefited from its greater surface area and pore volume. The highest catalytic activity was found to be at Fe3O4 loading of 60 wt%, which was attributed to the synergistic effects between both increased surface area and formed Fe-O-Si bonds. These findings offer a better understanding on structural and morphological relationships of Fe3O4/Al-B nanocomposites with their heterogeneous Fenton-like catalytic activity.

  15. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)

    PubMed Central

    Rangus, Mojca; Mazaj, Matjaž; Dražić, Goran; Popova, Margarita; Tušar, Nataša Novak

    2014-01-01

    Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS) and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM). We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05). From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1) the optimal concentration of stable isolated Fe3+ in the silica support; and (2) accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2) when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41). PMID:28788674

  16. Lamellar zirconium phosphates to host metals for catalytic purposes.

    PubMed

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  17. Effects of Site-Directed Mutagenesis of Escherichia coli Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors

    PubMed Central

    A. Stevens, Linda; Moss, Joel; Vaughan, Martha; Pizza, Mariagrazia; Rappuoli, Rino

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsα, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  18. Aluminosilicate nanoparticles for catalytic hydrocarbon cracking.

    PubMed

    Liu, Yu; Pinnavaia, Thomas J

    2003-03-05

    Aluminosilicate nanoparticles containing 9.0-20 nm mesopores were prepared through the use of protozeolitic nanoclusters as the inorganic precursor and starch as a porogen. The calcined, porogen-free composition containing 2 mol % aluminum exhibited the porosity, hydrothermal stability, and acidity needed for the cracking of very large hydrocarbons. In fact, the hydrothermal stability of the nanoparticles to pure steam at 800 degrees C, along with the cumene cracking activity, surpassed the analogous performance properties of ultrastable Y zeolite, the main catalyst component of commercial cracking catalysts. The remarkable hydrothermal stability and catalytic reactivity of the new nanoparticles are attributable to a unique combination of two factors, the presence of protozeolitic nanoclusters in the pore walls and the unprecedented pore wall thickness (7-15 nm). In addition, the excellent catalytic longevity of the nanoparticles is most likely facilitated by the small domain size of the nanoparticles that greatly improves access to the acid sites on the pore walls and minimizes the diffusion length of coke precursors out of the pores.

  19. Mixed Inhibition of cPEPCK by Genistein, Using an Extended Binding Site Located Adjacent to Its Catalytic Cleft

    PubMed Central

    Dhanjal, Jaspreet Kaur; Sundar, Durai

    2015-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (cPEPCK) is a critical enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis. cPEPCK converts oxaloacetic acid (OAA) into phosphoenol pyruvate (PEP) in the presence of GTP. cPEPCK is known to be associated with type 2 diabetes. Genistein is an isoflavone compound that shows anti-diabetic and anti-obesitic properties. Experimental studies have shown a decrease in the blood glucose level in the presence of genistein by lowering the functional activity of cPEPCK, an enzyme of gluconeogenesis. Using computational techniques such as molecular modeling, molecular docking, molecular dynamics simulation and binding free energy calculations, we identified cPEPCK as a direct target of genistein. We studied the molecular interactions of genistein with three possible conformations of cPEPCK—unbound cPEPCK (u_cPEPCK), GTP bound cPEPCK (GTP_cPEPCK) and GDP bound cPEPCK (GDP_cPEPCK). Binding of genistein was also compared with an already known cPEPCK inhibitor. We analyzed the interactions of genistein with cPEPCK enzyme and compared them with its natural substrate (OAA), product (PEP) and known inhibitor (3-MPA). Our results demonstrate that genistein uses the mechanism of mixed inhibition to block the functional activity of cPEPCK and thus can serve as a potential anti-diabetic and anti-obesity drug candidate. We also identified an extended binding site in the catalytic cleft of cPEPCK which is used by 3-MPA to inhibit cPEPCK non-competitively. We demonstrate that extended binding site of cPEPCK can further be exploited for designing new drugs against cPEPCK. PMID:26528723

  20. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    PubMed

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  1. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    DOE PAGES

    Lu, Yongwu; Yu, Fei; Hu, Jin; ...

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe 2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less

  2. Methods and apparatuses for preparing a surface to have catalytic activity

    DOEpatents

    Cooks, Robert G [West Lafayette, IN; Peng, Wen-Ping [West Lafayette, IN; Ouyang, Zheng [West Lafayette, IN; Goodwin, Michael P [West Lafayette, IN

    2011-03-22

    The invention provides methods and apparatuses that utilize mass spectrometry for preparation of a surface to have catalytic activity through molecular soft-landing of mass selected ions. Mass spectrometry is used to generate combinations of atoms in a particular geometrical arrangement, and ion soft-landing selects this molecular entity or combination of entities and gently deposits the entity or combination intact onto a surface.

