Sample records for active comet nuclei

  1. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  2. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Tholen, David J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range.

  3. Mid-infrared spectra of comet nuclei

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  4. Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei

    NASA Astrophysics Data System (ADS)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.

    2018-06-01

    Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.

  5. Relative motions of fragments of the split comets. III - A test of splitting and comets with suspected multiple nuclei

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1979-01-01

    A quantitative test of splitting for comets with suspected multiple nuclei has been formulated using a model which assumes the motions of cometary fragments to be due primarily to outgassing. The model expresses the relative motion of the cometary fragments in terms of the time of splitting and the differential force, which are determined by measurements of the position angle and the separation distance between fragments. The test is applied to 18 comets suspected of having multiple nuclei, of which the comets Sawerthal 1888 I, Campbell 1914 IV, Whipple-Fedtke-Tevzadze 1943 I, Honda 1955 V, Wild 1968 III and Tago-Sato-Kosaka 1969 IX were found to be clear cases of split comets and Davidson 1889 IV and Periodic Giacobini 1896 V were judged to be likely candidates. At least three of the secondary nuclei confirmed can be classified as short-lived companions, while only two appear to be persistent.

  6. A Spitzer Search for Activity in Dormant Comets

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Trilling, David; Hora, Joseph; Smith, Howard

    2018-05-01

    Dormant comets are inactive cometary nuclei hiding in the asteroid populations. Due to their cometary origin, it is possible that volatiles are still retained in their interiors. This hypothesis is supported by the case of near-Earth asteroid Don Quixote, which had been known as an asteroid for 30 yr before activity was discovered in this team's prior Spitzer observations. Interestingly, Don Quixote showed outgassing of CO or CO2, but no dust activity. This significant observation was repeated in 2017 with the same result, suggesting that Don Quixote is continuously outgassing - and still an active comet. Don Quixote's case suggests that other dormant comets might be outgassing with low dust production rates, concealing their activity to optical surveys. The implication of this scenario is that the volatile inventory of the asteroid populations might be significantly larger than currently assumed. We propose 48.8 hr of deep IRAC observations of eight dormant comets in search of faint activity in them. For each target, we will (1) measure (or provide upper limits on) gas and dust production rates from our IRAC CH1 and CH2 observations, (2) derive the diameters and albedos of five of our targets using asteroid thermal modeling, (3) measure the near-infrared spectral slope between CH1 and CH2 for three of our targets, and (4) obtain lightcurve observations of the nuclei of all of our targets. Our observations, which are combined with ground-based observations as part of a NASA-funded program, will provide important constraints on the volatile content of the asteroid population, as well as the origin, evolution, and physical properties of cometary nuclei.

  7. Comet Wild 2 and the two kinds of cometary sub-nuclei population

    NASA Astrophysics Data System (ADS)

    Illes-Almar, E.

    On the 2nd January 2004 Stardust encountered the nucleus of comet Wild 2 by 240 km. 72 images have been collected - among them the up-till-now best views of a cometary nucleus. The "pockmarked" surface of the comet is peculiar as the "craters" are not normal craters: neither in shape nor in cross section. Their shapes are rather irregular and generally not central or axisymmetric. Furthermore they have flat bottoms and very steep walls that seem almost perpendicular to the surface. One has the feeling that they are not impact craters. In the framework of our `two kinds of cometary sub-nuclei population' hypothesis (Illés-Almár, 1995, 2002) the cavities can be explained by the stronger sublimation where the loose sub-nuclei are exposed to the surface. The almost vertical walls resemble to the vertical walls of the sublimated CO2 ice on the South polar cap of Mars. References: Illés-Almár, E.: On two different populations of cometary sub-nuclei. Antarctic Meteorites XX. June 6-8, 1995, Tokyo. Abstracts pp. 93-94, 1995. Illés-Almár, E.: Comet Borrelly and the two kinds of cometary sub-nuclei population. (submitted to Adv. Sp. Res. in 2002)

  8. Comparative study of icy patches on comet nuclei

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio

    2016-07-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed

  9. P/2006 HR30 (Siding Spring): A Low-activity Comet in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Hicks, Michael D.; Bauer, James M.

    2007-01-01

    The low cometary activity of P/2006 HR30 (Siding Spring) allowed a unique opportunity to study the nucleus of a periodic comet while near perihelion. P/2006 HR30 was originally targeted as a potential extinct comet, and we measured spectral reflectance and dust production using long-slit CCD spectroscopy and wide-field imaging obtained at the Palomar Mountain 200 inch telescope on 2006 August 3 and 4. The dust production Afp = 19.7 +/- 0.4 cm and mass-loss rate Q(dust) 4.1 +/- 0.1 kg/sec of the comet were approximately 2 orders of magnitude dust less than 1P/Halley at similar heliocentric distance. The VRI colors derived from the spectral reflectance were compared to Kuiper Belt objects, Centaurs, and other cometary nuclei. We found that the spectrum of P/2006 HR30 was consistent with other comets. However, the outer solar system bodies have a color distribution statistically distinct from cometary nuclei. It is our conjecture that cometary activity, most likely the reaccretion of ejected cometary dust, tends to moderate and mute the visible colors of the surface of cometary nuclei.

  10. Physical activity of the selected nearly isotropic comets with perihelia at large heliocentric distance

    NASA Astrophysics Data System (ADS)

    Kulyk, I.; Rousselot, P.; Korsun, P. P.; Afanasiev, V. L.; Sergeev, A. V.; Velichko, S. F.

    2018-03-01

    Context. The systematic investigation of comets in a wide range of heliocentric distances can contribute to a better understanding of the physical mechanisms that trigger activity at large distances from the Sun and reveals possible differences in the composition of outer solar system bodies belonging to various dynamical groups. Aims: We seek to analyze the dust environment of the selected nearly isotropic comets with a perihelion distance between 4.5 and 9.1 au, where sublimation of water ice is considered to be negligible. Methods: We present results of multicolor broadband photometric observations for 14 distant active objects conducted between 2008 and 2015 with various telescopes. Images obtained with broadband filters were used to investigate optical colors of the cometary comae and to quantify physical activity of the comet nuclei. Results: The activity level was estimated with Afρ parameters ranging between 95 ± 10 cm and 9600 ± 300 cm. Three returning comets were less active than the dynamically new comets. Dust production rates of the comet nuclei were estimated between 1 and 100 kg s-1 based on some assumptions about the physical properties of dust particles populating comae. The measured colors point out reddening of the continuum for all the comets. The mean values of a normalized reflectivity gradient within the group of the comets amount to 14 ± 2% per 1000 Å and 3 ± 2% per 1000 Å in the BV and VR spectral domains, respectively. The comae of the dynamically new comets, which were observed on their inbound legs, may be slightly redder in the blue spectral interval than comae of the comets observed after the perihelion passages. The dynamically new comets observed both pre- and post-perihelion, seem to have higher production rates post-perihelion than pre-perihelion for similar heliocentric distances.

  11. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1983-01-01

    On the basis of the icy conglometate model of cometary nuclei various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes have been determined. Narrow dust jets near the nuclei of some bright comets require that small sources be embedded in larger active areas. Certain evidence suggests that very dusty areas and very dusty comets may be less active, respectively, than surrounding areas or other comets.

  12. From Kuiper Belt to Comet: The Shapes of the Nuclei

    NASA Astrophysics Data System (ADS)

    Jewitt, D.; Sheppard, S.; Fernandez, Y.

    2003-05-01

    It is widely believed that escaped objects from the Kuiper Belt are the source of both the Centaurs and the nuclei of the Jupiter Family Comets (JFCs). If the JFC nuclei are produced by collisional breakup of parent objects in the Kuiper Belt, then it is reasonable to expect that their shape distribution should be consistent with those of fragments produced in disintegrative laboratory experiments, or with the small main-belt asteroids (which are produced collisionally). We test this idea using a sample of eleven well-observed cometary nuclei. Our main result is that the nuclei are, on average, much more elongated than either the collisionally produced small main-belt asteroids or the fragments created in laboratory impact experiments. Several interpretations of this systematic shape difference are possible (including the obvious one that the JFC nuclei are not, after all, produced collisionally in the Kuiper Belt). Our preferred explanation, however, is that the asphericities of the nuclei have been modified by one or more processes of mass loss. An implication of this interpretation is that the JFC nuclei in our sample are highly evolved, having lost a major part of their original mass. In turn, this implies that the angular momenta of the nuclei are also non-primordial: the JFC nuclei are highly physically evolved objects. We will discuss the evidence supporting these conclusions. This work has been recently published in Astronomical Journal, 125, 3366-3377 (2003).

  13. On observing comets for nuclear rotation

    NASA Astrophysics Data System (ADS)

    Whipple, F. L.

    1981-10-01

    The prevalent non-gravitational motions among comets demonstrate that the sublimination does not reach a maximum at the instant of maximum insolation on the nucleus. The occurrence of halos or "parabolic" envelopes in the comae of some comets and of jets, rays, fans, streamers and similar phenomena very near the nucleus in the brightest comets demonstrates that the sublimation process is not uniform over the nuclei. In other words, the nuclei of many comets contain relatively small active regions which provide much or most of the sublimation when these areas are turned toward the Sun. The period of rotation can be determind by measurement of the diameters of the halos or of the latus recta of the "parabolic" envelopes, if the expansion velocities are averaged from observations as a function of solar distance. Experience from analyses of some 80 well observed comets shows that the nuclei are "spotted" for more than a third of all comets, regardless of the "age" as measured by the original inverse semimajor axis including correction for planetary perturbations.

  14. Comets. [IUE

    NASA Technical Reports Server (NTRS)

    Ahearn, Michael F.

    1988-01-01

    The IUE was used to study comets including the first dynamically new comet to approach closer than 3 AU. Differences between old and new comets are studied. Results relevant to the nature of cometary nuclei are discussed. Identification of species in the spectra; relative abundances; variability of comets; and comet mass are considered.

  15. Activity in distant comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1992-01-01

    Activity in distant comets remains a mystery in the sense that we still have no complete theory to explain the various types of activity exhibited by different comets at large distances. This paper explores the factors that should play a role in determining activity in a distant comet, especially in the cases of comet P/Tempel 2, comet Schwassmann-Wachmann 1, and 2060 Chiron.

  16. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; hide

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  17. The mass disruption of Jupiter Family comets

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  18. Structure and density of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Lowry, Stephen C.

    2008-09-01

    Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple’s (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy- onglomerate planetesimals, possibly held together only by self-gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker-Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA’s Rosetta mission, now en route to comet 67P/Churyumov- Gerasimenko, will provide that opportunity.

  19. The volatile composition of comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.

    1988-01-01

    Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.

  20. The bare nucleus of comet Neujmin 1

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; A'Hearn, Michael F.; Mcfadden, Lucy-Ann

    1987-01-01

    Simultaneous visible and infrared observations of comet P/Neujmin 1 1984c are presented which show that the comet has a large (mean radius 10 km), dark (geometric albedo 2-3 percent) nucleus with a surface which is mostly inert material but which still shows a low level of gaseous activity. This is the first physical evidence that cometary nuclei can leave behind an inert body after the coma activity ceases. No asteroid or asteroid class has been found to match the reflectance and albedo of this comet except possibly some D asteroids.

  1. I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Dalcher, N.

    2009-04-01

    Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the

  2. Analytical study of comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Albee, A. L.

    1989-01-01

    Analytical procedures for studying and handling frozen (130 K) core samples of comet nuclei are discussed. These methods include neutron activation analysis, x ray fluorescent analysis and high resolution mass spectroscopy.

  3. Physical processes in comets

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Huebner, W. F.

    1976-01-01

    The paper discusses physical processes in comets which involve solar and nuclear radial forces that affect the motions of gases and icy grains, gas-phase chemistry very close to the nuclei of large comets near the sun, sublimation of icy grains, dissociation of parent molecules into radicals and of radicals into atoms, and ionization by sunlight and collisions. The composition and dimensions of nuclei are examined along with variations in intrinsic brightness, the nature of volatiles, gas production rates in the coma, characteristics of icy grains in the coma, and the structure of streamers, ion tails, and dust tails. The structure of the coma is described in detail on the basis of spectroscopic observations of several comets. The origin of comets is briefly reviewed together with the relation of comets to earth, the interplanetary complex, and the interstellar medium. Desirable future observations are noted, especially by space missions to comets.

  4. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  5. A new activity index for comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1992-01-01

    An activity index, AI, is derived from observational data to measure the increase of activity in magnitudes for comets when brightest near perihelion as compared to their inactive reflective brightness at great solar distances. Because the observational data are still instrumentally limited in the latter case and because many comets carry particulate clouds about them at great solar distances, the application of the activity index is still limited. A tentative application is made for the comets observed by Max Beyer over a period of nearly 40 years, providing a uniform magnitude system for the near-perihelion observations. In all, 32 determinations are made for long-period (L-P) comets and 15 for short-period (S-P). Although the correlations are scarcely definitive, the data suggest that the faintest comets are just as active as the brightest and that the S-P comets are almost as active as those with periods (P) exceeding 10(exp 4) years or those with orbital inclinations of i less than 120 deg. Comets in the range 10(exp 2) less than P less than 10(exp 4) yr. or with i greater than 120 deg appear to be somewhat more active than the others. There is no evidence to suggest aging among the L-P comets or to suggest other than a common nature for comets generally.

  6. Physical Characteristics of Asteroid-like Comet Nucleus C/2001 OG108 (LONEOS)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Fernandez, Y. R.; Pravec, P.; French, L. M.; Farnham, T. L.; Gaffey, M. J.; Hardersen, P. S.; Kusnirak, P.; Sarounova, L.; Sheppard, S. S.

    2003-01-01

    For many years several investigators have suggested that some portion of the near-Earth asteroid population may actually be extinct cometary nuclei. Evidence used to support these hypotheses was based on: observations of asteroid orbits and associated meteor showers (e.g. 3200 Phaethon and the Geminid meteor shower); low activity of short period comet nuclei, which implied nonvolatile surface crusts (e.g. Neujmin 1, Arend-Rigaux); and detections of transient cometary activity in some near-Earth asteroids (e.g. 4015 Wilson-Harrington). Recent investigations have suggested that approximately 5-10% of the near- Earth asteroid population may be extinct comets. However if members of the near-Earth asteroid population are extinct cometary nuclei, then there should be some objects within this population that are near their final stages of evolution and so should demonstrate only low levels of activity. The recent detections of coma from near-Earth object 2001 OG108 have renewed interest in this possible comet-asteroid connection. This paper presents the first high quality ground-based near-infrared reflectance spectrum of a comet nucleus combined with detailed lightcurve and albedo measurements.

  7. HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii

  8. Properties of filamentary sublimation residues from dispersions of clay in ice. [on Martian poles, comet nuclei, and icy satellites

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Fanale, F. P.; Sutton, S.

    1986-01-01

    Results are reported from experimental studies of the formation of ice mixed with mineral particles in an effort to simulate similar processes on natural surfaces such as at the Martian poles, on comet nuclei and on icy satellites. The study consisted of low-pressure, low-temperature sublimations of water ice from dilutions of water-clay (montmorillonite and Cabosil) dispersions of various component ratios. Liquid dispersions were sprayed into liquid nitrogen to form droplets at about -50 C. Both clay-water dispersions left a filamentary residue on the bottom of the Dewar after the water ice had sublimated off. The residue was studied with optical and SEM microscopy, the latter method revealing a high electrical conductivity in the residue. The results suggest that the sublimation of the water ice can leave a surface crust, which may be analogous to processes at the Martian poles and on comet nuclei. The process could proceed by the attachment of water molecules to salt crystals during the hottest part of the Martian year. The residue remaining was found to remain stable up to 370 C, be porous, and remain resilient, which could allow it to insulate ice bodies such as comets in space.

  9. Current ideas on the nature of comets

    NASA Technical Reports Server (NTRS)

    Rahe, J.

    1984-01-01

    The chemical composition, emission and line spectra, and structure of comet nuclei, cometary atmospheres, and comet tails are discussed. The role of ultraviolet and infrared astronomy in defining comets is examined.

  10. Fluffy comets

    NASA Astrophysics Data System (ADS)

    Greenberg, J. M.

    The density of typical comet nuclei is estimated on the basis of published empirical and theoretical density data on meteors. The nuclei are assumed to consist of aggregated interstellar dust (silicate cores with complex organic refractory mantles) as proposed by Greenberg (1982 and 1983) and Van de Bult et al. (1985). The theoretical density (0.5 g/cu cm) of a compact nucleus of this type is contrasted with the observed densities of meteors associated with short-period comets (0.2 g/cu cm) and the Draconids associated with comet Giacobini-Zinner (0.01 g/cu cm), and it is inferred that the original comet debris was less than fully packed. A birdsnest structure comprising elongated crystals and about 60 percent empty space is proposed; its albedo is estimated as about 0.05 (in the range predicted by observations); and it is shown to undergo much less internal heating by the sun than a solid ice nucleus. The mean density of reconstituted cometary matter is found to be in the range 0.54-0.03 g/cu cm, consistent with the estimates (0.1 g/cu cm) of Lin (1966) and Donn (1963).

  11. Evidence for geologic processes on comets

    NASA Astrophysics Data System (ADS)

    Sunshine, Jessica M.; Thomas, Nicolas; El-Maarry, Mohamed Ramy; Farnham, Tony L.

    2016-11-01

    Spacecraft missions have resolved the nuclei of six periodic comets and revealed a set of geologically intriguing and active small bodies. The shapes of these cometary nuclei are dominantly bilobate reflecting their formation from smaller cometesimals. Cometary surfaces include a diverse set of morphologies formed from a variety of mechanisms. Sublimation of ices, driven by the variable insolation over the time since each nucleus was perturbed into the inner Solar System, is a major process on comets and is likely responsible for quasi-circular depressions and ubiquitous layering. Sublimation from near-vertical walls is also seen to lead to undercutting and mass wasting. Fracturing has only been resolved on one comet but likely exists on all comets. There is also evidence for mass redistribution, where material lifted off the nucleus by subliming gases is deposited onto other surfaces. It is surprising that such sedimentary processes are significant in the microgravity environment of comets. There are many enigmatic features on cometary surfaces including tall spires, kilometer-scale flows, and various forms of depressions and pits. Furthermore, even after accounting for the differences in resolution and coverage, significant diversity in landforms among cometary surfaces clearly exists. Yet why certain landforms occur on some comets and not on others remains poorly understood. The exploration and understanding of geologic processes on comets is only beginning. These fascinating bodies will continue to provide a unique laboratory for examining common geologic processes under the uncommon conditions of very high porosity, very low strength, small particle sizes, and near-zero gravity.

  12. A binary main-belt comet.

    PubMed

    Agarwal, Jessica; Jewitt, David; Mutchler, Max; Weaver, Harold; Larson, Stephen

    2017-09-20

    Asteroids are primitive Solar System bodies that evolve both collisionally and through disruptions arising from rapid rotation. These processes can lead to the formation of binary asteroids and to the release of dust, both directly and, in some cases, through uncovering frozen volatiles. In a subset of the asteroids called main-belt comets, the sublimation of excavated volatiles causes transient comet-like activity. Torques exerted by sublimation measurably influence the spin rates of active comets and might lead to the splitting of bilobate comet nuclei. The kilometre-sized main-belt asteroid 288P (300163) showed activity for several months around its perihelion 2011 (ref. 11), suspected to be sustained by the sublimation of water ice and supported by rapid rotation, while at least one component rotates slowly with a period of 16 hours (ref. 14). The object 288P is part of a young family of at least 11 asteroids that formed from a precursor about 10 kilometres in diameter during a shattering collision 7.5 million years ago. Here we report that 288P is a binary main-belt comet. It is different from the known asteroid binaries in its combination of wide separation, near-equal component size, high eccentricity and comet-like activity. The observations also provide strong support for sublimation as the driver of activity in 288P and show that sublimation torques may play an important part in binary orbit evolution.

  13. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Marsden, B. G.; Sekanina, Z.

    1976-01-01

    A semiannual progress report describing the work completed during the period 1 September 1975 to 29 February 1976 on the physics of cometary nuclei was given. The following items were discussed: (1) a paper entitled ""A speculation about comets and the earth'', (2) a chapter entitled"" The physics of comets'' for ""Reviews of Astronomy and Astrophysics'', (3) continuing work on split comets, and (4) results dealing with a new application of nongravitational solar-radial forces as a measure of comet nucleus dimensions and activity.

  14. THE NEOWISE-DISCOVERED COMET POPULATION AND THE CO + CO{sub 2} PRODUCTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, James M.; Stevenson, Rachel; Kramer, Emily

    2015-12-01

    The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO{sub 2} production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 μm band excess. We find a possible relation between dust and CO + CO{sub 2} production, as well as possible differences in the sizes of long and short period comet nuclei.

  15. Autonomous Onboard Science Data Analysis for Comet Missions

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  16. Comets: Gases, ices, grains and plasma

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L.

    1981-01-01

    The program and abstracts of the 97 papers delivered at the colloquium are presented. Cometary nuclei, comet dust, the coma, ion tails, several comet missions, and cometary origin and evolution were discussed.

  17. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  18. CO in Distantly Active Comets

    NASA Astrophysics Data System (ADS)

    Womack, M.; Sarid, G.; Wierzchos, K.

    2017-03-01

    The activity of most comets near the Sun is dominated by the sublimation of frozen water, the most abundant ice in comets. Some comets, however, are active well beyond the water-ice sublimation limit of ˜3 au. Three bodies dominate the observational record and modeling efforts for distantly active comets: the long-period comet C/1995 O1 (Hale-Bopp), and the short-period comets (with Centaur orbits) 29P/Schwassmann-Wachmann 1 and 2060 Chiron. We summarize what is known about these three objects with an emphasis on their gaseous comae. We calculate their CN/CO and CO2/CO production rate ratios from the literature and discuss implications, such as HCN and CO2 outgassing are not significant contributors to their comae. Using our own data we derive CO production rates, Q(CO), for all three objects to examine whether there is a correlation between gas production and different orbital histories and/or size. The CO measurements of Hale-Bopp (4-11 AU) and 29P are consistent with a nominal production rate of Q(CO) = 3.5 × 1029 r-2 superimposed with sporadic outbursts. The similarity of Hale-Bopp CO production rates for pre- and post-perihelion suggests that thermal inertia was not very important and therefore most of the activity is at or near the surface of the comet. We further examine the applicability of existing models in explaining the systematic behavior of our small sample. We find that orbital history does not appear to play a significant role in explaining 29P’s CO production rates. 29P outproduces Hale-Bopp at the same heliocentric distance, even though it has been subjected to much more solar heating. Previous modeling work on such objects predicts that 29P should have been devolatilized over a fresher comet like Hale-Bopp. This may point to 29P having a different orbital history than current models predict, with its current orbit acquired more recently. On the other hand, Chiron’s CO measurements are consistent with it being significantly depleted over its

  19. Comets in UV

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  20. Chaotic dynamics around cometary nuclei

    NASA Astrophysics Data System (ADS)

    Lages, José; Shevchenko, Ivan I.; Rollin, Guillaume

    2018-06-01

    We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.

  1. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  2. Properties of the nuclei and comae of 10 ecliptic comets from Hubble Space Telescope multi-orbit observations

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Toth, I.; Weaver, H. A.; A'Hearn, M. F.; Jorda, L.

    2011-04-01

    We report on our on-going effort to detect and characterize cometary nuclei with the Hubble Space Telescope (HST). During cycle 9 (2000 July to 2001 June), we performed multi-orbit observations of 10 ecliptic comets with the Wide Field Planetary Camera 2. Nominally, eight contiguous orbits covering a time interval of ˜11 h were devoted to each comet but a few orbits were occasionally lost. In addition to the standard R band, we could additionally observe four of them in the V band and the two brightest ones in the B band. Time series photometry was used to constrain the size, shape and rotational period of the 10 nuclei. Assuming a geometric albedo of 0.04 for the R band, a linear phase law with a coefficient of 0.04 mag deg-1 and an opposition effect similar to that of comet 19P/Borrelly, we determined the following mean values of the effective radii 47P/Ashbrook-Jackson: 2.86±0.08 km, 61P/Shajn-Schaldach: 0.62±0.02 km, 70P/Kojima: 1.83±0.05 km, 74P/Smirnova-Chernykh: 2.23±0.04 km, 76P/West-Kohoutek-Ikemura: 0.30±0.02 km, 82P/Gehrels 3: 0.69±0.02 km, 86P/Wild 3: 0.41±0.03 km, 87P/Bus: 0.270.01 km, 110P/Hartley 3: 2.15±0.04 km and 147P/Kushida-Muramatsu: 0.21±0.01 km. Because of the limited time coverage (˜11 h), the rotational periods could not be accurately determined, multiple solutions were sometime found and three periods were not constrained at all. Our estimates range from ˜5 to ˜32 h. The lower limits for the ratio a/b of the semi-axis of the equivalent spheroids range from 1.10 (70P) to 2.20 (87P). The four nuclei for which we could measure (V-R) are all significantly redder than the Sun, with 86P/Wild 3 (V-R) = 0.86 ± 0.10 appearing as an ultrared object. We finally determined the dust activity parameter Afρ of their coma in the R band, the colour indices and the reflectivity spectra of four of them. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at Space Telescope Science Institute, which is operated by the

  3. Physical characteristics of Comet Nucleus C/2001 OG 108 (LONEOS)

    NASA Astrophysics Data System (ADS)

    Abell, Paul A.; Fernández, Yanga R.; Pravec, Petr; French, Linda M.; Farnham, Tony L.; Gaffey, Michael J.; Hardersen, Paul S.; Kušnirák, Peter; Šarounová, Lenka; Sheppard, Scott S.; Narayan, Gautham

    2005-12-01

    geometric albedo, and the visible spectrophotometry all indicate that C/2001 OG 108 has spectral properties analogous to the D-type, and possibly P-type asteroids. Comparison of the measured albedo and diameter of C/2001 OG 108 with those of Damocloid asteroids reveals similarities between these asteroids and this comet nucleus, a finding which supports previous dynamical arguments that Damocloid asteroids could be composed of cometary-like materials. These observations are also consistent with findings that two Jupiter-family comets may have spectral signatures indicative of D-type asteroids. C/2001 OG 108 probably represents the transition from a typical active comet to an extinct cometary nucleus, and, as a Halley-type comet, suggests that some comets originating in the Oort cloud can become extinct without disintegrating. As a near-Earth object, C/2001 OG 108 supports the suggestion that some fraction of the near-Earth asteroid population consists of extinct cometary nuclei.

  4. Strategy for infrared photometry of comets with ISO

    NASA Astrophysics Data System (ADS)

    Solc, M.; Vanysek, V.; Gruen, E.

    1994-07-01

    The launch of the ISO (Infrared Satellite Observatory) by the European Space Agency is scheduled for autumn 1995. Photometry and spectrophotometry observing programs of comets in the wavelength range 2.5-200 microns for the onboard spectrophotometer ISOPHOT is now under final preparation. Technical details for preparing propasals are given. Phenomena in comets to be studied are surface properties of bare cometary nuclei at large heliocentric distances, onset of coma activity, and coma dust and gas emission (in inner solar system). Dust production, dust/gas mass ratio, dust distribution in coma, and their temporal variability are important for understanding the physical processes on nuclei, and spectrophotometry in the range of 2.5-12 microns could provide us with data of the chemical composition of cometary dust. Several active comets expected for the 18-month lifetime of ISO in 1995-1997 were selected for the ISO Central Program according to their orbital and physical parameters: P/Schwassman-Wachmann 1, P/Encke, P/d'Arrest, P/Honda-Mrkos-Pajdusakova, P/Churyumov-Gerasimenko, P/Kopff, P/IRAS, P/Wirtanen, P/Wild 2, P/Grigg-Skjellerup, P/Schwassman-Wachmann 3, P/Machholz, and (2060) Chiron. Four of them match well various constraints put on the observations by the technical arrangement of the satellite and instrument. A simple four-parameter model (size, albedo, rotation, optical thickness)was developed to estimate the temperatures and thermal fluxes of both solid nuclei and dust coma.

  5. The forest and the trees. [comments on comet nuclei, cometary origin, and correlations among cometary data

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1991-01-01

    Comments on the nature of cometary nuclei, some problems regarding cometary origin, and some correlations among cometary data are presented. Comparisons with an earlier report on cometary nuclei are noted, and most of the earlier advances in concept are substantiated. The mean density of the Halley nucleus may have been underestimated, while the nature of the rotation remains uncertain. The dust/gas ratio apparently needs to be increased by as much as two times, perhaps to unity or higher. CHON grains appear to be important sources of gas. Evidence is presented to support the thesis that aging among long-period comets increases statistically as the periods decrease. Data on the orientation of cometary axes with respect to the Galaxy and the properties of clusters defined by these axes are presented.

  6. Episodic Aging and End States of Comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  7. What's Causing the Activity on Comet 67P?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Comet 67P/ChuryumovGerasimenko made famous by the explorations of the Rosetta mission has been displaying puzzling activity as it hurtles toward the Sun. However, recent modeling of the comet by a group of scientists from the Cte dAzur University may now explain whats causing 67Ps activity.Shadowed ActivityA model of comet 67P, with the colors indicating the rate of change of the temperature on the comets surface. The most rapid temperature changes are seen at the comets neck, in the same locations as the early activity seen in the Rosetta images. [Al-Lagoa et al. 2015] Between June and September of 2014, Rosetta observed comet 67P displaying early activity in the form of jets of dust emitted from near the neck of the comet (its narrowest point). Such activity is usually driven by the sublimation of volatiles from the comets surface as a result of sun exposure. But the neck of the comet is frequently shadowed as the comet rotates, and it receives significantly less sunlight than the rest of the comet. So why would the early activity originate from the comets neck?The authors of a recent study, led by Victor Al-Lagoa, hypothesize that its precisely because the neck is receiving alternating sunlight/shadows that its displaying activity. They suggest that thermal cracking of the surface of the comet is happening faster in this region, due to the rapid changes in temperature that result from the shadows cast by the surrounding terrain. The cracking exposes subsurface ices in the neck faster than in other regions, and the ensuing sublimation of that ice is what creates the activity were seeing.Temperature Models: To test their hypothesis, the authors study the surface temperatures on comet 67P by means of a thermophysical model a model used to calculate the temperatures on an airless body, both on and below the surface. The model takes into account factors like thermal inertia (how quickly the bodys temperature responds to changes in the incident energy), shadowing, and

  8. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  9. Comets, Asteroids, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide

  10. ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.

    2016-12-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ valuesmore » >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.« less

  11. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous

  12. Physical aging in comets

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    1991-01-01

    The question of physical aging in cometary nuclei is addressed in order to elucidate the relationship between the past conditions in the protosolar nebula and the present state of the cometary nucleus, and to understand the processes that will physically and chemically alter the nucleus as a function of time. Attention is given to some of the processes that might be responsible for causing aging in comets, namely, radiation damage in the upper layers of the nucleus during the long residences in the Oort cloud, processing from heating and collisions within the Oort cloud, loss of highly volatile species from the nucleus on the first passage through the inner solar system, buildup of a dusty mantle, which can eventually prohibit further sublimation, and a change in the porosity, and hence the thermal properties, of the nucleus. Recent observations suggest that there are distinct differences between 'fresh' Oort cloud comets and thermally processed periodic comets with respect to intrinsic brightness and rate of change of activity as a function of distance.

  13. Rotationally induced surface slope-instabilities and the activation of CO2 activity on comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Graves, Kevin; Hirabayashi, Masatoshi; Melosh, H. Jay; Richardson, James E.

    2016-07-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ∼45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ∼11 [10-13] h) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ∼3-4 orbits prior to the DIXI flyby (∼1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During the avalanches, the sliding material would either be lofted off the surface by gas activity, or possibly gained enough momentum moving downhill (toward the tip of the small lobe) to slide off the tip of the small lobe. Much of this material would have failed to reach escape velocity, and would reimpact the nucleus, forming debris deposits. The similar size frequency distribution of the mounds observed on the surface of Hartley 2 and chunks of material in its inner coma suggest that the 20-40 m mounds observed by the DIXI mission on the surface of Hartley 2 are potentially these fallback debris deposits. As the nucleus spun down (rotation period increased) from a period of ∼11-18.34 h at the time of the DIXI flyby, the location of potential minima, where materials preferentially settle, migrated about the surface, allowing us to place relative ages on most of the terrains on the imaged portion of the nucleus.

  14. Analysis and interpretation of CCD data on P/Halley and physical parameters and activity status of cometary nuclei at large heliocentric distance

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Mueller, Beatrice

    1991-01-01

    The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data.

  15. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  16. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  17. The Physics of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1997-01-01

    The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik and Sekanina are extremely low. These values are confirmed by theory developed here. assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.

  18. The natural history of Halley's comet

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    1981-07-01

    The 1986 apparition of Halley's comet will be the subject of numerous space probes, planned to determine the chemical nature and physical structure of comet nuclei, atmospheres, and ionospheres, as well as comet tails. The problems of cometary origin remain inconclusive, with theories ranging from a purely interstellar origin to their being ejecta from the Galilean satellites of Jupiter. Comets can be grouped into one of two classes, depending on their periodicity, and statistical mechanics of the entire Jovian family of comets can be examined under the equilibrium hypothesis. Comet anatomy estimations have been determined, and there is speculation that comet chemistry may have been a factor in the origin of life on earth. Halley's comet was first noted using Newton's dynamical methods, and Brady (1972) attempted to use the comet as a gravitational probe in search of a trans-Plutonian planet. Halley's orbit is calculated by combination of ancient observations and modern scientific methods.

  19. Report of the Comet Science Working Group

    NASA Technical Reports Server (NTRS)

    1979-01-01

    General scientific questions and measurement objectives that can be addressed on a first comet mission relate to: (1) the chemical nature and the physical structure of comet nuclei as well as the changes that occur as functions of time and orbital position; (2) the chemical and physical nature of the atmospheres and ionospheres of comets, the processes which occur in them, and the development of these atmospheres and ionospheres as functions of time and orbital position; and (3) the nature of comet tails, the processes by which they are formed, and the interaction of comets with the solar wind. Capabilities of the various instruments required are discussed.

  20. A Post-Stardust Mission View of Jupiter Family Comets

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2011-01-01

    Before the Stardust Mission, many persons (including the mission team) believed that comet nuclei would be geologically boring objects. Most believed that comet nucleus mineralogy would be close or identical to the chondritic interplanetary dust particles (IDPs), or perhaps contain mainly amorphous nebular condensates or that comets might even be composed mainly of preserved presolar material [1]. Amazingly, the results for Comet Wild 2 (a Jupiter class comet) were entirely different. Whether this particular comet will ultimately be shown to be typical or atypical will not be known for a rather long time, so we describe our new view of comets from the rather limited perspective of this single mission.

  1. Massive stars: flare activity due to infalls of comet-like bodies

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    2015-01-01

    Passages of comet-like bodies through the atmosphere/chromosphere of massive stars at velocities more than 600 km/s will be accompanied, due to aerodynamic effects as crushing and flattening, by impulse generation of hot plasma within a relatively very thin layer near the stellar surface/photosphere as well as ``blast'' shock wave, i.e., impact-generated photospheric stellar/solar flares. Observational manifestations of such high-temperature phenomena will be eruption of the explosive layer's hot plasma, on materials of the star and ``exploding'' comet nuclei, into the circumstellar environment and variable anomalies in chemical abundances of metal atoms/ions like Fe, Si etc. Interferometric and spectroscopic observations/monitoring of young massive stars with dense protoplanetary discs are of interest for massive stars physics/evolution, including identification of mechanisms for massive stars variability.

  2. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  3. Thermal evolution of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Prialnik, D.

    2014-07-01

    Thermal modeling of comet nuclei and similar objects involves the solution of conservation equations for energy and masses of the various components over time. For simplicity, the body is generally, but not necessarily, assumed to be of spherical shape. The processes included in such calculations are heat transfer, gas flow, dust drag, phase transitions, internal heating by various sources, internal structure alterations, surface sublimation. Physical properties --- such as the thermal conductivity, permeability, material strength, and porous structure --- are assumed, based on the best available estimates from laboratory experiments and space-mission results. Calculations employ various numerical procedures and require significant computational power, data analysis, and often sophisticated methods of graphical presentation. They start with a body of given size, mass, and composition, as well as a given orbit. The results yield properties and activity patterns that can be confronted with observations. Initial parameters may be adjusted until agreement is achieved. A glimpse into the internal structure of the object, which is inaccessible to direct observation, is thus obtained. The last decade, since the extensive overview of the subject was published (Modeling the structure and activity of comet nuclei, Prialnik, D.; Benkhoff, J.; Podolak, M., in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver, eds., University of Arizona Press, Tucson, p.359-387), thermal modeling has significantly advanced. This was prompted both by new properties and phenomena gleaned from observations, one example being main-belt comets, and the continual increase in computational power and performance. Progress was made on two fronts. On the computational side, multi-dimensional models have been developed, adaptive-grid and moving-boundaries techniques have been adopted, and long-term evolutionary calculations have become possible, even spanning the lifetime of the Solar System. On

  4. An analysis of the BVRI colors of 22 active comets

    NASA Astrophysics Data System (ADS)

    Betzler, A. S.; Almeida, R. S.; Cerqueira, W. J.; Araujo, L. A.; Prazeres, C. J. M.; Jesus, J. N.; Bispo, P. A. S.; Andrade, V. B.; Freitas, Y. A. S.; Betzler, L. B. S.

    2017-08-01

    Our aim was to analyze the variation of Johnson-Kron-Cousins BVRI color indexes of a sample with 22 active comets of various dynamic groups with the time, geometrical, observational and dynamical parameters. We performed photometric observations of 16 comets between 2010 and 2014, using robotic telescopes in three continents. In addition to the sample, we used data of six comets available in the literature. A statistical comparison between the distributions of color indexes was performed using the Kruskal-Wallis H-test. The color indexes of active comets can vary a few tenths up to a magnitude on time scales that range from hours to weeks. Using the B-V colors of the observed comets, we generated a relationship that correlates the cometary visual and CCD magnitudes. We did not identify any relationship between B-V and V-R colors with heliocentric distance and phase angle. The color B-V is correlated with the photometric aperture that can be described by a logarithmic function. We did not identify any differences in the distribution of B-V color among the comets analyzed at a confidence level equal to or greater than 95%. The mean color of active comets are B-R = 1.20 ± 0.24 , B-V = 0.76 ± 0.16 and V-R = 0.42 ± 0.16 . Active comets with V-R colors outside the three standard deviation interval can be considered objects with unusual physical characteristics.

  5. CCD-photometry of comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Mueller, Beatrice E. A.

    1992-01-01

    CCD imaging and time series photometry are used to determine the state of activity, nuclear properties and eventually the rotational motion of cometary nuclei. Cometary activity at large heliocentric distances and mantle evolution are not yet fully understood. Results of observations carried out at the 2.1 telescope on Kitt Peak April 10-12 and May 15-16, 1991 are discussed. Color values and color-color diagrams are presented for several comets and asteroids. Estimations of nuclear radii and shapes are given.

  6. Comet Kohoutek, 1973-1974, A Teachers' Guide with Student Activities.

    ERIC Educational Resources Information Center

    Chapman, Robert D.

    This teacher's guide provides background information, curriculum source materials, and suggested class activities for class discussion and study. Information related to the discovery of the comet is presented as well as photographic and schematic pictures showing the sky through which the comet travels. Historical data regarding comets of the past…

  7. Comets and nongravitational forces. IV.

    NASA Technical Reports Server (NTRS)

    Marsden, B. G.; Sekanina, Z.