  3. Additive Manufacturing of Catalytically Active Living Materials.

    PubMed

    Saha, Abhijit; Johnston, Trevor G; Shafranek, Ryan T; Goodman, Cassandra J; Zalatan, Jesse G; Storti, Duane W; Ganter, Mark A; Nelson, Alshakim

    2018-04-25

    Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.

  4. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase.

    PubMed Central

    Batt, C A; Jamieson, A C; Vandeyar, M A

    1990-01-01

    Two conserved histidine residues (His-101 and His-271) appear to be essential components in the active site of the enzyme xylose (glucose) isomerase (EC 5.3.1.5). These amino acid residues were targeted for mutagenesis on the basis of sequence homology among xylose isomerases isolated from Escherichia coli, Bacillus subtilis, Ampullariella sp. strain 3876, and Streptomyces violaceus-niger. Each residue was selectively replaced by site-directed mutagenesis and shown to be essential for activity. No measurable activity was observed for any mutations replacing either His-101 or His-271. Circular dichroism measurements revealed no significant change in the overall conformation of the mutant enzymes, and all formed dimers similar to the wild-type enzyme. Mutations at His-271 could be distinguished from those at His-101, since the former resulted in a thermolabile protein whereas no significant change in heat stability was observed for the latter. Based upon these results and structural data recently reported, we speculate that His-101 is the catalytic base mediating the reaction. Replacement of His-271 may render the enzyme thermolabile, since this residue appears to be a ligand for one of the metal ions in the active site of the enzyme. Images PMID:2405386

  5. The alpha3(betaMet222Ser/Tyr345Trp)3gamma subcomplex of the TF1-ATPase does not hydolyze ATP at a significant rate until the substrate binds to the catalytic site of the lowest affinity.

    PubMed

    Ren, Huimiao; Bandyopadhyay, Sanjay; Allison, William S

    2006-05-16

    The alpha(3)(betaM(222)S/Y(345)W)(3)gamma double-mutant subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)), free of endogenous nucleotides, does not entrap inhibitory MgADP in a catalytic site during turnover. It hydrolyzes 100 nM-2 mM ATP with a K(m) of 31 microM and a k(cat) of 220 s(-)(1). Fluorescence titrations of the introduced tryptophans with MgADP or MgATP revealed that both Mg-nucleotide complexes bind to the catalytic site of the highest affinity with K(d)()1 values of less than 1 nM and bind to the site of intermediate affinity with a common K(d)2 value of about 12 nM. The K(d)3 values obtained for the catalytic site of the lowest affinity from titrations with MgADP and MgATP are 25 and 37 microM, respectively. The double mutant hydrolyzes 200 nM ATP with a first-order rate of 1.5 s(-)(1), which is 0.7% of k(cat). Hence, it does not hydrolyze ATP at a significant rate when the catalytic site of intermediate affinity is saturated and the catalytic site of the lowest affinity is minimally occupied. After the addition of stoichiometric MgATP to the alpha(3)(betaM(222)S/Y(345)W)(3)gamma subcomplex, one-third of the tryptophan fluorescence remains quenched after 10 min. The product [(3)H]ADP remains bound when the wild-type and double-mutant subcomplexes hydrolyze substoichiometric [(3)H]ATP. In contrast, (32)P(i) is not retained when the wild-type subcomplex hydrolyzes substoichiometric [gamma-(32)P]ATP. This precludes assessment of the equilibrium at the high-affinity catalytic site when the wild-type TF(1) subcomplex hydrolyzes substoichiometric ATP.

  6. Role of Coupled-Dynamics in the Catalytic Activity of Prokaryotic-like Prolyl-tRNA Synthetases

    PubMed Central

    Sanford, Brianne; Cao, Bach; Johnson, James M.; Zimmerman, Kurt; Strom, Alexander M.; Mueller, Robyn M.; Bhattacharyya, Sudeep; Musier-Forsyth, Karin; Hati, Sanchita

    2012-01-01

    Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNAPro substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNAPro is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In the present study, experimental and computational approaches were used to test the hypothesis that INS deletion alters the internal protein dynamics leading to reduce catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199–206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled-dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Taken together, the present study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity. PMID:22356126

  7. Pseudomonas aeruginosa 4-Amino-4-Deoxychorismate Lyase: Spatial Conservation of an Active Site Tyrosine and Classification of Two Types of Enzyme

    PubMed Central

    O'Rourke, Patrick E. F.; Eadsforth, Thomas C.; Fyfe, Paul K.; Shepherd, Sharon M.; Hunter, William N.

    2011-01-01

    4-Amino-4-deoxychorismate lyase (PabC) catalyzes the formation of 4-aminobenzoate, and release of pyruvate, during folate biosynthesis. This is an essential activity for the growth of Gram-negative bacteria, including important pathogens such as Pseudomonas aeruginosa. A high-resolution (1.75 Å) crystal structure of PabC from P. aeruginosa has been determined, and sequence-structure comparisons with orthologous structures are reported. Residues around the pyridoxal 5′-phosphate cofactor are highly conserved adding support to aspects of a mechanism generic for enzymes carrying that cofactor. However, we suggest that PabC can be classified into two groups depending upon whether an active site and structurally conserved tyrosine is provided from the polypeptide that mainly forms an active site or from the partner subunit in the dimeric assembly. We considered that the conserved tyrosine might indicate a direct role in catalysis: that of providing a proton to reduce the olefin moiety of substrate as pyruvate is released. A threonine had previously been suggested to fulfill such a role prior to our observation of the structurally conserved tyrosine. We have been unable to elucidate an experimentally determined structure of PabC in complex with ligands to inform on mechanism and substrate specificity. Therefore we constructed a computational model of the catalytic intermediate docked into the enzyme active site. The model suggests that the conserved tyrosine helps to create a hydrophobic wall on one side of the active site that provides important interactions to bind the catalytic intermediate. However, this residue does not appear to participate in interactions with the C atom that undergoes an sp 2 to sp 3 conversion as pyruvate is produced. The model and our comparisons rather support the hypothesis that an active site threonine hydroxyl contributes a proton used in the reduction of the substrate methylene to pyruvate methyl in the final stage of the mechanism

  8. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.

    PubMed

    Madhavan, Nandita; Jones, Christopher W; Weck, Marcus

    2008-09-01

    Supported catalysis is emerging as a cornerstone of transition metal catalysis, as environmental awareness necessitates "green" methodologies and transition metal resources become scarcer and more expensive. Although these supported systems are quite useful, especially in their capacity for transition metal catalyst recycling and recovery, higher activity and selectivity have been elusive compared with nonsupported catalysts. This Account describes recent developments in polymer-supported metal-salen complexes, which often surpass nonsupported analogues in catalytic activity and selectivity, demonstrating the effectiveness of a systematic, logical approach to designing supported catalysts from a detailed understanding of the catalytic reaction mechanism. Over the past few decades, a large number of transition metal complex catalysts have been supported on a variety of materials ranging from polymers to mesoporous silica. In particular, soluble polymer supports are advantageous because of the development of controlled and living polymerization methods that are tolerant to a wide variety of functional groups, including controlled radical polymerizations and ring-opening metathesis polymerization. These methods allow for tuning the density and structure of the catalyst sites along the polymer chain, thereby enabling the development of structure-property relationships between a catalyst and its polymer support. The fine-tuning of the catalyst-support interface, in combination with a detailed understanding of catalytic reaction mechanisms, not only permits the generation of reusable and recyclable polymer-supported catalysts but also facilitates the design and realization of supported catalysts that are significantly more active and selective than their nonsupported counterparts. These superior supported catalysts are accessible through the optimization of four basic variables in their design: (i) polymer backbone rigidity, (ii) the nature of the linker, (iii) catalyst

  9. The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function

    PubMed Central

    Johnson, Troy A.; Holyoak, Todd

    2012-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that transitions between an open/disorded conformation to a closed/ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies show that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. In order to more fully investigate the roles of the lid domain in PEPCK function we created three mutations that replaced the 11-residue lid domain with one, two or three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity resulting in a decrease in the catalytic parameters by at least 106. Structural characterization of the mutants in complexes representing the catalytic cycle suggest that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all elements required for chemical conversion of substrates to products remaining intact. PMID:23127136

  10. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  11. What regulates the catalytic activities in AGE catalysis? An answer from quantum mechanics/molecular mechanics simulations.

    PubMed

    Zhang, Yulai; Zhang, Hongxing; Zheng, Qingchuan

    2017-12-06

    The AGE superfamily (AGEs) is made up of kinds of isomerase which are very important both physiologically and industrially. One of the most intriguing aspects of AGEs has to do with the mechanism that regulates their activities in single conserved active pocket. In order to clarify the relationship among single conserved active pocket and two activities in AGEs, results for the epimerization activity catalyzed by RaCE and the isomerization activity catalyzed by SeYihS were obtained by using QM/MM umbrella sampling simulations and 2D-FES calculations. Our results show that both of them have similar enzyme-substrate combination mode for inner pyranose ring in single conserved active pocket even though they have different substrate specificity. This means that the pathways of ring opening catalyzed by them are similar. However, one non-conserved residue (Leu183 in RaCE, Met175 in SeYihS) in the active site, which has different steric hindrance, causes a small but effective change in the direction of ring opening in stage 1. And then this change will induce a fundamentally different catalytic activity for RaCE and SeYihS in stage 2. Our results give a novel viewpoint about the regulatory mechanism between CE and YihS in AGEs, and may be helpful for further experiments of rational enzyme design based on the (α/α) 6 -barrel basic scaffold.