    1971-01-01

    Orbital elements and nongravitational parameters are derived from observations at every apparition of the periodic comets Honda-Mrkos-Pajdusakova, Faye, Tempel 2, Biela, Brorsen, and Tempel-Swift. For all except the first comet, the observations go back a century and more, although the last three comets have failed to reappear for some considerable time. The circumstances of the splitting of P/Biela are studied, and it is shown that the motion of the primary component was scarcely affected; it is also demonstrated that, if the primary still exists, it may pass only 0.05 AU from the earth in November 1971. An up-to-date list of mass-loss rates from comets is presented. It is found that, while most of the reliable determinations indicate that the cometary nongravitational effects decrease with time, there are a few cases where the effects increase slightly. The former situation is discussed in terms of a nuclear core-mantle model, implying that these comets will eventually evolve into inert, asteroidal objects, while the nuclei of the other comets are interpreted as coreless, eventually to disappear completely (or almost completely).

  8. Secular light curves of comets, II: 133P/Elst Pizarro, an asteroidal belt comet

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio

    2006-12-01

    We present the secular light curve (SLC) of 133P/Elst-Pizarro, and show ample and sufficient evidence to conclude that it is evolving into a dormant phase. The SLC provides a great deal of information to characterize the object, the most important being that it exhibits outburst-like activity without a corresponding detectable coma. 133P will return to perihelion in July of 2007 when some of our findings may be corroborated. The most significant findings of this investigation are: (1) We have compiled from 127 literature references, extensive databases of visual colors (37 comets), rotational periods and peak-to-valley amplitudes (64 comets). 2-Dimensional plots are created from these databases, which show that comets do not lie on a linear trend but in well defined areas of these phase spaces. When 133P is plotted in the above diagrams, its location is entirely compatible with those of comets. (2) A positive correlation is found between cometary rotational periods and diameters. One possible interpretation suggest the existence of rotational evolution predicted by several theoretical models. (3) A plot of the historical evolution of cometary nuclei density estimates shows no trend with time, suggesting that perhaps a consensus is being reached. We also find a mean bulk density for comets of <ρ>=0.52±0.06 g/cm. This value includes the recently determined spacecraft density of Comet 9P/Tempel 1, derived by the Deep Impact team. (4) We have derived values for over 18 physical parameters, listed in the SLC plots, Figs. 6-9. (5) The secular light curve of 133P/Elst-Pizarro exhibits a single outburst starting at +42±4 d (after perihelion), peaking at LAG=+155±10 d, duration 191±11 d, and amplitude 2.3±0.2 mag. These properties are compatible with those of other low activity comets. (6) To explain the large time delay in maximum brightness, LAG, two hypothesis are advanced: (a) the existence of a deep ice layer that the thermal wave has to reach before sublimation

  9. CCD scanning for asteroids and comets

    NASA Technical Reports Server (NTRS)

    Gehrels, T.; Mcmillan, R. S.

    1986-01-01

    A change coupled device (CCD) is used in a scanning mode to find new asteroids and recover known asteroids and comet nuclei. Current scientific programs include recovery of asteroids and comet nuclei requested by the Minor Planet Center (MPC), discovery of new asteroids in the main belt and of unusual orbital types, and follow-up astrometry of selected new asteroids discovered. The routine six sigma limiting visual magnitude is 19.6 and slightly more than a square degree is scanned three times every 90 minutes of observing time during the fortnight centered on New Moon. Semiautomatic software for detection of moving objects is in routine use; angular speeds as low as 11.0 arcseconds per hour were distinguished from the effects of the Earth's atmosphere on the field of view. A typical set of three 29-minute scans near the opposition point along the ecliptic typically nets at least 5 new main-belt asteroids down to magnitude 19.6. In 18 observing runs (months) 43 asteroids were recovered, astrometric and photometric data on 59 new asteroids were reported, 10 new asteroids with orbital elements were consolidated, and photometry and positions of 22 comets were reported.

  10. Physical properties of asteroids in comet-like orbits in the infrared asteroidal survey catalogs

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ishiguro, M.; Usui, F.

    2014-07-01

    orbital uncertainties. - Majority (˜80 %) of ACOs have low albedo (p_{v}<0.1), showing similar albedo distribution to active comet nuclei. - Low-albedo ACOs have the cumulative size distribution shallower than that of active comet nuclei. - High-albedo (p_{v}≥0.1) ACOs consist of small (D<3 km) bodies are concentrated in near-Earth space. - We suggest that such high-albedo, small near-Earth asteroids are susceptible to Yarkovsky effect and injected into comet-like orbits.

  11. Diatoms in comets

    NASA Technical Reports Server (NTRS)

    Hoover, R.; Hoyle, F.; Wallis, M. K.; Wickramasinghe, N. C.

    1986-01-01

    The fossil record of the microscopic algae classified as diatoms suggests they were injected to earth at the Cretaceous boundary. Not only could diatoms remain viable in the cometary environment, but also many species might replicate in illuminated surface layers or early interior layers of cometary ice. Presumably they reached the solar system on an interstellar comet as an already-evolved assemblage of organisms. Diatoms might cause color changes to comet nuclei while their outgassing decays and revives around highly elliptical orbits. Just as for interstellar absorption, high-resolution IR observations are capable of distinguishing whether the 10-micron feature arises from siliceous diatom material or mineral silicates. The 10-30-micron band and the UV 220-nm region can also provide evidence of biological material.

  12. Hubble Space Telescope observations of comet P/Shoemaker-Levy 9 (1993e)

    USGS Publications Warehouse

    Weaver, H.A.; Feldman, P.D.; A'Hearn, M.F.; Arpigny, C.; Brown, R.A.; Helin, E.F.; Levy, D.H.; Marsden, B.G.; Meech, K.J.; Larson, S.M.; Noll, K.S.; Scotti, J.V.; Sekanina, Z.; Shoemaker, C.S.; Shoemaker, E.M.; Smith, T.E.; Storrs, A.D.; Yeomans, D.K.; Zellner, B.

    1994-01-01

    The Hubble Space Telescope observed the fragmented comet P/Shoemaker-Levy 9 (1993e) (P indicates that it is a periodic comet) on 1 July 1993. Approximately 20 individual nuclei and their comae were observed in images taken with the Planetary Camera. After subtraction of the comae light, the 11 brightest nuclei have magnitudes between ~23.7 and 24.8. Assuming that the geometric albedo is 0.04, these magnitudes imply that the nuclear diameters are in the range ~2.5 to 4.3 kilometers. If the density of each nucleus is 1 gram per cubic centimeter, the total energy deposited by the impact of these 11 nuclei into Jupiter's atmosphere next July will be ~4 x 1030 ergs (~108 megatons of TNT). This latter number should be regarded as an upper limit because the nuclear magnitudes probably contain a small residual coma contribution. The Faint Object Spectrograph was used to search for fluorescence from OH, which is usually an excellent indicator of cometary activity. No OH emission was detected, and this can be translated into an upper limit on the water production rate of ~2 x 1027 molecules per second.

  13. Are comets connected to the origin of life

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1981-01-01

    Possible connections between comets and the origin of life on earth are discussed. The orbital evolution of comets and their origin are considered within a framework for the origin of the solar system, with particular attention given to the origin of the biosphere, and the origin of the Oort cloud. Evidence suggesting that cometary nuclei are undifferentiated throughout is considered, and a model of the average composition of a mean new comet is obtained from observational data which is similar to that of an interstellar frost. The chemistry of the model composition giving rise to the species observed in cometary spectra is considered, as well as the relations of cometary to cosmic abundances of oxygen, carbon and sulfur. The characteristics of possible sites for prebiotic chemistry, including interstellar clouds, the protosolar nebula, comets in the Oort cloud, periodic comets and the primitive earth, are examined, and a possible role of comets in bringing the interstellar prebiotic chemistry to earth is suggested.

  14. The enigmatic object 2201 Oljato - Is it an asteroid or an evolved comet?

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Cochran, Anita L.; Barker, Edwin S.; Cruikshank, Dale P.; Hartmann, William K.

    1993-01-01

    The orbital properties of near-earth object 2201 have been associated with meteor showers, and its modeled orbital evolution is chaotic - a property which might indicate a history related to comets. Telescopic observations of its visible and near-infrared spectral reflectance, broad-band visible and near-infrared photometry, infrared radiometric measurements, and radar echoes are reported here from two apparitions, 1979 and 1983. This asteroid has a high radiometric albedo, a property not associated with comet nuclei. In certain wavelength regimes it is classified as an S-type asteroid, in others, an E-type, but its overall spectral reflectance is not typical of either taxonomic type, and neither type is thought of as cometlike. Unexpectedly high ultraviolet reflectance at the 1979 apparition was suggested to be the result of residual outgassing as in a comet. The UV photometric data are modeled as fluorescent emission from neutral species found in comets. The resulting calculations indicate a plausible value for OH and CN emission at 0.3085 and 0.38 micron relative to the observed range of active comets.

  15. Colors of active regions on comet 67P

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.; Besse, S.; Fornasier, S.; Barucci, M. A.; Lara, L.; Scholten, F.; Preusker, F.; Lazzarin, M.; Pajola, M.; La Forgia, F.

    2015-10-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) scientific imager (Keller et al. 2007) is successfully delivering images of comet 67P/Churyumov-Gerasimenko from its both wide angle camera (WAC) and narrow angle camera (NAC) since ESA's spacecraft Rosetta's arrival to the comet. Both cameras are equipped with filters covering the wavelength range of about 200 nm to 1000 nm. The comet nucleus is mapped with different combination of the filters in resolutions up to 15 cm/px. Besides the determination of the surface morphology in great details (Thomas et al. 2015), such high resolution images provided us a mean to unambiguously link some activity in the coma to a series of pits on the nucleus surface (Vincent et al. 2015).

  16. How pristine is the interior of the comet 67P/Churyumov-Gerasimenko?

    NASA Astrophysics Data System (ADS)

    Capria, Maria Teresa; Capaccioni, Fabrizio; Filacchione, Gianrico; Tosi, Federico; De Sanctis, Maria Cristina; Mottola, Stefano; Ciarniello, Mauro; Formisano, Michelangelo; Longobardo, Andrea; Migliorini, Alessandra; Palomba, Ernesto; Raponi, Andrea; Kührt, Ekkehard; Bockelée-Morvan, Dominique; Erard, Stéphane; Leyrat, Cedric; Zinzi, Angelo

    2017-07-01

    Comets are usually considered to be the most primitive bodies in the Solar System. The level of truth of this paradigm, however, is a matter of debate, especially if by primitive we mean that they represent a sample of intact, unprocessed material. We now have the possibility of analysing the comet 67P/Churyumov-Gerasimenko with an unprecedented level of detail, but its interior remains largely unprobed and unknown. The questions we address in this paper concern the depth of the processed layers, and whether the comet nucleus, under these processed layers, is really representative of the original material. We applied the Rome model for the thermal evolution and differentiation of nuclei to give an estimation of the evolution and depth of the active layers and of the interplay between the erosion process and the penetration of the heat wave. In order to characterize the illumination regime and the activity on the nucleus, two locations with very different illumination histories were chosen for the simulation. For both locations, the bulk of the activity tends to be concentrated around the perihelion time, giving rise to a high erosion rate. As a consequence, the active layers tend to remain close to the surface, and the interior of the comet, below a layer of few tens of centimetres, can be considered as pristine.

  17. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  18. Constraining the Compositional Heterogeneity in CO-Dominated Comet C/2016 R2 (PanSTARRS)

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Kelley, Michael; DiSanti, Michael; Womack, Maria; Wierzchos, Kacper; Biver, Nicolas; de Val-Borro, Miguel; Cordiner, Martin; Dello Russo, Neil; Feaga, Lori; Bauer, James; Cochran, Anita; Harrington Pinto, Olga

    2018-05-01

    Comets exhibit a primitive volatile composition, making them invaluable tools for understanding the formation of the Solar System. Constraining the compositional heterogeneity of cometary nuclei is vital for interpreting cometary composition in terms of the physical conditions operating in the protosolar disk at the time of planet formation. Some comets exhibit variability in observed coma composition over the course of their orbit. This could be indicative of a heterogeneous nucleus consisting of cometesimals formed in different parts of the protosolar nebula under differing conditions. Alternatively, the observed heterogeneity could be post-formation evolution. We propose to use Spitzer IRAC observations of CO2 in the atypically CO-rich comet C/2016 R2 (PanSTARRS) to better understand the compositional heterogeneity of cometary nuclei.

  19. The COMET Initiative database: progress and activities update (2015).

    PubMed

    Gargon, E; Williamson, P R; Altman, D G; Blazeby, J M; Tunis, S; Clarke, M

    2017-02-03

    This letter describes the substantial activity on the Core Outcome Measure in Effectiveness Trials (COMET) website in 2015, updating our earlier progress reports for the period from the launch of the COMET website and database in August 2011 to December 2014. As in previous years, 2015 saw further increases in the annual number of visits to the website, the number of pages viewed and the number of searches undertaken. The sustained growth in use of the website and database suggests that COMET is continuing to gain interest and prominence, and that the resources are useful to people interested in the development of core outcome sets.

  20. The population, magnitudes, and sizes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Fernández, J. A.; Tancredi, G.; Rickman, H.; Licandro, J.

    1999-12-01

    We analyze the sample of measured nuclear magnitudes of the observed Jupiter family (JF) comets (taken as those with orbital periods P < 20 years and Tisserand parameters T > 2). We find a tendency of the measured nuclear magnitudes to be fainter as JF comets are observed with CCD detectors attached to medium- and large-size telescopes (e.g. Spacewatch Telescope). However, a few JF comets observed very far from the Sun (4-7 AU) show a wide dispersion of their derived absolute nuclear magnitudes which suggests that either these JF comets keep active all along the orbit, so the reported unusually bright distant magnitudes were strongly contaminated by a coma, or some of the measured ``nuclear magnitudes'' were grossly overestimated (i.e. their brightness underestimated). The cumulative mass distribution of JF comets is found to follow a power-law of index s = - 0.88 +/- 0.08, suggesting a distribution significantly steeper than that for both small main-belt asteroids and near-Earth asteroids. The cumulative mass distribution of JF comets with q < 2 AU tends to flatten for absolute (visual) nuclear magnitudes H_N > 16, which is probably due to incompleteness of discovery of fainter comets and/or a real scarcity of small comets due, perhaps, to much shorter physical lifetimes. In particular, no JF comets fainter than H_N ~ 19.5 are found in the sample, suggesting that the critical size for a comet to be still active may be of about 0.4 km radius for an assumed geometric albedo of 0.04. Possibly, smaller comet nuclei disintegrate very quickly into meteor streams. Most absolute nuclear magnitudes are found in the range 15-18, corresponding to nuclear radii in the range 0.8-3.3 km (for the same geometric albedo). We find that a large majority of JF comets with perihelion distances q > 2.5 AU are brighter than absolute nuclear magnitude H_N = 16, suggesting that only a very small fraction (a few percent) of the population of the JF comets with large q has so far been

  1. Secular orbital evolution of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  2. Heat of solution: A new source of thermal energy in the subsurface of cometary nuclei and the gas-exsolution mechanism driving outbursts of Comet 29P/Schwassmann‒Wachmann and other comets

    NASA Astrophysics Data System (ADS)

    Miles, Richard

    2016-07-01

    This paper is a continuation of Miles et al. (2015) [Icarus] and Miles (2015b) [Icarus], which detail new observations of Comet 29P/Schwassmann‒Wachmann, characterise its rotational period (∼57 d), and identify the presence of discrete sources of outburst on its nucleus: the latter ruling out amorphous-to-crystalline H2O ice transitions as the cause of its outbursts. Summary data are presented for 29P and a further 16 non-fragmenting comets which exhibit outbursts of >2 magnitudes. A comprehensive physicochemical mechanism is postulated to account for major outbursts based on melting of cometary ices and the exothermic dissolution of gases, especially CO and CO2 at pressures of 10‒200 kPa. The thermodynamics of enthalpy heating are described and heats of solution are calculated from gas-liquid solubility data yielding -6 kJ mol-1 for CO in CH4, and -15 kJ mol-1 for CO2 in CH3OH close to their freezing point. Heats of solution are ∼6 times greater (per mole) than the enthalpy of fusion of the pure CH4 and CH3OH ices, enabling gas pressures of >∼80 kPa to continually melt these ices. Supervolatile O2 and N2 gases may also participate by dissolving exothermically in liquid CH4 and other hydrocarbons potentially reaching high mixing ratios. H2S and NH3 gases dissolve exothermically in CH3OH liberating up to 20 kJ mol-1 and 13 kJ mol-1, respectively, and all three hydrophilic species facilitate sintering of H2O ice in the near-surface of comets. Localised melting and consolidation is favoured in slowly-rotating cometary nuclei of intermediate dust/gas ratios, at pressures of ∼1 kPa, and temperatures as low as 50‒65 K where O2 and N2 are abundant. Nyctogenic processes on the night-time side of the nucleus restock desiccated surface layers, reseal the crust, enabling fractionation of solutes in sub-crustal liquid phases via fractional sublimation/distillation of non-polar, hydrophobic CH4 and other hydrocarbons; and by fractional crystallisation of polar

  3. New Application of the Comet Assay

    PubMed Central

    Cortés-Gutiérrez, Elva I.; Dávila-Rodríguez, Martha I.; Fernández, José Luís; López-Fernández, Carmen; Gosálbez, Altea; Gosálvez, Jaime

    2011-01-01

    The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains. PMID:21540337

  4. Searches for comet-induced solar flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz

    During the last decade we have carried out analytical consideration of the impacts of comets with the Sun: the study of passage of cometary nuclei through the solar chromosphere and photosphere was carried out taking into account aerodynamic crushing of the nucleus, transversal expansion of the crushed mass and aerodynamic deceleration of the flattening structure. The results indicate that the stopping of the hypervelocity, more than 600 km/s, comet matter near the photosphere has essentially "explosive" character and will be accompanied by generation of a strong "blast" shock wave as well as ejection of a hot plasma from a relatively very thin,"exploding", near-photosphere layer. Observational manifestations of these processes, comet-induced solar flares, CISF, will be anomalous line emission of metal atoms/ions like Fe, Si, etc. from chromosphere/corona regions and continuum emission of a high-temperature, around 10^6-10^7 K, plasma cloud near the solar surface. Space observations of the phenomena by solar telescopes, including future out-of-ecliptic ones, are of interest for the physics/prognosis of solar flares as well as physics of comets.

  5. Dynamics of landslides on comets of irregular shape

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2017-04-01

    Landslides were observed on a few comet's nuclei, e.g. [1], [2]. The mechanism of their origin is not obvious because of very low gravity. According to [2] fluidization and multiphase transport of cometary material could be an explanation. We investigate here motion of the mass on a comet of irregular shape. The mechanism responsible for the low friction is not considered here. In fact, mass motion often occurs without contact with the surface. The motion could be triggered by meteoroids impacts or by the tidal forces. Comets nuclei are believed to be built of soft materials like snow and dust. The landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates a different situation. According to [1]: "thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength". Here we assume that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 1 - 100 MPa, see [3] and [4]. We consider nucleus of the shape of 67P/Churyumov-Gerasimenko with density 470 kg/m3. The impact or tidal forces result in changing of rotation of the comet. In general, the vector of angular velocity will be a subject to nutation that results in changing of centrifugal force, and consequently could be a factor triggering landslides. Note that nucleus' shape does not resemble the shape of surface of constant value of gravitational potential (i.e. 'geoid'). Our numerical models indicate the parts of the nucleus where landslides start and other parts where landslides stop. Of course, the regolith from the first type of regions would be removed to the regions of the second class. The motion of the mass is often complicated because of complicated distribution of the gravity and complicated shape of the nucleus. Acknowledgement: The research is partly supported by Polish National Science Centre

  6. Velocity of Ejection of Meteor Particle from the Nucleus of Comets

    NASA Astrophysics Data System (ADS)

    Safarov, Abduljalol; Ibadinov, Khursand

    2016-07-01

    The time and velocity of dust particles of anomalous tail of comets was determine. Velocity ejection of dust particles from the nuclei of comets C/1851 U1, C/1877 G1, C/1921 E1, C/1925 V1, C/1962 C1, C/1969 T1, C/1975 V2, 2P/1924 and 26P/1927 F1 reaching up to 0.4 km/s can be attributed to the removal of large dust particles from the surface of the icy nucleus of comet sublimating molecules. In comets C/1823 Y1, C/1844 Y1, C/1882 R1, C/1883 D1, C/1888 R1, C/1892 E1, D/1894 F1, C/1910 A1, C/1921 E1, C/1922 U1, C/1930 D1, C/1930 O1, C/1931 P1, C/1932 M1, C/1935 A1, C/1954 O1, C/1961 O1, C/1963 A1, C/1968 H1, C/1973 E1, C/1980 P1, C/1984 N2, C/1987 P1, C/1995 O1, C/1999 H1, C/1999 T2, C/1999 S4, C/2002 T7, C/2004 F4, C/2004 Q2, 6P/1950, 7P/1869 G1, 7P/1933, 10P/1930, 19P/1918, 34P/1938 J1, 35P/1939, 67P/1982, 73P/1930 J1, 96P/1986 J1 and 109P/1862 O1 ejection velocity (up to a few km/s) of the particles of anomalous tail from the nuclei significantly exceed the thermal velocity of the molecules sublimating ice nuclei. Such velocity may be explained by the removal of particles from the surface of the nucleus after the collision of the comet nucleus with meteoroids

  7. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.

    PubMed

    Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia

    2015-07-02

    Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

  8. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  9. Elusive active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  10. Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak

    NASA Astrophysics Data System (ADS)

    Bodewits, Dennis; Farnham, Tony; Knight, Matthew M.; Kelley, Michael S.

    2017-10-01

    Comet nuclei are small, dynamic objects influenced strongly by their individual history, orbit, rotation and inhomogeneity. Mass loss due to sublimation can exert a profound influence on the physical nature of the cometary nucleus, changing the shape, size, and rotation (Jewitt, in Comets II, 2004). The Rosetta mission to comet 67P showed that these effects are all interrelated (Sierks et al., Science 347, 2015).Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.Using CN narrowband imaging and aperture photometry we found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to 50 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is presumably the combination of a long rotation period, high surface activity, and a small nucleus that makes 41P highly susceptible to changes in its rotational state.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next few apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant outbursts.

  11. Formation environment of cometary nuclei in the primordial solar nebula

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.

    1985-01-01

    The formation environment of comets in the primordial solar nebula is investigated from the point of view of the chemical composition of the ices of cometary nuclei. A sublimation sequence for various species of possible constituents of the nuclear ice, which would have condensed on the grain surface in the parent interstellar cloud was obtained by calculating the temperature of grains in the solar nebula. On this basis, an allowed range of the nebular temperature in the formation region of cometary nuclei is obtained from a condition for retention of the ices of the nuclear composition. Combining this result with models of the solar nebula, the region for the formation of cometary nuclei in the solar nebula is discussed. It is shown that cometary nuclei formed at least beyond the region between the formation regions of Saturn and Uranus. Finally, an upper limit is estimated for the grain temperature in the region of comet formation at an earlier stage of the solar nebula. The grain temperature is shown to be less than 60 K at this stage.

  12. The Nucleus of 10 Short-Period Comets

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Toth, I.; Weaver, H. A.; Delahodde, C. E.; Jorda, L.; A'Hearn, M. F.

    2001-11-01

    We report on the successful detection and extensive characterization of the nuclei of 10 short-period comets with the Hubble Space Telescope: 47P/Ashbrook-Jackson, 61P/Shajn-Schaldach, 70P/Kojima, 74P/Smirnova-Chernikh, 76P/West-Kohoutek-Ikemura, 82P/Gehrels 3, 86P/Wild 3, 87P/Bus, 110P/Hartley 3, 147P/Kushida-Muramatsu. The observations were performed with the Planetary Camera of WFPC2 during cycle 9, between July 2000 and June 2001. Each comet was observed eight times over a time span of about 12 hours through different filters, up to three (V, R, I) for the brightest ones. The sizes were determined assuming a geometric albedo of 0.04 for the R band and a phase law of 0.04 mag/deg. We confirm our past findings that cometary nuclei are generally extremely small; the radius of 147P/Kushida-Muramatsu was only 0.13 km. We also present the results for the colors and the lightcurves of the nuclei and discuss the implications for their shape and rotational state. This work was supported by grants from the Universite de Provence, from C.N.E.S., C.N.R.S. (France), from the Hungarian Academy of Science and from NASA through grant HST-GO-08699.01-A from the STScI.

  13. A volatility index for comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1992-01-01

    The variations in total brightness of a comet when it is most active, near perihelion, are presently used as the bases of a volatility index (VI) for short-period (SP) and long-period (LP) comets. Volatility does not correlate with period among the LP comets, and thereby shows no 'aging' effect; similarly, the VI measurements are the same for SP and for LP comets and exhibit no correlation with (1) absolute magnitude near perihelion, (2) orbital inclination, or (3) activity index measuring the intrinsic brightness change from great solar distances to the maximum near perihelion. Active comets are shown to be basically alike irrespective of their orbits or 'ages'.

  14. Modelling the evolution of a comet subsurface: implications for 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Guilbert-Lepoutre, Aurélie; Rosenberg, Eric D.; Prialnik, Dina; Besse, Sébastien

    2016-11-01

    Modelling the evolution of comets is a complex task aiming at providing constraints on physical processes and internal properties that are inaccessible to observations, although they could potentially bring key elements to our understanding of the origins of these primitive objects. This field has made a tremendous step forward in the post-Giotto area, owing to detailed space- and ground-based observations, as well as detailed laboratory simulations of comet nuclei. In this paper, we review studies that we believe are significant for interpreting the observations of 67P/Churyumov-Gerasimenko by the ESA/Rosetta mission, and provide new calculations where needed. These studies hold a strong statistical significance, which is exactly what is needed for this comet with an orbital evolution that cannot be traced back accurately for more than hundreds of years. We show that radial and lateral differentiation may have occurred on 67P's chaotic path to the inner Solar system, and that internal inhomogeneities may result in an erratic activity pattern. Finally, we discuss the origins of circular depressions seen on several comets including 67P, and suggest that they could be considered as evidence of the past processing of subsurface layers.

  15. Sublimation rates of carbon monoxide and carbon dioxide from comet nuclei at large distances from the Sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    One of the more attractive among the plausible scenarios for the major emission event recently observed on Comet Halley at a heliocentric distance of 14.3 AU is activation of a source of ejecta driven by an icy substance much more volatile than water. As prerequisite for the forthcoming detailed analysis of the imaging observations of this event, a simple model is proposed that yields the sublimation rate versus time at any location on the surface of a rotating cometary nucleus for two candidate ices: carbon monoxide and carbon dioxide. The model's variable parameters are the comet's heliocentric distance r and the Sun's instantaneous zenith angle z.

  16. Time-resolved photometry of Io and Europa in the course of impacts of A and Q secondary nuclei of D/comet Shoemaker-Levy 9.

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Kleshchonok, V. V.

    Observations of the Jupiter satellites within the program for investigation of the comet D/SL-9 Jupiter collision were held with the electrophotometer installed on the AZT-14 (D = 0.48 m) telescope at the Lisnyki Station of the Kiev University Astronomical Observatory. Circumstances for observations did not reveal changes in the satellite brightnesses which could be linked with the reflection of light of a fireball in the Jupiter atmosphere, with the exception of the A and Q2 nucleus fall down. Here, three events that can be tied with the outburst during the nuclei fall down were found out.

  17. Comet rendezvous mission study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Wells, W. C.

    1971-01-01

    Four periodic comets with perihelia between 1980 and 1986 (Encke, d'Arrest, Kipff, and Halley) are used as candidates for the comet rendezvous mission study. All these comet apparitions are especially favorable for rendezvous missions, because of early earth-based comet recovery, good opportunities to view their activity from earth, and reasonable launch vehicle and trajectory requirements for nominal payloads.

  18. Monitoring of comets activity and composition with the TRAPPIST-North telescope

    NASA Astrophysics Data System (ADS)

    Moulane, Y.; Benkhaldoun, Z.; Jehin, E.; Opitom, C.; Gillon, M.; Daassou, A.

    2017-06-01

    TRAPPIST-North (TRAnsiting Planets and PlanetesImals Small Telescope) is a 60-cm robotic telescope that was installed in May 2016 at the Oukaimeden Observatory [1]. The project is led by the University of Liège (Belgium) and the Caddi Ayad University of Marrakech (Morocco). This telescope is a twin of the TRAPPIST-South telescope, which was installed at the ESO La Silla Observatory in 2010 [2]. The TRAPPIST telescopes are dedicated to the detection and characterization of planets orbiting stars other than our Sun (exoplanets) and the study of comets and other small bodies in our solar system. For the comets research, these telescopes have very sensitive CCD cameras with complete sets of narrow band filters to measure the production rates of several gases (OH, NH, CN, C3 and C2) and the dust [3]. With TRAPPIST-North we can also observe comets that would not be visible in the southern hemisphere. Therfore, with these two telescopes, we can now observe continuously the comets around their orbit. We project to study individually the evolution of the activity, chemical composition, dust properties, and coma morphology of several comets per year and of different origins (New comets and Jupiter Family comets) over a wide range of heliocentric distances, and on both sides of perihelion. We measure the production rates of each daughter molecules using a Haser model [4], in addition to the Afρ parameter to estimate the dust production in the coma. In this work, we present the first measurements of the production rates of comet C/2013 X1 (PANSTARRS) observed with TN in June 2016, and the measurements of comet C/2013 V5 (Oukaimeden) observed in 2014 with TRAPPIST-South.

  19. The crash of P/Shoemaker-Levy 9 into Jupiter and its implications for comet bombardment on Earth

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Shoemaker, C. S.

    1994-01-01

    Periodic Comet Shoemaker/Levy 9 will impact Jupiter in late July 1994. The comet, which broke into more than 20 telescopically detectable fragments when it passed with the Roche lobe of Jupiter on July 8, 1992, is captured in a highly eccentric orbit about Jupiter. The 21 recognized nuclei will be spread out in a train of the order 7 x 10(exp 6) km long at the time of impact, and the impacts will be spread in time over about 5 1/2 days centered on about July 21.2 UT. In addition to the train of recognized bright nuclei, the comet consists of 'wings' of unresolved bodies that are the source of a very broad composite dust tail. The linear extent of the wings is about an order of magnitude greater than that of the train of recognized discrete nuclei. Collision of the wings will be spread in time over several months. Thus the impact of P/S-L 9 with Jupiter will be an event of appreciable duration.

  20. Chemical and Physical Properties of Comets in the Lowell Database: Results from Four Decades of Narrowband Photometry

    NASA Astrophysics Data System (ADS)

    Schleicher, David G.; Bair, Allison Nicole

    2016-10-01

    As remnants from the epoch of early solar system formation, comet nuclei are less processed than any other class of objects currently available for detailed study. Compositional and physical studies can therefore be used to investigate primordial conditions across the region of comet formation and/or subsequent evolutionary effects. With these goals, a long duration program of comet narrowband photometry was begun in 1976 and results for 85 comets were published by A'Hearn et al. (1995; Icarus 118, 223). Observations continued and we performed a new set of analyses of data obtained through mid-2011. Following a hiatus due to lack of funding and other competing priorities, we have now resumed our efforts at completing this project while also incorporating the most recent five years of data. The database now includes 191 comets obtained over 848 nights. A restricted subset of 116 objects were observed multiple times and are considered well-determined; these form the basis of our compositional studies. Using a variety of taxonomic techniques, we identified seven compositional classes for the data up to 2011 and anticipate no changes with the newest additions. Several classes are simply sub-groups of the original carbon-chain depleted class found by A'Hearn et al.; all evidence continues to indicate that carbon-chain depletion reflects the primordial composition at the time and location of cometary accretion and is not associated with evolution. Another new class contains five comets depleted in ammonia but not depleted in carbon-chain molecules; it is unclear if this group is primordial or not. In comparison, clear evidence for evolutionary effects are seen in the active fractions for comet nuclei -- decreasing with age -- and with the dust-to-gas ratio -- decreasing with age and perihelion distance, implying an evolution of the surface of the nucleus associated with the peak temperature attained and how often such temperatures have been reached. Updates of these and

  1. The 3.4 micron emission in comets

    NASA Technical Reports Server (NTRS)

    Brooke, Tim Y.; Knacke, Roger F.; Owen, T. C.; Tokunaga, Alan T.

    1989-01-01

    Emission features near 3.4 microns were detected in comet Bradfield (1987s) on 17 Nov. 1987 UT, and, marginally, on two earlier dates, with the Cooled Grating Array Spectrometer at the NASA Infrared Radio Telescope Facility (IRTF) (Brooke et al., 1988b). The central wavelength (3.36 microns) and width (approx. 0.15 microns) of the strongest feature coincide with those observed in comet Halley. A weaker emission feature at 3.52 microns and a strong feature extending shortward of 2.9 microns were also detected. This brings the number of comets in which these three features have been seen to three, two new (Bradfield, Wilson) and one old (Halley). It seems almost certain that the 3.4 micron features are emissions by C-H groups in complex molecules. Based on the similarity of the 3.4 micron features in comets Halley and Wilson, the authors suggest that a particular set of organic compounds may be common to all comets (Brooke et al. 1988a). The absence of the feature in some comets could then be due to photodestruction or evaporation of the organics when the comet approaches the sun, in combination with a predominance of thermal emission from non C-H emitting grains. Detection of the 3.4 micron emission feature in comet Bradfield at 4 = 0.9 AU provides support for this argument. Complex organics in comets could have been formed by particle irradiation of parent ices in the nucleus or been incorporated as grains at the time the comets formed. Since the most heavily irradiated layers of Halley would have been lost in its hundreds of perihelion passages, the authors believe the more likely explanation is that the 3.4 micron emitting material was incorporated in comet nuclei at the time of formation. The 3.4 micron comet feature resembles, but is not identical to, the interstellar 3.29 micron (and longer wavelength) emission features and the broad 3.4 micron feature seen in absorption toward the Galactic center. Detailed comparisons of cometary and interstellar organics

  2. Water outburst activity in Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    de Almeida, Amaury A.; Boice, Daniel C.; Picazzio, Enos; Huebner, Walter F.

    2016-08-01

    Cometary outbursts are sporadic events whose mechanisms are not well known where the activity and consequently the brightness can increase hundreds of thousands of times within a few hours to several days. This indicates a dramatic departure from thermal equilibrium between the comet and interplanetary space and is usually documented by ;light curves;. In a typical cometary outburst, the brightness can increase by 2-5 magnitudes (Whitney, 1955; Gronkowski and Wesolowski, 2015). In only 42 h, Comet 17P/Holmes was reported to brighten from a magnitude of about 17 to about 2.4 at the height of the burst, representing the largest known outburst by a comet. We present the H2O production rate of Holmes for the megaburst occurring between 23 and 24 October 2007. For this, we selected more than 1900 photometric observations from the International Comet Quarterly Archive of Photometric Data (Green, 2007) and use the Semi-Empirical Method of Visual Magnitudes (SEMVM; de Almeida et al., 2007). We clearly show that the comet achieved an average water production rate of 5 × 1029 molecules s-1, corresponding to a water gas loss rate of 14,960 kg s-1, in very good agreement with Schleicher (2009) who derived the water production rate using OH measurements on 1 Nov 2007 (about 8 days after the outburst). We discuss possible physical processes that might cause cometary outbursts and propose a new qualitative mechanism, the Pressurized Obstructed Pore (POP) model. The key feature of POP is the recrystallization of water in the surface regolith as it cools, plugging pores and blocking the release of subsurface gas flow. As the interior gas pressure increases, an outburst is eventually triggered. POP is consistent with current observations and can be tested in the future with observations (e.g., Rosetta in situ measurements) and detailed simulations.

  3. The Activity of Comet 67P/Churyumov-Gerasimenko as Seen by Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Rickman, H.; Koschny, D.

    2015-12-01

    The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. OSIRIS consists of a Narrow Angle Camera (NAC) for the nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field gas and dust coma investigations. OSIRIS observed the coma and the nucleus of comet 67P/C-G during approach, arrival, and landing of PHILAE. OSIRIS continued comet monitoring and mapping of surface and activity in 2015 with close fly-bys with high resolution and remote, wide angle observations. The scientific results reveal a nucleus with two lobes and varied morphology. Active regions are located at steep cliffs and collapsed pits which form collimated gas jets. Dust is accelerated by the gas, forming bright jet filaments and the large scale, diffuse coma of the comet. We will present activity and surface changes observed in the Northern and Southern hemisphere and around perihelion passage.

  4. CCD Photometry of Cometary Nuclei, I: Observations from 1990-1995

    NASA Astrophysics Data System (ADS)

    Licandro, Javier; Tancredi, Gonzalo; Lindgren, Mats; Rickman, Hans; Hutton, Ricardo Gil

    2000-09-01

    CCD photometry of 18 Jupiter family comets, observed at medium and large heliocentric distances, was carried out between April 1990 and July 1995. This is part of a long-term observational program designed to obtain their nuclear magnitudes. The observations were made with the 1.54-m Danish Telescope at ESO La Silla, the 2.5-m Nordic Optical Telescope (NOT) at Observatorio del Roque de los Muchachos (La Palma), the 2.0-m telescope at Pic du Midi, and the 2.15-m telescope at CASLEO, Argentina. Our estimates of the absolute nuclear magnitudes are discussed in comparison with previous determinations. Estimates (sometimes upper limits) for the effective radius ( R) of the nuclei are computed considering a typical geometric albedo pv=0.04. The lowest radius found is the one of 37P/Forbes ( R=1.0 km) while the largest corresponds to 65P/Gunn ( R=11.0 km), but in this case the comet was observed very active. Wherever possible, cometary image profiles are compared with stellar profiles, in order to determine the existence of a faint coma. Seven of the comets were active, six of them at heliocentric distances larger than 4 AU. This unexpected activity is also discussed. We find a strong correlation between activity at large heliocentric distances and recent downward jumps in perihelion distance.

  5. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  6. Comets

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.

    2003-12-01

    Comets are surviving members of a formerly vast distribution of solid bodies that formed in the cold regions of the solar nebula. Cometary bodies escaped incorporation into planets and ejection from the solar system and they have been stored in two distant reservoirs, the Oort cloud and the Kuiper Belt, for most of the age of the solar system. Observed comets appear to have formed between 5 AU and 55 AU. From a cosmochemical viewpoint, comets are particularly interesting bodies because they are preserved samples of the solar nebula's cold ice-bearing regions that occupied 99% of the areal extent of the solar nebula disk. All comets formed beyond the "snow line" of the nebula, where the conditions were cold enough for water ice to condense, but they formed from environments that significantly differed in temperature. Some formed in the comparatively "warm" regions near Jupiter where the nebular temperature may have been greater than 120 K and others clearly formed beyond Neptune where temperatures may have been less than 30 K (Bell et al., 1997). Although comets are the best-preserved materials from the early solar system, they should be a mix of nebular and presolar materials that accreted over a vast range of distances from the Sun in environments that differed in temperature, pressure, and accretional conditions such as impact speed.Comets, by conventional definition, are unstable near the Sun; they contain highly volatile ices that vigorously sublime within 2-3 AU of the Sun. When heated, they release gas and solids due to "cometary activity," a series of processes usually detected from afar by the presence of a coma of gas and dust surrounding the cometary nucleus and or elongated tails composed of dust and gas. Active comets clearly have not been severely modified by the moderate to extreme heating that has affected all other solar system materials, including planets, moons, and even the asteroids that produced the most primitive meteorites. Comets have been

  7. Singing comet changes its song

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Goetz, C.; Delva, M.; Richter, I.; Tsurutani, B. T.; Eriksson, A.; Odelstad, E.; Meier, P.; Nilsson, H.; Glassmeier, K.-H.