  12. Anti-staphylococcal activities of lysostaphin and LytM catalytic domain

    PubMed Central

    2012-01-01

    Background Lysostaphin and the catalytic domain of LytM cleave pentaglycine crossbridges of Staphylococcus aureus peptidoglycan. The bacteriocin lysostaphin is secreted by Staphylococcus simulans biovar staphylolyticus and directed against the cell walls of competing S. aureus. LytM is produced by S. aureus as a latent autolysin and can be activated in vitro by the removal of an N-terminal domain and occluding region. Results We compared the efficacies of the lysostaphin and LytM catalytic domains using a newly developed model of chronic S. aureus infected eczema. Lysostaphin was effective, like in other models. In contrast, LytM was not significantly better than control. The different treatment outcomes could be correlated with in vitro properties of the proteins, including proteolytic stability, affinity to cell wall components other than peptidoglycan, and sensitivity to the ionic milieu. Conclusions Although lysostaphin and LytM cleave the same peptide bond in the peptidoglycan, the two enzymes have very different environmental requirements what is reflected in their contrasting performance in mouse eczema model. PMID:22672475

  13. N- versus C-domain selectivity of catalytic inactivation of human angiotensin converting enzyme by lisinopril-coupled transition metal chelates.

    PubMed

    Hocharoen, Lalintip; Joyner, Jeff C; Cowan, J A

    2013-12-27

    The N- and C-terminal domains of human somatic angiotensin I converting enzyme (sACE-1) demonstrate distinct physiological functions, with resulting interest in the development of domain-selective inhibitors for specific therapeutic applications. Herein, the activity of lisinopril-coupled transition metal chelates was tested for both reversible binding and irreversible catalytic inactivation of each domain of sACE-1. C/N domain binding selectivity ratios ranged from 1 to 350, while rates of irreversible catalytic inactivation of the N- and C-domains were found to be significantly greater for the N-domain, suggesting a more optimal orientation of M-chelate-lisinopril complexes within the active site of the N-domain of sACE-1. Finally, the combined effect of binding selectivity and inactivation selectivity was assessed for each catalyst (double-filter selectivity factors), and several catalysts were found to cause domain-selective catalytic inactivation. The results of this study demonstrate the ability to optimize the target selectivity of catalytic metallopeptides through both binding and catalytic factors (double-filter effect).

  14. The protein cofactor allows the sequence of an RNase P ribozyme to diversify by maintaining the catalytically active structure of the enzyme.

    PubMed Central

    Kim, J J; Kilani, A F; Zhan, X; Altman, S; Liu, F

    1997-01-01

    To study the effect proteins have on the catalysis and evolution of RNA enzymes, we simulated evolution of RNase P catalytic M1 RNA in vitro, in the presence and absence of its C5 protein cofactor. In the presence of C5, functional M1 sequence variants (not catalytically active in the absence of C5) were selected in addition to those identical to M1. C5 maintains the catalytically active structure of the variants and allows for an enhanced spectrum of M1 molecules to function in the context of a ribonucleoprotein (RNP) complex. The generation of an RNP enzyme, requiring both RNA and protein components, from a catalytically active RNA molecule has implications for how modern RNP complexes evolved from ancestral RNAs. PMID:9174096

  15. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution

    DOE PAGES

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem; ...

    2017-10-25

    Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less

  16. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem

    Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less

  17. Tackling Critical Catalytic Residues in Helicobacter pylori l-Asparaginase

    PubMed Central

    Maggi, Maristella; Chiarelli, Laurent R; Valentini, Giovanna; Scotti, Claudia

    2015-01-01

    Bacterial asparaginases (amidohydrolases, EC 3.5.1.1) are important enzymes in cancer therapy, especially for Acute Lymphoblastic Leukemia. They are tetrameric enzymes able to catalyze the deamination of l-ASN and, to a variable extent, of l-GLN, on which leukemia cells are dependent for survival. In contrast to other known l-asparaginases, Helicobacter pylori CCUG 17874 type II enzyme (HpASNase) is cooperative and has a low affinity towards l-GLN. In this study, some critical amino acids forming the active site of HpASNase (T16, T95 and E289) have been tackled by rational engineering in the attempt to better define their role in catalysis and to achieve a deeper understanding of the peculiar cooperative behavior of this enzyme. Mutations T16E, T95D and T95H led to a complete loss of enzymatic activity. Mutation E289A dramatically reduced the catalytic activity of the enzyme, but increased its thermostability. Interestingly, E289 belongs to a loop that is very variable in l-asparaginases from the structure, sequence and length point of view, and which could be a main determinant of their different catalytic features. PMID:25826146

  18. Tackling Critical Catalytic Residues in Helicobacter pylori L-Asparaginase.

    PubMed

    Maggi, Maristella; Chiarelli, Laurent R; Valentini, Giovanna; Scotti, Claudia

    2015-03-27

    Bacterial asparaginases (amidohydrolases, EC 3.5.1.1) are important enzymes in cancer therapy, especially for Acute Lymphoblastic Leukemia. They are tetrameric enzymes able to catalyze the deamination of L-ASN and, to a variable extent, of L-GLN, on which leukemia cells are dependent for survival. In contrast to other known L-asparaginases, Helicobacter pylori CCUG 17874 type II enzyme (HpASNase) is cooperative and has a low affinity towards L-GLN. In this study, some critical amino acids forming the active site of HpASNase (T16, T95 and E289) have been tackled by rational engineering in the attempt to better define their role in catalysis and to achieve a deeper understanding of the peculiar cooperative behavior of this enzyme. Mutations T16E, T95D and T95H led to a complete loss of enzymatic activity. Mutation E289A dramatically reduced the catalytic activity of the enzyme, but increased its thermostability. Interestingly, E289 belongs to a loop that is very variable in L-asparaginases from the structure, sequence and length point of view, and which could be a main determinant of their different catalytic features.

  19. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    NASA Astrophysics Data System (ADS)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  20. Formation of RNA oligomers on montmorillonite: site of catalysis

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1998-01-01

    Certain montmorillonites catalyze the self condensation of the 5'-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to formation of RNA oligomers. In order to establish the nature of the sites on montmorillonite responsible for this catalytic activity, oligomerization reactions were run with montmorillonites which had been selectively modified (I) at the edges by (a) fluoride treatment, (b) silylation, (c) metaphosphate treatment of the anion exchange sites (II) in the interlayer by (a) saturation with quaternary alkylammonium ions of increasing size, (b) aluminum polyoxo cations. High pressure liquid chromatography, HPLC, analysis of condensation products for their chain lengths and yields indicated that modification at the edges did not affect the catalytic activity to a significant extent, while blocking the interlayer strongly inhibited product formation.

  1. A glycine-to-glutamate substitution abolishes alanine:glyoxylate aminotransferase catalytic activity in a subset of patients with primary hyperoxaluria type 1.

    PubMed

    Purdue, P E; Lumb, M J; Allsop, J; Minatogawa, Y; Danpure, C J

    1992-05-01

    We have synthesized and sequenced alanine:glyoxylate aminotransferase (AGT; HGMW-approved symbol for the gene--AGXT) cDNA from the liver of a primary hyperoxaluria type 1 (PH1) patient who had normal levels of hepatic peroxisomal immunoreactive AGT protein, but no AGT catalytic activity. This revealed the presence of a single point mutation (G----A at cDNA nucleotide 367), which is predicted to cause a glycine-to-glutamate substitution at residue 82 of the AGT protein. This mutation is located in exon 2 of the AGT gene and leads to the loss of an AvaI restriction site. Exon 2-specific PCR followed by AvaI digestion showed that this patient was homozygous for this mutation. In addition, three other PH1 patients, one related to and two unrelated to, but with enzymological phenotype similar to that of the first patient, were also shown to be homozygous for the mutation. However, one other phenotypically similar PH1 patient was shown to lack this mutation. The mechanism by which the glycine-to-glutamate substitution at residue 82 causes loss of catalytic activity remains to be resolved. However, the protein sequence in this region is highly conserved between different mammals, and the substitution at residue 82 is predicted to cause significant local structural alterations.

  2. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.

    PubMed

    Andrews, Logan D; Zalatan, Jesse G; Herschlag, Daniel

    2014-11-04

    Catalytic promiscuity, the ability of enzymes to catalyze multiple reactions, provides an opportunity to gain a deeper understanding of the origins of catalysis and substrate specificity. Alkaline phosphatase (AP) catalyzes both phosphate and sulfate monoester hydrolysis reactions with a ∼10(10)-fold preference for phosphate monoester hydrolysis, despite the similarity between these reactions. The preponderance of formal positive charge in the AP active site, particularly from three divalent metal ions, was proposed to be responsible for this preference by providing stronger electrostatic interactions with the more negatively charged phosphoryl group versus the sulfuryl group. To test whether positively charged metal ions are required to achieve a high preference for the phosphate monoester hydrolysis reaction, the catalytic preference of three protein tyrosine phosphatases (PTPs), which do not contain metal ions, were measured. Their preferences ranged from 5 × 10(6) to 7 × 10(7), lower than that for AP but still substantial, indicating that metal ions and a high preponderance of formal positive charge within the active site are not required to achieve a strong catalytic preference for phosphate monoester over sulfate monoester hydrolysis. The observed ionic strength dependences of kcat/KM values for phosphate and sulfate monoester hydrolysis are steeper for the more highly charged phosphate ester with both AP and the PTP Stp1, following the dependence expected based on the charge difference of these two substrates. However, the dependences for AP were not greater than those of Stp1 and were rather shallow for both enzymes. These results suggest that overall electrostatics from formal positive charge within the active site is not the major driving force in distinguishing between these reactions and that substantial discrimination can be attained without metal ions. Thus, local properties of the active site, presumably including multiple positioned dipolar