    2017-09-01

    The singing comet was discovered at the beginning of the Rosetta mission around comet 67P/Churyumov-Gerasimenko. Large amplitude compressional waves with frequencies between 10 and 100 mHz were observed. When the comet became more active this signal was no longer measured. During the so-called tail excursion, late in the mission after perihelion, with again a less active comet, the singing was observed again and interestingly, going from 26 March to 27 March 2016 the character of the singing changed.

  8. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  9. COMETS!

    NASA Astrophysics Data System (ADS)

    Eicher, David J.; Levy, David H.

    2013-11-01

    Foreword David H. Levy; Preface; Acknowledgments; 1. Strange lights in the sky; 2. Great comets of the past; 3. What are comets?; 4. Comets of the modern era; 5. Comets in human culture; 6. Where comets live; 7. The expanding science of comets; 8. Observing comets; 9. Imaging comets; Glossary; Bibliography; Index.

  10. OORT-Cloud and Kuiper-Belt Comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1998-01-01

    This paper follows the broadly accepted theory that Oort-Cloud Comets originated in the Solar Nebula in the general region where the major planets, Jupiter and Saturn, were formed while the Kuiper-Belt Comets originated farther out where the temperatures were lower. The Oort-Cloud Comets are identified orbitally by long periods and random inclinations and, including the Halley-type comets, comets with a Tisserand Criterion less than 2.0. Kuiper-Belt comets are identified by short periods, usually much less than 200 years, and small inclinations to the ecliptic. Here two criteria for comet activity are found to separate the two classes of comets. These quantities NG1 and NG2, were intended to measure theoretical nongravitaional effects on comet orbits. They are only, mildly successful in correlations with observed cases of measured non-gravitational forces. But, in fact, their variations with perihelion distance separate the two classes of comets. The results are consistent with the theory that the activity or intrinsic brightness of Oort-Cloud Comets fall off faster with increasing perihelion distance that does the intrinsic brightness of short-period Kuiper-Belt Comets.

  11. Modeling of meteoroid streams: The velocity of ejection of meteoroids from comets (a review)

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2013-05-01

    An analytical review of the models of ejection of meteoroids from cometary nuclei is presented. Different formulas for the ejection velocity of meteoroids and the corresponding parameters are discussed and compared with the use of comet Halley and the Geminids meteoroid stream as examples. The ejection velocities obtained from observations of the dust trails of comets are discussed, and the values for comets 2P/Encke, 4P/Faye, 17P/Holmes, 22P/Kopff, and 67P/Churyumov-Gerasimenko are compared to the velocities yielded by Whipple's model. The uncertainty intervals of the results are estimated.

  12. Surface Activity Distributions of Comet 67P/Churyumov-Gerasimenko Derived from VIRTIS Images

    NASA Astrophysics Data System (ADS)

    Fougere, N.; Combi, M. R.; Tenishev, V.; Migliorini, A.; Bockelée-Morvan, D.; Fink, U.; Filacchione, G.; Rinaldi, G.; Capaccioni, F.; Toth, G.; Gombosi, T. I.; Hansen, K. C.; Huang, Z.; Shou, Y.

    2017-12-01

    The outgassing mechanism of comets still remains a critical question to better understand these objects. The Rosetta mission gave some insight regarding the potential activity distribution from the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, Fougere et al. (2016) used a spherical harmonics inversion scheme with in-situ measurements from the ROSINA instrument to derive mapping of the broad distribution of potential activity at the surface of the nucleus. Marschall et al. (2017) based on the appearance of dust active areas suggested that the so-called "neck" region and regions with fractured cliffs and locally steep slopes show more activity than the rest of comet 67P's nucleus. Using in situ ROSINA measurements from a distance makes it difficult to distinguish between these two scenarios because the fast expansion of the gas and large molecular mean free paths prevents distinguishing small outgassing features even when the spacecraft was in bound orbits within 10 km from the nucleus. In this paper, we present a similar numerical inversion approach using VIRTIS images, which should better probe the very inner coma of comet 67P and give more detailed information about the outgassing activity. Support from contracts JPL #1266314 and #1266313 from the US Rosetta Project and grant NNX14AG84G from the NASA Planetary Atmospheres Program are gratefully acknowledged.

  13. Landslide on comets as a result of impacts

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-04-01

    Introduction: Landslides were observed on a few comet's nuclei, e.g. [1], [2]. The mechanism of their origin is not obvious because of very low gravity. According to [2] fluidization and multiphase transport of cometary material could be an explanation. We consider another option, namely, earthquakes resulted from meteoroids impacts as a trigging mechanism. Material of comets: Comets nuclei are believed to built of soft materials like snow and dust. The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates a different situation. According to [1]: "thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength". Here we assume that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108Pa, see [3] and [4]. The model and results: We consider cometary nucleus in the shape of two spheres (with radius 1400 m each) connected by a cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shapes of some comets (e.g. 67P/Churyumov- Gerasimenko [1], 103P/Hartley 2 [5]) A few vibration modes of such body are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. We calculated periods of basic oscillation in each of these modes for different values of Young modulus - Table 1. Table 1 Basic results of calculations Young modulus [MPa]Periods [s] of vibrationMaximum acceleration [m s-2] 4 110 - 950 0.0001- 0.0004 40 38 - 290 0.0004- 0.0014 400 12 - 92 0.0012- 0.0045 Rotation and nutation: the impact results in changing of rotation of the comet. In general, the vector of angular velocity will be a subject to nutation that results in changing of centrifugal force, and consequently could be an additional factor triggering

  14. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  15. Parametric Dielectric Model of Comet Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Palmer, E. M.; Kofman, W. W.; Clifford, S. M.; Righter, K.; Herique, A.

    2012-12-01

    In 2014, the European Space Agency's Rosetta mission is scheduled to rendezvous with Comet 67P/Churyumov-Gerasimenko (Comet 67P). Rosetta's CONSERT experiment aims to explore the cometary nucleus' geophysical properties using radar tomography. The expected scientific return and inversion algorithms are mainly dependent on our understanding of the dielectric properties of the comet nucleus and how they vary with the spatial distribution of geophysical parameters. Using observations of comets 9P/Tempel 1 and 81P/Wild 2 in combination with dielectric laboratory measurements of temperature, porosity, and dust-to-ice mass ratio dependencies for cometary analog material, we have constructed two hypothetical three-dimensional parametric dielectric models of Comet 67P's nucleus to assess different dielectric scenarios of the inner structure. Our models suggest that dust-to-ice mass ratios and porosity variations generate the most significant measurable dielectric contrast inside the comet nucleus, making it possible to explore the structural and compositional hypotheses of cometary nuclei. Surface dielectric variations, resulting from temperature changes induced by solar illumination of the comet's faces, have also been modeled and suggest that the real part of the dielectric constant varies from 1.9 to 3.0, hence changing the surface radar reflectivity. For CONSERT, this variation could be significant at low incidence angles, when the signal propagates through a length of dust mantle comparable to the wavelength. The overall modeled dielectric permittivity spatial and temporal variations are therefore consistent with the expected deep penetration of CONSERT's transmitted wave through the nucleus. It is also clear that changes in the physical properties of the nucleus induce sufficient variation in the dielectric properties of cometary material to allow their inversion from radar tomography.

  16. 3200 Phaethon, Asteroid or Comet Nucleus?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Benkhoff, Johannes

    2015-08-01

    Physico-chemical modeling is central to understand the important physical processes in small solar system bodies. We have developed a computer simulation, SUISEI, that includes the physico-chemical processes relevant to comets within a global modeling framework. Our goals are to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a 3-D model of gas and heat transport in porous sub-surface layers in the interior of the nucleus.We present results on the application of SUISEI to the near-Sun object, Phaethon. Discovered in 1983 and classified as an asteroid, it has recently exhibited an active dust coma. Phaethon has long been associated as the source of the Geminids meteor shower so the dust activity provides a clear link to the meteor shower. The observed dust activity would traditionally lead to Phaethon being also classified as a comet (e.g., 2060-95P/Chiron, 133P/Elst-Pizarro). This is unusual since the orbit of Phaethon has a perihelion of 0.14 AU, resulting in surface temperatures of more than 1025K, much too hot for water ice or other volatiles to exist near the surface and drive the activity. This situation and others such as the “Active Asteroids” necessitates a revision of how we understand and classify these small asteroid-comet transition objects.We conclude the following for Phaethon:1. It is likely to contain relatively pristine volatiles in its interior despite repeated near perihelion passages of 0.14 AU during its history in its present orbit,2. Steady water gas fluxes at perihelion and throughout its orbit are insufficient to entrain the currently observed dust production,3. Thermal gradients into the surface as well as those caused by diurnal rotation are consistent with the mechanism of dust release due to thermal fracture,4. The initial large gas release during the first perihelion passage may be sufficient to produce enough dust to explain

  17. The Comet Radar Explorer Mission

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  18. Exploring the fission and reconfiguration cycle of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Scheeres, Daniel J.; Hirabayashi, Masatoshi; Chesley, Steven R.; McMahon, Jay W.

    2016-10-01

    In Hirabayashi et al. (Nature, 2016) the nucleus of comet 67P/Churyumov-Gerasimenko (67P) is studied with a focus on the straight cracks observed on the Hapi region. These cracks were shown to have formed during a period of fast rotation and led to a proposed evolutionary scenario in which the nuclei may eventually split into two components and recombine to create a new bilobate configuration. Other bilobate nuclei should be subject to such a reconfiguration process, based on the relative sizes of the components, suggesting that this evolutionary scenario may be common for bilobate nuclei which comprise the majority of comet nuclei observed at high spatial resolution. Such reconfigurations could explain the observed occurrence of comet nucleus splitting and brightening events, which still lack a definitive geophysical understanding. Motivated by the proposed theory in Hirabayashi et al., the current work explores the dynamics of the 67P nucleus' rotation rate, fission limits, and subsequent dynamics. One aspect of the theory posits that the comet's distant Jupiter flybys will cause the latitude of the sub-solar point at perihelion to vary chaotically, leading to periods of net positive and negative torques and causing the nucleus to spin-up and spin-down in a random fashion. We analyze the current 67P nucleus shape and orbit to estimate the characteristic time-scale of this rotational evolution, providing an estimate of the current nucleus lifetime in its current configuration. Once the nucleus reaches a spin period shorter than ~7 hours the components will fission into a bound orbit, with the components subsequently reimpacting at speeds less than local escape speed (about 0.4 m/s). The current study extends Hirabayashi et al., explicitly modeling the mutual gravity and orbital dynamics of the head and body, assuming that the head and body rest on each other with the current shape of the 67P nucleus. The results show that when the components are released at a spin

  19. Astronaut George Nelson working on Comet Halley Active monitoring program

    NASA Image and Video Library

    1986-01-14

    61C-05-026 (14 Jan. 1986) --- Astronaut George D. Nelson smiles for a fellow crew man's 35mm camera exposure while participating in the Comet Halley active monitoring program (CHAMP). Camera equipment and a protective shroud used to eliminate all cabin light interference surround the mission specialist. This is the first of three 1986 missions which are scheduled to monitor the rare visit by the comet. The principal investigators for CHAMP are S. Alan Stern of the Laboratory for Atmospheric and Space Physics at the University of Colorado; and Dr. Stephen Mende of Lockheed Palo Alto Research Laboratory.

  20. Periodicity Signatures of Lightcurves of Active Comets in Non-Principal-Axis Rotational States

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Barrera, Jose G.

    2016-10-01

    There are two comets (1P/Halley, 103P/Hartley 2) that are unambiguously in non-principal-axis (NPA) rotational states in addition to a few more comets that are candidates for NPA rotation. Considering this fact, and the ambiguities associated with how to accurately interpret the periodicity signatures seen in lightcurves of active comets, we have started an investigation to identify and characterize the periodicity signatures present in simulated lightcurves of active comets. We carried out aperture photometry of simulated cometary comae to generate model lightcurves and analyzed them with Fourier techniques to identify their periodicity signatures. These signatures were then compared with the input component periods of the respective NPA rotational states facilitating the identification of how these periodicity signatures are related to different component periods of the NPA rotation. Ultimately, we also expect this study to shed light on why only a small fraction of periodic comets is in NPA rotational states, whereas theory indicates a large fraction of them should be in NPA states (e.g., Jewitt 1999, EMP, 79, 35). We explore the parameter space with respect to different rotational states, different orientations for the total rotational angular momentum vector, and different locations on the nucleus for the source region(s). As for special cases, we also investigate potential NPA rotational states representative of comet 103P/Hartley2, the cometary target of the EPOXI mission. The initial results from our investigation will be presented at the meeting. The NASA DDAP Program supports this work through grant NNX15AL66G.

  1. Landslides and impacts on comets.

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-07-01

    The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108 Pa. We considered a simple model of two spheres (with radius 1400 m each) connected by cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shape of some comets. A few vibration modes are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. Let assume that comets are hit by small meteoroid of the mass of 1 kg and velocity 20 km s-1. The maximum values of acceleration of the surface resulting from this impact are given in Table 1. Note that these values are higher than acceleration of the gravity of the comet. Consequently, these vibrations could be an important factor of surface evolution, e.g. they could trigger landslides. It could be alternative mechanism to that presented in [4] (i.e. fluidization). Acknowledgement: The research is partly supported by Polish National Science Centre (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, J. Knollenberg, A. J. Ball, M. Ba-naszkiewicz, J. Benkhoff, M. Grott, J. Gry-gorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K. J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gera-simenko Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [3] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nu-cleus, Univ.of Kent U.K. [4] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of

  2. The evolving activity of the dynamically young comet C/2009 P1 (Garradd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodewits, D.; Farnham, T. L.; A'Hearn, M. F.

    2014-05-01

    We used the Ultraviolet-Optical Telescope on board Swift to observe the dynamically young comet C/2009 P1 (Garradd) from a heliocentric distance of 3.5 AU pre-perihelion until 4.0 AU outbound. At 3.5 AU pre-perihelion, comet Garradd had one of the highest dust-to-gas ratios ever observed, matched only by comet Hale-Bopp. The evolving morphology of the dust in its coma suggests an outburst that ended around 2.2 AU pre-perihelion. Comparing slit-based measurements and observations acquired with larger fields of view indicated that between 3 AU and 2 AU pre-perihelion a significant extended source started producing water in the coma. We demonstrate thatmore » this source, which could be due to icy grains, disappeared quickly around perihelion. Water production by the nucleus may be attributed to a constantly active source of at least 75 km{sup 2}, estimated to be >20% of the surface. Based on our measurements, the comet lost 4 × 10{sup 11} kg of ice and dust during this apparition, corresponding to at most a few meters of its surface. Even though this was likely not the comet's first passage through the inner solar system, the activity of Garradd was complex and changed significantly during the time it was observed.« less

  3. Spectral mapping of comet 67P/Churyumov-Gerasimenko with VLT/MUSE and SINFONI

    NASA Astrophysics Data System (ADS)

    Guilbert-Lepoutre, Aurelie; Besse, Sebastien; Snodgrass, Colin; Yang, Bin

    2016-10-01

    Comets are supposedly the most primitive objects in the solar system, preserving the earliest record of material from the nebula out of which our Sun and planets were formed, and thus holding crucial clues on the early phases of the solar system formation and evolution. For most small bodies in the solar system we can only access the surface properties, whereas active comet nuclei lose material from their subsurface, so that understanding cometary activity represents an unique opportunity to assess their internal composition, and by extension the composition, the temperature and pressure conditions of the protoplanetary disk at their place of formation.The ESA/Rosetta mission is performing the most thorough investigation of a comet ever made. Rosetta is measuring properties of comet 67P/Churyumov-Gerasimenko at distances between 5 and hundreds of km from the nucleus. However, it is unable to make any measurement over the thousands of km of the rest of the coma. Fortunately, the outer coma is accessible from the ground. In addition, we currently lack an understanding of how the very detailed information gathered from space-based observations can be extrapolated to the many ground-based observations that we can potentially perform. Combining parallel in situ observations with observations from the ground therefore gives us a great opportunity, not only to understand the behavior of 67P, but also to other comets observed exclusively from Earth. As part of the many observations taken from the ground, we have performed a spectral mapping of 67's coma using two IFU instruments mounted on the VLT: MUSE in the visible, and SINFONI in the near-infrared. The observations, carried out in March 2016, will be presented and discussed.

  4. Sublimation-Driven Activity in Main-Belt Comet 313p/Gibbs

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan; Bolin, Bryce; Denneau, Larry; Fitzsimmons, Alan; Haghighipour, Nader; Kleyna, Jan; Kokotanekova, Rosita; Lacerda, Pedro; Meech, Karen J.; Micheli, Marco; Moskovitz, Nick; Schunova, Eva; Snodgrass, Colin; Wainscoat, Richard J.; Wasserman, Lawrence; Waszczak, Adam

    2015-02-01

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of HR = 17.1 ± 0.3, corresponding to an effective nucleus radius of re ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of Tl = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  5. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003more » July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.« less

  6. Surface Activity Distributions of Comet 67P/Churyumov-Gerasimenko Derived from VIRTIS Images

    NASA Astrophysics Data System (ADS)

    Fougere, Nicolas; Combi, Michael R.; Tenishev, Valeriy; Migliorini, Alessandra; Bockelee-Morvan, Dominique; Fink, Uwe; Filacchione, Gianrico; Rinaldi, Giovanna; Capaccioni, Fabrizio; Toth, Gabor; Gombosi, T. I.; Hansen, Kenneth C.; Huang, Zhenguang; Shou, Yinsi; VIRTIS Team

    2017-10-01

    The outgassing mechanism of comets still remains a critical question to better understand these objects. The Rosetta mission gave some insight regarding the potential activity distribution from the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, Fougere et al. (2016, Astronomy & Astrophysics, Volume 588, id.A134, 11 pp and Monthly Notices of the Royal Astronomical Society, Volume 462, Issue Suppl_1, p.S156-S169) used a spherical harmonics inversion scheme with in-situ measurements from the ROSINA instrument to derive mapping of the broad distribution of potential activity at the surface of the nucleus. Marschall et al. (2016, Astronomy & Astrophysics, doi: 10.1051/0004-6361/201730849) based on the appearance of dust active areas suggested that the so-called “neck” region and regions with fractured cliffs and locally steep slopes show more activity than the rest of comet 67P’s nucleus. Using in situ ROSINA measurements from a distance makes it difficult to distinguish between these two scenarios because the fast expansion of the gas and large molecular mean free paths prevents distinguishing small outgassing features even when the spacecraft was in bound orbits within 10 km from the nucleus. In this paper, we present a similar numerical inversion approach using VIRTIS images, which should better probe the very inner coma of comet 67P and give more detailed information about the outgassing activity. Support from contracts JPL #1266314 and #1266313 from the US Rosetta Project and grant NNX14AG84G from the NASA Planetary Atmospheres Program are gratefully acknowledged.

  7. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  8. Characterizing water/rock interaction in simulated comet nuclei via calorimetry: Tool for in-situ science, laboratory analysis, and sample preservation

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Gooding, James L.

    1991-01-01

    Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.

  9. Evolutional schemes for objects with active nuclei

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1979-01-01

    The observational properties of quasistellar objects (QSO) reveal that they are extremely violent nuclei of distant galaxies, but the evolutionary stage of these galaxies is still undetermined. Various published attempts to classify QSO under different criteria - including the one based on the morphological type of the surrounding galaxy E- or S- are analyzed. There are evidences that radioactive quasars reside in E-, while radio-quiet quasars reside in both E- and S- systems. The latter may be evolutionary connected to Seyfert-like objects. A correlation between the nuclei activity level in systems of different morphological type and the relative amount of gas in them is noted. From the point of view of activity level and the duration of active stage of nuclei it is concluded that an interaction of galaxies with the intergalactic medium is of particular importance and must be most conspicuous in spheriodal systems of central regions of rich clusters, in tight groups and binary galaxies.

  10. Asteroid and comet surfaces

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy-Ann

    1988-01-01

    Photometric and spectrophotometric studies of asteroids and comets are in progress to address questions about the mineralogical relationship between asteroids near the 3:1 Kirkwood gap and ordinary chondrite meteorites and between cometary nuclei and the surface of asteroids. Progress was made on a method to convert the measured excess UV flux in the spectrum of 2201 Oljato to column abundance of OH and CN. Spectral reflectance measurements of large asteroids near the 3:1 Kirkwood gap, which is expected to be the source of ordinary chondrite meteorites, were briefly examined and show no spectral signatures that are characteristic of ordinary chondrite meteorite powders measured in the lab.

  11. Water ice grains in comet C/2013 US10 (Catalina)

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Woodward, Charles E.; Sunshine, Jessica M.

    2017-10-01

    Knowledge of the the physical properties of water ice in cometary nuclei is critical in determining how the Solar System was formed. While it is difficult to directly study the properties of water ice in comet nuclei, we can study comet interiors through their comae. Cometary activity makes the interiors of these objects available for characterization. However, the properties (grain size, abundance, purity, chemical state) of water-ice grains detected in the coma do not necessarily represent the characteristics of the water ice on the surface and/or in the interior of the nucleus. This is due to the potential physical and chemical evolution of the emitted material. Once in the coma, water-ice grains are heated by sunlight, and if temperatures are warm enough, they sublime. In this case, their sizes and potentially their ice-to-dust fractions are reduced.We present IRTF/SpeX measurements of the Oort cloud comet C/2013 US10 (Catalina), which reached perihelion in Nov 2015 at a heliocentric distance Rh=0.822 AU. Observations of US10 were acquired on UT 2014-08-13, 2016-01-12, and 2016-08-13 (Rh=5.9, 1.3, and 3.9 AU). This set of measurements, spanning a broad range in Rh, are rare and fundamental for estimating how ice grains evolve in the coma. The spectrum obtained close to perihelion is featureless and red sloped, which is consistent with a dust-dominated coma. Conversely, the spectra acquired on August 2014 and 2016 display neutral slopes and absorption bands at 1.5 and 2.0 μm, consistent with the presence of water-ice grains. These variations in water ice with heliocentric distance are correlated with sublimation rates. Additionally, the measurements obtained at 5.8 AU and 3.9 AU are nearly identical, suggesting that water-ice grains, once in the coma, do not sublime significantly. Therefore, the properties of these long-lived water-ice grains may represent their state in the nucleus or immediately after insertion into the coma. We will present radiative

  12. Activity of Comet Hale-Bopp (1995 01) Beyond 6 AU From the Sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1996-01-01

    The physical evolution of comet Hale-Bopp is investigated along the preperihelic arc of its orbit at heliocentric distances larger than 6 AU. The comet's considerable intrinsic brightness and activity are explained by the existence of a relatively larg area on its nucleus surface that is a resevoir of both carbon monoxide and dust particulates. Three recuring dust emission events observed in August-October 1995 are studied in some detail.

  13. Can Ecliptic Comets Be Created En Route from the Kuiper Belt?

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Womack, Maria; Nesvorny, David; Bierhaus, Edward B.; Zahnle, Kevin; Robbins, Stuart J.; Bottke, William; Alvarellos, Jose; Hamill, Patrick

    2017-10-01

    The Kuiper Belt is thought to be the reservoir of ecliptic comets (ECs), which include the Jupiter-family comets (JFCs) and Centaurs. ECs are also the main source of Sun-orbiting impactors on the regular moons of the giant planets (Zahnle et al. 2003). Ironically, we still do not know whether the belt, specifically its Scattered Disk, provides enough ECs (Volk and Malhotra 2008). We are investigating whether cometary breakup in the planetary region (Fernández 2009) can substantially increase the number of ECs. In support of this idea, the Kreutz sungrazers may derive from a hierarchical series of fragmentation events of a progenitor long-period comet (e.g., Sekanina and Chodas 2007), and the JFCs 42P and 53P appear to be fragments of a comet that split in 1845 (Kresák et al. 1984). On the other hand, although 16P was tidally disrupted by Jupiter in 1886, only one fragment survives.Models of the cometary orbital distribution ignore activity or apply a physical lifetime based on the number of passages within 2 or 3 AU of the Sun, where sublimation of water ice occurs (Nesvorný et al. 2017). In reality, some comets (e.g., 29P, Hale-Bopp) are active beyond Jupiter due to volatiles such as CO and CO2 (Womack et al. 2017). 174P/Echeclus underwent a 7-magnitude outburst at 13 AU (Rousselot et al. 2016), and CO emission was detected from Echeclus at 6 AU (Wierzchos et al. 2017). We will estimate how the number and size distribution of comet nuclei change with distance from the Sun due to cometary activity and spontaneous disruption, tidal disruption by a giant planet, and tidal disruption of binaries (Fraser et al. 2017).We thank the Cassini Data Analysis Program for support.Fernández Y (2009). Planet. Space. Sci. 57, 1218.Fraser WC, et al. (2017). Nat. Astron. 1, 0088.Kresák L, et al. (1984). IAU Circular 3940.Nesvorný D, et al. (2017). arXiv:1706.07447.Rousselot P, et al. (2016). MNRAS 462, S432.Sekanina, Z, Chodas, PW (2007). Astrophys. J. 663, 657.Volk K

  14. Ways of Changing the Number and Size Distribution of Ecliptic Comets

    NASA Astrophysics Data System (ADS)

    Dones, Henry C. Luke; Womack, Maria; Alvarellos, Jose; Bierhaus, Edward B.; Bottke, William; Hamill, Patrick; Nesvorny, David; Robbins, Stuart J.; Zahnle, Kevin

    2017-06-01

    The existence of the Kuiper Belt was proposed because of the need for a low-inclination source for the Jupiter-family comets (JFCs). Indeed, the Kuiper Belt is thought to be the main reservoir of ecliptic comets (ECs), which include the JFCs and Centaurs. Ironically, we still do not know whether the belt, specifically its Scattered Disk, provides an adequate source for the ECs (Volk and Malhotra 2008). ECs are also thought to be the main source of Sun-orbiting impactors on the regular moons of the giant planets (Zahnle et al. 2003 [Z03]). Some models of the cometary orbital distribution used by Z03 and others to estimate impact rates assume comets are indestructible; in fact, many cometssplit, sometimes far from the Sun (Fernández 2009). Assuming shatterproof comets may lead to incorrect results for cometary orbital distributions. Other models impose a physical lifetime for bodies that approach within ~3 AU of the Sun, where sublimation of water ice begins, after which a comet is assumed to be dormant or disrupted (Nesvorný et al. 2017). In reality, some comets (e.g., 29P, Hale-Bopp) are active due to volatiles such as CO and CO2 beyond the orbit of Jupiter (Womack et al. 2017). 174P/Echeclus underwent a 7-magnitude outburst 13 AU from the Sun (Rousselot et al. 2016), and CO emission was recently detected from Echeclus at 6 AU (Wierzchos et al. 2017). We will estimate the effects of several mechanisms on the number and size distribution of comet nuclei as a function of distance from the Sun, including cometary activity and spontaneous disruption; tidal disruption by a giant planet, as happened for Shoemaker-Levy 9; and tidal disruption of binaries, which are numerous among "cold classical" Kuiper Belt Objects (Fraser et al. 2017). We thank the Cassini Data Analysis Program for support.Fernández Y (2009). Planet. Space. Sci. 57, 1218.Fraser WC, et al. (2017). Nat. Astron. 1, 0088.Nesvorný D, et al. (2017). In preparation.Rousselot P, et al. (2016). MNRAS 462, S

  15. Comet Odyssey: Comet Surface Sample Return

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.

    2010-10-01

    Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.

  16. The infrared spectral properties of frozen volatiles. [in cometary nuclei

    NASA Technical Reports Server (NTRS)

    Fink, U.; Sill, G. T.

    1982-01-01

    Since Whipple's dirty snowball model of comet nuclei, it has been generally accepted that volatile ices help to explain cometary phenomena. The infrared spectral properties of many substances that are potential candidates for frozen volatiles in the solar system are being pursued; indeed some of these frozen materials have been found in the solar system: H2O, CO2, and SO2. A review of laboratory spectra in the range 1 to 20 microns of H2O, CO2, SO2, CH4, NH3, H2S, CO, NH4HS and NH3.H2O is presented. Both reflection spectra of thick frosts and transmission spectra of thin films are shown, and their main characteristics are described. Hydrates, clathrates, and composite spectra are discussed. When it is possible to observe the nuclei of comets at close range, it may be possible to identify frozen volatiles by their infrared spectra.

  17. Rosetta/VIRTIS-M spectral data: Comet 67P/CG compared to other primitive small bodies.

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Erard, S.; Tosi, F.; Ciarniello, M.; Raponi, A.; Piccioni, G.; Leyrat, C.; Bockelée-Morvan, D.; Drossart, P.; Fornasier, S.

    2014-12-01

    VIRTIS-M, the Visible InfraRed Thermal Imaging Spectrometer, onboard the Rosetta Mission orbiter (Coradini et al., 2007) acquired data of the comet 67P/Churyumov-Gerasimenko in the 0.25-5.1 µm spectral range. The initial data, obtained during the first mission phases to the comet, allow us to derive albedo and global spectral properties of the comet nucleus as well as spectra of different areas on the nucleus. The characterization of cometary nuclei surfaces and their comparison with those of related populations such as extinct comet candidates, Centaurs, near-Earth asteroids (NEAs), trans-Neptunian objects (TNOs), and primitive asteroids is critical to understanding the origin and evolution of small solar system bodies. The acquired VIRTIS data are used to compare the global spectral properties of comet 67P/CG to published spectra of other cometary nuclei observed from ground or visited by space mission. Moreover, the spectra of 67P/Churyumov-Gerasimenko are also compared to those of primitive asteroids and centaurs. The comparison can give us clues on the possible common formation and evolutionary environment for primitive asteroids, centaurs and Jupiter-family comets. Authors acknowledge the funding from Italian and French Space Agencies. References: Coradini, A., Capaccioni, F., Drossart, P., Arnold, G., Ammannito, E., Angrilli, F., Barucci, A., Bellucci, G., Benkhoff, J., Bianchini, G., Bibring, J. P., Blecka, M., Bockelee-Morvan, D., Capria, M. T., Carlson, R., Carsenty, U., Cerroni, P., Colangeli, L., Combes, M., Combi, M., Crovisier, J., De Sanctis, M. C., Encrenaz, E. T., Erard, S., Federico, C., Filacchione, G., Fink, U., Fonti, S., Formisano, V., Ip, W. H., Jaumann, R., Kuehrt, E., Langevin, Y., Magni, G., McCord, T., Mennella, V., Mottola, S., Neukum, G., Palumbo, P., Piccioni, G., Rauer, H., Saggin, B., Schmitt, B., Tiphene, D., Tozzi, G., Space Science Reviews, Volume 128, Issue 1-4, 529-559, 2007.

  18. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2005-01-01

    The biosphere comprises the Earth s crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. The discoveries of barophilic chemolithoautotrophic thermophiles living deep within the crust and in deep-sea hydrothermal vents, and psychrophiles in permafrost and deep within the Antarctic Ice Sheet indicate the Earth s biosphere is far more extensive than previously recognized. Molecular biomarkers and Bacterial Paleontology provide evidence that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, meteorites, and interstellar dust in the delivery of water, organics and prebiotic chemicals has long been recognized. Deuterium enrichment of seawater and comets indicates that comets delivered oceans to the early Earth. Furthermore, the similarity of the D/H ratios and the chemical compositions of CI carbonaceous meteorites and comets indicate that the CI meteorites may be remnants of cometary nuclei with most volatiles removed. Comets, meteorites, and interstellar dust also contain complex organic chemicals, amino acids, macromolecules, and kerogen-like biopolymers and may have played a crucial role in the delivery of complex organics and prebiotic chemicals during the Hadean (4.5-3.8 Gyr) period of heavy bombardment. The existence of indigenous microfossils of morphotypes of cyanobacteria in the CI and CM carbonaceous meteorites suggests that the paradigm that life originated endogenously in the primitive oceans of early Earth may require re-consideration. Recent data on the hot (300-400 K) black crust on comet P/Halley and Stardust images of P/Wild 2 showing depressions, tall cliffs, and pinnacles, indicate the presence of thick, durable, dark crusts on comets. If cavities within the ice and crust sustain vapor pressures in excess of 10 millibar, then localized pools of liquid water and brines could exist within the comet. Since life

  19. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  20. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  1. The Extremely Low Activity Comet 209P/LINEAR During Its Extraordinary Close Approach in 2014

    NASA Astrophysics Data System (ADS)

    Schleicher, David G.; knight, Matthew m.

    2016-10-01

    We present results from our observing campaign of Comet 209P/LINEAR during its exceptionally close approach to Earth during 2014 May, the third smallest perigee of any comet in two centuries. These circumstances permitted us to pursue several studies of this intrinsically faint object, including measurements of gas and dust production rates, searching for coma morphology, and direct detection of the nucleus to measure its properties. Indeed, we successfully measured the lowest water production rates of an intact comet in over 35 years and a corresponding smallest active area, ∼0.007 km2. When combined with the nucleus size found from radar, this also yields the smallest active fraction for any comet, ∼0.024%. In all, this strongly suggests that 209P/LINEAR is on its way to becoming an inert object. The nucleus was detected but could not easily be disentangled from the inner coma due to seeing variations and changing spatial scales. Even so, we were able to measure a double-peaked lightcurve consistent with the shorter of two viable rotational periods found by Hergenrother. Radial profiles of the dust coma are quite steep, similar to that observed for some other very anemic comets, and suggest that vaporizing icy grains are present.

  2. Could life have evolved in cometary nuclei

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Lazcano-Araujo, A.; Oro, J.

    1981-01-01

    The suggestion by Hoyle and Wickramasinghe (1978) that life might have originated in cometary nuclei rather than directly on the earth is discussed. Factors in the cometary environment including the conditions at perihelion passage leading to the ablation of cometary ices, ice temperatures, the absence of an atmosphere and discrete liquid and solid surfaces, weak cometary structure incapable of supporting a liquid core, and radiation are presented as arguments against biopoesis in comets. It is concluded that although the contribution of cometary and meteoritic matter was significant in shaping the earth environment, the view that life on earth originally arose in comets is untenable, and the proposition that the process of interplanetary infection still occurs is unlikely in view of the high specificity of host-parasite relationships.

  3. Comprehensive model for the nucleus of Periodic Comet Tempel 2 and its activity

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    A comprehensive synergistic physical model for the nucleus of Periodic Comet Tempel 2 was developed on the basis of observations carried out in 1988. The model includes the best possible estimates of the comet's bulk properties (including the dimensions and the approximate shape), information on its state of rotation, and the characterization of its activity. The model is shown to be consistent with all lines of evidence that are currently available, including relevant information from earlier apparitions.

  4. 3D radar wavefield tomography of comet interiors

    NASA Astrophysics Data System (ADS)

    Sava, Paul; Asphaug, Erik

    2018-04-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their surface and interior structure in detail and at high resolution. The interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data from multiple viewpoints, as in medical tomography. Radar tomography can be performed using methodology adapted from terrestrial exploration seismology. Our feasibility study primarily focuses on full wavefield methods that facilitate high quality imaging of small body interiors. We consider the case of a monostatic system (co-located transmitters and receivers) operated in various frequency bands between 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Using realistic numerical experiments, we demonstrate that wavefield techniques can generate high resolution tomograms of comets nuclei with arbitrary shape and complex interior properties.

  5. The colors of cometary nuclei and other primitive bodies

    NASA Astrophysics Data System (ADS)

    Toth, I.; Lamy, P. L.

    2005-12-01

    Primitive minor objects like Kuiper-belt objects (KBOs), Centaurs, cometary nuclei and low-albedo asteroids contain a considerable amount of information regarding the formation of early solar system planetesimals and some of the primordial processes. Broadband colors by themselves offer limited insight into surface composition but correlations either between different color indices or with other (e.g., orbital) parameters can shed some light on the questions of the composition and the evolution of the minor objects. Furthermore, a systematic comparison of the color indices of various populations may provide clues on their relationships, and concur along with dynamical studies, to establish a scenario of their formation and evolution in the solar system. We present new color results on cometary nuclei obtained with the Hubble Space Telescope (HST) whose superior resolution enables us to accurately isolate the nucleus signals from the surrounding comae. By combining with scrutinized available data obtained with ground-based telescopes, we accumulated a sample of 39 cometary nuclei, 34 ecliptic comets (ECs) and 5 nearly-isotropic comets (NICs) using the nomenclature of Levison (1996). We analyze color distributions and color-color correlations as well as correlations with other physical parameters. We present our own compilation of colors of 282 objects in the outer solar system, separately considering the different dynamical populations, classical KBOs in low and high-inclination orbits, resonant KBOs (practically Plutinos), scattered-disk objects (SDOs) and Centaurs. We perform a systematic analysis of color distributions of all plausible parent-child combinations and conclude by synthesizing the implications of the colors for the origin of ecliptic comets. We acknowledge the support of the French "Programme National de Planétologie", jointly funded by CNRS and CNES, and of the bilateral French--Hungarian cooperation program. I. Toth further acknowledges the

  6. Comet nuclear magnitudes and a new size distribution using archived NEAT data.

    NASA Astrophysics Data System (ADS)

    Bambery, R. J.; Hicks, M. D.; Pravdo, S. H.; Helin, E. F.; Lawrence, K. J.

    2002-09-01

    A reliable estimate of the size distribution of cometary nuclei provides important constraints on the formation and dynamical/physical evolution of these bodies as well as their relative proportions in the near-Earth population. The basic data of nuclear sizes has been difficult to obtain, due to the shroud of dust that envelopes the nucleus across a wide range of heliocentric distances. Only two comets, P/Halley and P/Borrelly, have had direct imaging of their nuclei from spacecraft encounters, though high spatial-resolution imaging by the Hubble Space Telescope has also yielded very reliable diameters [1]. Other observers have recently used ground-based photometry to obtain cumulative size-frequency distributions which are not in agreement [2,3]. One possible source of error is the need to include data from a wide range of telescopes and reduction techniques. We shall obtain a new estimate of the size-frequency distribution using a self-consistent data-set. The Near-Earth Asteroid Tracking (NEAT) Program at the Jet Propulsion laboratory remotely operates two 1.2-meter telescopes at widely geographically separated locations on a near-nightly basis. All NEAT data is archived and publically available through the SKYMORPH website (http:/skyview.gsfc.nasa.gov/skymorph/skymorph.html) Though optimized to discover near-Earth asteroids, we have obtained over 300 CCD images of approximately 40 short and long-period comets over the last 15 months. Though we model coma contamination for all images, we shall concentrate on the fraction of comets at heliocentric distances greater than 3 AU. Our data will be used to derive an independent comet size-frequency distribution .

  7. Dimensions and Fragmentation of the Nuclei of Comet Shoemaker-Levi 9

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1994-01-01

    Central regions on the digital maps of 13 nuclear condensations of Comet Shoemaker-Levi 9, obtained with the Planetary Camera of the Hubble Space Telescope on January 27, March 30, and July 4, 1994, have been analyzed with the aim to identify the presence of distinct, major fragments in each condensation, to deconvolve their contributions to the signal that also includes the contribution from a surrounding cloud of dust (modeled as an extended source, using two different laws), to estimate the dimensions of the fragments and to study their temporal variations, and to determine the spatial distributions of the fragments as projected on to the plane of the sky. The deconvolution method applied is described and the results of the analysis are summarized, including the finding that sizable fragments did survive until the time of atmospheric entry. This result does not contradict evidence of the comet's continuing, apparently spontaneous fragmentation, which still went on long after the extremely close approach to Jupiter in July 1992 and which, because of the Jovian tidal effects, may have intensified in the final days before the crash on Jupiter. Since the developed approach is based on certain premises and involves approximations, the results should be viewed as preliminary and the problem should be the subject of further investigation.

  8. Dust Activity of Comet Hale-Bopp (C/1995 O1) at Rh ~ 3 AU

    NASA Astrophysics Data System (ADS)

    Tozzi, G. P.; Mannucci, F.; Stanga, R.; Testi, L.

    1997-07-01

    Observations of comet Hale-Bopp (C/1995 O1) have been performed in the infrared (J, H, K bands) at the Nordic Optical Telescope (NOT), located on Canary islands, with the ARNICA (ARcetri Near Infrared CAmera). The comet was observed during two periods, at the beginning and the end of September 1996, when the comet was at heliocentric distances rh of ~ 3.3 and 2.9 AU, respectively. The data show a relatively large activity of the comet with production of some outbursts, the largest of which happened some time before the start of the second run (24.8 Sept.) and which may be the further evolution of the outburst detected by the HST (Weaver et al., 1997, Science 275, 1900). Here we present the analysis of the data with particular attention to the evolution of the outbursts and the photometric IR color index of the dust released.

  9. Spectral properties of the nucleus of short-period comets

    NASA Astrophysics Data System (ADS)

    Toth, I.; Lamy, P. L.

    2000-10-01

    Comets, Edgeworth-Kuiper-Belt Objects (EKBOs), Centaurs and low albedo asteroids contain a considerable amount of information regarding some of the primordial processes that governed the formation of the early Solar System planetesimals. Opportunities to determine the colors of cometary nuclei are rare and relevant ground-based observations are difficult to perform. Color diversities and similarities between different types of small bodies have already been considered ([1] and references therein). We pursue this analysis further by introducing new BVRI colors obtained from our survey of cometary nuclei with the Hubble Space Telescope [2] as well as recent data obtained on EKBOs. We present preliminary results on the distribution of the BVRI colors (histograms, two-color diagrams) and possible relationships between the colors and orbital elements as well as the determined body sizes. The mean colors of the selected sample of the short-period (s-p) comets are: < (B-V) > = 0.91, < (V-R) > = 0.52, and < (V-I) > = 0.84. Pearson's linear correlation analysis of the (B-V) versus (V-R) and (V-R) versus (V-I) colors show significant correlations for the EKBOs+Centaurs sample while the s-p sample seems to be uncorrelated, with a few outliers. The linear regression lines of the EKBOs+Centaurs sample crosses through the sample of the s-p comets. There are no correlations of the colors versus perihelion distances, effective radii and perihelion distances as well as the (a,sin(i)) diagrams. This work was supported by grants from CNRS and CNES, France and partially by the the Hungarian Research Foundation OTKA T025049. [1] Luu, J., 1993. Icarus 104, 138. [2] Lamy, P.L. et al., this conference

  10. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  11. Evolution of carbonaceous chondrite parent bodies: Insights into cometary nuclei

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1989-01-01

    It is thought that cometary samples will comprise the most primitive materials that are able to be sampled. Although parent body alteration of such samples would not necessarily detract from scientists' interest in them, the possibility exists that modification processes may have affected cometary nuclei. Inferences about the kinds of modifications that might be encountered can be drawn from data on the evolution of carbonaceous chondrite parent bodies. Observations suggest that, of all the classes of chondrites, these meteorites are most applicable to the study of comets. If the proportion of possible internal heat sources such as Al-26 in cometary materials are similar to those in chondrites, and if the time scale of comet accretion was fast enough to permit incorporation of live radionuclides, comets might have had early thermal histories somewhat like those of carbonaceous chondrite parent bodies.

  12. Visual and infrared observations of the distant Comets P/Stephan-Oterma /1980g/, Panther /1980u/, and Bowell /1980b/

    NASA Technical Reports Server (NTRS)

    Jewitt, D. C.; Soifer, B. T.; Neugebauer, G.; Matthews, K.; Danielson, G. E.

    1982-01-01

    The paper reports combined visual imagery and spectroscopy, near-infrared spectroscopy, and broadband infrared photometry of comets P/Stephan-Oterma (1980g), Bowell (1980b), and Panther (1980u) at intermediate heliocentric distances. The visual data indicate the existence of solid grains in extended halos around the nuclei of the three comets. Broadband near-infrared and thermal infrared measurements of Comet Panther suggest the presence of 2-4-micron-radius particles in the coma which most likely contain molecules incorporating the N-H bond, but which are more complex and less volatile than NH3. Such molecules can be produced in the grains by cosmic-ray reprocessing. Near infrared spectral features identical to those seen in comet Panther similary suggest the presence of a molecule incorporating the N-H bond in comet Bowell.

  13. Visual and infrared observations of the distant Comets P/Stephan-Oterma /1980g/, Panther /1980u/, and Bowell /1980b/

    NASA Astrophysics Data System (ADS)

    Jewitt, D. C.; Soifer, B. T.; Neugebauer, G.; Matthews, K.; Danielson, G. E.

    1982-12-01

    The paper reports combined visual imagery and spectroscopy, near-infrared spectroscopy, and broadband infrared photometry of comets P/Stephan-Oterma (1980g), Bowell (1980b), and Panther (1980u) at intermediate heliocentric distances. The visual data indicate the existence of solid grains in extended halos around the nuclei of the three comets. Broadband near-infrared and thermal infrared measurements of Comet Panther suggest the presence of 2-4-micron-radius particles in the coma which most likely contain molecules incorporating the N-H bond, but which are more complex and less volatile than NH3. Such molecules can be produced in the grains by cosmic-ray reprocessing. Near infrared spectral features identical to those seen in comet Panther similary suggest the presence of a molecule incorporating the N-H bond in comet Bowell.

  14. Comets: Dirty snowballs or icy dirtballs

    NASA Astrophysics Data System (ADS)

    Keller, H. U.

    1989-12-01

    The observations of comet Halley show that the non-volatile (dust) component of the cometary nucleus has become more dominant if compared to the perception based on the icy conglomerate nucleus. The in-situ observations on the Giotto spacecraft revealed an excess of large dust particles that dominate the mass distribution. Even larger particles were derived from the attitude changes of the spacecraft bridging the gap to the cloud of particles observed by radar techniques. A dust to gas ratio larger than one was derived for comet Halley. The importance of dust for the structure of the nucleus is corroborated by the amount of particles and their lifetime in meteor streams. Fireballs show that large (meter size) objects separate from the nucleus and are stable enough to survive hundreds of orbital periods. From the various lines of evidence it is concluded that the structure of cometary nuclei is determined by the non-volatile component rather than by ice or snow. Laboratory models based on icy agglomerations do not seem realistic as nucleus analogs.

  15. Asteroids, Comets, Meteors 2014

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  16. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  17. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  18. The presence of clathrates in comet 67P/Churyumov-Gerasimenko

    PubMed Central

    Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A.; Lunine, Jonathan I.; Marty, Bernard; Mandt, Kathleen E.; Wurz, Peter; Rubin, Martin

    2016-01-01

    Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate. PMID:27152351

  19. The presence of clathrates in comet 67P/Churyumov-Gerasimenko.

    PubMed

    Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A; Lunine, Jonathan I; Marty, Bernard; Mandt, Kathleen E; Wurz, Peter; Rubin, Martin

    2016-04-01

    Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate.

  20. Asteroid and comet flux in the neighborhood of the earth

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Shoemaker, Carolyn S.; Wolfe, Ruth F.

    1988-01-01

    Significant advances in the knowledge and understanding of the flux of large solid objects in the neighborhood of Earth have occurred. The best estimates of the collision rates with Earth of asteroids and comets and the corresponding production of impact craters are presented. Approximately 80 Earth-crossing asteroids were discovered through May 1988. Among 42 new Earth-crossing asteroids found in the last decade, two-thirds were discovered from observations at Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar 46 cm Schmidt. Probabilities of collision with Earth have been calculated for about two-thirds of the known Earth-crossing asteroids. When multiplied by the estimated population of Earth-crossers, this yields an estimated present rate of collision about 65 pct higher than that previously reported. Spectrophotometric data obtained chiefly in the last decade show that the large majority of obvserved Earth-crossers are similar to asteroids found in the inner part of the main belt. The number of discovered Earth-crossing comets is more than 4 times greater than the number of known Earth-crossing asteroids, but reliable data on the sizes of comet nuclei are sparse. The flux of comets almost certainly was highly variable over late geologic time, owing to the random perturbation of the Oort comet cloud by stars in the solar neighborhood.

  1. From the Vega mission to comet Halley to the Rosetta mission to comet 67/P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Zelenyi, L. M.; Ksanfomality, L. V.

    2016-12-01

    The data acquired by the Vega and Giotto spacecraft, while investigating comet 1P/Halley in 1986, are compared to the results of the first phase of exploration of the nucleus of comet 67P/Churyumov-Gerasimenko performed with the Rosetta and Philae modules. The course of the Rosetta mission activity and the status of the modules after the Philae probe landing on the comet's nucleus are overviewed. Since some elements of the touchdown equipment failed, a number of in-situ experiments on the comet's nucleus were not carried out.

  2. The study of comets, part 1. [conference on photometry and spectrum analysis of Kohoutek comet and comet tails

    NASA Technical Reports Server (NTRS)

    Donn, B. (Editor); Mumma, M. J. (Editor); Jackson, W. M. (Editor); Ahearn, M. (Editor); Harrington, R. (Editor)

    1976-01-01

    Papers are presented dealing with observations of comets. Topic discussed include: photometry, polarimetry, and astrometry of comets; detection of water and molecular transitions in comets; ion motions in comet tails; determination of comet brightness and luminosity; and evolution of cometary orbits. Emphasis is placed on analysis of observations of comet Kohoutek.

  3. Water production activity of nine long-period comets from SOHO/SWAN observations of hydrogen Lyman-alpha: 2013-2016

    NASA Astrophysics Data System (ADS)

    Combi, M. R.; Mäkinen, T. T.; Bertaux, J.-L.; Quémerais, E.; Ferron, S.; Avery, M.; Wright, C.

    2018-01-01

    Nine recently discovered long-period comets were observed by the Solar Wind Anisotropies (SWAN) Lyman-alpha all-sky camera on board the Solar and Heliosphere Observatory (SOHO) satellite during the period of 2013 to 2016. These were C/2012 K1 (PanSTARRS), C/2013 US10 (Catalina), C/2013 V5 (Oukaimeden), C/2013 R1 (Lovejoy), C/2014 E2 (Jacques), C/2014 Q2 (Lovejoy), C/2015 G2 (MASTER), C/2014 Q1 (PanSTARRS) and C/2013 XI (PanSTARRS). Of these 9 comets 6 were long-period comets and 3 were possibly dynamically new. Water production rates were calculated from each of the 885 images using our standard time-resolved model that accounts for the whole water photodissociation chain, exothermic velocities and collisional escape of H atoms. For most of these comets there were enough observations over a broad enough range of heliocentric distances to calculate power-law fits to the variation of production rate with heliocentric distances for pre- and post-perihelion portions of the orbits. Comet C/2014 Q1 (PanSTARRS), with a perihelion distance of only ∼0.3 AU, showed the most unusual variation of water production rate with heliocentric distance and the resulting active area variation, indicating that when the comet was within 0.7 AU its activity was dominated by the continuous release of icy grains and chunks, greatly increasing the active sublimation area by more than a factor of 10 beyond what it had at larger heliocentric distances. A possible interpretation suggests that a large fraction of the comet's mass was lost during the apparition.

  4. Evaluation of genotoxic activity of maleic hydrazide, ethyl methane sulfonate, and N-nitroso diethylamine in Tradescantia.

    PubMed

    Alvarez-Moya, C; Santerre-Lucas, A; Zúñiga-González, G; Torres-Bugarín, O; Padilla-Camberos, E; Feria-Velasco, A

    2001-01-01

    To assess the genotoxic activity of N-nitroso diethylamine (NDEA), maleic hydrazide (MH), and ethyl methane sulfonate (EMS) using two systems: the comet assay on nuclei from Tradescantia, and the pink mutation test on Tradescantia staminal hairs (clone 4430). Tradescantia cups was obtained from Laboratorio de Citogenética y Mutagénesis del Centro de Ciencias de la Atmósfera de la Universidad Nacional Autónoma de México and treated with: N-nitroso diethylamine (NDEA) at 1, 5, 10 mM, maleic hydrazide (MH) at 1, 5, 10 mM and ethyl methane sulfonate (EMS) at 15, 30 and 45 mM; and used in both pink mutation assay and comet assay using cellular nuclei from Tradescantia staminal hairs. The observation of staminal hair was realized along eight days (6-14) after treatment), flowers produced day 14 after treatment were utilized done according to Underbrink. In previous reports on plants, were comet assay was used, breaking cellular wall and separating by centrifugation gradient are necessary. Here, nuclei from staminal hairs were obtained by squashing the cells (is not necessary to utilize to break special procedure cellular wall), collected using a nylon mesh of 80 Mm and next the comet assay was applied. Student's T test was the statistical test used for analyzing the comet assay data. Both assays showed a great sensitivity to the studied mutagens. A relationship between the dose-pink event and the dose-tail length was evident. Even though the Tradescantia mutation assay is a sensitive test with MH and EMS, low doses of NDEA were not able to induce a significant increase in the pink event frequencies; however, the comet assay was able to detect the mutagenic effect of NDEA at the same dose. Thus, it is clear that the comet assay is highly sensitive to the lowest dose of chemical mutagens. The comet assay on nuclei from Tradescantia staminal hairs is a useful tool to monitor genotoxic agents; it is simple, highly sensitive, and faster than the pink mutation test.

  5. TRIGGERING SUBLIMATION-DRIVEN ACTIVITY OF MAIN BELT COMETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighipour, N.; Maindl, T. I.; Dvorak, R.

    2016-10-10

    It has been suggested that the comet-like activity of main belt comets (MBCs) is due to the sublimation of sub-surface water–ice that has been exposed as a result of their surfaces being impacted by meter-sized bodies. We have examined the viability of this scenario by simulating impacts between meter-sized and kilometer-sized objects using a smooth particle hydrodynamics approach. Simulations have been carried out for different values of the impact velocity and impact angle, as well as different target material and water-mass fractions. Results indicate that for the range of impact velocities corresponding to those in the asteroid belt, the depthmore » of an impact crater is slightly larger than 10 m, suggesting that if the activation of MBCs is due to the sublimation of sub-surface water–ice, this ice has to exist no deeper than a few meters from the surface. Results also show that ice exposure occurs in the bottom and on the interior surface of impact craters, as well as on the surface of the target where some of the ejected icy inclusions are re-accreted. While our results demonstrate that the impact scenario is indeed a viable mechanism to expose ice and trigger the activity of MBCs, they also indicate that the activity of the current MBCs is likely due to ice sublimation from multiple impact sites and/or the water contents of these objects (and other asteroids in the outer asteroid belt) is larger than the 5% that is traditionally considered in models of terrestrial planet formation, providing more ice for sublimation. We present the details of our simulations and discuss their results and implications.« less

  6. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  7. Long-term evolution of Oort Cloud comets: capture of comets

    NASA Astrophysics Data System (ADS)

    Nurmi, P.; Valtonen, M. J.; Zheng, J. Q.; Rickman, H.

    2002-07-01

    We test different possibilities for the origin of short-period comets captured from the Oort Cloud. We use an efficient Monte Carlo simulation method that takes into account non-gravitational forces, Galactic perturbations, observational selection effects, physical evolution and tidal splittings of comets. We confirm previous results and conclude that the Jupiter family comets cannot originate in the spherically distributed Oort Cloud, since there is no physically possible model of how these comets can be captured from the Oort Cloud flux and produce the observed inclination and Tisserand constant distributions. The extended model of the Oort Cloud predicted by the planetesimal theory consisting of a non-randomly distributed inner core and a classical Oort Cloud also cannot explain the observed distributions of Jupiter family comets. The number of comets captured from the outer region of the Solar system are too high compared with the observations if the inclination distribution of Jupiter family comets is matched with the observed distribution. It is very likely that the Halley-type comets are captured mainly from the classical Oort Cloud, since the distributions in inclination and Tisserand value can be fitted to the observed distributions with very high confidence. Also the expected number of comets is in agreement with the observations when physical evolution of the comets is included. However, the solution is not unique, and other more complicated models can also explain the observed properties of Halley-type comets. The existence of Jupiter family comets can be explained only if they are captured from the extended disc of comets with semimajor axes of the comets a<5000au. The original flattened distribution of comets is conserved as the cometary orbits evolve from the outer Solar system era to the observed region.

  8. Rapid Temperature Changes and the Early Activity on Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Alí-Lagoa, V.; Delbo', M.; Libourel, G.

    2015-09-01

    The so-called “early activity” of comet 67P/Churyumov-Gerasimenko has been observed to originate mostly in parts of the concave region or “neck” between its two lobes. Since activity is driven by the sublimation of volatiles, this is a puzzling result because this area is less exposed to the Sun and is therefore expected to be cooler on average. We used a thermophysical model that takes into account thermal inertia, global self-heating, and shadowing, to compute surface temperatures of the comet. We found that, for every rotation in the 2014 August-December period, some parts of the neck region undergo the fastest temperature variations of the comet’s surface precisely because they are shadowed by their surrounding terrains. Our work suggests that these fast temperature changes are correlated to the early activity of the comet, and we put forward the hypothesis that erosion related to thermal cracking is operating at a high rate on the neck region due to these rapid temperature variations. This may explain why the neck contains some ice—as opposed to most other parts of the surface—and why it is the main source of the comet’s early activity. In a broader context, these results indicate that thermal cracking can operate faster on atmosphereless bodies with significant concavities than implied by currently available estimates.

  9. GIADA: extended calibration activities before the comet encounter

    NASA Astrophysics Data System (ADS)

    Accolla, Mario; Sordini, Roberto; Della Corte, Vincenzo; Ferrari, Marco; Rotundi, Alessandra

    2014-05-01

    The Grain Impact Analyzer and Dust Accumulator - GIADA - is one of the payloads on-board Rosetta Orbiter. Its three detection sub-systems are able to measure the speed, the momentum, the mass, the optical cross section of single cometary grains and the dust flux ejected by the periodic comet 67P Churyumov-Gerasimenko. During the Hibernation phase of the Rosetta mission, we have performed a dedicated extended calibration activity on the GIADA Proto Flight Model (accommodated in a clean room in our laboratory) involving two of three sub-systems constituting GIADA, i.e. the Grain Detection System (GDS) and the Impact Sensor (IS). Our aim is to carry out a new set of response curves for these two subsystems and to correlate them with the calibration curves obtained in 2002 for the GIADA payload onboard the Rosetta spacecraft, in order to improve the interpretation of the forthcoming scientific data. For the extended calibration we have dropped or shot into GIADA PFM a statistically relevant number of grains (i.e. about 1 hundred), acting as cometary dust analogues. We have studied the response of the GDS and IS as a function of grain composition, size and velocity. Different terrestrial materials were selected as cometary analogues according to the more recent knowledge gained through the analyses of Interplanetary Dust Particles and cometary samples returned from comet 81P/Wild 2 (Stardust mission). Therefore, for each material, we have produced grains with sizes ranging from 20-500 μm in diameter, that were characterized by FESEM and micro IR spectroscopy. Therefore, the grains were shot into GIADA PFM with speed ranging between 1 and 100 ms-1. Indeed, according to the estimation reported in Fink & Rubin (2012), this range is representative of the dust particle velocity expected at the comet scenario and lies within the GIADA velocity sensitivity (i.e. 1-100 ms-1 for GDSand 1-300 ms-1for GDS+IS 1-300 ms-1). The response curves obtained using the data collected

  10. The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    NASA Astrophysics Data System (ADS)

    Jones, Geraint H.; Knight, Matthew M.; Battams, Karl; Boice, Daniel C.; Brown, John; Giordano, Silvio; Raymond, John; Snodgrass, Colin; Steckloff, Jordan K.; Weissman, Paul; Fitzsimmons, Alan; Lisse, Carey; Opitom, Cyrielle; Birkett, Kimberley S.; Bzowski, Maciej; Decock, Alice; Mann, Ingrid; Ramanjooloo, Yudish; McCauley, Patrick

    2018-02-01

    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun's centre, equal to half of Mercury's perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and

  11. The constitution of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1977-01-01

    The nongravitational term in the expression for the total force acting on a comet is calculated, and an upper limit is obtained for the product of the radial nongravitational term times the radius times the square root of the albedo. This condition is satisfied for ten periodic comets with q no greater than 1.5 AU, and the activity of these comets is consistent with control by H2O ice. Some of the comets must be spotty to account for their low albedo values. The effect of cosmic rays on comets, leading to frosting of their surface, is discussed.

  12. Search for Activity in Comet-Asteroid Transition Object 107P/Wilson-Harrington

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Meech, K.; Pittichova, J.; Schorghofer, N.; Yang, B.; Sonnett, S.; Riesen, T.; Kleyna, J.; Kaluna, H.; Keane, J.

    2010-10-01

    Comet-asteroid transition object 107P/Wilson-Harrington was observed near its October 22, 2009 perihelion passage to search for activity. No activity was detected. Consequently, we place limits on possible dust production of 0.013 kg/s at 1.23 AU. Furthermore, the data was not sufficient to constrain a rotation period; however, it is clear that the rotation period is > 4hr. Our data is consistent with the observations of others (6.1 hr). Phase function fitting yielded a value of the phase coefficient beta= 0.0406 ± .0001 mag/deg, similar to C-type asteroids that have a linear phase curve at large phase angles. Thermal models for 107P/Wilson-Harrington show that the average loss rate of exposed crystalline ice at zero latitude is in the order of 0.3 meters/year. The derived high loss rate suggests that 107P/Wilson-Harrington is deprived of surface ice. Our observations and analysis confirm earlier findings that 107P/Wilson-Harrington is an example of the very few such objects discovered so far. Such study we made is a critical next step in understanding the life of dormant comets, and a window into the evolutionary end states of the lives of comets that become extinct. This work has been supported in part by AST-0807521 from the National Science Foundation.

  13. Rosetta/OSIRIS - Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rickman, Hans; Rodrigo, Rafael; Koschny, Detlef

    2015-04-01

    ESA's Rosetta mission arrived on August 6, 2014, at target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations. OSIRIS imaged the nucleus and coma of the comet from the arrival throughout the mapping phase, PHILAE landing, early escort phase and close fly-by. The overview paper will discuss the surface morpholo-gy and activity of the nucleus as seen in gas, dust, and local jets as well as small scale structures in the local topography.

  14. Comet 67P Seen by Kepler

    NASA Image and Video Library

    2016-10-07

    The European Space Agency's Rosetta mission concluded its study of comet 67P/Churyumov-Gerasimenko on Sept. 30, 2016. NASA's planet-hunting Kepler spacecraft observed the comet during the final month of the Rosetta mission, while the comet was not visible from Earth. This animation is composed of images from Kepler of the comet. From Sept. 7 through Sept. 20, the Kepler spacecraft, operating in its K2 mission, fixed its gaze on comet 67P. From the distant vantage point of Kepler, the comet's nucleus and tail could be observed. The long-range view from Kepler complements the closeup view of the Rosetta spacecraft, providing context for the high-resolution investigation Rosetta performed as it descended closer and closer to the comet. During the two-week period of study, Kepler took a picture of the comet every 30 minutes. The animation shows a period of 29.5 hours of observation from Sept. 17 thru Sept. 18. The comet is seen passing through Kepler's field of view from top right to bottom left, as outlined by the diagonal strip. The white dots represent stars and other regions in space studied during K2's tenth observing campaign. As a comet travels through space it sheds a tail of gas and dust. The more material that is shed, the more surface area there is to reflect sunlight. A comet's activity level can be obtained by measuring the reflected sunlight. Analyzing the Kepler data, scientists will be able to determine the amount of mass lost each day as comet 67P travels through the solar system. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21072

  15. Observational evidence of aging processes in comets

    NASA Astrophysics Data System (ADS)

    Meech, Karen J.

    1991-10-01

    Emphasis was on searching for systematic differences among two groups of comets: periodic comets which spend most of their time in the vicinity of the inner Solar System and the new comets which are believed to be passing through the inner Solar System for the first time. Such differences are expected, but have never been observed, in part because there has never been a systematic observational program aimed at addressing this question. Understanding possible physical and compositional differences between these two groups will lead to a better understanding of the cometary formation conditions in the early Solar System. The employed method studies the activity in the comets as a function of distance by obtaining charge coupled device (CCD) observations of the comets at frequent intervals on both the pre- and post-perihelion legs of their orbits in order to ascertain the distances at the onset and turn-off of activity through comparison with sublimation models.

  16. OpenComet: An automated tool for comet assay image analysis

    PubMed Central

    Gyori, Benjamin M.; Venkatachalam, Gireedhar; Thiagarajan, P.S.; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time. PMID:24624335

  17. OpenComet: an automated tool for comet assay image analysis.

    PubMed

    Gyori, Benjamin M; Venkatachalam, Gireedhar; Thiagarajan, P S; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  18. Observations of Periodic Comet 2P/Encke: Physical Properties of the Nucleus and First Visual-Wavelength Detection of Its Dust Trail

    NASA Technical Reports Server (NTRS)

    Lowry, Stephen C.; Weissman, Paul R.; Sykes, Mark V.; Reach, William T.

    2003-01-01

    We are conducting an observational program designed to determine the overall distributions of size, shape, rotation period, and surface characteristics of cometary nuclei. Here, we present results from a study of the Jupiter- family comet 2P/Encke based on observations from Steward Observatory's 2.3m Bok Telescope at Kitt Peak. This comet has been observed extensively in the past and was one of the primary flyby targets of the recently failed CONTOUR mission.

  19. A population of comets in the main asteroid belt.

    PubMed

    Hsieh, Henry H; Jewitt, David

    2006-04-28

    Comets are icy bodies that sublimate and become active when close to the Sun. They are believed to originate in two cold reservoirs beyond the orbit of Neptune: the Kuiper Belt (equilibrium temperatures of approximately 40 kelvin) and the Oort Cloud (approximately 10 kelvin). We present optical data showing the existence of a population of comets originating in a third reservoir: the main asteroid belt. The main-belt comets are unlike the Kuiper Belt and Oort Cloud comets in that they likely formed where they currently reside and may be collisionally activated. The existence of the main-belt comets lends new support to the idea that main-belt objects could be a major source of terrestrial water.

  20. Application of DNA comet assay for detection of radiation treatment of grams and pulses.

    PubMed

    Khan, Hasan M; Khan, Ashfaq A; Khan, Sanaullah

    2011-12-01

    Several types of whole pulses (green lentils, red lentils, yellow lentils, chickpeas, green peas, cowpeas and yellow peas) and grams (black grams, red grams and white grams) have been investigated for the identification of radiation treatment using microgel electrophoresis of single cells (DNA comet assay). Pulses and grams were exposed to the radiation doses of 0.5, 1.0 and 5 kGy covering the legalized commercial dose range for protection from insect/pest infestations. All irradiated samples showed comet like stretching of fragmented DNA toward anode, which is expected for irradiated samples. Unirradiated samples showed many intact cells/nuclei in form of round stains or with short faint tails, which is typical for unirradiated food samples. The study shows that DNA comet assay can be used as a rapid, inexpensive and highly effective screening test for the detection of radiation treatment of foods, like pulses and grams.

  1. The Distribution of Geometric Albedos of Jupiter-Family Comets From SEPPCoN and Visible-Wavelength Photometry

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Weaver, Harold A.; Lisse, Casey M.; Meech, Karen Jean; Lowry, Stephen C.; Bauer, James M.; Fitzsimmons, Alan; Snodgrass, Colin

    2016-01-01

    Cometary nuclei are some of the least reflective natural objects in the Solar System, although the number of comets for which the reflectivity has heretofore actually been measured is small due to the difficulty of the requisite measurements. When no other information is present, it is common to assume a geometric albedo of 4%, and this is consistent with the limited number of known albedos. However the true average albedo, median albedo, and spread of the distribution are not well constrained. Knowing the ensemble properties of cometary albedos would aid in understanding the surface scattering properties as well as the interior thermal evolution and surface evolution of the population. We present here a preliminary estimate of the distribution of geometric albedos among the Jupiter-family comet (JFC) population. We make use of and build on the results of the Survey of Ensemble Physical Properties of Cometary Nuclei (SEPPCoN), in which we obtained new and independent estimates of the radii of 89 JFCs [1,2]. We will present our preliminary albedo estimates for ~50 JFC nuclei (by far the most ever obtained), and we will discuss the implications of the ensemble of the results. These JFCs were all observed in R-band, and were all observed at relatively large heliocentric distances (usually >4 AU from the Sun) where the comets appeared inactive, thus minimizing coma contamination. We acknowledge the support of NASA grant NNX09AB44G, of NSF grant AST-0808004, and of the Astrophysical Research Consortium/Apache Point Observatory for this work. References: [1] Y. R. Fernandez et al., 2013, Icarus 226, 1138. [2] M. S. Kelley et al., 2013, Icarus 225, 475.

  2. Detection of radiation treatment of beans using DNA comet assay

    NASA Astrophysics Data System (ADS)

    Khan, Ashfaq A.; Khan, Hasan M.; Delincée, Henry

    2002-03-01

    A simple technique of microgel electrophoresis of single cells (DNA Comet Assay) enabled a quick detection of radiation treatment of several kinds of leguminous beans (azuki, black, black eye, mung, pinto, red kidney and white beans). Each variety was exposed to radiation doses of 0.5, 1 and 5kGy covering the permissible limits for insect disinfestation. The cells or nuclei from beans were extracted in cold PBS, embedded in agarose on microscope slides, lysed between 15 and 60min in 2.5% SDS and electrophoresis was carried out at a voltage of 2V/cm for 2-2.5min. After silver staining, the slides were evaluated through an ordinary transmission microscope. In irradiated samples, fragmented DNA stretched towards the anode and the damaged cells appeared as a comet. The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. Hence, the DNA comet assay provides an inexpensive, rapid and relatively simple screening method for the detection of irradiated beans.

  3. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  4. The gas production rate of periodic comet d'Arrest

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.; Feldman, Paul D.; Ahearn, Michael F.

    1992-01-01

    Comet P/d'Arrest is a potential target for a rendezvous mission to a short period comet. Its light curve is rather peculiar, the comet being active only after perihelion passage. One apparition out of two is easy to observe from the ground. The 1995 apparition of the comet will offer a unique opportunity to characterize the outgassing properties of its nucleus.

  5. The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Thomas, Peter; Veverka, J.; Schultz, Peter; A'Hearn, Michael F.; Feaga, Lori; Farnham, Tony; Groussin, Olivier; Li, Jian-Yang; Lisse, Casey; McFadden, Lucy; Sunshine, Jessica; Meech, Karen J.; Delamere, W. Alan; Kissel, Jochen

    2007-03-01

    We consider the hypothesis that the layering observed on the surface of Comet 9P/Tempel 1 from the Deep Impact spacecraft and identified on other comet nuclei imaged by spacecraft (i.e., 19P/Borrelly and 81P/Wild 2) is ubiquitous on Jupiter family cometary nuclei and is an essential element of their internal structure. The observational characteristics of the layers on 9P/Tempel 1 are detailed and considered in the context of current theories of the accumulation and dynamical evolution of cometary nuclei. The works of Donn [Donn, B.D., 1990. Astron. Astrophys. 235, 441-446], Sirono and Greenberg [Sirono, S.-I., Greenberg, J.M., 2000. Icarus 145, 230-238] and the experiments of Wurm et al. [Wurm, G., Paraskov, G., Krauss, O., 2005. Icarus 178, 253-263] on the collision physics of porous aggregate bodies are used as basis for a conceptual model of the formation of layers. Our hypothesis is found to have implications for the place of origin of the JFCs and their subsequent dynamical history. Models of fragmentation and rubble pile building in the Kuiper belt in a period of collisional activity (e.g., [Kenyon, S.J., Luu, J.X., 1998. Astron. J. 115, 2136-2160; 1999a. Astron. J. 118, 1101-1119; 1999b. Astrophys. J. 526, 465-470; Farinella, P., Davis, D.R., Stern, S.A., 2000. In: Mannings, V., Boss, A.P., Russell, S.S. (Eds.), Protostars and Planets IV. Univ. of Arizona Press, Tucson, pp. 1255-1282; Durda, D.D., Stern, S.J., 2000. Icarus 145, 220-229]) following the formation of Neptune appear to be in conflict with the observed properties of the layers and irreconcilable with the hypothesis. Long-term residence in the scattered disk [Duncan, M.J., Levison, H.F., 1997. Science 276, 1670-1672; Duncan, M., Levison, H., Dones, L., 2004. In: Festou, M., Keller, H.U., Weaver, H.A. (Eds.), Comets II. Univ. of Arizona Press, Tucson, pp. 193-204] and/or a change in fragmentation outcome modeling may explain the long-term persistence of primordial layers. In any event, the

  6. The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Thomas, Peter; Veverka, J.; Schultz, Peter; A'Hearn, Michael F.; Feaga, Lori; Farnham, Tony; Groussin, Olivier; Li, Jian-Yang; Lisse, Casey; McFadden, Lucy; Sunshine, Jessica; Meech, Karen J.; Delamere, W. Alan; Kissel, Jochen

    We consider the hypothesis that the layering observed on the surface of Comet 9P/Tempel 1 from the Deep Impact spacecraft and identified on other comet nuclei imaged by spacecraft (i.e., 19P/Borrelly and 81P/Wild 2) is ubiquitous on Jupiter family cometary nuclei and is an essential element of their internal structure. The observational characteristics of the layers on 9P/Tempel 1 are detailed and considered in the context of current theories of the accumulation and dynamical evolution of cometary nuclei. The works of Donn [Donn, B.D., 1990. Astron. Astrophys. 235, 441 446], Sirono and Greenberg [Sirono, S.-I., Greenberg, J.M., 2000. Icarus 145, 230 238] and the experiments of Wurm et al. [Wurm, G., Paraskov, G., Krauss, O., 2005. Icarus 178, 253 263] on the collision physics of porous aggregate bodies are used as basis for a conceptual model of the formation of layers. Our hypothesis is found to have implications for the place of origin of the JFCs and their subsequent dynamical history. Models of fragmentation and rubble pile building in the Kuiper belt in a period of collisional activity (e.g., [Kenyon, S.J., Luu, J.X., 1998. Astron. J. 115, 2136 2160; 1999a. Astron. J. 118, 1101 1119; 1999b. Astrophys. J. 526, 465 470; Farinella, P., Davis, D.R., Stern, S.A., 2000. In: Mannings, V., Boss, A.P., Russell, S.S. (Eds.), Protostars and Planets IV. Univ. of Arizona Press, Tucson, pp. 1255 1282; Durda, D.D., Stern, S.J., 2000. Icarus 145, 220 229]) following the formation of Neptune appear to be in conflict with the observed properties of the layers and irreconcilable with the hypothesis. Long-term residence in the scattered disk [Duncan, M.J., Levison, H.F., 1997. Science 276, 1670 1672; Duncan, M., Levison, H., Dones, L., 2004. In: Festou, M., Keller, H.U., Weaver, H.A. (Eds.), Comets II. Univ. of Arizona Press, Tucson, pp. 193 204] and/or a change in fragmentation outcome modeling may explain the long-term persistence of primordial layers. In any event, the

  7. Unusual Water Production Activity of Comet C/2012 S1 (ISON): Outbursts and Continuous Fragmentation

    NASA Astrophysics Data System (ADS)

    Combi, M. R.; Fougere, N.; Mäkinen, J. T. T.; Bertaux, J.-L.; Quémerais, E.; Ferron, S.

    2014-06-01

    The Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyα camera on the SOlar and Heliospheric Observer (SOHO) satellite observed the hydrogen coma of comet C/2012 S1 (ISON) for most of the last month of its activity from 2013 October 24 to November 24, ending just 4 days before perihelion and its final disruption. The water production rate of the comet was determined from these observations. SOHO has been operating in a halo orbit around the Earth-Sun L1 Lagrange point since its launch in late 1995. Most water vapor produced by comets is ultimately photodissociated into two H atoms and one O atom producing a huge hydrogen coma that is routinely observed in the daily SWAN images in comets of sufficient brightness. Water production rates were calculated from 22 images over most of the last month of the pre-perihelion apparition. The water production rate increased very slowly on average from October 24.9 until November 12.9, staying between 1.8 and 3.4 × 1028 s-1, after which it increased dramatically, reaching 1.6 to 2 × 1030 s-1 from November 21.6 to 23.6. It was not detected after perihelion on December 3.7 when it should have been visible. We examine the active surface area necessary to explain the water production rate and its variation and are able to place constraints on the physical size of the original nucleus necessary to account for the large amount of activity from November 12.9 and until just before perihelion.

  8. Comet 67P's Pitted Surface

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    High-resolution imagery of comet 67P ChuryumovGerasimenko has revealed that its surface is covered in active pits some measuring hundreds of meters both wide and deep! But what processes caused these pits to form?Pitted LandscapeESAs Rosetta mission arrived at comet 67P in August 2014. As the comet continued its journey around the Sun, Rosetta extensively documented 67Ps surface through high-resolution images taken with the on-board instrument NavCam. These images have revealed that active, circular depressions are a common feature on the comets surface.In an attempt to determine how these pits formed, an international team of scientists led by Olivier Mousis (Laboratory of Astrophysics of Marseille) has run a series of simulations of a region of the comet the Seth region that contains a 200-meter-deep pit. These simulations include the effects of various phase transitions, heat transfer through the matrix of ices and dust, and gas diffusion throughout the porous material.Escaping VolatilesAdditional examples of pitted areas on 67Ps northern-hemisphere surface include the Ash region and the Maat region (both imaged September 2014 by NavCam) [Mousis et al. 2015]Previous studies have already eliminated two potential formation mechanisms for the pits: impacts (the sizes of the pits werent right) and erosion due to sunlight (the pits dont have the right shape). Mousis and collaborators assume that the pits are instead caused by the depletion of volatile materials chemical compounds with low boiling points either via explosive outbursts at the comets surface, or via sinkholes opening from below the surface. But what process causes the volatiles to deplete when the comet heats?The authors simulations demonstrate that volatiles trapped beneath the comets surface either in icy structures called clathrates or within amorphous ice can be suddenly released as the comet warms up. The team shows that the release of volatiles from these two structures can create 200-meter

  9. Rosetta following a living comet

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Ferri, Paolo; Lodiot, Sylvain; Pellon-Bailon, Jose-Luis; Hubault, Armelle; Porta, Roberto; Urbanek, Jakub; Kay, Ritchie; Eiblmaier, Matthias; Francisco, Tiago

    2016-09-01

    The International Rosetta Mission was launched on 2nd March 2004 on its 10 year journey to rendezvous with comet 67P Churyumov-Gerasimenko. Rosetta performed comet orbit insertion on the 6th of August 2014, after which it characterised the nucleus and orbited it at altitudes as low as a few kilometres. In November 2014 Rosetta delivered the lander Philae to perform the first soft landing ever on the surface of a comet. The critical landing operations have been conducted with remarkable accuracy and will constitute one of the most important achievements in the history of spaceflight. After this critical operation, Rosetta began the escort phase of the comet in its journey in the Solar System heading to the perihelion, reached in August 2015. Throughout this period, the comet environment kept changing with increasing gas and dust emissions. A first phase of bound orbits was followed by a sequence of complex flyby segments which allowed the scientific instruments to perform in depth investigation of the comet environment and nucleus. The unpredictable nature of the comet activity forced the mission control team to implement unplanned changes to the flight plan prepared for this mission phase and to plan the whole mission in a more dynamic way than originally conceived. This paper describes the details of the landing operations and of the main comet escort phase. It also includes the mission status as achieved after perihelion and the findings about the evolution of the comet and its environment from a mission operations point of view. The lessons learned from this unique and complex operations phase and the plans for the next mission phases, which include a mission extension into 2016, are also described.