  3. New insights into the catalytic mechanism of Bombyx mori prostaglandin E synthase gained from structure–function analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Kohji, E-mail: yamamok@agr.kyushu-u.ac.jp; Suzuki, Mamoru; Higashiura, Akifumi

    2013-11-01

    Highlights: •Structure of Bombyx mori prostaglandin E synthase is determined. •Bound glutathione sulfonic acid is located at the glutathione-binding site. •Electron-sharing network is present in this protein. •This network includes Asn95, Asp96, and Arg98. •Site-directed mutagenesis reveals that the residues contribute to the catalytic activity. -- Abstract: Prostaglandin E synthase (PGES) catalyzes the isomerization of PGH{sub 2} to PGE{sub 2}. We previously reported the identification and structural characterization of Bombyx mori PGES (bmPGES), which belongs to Sigma-class glutathione transferase. Here, we extend these studies by determining the structure of bmPGES in complex with glutathione sulfonic acid (GTS) at a resolutionmore » of 1.37 Å using X-ray crystallography. GTS localized to the glutathione-binding site. We found that electron-sharing network of bmPGES includes Asn95, Asp96, and Arg98. Site-directed mutagenesis of these residues to create mutant forms of bmPGES mutants indicate that they contribute to catalytic activity. These results are, to our knowledge, the first to reveal the presence of an electron-sharing network in bmPGES.« less

  4. Unconventional plasticity of HIV-1 reverse transcriptase: how inhibitors could open a connection "gate" between allosteric and catalytic sites.

    PubMed

    Bellucci, Luca; Angeli, Lucilla; Tafi, Andrea; Radi, Marco; Botta, Maurizio

    2013-12-23

    Targeted molecular dynamics (TMD) simulations allowed for identifying the chemical/structural features of the nucleotide-competitive HIV-1 inhibitor DAVP-1, which is responsible for the disruption of the T-shape motif between Try183 and Trp229 of the reverse transcriptase (RT). DAVP-1 promoted the opening of a connection "gate" between allosteric and catalytic sites of HIV-1 RT, thus explaining its peculiar mechanism of action and providing useful insights to develop novel nucleotide-competitive RT inhibitors.

  5. Influence of hydrophobic mismatch on the catalytic activity of Escherichia coli GlpG rhomboid protease

    PubMed Central

    Foo, Alexander C Y; Harvey, Brandon G R; Metz, Jeff J; Goto, Natalie K

    2015-01-01

    Rhomboids comprise a broad family of intramembrane serine proteases that are found in a wide range of organisms and participate in a diverse array of biological processes. High-resolution structures of the catalytic transmembrane domain of the Escherichia coli GlpG rhomboid have provided numerous insights that help explain how hydrolytic cleavage can be achieved below the membrane surface. Key to this are observations that GlpG hydrophobic domain dimensions may not be sufficient to completely span the native lipid bilayer. This formed the basis for a model where hydrophobic mismatch Induces thinning of the local membrane environment to promote access to transmembrane substrates. However, hydrophobic mismatch also has the potential to alter the functional properties of the rhomboid, a possibility we explore in the current work. For this purpose, we purified the catalytic transmembrane domain of GlpG into phosphocholine or maltoside detergent micelles of varying alkyl chain lengths, and assessed proteolytic function with a model water-soluble substrate. Catalytic turnover numbers were found to depend on detergent alkyl chain length, with saturated chains containing 10–12 carbon atoms supporting maximal activity. Similar results were obtained in phospholipid bicelles, with no proteolytic activity being detected in longer-chain lipids. Although differences in thermal stability and GlpG oligomerization could not explain these activity differences, circular dichroism spectra suggest that mismatch gives rise to a small change in structure. Overall, these results demonstrate that hydrophobic mismatch can exert an inhibitory effect on rhomboid activity, with the potential for changes in local membrane environment to regulate activity in vivo. PMID:25307614

  6. Cobalt-doping-induced synthesis of ceria nanodisks and their significantly enhanced catalytic activity.

    PubMed

    Guo, Xiao-Hui; Mao, Chao-Chao; Zhang, Ji; Huang, Jun; Wang, Wa-Nv; Deng, Yong-Hui; Wang, Yao-Yu; Cao, Yong; Huang, Wei-Xin; Yu, Shu-Hong

    2012-05-21

    High-quality cobalt-doped ceria nanostructures with triangular column, triangular slab, and disklike shapes are synthesized by tuning the doping amount of cobalt nitrate in a facile hydrothermal reaction. The cobalt-doped ceria nanodisks display significantly enhanced catalytic activity in CO oxidation due to exposed highly active crystal planes and the presence of numerous surface defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Studies Relevent to Catalytic Activation Co & other small Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation ofmore » small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.« less