  10. Dynamical and Physical Models of Ecliptic Comets

    NASA Astrophysics Data System (ADS)

    Dones, L.; Boyce, D. C.; Levison, H. F.; Duncan, M. J.

    2005-08-01

    In most simulations of the dynamical evolution of the cometary reservoirs, a comet is removed from the computer only if it is thrown from the Solar System or strikes the Sun or a planet. However, ejection or collision is probably not the fate of most active comets. Some, like 3D/Biela, disintegrate for no apparent reason, and others, such as the Sun-grazers, 16P/Brooks 2, and D/1993 F2 Shoemaker-Levy 9, are pulled apart by the Sun or a planet. Still others, like 107P/Wilson Harrington and D/1819 W1 Blanpain, are lost and then rediscovered as asteroids. Historically, amateurs discovered most comets. However, robotic surveys now dominate the discovery of comets (http://www.comethunter.de/). These surveys include large numbers of comets observed in a standard way, so the process of discovery is amenable to modeling. Understanding the selection effects for discovery of comets is a key problem in constructing models of cometary origin. To address this issue, we are starting new orbital integrations that will provide the best model to date of the population of ecliptic comets as a function of location in the Solar System and the size of the cometary nucleus, which we expect will vary with location. The integrations include the gravitational effects of the terrestrial and giant planets and, in some cases, nongravitational jetting forces. We will incorporate simple parameterizations for mantling and mass loss based upon detailed physical models. This approach will enable us to estimate the fraction of comets in different states (active, extinct, dormant, or disintegrated) and to track how the cometary size distribution changes as a function of distance from the Sun. We will compare the results of these simulations with bias-corrected models of the orbital and absolute magnitude distributions of Jupiter-family comets and Centaurs.

  11. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth's Biosphere. However; the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the Biosphere may extend far into the Cosmos. Recent space observations have found the nuclei of comets to have very low albedos (approx.0.03) and. these jet-black surfaces become very hot (T approx. 400 K) near perihelion. This paper reviews recent observational data-on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous-microfossils embedded' in freshly. fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. These forms are consistent in size and morphologies with known morphotypes of all five orders of Cyanobacteriaceae: Energy Dispersive X-ray Spectroscopy (EDS) elemental data shows that the meteoritic forms have anomalous C/O; C/N; and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological

  12. Ballistic intercept missions to Comet Encke

    NASA Technical Reports Server (NTRS)

    Mumma, M. (Compiler)

    1975-01-01

    The optimum ballistic intercept of a spacecraft with the comet Encke is determined. The following factors are considered in the analysis: energy requirements, encounter conditions, targeting error, comet activity, spacecraft engineering requirements and restraints, communications, and scientific return of the mission. A baseline model is formulated which includes the basic elements necessary to estimate the scientific return for the different missions considered. Tradeoffs which have major impact on the cost and/or scientific return of a ballistic mission to comet Encke are identified and discussed. Recommendations are included.

  13. Comets as Messengers from the Early Solar System - Emerging Insights on Delivery of Water, Nitriles, and Organics to Earth

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Charnley, Steven B.

    2012-01-01

    The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's volatiles, and for assessing the possible existence of exo-planets similar to Earth. Viewed from a cosmic perspective, Earth is a dry planet, yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen and analogous isotopic enrichments in atmospheric nitrogen and noble gases are also seen. Why is this so? What are the implications for Mars? For icy Worlds in our Planetary System? For the existence of Earth-like exoplanets? An exogenous (vs. outgassed) origin for Earth's atmosphere is implied, and intense debate on the relative contributions of comets and asteroids continues - renewed by fresh models for dynamical transport in the protoplanetary disk, by revelations on the nature and diversity of volatile and rocky material within comets, and by the discovery of ocean-like water in a comet from the Kuiper Belt (cf., Mumma & Charnley 2011). Assessing the creation of conditions favorable to the emergence and sustenance of life depends critically on knowledge of the nature of the impacting bodies. Active comets have long been grouped according to their orbital properties, and this has proven useful for identifying the reservoir from which a given comet emerged (OC, KB) (Levison 1996). However, it is now clear that icy bodies were scattered into each reservoir from a range of nebular distances, and the comet populations in today's reservoirs thus share origins that are (in part) common. Comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition, resulting from strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models of early radial transport and mixing with later dispersion of the final cometary nuclei into the long-term storage reservoirs. The inclusion of material from the natal interstellar cloud is probable

  14. Comets and the origins and evolution of life; Proceedings of the Conference, Univ. of Wisconsin, Eau Claire, Sept. 30-Oct. 2, 1991

    NASA Technical Reports Server (NTRS)

    Thomas, Paul J. (Editor)

    1992-01-01

    Papers are presented on comets and the formation of biochemical compounds on the primitive earth; the cometary origin of carbon, nitrogen, and water on the earth; comets as a possible source of prebiotic molecules; comet impacts and chemical evolution on the bombarded earth; and cometary supply of terrestrial organics (lessons from the K/T and the present epoch). Other papers are on a computational study of radiation chemical processing in comet nuclei, the origin of the polycyclic aromatic hydrocarbons in meteorites, the fate of organic matter during planetary accretion (preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite), recent observations of interstellar molecules (detection of CCO and a limit on H2C3O), terrestrial and extraterrestrial sources of molecular monochirality, and dark matter in the solar system (hydrogen cyanide polymers).

  15. Electron plasma environment at comet Grigg-Skjellerup: General observations and comparison with the environment at comet Halley

    NASA Technical Reports Server (NTRS)

    Reme, H.; Mazelle, C.; Sauvaud, J. A.; D'Uston, C.; Froment, F.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Larson, D. E.; Korth, A.

    1993-01-01

    The three-dimensional electron spectrometer of the Reme plasma analyzer-complete positive ion, electron and ram negative ion measurements near comet Halley (RPA-COPERNIC) experiment aboard the Giotto spacecraft, although damaged during the comet Halley encounter in March 1986, has provided very new results during the encounter on July 10, 1992, with the weakly active comet Grigg-Skjellerup (G-S). The main characteristic features of the highly structured interaction region extending from approximately 26,500 km inbound to approximately 37,200 km outbound are presented. These results are compared to the results obtained by the same instrument during the Giotto comet Halley fly-by. Despite the large difference in the size of the interaction regions (approximately 60,000 km for G-S, approximately 2000,000 km for Halley) due to 2 orders of magnitude difference in cometary neutral gas production rate, there are striking similarities in the solar wind interactions with the two comets.

  16. Comet Tempel 1 Went Back to Sleep

    NASA Astrophysics Data System (ADS)

    2005-07-01

    Astronomers Having Used ESO Telescopes Start Analysing Unique Dataset on the Comet Following the Deep Impact Mission Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the ESO Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet. The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission' scientific team, they will try to assemble a clear picture of the comet and of the impact. The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome. From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface. ESO PR Photo 22/05 ESO PR Photo 22/05 Evolution of Comet Tempel 1 (FORS2/VLT) [Preview - JPEG: 400 x 701 pix - 128k] [Normal - JPEG: 800 x 1401 pix - 357k] ESO PR Photo 22/05 Animated Gif Caption: ESO PR Photo 22/05 shows the evolution of Comet Tempel 1 as observed with the FORS2 instrument on Antu (VLT). The images obtained at the VLT show that

  17. Physical mechanism of comet outbursts - An experimental result

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1993-01-01

    Attention is given to an experimental investigation of the physical mechanism of comet outbursts which is consistent with the general picture of mantle presence on comets and clarifies the relation of mantles to eruptive activity. The experiment and closeup observation of Comet P/Halley suggest a result different from most mathematical models in that the release of gas pressure does not occur only from uniform gas flow out of the entire surface. In some active comets near perihelion within a few AU of the sun, gas production rates and disturbance of the surface may be so high that the outflow is nearly continuous, with the regolith being entirely stripped away, as in many of the models. The present model provides a cyclic eruption and recharge mechanism which is lacking in most other models.

  18. What if chondritic porous interplanetary dust particles are not the real McCoy

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.

    To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for

  19. What if chondritic porous interplanetary dust particles are not the real McCoy

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for

  20. Polarization imaging of comets at geocentric distances smaller than 0.5 au: Comet 73P/Schwassmann-Wachmann 3

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Levasseur-Regourd, A.-C.

    2014-07-01

    Remote observations of sunlight scattered by solid particles provide information on the particle properties for a large variety of comets. When comets approach the Sun, solid particles and gases are released from the surface or from the inner layers [1,2]. If the comet is close enough to the Earth, the inner coma may be studied. Different coma regions are observed corresponding to different dust properties, e.g., in jets or fresh ejected dust around the coma. Narrow-band continuum filters or broader-band filters in less contaminated spectral domains (red or near infrared) are currently used to avoid or reduce the contributions from gaseous emission. Comet 73P/Schwassmann-Wachmann 3 is a fascinating fragmenting comet. Different observations in 1995 revealed an increase of activity and at least four fragments of the nucleus. In its 2011 apparition, the fragments were well separated and appeared like small individual comets. In 2006, its apparition was very favorable and allowed high- spatial resolution imaging by different complementary techniques. We observed three fragments of comet 73P/Schwassmann-Wachmann 3 from April 27 to May 3, 2006, by imaging polarimetry with the 80-cm telescope at Observatoire de Haute-Provence. The distance to the Earth was smaller than 0.2 au. Fragment C resembles a classical active comet. Regions of high and lower polarization were observed in the inner coma, appearing to change almost periodically. The variation of polarization in the inner coma was important from one night to the next one, the whole coma polarization being about constant for nucleus distances greater than 2000 km and increasing with the phase angle. Fragment B continued its (sequential) fragmentation, with a region of secondary fragments progressively moving away from the main nucleus in the antisolar direction. The chemical composition has been reported as being similar in all the fragments [3], but differences were observed between them in polarization underlining

  1. A Million Comet Pieces

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] A Million Comet Pieces (poster version)

    This infrared image from NASA's Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3 skimming along a trail of debris left during its multiple trips around the sun. The flame-like objects are the comet's fragments and their tails, while the dusty comet trail is the line bridging the fragments.

    Comet 73P /Schwassman-Wachmann 3 began to splinter apart in 1995 during one of its voyages around the sweltering sun. Since then, the comet has continued to disintegrate into dozens of fragments, at least 36 of which can be seen here. Astronomers believe the icy comet cracked due the thermal stress from the sun.

    The Spitzer image provides the best look yet at the trail of debris left in the comet's wake after its 1995 breakup. The observatory's infrared eyes were able to see the dusty comet bits and pieces, which are warmed by sunlight and glow at infrared wavelengths. This comet debris ranges in size from pebbles to large boulders. When Earth passes near this rocky trail every year, the comet rubble burns up in our atmosphere, lighting up the sky in meteor showers. In 2022, Earth is expected to cross close to the comet's trail, producing a noticeable meteor shower.

    Astronomers are studying the Spitzer image for clues to the comet's composition and how it fell apart. Like NASA's Deep Impact experiment, in which a probe smashed into comet Tempel 1, the cracked Comet 73P/Schwassman-Wachmann 3 provides a perfect laboratory for studying the pristine interior of a comet.

    This image was taken from May 4 to May 6 by Spitzer's multi-band imaging photometer, using its 24-micron wavelength channel.

  2. Constraints on Comet 332P/Ikeya-Murakami

    NASA Astrophysics Data System (ADS)

    Hui, Man-To; Ye, Quan-Zhi; Wiegert, Paul

    2017-01-01

    Encke-type comet 332P/Ikeya-Murakami is experiencing cascading fragmentation events during its 2016 apparition. It is likely the first splitting Encke-type comet ever observed. A nongravitational solution to the astrometry reveals a statistical detection of the radial and transverse nongravitational parameters, {A}1=(1.54+/- 0.39)× {10}-8 au day‑2 and {A}2=(7.19+/- 1.92)× {10}-9 au day‑2, respectively, which implies a nucleus erosion rate of (9.1+/- 1.7)‰ per orbital revolution. The mass-loss rate likely has to be supported by a much larger fraction of an active surface area than known cases of short-period comets; it may be relevant to the ongoing fragmentation. We failed to detect any serendipitous pre-discovery observations of the comet in archival data from major sky surveys, whereby we infer that 332P used to be largely inactive, and is perhaps among the few short-period comets that have been reactivated from weakly active or dormant states. We therefore constrain an upper limit to the nucleus size as 2.0 ± 0.2 km in radius. A search for small bodies in similar orbits to that of 332P reveals comet P/2010 B2 (WISE) to be the best candidate. From an empirical generalized Jupiter-family (Encke-type included) comet population model, we estimate the likelihood of a chance alignment of the 332P–P/2010 B2 pair to be 1 in 33, a small number indicative of a genetic linkage between the two comets on a statistical basis. The pair possibly originated from a common progenitor, which underwent a disintegration event well before the twentieth century.

  3. Asteroid Family Associations of Main-Belt Comets

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Novakovic, Bojan; Kim, Yoonyoung; Brasser, Ramon

    2016-10-01

    We present a population-level analysis of the asteroid family associations of known main-belt comets or main-belt comet candidates (which, to date, have largely just been analyzed on individual bases as they have been discovered). In addition to family associations that have already been reported in the literature, we have identified dynamical relationships between 324P/La Sagra and the Alauda family, P/2015 X6 (PANSTARRS) and the Aeolia family, and P/2016 G1 (PANSTARRS) and the Adeona family. We will discuss the overall implications of these family associations, particularly as they pertain to the hypothesis that members of primitive asteroid family members may be more susceptible to producing observable sublimation-driven dust emission activity, and thus becoming main-belt comets. We will also discuss the significance of other dynamical and physical properties of a family or sub-family as they relate to the likelihood of that family containing one or more currently active main-belt comets.

  4. Disintegrating Comet 73P

    NASA Astrophysics Data System (ADS)

    Jewitt, David

    2017-08-01

    Disintegration may be the leading cause of the demise of cometary nuclei yet is rarely observed and not well understood. We propose to use an amazing but largely unpublished archival dataset on comet 73P/Schwassmann-Wachmann 3 from HST in order to characterize the breakup of this body, focussing on components 73-B, 73-C and 73-G from GO 8699, 10625 and 10992. We will measure the number, sizes, velocities and (short-term) photometric variability of the fragments in 73-B and 73-G and derive the ejection speeds and times. A nucleus/coma convolution model will be used to extract the best estimates of fragment and nucleus size. The size distributions and integral masses will be compared to the parent body masses to estimate lifetimes. Lightcurves will be determined to the test the possibility that disintegration is due to rotational instability.

  5. Triggering the Activation of Main-belt Comets: The Effect of Porosity

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.; Maindl, T. I.; Schäfer, C. M.; Wandel, O. J.

    2018-03-01

    It has been suggested that the comet-like activity of Main-belt comets (MBCs) is due to the sublimation of sub-surface water-ice that is exposed when these objects are impacted by meter-sized bodies. We recently examined this scenario and showed that such impacts can, in fact, excavate ice and present a plausible mechanism for triggering the activation of MBCs. However, because the purpose of that study was to prove the concept and identify the most viable ice-longevity model, the porosity of the object and the loss of ice due to the heat of impact were ignored. In this paper, we extend our impact simulations to porous materials and account for the loss of ice due to an impact. We show that for a porous MBC, impact craters are deeper, reaching to ∼15 m, implying that if the activation of MBCs is due to the sublimation of sub-surface ice, this ice has to be within the top 15 m of the object. Results also indicate that the loss of ice due to the heat of impact is negligible, and the re-accretion of ejected ice is small. The latter suggests that the activities of current MBCs are most probably from multiple impact sites. Our study also indicates that for sublimation from multiple sites to account for the observed activity of the currently known MBCs, the water content of MBCs (and their parent asteroids) needs to be larger than the values traditionally considered in models of terrestrial planet formation.

  6. Search for Dormant Comets in Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Kim, Yoonyoung

    2013-06-01

    It is considered that comets have been injected into near-Earth space from outer region (e.g. Kuiper-belt region), providing rich volatile and organic compounds to the earth. Some comets are still active while most of them are dormant with no detectable tails and comae. Here we propose to make a multi-band photometric observation of near-Earth objects (NEOs) with comet-like orbits. We select our targets out of infrared asteroidal catalogs based on AKARI and WISE observations. With a combination of taxonomic types by Subaru observation and albedos by AKARI or WISE, we aim to dig out dormant comet candidates among NEOs. Our results will provide valuable information to figure out the dynamical evolution and fate of comets. We would like to emphasize that this is the first taxonomic survey of dormant comets to utilize the infrared data archive with AKARI and WISE.

  7. Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.; Netzer, H.; Woltjer, L.; Courvoisier, T. J.-L.; Mayor, M.

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with "Theory of Stellar Athmospheres" in 1971 and ending with "The Milky Way as a Galaxy" in 1989. The Lecture Notes of these Saas-Fee Courses appeared as publications of the Geneva Observatory, from which they can still be ordered (chemin des Maillettes 51, CH-1290 Sauverny, Switzerland).

  8. Composition and Cosmogonic Parameters of the Chemically Distinct Comet C/2007 N3 (Lulin)

    NASA Astrophysics Data System (ADS)

    Gibb, Erika L.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; Mumma, M. J.; Radeva, Y. L.

    2012-10-01

    Comets are remnants from the early solar system that retain the volatiles (ices) from the cold outer proto-planetary disk (beyond 5 AU) where they formed. Comet nuclei were among the first objects to accrete in the early solar nebula and many of them were subsequently incorporated into the growing giant planets. Gravitational scattering redistributed the remaining comet population by either sending them to the inner solar system, where they may have enriched the early biosphere, or scattering them into their present-day dynamical reservoirs. Since this early time, comets have been orbiting the Sun relatively untouched by processing mechanisms, until their orbits are perturbed towards the inner solar system. As such, they are believed to be among the most primitive objects in the solar system and may be representative of the material from which the solar system formed. Of particular interest is their icy volatile composition since other solar system objects have either lost or have had significant modifications to their volatile compositions since their formation. Many of the volatiles observed in comets are also important prebiotic species. For example, H2CO is a chemical precursor to sugars and HCN and NH3 are precursors of amino acids. Studying comets is therefore a vital link to understanding the origin and evolution of our planetary system and life on Earth. We obtained high-resolution, near-infrared spectroscopic observations of Comet C/2007 N3 (Lulin) on 30 January - 1 February 2009 with NIRSPEC on Keck II. Lulin is an Oort Cloud comet with a very large aphelion distance, suggesting that it may have been dynamically new. We report production rates of H2O, C2H6, HCN, C2H2, CH4, NH3, H2CO, CH3OH, and CO. We also report two cosmogonic parameters: D/H ratio in H2O and CH4, and isomeric spin temperatures. The implications for comet formations scenarios are discussed.

  9. The origin of comets

    NASA Astrophysics Data System (ADS)

    Bailey, M. E.; Clube, S. V. M.; Napier, W. M.

    Theories of the nature and origin of comets are discussed in a historical review covering the period from ancient times to the present. Consideration is given to the ancient controversy as to the atmospheric or celestial nature of comets, Renaissance theories of comet orbits, superstitions regarding the effects of comets, Kant's (1755) theory of solar-system origin, the nineteenth-century discovery of the relationship between comets and meteor showers, and the continuing solar-system/interstellar debate. Oort's (1950) model of a comet swarm surrounding the solar system is examined in detail; arguments advanced to explain the formation of comets within this model are summarized; and the question of cometary catastrophism is addressed.

  10. Dormant Comets in the Near-Earth Asteroid Population

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Harris, Alan W.; Mueller, Michael; Hora, Joseph L.; Trilling, David E.; Knight, Matthew; Bottke, William F.; Thomas, Cristina; Delbo', Marco; Emery, Josh P.; Fazio, Giovanni; Smith, Howard A.

    2015-11-01

    The population of near-Earth objects comprises active comets and asteroids, covering a wide range of dynamical parameters and physical properties. Dormant (or extinct) comets, masquerading as asteroids, have long been suspected of supplementing the near-Earth asteroid (NEA) population. We present a search for asteroidal objects of cometary origin based on dynamical and physical considerations. Our study is based on albedos derived within the ExploreNEOs program and is extended by adding data from NEOWISE and the Akari asteroid catalog. We use a statistical approach to identify asteroids on orbits that resemble those of short-period near-Earth comets using the Tisserand parameter with respect to Jupiter, the aphelion distance, and the minimum orbital intersection distance with respect to Jupiter. We identify a total of 23 near-Earth asteroids from our sample that are likely to be dormant short-period near-Earth comets and, based on a de-biasing procedure applied to the cryogenic NEOWISE survey, estimate both magnitude-limited and size-limited fractions of the NEA population that are dormant short-period comets. We find that 0.3-3.3% of the NEA population with H <= 21, and 9(+2/-5)% of the population with diameters d >= 1 km, are dormant short-period near-Earth comets. We also present an observation program that utilizes the 1.8m Vatican Advanced Technology Telescope (VATT) on Mt. Graham, AZ, to identify dormant comet candidates and search for activity in these objects. Our targets are NEAs on comet-like orbits, based on the dynamical criteria derived in the above study, that are accessible with the VATT (V <= 22). We identify dormant comets based on their optical spectral slope, represented by V-R color measurements, as albedo measurements for most of these objects are not available. For each target we measure and monitor its V magnitude in order to reveal activity outbreaks. We also search for extended emission around our targets using deep imaging and a point

  11. Comet Halley returns: A teachers' guide 1985-1986

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.; Bondurant, R. L.

    1985-01-01

    This booklet has been put together as an aid for teachers in elementary and secondary schools. It is divided into two distinct parts. The first part is a brief tutorial which introduces some of the most important concepts about comets, including their historical significance. A list of selected readings is provided at the end of the booklet. The second part of the booklet contains a number of suggested activities, built around the comet. These include both classroom exercises and carefully described field work to observe the comet. Guidance is provided on where to look for the comet, how to observe it, and to photograph it.

  12. On the evolution and activity of cometary nuclei.

    PubMed

    Prialnik, D; Bar-Nun, A

    1987-02-15

    The thermal evolution of a spherical cometary nucleus (initial radius of 2.5 km), composed initially of very cold amorphous ice and moving in comet Halley's orbit, is simulated numerically for 280 revolutions. It is found that the phase transition from amorphous to crystalline ice constitutes a major internal heat source. The transition does not occur continuously, but in five distinct rounds, during the following revolutions: 1, 7, 40-41, 110-112, and 248-252. Due to the (slow) heating of the amorphous ice between crystallization rounds, the phase transition front advances into the nucleus to progressively greater depths: 36 m on the first round, and then 91 m, 193 m, 381 m, and 605 m respectively. Each round of crystallization starts when when the boundary between amorphous and crystalline ice is brought to approximately 15 m below the surface, as the nucleus radius decreases due to sublimation. At the time of crystallization, the temperature of the transformed ice rises to 180 K. According to experimental studies of gas-laden amorphous ice, a large fraction of the gas trapped in the ice at low temperatures is released. Whereas some of the released gas may find its way out through cracks in the crystalline ice layer, the rest is expected to accumulate in gas pockets that may eventually explode, forming "volcanic calderas." The gas-laden amorphous ice thus exposed may be a major source of gas and dust jets into the coma, such as those observed on comet Halley by the Giotto spacecraft. The activity of new comets and, possibly, cometary outbursts and splits may also be explained in terms of explosive gas release following the transition from amorphous to crystalline ice.

  13. Mid-infrared observations of sungrazing comet C/2012 S1 (ISON) with the Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Ootsubo, T.; Usui, F.; Takita, S.; Watanabe, J.; Yanamandra-Fisher, P.; Honda, M.; Kawakita, H.; Furusho, R.

    2014-07-01

    Comets are the frozen reservoirs of the early solar nebula and are made of ice and dust. The determination of the properties for cometary dust provides us insight into both the early-solar-nebula environment and the formation process of the planetary system. A silicate feature is often observed in comet spectra in the mid-infrared region and may be used for probing the early history of the solar system. In most cases, the feature shows the existence of crystalline silicate (for example, 11.3 microns) together with amorphous silicate [1,2]. Since the crystallization of silicates from amorphous ones generally requires high-temperature annealing above 800 K (e.g., [3,4]), it is believed that the crystalline silicate grains produced at the inner part of the disk were transported to the outer cold regions where the comet nuclei formed. Comet C/2012 S1 (ISON) is a long-period Oort Cloud comet, discovered in September 2012. In particular, comet ISON is a sungrazing comet, which was predicted to pass close by the Sun and the Earth and becoming a bright object. Mid-infrared observations of this new comet and investigation of the 10-micron silicate feature help us understand the formation of crystalline silicate grains in the early solar nebula. We conducted observations of comet ISON in the mid-infrared wavelength region with the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the Subaru Telescope on Mauna Kea, Hawaii [5,6,7]. The observation of comet ISON was carried out on 2013 October 19 and 21 UT. Since the weather conditions were not so good when we observed, we carried out N-band imaging observations (8.8 and 12.4 microns) and N-band low-resolution spectroscopy. The spectrum of comet ISON can be fit with the 260--265-K blackbody spectrum when we use the regions of 7.8--8.2 and 12.4--13.0 microns as the continuum. The spectrum has only a weak silicate excess feature, which may be able to attribute to small amorphous olivine grains. We could not detect a clear

  14. Reliability of plant root comet assay in comparison with human leukocyte comet assay for assessment environmental genotoxic agents.

    PubMed

    Reis, Gabriela Barreto Dos; Andrade-Vieira, Larissa Fonseca; Moraes, Isabella de Campos; César, Pedro Henrique Souza; Marcussi, Silvana; Davide, Lisete Chamma

    2017-08-01

    Comet assay is an efficient test to detect genotoxic compounds based on observation of DNA damage. The aim of this work was to compare the results obtained from the comet assay in two different type of cells extracted from the root tips from Lactuca sativa L. and human blood. For this, Spent Pot Liner (SPL), and its components (aluminum and fluoride) were applied as toxic agents. SPL is a solid waste generated in industry from the aluminum mining and processing with known toxicity. Three concentrations of all tested solutions were applied and the damages observed were compared to negative and positive controls. It was observed an increase in the frequency of DNA damage for human leukocytes and plant cells, in all treatments. On human leukocytes, SPL induced the highest percentage of damage, with an average of 87.68%. For root tips cells of L. sativa the highest percentage of damage was detected for aluminum (93.89%). Considering the arbitrary units (AU), the average of nuclei with high levels of DNA fragmentation was significant for both cells type evaluated. The tested cells demonstrated equal effectiveness for detection of the genotoxicity induced by the SPL and its chemical components, aluminum and fluoride. Further, using a unique method, the comet assay, we proved that cells from root tips of Lactuca sativa represent a reliable model to detect DNA damage induced by genotoxic pollutants is in agreement of those observed in human leukocytes as model. So far, plant cells may be suggested as important system to assess the toxicological risk of environmental agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Suicide Comet HD Video

    NASA Image and Video Library

    2010-03-16

    Captured March 12, 2010 The SOHO spacecraft captured a very bright, sungrazing comet as it rocketed towards the Sun (Mar. 12, 2010) and was vaporized. This comet is arguably the brightest comet that SOHO has observed since Comet McNaught in early 2007. The comet is believed to belong to the Kreutz family of comets that broke up from a much larger comet many hundreds of years ago. They are known to orbit close to the Sun. A coronal mass ejection (CME) burst away from the Sun during the bright comet’s approach. Interestingly, a much smaller comet that preceded this one can be seen about half a day earlier on just about the identical route. And another pair of small comets followed the same track into the Sun after the bright one. Such a string of comets has never been witnessed before by SOHO. SOHO's C3 coronagraph instrument blocks out the Sun with an occulting disk; the white circle represents the size of the Sun. The planet Mercury can also be seen moving from left to right just beneath the Sun. To learn more and to download the video and still images go here: sohowww.nascom.nasa.gov/pickoftheweek/old/15mar2010/ Credit: NASA/GSFC/SOHO

  16. Atlas of Secular Light Curves of Comets

    NASA Astrophysics Data System (ADS)

    Ferrin, Ignacio

    2007-12-01

    We have completed work on the secular light curves of 30 periodic and non-periodic comets. The objectives and approach of this project has been explained in Ferrin (Icarus, 178, 493-516, 2005). Each comet requires 2 plots. The time plot shows the reduced (to Δ = 1 AU) magnitude of the comet as a function of time, thus displaying the brightness history of the object. The log plot is a reflected double log plot. The reflection takes place at R=1 AU, to allow the determination of the absolute magnitude by extrapolation. 22 photometric parameters are measured from the plots, most of them new. The plots have been collected in a document that constitutes "The Atlas". We have defined a photometric age, P-AGE, that attempts to measure the age of a comet based on its activity. P-AGE has been scaled to human ages to help in its interpretation. We find that comets Hale-Bopp and 29P/SW 1, are baby comets (P-AGE < 3 comet years), while 107P, 162P and 169P are methuselah comets (P-AGE > 100 cy). The secular light curve of 9P/Tempel 1 exhibits sublimation due to H2O and due to CO. Comet 67P/Churyumov-Gerasimento to be visited by the Rossetta spacecraft in 2014 exhibits a photometric anomaly. Comet 65P/Gunn exhibits a lag in maximum brightness of LAG = + 254 days after perihelion. We suggest that the pole is pointing to the sun at that time. The secular light curves will be presented and a preliminary interpretation will be advanced. The secular light curves present complexity beyond current understanding. The observations described in this work were carried out at the National Observatory of Venezuela (ONV), managed by the Center for Research in Astronomy (CIDA), for the Ministry of Science and Technology (MinCyT).

  17. Are Comets 42P/Neujmin 3 and 53P/Van Biesbroeck Parts of one Comet?

    NASA Astrophysics Data System (ADS)

    Pittichova, J.; Meech, K. J.; Valsecchi, G. B.; Pittich, E. M.

    2003-05-01

    We want to present preliminary results of the observations of the physical parameters of comets 42P/Neujmin 3 and 53P/Van Biesbroeck: brightness, nucleus activity, rotation period, light-curve and color changes from our first three optical observing runs (March, and May 2003) at Mauna Kea, using UH 2.2m telescope and Tek2048 CCD camera. Comets 42P/Neujmin 3 and 53P/Van Biesbroeck have very well determined orbits, and their orbital histories are very interesting. Their current orbits are not very similar to each other; however, numerical integrations have shown that both comets had a rather close approach to Jupiter in January 1850, and that, before 1850, the two orbits were nearly identical. Given the extremely low probability of a chance coincidence of the six orbital elements at a given time, the natural conclusion is that the two objects are fragments of a single comet that split sometime in the late 1849 or early 1850. Among the known cases of split periodic comets, this one is peculiar for a number of reasons: 1. the splitting was probably not due to tidal stresses, since the 1850 encounter with Jupiter took place well outside the Roche lobe; 2. it is the only case discovered through a dynamical study; 3. in the only other case of splitting of a Jupiter family comet, that of 3D/Biela, the fragments did not survive for more than a couple of revolutions, whereas in the present case both fragments have passed perihelion more than ten times since the splitting. If these two comets are fragments of a single parent body, then they should show a certain degree of physical and chemical similarity, which we would like to obtain from spectroscopic observation in 2004, when both comets are close to their perihelion. Acknowledgments: Support for this work was provided by NASA Grant No. NAG5-12236 and Scientific Grant Agency VEGA of the Slovak Academy of Sciences, grant No. 2/1005/21.

  18. Accretion of Cometary Nuclei in the Solar Nebula: Boulders, Not Pebbles

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; A'Hearn, Michael

    2015-11-01

    Comets are the most primitive bodies in the solar system. They retain a largely unprocessed record of conditions in the primordial solar nebula 4.56 Gyr ago, including the initial accretion of dust and ice particles into macroscopic bodies. Current accretion theory suggests that ice and dust aggregates grew to pebble (cm) sizes before streaming instabilities and gravitational collapse brought these pebble swarms together as km-sized (or larger) bodies. Recent imaging of the nucleus of comet 67P/Churyumov-Gerasimenko by the Rosetta OSIRIS camera team has revealed the existence of “goose bump” terrain on the nucleus surface and lining the interior walls of large, ~200 m diameter and 180 m deep cylindrical pits. These pits are believed to be sinkholes, formed when near-surface materials collapse into voids within the nucleus, revealing the fresh comet interior on the walls of the pits. The goose bump terrain consists of 3-4 m diameter “boulders” randomly stacked one on top of another. We propose that these boulders, likely with an icy-conglomerate composition, are the basic building blocks of cometary nuclei. This is the first observational confirmation of current accretion theories, with the caveat that rather than pebbles, the preferred size range is 3-4 m boulders for objects formed in the giant planets region of the solar system. The presence of icy grains beyond the solar nebula snow-line and the large heliocentric range of the giant planets region likely contribute to the formation of these larger boulders, before they are incorporated into cometary nuclei. This work was supported by NASA through the U.S. Rosetta Project.

  19. PHOTO ILLUSTRATION OF COMET P/SHOEMAKER-LEVY 9 and PLANET JUPITER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite photo, assembled from separate images of Jupiter and comet P/Shoemaker-Levy 9, as imaged by the Wide Field and Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million km) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jupiter's magnificent cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. Credit: H.A. Weaver, T.E. Smith (Space Telescope Science Institute) and J.T. Trauger, R.W. Evans (Jet Propulsion Laboratory), and NASA

  20. Bright Comet ISON

    NASA Image and Video Library

    2013-11-22

    Comet ISON shines brightly in this image taken on the morning of 19 Nov. 2013. This is a 10-second exposure taken with the Marshall Space Flight Center 20" telescope in New Mexico. The camera there is black and white, but the smaller field of view allows for a better "zoom in" on the comet's coma, which is essentially the head of the comet. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation

  1. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    NASA Technical Reports Server (NTRS)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  2. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  3. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    NASA Technical Reports Server (NTRS)

    Newburn, Ray L., Jr.; Spinrad, Hyron

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986.

  4. 15 years of comet photometry: A comparative analysis of 80 comets

    NASA Technical Reports Server (NTRS)

    Osip, David J.; Schleicher, David G.; Millis, Robert L.; Hearn, M. F. A.; Birch, P. V.

    1992-01-01

    In 1976 we began a program of narrowband photometry of comets that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which have been observed on multiple apparitions. In this paper we present the observed range of compositions (molecular production rate ratios) and dustiness (gas production compared with AF-rho) for a well sampled group of comets. Based on these results we present preliminary analysis of taxonomic groupings as well as the abundance ratios we associate with a 'typical' comet.

  5. Comet Wild 2 - Jet Release

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This composite image was taken by the navigation camera during the close approach phase of Stardust's Jan 2, 2004 flyby of comet Wild 2. Several large depressed regions can be seen. Comet Wild 2 is about five kilometers (3.1 miles) in diameter. To create this image, a short exposure image showing tremendous surface detail was overlain on a long exposure image taken just 10 seconds later showing jets. Together, the images show an intensely active surface, jetting dust and gas streams into space and leaving a trail millions of kilometers long.

  6. Development and characteristics of Mechanical Porous Ambient Comet Simulants as comet surface analogs

    NASA Astrophysics Data System (ADS)

    Carey, Elizabeth M.; Peters, Gregory H.; Choukroun, Mathieu; Chu, Lauren; Carpenter, Emma; Cohen, Brooklin; Panossian, Lara; Zhou, Yu Meng; Sarkissian, Ani; Moreland, Scott; Shiraishi, Lori R.; Backes, Paul; Zacny, Kris; Green, Jacklyn R.; Raymond, Carol

    2017-11-01

    Comets are icy remnants of the Solar System formation, and as such contain some of the most primitive volatiles and organic materials. Sampling the surface of a comet is a high priority for the New Frontiers program. Planetary simulants are crucial to the development of adequate in situ instruments and sample acquisition systems. A high-fidelity comet surface simulant has been developed to support hardware design and development for one Comet Surface Sample Return tool, the BiBlade Comet Sampler. Mechanical Porous Ambient Comet Simulants (MPACS) can be manufactured to cover a wide range of desired physical properties, such as density and cone penetration resistance, and exhibit a brittle fracture mode. The structure of the MPACS materials is an aggregated composite structure of weakly-bonded grains of very small size (diameter ≤ 40 μm) that are most relevant to the structure of the surface of a comet nucleus.

  7. Where are the mini Kreutz-family comets?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To

    The Kreutz family of sungrazing comets contains over 2000 known members, many of which are believed to be under ∼100 m sizes (mini comets) and have only been studied at small heliocentric distances (r {sub H}) with space-based SOHO/STEREO spacecraft. To understand the brightening process of mini Kreutz comets, we conducted a survey using CFHT/MegaCam at moderate r {sub H} guided by SOHO/STEREO observations. We identify two comets that should be in our search area but are not detected, indicating that the comets have either followed a steeper brightening rate within the previously reported rapid brightening stage (the brightening burst),more » or the brightening burst starts earlier than expected. We present a composite analysis of the pre-perihelion light curves of five Kreutz comets that cover to ∼1 AU. We observe significant diversity in the light curves that can be used to grossly classify them into two types: C/Ikeya-Seki and C/SWAN follow the canonical r{sub H}{sup −4} while the others follow r{sub H}{sup −7}. In particular, C/SWAN seems to have undergone an outburst (Δm > 5 mag) or a rapid brightening (n ≳ 11) between r {sub H} = 1.06 AU and 0.52 AU, and shows hints of structural/compositional differences compared to other bright Kreutz comets. We also find evidence that the Kreutz comets as a population lose their mass less efficiently than the dynamically new comet, C/ISON, and are relatively devoid of species that drive C/ISON's activity at large r {sub H}. Concurrent observations of C/STEREO in different wavelengths also suggest that a blueward species such as CN may be the main driver for brightening bursts, instead of sodium as previously thought.« less

  8. Modeling the Thermodynamic Properties of the Inner Comae of Comets

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.

    2017-10-01

    Introduction: Modeling is central to understand the important properties of the cometary environment. We have developed a comet model, SUISEI, that self-consistently includes the relevant physicochemical processes within a global modeling framework, from the porous subsurface layers of the nucleus to the interaction with the solar wind. Our goal is to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a multifluid, reactive gas dynamics simulation of the dusty coma (ComChem) and a suite of other coupled numerical simulations. This model has been successfully applied to a variety of comets in previous studies over the past three decades. We present results from a quantitative study of the thermodynamic properties and chemistry of cometary comae as a function of cometocentric and heliocentric distance to aid in interpretation of observations and in situ measurements of comets.Results and Discussion: ComChem solves the fluid dynamic equations for the mass, momentum, and energy of three neutral fluids (H, H2, and the heavier bulk fluid), ions, and electrons. In the inner coma, the gas expands, cools, accelerates, and undergoes many photolytic and gas-phase chemical reactions tracking hundreds of sibling species. The code handles the transition to free molecular flow and describes the spatial distribution of species in the coma of a comet. Variations of neutral gas temperature and velocity with cometocentric distance and heliocentric distance for a comet approaching the Sun from 2.5 to 0.3 AU are presented. Large increases in the gas temperatures (>400 K) due to photolytic heating in the coma within ~0.5 AU are noted, with dramatic effects on the chemistry, optical depth, and other coma properties. Results are compared to observations when available.Conclusions: SUISEI has proven to be a unique and valuable model to understand the relevant physical processes and

  9. Comet ISON Enhanced

    NASA Image and Video Library

    2013-11-22

    Taken on 19 Nov. 2013, this image shows a composite "stacked" image of comet ISON. These five stacked images of 10 seconds each were taken with the 20" Marshall Space Flight Center telescope in New Mexico. This technique allows the comet's sweeping tail to emerge with more detail. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could

  10. Comets: Data, problems, and objectives

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1977-01-01

    A highly abridged review of new relevant results from the observations of Comet Kohoutek is followed by an outline summary of our basic knowledge concerning comets, both subjects being confined to data related to the nature and origin of comets rather than the phenomena (for example, plasma phenomena are omitted). The discussion then centers on two likely places of cometary origin in the developing solar system, the proto-Uranus-Neptune region versus the much more distant fragmented interstellar cloud region, now frequented by comets of the Opik-Oort cloud. The Comet Kohoutek results add new insights, particularly with regard to the parent molecules and the nature of meteoric solids in comets, to restrict the range of the physical circumstances of comet formation. A few fundamental and outstanding questions are asked, and a plea made for unmanned missions to comets and asteroids in order to provide definitive answers as to the nature and origin of comets, asteroids, and the solar system generally.