  8. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction

    NASA Astrophysics Data System (ADS)

    Yang, Hong Bin; Hung, Sung-Fu; Liu, Song; Yuan, Kaidi; Miao, Shu; Zhang, Liping; Huang, Xiang; Wang, Hsin-Yi; Cai, Weizheng; Chen, Rong; Gao, Jiajian; Yang, Xiaofeng; Chen, Wei; Huang, Yanqiang; Chen, Hao Ming; Li, Chang Ming; Zhang, Tao; Liu, Bin

    2018-02-01

    Electrochemical reduction of CO2 to chemical fuel offers a promising strategy for managing the global carbon balance, but presents challenges for chemistry due to the lack of effective electrocatalyst. Here we report atomically dispersed nickel on nitrogenated graphene as an efficient and durable electrocatalyst for CO2 reduction. Based on operando X-ray absorption and photoelectron spectroscopy measurements, the monovalent Ni(i) atomic center with a d9 electronic configuration was identified as the catalytically active site. The single-Ni-atom catalyst exhibits high intrinsic CO2 reduction activity, reaching a specific current of 350 A gcatalyst-1 and turnover frequency of 14,800 h-1 at a mild overpotential of 0.61 V for CO conversion with 97% Faradaic efficiency. The catalyst maintained 98% of its initial activity after 100 h of continuous reaction at CO formation current densities as high as 22 mA cm-2.

  9. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.

    PubMed

    Li, Chao; Wang, Dan; Wang, Yan; Li, Guode; Hu, Guijuan; Wu, Shiwei; Cao, Zhongqiu; Zhang, Ke

    2018-08-15

    In this work, nanostructured Co-W-B films are successfully synthesized on the foam sponge by electroless plating method and employed as the catalysts with enhanced catalytic activity towards hydrogen evolution from the hydrolysis of ammonia borane (NH 3 BH 3 , AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3 nm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7 mL min -1 g cat -1 at 298 K. The activation energy of the hydrolysis reaction of AB is determined to be 32.2 kJ mol -1 . Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin

    2015-02-01

    Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.

  11. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    NASA Astrophysics Data System (ADS)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  13. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surfacemore » by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.« less

  14. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity.

    PubMed

    Koliopoulos, Marios G; Esposito, Diego; Christodoulou, Evangelos; Taylor, Ian A; Rittinger, Katrin

    2016-06-01

    TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N-terminal portion which comprises a canonical RING domain, one or two B-box domains and a coiled-coil region that mediates ligase dimerization. Self-association via the coiled-coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin-loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full-length protein. Our data reveal an unexpected diversity in the self-association mechanism of TRIMs that might be crucial for their biological function. © 2016 Francis Crick Institute. Published under the terms of the CC BY 4.0 license.

  15. Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications.

    PubMed

    Tian, Meng; Long, Yu; Xu, Dan; Wei, Shuoyun; Dong, Zhengping

    2018-07-01

    Nowadays, chemical catalytic methods for the treatment of organic wastes are attracting more and more research attention. In the current research, novel catalysts with palladium nanoparticles (Pd NPs) supported on the hollow mesoporous silica nanotubes (h-mSiO 2 ) were synthesized for the catalytic reduction of 4-nitrophenol (4-NP) and hydrodechlorination (HDC) of 4-chlorophenol (4-CP). The key point for the fabrication of the catalysts is that a certain thickness of the silica shell was wrapped on the multiwalled carbon nanotubes (MWNTs) or Pd/MWNTs through biphase stratification approach, and then the samples were calcined to remove the MWNTs. Thereby, h-mSiO 2 and Pd@h-mSiO 2 samples were obtained. The prepared materials have excellent pore structure and exhibit high specific surface areas. The reduction of 4-NP by the Pd/h-mSiO 2 and Pd@h-mSiO 2 catalysts showed higher TOF values than many other catalysts, and the yield of HDC of 4-CP to phenol reached 100% with a low loading of Pd in water solvent. The excellent catalytic activities of the Pd/h-mSiO 2 and Pd@h-mSiO 2 catalysts should attribute to the excellent connectivity of the h-mSiO 2 which not only can increase the accessibility of the Pd active sites but also enhance the mass transfer of the reactants. It is worth mention that, there is almost no Pd NPs aggregation or losing during the reaction process, and the prepared catalysts still showed good catalytic activity and physical stability after recycling. Moreover, the catalyst shows potential for catalytic reduction of nitroarenes in a fixed bed reactor, thus could be used for continuously treat nitroarenes polluted water. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction

    PubMed Central

    Xiao, Junwu; Kuang, Qin; Yang, Shihe; Xiao, Fei; Wang, Shuai; Guo, Lin

    2013-01-01

    Catalytic activity is primarily a surface phenomenon, however, little is known about Co3O4 nanocrystals in terms of the relationship between the oxygen reduction reaction (ORR) catalytic activity and surface structure, especially when dispersed on a highly conducting support to improve the electrical conductivity and so to enhance the catalytic activity. Herein, we report a controllable synthesis of Co3O4 nanorods (NR), nanocubes (NC) and nano-octahedrons (OC) with the different exposed nanocrystalline surfaces ({110}, {100}, and {111}), uniformly anchored on graphene sheets, which has allowed us to investigate the effects of the surface structure on the ORR activity. Results show that the catalytically active sites for ORR should be the surface Co2+ ions, whereas the surface Co3+ ions catalyze CO oxidation, and the catalytic ability is closely related to the density of the catalytically active sites. These results underscore the importance of morphological control in the design of highly efficient ORR catalysts. PMID:23892418

  17. Domain organization of p130, PLC-related catalytically inactive protein, and structural basis for the lack of enzyme activity.

    PubMed

    Kanematsu, T; Yoshimura, K; Hidaka, K; Takeuchi, H; Katan, M; Hirata, M

    2000-05-01

    The 130-kDa protein (p130) was isolated as a novel inositol 1,4, 5-trisphosphate [Ins(1,4,5)P3]-binding protein similar to phospholipase C-delta1 (PLC-delta1), but lacking catalytic activity [Kanematsu, T., Takeya, H., Watanabe, Y., Ozaki, S., Yoshida, M., Koga, T., Iwanaga, S. & Hirata, M. (1992) J. Biol. Chem. 267, 6518-6525; Kanematsu, T., Misumi, Y., Watanabe, Y., Ozaki, S., Koga, T., Iwanaga, S., Ikehara, Y. & Hirata, M. (1996) Biochem. J. 313, 319-325]. To test experimentally the domain organization of p130 and structural basis for lack of PLC activity, we subjected p130 to limited proteolysis and also constructed a number of chimeras with PLC-delta1. Trypsin treatment of p130 produced four major polypeptides with molecular masses of 86 kDa, 55 kDa, 33 kDa and 25 kDa. Two polypeptides of 86 kDa and 55 kDa started at Lys93 and were calculated to end at Arg851 and Arg568, respectively. Using the same approach, it has been found that the polypeptides of 33 kDa and 25 kDa are likely to correspond to regions between Val569 and Arg851 and Lys869 and Leu1096, respectively. All the proteolytic sites were in interconnecting regions between the predicted domains, therefore supporting domain organization based on sequence similarity to PLC-delta1 and demonstrating that all domains of p130, including the unique region at the C-terminus, are stable, tightly folded structures. p130 truncated at either or both the N-terminus (94 amino acids) and C-terminus (851-1096 amino acids) expressed in COS-1 cells showed no catalytic activity, indicating that p130 has intrinsically no PLC activity. A number of chimeric molecules between p130 and PLC-delta1 were constructed and assayed for PLC activity. It was shown that structural differences in interdomain interactions exist between the two proteins, as only some domains of p130 could replace the corresponding structures in PLC-delta1 to form a functional enzyme. These results suggest that p130 and the related proteins could

  18. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  19. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  20. Catalytic activity of bimetallic Zn/TiO2 catalyst for degradation of herbicide paraquat: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Sakee, Uthai; Wanchanthuek, Ratchaneekorn

    2017-11-01

    The preparation and characterization of Zn/TiO2 catalysts were performed and the photocatalytic properties of the resulting catalysts were tested using the paraquat degradation reaction under UV and solar light irradiation. The effect of the preparation method, amount of Zn loading, the calcination temperature and the thermal annealing during the autoclave aging were studied as well as the light irradiation during the testing reaction. The initial concentration of paraquat was 400 ppm, the pH during the catalytic testing was seven and the reaction temperature was 30 °C. The characterization information were obtained from XRD, XPS, UV-vis diffuse reflectance, FTIR, TEM and BET techniques. They were used to explain the expressed catalytic activity of Zn/TiO2. The results showed that the Zn/TiO2 catalyst from the hydrothermal method could remove about 80% of the paraquat from the solution (using 4 g l-1 of catalyst). The characterization data showed that the surface area, porous structure and dispersion of Zn species could affect the ability of the paraquat removal rather than the crystallnity of the TiO2 in the catalyst. The XPS spectra suggested that the preparation method, between the sol gel and hydrothermal, could not affect the state of the Zn and Ti, which presented in the Zn2+ and Ti4+ forms. This primary result will lead us to further study to elucidate the main active site by the XPS technique. Moreover, it clearly showed that the lowering of the band gap energy in the Zn/TiO2 was achieved (compared to bare TiO2), and this phenomena was one of the factors that gave the higher photocatalytic activity of the Zn/TiO2 catalyst.