  11. Comets in Australian Aboriginal Astronomy

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2011-03-01

    We present 25 accounts of comets from 40 Australian Aboriginal communities, citing both supernatural perceptions of comets and historical accounts of historically bright comets. Historical and ethnographic descriptions include the Great Comets of 1843, 1861, 1901, 1910, and 1927. We describe the perceptions of comets in Aboriginal societies and show that they are typically associated with fear, death, omens, malevolent spirits, and evil magic, consistent with many cultures around the world. We also provide a list of words for comets in 16 different Aboriginal languages.

  12. New Techniques for Investigating the Morphology and Rotation of Component C of the Periodic Comet 73P/Schwassmann-Wachmann 3

    NASA Astrophysics Data System (ADS)

    Dykhuis, Melissa J.; Samarasinha, N. H.; Mueller, B. E. A.; Storm, S. P.

    2012-10-01

    Observations of temporal variations in the dust and gas morphology of comet nuclei can be used to infer the rotation states of the nuclei. The rotation of component C of Comet 73P/Schwassmann-Wachmann 3 is of particular interest, as it could place constraints on the damping timescale for non-principal axis rotation following the comet's breakup event of 1995 (Crovisier et al. 1995, IAU Circ., 6227). We obtained narrowband H-B and broadband R images of component C from May 3-10, 2006 UT, near the comet's perigee passage, using the 4-meter Mayall telescope on Kitt Peak. We identified the morphological features in the images using the enhancement method of division by azimuthal average. In addition, we binned the data to alleviate issues related to poor guiding and to increase the signal-to-noise. A new method for quantifying measurements of the features allowed for the development of a more robust statistic to evaluate the results, which yielded different period constraints than those found previously in Storm et al. (2007). Analysis of the dust morphology suggests a minimum periodicity of repeatability of the features of about 15 hours. This value is consistent with the lower limit of 10 hours determined from radar data (Nolan et al. 2006, BAAS 38, 504); however, it does not agree with the values around 3-4 hours determined using HST lightcurves and HCN morphology (Toth et al. 2006, BAAS 38, 489; Drahus et al. 2010, A&A 510, respectively). MJD's work was supported by a National Science Foundation Graduate Research Fellowship. NHS and BEAM were supported by the NASA Planetary Atmospheres Program.

  13. Comet Dead Ahead

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 26, 2005, when the spacecraft was 7,118,499.4 kilometers (4,423,435 miles) away from the comet. Eight images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  14. Realm of the comets

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1987-01-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.

  15. Realm of the comets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissman, P.R.

    1987-03-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sendingmore » large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.« less

  16. Comet flyby sample return

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Albee, A.

    1985-01-01

    The results of a joint JPL/CSFC feasability study of a low-cost comet sample return flyby mission are presented. It is shown that the mission could be undertaken using current earth orbiter spacecraft technology in conjunction with pathfinder or beacon spacrcraft. Detailed scenarios of missions to the comets Honda-Mrkos-Pajdusakova (HMP), comet Kopff, and comet Giacobini-Zinner (GZ) are given, and some crossectional diagrams of the spacecraft designs are provided.

  17. Cometary activity and nucleus modelling: a new approach

    NASA Astrophysics Data System (ADS)

    Möhlmann, D.

    1996-06-01

    The phenomena of comet splittings with an average frequency of about one splitting per 100 years and comet (Chen and Jewitt, Icarus108, 265-271, 1994), and the restriction of cometary activity to well-defined small areas at the almost passive and mantle covered surface (Keller et al., ESA SP-250, Vol. II, pp. 363-364, 1986) are at present driving challenges to models of structure and evolution of comet nuclei. Extending the presently discussed models by incorporating lateral subsurface transport of sublimed volatiles, there appears the possibility that the places of sublimation are different from those of activity (the so-called active areas). Then, there is no necessity to distinguish between different surface properties at active and passive areas, assuming, e.g. an uncovered icy surface at active areas. Active areas are simply the very local "source sites" where the accumulated subsurface flows from distant regions reach the surface. The pressure driven subsurface flows of volatiles may not only leave the comet at its surface, they may penetrate via cracks, etc. also deeply into the nucleus. There they can cause a further growth of cracks and also new cracks. This can be a cause for the observed regular splittings. Furthermore, actual models (Kührt and Keller, Icarus109, 121-132, 1994; Skorov and Rickman, Planet. Space Sci.43, 1587-1594, 1995) of the gas transport through porous comet surface crusts can be interpreted as to give first indications for thermodynamical parameters in heat conducting and porous cometary crusts which are appropriate for 1 AU conditions to permit the temporary existence of a layer with fluid subsurface water within these crusts. This exciting result of the possible temporary existence of subsurface warm water in comets which approach the Sun within about 1 AU makes a cometary subsurface chemistry much more efficient than expected hitherto.

  18. A Comet's Missing Light

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both

  19. Comets

    NASA Astrophysics Data System (ADS)

    Festou, M. C.; Feldman, P. D.

    Observations of comets obtained with the IUE satellite since its launch in 1978 are reviewed. The status of UV observation of comets prior to IUE is discussed, and particular attention is given to low-resolution UV spectroscopy of cometary comae, the detection of new species in the UV emission, high-dispersion spectroscopy, spatial mapping of the emissions, abundance determinations, and short-term variability. Diagrams, graphs, sample spectra, and tables of numerical data are provided.

  20. Cartography of asteroids and comet nuclei from low resolution data

    NASA Technical Reports Server (NTRS)

    Stooke, Philip J.

    1992-01-01

    High resolution images of non-spherical objects, such as Viking images of Phobos and the anticipated Galileo images of Gaspra, lend themselves to conventional planetary cartographic procedures: control network analysis, stereophotogrammetry, image mosaicking in 2D or 3D, and airbrush mapping. There remains the problem of a suitable map projection for bodies which are extremely elongated or irregular in shape. Many bodies will soon be seen at lower resolution (5-30 pixels across the disk) in images from speckle interferometry, the Hubble Space Telescope, ground-based radar, distinct spacecraft encounters, and closer images degraded by smear. Different data with similar effective resolutions are available from stellar occultations, radar or lightcurve convex hulls, lightcurve modeling of albedo variations, and cometary jet modeling. With such low resolution, conventional methods of shape determination will be less useful or will fail altogether, leaving limb and terminator topography as the principal sources of topographic information. A method for shape determination based on limb and terminator topography was developed. It has been applied to the nucleus of Comet Halley and the jovian satellite Amalthea. The Amalthea results are described to give an example of the cartographic possibilities and problems of anticipated data sets.

  1. Comet Wild 2 - Jet Release

    NASA Image and Video Library

    2004-03-18

    This composite image was taken by the navigation camera during the close approach phase of Stardust's Jan 2, 2004 flyby of comet Wild 2. Several large depressed regions can be seen. Comet Wild 2 is about five kilometers (3.1 miles) in diameter. To create this image, a short exposure image showing tremendous surface detail was overlain on a long exposure image taken just 10 seconds later showing jets. Together, the images show an intensely active surface, jetting dust and gas streams into space and leaving a trail millions of kilometers long. http://photojournal.jpl.nasa.gov/catalog/PIA05578

  2. Assessing the Main-Belt Comet Population with Comet Hunters

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Hsieh, Henry H.; Zhang, Zhi-Wei; Chen, Ying-Tung; Lintott, Chris; Wang, Shiang-Yu; Mishra, Ishan

    2017-01-01

    Cometary activity in the asteroid belt is a recent discovery. Evidence suggests recent collisions play a role excavating subsurface water ice in these Main Belt Comets (MBCs). MBCs may be an alternative source of Earth’s water. The properties and origins of the MBCs remain elusive. To date ~15 MBCs are known, but only with many tens to 100s of MBCs can we fully explore this new reservoir and its implications for the early Earth.Automated routines identify cometary objects by comparing the point spread functions (PSFs) of moving objects to background stars. This approach may miss cometary activity with low-level dust comae or trails that are too weak or extended to affect an object's near-nucleus PSF profile. Direct visual inspection of moving objects by survey team members can often catch such unusual objects, but such an approach is impractical for the largest surveys to date, and will only become more intractable with the next generation wide-field surveys.With the Internet, tens of thousands of people can be engaged in the scientific process. With this citizen science approach, the combined assessment of many non-experts often equals or rivals that of a trained expert and in many cases outperforms automated algorithms. The Comet Hunters (http://www.comethunters.org) project enlists the public to search for MBCs in data from the Hyper Suprime-Cam (HSC) wide survey. HSC is to date the largest field-of-view camera (covering a 1.5 degree diameter circle on sky) on a 8-10-m class telescope. The HSC wide survey provides the sensitivity to detect cometary activity at lower levels than have been possible for previous surveys.We will give an overview of the Comet Hunters project. We will present the results from the first ~10,000 HSC asteroids searched and provide an estimate on the frequency of cometary activity in the Main Asteroid beltAcknowledgements: This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global

  3. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. Michael A'Hearn, Principal Investigator, EPOXI Comet Encounter Mission, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  4. Comets and the Stardust Mission

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  5. Comets and the Stardust Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-16

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  6. 8- to 13-micron spectroscopy of Comet Levy 1990 XX

    NASA Technical Reports Server (NTRS)

    Lynch, David K.; Russell, Ray W.; Hackwell, John A.; Hanner, Martha S.; Hammel, Heidi B.

    1992-01-01

    The results are reported of IR spectroscopy of Comet Levy 1990 XX over a three-day period when the comet was about 1.54 AU from the sun roughly 70 days before perihelion. Comet Levy 1990 XX was bright, and for at least part of its inbound journey toward perihelion, active. At a distance of 1.54 AU from the sun it showed strong structured silicate emission with peaks or shoulders at 9.8 and 11.2 microns. These features resemble those of Comets P/Halley and Bradfield 1987 XXIX. The comet was variable in brightness. Specifically, the contrast of the silicate features changed by a factor of two relative to the continuum level and showed some evidence for a shape change as well.

  7. Comet 252P/LINEAR: Born (Almost) Dead?

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Brown, Peter G.; Wiegert, Paul A.

    2016-02-01

    Previous studies have revealed Jupiter-family comet 252P/LINEAR as a comet that was recently transported into the near-Earth object (NEO) region in ∼1800 AD yet only being weakly active. In this Letter, we examine the “formed (almost) dead” hypothesis for 252P/LINEAR using both dynamical and observational approaches. By statistically examining the dynamical evolution of 252P/LINEAR over a period of 107 years, we find the median elapsed residency in the NEO region to be 4 × 102 years, which highlights the likelihood of 252P/LINEAR as an (almost) first-time NEO. With available cometary and meteor observations, we find the dust production rate of 252P/LINEAR to be on the order of 106 kg per orbit since its entry to the NEO region. These two lines of evidence support the hypothesis that the comet was likely to have formed in a volatile-poor environment. Cometary and meteor observations during the comet's unprecedented close approach to the Earth around 2016 March 21 would be useful for understanding of the surface and evolutionary properties of this unique comet.

  8. The McDonald Observatory Faint Comet Survey - Gas production in 17 comets

    NASA Technical Reports Server (NTRS)

    Cochran, Anita L.; Barker, Edwin S.; Ramseyer, Tod F.; Storrs, Alex D.

    1992-01-01

    The complete Intensified Dissector Scanner data set on 17 comets is presented, and production rates are derived and analyzed. It is shown that there is a strong degree of homogenization in the production rate ratios of many comets. It also appears that the ratio of the production rates of the various species has no heliocentric distance dependence, except for the case of NH2. When speaking of the gas in the coma of a comet, it appears that comets must have been formed under remarkably uniform conditions, and that they must have evolved and formed their comae in a similar manner. The data presented here constitute strong evidence that the minor species must be bound up in a lattice and that the interior of a comet must be reasonably uniform.

  9. Elemental, isotopic and molecular abundances in comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1986-01-01

    The chemical composition of comet nuclei and the factors affecting it are discussed, summarizing the results of recent theoretical, experimental, and observational investigations. Consideration is given to the evidence supporting the view that the nucleus is radially differentiation (except for a thin outer layer), surface differentiation by heat processing and outgassing, and mantle buildup on an undifferentiated core. The nature of the refractory and volatile components is examined, and the elemental and isotopic compositions are given in tables and characterized. The uncertain (except for H2O) molecular composition of the volatile fraction is considered, and it is suggested that some oxides or aldehydes (such as CO, CO2, and H2CO), but no large amounts of fully hydrogenated compounds (such as CH4 and NH3) are included.

  10. Disappearance and disintegration of comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1984-01-01

    The present investigation has the objective to provide a summary of the existing evidence on the disappearance of comets and to draw conclusions regarding the physical processes involved in the disappearance. Information concerning the classification of evidence and the causes of apparent disappearance of comets is presented in a table. Attention is given to the dissipating comets, the headless sungrazing comet 1887 I, and the physical behavior of the dissipating comets and the related phenomena. It is found that all comets confined to the planetary region of the solar system decay on astronomically short time scales. However, only some of them appear to perish catastrophically. Some of the observed phenomena could be successfully interpreted. But little insight has been obtained into the character of the processes which the dissipating comets experience.

  11. Halley's Comet.

    ERIC Educational Resources Information Center

    Carey, Tom

    1985-01-01

    Provides tips for viewing Comet Halley in the Northeast including best viewing dates from November 1985-January 1986. Discusses going south to view the comet in March-April 1986 and gives specific information about accommodations for the Halley Rally in Everglades National Park, southernmost site in the contiguous 48 states. (JHZ)

  12. HCN and CN in comet 2P/Encke, a three-dimensional view on comet Encke's outgassing

    NASA Astrophysics Data System (ADS)

    Jockers, K.; Szutowicz, S.

    2008-09-01

    Background Simultaneous radio and optical observations of chemically related species in comets promise to supplement each other favorably. High resolution spectra of a submillimeter line provide the distribution of radial velocity. Narrow-band images in the optical region offer the spatial distribution of a species projected into the sky plane perpendicular to the line of sight. Therefore optical and radio observations can in principle be combined into a three-dimensional picture of a comet. A suitable pair of species accessible in the microwave and optical wavelength range is provided by HCN (one of the strongest radio emissions of comets) and CN (strong optical emission). HCN is the most probable parent of CN, but other parents of CN are possible. In this study we use HCN and CN observations of comet it 2P/Encke to address the parental relation of HCN with respect to CN and to investigate the gas outflow from a cometary surface and its dependence on location on the surface (the question of so-called "active vents" or "active areas") and on solar zenith angle. Some known facts about Comet 2P/Encke Comet 2P/Encke is a short period comet. It has the smallest known perihelion distance q = 0.33 AU and a period of 3.28 years. Because of its closeness to the Sun Comet Encke probably is the most evolved comet known. In the optical wavelength range comet Encke does not display a dust tail. Instead a so-called "fan" is observed, a broad feature visible at the solar side of the comet but not directly pointing to the Sun. In the far infrared spectral region Comet Encke displays a huge coma [1] of large dust grains but because of their large size these grains do not contibute significantly to the optical image [2]. In a study based on a large number of historical observations Sekanina [3] has investigated comet Encke's fan-shaped coma. According to this author comet Encke's north rotation pole is located at right ascension 205° and declination 2° (equinox 1950.0). Two vents

  13. In-situ investigations of the ionosphere of comet 67P

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; Edberg, N. J. T.; Odelstad, E.; Vigren, E.; Engelhardt, I.; Henri, P.; Lebreton, J.-P.; Galand, M.; Carr, C. M.; Koenders, C.; Nilsson, H.; Broiles, T.; Rubin, M.

    2015-10-01

    Since arrival of Rosetta at its target comet 67P/Churyumov-Gerasimenko in August 2014, the plasma environment has been dominated by ionized gas emanating from the comet nucleus rather than by solar wind plasma. This was evident early on from the strong modulation seen with Rosetta's position in a reference frame fixed to the rotating nucleus, with higher plasma densities observed when the spacecraft is above the neck region and when the comet exposes maximum area to the sun. In this respect, Rosetta is inside the comet ionosphere, providing excellent in situ investigation opportunities for the instruments of the Rosetta Plasma Consortium (RPC). In contrast to the often modelled scenario for a very active comet, the Langmuir probe instrument (RPC-LAP) finds electron temperatures mainly in the range of tens of thousand kelvin around this less active comet. This can be attributed to the lower density of neutral gas, meaning little cooling of recently produced electrons. A side effect of this is that the spacecraft charges negatively when within about 100 km from the nucleus. Interesting in itself, this also may point to similar charging for dust grains in the coma, with implications for the detection of the smallest particles and possibly for processes like electrostatic fragmentation. The inner coma also proves to be very dynamic, with large variations not only with latitude and longitude in a comet frame, but also with the solar wind and various wave phenomena.

  14. Assessing the genotoxicities of sparteine and compounds isolated from Lupinus mexicanus and L. montanus seeds by using comet assay.

    PubMed

    Silva, M R; Alvarez, C M; García, P M; Ruiz, M A

    2014-12-12

    The genus Lupinus is widely distributed. Its seeds are used for animal and human food, and Lupinus possesses pharmacological potential because of its high content of quinolizidine alkaloids and flavonoids; however, there is little available information about its genotoxicity. We used the comet assay and staminal nuclei of Tradescantia (clone 4430) to evaluate the in vitro genotoxicity of 4 concentrations (0.01, 0.1, 0.5, and 1.0 mM) of alkaloid extracts of Lupinus mexicanus and Lupinus montanus, flavonoids of L. mexicanus, and commercial sparteine; nitrosodiethylamine was used as a positive control and untreated nuclei were used as a negative control. All concentrations of L. mexicanus and L. montanus showed significant genotoxic activity (P ≤ 0.05). A similar behavior was observed for flavonoid extracts of L. montanus except the 1.0 mM concentration. Sparteine showed genotoxic activity only at 0.5 mM. The order of genotoxicity of the compounds studied was as follows: L. mexicanus > L. montanus > flavonoids of L. montanus > sparteine. There is evident genotoxic activity in the compounds that were studied, particularly at lower concentrations (0.01 and 0.1 mM). Given the limited information about the genotoxicity of the compounds of L. mexicanus and L. montanus, further studies are necessary.

  15. Rotational Spin-up Caused CO2 Outgassing on Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Graves, Kevin; Hirabayashi, Masatoshi; Richardson, James

    2015-11-01

    The Deep Impact spacecraft’s flyby of comet 103P/Hartley 2 on November 4, 2010 revealed its nucleus to be a small, bilobate, and highly active world [1] [2]. The bulk of this activity is driven by CO2 sublimation, which is enigmatically restricted to the tip of the small lobe [1]. Because Hartley 2's CO2 production responds to the diurnal cycle of the nucleus [1], CO2 ice must be no deeper than a few centimeters below the surface of the small lobe. However the high volatility of CO2 would suggest that its sublimation front should recede deep below the surface, such that diurnal volatile production is dominated by more refractory species such as water ice, as was observed at comet Tempel 1 [3].Here we show that both the near surface CO2 ice and its geographic restriction to the tip of the small lobe suggest that Hartley 2 recently experienced an episode of fast rotation. We use the GRAVMAP code to compute the stability of slopes on the surface of Hartley 2 as a function of spin period. We determine that the surface of the active region of Hartley 2’s small lobe becomes unstable at a rotation period of ~10-12 hours (as opposed to its current spin period of ~ 18 hours [1]), and will flow toward the tip of the lobe, excavating buried CO2 ice and activating CO2-driven activity. However, the rest of the surface of the nucleus is stable at these spin rates, and will therefore not exhibit CO2 activity. We additionally use Finite Element Model (FEM) analysis to demonstrate that the interior of Hartley 2’s nucleus is structurally stable (assuming a cohesive strength of at least 5 Pa) at these spin rates.The uncommonly high angular acceleration of Hartley 2, which has changed the nucleus spin period by two hours in three months [4], suggests that this episode of fast rotation may have existed only a few years or decades ago. Thus, Hartley 2 may provide an excellent case study into the reactivation of quiescent comet nuclei via rotational spin up, as would result from

  16. David Levy's Guide to Observing and Discovering Comets

    NASA Astrophysics Data System (ADS)

    Levy, David H.

    2003-05-01

    Preface; Part I. Why Observe Comets?: 1. Of history, superstition, magic, and science; 2. Comet science progresses; Part II. Discovering Comets: 3. Comet searching begins; 4. Tails and trails; 5. Comet searching in the twentieth century; 6. How I search for comets; 7. Searching for comets photographically; 8. Searching for comets with CCDs; 9. Comet hunting by reading; 10. Hunting for sungrazers over the Internet; 11. What to do when you think you've found a comet; Part III. A New Way of Looking at Comets: 12. When comets hit planets; 13. The future of visual comet hunting; Part IV. How to Observe Comets: 14. An introduction to comet hunting; 15. Visual observing of comets; 16. Estimating the magnitude of a comet; 17. Taking a picture of a comet; 18. Measuring where a comet is in the sky; Part V. Closing Notes: 19. My passion for comets.

  17. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  18. Gravitational lensing of active galactic nuclei.

    PubMed

    Hewitt, J N

    1995-12-05

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes.

  19. Nucleus Characterization of Main-Belt Comet P/Garradd

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Kaluna, Heather; Meech, Karen J.

    2012-02-01

    We seek SOAR time to physically characterize the nucleus of main- belt comet (MBC) P/2008 R1 (Garradd). Our primary objectives include determination of P/Garradd's rotation period, shape, and colors. MBCs are mysterious objects that exhibit cometary activity yet are dynamically indistinguishable from main-belt asteroids. Studying these apparently icy objects so close to the Sun is important for understanding the distribution of volatile material in our solar system as well as the origin of Earth's water. Five MBCs are currently known: only two have well-characterized nuclei, while the others have only been partially characterized. With so little known about this population, it is crucial to obtain the best possible physical characterizations for as many of the few currently known MBCs as possible. This information will aid us in developing a global understanding of the population's characteristics, such as the level of diversity as well as any commonalities. This will then help answer larger scientific questions such as how abundant MBCs may be and what they can tell us about the past and present distribution of ice in the inner solar system.

  20. Anatomy of a Busted Comet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version (Figure 1)

    NASA's Spitzer Space Telescope captured the picture on the left of comet Holmes in March 2008, five months after the comet suddenly erupted and brightened a millionfold overnight. The contrast of the picture has been enhanced on the right to show the anatomy of the comet.

    Every six years, comet 17P/Holmes speeds away from Jupiter and heads inward toward the sun, traveling the same route typically without incident. However, twice in the last 116 years, in November 1892 and October 2007, comet Holmes mysteriously exploded as it approached the asteroid belt. Astronomers still do not know the cause of these eruptions.

    Spitzer's infrared picture at left hand side of figure 1, reveals fine dust particles that make up the outer shell, or coma, of the comet. The nucleus of the comet is within the bright whitish spot in the center, while the yellow area shows solid particles that were blown from the comet in the explosion. The comet is headed away from the sun, which lies beyond the right-hand side of figure 1.

    The contrast-enhanced picture on the right shows the comet's outer shell, and strange filaments, or streamers, of dust. The streamers and shell are a yet another mystery surrounding comet Holmes. Scientists had initially suspected that the streamers were small dust particles ejected from fragments of the nucleus, or from hyerpactive jets on the nucleus, during the October 2007 explosion. If so, both the streamers and the shell should have shifted their orientation as the comet followed its orbit around the sun. Radiation pressure from the sun should have swept the material back and away from it. But pictures of comet Holmes taken by Spitzer over time show the streamers and shell in the same configuration, and not pointing away from the sun. The observations have left astronomers stumped.

    The horizontal line seen in the contrast-enhanced picture is a trail of debris

  1. Mineral abundances of comet 17P/Holmes derived from the mid-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Yamaguchi, MItsuru; Ootsubo, Takafumi; Kawakita, Hideyo; Sakon, Itsuki; Honda, Mitsuhiko; Watanabe, Jun-ichi

    2017-10-01

    Dust grains of crystalline silicate, which is rarely presented in an interstellar space, were found in cometary nuclei (Messenger et al. 1996, LPI, 27, 867; Wooden et al. 1999, ApJ, 517, 1058, references therein). It is thought that these crystalline silicates had formed by annealing or condensations of amorphous grains near the Sun in the solar nebula, and incorporated into a cometary nucleus in a cold region (farther than formation regions of the crystalline silicates) by radial transportation in the solar nebula. It is considered that transportation mechanisms to outside of the solar nebula were turbulent and/or X-wind. An abundance of the crystalline dust grains was therefore expected to be smaller as far from the Sun (Gail, 2001, A&A, 378, 192; Bockelée-Morvan et al. 2002, A&A, 384, 1107). Namely, the abundance ratio of the crystalline silicate in cometary dust grains relates a degree of mass transportation and a distance from the Sun when cometary nucleus formed in the Solar nebula. The mass ratio of crystalline silicates of dust grains is determined from by Si-O stretching vibrational bands of silicate grains around 10 μm using difference of spectral band features between crystalline and amorphous grains. We present the crystalline-to-amorphous mass ratio of silicate grains in the comet 17P/Holmes by using the thermal emission mode of the dust grains (Ootsubo et al. 2007, P&SS, 55, 1044) applied to the mid-infrared spectra of the comet. These spectra were taken by the COMICS mounted on the Subaru Telescope on 2007 October 25, 26, 27 and 28 immediately after the great outburst of the comet (started on October 23). We discuss about formation conditions of the nucleus of the comet based on the derived mass ratio of silicate grains of the comet.

  2. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2})more » to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.« less

  3. Rosetta Comet Spreads its Jets

    NASA Image and Video Library

    2014-10-24

    This image was taken by the Optical, Spectroscopic, and Infrared Remote Imaging System, Rosetta main onboard scientific imaging system, on Sept. 10, 2014. Jets of cometary activity can be seen along almost the entire body of the comet.

  4. The intermediate comets and nongravitational effects

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1986-01-01

    The motions of the intermediate-period comets Pons-Brooks, Olbers, Brorsen-Metcalf, and Westphal are investigated over their observed intervals. The three apparitions of comets Pons-Brooks and Olbers were successfully linked, using the now standard nongravitational-force model. The two apparitions of Comet Brorsen-Metcalf were successfully linked without the need for nongravitational effects. For the 1852 and 1913 apparitions of Comet Westphal, complete success was not achieved in modeling the comet's motion either with or without nongravitational effects. However, by including these effects, the comet's astrometric observations could be represented significantly better than if they were assumed inoperative. Comet Westphal's dynamic and photometric behavior suggests its complete disintegration before reaching perihelion in 1913. If the very large radial nongravitational parameter determined for Comet Westphal is due to the comet's disintegration into dust, then the resultant dust-particle size is of the order of 0.8 mm.

  5. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  6. Will comet 209P/LINEAR generate the next meteor storm?

    NASA Astrophysics Data System (ADS)

    Ye, Quanzhi; Wiegert, Paul A.

    2014-02-01

    Previous studies have suggested that comet 209P/LINEAR may produce strong meteor activity on Earth on 2014 May 24; however, exact timing and activity level is difficult to estimate due to the limited physical observations of the comet. Here, we reanalyse the optical observations of 209P/LINEAR obtained during its 2009 apparition. We find that the comet is relatively depleted in dust production, with Afρ at 1 cm level within eight months around its perihelion. This feature suggested that this comet may be currently transitioning from a typical comet to a dormant comet. Syndyne simulation shows that the optical cometary tail is dominated by larger particles with β ˜ 0.003. Numerical simulations of the cometary dust trails confirm the arrival of particles on 2014 May 24 from some of the 1798-1979 trails. The nominal radiant is at RA 122° ± 1°, Dec. 79° ± 1° (J2000) in the constellation of Camelopardalis. Given that the comet is found to be depleted in dust production, we concluded that a meteor storm (ZHR ≥ 1000) may be unlikely. However, our simulation also shows that the size distribution of the arrived particles is skewed strongly to larger particles. Coupling with the result of syndyne simulation, we think that the event, if detectable, may be dominated by bright meteors. We encourage observers to monitor the expected meteor event as it will provide us with rare direct information on the dynamical history of 209P/LINEAR which is otherwise irretrievably lost.

  7. Look--It's a Comet!

    ERIC Educational Resources Information Center

    Berglund, Kay

    1997-01-01

    Describes a classroom lesson on comets that uses modeling and guided imagery to spark students' curiosity. Comet models are built using chunks of rock salt, polystyrene balls, and tinsel. Abstract ideas are made more concrete with a guided imagery story called Comet Ride! Includes an introduction to the use of parallax to measure the distance of…

  8. Several twilight bolides over Kiev in 2013-2015 - fragments of comets nuclei

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.

    2016-06-01

    During the short period of our observations (from March 2013 to 2015), was fixed falling at least a dozen fragments of cometary nuclei, at least five of sufficiently large and dozens of smaller fragments of meteoroids. The results of our observations also showed that during the morning and evening twilight over Kiev clearly visible the plume of aerosols of technical nature from the plants, factories and other production facilities.

  9. [Properties and localization of Mg- and Ca-ATpase activities in wheat embryo cell nuclei].

    PubMed

    Vasil'eva, N A; Belkina, G G; Stepanenko, S Y; Atalykova, F I; Oparin, A I

    1978-05-01

    The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.

  10. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    PubMed

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The

  11. Reconfinement and loss of stability in jets from active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-02-01

    Jets powered by active galactic nuclei appear impressively stable compared with their terrestrial and laboratory counterparts—they can be traced from their origin to distances exceeding their injection radius by up to a billion times1,2. However, some less energetic jets get disrupted and lose their coherence on the scale of their host galaxy1,3. Quite remarkably, on the same scale, these jets are expected to become confined by the thermal pressure of the intra-galactic gas2. Motivated by these observations, we have started a systematic study of active galactic nuclei jets undergoing reconfinement via computer simulations. Here, we show that in the case of unmagnetized relativistic jets, the reconfinement is accompanied by the development of an instability and transition to a turbulent state. During their initial growth, the perturbations have a highly organized streamwise-oriented structure, indicating that it is not the Kelvin-Helmholtz instability, the instability which has been the main focus of the jet stability studies so far4,5. Instead, it is closely related to the centrifugal instability6. This instability is likely to be behind the division of active galactic nuclei jets into two morphological types in the Fanaroff-Riley classification7.

  12. Comet Halley: The Curtis Schmidts-Isla de Pascua observations

    NASA Technical Reports Server (NTRS)

    Miller, Freeman D.; Liller, William

    1986-01-01

    Halley's comet plasma tail disturbances and attendant tail phenomena were observed. Nearly simultaneous exposures with two telescopes serve to correlate information obtained with the two instruments. Photographs of 14 pre-Halley comets taken on 54 nights were examined with a view to cross-interpretation of phenomena seen in Halley with the earlier comets, as recorded on a homogenous collection of plates taken with the same instrument. The tail of Halley was highly active. This contrasts sharply with pre-Halley comets where undisturbed tails are the rule. During March and April, disturbances appeared in the tail of Halley at an average of 1 new distrubance every 3.7 days. It is considered that 10 of the 11 observed disturbances had common characteristics which allow them to be characterized as disconnections.

  13. ISO's analysis of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition

  14. Special Report: Chemistry of Comets.

    ERIC Educational Resources Information Center

    A'Hearn, Michael F.

    1984-01-01

    Discusses the chemistry of comets. How comets provide clues to the birth of the solar system, photolytic reactions on comets involving water, chemical modeling, nuclear chemistry, and research findings are among the areas considered. (JN)

  15. Comet 103P/Hartley 2 at perihelion: gas and dust activity

    NASA Astrophysics Data System (ADS)

    Lara, L. M.; Lin, Z.-Y.; Meech, K.

    2011-08-01

    Context. The comet 103P/Hartley 2, target of the EPOXI mission (NASA), was supposed to be observed for 3 days around its perihelion, from October 27 to 29, 2010, but photometric data were obtained only on October 27 and 29, 2010. On both dates, the comet visibility was not optimal due to its proximity to the Moon, as projected on the plane of the sky, whereas on October 28, the comet could not be observed at all. Aims: The goal of the campaign was to give ground support to the EPOXI mission by establishing a baseline of activity at perihelion to be compared with in situ activity observed by the space mission about 7 days later on Nov. 4, 2010. We aimed to assess gas and dust production rates, to study the gas and dust coma morphology, to investigate the behaviour of the refractory component by analysing the dust colour variations with date and with projected cometocentric distance, ρ, and to determine the slope of the surface brightness profiles, B, as a function of ρ. Methods: Long-slit spectra and optical broad- and narrowband images were acquired with the instrument ACAM mounted on the William Herschel Telescope (WHT) at La Palma Observatory. We investigated the evolution of the dust coma morphology from the images acquired with specific continuum cometary filters (in the blue and red wavelength region) with image-enhancing techniques. We studied (1) the gas and dust production rates; (2) the dust radial brightness profiles; (3) the profiles of the CN, C2, C3 and NH2 column densities, and (4) the CN and C3 coma morphologies. The dust and gas profiles were azimuthally averaged, as well as measured in both the E-W direction (~Sun-antisolar direction) and in a direction defined by the slit orientation at PA 70 to 250 degrees. Results: The morphological analysis of the dust coma reveals only one structure. Aside from the dust tail in the west direction, a bright jet is detected in images acquired on October 27 at 03:00-04:00 UT. This jet turns on and off and it is

  16. THE PRE-PERIHELION ACTIVITY OF DYNAMICALLY NEW COMET C/2013 A1 (SIDING SPRING) AND ITS CLOSE ENCOUNTER WITH MARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodewits, Dennis; Kelley, Michael S. P.; Farnham, Tony L.

    We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its perihelion at 1.4 AU. From our observations, we estimate that the water production rate during closest approach to Mars was 1.5 ± 0.3 × 10{sup 28} molecules s{sup −1}, that peak gas delivery rates where between 4.5 and 8.8 kg s{sup −1}, and that in total between 3.1 and 5.4 × 10{sup 4} kg cometary gas was delivered to the planet.more » Seasonal and evolutionary effects on the nucleus govern the pre-perihelion activity of comet Siding Spring. The sudden increase of its water production between 2.46 and 2.06 AU suggests the onset of the sublimation of icy grains in the coma, likely driven by CO{sub 2}. As the comet got closer to the Sun, the relative contribution of the nucleus’ water production increased, while CO{sub 2} production rates decreased. The changes in the comet’s activity can be explained by a depletion of CO{sub 2}, but the comet’s high mass loss rate suggests they may reflect primordial heterogeneities in the nucleus.« less

  17. On the evidence for axionlike particles from active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettinari, Guido Walter; Crittenden, Robert

    2010-10-15

    Burrage, Davis, and Shaw recently suggested exploiting the correlations between high and low energy luminosities of astrophysical objects to probe possible mixing between photons and axionlike particles (ALP) in magnetic field regions. They also presented evidence for the existence of ALP's by analyzing the optical/UV and x-ray monochromatic luminosities of active galactic nuclei. We extend their work by using the monochromatic luminosities of 320 unobscured active galactic nuclei from the Sloan Digital Sky Survey/Xmm-Newton Quasar Survey which allows the exploration of 18 different combinations of optical/UV and x-ray monochromatic luminosities. However, we do not find compelling evidence for the existencemore » of ALPs. Moreover, it appears that the signal reported by Burrage et al. is more likely due to x-ray absorption rather than to photon-ALP oscillation.« less

  18. MID-INFRARED SPECTROPHOTOMETRIC OBSERVATIONS OF FRAGMENTS B AND C OF COMET 73P/SCHWASSMANN-WACHMANN 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harker, David E.; Woodward, Charles E.; Kelley, Michael S.

    2011-01-15

    We present mid-infrared spectra and images from the Gemini-N (+ Michelle) observations of fragments SW3-[B] and SW3-[C] of the ecliptic (Jupiter family) comet 73P/Schwassmann-Wachmann 3 pre-perihelion. We observed fragment B soon after an outburst event (between 2006 April 16-26 UT) and detected crystalline silicates. The mineralogy of both fragments was dominated by amorphous carbon and amorphous pyroxene. The grain size distribution (assuming a Hanner-modified power law) for fragment SW3-[B] has a peak grain radius of a{sub p} {approx} 0.5 {mu}m, and for fragment SW3-[C], a{sub p} {approx} 0.3 {mu}m; both values are larger than the peak grain radius of themore » size distribution for the dust ejected from ecliptic comet 9P/Tempel 1 during the Deep Impact event (a{sub p} = 0.2 {mu}m). The silicate-to-carbon ratio and the silicate crystalline mass fraction for the submicron to micron-sized portion of the grain size distribution on the nucleus of fragment SW3-[B] were 1.341{sup +0.250}{sub -0.253} and 0.335{sup +0.089}{sub -0.112}, respectively, while on the nucleus of fragment SW3-[C] they were 0.671{sup +0.076}{sub -0.076} and 0.257{sup +0.039}{sub -0.043}, respectively. The similarity in mineralogy and grain properties between the two fragments implies that 73P/Schwassmann-Wachmann 3 is homogeneous in composition. The slight differences in grain size distribution and silicate-to-carbon ratio between the two fragments likely arise because SW3-[B] was actively fragmenting throughout its passage while the activity in SW3-[C] was primarily driven by jets. The lack of diverse mineralogy in the fragments SW3-[B] and SW3-[C] of 73P/Schwassmann-Wachmann 3 along with the relatively larger peak in the coma grain size distribution suggests that the parent body of this comet may have formed in a region of the solar nebula with different environmental properties than the natal sites where comet C/1995 O1 (Hale-Bopp) and 9P/Tempel 1 nuclei aggregated.« less

  19. 103P/Hartley 2: ground-based monitoring of the EPOXI flyby comet

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Vincent, J.-B.; Barrera, L.; Nowajewski, P.; Retamales, G.; Lister, T.; Boehnhardt, H.

    2011-10-01

    Comet 103P/Hartley 2 was the fly-by target of the NASA EPOXI mission. Observations of this comet during its previous perihelion passage [1] and in 2008 when it was in its aphelion arc [2, 3] revealed a small and very active nucleus. We observed 103P from March 2010 to January 2011 using the 4m SOAR telescope located at Cerro Pachon, Chile. We took images in UBVRI filters using the SOAR Optical Imager (SOI). In addition, we made use of the large collection of (mostly BVR) images taken of the comet by school pupils using the two robotic 2m Faulkes Telescopes, which cover the same period. At the time of the observations, the comet was moving from 2.8 AU pre-perihelion to 1.6 AU post-perihelion heliocentric distance, when the comet was expected to display the most activity. The main purpose of our observations was the characterization of the activity of comet 103P and its evolution along the perihelion arc. We searched for the presence of dust coma structures and their evolution with changing heliocentric distance and determined gas and dust production rates, the dust color and the variation in these quantities as the comet passed perihelion. While no coma structures were detected between March and July 2010, a clear anisotropy in the coma in the anti-tail direction was detected in images obtained in November 2011 (Fig. 1). At the same place, the Laplace filter detects what might be a jet.

  20. Discovering the Nature of Comets.

    ERIC Educational Resources Information Center

    Whipple, Fred L.

    1986-01-01

    "The Mystery of Comets" by Dr. Fred Whipple provides an introduction to the modern picture of comets and his personal reminiscences of how his model of comets came to be. An adaptation of several sections of the book is presented. (JN)

  1. Outbursts of H2O in Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Larson, H. P.; Hu, H.-Y.; Mumma, M. J.; Weaver, H. A.

    1990-07-01

    Comet Halley gas-production monitoring efforts in March 1986 with the NASA Kuiper Airborne Observatory's Fourier transform spectrometer have indicated rapid temporal variations in H2O emissions; a continuous record of an H2O outburst was thus obtained. The event, in which H2O brightness increased by a factor of 2.2 in less than 10 min, is ascribable to an energetic process in the nucleus whose character may have been that of amorphous H2O ice crystallization, chemical explosion, thermal stress, or a compressed gas pocket. The timing and energy of the event appear to require an internal energy source; amorphous ice crystallization is held to be most consistent with compositional and thermal models of cometary nuclei as well as the observations.

  2. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  3. Comparison of some characteristics of comets 1P/Halley and 67P/Churyumov-Gerasimenko from the Vega and Rosetta mission data

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2017-05-01

    On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov-Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.

  4. 30 years of the Vega mission: Comparison of some properties of the 1P/Halley and 67P/Churyumov-Gerasimenko comets

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2017-06-01

    On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and Vega-2 approached and closely passed by the nucleus of Halley’s comet (1P/Halley). A few days later, on March 14, 1986, the same was done by the European Space Agency’s (ESA) Giotto spacecraft. These missions, together with the Japanese Suisei (JAXA), marked a successful start to spacecraft exploration of cometary nuclei. Subsequent missions to other comets have been aimed at directly studying cometary bodies carrying signs of the formation of the Solar System. The Rosetta spacecraft, inserted into a low orbit around the nucleus of the 67P/Churyumov-Gerasimenko comet, performed its complex measurements from 2014 to September 2016. In this review, some of the data from these missions are compared. The review draws on the proceedings of the Vega 30th anniversary conference held at the Space Research Institute (IKI) of the Russian Academy of Sciences in March 2016 and is not meant to be exhaustive in describing mission results and problems in the physics of comets.

  5. William Herschel and Comets

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff

    2018-01-01

    I examine the observational and theoretical researches of William Herschel on 21 comets that he observed over the period 1781 to 1812. Herschel's focus, unlike most contemporaries, was on their physical structure, not their orbits. He forged a strong connection between comets and his nebulae with a scheme of cometary "maturation" (1812) involved a comet traveling from star to star after its central "planetary body'; was born from gravitational collapse of a nebula. During close passages of a star, the comet brightened and lost mass from its atmosphere; at other times, when between stars, it encountered nebulae and was rejuvenated by picking up more mass. Laplace soon adopted these ideas to improve his nebula hypothesis for solar system formation.

  6. IUE observations of faint comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.; Feldman, P. D.; Festou, M. C.; Ahearn, M. F.; Keller, H. U.

    1981-01-01

    Ultraviolet spectra of seven comets taken with the same instrument are given. The comets P/Encke (1980), P/Tuttle (1980 h), P/Stephan-Oterma (1980 g), and Meier (1980 q) were observed in November and December 1980 with the IUE satellite, and comets P/Borrelly (1980 i) and Panther (1980 u) were observed with the IUE on March 6, 1981. The spectra of these comets are compared with one another, as well as with comet Bradfield (1978 X), which was extensively studied earlier in 1980 with the IUE. To simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at approximately the same value of heliocentric distance whenever possible. Effects arising from heliocentric velocity, geocentric distance, and optical depth are also discussed. All of the cometary spectra are found to be remarkably similar, suggesting that these comets may have a common composition and origin.

  7. IUE observations of faint comets

    NASA Astrophysics Data System (ADS)

    Weaver, H. A.; Feldman, P. D.; Festou, M.; A'Hearn, M. F.; Keller, H. U.

    1981-09-01

    Ultraviolet spectra of seven comets taken with the same instrument are given. The comets P/Encke (1980), P/Tuttle (1980 h), P/Stephan-Oterma (1980 g), and Meier (1980 q) were observed in November and December 1980 with the IUE satellite, and comets P/Borrelly (1980 i) and Panther (1980 u) were observed with the IUE on March 6, 1981. The spectra of these comets are compared with one another, as well as with comet Bradfield (1978 X), which was extensively studied earlier in 1980 with the IUE. To simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at approximately the same value of heliocentric distance whenever possible. Effects arising from heliocentric velocity, geocentric distance, and optical depth are also discussed. All of the cometary spectra are found to be remarkably similar, suggesting that these comets may have a common composition and origin.

  8. Meteorites, Bolides and Comets: A Tale of Inconsistency

    NASA Astrophysics Data System (ADS)

    Jakes, P.; Padevet, V.

    1992-07-01

    Inhomogeneity of cometary nuclei has been established through the observed disruptions of comets [1] and through the determination of dust particle composition during the encounter of the Vega and Giotto satellites with comet Halley [2,3,4]. The raisin bread model of cometary nuclei [5,6] assumes the presence of solid (rock) and dust particle material set in the volatile rich, ice- cemented material. Rock material may contribute to the formation of dust particles. Gombosi and Houpis [5] argued that only the composition of dust particles derived from the icy, volatile component of the comet were analyzed and implied thus that the third cometary component present (raisins/rocks) has not been examined. The compositions of the cometary (Halley) dust and the interplanetary dust particles (IDPs) are "chondritic" (Blanford et al., 1988). It is difficult, therefore to estimate the proportion of cometary to asteroid-derived dust in near Earth space, e.g., among the IDPs [7] unless other criteria are available. Bolide multistation photographic tracking allows the determination of the orbital preencounter parameters of solid bodies (0.01-100,000 kg in mass) with the Earth, and allows us to classify them according to their ablation coefficient (tau), penetration depth into the atmosphere (PE), theoretical densities (sigma), and terminal velocities (V(sub)E). Four groups are recognized (Table 1). Three of the type I bolides were recovered as ordinary chondrites (Pribram, Lost City, and Innisfree). Ceplecha [8] has shown that 38% of bolides (fireballs) come from cometary orbits (11% from highly eccentric orbits typical of new comets), but most of the bolides (62%) originate at asteroidal orbits. Seven of the 14 known meteoric showers could be attributed to known comets: N,S Taurids to 1970 P/Encke, Lyrids to 1861 I Thatcher-Beaker, Perseids to 1862 III Swift-Tuttle- Simons, Orionids to 1835 III P/Halley, Draconids to 1946 V P/Giacobini-Zinner, Leonids to 1966 I Tempel

  9. Rosetta Comet Spreads its Jets

    NASA Image and Video Library

    2014-10-24

    This image was taken by the Optical, Spectroscopic, and Infrared Remote Imaging System, Rosetta main onboard scientific imaging system, on Sept. 10, 2014. Jets of cometary activity can be seen along almost the entire body of the comet. http://photojournal.jpl.nasa.gov/catalog/PIA18886

  10. Monitoring of DNA breakage in embryonic stages of the African catfish Clarias gariepinus (Burchell, 1822) after exposure to lead nitrate using alkaline comet assay.

    PubMed

    Osman, Alaa G M; Mekkawy, Imam A; Verreth, Johan; Wuertz, Sven; Kloas, Werner; Kirschbaum, Frank

    2008-12-01

    Increasing lead contamination in Egyptian ecosystems and high lead concentrations in food items have raised concern for human health and stimulated studies on monitoring ecotoxicological impact of lead-caused genotoxicity. In this work, the alkaline comet assay was modified for monitoring DNA strand breakage in sensitive early life stages of the African catfish Clarias gariepinus. Following exposure to 100, 300, and 500 microg/L lead nitrate, DNA strand breakage was quantified in embryos at 30, 48, 96, 144, and 168 h post-fertilization (PFS). For quantitative analysis, four commonly used parameters (tail % DNA, %TDNA; head % DNA, %HDNA; tail length, TL; tail moment, TM) were analyzed in 96 nuclei (in triplicates) at each sampling point. The parameter %TDNA revealed highest resolution and lowest variation. A strong correlation between lead concentration, time of exposure, and DNA strand breakage was observed. Here, genotoxicity detected by comet assay preceded the manifested malformations assessed with conventional histology. Qualitative evaluation was carried out using five categories are as follows: undamaged (%TDNA < or = 10%), low damaged (10% < %TDNA < or = 25%), median damaged (25 < %TDNA < or = 50%), highly damaged (50 < %TDNA < or = 75%), and extremely damaged (%TDNA > 75%) nuclei confirming a dose and time-dependent shift towards increased frequencies of highly and extremely damaged nuclei. A protective capacity provided by a hardened chorion is a an interesting finding in this study as DNA damage in the prehatching stages 30 h-PFS and 48 h-PFS was low in all treatments (qualitative and quantitative analyses). These results clearly show that the comet assay is a sensitive tool for the detection of genotoxicity in vulnerable early life stages of the African catfish and is a method more sensitive than histological parameters for monitoring genotoxic effects. 2008 Wiley Periodicals, Inc.

  11. The comet assay: ready for 30 more years.

    PubMed

    Møller, Peter

    2018-02-24

    During the last 30 years, the comet assay has become widely used for the measurement of DNA damage and repair in cells and tissues. A landmark achievement was reached in 2016 when the Organization for Economic Co-operation and Development adopted a comet assay guideline for in vivo testing of DNA strand breaks in animals. However, the comet assay has much more to offer than being an assay for testing DNA strand breaks in animal organs. The use of repair enzymes increases the range of DNA lesions that can be detected with the assay. It can also be modified to measure DNA repair activity. Still, despite the long-term use of the assay, there is a need for studies that assess the impact of variation in specific steps of the procedure. This is particularly important for the on-going efforts to decrease the variation between experiments and laboratories. The articles in this Special Issue of Mutagenesis cover important technical issues of the comet assay procedure, nanogenotoxicity and ionising radiation sensitivity on plant cells. The included biomonitoring studies have assessed seasonal variation and certain predictors for the basal level of DNA damage in white blood cells. Lastly, the comet assay has been used in studies on genotoxicity of environmental and occupational exposures in human biomonitoring studies and animal models. Overall, the articles in this Special Issue demonstrate the versatility of the comet assay and they hold promise that the assay is ready for the next 30 years.

  12. Term Projects on Interstellar Comets

    ERIC Educational Resources Information Center

    Mack, John E.

    1975-01-01

    Presents two calculations of the probability of detection of an interstellar comet, under the hypothesis that such comets would escape from comet clouds similar to that believed to surround the sun. Proposes three problems, each of which would be a reasonable term project for a motivated undergraduate. (Author/MLH)

  13. A New Orbit for Comet C/1865 B1 (Great Southern Comet of 1865)

    NASA Astrophysics Data System (ADS)

    Branham, Richard L., Jr.

    2018-04-01

    Comet C/1865 B1 (Great southern comet of 1865), observed only in the southern hemisphere, is one of a large number of comets with parabolic orbits. Given that there are 202 observations in right ascension and 165 in declination it proves possible to calculate a better orbit than that Körber published in 1887, the orbit used in various catalogs and data bases. C/1865 B1's orbit is hyperbolic and statistically distinguishable from a parabola. This object, therefore, cannot be considered an NEO. The comet has a small perihelion distance of 0.026 AU.

  14. EPOXI: Comet 103p/Hartley 2 Observations from a Worldwide Campaign

    NASA Technical Reports Server (NTRS)

    Meech, K. J.; Hearn, M. F. A.; Bauer, J. M.; Bonev, B. P.; Charnley, S. B.; DiSanti, M. A.; Gersch, A.; Immler, S. M.; Kaluna, H. M.; Keane, J. V.; hide

    2011-01-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales. at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P (Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was approximately 16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  15. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  16. Coma in Comet C/2012 S1 (ISON) at ~4 au

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Zubko, Evgenij; Hines, Dean C.; Shkuratov, Yuriy; Kaydash, Vadym; Muinonen, Karri; Knight, Matthew W.; Sitko, Michael L.; Lisse, Carrey M.; Mutchler, Max; Wooden, Diane H.; Li, Jian-Yang; Kobayashi, Hiroshi

    2015-11-01

    refractory surface layer on the surface of cometary nuclei [Zubko et al. 2012: A&A 544, L8]. A depletion of such particles in Comet ISON could imply an absence of such a layer on its nucleus.

  17. Comet Hunters: A Citizen Science Project to Search for Comets in the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Schwamb, Megan Elizabeth; Zhang, Zhi-Wei; Chen, Ying-Tung; Wang, Shiang-Yu; Lintott, Chris

    2016-10-01

    Fully automated detection of comets in wide-field surveys remains a challenge, as even highly successful comet-finding surveys like Pan-STARRS rely on a combination of both automated flagging algorithms and vetting by human eyes. To take advantage of the long-noted superiority of the human eye over computer algorithms in certain types of pattern recognition, particularly when dealing with a range of target morphologies of interest, we have created a citizen science website with the aim of allowing the general public to aid in the search for active asteroids, which are objects that occupy dynamically asteroidal orbits yet exhibit comet-like dust emission due to sublimation, impact disruption, rotational destabilization, or other effects. Located at comethunters.org, the Comet Hunters website was built using the Zooniverse Project Builder (https://www.zooniverse.org/lab), and displays images of known asteroids obtained either from archival data obtained between 1999 and 2014 by the Suprime-Cam wide-field imager mounted on the 8-m Subaru telescope on Mauna Kea in Hawaii, or more contemporary data obtained by the Hyper Suprime-Cam (HSC) wide-field imager also on the Subaru Telescope as part of the ongoing HSC Subaru Strategic Program (SSP) survey. By using observations from such a large-aperture telescope, most of which have never been searched for solar system objects, much less cometary ones, we expect that volunteers should be able to make genuinely scientifically significant discoveries, and also provide valuable insights into the potential and challenges of searching for comets in the LSST era. To date, over 13,000 registered volunteers have contributed 350,000 classifications. We will discuss the design and construction of the Comet Hunters website, and also discuss early results from the project.This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan

  18. Does a continuous solid nucleus exist in comets.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The implication of actual cometary observations for the physical nature of comets is briefly reviewed, bringing out the complete conflict with observation of the ice-dust solid nucleus model put forward in recent years as representing the fundamental structure of comets. That under increasing solar heat the nucleus develops an expanding atmosphere is inconsistent with the well-established phenomenon that the coma contracts with decreasing distance from the sun. Several comets remaining always beyond Mars have nevertheless been strongly active and produced fine tails. That some comets show at times a star-like point of light is readily explicable on the dust-cloud structure and by no means establishes that a solid nucleus exists. With the nucleus-area corresponding not to a small solid mass but to an optical phenomenon, there would be no reason to expect that it would describe a precise dynamical orbit. On the hypothesis of a nucleus, it is necessary to postulate further some internal jet-propulsion mechanism to account for the orbital deviations.

  19. Biomonitoring of agricultural workers exposed to pesticide mixtures in Guerrero state, Mexico, with comet assay and micronucleus test.

    PubMed

    Carbajal-López, Yolanda; Gómez-Arroyo, Sandra; Villalobos-Pietrini, Rafael; Calderón-Segura, María Elena; Martínez-Arroyo, Amparo

    2016-02-01

    The aim of this study was to evaluate the genotoxic effect of pesticides in exfoliated buccal cells of workers occupationally exposed in Guerrero, Mexico, using the comet assay and the micronucleus test. The study compared 111 agricultural workers in three rural communities (Arcelia 62, Ajuchitlan 13, and Tlapehuala 36), with 60 non-exposed individuals. All the participants were males. The presence of DNA damage was investigated in the exfoliated buccal cells of study participants with the comet assay and the micronucleus (MN) test; comet tail length was evaluated in 100 nuclei and 3000 epithelial cells of each individual, respectively; other nuclear anomalies such as nuclear buds, karyolysis, karyorrhexis, and binucleate cells were also evaluated. Study results revealed that the tail migration of DNA and the frequency of MN increased significantly in the exposed group, which also showed nuclear anomalies associated with cytotoxic or genotoxic effect. No positive correlation was noted between exposure time and tail length and micronuclei frequencies. No significant effect on genetic damage was observed as a result of age, smoking, and alcohol consumption. The MN and comet assay in exfoliated buccal cells are useful and minimally invasive methods for monitoring genetic damage in individuals exposed to pesticides. This study provided valuable data for establishing the possible risk to human health associated with pesticide exposure.

  20. DIRBE Comet Trails

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of <0.1 and <0.15 MJy/sr, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  1. The Rosetta mission orbiter science overview: the comet phase

    PubMed Central

    Altobelli, N.; Buratti, B. J.; Choukroun, M.

    2017-01-01

    The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov–Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554981

  2. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  3. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  4. A search for frosts in Comet Bowell /1980b/

    NASA Technical Reports Server (NTRS)

    Campins, H.; Lebofsky, L. A.; Rieke, G. H.; Lebofsky, M. J.

    1982-01-01

    Infrared observations of Comet Bowell represent the first search for frost signatures in a comet beyond 2 AU from the sun. Broad- and narrowband photometry has been obtained as well as CVF spectrophotometry of this comet and there is no evidence for absorption features in the spectral area between 1.25 and 2.3 microns. Models of the coma have been generated which constrain the volatile content of the grains an; are in agreement with the observed albedo. The darkness of the coma particles at large heliocentric distances indicates a low albedo nucleus as well. Brightness variations during the observing period seem to indicate an active nucleus at 4.5 AU from the sun.

  5. Flyby Comet Imaged By Radar

    NASA Image and Video Library

    2016-03-24

    Radar data of comet P/2016 BA14 taken over three days (March 21-23, 2016), when the comet was between 2.5 million miles and 2.2 million miles (4.1 million kilometers and 3.6 million kilometers) from Earth. Radar images from the flyby indicated that the comet is about 3,000 feet (1 kilometer) in diameter.

  6. Abdominal surgery activates nesfatin-1 immunoreactive brain nuclei in rats

    PubMed Central

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Taché, Yvette

    2011-01-01

    Abdominal surgery-induced postoperative gastric ileus is well established to induce Fos expression in specific brain nuclei in rats within 2-h after surgery. However, the phenotype of activated neurons has not been thoroughly characterized. Nesfatin-1 was recently discovered in the rat hypothalamus as a new anorexigenic peptide that also inhibits gastric emptying and is widely distributed in rat brain autonomic nuclei suggesting an involvement in stress responses. Therefore, we investigated whether abdominal surgery activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Two hours after abdominal surgery with cecal palpation under short isoflurane anesthesia or anesthesia alone, rats were transcardially perfused and brains processed for double immunohistochemical labeling of Fos and nesfatin-1. Abdominal surgery, compared to anesthesia alone, induced Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), Edinger-Westphal nucleus (EW), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling showed that of the activated cells, 99% were nesfatin-1-immunoreactive in the SON, 91% in the LC, 82% in the rRPa, 74% in the EW and VLM, 71% in the anterior parvicellular PVN, 47% in the lateral magnocellular PVN, 41% in the medial magnocellular PVN, 14 % in the NTS and 9% in the medial parvicellular PVN. These data established nesfatin-1 immunoreactive neurons in specific hypothalamic and pontine nuclei as part of the neuronal response to abdominal surgery and suggest a possible implication of nesfatin-1 in the alterations of food intake and gastric transit associated with such a stressor. PMID:19944727

  7. Comet 17P/Holmes: contrast in activity between before and after the 2007 outburst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Masateru; Kim, Yoonyoung; Warjurkar, Dhanraj S.

    2013-11-20

    A Jupiter-family comet, 17P/Holmes, underwent outbursts in 1892 and 2007. In particular, the 2007 outburst is known as the greatest outburst over the past century. However, little is known about the activity before the outburst because it was unpredicted. In addition, the time evolution of the nuclear physical status has not been systematically studied. Here, we study the activity of 17P/Holmes before and after the 2007 outburst through optical and mid-infrared observations. We found that the nucleus was highly depleted in its near-surface icy component before the outburst but that it became activated after the 2007 outburst. Assuming a conventionalmore » 1 μm sized grain model, we derived a surface fractional active area of 0.58% ± 0.14% before the outburst whereas the area was enlarged by a factor of ∼50 after the 2007 outburst. We also found that large (≥1 mm) particles could be dominant in the dust tail observed around aphelion. Based on the size of the particles, the dust production rate was ≳170 kg s{sup –1} at a heliocentric distance of r{sub h} = 4.1 AU, suggesting that the nucleus was still active around the aphelion passage. The nucleus color was similar to that of the dust particles and average for a Jupiter-family comet but different from that of most Kuiper Belt objects, implying that color may be inherent to icy bodies in the solar system. On the basis of these results, we concluded that more than 76 m of surface material was blown off by the 2007 outburst.« less

  8. Triggering active galactic nuclei in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Marshall, Madeline A.; Shabala, Stanislav S.; Krause, Martin G. H.; Pimbblet, Kevin A.; Croton, Darren J.; Owers, Matt S.

    2018-03-01

    We model the triggering of active galactic nuclei (AGN) in galaxy clusters using the semi-analytic galaxy formation model SAGE. We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with those of AGN and galaxies with intense star formation from a sample of low-redshift relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if 2.5 × 10-14 Pa < Pram < 2.5 × 10-13 Pa and Pram > 2Pinternal; this is consistent with expectations from hydrodynamical simulations of ram-pressure-induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.

  9. Origin of Short-Perihelion Comets

    NASA Technical Reports Server (NTRS)

    Guliyev, A. S.

    2011-01-01

    New regularities for short-perihelion comets are found. Distant nodes of cometary orbits of Kreutz family are concentrated in a plane with ascending node 76 and inclination 267 at the distance from 2 up to 3 a.u. and in a very narrow interval of longitudes. There is a correlation dependence between q and cos I concerning the found plane (coefficient of correlation 0.41). Similar results are received regarding to cometary families of Meyer, Kracht and Marsden. Distant nodes of these comets are concentrated close three planes (their parameters are discussed in the article) and at distances 1.4; 0.5; 6 a.u. accordingly. It is concluded that these comet groups were formed as a result of collision of parent bodies with meteoric streams. One more group, consisting of 7 comets is identified. 5 comet pairs are selected among sungrazers.

  10. Observations of the 18-cm lines of the OH radical in comets

    NASA Astrophysics Data System (ADS)

    Crovisier, J.; Colom, P.; Biver, N.; Bockelée-Morvan, D.

    2015-10-01

    Since 1973, the 18-cm lines of the OH radical have been systematically observed in selected comets with the 300×40 m radio telescope at Nançay. Up to now, 133 comets have been observed (counting different returns of short-period comets as different comets), totalling about 6000 individual observations (typically one hour per day for each observation).These observations trace the water production rates (through its photodissociation product OH) and the coma expansion velocity. They are precious for statistical investigations of the evolution of the activity of the comets. These observations are also made as a participation to multi-wavelength observing campaigns of dedicated comets and as a support to cometary space missions. The observations are organized in a database which is progressively made publicly available: http://www.lesia.obspm.fr/planeto/ cometes/basecom/ [1]The most recent observations are listed in Table 1. Here are some recent highlights: 103P/Hartley 2 was observed in support to its fly-by by the EPOXI mission and to observations with Herschel. [2] The outbursts of the sungrazing comet C/2012 S1 (ISON), preceding its demise as it approached the Sun at 0.012 AU on 28 November 2013, were observed. [3] Comet C/2013 A1 (Siding Spring) was detected just before it passed at only 0.001 AU from Mars on 19 October 2014, due to enhanced background radiation as the comet was close to the Galactic plane. [4] The Nançay radio telescope actively participated to the multi-wavelength observing campaigns of the bright comets C/2011 L4 (PANSTARRS), C/2012 F6 (Lemmon), C/2012 X1 (LINEAR), C/2013 R1 (Lovejoy) and C/2014 Q2 (Lovejoy) (Fig. 1), especially in coordination with radio observations with IRAM and ALMA. It should be noted that the Rosetta target 67P/Churyumov-Gerasimenko, which was marginally detected at its 1982 passage due to a relatively close approach to Earth (# = 0.39 AU) [1], is unfavourably placed at its present return for observations at Nançay.

  11. Further characterization of benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects.

    PubMed

    Bausinger, Julia; Schütz, Petra; Piberger, Ann Liza; Speit, Günter

    2016-03-01

    The present study aims to further characterize benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects. Therefore, we measured DNA effects by the comet assay and adduct levels by high-performance liquid chromatography (HPLC) in human lymphocytes and A549 cells exposed to (±)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(±)-anti-BPDE] or (+)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(+)-anti-BPDE]. Both, the racemic form and (+)-anti-BPDE, which is the most relevant metabolite with regard to mutagenicity and carcinogenicity, induced DNA migration in cultured lymphocytes in the same range of concentrations to a similar extent in the alkaline comet assay after exposure for 2h. Nevertheless, (+)-anti-BPDE induced significantly enhanced DNA migration after 16 and 18h post-cultivation which was not seen in response to (±)-anti-BPDE. Combination of the comet assay with the Fpg (formamidopyrimidine-DNA glycosylase) protein did not enhance BPDE-induced effects and thus indicated the absence of Fpg-sensitive sites (oxidized purines, N7-guanine adducts, AP-sites). The aphidicolin (APC)-modified comet assay suggested significant excision repair activity of cultured lymphocytes during the first 18h of culture after a 2 h-exposure to BPDE. In contrast to these repair-related effects measured by the comet assay, HPLC analysis of stable adducts did not reveal any significant removal of (+)-anti-BPDE-induced adducts from lymphocytes during the first 22h of culture. On the other hand, HPLC measurements indicated that A549 cells repaired about 70% of (+)-anti-BPDE-induced DNA-adducts within 22h of release. However, various experiments with the APC-modified comet assay did not indicate significant repair activity during this period in A549 cells. The conflicting results obtained with the comet assay and the HPLC-based adduct analysis question the real cause for BPDE-induced DNA migration in the comet assay and the reliability of the APC-modified comet assay for the

  12. Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak

    NASA Astrophysics Data System (ADS)

    Bodewits, Dennis; Farnham, Tony; Kelley, Michael S. P.; Manning Knight, Matthew

    2018-01-01

    Cometary outgassing can produce torques that change the spin state of the nucleus, influencing the evolution and lifetimes of comets. If these torques spin up the rotation to the point that centripetal forces exceed the material strength of the nucleus, the comet may fragment. Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.We combined CN narrowband imaging and aperture photometry and found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to over 46 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is the combination of a slow rotation, high activity, and a small nucleus that contribute to the rapid changes of the rotation state of 41P. In addition, the active regions on the surface of 41P are likely oriented in a way such that its torques are highly optimized in comparison to many other comets.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant

  13. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  14. Flight of the Comet

    NASA Image and Video Library

    2010-11-05

    Image taken by NASA EPOXI mission spacecraft during its flyby of comet Hartley 2 on Nov. 4, 2010. The spacecraft came within about 700 kilometers 435 miles of the comet nucleus at the time of closest approach.

  15. Observations of faint comets with the IUE

    NASA Astrophysics Data System (ADS)

    Festou, M.

    1982-06-01

    Spectral observations of eight comets, including seven periodic comets, made in the range 1150-3400 A with the IUE satellite are presented. Comet Bradfield, the sole nonperiodic comet observed, is found to exhibit strong OH and atomic hydrogen emissions from the decomposition of water, along with oxygen, carbon, sulfur, carbon disulfide, C2 and CO2(plus) emissions and a faint continuum due to dust at longer wavelengths. Comets Encke, Tuttle and Stefan-Oterma appear to have identical spectra in the UV, showing evidence of much gas, little dust and few ions (only CO2(plus) detected), and differing from comet Bradfield only in the lack of C2 emission. All eight comets observed by IUE, including Seargent, Meier, Borrelly and Panther, had the same chemical composition, consisting mainly of water with a few per mil or per cent CN, C2, C3 and CS. The water production rates of the periodic comets range from levels 6 times less to 11 times more than that of Comet Bradfield, which may be related to nuclear size or cometary age.

  16. Remote comets and related bodies - VJHK colorimetry and surface materials

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.; Cruikshank, D. P.; Degewij, J.

    1982-01-01

    VJHK colors for a number of asteroids and eight comets at various solar distances and levels of activity were obtained, and the observations are interpreted in terms of a two-component mixing model in which outer solar system interplanetary bodies are viewed as mixtures of ice and dark carbonaceous-type (RD and C) dirt. It is inferred that the observed comets have comae, and perhaps surfaces, of dirty ice or ice dirt grains colored by an RD-dirt component. This inference is supported by systematics of an 'alpha index' based on VJHK colors and empirically correlated with albedo and ice/dirt ratio. Among comets the alpha index correlates with solar distance in a way that suggests comets emit dirty ice grains which are stable at large solar distance but from which the ice component sublimes and leaves dirt grains at small solar distance.

  17. Comet ISON Passes Through Virgo

    NASA Image and Video Library

    2013-11-22

    Date: 8 Nov 2013 - Comet ISON shines in this five-minute exposure taken at NASA's Marshall Space Flight Center on Nov. 8, 2013.. The image was captured using a color CCD camera attached to a 14" telescope located at Marshall. At the time of this picture, comet ISON was 97 million miles from Earth, moving ever closer toward the sun. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure

  18. A survey of possible missions to the periodic comets in the interval 1974 - 2010

    NASA Technical Reports Server (NTRS)

    Bender, D. F.

    1974-01-01

    Catalogs are developed to survey the mission possibilities for the short period comets. In the first the physical and pertinent orbital characteristics are given for 65 short period comets. The second catalog is one containing the predicted perihelia for each of the 65 comets between 1974 and 2010. Geometry is included to indicate feasibility of Earth-based observation and sighting within 100 days of perihelion. The comets are divided on the basis of size and activity into three groups from the data in the first catalog: primary, secondary and low interest. The perihelia are separated into two groups: satisfactory and not satisfactory on the basis of earth-comet distance.

  19. On the Determination of the Orbits of Comets

    NASA Astrophysics Data System (ADS)

    Englefield, Henry

    2013-06-01

    Preface; 1. General view of the method; 2. On the motion of the point of intersection of the radius vector and cord; 3. On the comparison of the parabolic cord with the space which answers to the mean velocity of the earth in the same time; 4. Of the reduction of the second longitude of the comet; 5. On the proportion of the three curtate distances of the comet from the earth; 6. Of the graphical declination of the orbit of the earth; 7. Of the numerical quantities to be prepared for the construction or computation of the comet's orbit; 8. Determination of the distances of the comet from the earth and the sun; 9. Determination of the elements of the orbit from the determined distances; 10. Determination of the place of the comet from the earth and sun; 11. Determination of the distances of the comet from the earth and sun; 12. Determination of the comet's orbit; 13. Determination of the place of the comet; 14. Application of the graphical method to the comet of 1769; 15. Application of the distances found; 16. Determination of the place of the comet, for another given time; 17. Application of the trigonometrical method to the comet of 1769; 18. Determination of the elements of the orbit of the comet of 1769; Example of the graphical operation for the orbit of the comet of 1769; Example of the trigonometrical operation for the orbit of the comet of 1769; Conclusion; La Place's general method for determining the orbits of comets; Determination of the two elements of the orbit; Application of La Place's method of finding the approximate perihelion distance; Application of La Place's method for correcting the orbit of a comet, to the comet of 1769; Explanation and use of the tables; Tables; Appendix; Plates.

  20. Water/rock interactions in experimentally simulated dirty snowball and dirty iceball cometary nuclei

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Allton, Judith H.

    1991-01-01

    In the dirty snowball model for cometary nuclei, comet-nucleus materials are regarded as mixtures of volatile ices and relatively non-volatile minerals or chemical compounds. Carbonaceous chondrite meteorites are regarded as useful analogs for the rocky component. To help elucidate the possible physical geochemistry of cometary nuclei, preliminary results are reported of calorimetric experiments with two-component systems involving carbonaceous chondrites and water ice. Based on collective knowledge of the physics of water ice, three general types of interactions can be expected between water and minerals at sub-freezing temperatures: (1) heterogeneous nucleation of ice by insoluble minerals; (2) adsorption of water vapor by hygroscopic phases; and (3) freezing- and melting-point depression of liquid water sustained by soluble minerals. The relative and absolute magnitude of all three effects are expected to vary with mineral composition.

  1. Spectroscopic observations of comets

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Development of a spectrograph using a microchannel plate intensifier for observing faint comets is described. The spectrograph is capable of obtaining useful spectra of objects as faint as M(2) = 18. The increased guiding efficiency achieved by the optical coupling of the ISIT vidicon of the 154 cm telescope has resulted in a better signal to noise ratio. The ability to take a direct image of the comet aids in the interpretation of the spatial profile of the emissions. Spectra of comets Schwassmann-Wachmann 1, Bradfield, Encke, Tuttle, and Stephen-Oterma are discussed.

  2. Are Adonis and Hephaistos "Extinct" Comets?

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.

    The investigation of the evolution of Earth-approaching asteroids with the aim of revealing their meteor streams is one of the ways to determine if these asteroids are extinct comets. The orbital evolution of asteroids 2101 Adonis and 2212 Hephaistos studied, respectively, by AlfanGoryachev and Everhart methods shows that these asteroids cross the Earth's orbit four times. Their possible meteoroid swarms may therefore produce four meteor showers each. In this work, the theoretically predicted orbital elements and radiants of these streams are compared to the available observational data. In the cases of both Adonis and Hephaistos, all four meteor showers are shown to be active. Most likely, these asteroids are extinct comets.

  3. Rosetta - ESA's new comet chaser

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Rosetta orbiter will literally chase comet Wirtanen for two years, sending back valuable data and ensuring Europe retains its lead in comet science. A lander will attach itself to this lump of frozen ice and dust, which is travelling through space at over 130,000 kilometres per hour, and analyse samples. Just as the re-discovery of the Rosetta Stone, 200 years ago, enabled the mysteries of ancient Egyptian hieroglyphics to be unrravelled, so the Rosetta mission will help scientists learn even more about comets, the most primitive objects in the solar system. In 1986, ESA's Giotto spacecraft flew into the tail of Halley's Comet. That was ESA's first interplanetary mission and it was hailed as an outstanding success. The pictures and scientific data that Giotto sent back placed Europe at the forefront of comet science. Notes for Editors : On the day of the press event, the now deactivated Giotto spacecraft will do an Earth flyby 13 years after its encounter with Halley's Comet. The British Museum is celebrating 200-years anniversary of the Rosetta Stone, with an exhibition that includes a model of its modern equivalent, the Rosetta spacecraft.

  4. Multiwavelength Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; hide

    2013-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.

  5. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils.

    PubMed Central

    Deaton, J D; Guerrero, T; Howard, T H

    1992-01-01

    In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin

  6. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils.

    PubMed

    Deaton, J D; Guerrero, T; Howard, T H

    1992-12-01

    In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin

  7. Are There Many Inactive Jupiter-Family Comets among the Near-Earth Asteroid Population?

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrián

    2002-10-01

    We analyze the dynamical evolution of Jupiter-family (JF) comets and near-Earth asteroids (NEAs) with aphelion distances Q>3.5 AU, paying special attention to the problem of mixing of both populations, such that inactive comets may be disguised as NEAs. From numerical integrations for 2×10 6 years we find that the half lifetime (where the lifetime is defined against hyperbolic ejection or collision with the Sun or the planets) of near-Earth JF comets (perihelion distances q<1.3 AU) is about 1.5×10 5 years but that they spend only a small fraction of this time (˜ a few 10 3 years) with q<1.3 AU. From numerical integrations for 5×10 6 years we find that the half lifetime of NEAs in "cometary" orbits (defined as those with aphelion distances Q>4.5 AU, i.e., that approach or cross Jupiter's orbit) is 4.2×10 5 years, i.e., about three times longer than that for near-Earth JF comets. We also analyze the problem of decoupling JF comets from Jupiter to produce Encke-type comets. To this end we simulate the dynamical evolution of the sample of observed JF comets with the inclusion of nongravitational forces. While decoupling occurs very seldom when a purely gravitational motion is considered, the action of nongravitational forces (as strong as or greater than those acting on Encke) can produce a few Enckes. Furthermore, a few JF comets are transferred to low-eccentricity orbits entirely within the main asteroid belt ( Q<4 AU and q>2 AU). The population of NEAs in cometary orbits is found to be adequately replenished with NEAs of smaller Q's diffusing outward, from which we can set an upper limit of ˜20% for the putative component of deactivated JF comets needed to maintain such a population in steady state. From this analysis, the upper limit for the average time that a JF comet in near-Earth orbit can spend as a dormant, asteroid-looking body can be estimated to be about 40% of the time spent as an active comet. More likely, JF comets in near-Earth orbits will

  8. Distant Comets in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    2000-01-01

    The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming space missions.

  9. On Course for a Comet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 27, 2005, when the spacecraft was 6,229,030.3 kilometers (3,870,719 miles) away from the comet. Three images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  10. Comments on the Rotational State and Non-Gravitational Forces of Comet 46/WIRTANEN. Revised

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Belton, Michael J. S.

    1995-01-01

    We apply our experience of modeling the rotational state and non-gravitational forces of comet 1 P/Halley and other comets to comet 46P/Wirtanen. While the paucity of physical data on 46P/Wirtanen makes this process somewhat speculative, this comet's place as target for the important Rosetta mission gives significance to such a study. Our arguments are based on the summary of observational data provided by Jorda and Rickman (1995) and a comparative study of the behavior of other periodic comets. We find 46P/Wirtanen to have a level of surface activity relative to its mass that is dynamically more akin to that found in comet 1 P/Halley than in a typical periodic comet. We show through an illustrative numerical example that this apparent fact should likely lead to an excited spin state for this comet and that significant changes in the spin period could occur in a single pass through perihelion. We argue that the available observations are not sufficient to substantiate the claim of Jorda and Rickman (1995) that the nucleus is undergoing retrograde rotation and it is possible that the rotation is either prograde as well as retrograde. The substantial requirements that must be placed on any future observing program necessary to determine the precise rotational state are outlined. We advocate an extended (approx. two month) southern hemisphere observing campaign to determine the nuclear rotational state in 1996 if possible before activity turns on.

  11. DRBE comet trails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBEmore » data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.« less

  12. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  13. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; hide

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  14. ESA Unveils Its New Comet Chaser.

    NASA Astrophysics Data System (ADS)

    1999-07-01

    into the surface immediately on impact. By this time, the warmth of the Sun will probably have begun to vapourise parts of the nucleus, initiating some form of surface outgassing. For a period of about a month, data from the lander's eight experiments will be relayed to Earth via the orbiter. They will send back unique information on the nature and composition of the nucleus. Samples for chemical analysis will be taken of the organic crust and ices to a depth of at least 20 cm. Other instruments will measure characteristics such as near-surface strength, density, texture, porosity and thermal properties. Meanwhile, as Comet Wirtanen approaches the Sun, the Rosetta orbiter will fly alongside it, mapping its surface and studying changes in its activity. As its icy nucleus evaporates, 12 experiments on the orbiter will map its surface and study the dust and gas particles it ejects. For the first time, scientists will be able to monitor at close quarters the dramatic changes which take place as a comet plunges sunwards at a speed of 46,000 kph. The stream of data will include a mass of new information about the comet's changes in behaviour as it approaches the Sun, including: * variations in the temperature of the nucleus, * changing intensity and location of gas and dust jets on the nucleus, * the amount of gas and dust emitted from the nucleus, * the size, composition and impact velocity of dust particles, * the nature of the comet's interaction with the charged particles of the solar wind. By mission's end in July 2013, Rosetta will have spent almost two years chasing the comet for millions of kilometres through space. It will also have returned a treasure trove of data, which will enable us to learn more about how the planets formed and where we came from. Why Rosetta? Space exploration is all about discovering the unknown. Just as, 200 years ago, the discovery of the Rosetta Stone eventually enabled Champollion to unravel the mysteries of ancient Egyptian

  15. Comet Borrelly Varied Landscape

    NASA Image and Video Library

    2001-11-03

    Sunlight illuminates the bowling-pin shaped nucleus from directly below comet Borrelly as seen by NASA Deep Space 1. At this distance, many features become vivid on the surface of the nucleus, including a jagged line between day and night on the comet.

  16. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  17. The comet rendezvous asteroid flyby mission to Comet Kopff - Getting there is half the fun

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Kiedron, Krystyna

    1990-01-01

    The goal of the Comet Rendezvous Asteroid Flyby mission (CRAF) is to fly 'outward to the beginning', to examine closely what are thought to be remnants of the origins of the solar system. In particular, the CRAF spacecraft will use a two-year delta-V-earth-gravity-assist (delta-V-EGA) trajectory to reach a rendezvous point near the aphelion of the Comet Kopff, flying by the asteroid 449 Hamburga on the way. This paper discusses the trajectory used to get to the comet. Topics covered include the launch period, possible additional asteroid flybys, the earth flyby, the Hamburga flyby, and the rendezvous with Comet Kopff.

  18. Comet prospects for 2004

    NASA Astrophysics Data System (ADS)

    Shanklin, J. D.

    2003-12-01

    2004 sees the return of 18 periodic comets. None are particularly bright and the best are likely to be 78P/Gehrels and 88P/Howell. Three new long period comets are likely to put on a good show: 2001 Q4 (NEAT) reaches perihelion in May, when it could make at least 3rd magnitude. Northern hemisphere observers will first pick it up just after perihelion as it rapidly moves north. 2002 T7 (LINEAR) could also reach 3rd magnitude at closest approach in May, however northern hemisphere observers will have lost it as a binocular object in mid-March. Observers at far southern latitudes may be able to see these two naked eye comets at the same time. 2003 K4 (LINEAR) could reach 6th magnitude as it brightens on its way to perihelion. Several other long period comets discovered in previous years are also still visible.

  19. Book Review: The Origins of Comets

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    1992-01-01

    In The Origins of Comets, Bailey, Clube, and Napier propose that the answer to whether the ancient heavens were more interesting is a resounding "yes." The sky, in fact, has changed and is still changing. The authors trace the study of comets back to ancient Babylonian times with a focus on theories of the origins of these enigmatic visitors. The book is really of three distinct parts: the first six chapters provide an excellent and delightfully readable historical account of comet studies up to this century. The next few chapters give a rather detailed treatment of current models for comet origins. The last section treats the authors' own theories about the relationship between giant comets and extinctions on Earth.

  20. Meteoroid Streams from Sunskirter Comet Breakup

    NASA Astrophysics Data System (ADS)

    Jenniskens, P. M.

    2012-12-01

    In its first year of operations, the CAMS project (Cameras for Allsky Meteor Surveillance) has measured 47,000 meteoroid orbits at Earth, including some that pass the Sun as close as 0.008 AU. The population density increases significantly above perihelion distance q = 0.037 AU. Meteoroid streams are known with q about 0.1 AU. The Sun has a profound effect on comets that pass at 0.04-0.16 AU distance, called the sunskirter comets. SOHO and STEREO see families of small comets called the Marsden and Kracht groups. Sunlight is efficiently scattered by small 10-m sized fragments, making those fragments visible even when far from Earth. These comet groups are associated with meteor showers on Earth, in particular the Daytime Arietids and Delta Aquariids. All are related to 96P/Machholz, a highly inclined short-period (5.2 year) Jupiter family comet that comes to within 0.12 AU from the Sun, the smallest perihelion distance known among numbered comets. The proximity of the Sun speeds up the disintegration process, providing us a unique window on this important decay mechanism of Jupiter family comets and creating meteoroid streams. These are not the only sunskirting comets, however. In this presentation, we will present CAMS observations of the complete low-q meteoroid population at Earth and review their association with known parent bodies.

  1. Hydrogen cyanide polymers, comets and the origin of life.

    PubMed

    Matthews, Clifford N; Minard, Robert D

    2006-01-01

    Hydrogen cyanide polymers--heterogeneous solids ranging in colour from yellow to orange to brown to black--could be major components of the dark matter observed on many bodies of the outer solar system including asteroids, moons, planets and, especially, comets. The presence on cometary nuclei of frozen volatiles such as methane, ammonia and water subjected to high energy sources makes them attractive sites for the ready formation and condensed-phase polymerization of hydrogen cyanide. This could account for the dark crust observed on Comet Halley in 1986 by the Vega and Giotto missions. Dust emanating from its nucleus would arise partly from HCN polymers as suggested by the Giotto detection of free hydrogen cyanide, CN radicals, solid particles consisting only of H, C and N, or only of H, C, N, O, and nitrogen-containing organic compounds. Further evidence for cometary HCN polymers could be expected from in situ analysis of the ejected material from Comet Tempel 1 after collision with the impactor probe from the two-stage Deep Impact mission on July 4, 2005. Even more revealing will be actual samples of dust collected from the coma of Comet Wild 2 by the Stardust mission, due to return to Earth in January 2006 for analyses which we have predicted will detect these polymers and related compounds. In situ results have already shown that nitriles and polymers of hydrogen cyanide are probable components of the cometary dust that struck the Cometary and Interstellar Dust Analyzer of the Stardust spacecraft as it approached Comet Wild 2 on January 2, 2004. Preliminary evidence (January 2005) obtained by the Huygens probe of the ongoing Cassini-Huygens mission to Saturn and its satellites indicates the presence of nitrogen-containing organic compounds in the refractory organic cores of the aerosols that give rise to the orange haze high in the atmosphere of Titan, Saturn's largest moon. Our continuing investigations suggest that HCN polymers are basically of two types

  2. A study of ion composition and dynamics at Comet Halley

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Fuselier, S. A.

    1991-01-01

    This report details the participation by Lockheed co-investigators in the reduction, analysis, and interpretation of data obtained by the Ion Mass Spectrometer onboard the Giotto mission to Comet Halley. The data analysis activities and much of the scientific collaboration was shared by this team. One objective of the effort under this contract was to use data obtained by the Giotto Ion Mass Spectrometer (IMS) during the encounter with comet Halley for the purpose of advancing our understanding of the chemistry and physics of the interaction of the solar wind with comets and obtaining new information on the comet's composition. An additional objective was to make this unique data set available in a format which can be easily used by the reset of the cometary science community for other analysis in the future. The IMS has two sensors: the High Intensity Spectrometer (HIS) and the High Energy Range Spectrometer (HERS).

  3. EVIDENCE FOR FRESH FROST LAYER ON THE BARE NUCLEUS OF COMET HALE-BOPP AT 32 AU DISTANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szabo, Gyula M.; Kiss, Laszlo L.; Pal, Andras

    2012-12-10

    Here, we report that the activity of comet Hale-Bopp ceased between late 2007 and 2009 March, at about 28 AU distance from the Sun. At that time, the comet resided at a distance from the Sun that exceeded the freeze-out distance of regular comets by an order of magnitude. A Herschel Space Observatory PACS scan was taken in mid-2010, in the already inactive state of the nucleus. The albedo has been found to be surprisingly large (8.1% {+-} 0.9%), which exceeds the value known for any other comets. With re-reduction of archive Hubble Space Telescope images from 1995 and 1996,more » we confirm that the pre-perihelion albedo resembled that of an ordinary comet and was smaller by a factor of two than the post-activity albedo. Our further observations with the Very Large Telescope also confirmed that the albedo increased significantly by the end of the activity. We explain these observations by proposing gravitational redeposition of icy grains toward the end of the activity. This is plausible for such a massive body in a cold environment, where gas velocity is lowered to the range of the escape velocity. These observations also show that giant comets are not just the upscaled versions of the comets we know but can be affected by processes that are yet to be fully identified.« less

  4. Repeatability of the Dust and Gas Morphological Structures in the Coma of Comet

    NASA Astrophysics Data System (ADS)

    Lejoly, Cassandra; Samarasinha, N. H.; Ojha, L.; Schleicher, D. G.

    2013-10-01

    Comet 1P/Halley is the most famous comet in history and has been observed for over two millennia, making it one of the most extensively studied comets. The morphology in the coma of comet 1P/Halley originates due to the activity at the nucleus and could be used as a probe of the nuclear rotation and the activity. We will present the results from a study summarizing the evolution of coma morphology of comet 1P/Halley observed from ground between October 1985 and June 1986. The results to be presented include analysis of dust features as well as gas (CN) features in the coma and comparisons will be made between their spatial and temporal evolution. About 80 CN images and 300 continuum images from the Small Bodies Node of the NASA Planetary Data System were analyzed using image enhancement techniques that were not available n the 1980s. This enables us to see coma structure never observed before in comet 1P/Halley. Because of the comet's proximity to Earth, most of our best signal-to-noise images were taken in the March-April interval of 1986. Despite the limited coverage of preceding and following months, there is a sufficient number of images to monitor morphological evolution over many months. The initial synodic periods as a function of time used to phase the images together were extrapolated from the lightcurves of the active coma (Schleicher et al. 1990, AJ, 100, 896-912). We will present the periods of repeatability of individual coma features measured using the position angle at different spatial distances from the nucleus in adjacent cycles. Separate features appear to have slightly different periods of repeatability, perhaps depending on the corresponding source regions on the nucleus and/or projection effects. The periods of repeatability of coma morphologies will be presented as a function of time from the perihelion. These results will ultimately be used in detailed modeling of the coma morphologies of comet 1P/Halley over the 1985-1986 apparition in

  5. Dust environment and dynamical history of a sample of short-period comets

    NASA Astrophysics Data System (ADS)

    Pozuelos, F. J.; Moreno, F.; Aceituno, F.; Casanova, V.; Sota, A.; López-Moreno, J. J.; Castellano, J.; Reina, E.; Diepvens, A.; Betoret, A.; Häusler, B.; Gonález, C.; Rodríguez, D.; Bryssinck, E.; Cortés, E.; García, F.; García, F.; Limón, F.; Grau, F.; Fratev, F.; Baldrís, F.; Rodriguez, F. A.; Montalbán, F.; Soldán, F.; Muler, G.; Almendros, I.; Temprano, J.; Bel, J.; Sánchez, J.; Lopesino, J.; Báez, J.; Hernández, J. F.; Martín, J. L.; Ruiz, J. M.; Vidal, J. R.; Gaitán, J.; Salto, J. L.; Aymamí, J. M.; Bosch, J. M.; Henríquez, J. A.; Martín, J. J.; Lacruz, J.; Tremosa, L.; Lahuerta, L.; Reszelsky, M.; Rodríguez, M.; Camarasa, M.; Campas, M.; Canales, O.; Dekelver, P. J.; Moreno, Q.; Benavides, R.; Naves, R.; Dymoc, R.; García, R.; Lahuerta, S.; Climent, T.

    2014-08-01

    Aims: In this work, we present an extended study of the dust environment of a sample of short-period comets and their dynamical history. With this aim, we characterize the dust tails when the comets are active, and we make a statistical study to determine their dynamical evolution. The targets selected were 22P/Kopff, 30P/Reinmuth 1, 78P/Gehrels 2, 115P/Maury, 118P/Shoemaker-Levy 4, 123P/West-Hartley, 157P/Tritton, 185/Petriew, and P/2011 W2 (Rinner). Methods: We use two different observational data sets: a set of images taken at the Observatorio de Sierra Nevada and, the Afρ curves provided by the amateur astronomical association Cometas-Obs. To model these observations, we use our Monte Carlo dust tail code. From this analysis, we derive the dust parameters, which best describe the dust environment: dust loss rates, ejection velocities, and size distribution of particles. On the other hand, we use a numerical integrator to study the dynamical history of the comets, which allows us to determine with a 90% confidence level the time spent by these objects in the region of Jupiter family comets. Results: From the Monte Carlo dust tail code, we derived three categories according to the amount of dust emitted: weakly active (115P, 157P, and Rinner), moderately active (30P, 123P, and 185P), and highly active (22P, 78P, and 118P). The dynamical studies showed that the comets of this sample are young in the Jupiter family region, where the youngest ones are 22P (~100 yr), 78P (~500 yr), and 118P (~600 yr). The study points to a certain correlation between comet activity and time spent in the Jupiter family region, although this trend is not always fulfilled. The largest particle sizes are not tightly constrained, so that the total dust mass derived should be regarded as a lower limit. Appendices are available in electronic form at http://www.aanda.org

  6. Asteroid-comet continuum objects in the solar system.

    PubMed

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  7. Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life

    NASA Astrophysics Data System (ADS)

    Bosiek, Katharina; Hausmann, Michael; Hildenbrand, Georg

    2016-04-01

    In recent years, studies have shown that there are many similarities between comets and asteroids. In some cases, it cannot even be determined to which of these groups an object belongs. This is especially true for objects found beyond the main asteroid belt. Because of the lack of comet fragments, more progress has been made concerning the chemical composition of asteroids. In particular, the SMASSII classification establishes a link between the reflecting spectra and chemical composition of asteroids and meteorites. To find clues for the chemical structure of comets, the parameters of all known asteroids of the SMASSII classification were compared to those of comet groups like the Encke-type comets, the Jupiter-family comets, and the Halley-type comets, as well as comet-like objects like the damocloids and the centaurs. Fifty-six SMASSII objects similar to comets were found and are categorized as comet-like asteroids in this work. Aside from the chemistry, it is assumed that the available energy on these celestial bodies plays an important role concerning habitability. For the determination of the available energy, the effective temperature was calculated. Additionally, the size of these objects was considered in order to evaluate the possibility of a liquid water core, which provides an environment that is more likely to support processes necessary to create the building blocks of life. Further study of such objects could be notable for the period of the Late Heavy Bombardment and could therefore provide important implications for our understanding of the inner workings of the prebiotic evolution within the Solar System since the beginning.

  8. Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life.

    PubMed

    Bosiek, Katharina; Hausmann, Michael; Hildenbrand, Georg

    2016-04-01

    In recent years, studies have shown that there are many similarities between comets and asteroids. In some cases, it cannot even be determined to which of these groups an object belongs. This is especially true for objects found beyond the main asteroid belt. Because of the lack of comet fragments, more progress has been made concerning the chemical composition of asteroids. In particular, the SMASSII classification establishes a link between the reflecting spectra and chemical composition of asteroids and meteorites. To find clues for the chemical structure of comets, the parameters of all known asteroids of the SMASSII classification were compared to those of comet groups like the Encke-type comets, the Jupiter-family comets, and the Halley-type comets, as well as comet-like objects like the damocloids and the centaurs. Fifty-six SMASSII objects similar to comets were found and are categorized as comet-like asteroids in this work. Aside from the chemistry, it is assumed that the available energy on these celestial bodies plays an important role concerning habitability. For the determination of the available energy, the effective temperature was calculated. Additionally, the size of these objects was considered in order to evaluate the possibility of a liquid water core, which provides an environment that is more likely to support processes necessary to create the building blocks of life. Further study of such objects could be notable for the period of the Late Heavy Bombardment and could therefore provide important implications for our understanding of the inner workings of the prebiotic evolution within the Solar System since the beginning.

  9. Determination of orbits of comets: P/Kearns-Kwee, P/Gunn, including nongravitational effects in the comets' motion

    NASA Technical Reports Server (NTRS)

    Todorovic-Juchniewicz, Bozenna; Sitarski, Grzegorz

    1992-01-01

    To improve the orbits, all the positional observations of the comets were collected. The observations were selected and weighted according to objective mathematical criteria and the mean residuals a priori were calculated for both comets. We took into account nongravitational effects in the comets' motion using Marsden's method applied in two ways: either determining the three constant parameters, A(sub 1), A(sub 2), A(sub 3) or the four parameters A, eta, I, phi connected with the rotating nucleus of the comet. To link successfully all the observations, we had to assume for both comets that A(t) = A(sub O)exp(-B x t) where B was an additional nongravitational parameter.

  10. Rosetta/VIRTIS investigation of the chemistry and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Bockelee-Morvan, Dominique; Drossart, Pierre; Piccioni, Giuseppe; Migliorini, Alessandra; Erard, Stéphane; Capaccioni, Fabrizio; Filacchione, Gianrico; Fougere, Nicolas; Leyrat, Cedric; Crovisier, Jacques; Capaccioni, Fabrizio

    2016-07-01

    The composition of cometary ices inside cometary nuclei provides clues to the chemistry of the protoplanetary disk where they formed, 4.6 Gyr ago. These ices sublimate when the body approches the Sun, so that the coma molecular species give insights on the nucleus surface and sub-surface composition. So far, most investigations of the coma chemical composition were performed from telescopic observations from the ground or space plateforms. Since August 2014, the ESA/Rosetta spacecraft has been investigating the nucleus and inner coma of 67P/Churyumov-Gerasimenko. This talk will present an overview of the results obtained by the Visual and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard Rosetta, focussing on observations of molecular species. VIRTIS is composed of two channels. The VIRTIS-M channel is a spectro-imager covering the 0.27-5.1 microns range, which allowed us to map the spatial distribution of H2O and CO2 (Migliorini et al. 2016, A&A in press). VIRTIS-H is a high-spectral resolution spectrometer covering the 2-5 microns range. Spectra obtained with VIRTIS-H show signatures of H2O, CO2 (both fundamental and hot bands), 13CO2, CH4 and other C-H bearing species (Bockelee-Morvan et al. A&A, 583, A6,2015). VIRTIS is a key instrument to investigate regional, diurnal and seasonal variations of the comet outgassing.

  11. Comet Tempel 2: Orbit, ephemerides and error analysis

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1978-01-01

    The dynamical behavior of comet Tempel 2 is investigated and the comet is found to be very well behaved and easily predictable. The nongravitational forces affecting the motion of this comet are the smallest of any comet that is affected by nongravitational forces. The sign and time history of these nongravitational forces imply (1) a direct rotation of the comet's nucleus and (2) the comet's ability to outgas has not changed substantially over its entire observational history. The well behaved dynamical motion of the comet, the well observed past apparitions, the small nongravitational forces and the excellent 1988 ground based observing conditions all contribute to relatively small position and velocity errors in 1988 -- the year of a proposed rendezvous space mission to this comet. To assist in planned ground based and earth orbital observations of this comet, ephemerides are given for the 1978-79, 1983-84 and 1988 apparitions.

  12. Discovery of Main-Belt Comet P/2006 VW139 by Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Hsieh, H. H.; Yang, B.; Haghighipour, N.; Kaluna, H. M.; Fitzsimmons, A.; Denneau, L.; Novakovic, B.; Jedicke, R.; Wainscoat, R. J.; Armstrong, J. D.; Duddy, S. R.; Lowry, S. C.; Trujillo, C. A.; Micheli, M.; Keane, J. V.; Urban, L.; Riesen, T.; Meech, K. J.; Abe, S.; Cheng, Y. C.; Chen, W. P.; Granvik, M.; Grav, T.; Ip, W. H.; Kinoshita, D.; Kleyna, J.; Lacerda, P.; Lister, T.; Milani, A.; Tholen, D. J.; Veres, P.; Lisse, C. M.; Kelley, M. S.; Fernandez, Y. R.; Bhatt, B. C.; Sahu, D. K.; Kaiser, N.; Chambers, K. C.; Hodapp, K. W.; Magnier, E. A.; Price, P. A.; Tonry, J. L.

    2012-05-01

    We describe the discovery of comet-like activity in main-belt asteroid (300163) 2006 VW139 (later re-designated as Comet P/2006 VW139) by Pan-STARRS1. We also detail follow-up photometric, spectroscopic, and dynamical analyses of the object.

  13. The Effects of the Local Environment on Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Manzer, L. H.; De Robertis, M. M.

    2014-06-01

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 <= N <= 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  14. The effects of the local environment on active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzer, L. H.; De Robertis, M. M., E-mail: liannemanzer@gmail.com, E-mail: mmdr@yorku.ca

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2more » ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging

  15. Sulfur activation at the Little Boy-Comet Critical Assembly: a replica of the Hiroshima bomb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, G.D.; Emery, J.F.; Pace, J.V. III

    1985-04-01

    Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction on leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the pointmore » of explosion. 37 refs., 5 figs., 6 tabs.« less

  16. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels

    PubMed Central

    Kapoor, Vikrant; Provost, Allison; Agarwal, Prateek; Murthy, Venkatesh N.

    2015-01-01

    The serotonergic raphe nuclei are involved in regulating brain states over time-scales of minutes and hours. We examined more rapid effects of serotonergic activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. Brief stimulation of the raphe nuclei led to excitation of tufted cells at rest and potentiation of their odor responses. While mitral cells at rest were also excited by raphe activation, their odor responses were bidirectionally modulated, leading to improved pattern separation of odors. In vitro whole-cell recordings revealed that specific optogenetic activation of raphe axons affected bulbar neurons through dual release of serotonin and glutamate. Therefore, the raphe nuclei, in addition to their role in neuromodulation of brain states, are also involved in fast, sub-second top-down modulation, similar to cortical feedback. This modulation can selectively and differentially sensitize or decorrelate distinct output channels. PMID:26752161

  17. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. James L. Green, Director of Planetary Science at NASA, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  18. The 15 years of comet photometry: A comparative analysis of 80 comets

    NASA Technical Reports Server (NTRS)

    Osip, David J.; Schleicher, David G.; Millis, Robert L.; Ahearn, Michael F.; Birch, Peter V.

    1991-01-01

    In 1976, a program of narrowband photometry of comets was initiated that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which were observed during multiple apparitions. The filters (initially isolating CN, C2, and continuum and later including C3, OH, and NH) as well as the detectors used for the observations were changed over time, and the parameters adopted in the reduction and modeling of the data have likewise evolved. Accordingly, we have re-reduced the entire database and have derived production rates using current values for scalelengths and fluorescence efficiencies. Having completed this task, the results for different comets can now be meaningfully compared. The general characteristics that are discussed include ranges in composition (molecular production rate ratios) and dustiness (gas production compared with Af(rho)). Additionally an analysis of trends on how the production rates vary with heliocentric distance and on pre- and post-perihelion asymmetries in the production rates of individual comets. Possible taxonomic groupings are also described.

  19. Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae)

    PubMed Central

    Valencia, Laura Carolina; García, Adriana; Ramírez-Pinilla, Martha Patricia; Fuentes, Jorge Luis

    2011-01-01

    The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies. PMID:22215974

  20. Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    PubMed

    Valencia, Laura Carolina; García, Adriana; Ramírez-Pinilla, Martha Patricia; Fuentes, Jorge Luis

    2011-10-01

    The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies.

  1. A new model of physical evolution of Jupiter-family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Szutowicz, S.; Wójcikowski, K.

    2014-07-01

    We aim to find the statistical physical lifetimes of Jupiter Family comets. For this purpose, we try to model the processes that govern the dynamical and physical evolution of comets. We pay special attention to physical evolution; attempts at such modelling have been made before, but we propose a more accurate model, which will include more physical effects. The model is tested on a sample of fictitious comets based on real Jupiter Family comets with some orbital elements changed to a state before the capture by Jupiter. We model four different physical effects: erosion by sublimation, dust mantling, rejuvenation (mantle blow-off), and splitting. While for sublimation and splitting there already are some models, like di Sisto et. al. (2009), and we only wish to make them more accurate, dust mantling and rejuvenation have not been included in previous, statistical physical evolution models. Each of these effects depends on one or more tunable parameters, which we establish by choosing the model that best fits the observed comet sample in a way similar to di Sisto et. al. (2009). In contrast to di Sisto et. al., our comparison also involves the observed active fractions vs. nuclear radii.

  2. Comet C/2017 K2 (PANSTARRS): Dynamically Old or New?

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-04-01

    At discovery time, C/2017 K2 (PANSTARRS) was the second most distant inbound active comet ever observed. It has been argued that this object is in the process of crossing the inner Solar System for the first time, but other authors have concluded that it is dynamically old. We have performed full N-body simulations for 3 Myr into the past using the latest public orbit determination for this object and most of them, 67%, are consistent with a bound and dynamically old Oort cloud comet, but about 29% of the studied orbits are compatible with an interstellar origin. Our independent calculations strongly suggest that C/2017 K2 is not a dynamically new Oort cloud comet.

  3. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  4. Modeling the surface and interior structure of comet nuclei using a multidisciplinary approach

    NASA Technical Reports Server (NTRS)

    Odell, C. R.; Dakoulas, Panos C.; Pharr, George M.

    1991-01-01

    The goal was to investigate the structural properties of the surface of comet nucleus and how the surface should change with time under effect of solar radiation. The basic model that was adopted was that the nucleus is an aggregate of frosty particles loosely bound together, so that it is essentially a soil. The nucleus must mostly be composed of dust particles. The observed mass ratios of dust to gas in the coma is never much greater than unity, but this ratio is probably a much lower limit than that of the nucleus because it is vastly easier to remove the gaseous component by sublimation than by carrying off the dust. Therefore the described models assumed that the particles in the soil were frost covered grains of submicron basic size, closely resembling the interstellar grains. The surface properties of such a nucleus under the effects of heating and cooling as the nucleus approaches and recedes from the Sun generally characterized.

  5. An Introduction to Comets and Their Origin.

    ERIC Educational Resources Information Center

    Chapman, Robert D.; Brandt, John C.

    1985-01-01

    Presents excerpts from "The Comet Book," a nontechnical primer on comets. Various topics discusses in these excerpts include such basic information about comets as their components, paths, and origins. (DH)

  6. New structures of power density spectra for four Kepler active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Antonuccio-Delogu, V.; Bajčičáková, I.

    2017-09-01

    Many nearby active galactic nuclei display a significant short-term variability. In this work, we reanalyse photometric data of four active galactic nuclei observed by Kepler in order to study the flickering activity, with our main goal to search for multiple components in the power density spectra. We find that all four objects have similar characteristics, with two break frequencies at approximately log( f /Hz) = -5.2 and -4.7. We consider some physical phenomena whose characteristic time-scales are consistent with those observed, in particular mass accretion fluctuations in the inner geometrically thick disc (hot X-ray corona) and unstable relativistic Rayleigh-Taylor modes. The former is supported by detection of the same break frequencies in the Swift X-ray data of ZW229-15. We also discuss rms-flux relations, and we detect a possible typical linear trend at lower flux levels. Our findings support the hypothesis of a multiplicative character of variability, in agreement with the propagating accretion fluctuation model.

  7. Kohoutek - A great comet coming.

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Hobbs, R. W.

    1973-01-01

    Passing inside the earth's orbit in late November, the comet Kohoutek will travel through the inner solar system during a unique period in the history of the space program, when Skylab and Mariner Venus-Mercury are in operation and the new C-141 Airborne Infrared Observatory is ready for flight. It is planned to investigate comprehensively the nature and evolution of the coma and tails of the comet. The detailed goals of the investigation include the identification of the parent molecules of the gases observed in comets, the determination of the processes that break down the parent molecules, the study of the physical nature of transient events in the comet, and the measurement of the solar-wind velocity in the inner solar system.

  8. Comet Dust After Deep Impact

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  9. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  10. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  11. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  12. Swarm of Comets Artist Concept

    NASA Image and Video Library

    2015-11-24

    This illustration shows a star behind a shattered comet. Observations of the star KIC 8462852 by NASA's Kepler and Spitzer space telescopes suggest that its unusual light signals are likely from dusty comet fragments, which blocked the light of the star as they passed in front of it in 2011 and 2013. The comets are thought to be traveling around the star in a very long, eccentric orbit. http://photojournal.jpl.nasa.gov/catalog/PIA20053

  13. High-sodium comet

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    In mid-April, astronomers in the Canary Islands discovered that Comet Hale-Bopp has a tail composed of sodium atoms, in addition to the commonly known ion and dust tails. Although sodium atoms have been seen at the centers of other comets, this is the first observation of a comet tail consisting of sodium.The discovery by Gabriele Cremonese of the Padova Astronomical Observatory in Italy and Don Pollaco of the Isaac Newton Group of telescopes at the Canary Islands, came from images of Hale-Bopp taken with a special wide-field camera fitted with a filter that isolates emission from sodium atoms. The sodium atoms are distributed over an enormous region in and around Hale-Bopp. It is not clear exactly how the sodium tail, which is 600,000 km wide and 50 million km long, was formed.

  14. Trapping of N 2, CO and Ar in amorphous ice—Application to comets

    NASA Astrophysics Data System (ADS)

    Bar-Nun, A.; Notesco, G.; Owen, T.

    2007-10-01

    Recent attempts using high resolution spectra to detect N +2 in several comets were unsuccessful [Cochran, A.L., Cochran, W.D., Baker, E.S., 2000. Icarus 146, 583-593; Cochran, A.L., 2002. Astrophys. J. 576, L165-L168]. The upper limits on N +2 in comparison with the positively detected CO + for Comets C/1995 O1 Hale-Bopp, 122P/1995 S1 de Vico and 153P/2002 C1 Ikeya-Zhang range between N2+/CO<(0.65-5.4)×10. Ar was not detected in three recent comets [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98], with upper limits of Ar/CO<(3.4-7.8)×10 for Comets C/1999 T1 McNaught-Hartley, C/2001 A2 LINEAR and C/2000 WM1 LINEAR. The Ar detected by Stern et al. [Stern, S.A., Slater, D.C., Festou, M.C., Parker, J.Wm., Gladstone, G.R., A'Hearn, M.F., Wilkinson, E., 2000. Astrophys. J. 544, L169-L172] for Comet C/1995 O1 Hale-Bopp, gives a ratio Ar/CO=7.25×10, which was not confirmed by Cosmovici et al. [Cosmovici, C.B., Bratina, V., Schwarz, G., Tozzi, G., Mumma, M.J., Stalio, R., 2006. Astrophys. Space Sci. 301, 135-143]. Trying to solve the two problems, we studied experimentally the trapping of N+CO+Ar in amorphous water ice, at 24-30 K. CO was found to be trapped in the ice 20-70 times more efficiently than N 2 and with the same efficiency as Ar. The resulting Ar/CO ratio of 1.2×10 is consistent with Weaver et al.'s [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98] non-detection of Ar. However, with an extreme starting value for N 2/CO = 0.22 in the region where the ice grains which agglomerated to produce comet nuclei were formed, the expected N 2/CO ratio in the cometary ice should be 6.6×10, much higher than its non-detection limit.

  15. Observations of CO2 in Comets C/2012 S1 ISON and C/2012 K1 PANSTARRS

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Kelley, Michael; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Lisse, Carey; Chanover, Nancy

    2013-10-01

    Comets have undergone very little thermal evolution in their lifetimes, resulting in a primitive composition. This primitive composition makes observations of comets very important tools for understanding the origin of the Solar System. The ices H2O, CO2, and CO are the primary ices present in cometary nuclei, and constraining their abundances has tremendous implications for the formation and evolutionary history of comets. Of these ices, H2O and CO can be observed from the ground, while CO2 cannot. A potentially effective tracer for CO2 in comets that is accessible from the ground is atomic oxygen. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comets C/2012 S1 ISON and C/2012 K1 PANSTARRS. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and McDonald Observatory and observations of H2O and CO at Keck and IRTF. These observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of CO2. In addition, ISON is the target of an extensive observing campaign led by NASA, and the proposed Spitzer observations fill a vital niche as the only observatory that can observe CO2 during both the near-perihelion time frame and significantly (months) after perihelion. Understanding the evolution of the CO2 abundance over the apparition is a key piece to understanding how the volatile compostion of the comet changes over the apparition.

  16. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cécile; Duprat, Jean; Bardin, Noémie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Remusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin

    2016-10-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.

  17. Methods for computing comet core temperatures

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Squyres, S. W.; Reynolds, R. T.

    1986-06-01

    The temperature profile within the comet nucleus provides the key to an understanding of the history of the volatiles within a comet. Certain difficulties arise in connection with current cometary temperature models. It is shown that the constraint of zero net heat flow can be used to derive general analytical expressions which will allow for the determination of comet core temperature for a spherically symmetric comet, taking into account information about the surface temperature and the thermal conductivity. The obtained results are compared with the expression for comet core temperatures considered by Klinger (1981). Attention is given to analytical results, an example case, and numerical models. The formalization developed makes it possible to determine the core temperature on the basis of the numerical models of the surface temperature.

  18. Asteroids and Comets Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.

  19. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. Anita Cochran, Assistant Director, McDonald Observatory at the University of Texas-Austin, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  20. Oort spike comets with large perihelion distances

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2017-12-01

    The complete sample of large-perihelion nearly-parabolic comets discovered during the period 1901-2010 is studied, starting with their orbit determination. Next, an orbital evolution that includes three perihelion passages (previous-observed-next) is investigated in which a full model of Galactic perturbations and perturbations from passing stars is incorporated. We show that the distribution of planetary perturbations suffered by actual large-perihelion comets during their passage through the Solar system has a deep, unexpected minimum around zero, which indicates a lack of 'almost unperturbed' comets. Using a series of simulations we show that this deep well is moderately resistant to some diffusion of the orbital elements of the analysed comets. It seems reasonable to assert that the observed stream of these large-perihelion comets experienced a series of specific planetary configurations when passing through the planetary zone. An analysis of the past dynamics of these comets clearly shows that dynamically new comets can appear only when their original semimajor axes are greater than 20 000 au. On the other hand, dynamically old comets are completely absent for semimajor axes longer than 40 000 au. We demonstrate that the observed 1/aori-distribution exhibits a local minimum separating dynamically new from dynamically old comets. Long-term dynamical studies reveal a wide variety of orbital behaviour. Several interesting examples of the action of passing stars are also described, in particular the impact of Gliese 710, which will pass close to the Sun in the future. However, none of the obtained stellar perturbations is sufficient to change the dynamical status of the analysed comets.

  1. High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin

    2016-10-06

    The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

  2. Comet ISON Approaching the Sun [still

    NASA Image and Video Library

    2013-11-27

    This movie from NASA’s STEREO spacecraft's Heliospheric Imager shows Comet ISON, Mercury, Comet Encke and Earth over a five-day period from Nov. 20 to Nov. 25, 2013. The sun sits right of the field of view of this camera. Comet ISON, which will round the sun on Nov. 28, is what's known as a sungrazing comet, due to its close approach. Foreshortening or the angle at which these images were obtained make Earth appear as if it is closer to the sun than Mercury. If you look closely you will also see a dimmer and smaller comet Encke near comet ISON. A comet’s journey through the solar system is perilous and violent. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. Even if the comet does not survive, tracking its journey will help scientists understand what the comet is made of, how it reacts to its environment, and what this explains about the origins of the solar system. Closer to the sun, watching how the comet and its tail interact with the vast solar atmosphere can teach scientists more about the sun itself. Image Credit: NASA/STEREO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Plasma-tail activity and the interplanetary medium at Halley's Comet during Armada Week: 6-14 March 1986

    NASA Technical Reports Server (NTRS)

    Niedner, Malcolm B., Jr.; Schwingenschuh, Konrad; Hoeksema, J. Todd; Dryer, Murray; Mcintosh, Patrick S.

    1987-01-01

    The encounters of five spacecraft with Halley's Comet during 6-14 March 1986 offered a unique opportunity to calibrate the solar-wind interaction with cometary plasmas as recorded by remote wide-field and narrow-field/narrowband imaging. Perhaps not generally recognized in the comet community is the additional opportunity offered by the Halley Armada to study the structure of the solar-wind and interplanetary magnetic field (IMF) in three dimensions using five sets of data obtained over similar time intervals and heliocentric distances, but at somewhat different heliolatitudes. In fact, the two problems, i.e., comet physics and the structure of the interplanetary medium, are coupled if one wants to understand what conditions pertained at the comet between the encounters. This relationship is discussed.

  4. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  5. Analysis of IUE Observations of Hydrogen in Comets

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.; Feldman, Paul D.

    1998-01-01

    The 15-years worth of hydrogen Lyman-alpha observations of cometary comae obtained with the International Ultraviolet Explorer (IUE) satellite had gone generally unanalyzed because of two main modeling complications. First, the inner comae of many bright (gas productive) comets are often optically thick to solar Lyman-alpha radiation. Second, even in the case of a small comet (low gas production) the large IUE aperture is quite small as compared with the immense size of the hydrogen coma, so an accurate model which properly accounts for the spatial distribution of the coma is required to invert the infrared brightnesses to column densities and finally to H atom production rates. Our Monte Carlo particle trajectory model (MCPTM), which for the first time provides the realistic full phase space distribution of H atoms throughout the coma has been used as the basis for the analysis of IUE observations of the inner coma. The MCPTM includes the effects of the vectorial ejection of the H atoms upon dissociation of their parent species (H2O and OH) and of their partial collisional thermalization. Both of these effects are crucial to characterize the velocity distribution of the H atoms. This combination of the MCPTM and spherical radiative transfer code had already been shown to be successful in understanding the moderately optically thick coma of comet P/Giacobini-Zinner and the coma of comet Halley that varied from being slightly to very optically thick. Both of these comets were observed during solar minimum conditions. Solar activity affects both the photochemistry of water and the solar Lyman-alpha radiation flux. The overall plan of this program here was to concentrate on comets observed by IUE at other time during the solar cycle, most importantly during the two solar maxima of 1980 and 1990. Described herein are the work performed and the results obtained.

  6. A Continuing Analysis of Possible Activity Drivers for the Enigmatic Comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Schambeau, Charles; Fernández, Yanga; Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Sarid, Gal; Meech, Karen Jean; Woodney, Laura

    2016-01-01

    We present results from our effort to understand activity drivers in Comet 29P/Schwassmann-Wachmann 1 (SW1). In a nearly circular orbit around 6 AU, outside of the water-sublimation zone, SW1 is continuously active and experiences frequent outbursts. Our group's effort is focusing on finding constraints on physical and dynamical properties of SW1's nucleus and their incorporation into a thermophysical model [1,2] to explain this behavior. We are currently analyzing coma morphology of SW1 before, during, and after outburst placing constraints on the spin-pole direction, spin period, and surface areas of activity. In addition, we are using the thermal model to investigate if the continuous activity comes from one or multiple processes, such as the release of trapped supervolatiles during the amorphous to crystalline (A-C) water ice phase transition and/or the direct sublimation of pockets of supervolatile ices. The supervolatile ices may be primordial or from the condensation of gases released during the A-C phase transition. To explain the possibly quasi-periodic but frequent outbursts, we are looking into subsurface cavities where internal pressures can build, reaching and exceeding surrounding material strengths [3,4] and/or thermal waves reaching a pocket of supervolatile ices, causing a rapid increase in the sublimation rate. For all these phenomena, the model is constrained by comparing the output dust mass loss rate and its variability with what has been observed through optical imaging of the comet at various points in its orbit. We will present preliminary thermal modeling of a homogeneous progenitor nucleus that evolves into a body showing internal material layering, the generation of CO and CO2 ice pockets, and the production of outbursts, thus bringing us closer to explaining the behavior of this intriguing comet. [1] Sarid, G., et al.: 2005, PASP, 117, 843. [2] Sarid, G.: 2009, PhD Thesis, Tel Aviv Univ. [3] Gronkowski, P., 2014, Astron. Nachr./AN 2, No

  7. Active Galactic Nuclei and X-ray Ovservations

    NASA Astrophysics Data System (ADS)

    Vasylenko, A. A.; Zhdanov, V. I.; Fedorova, E. V.

    2016-11-01

    Active galactic nuclei (AGN) are the brightest objects in the Universe and their brightness is mainly caused by accretion of m atter onto supermassive black holes (SMBH). This is the common reason of the AGN activity. However, every AGN has differences and fine features, which are the subject of an intensive investigation. The occurrence of such highly-relativistic objects as SMBH residing at the AGN core makes them an excellent laboratory for testing the fundamental physical theories. The X-rays and gamma-rays generated in a corona of an accretion disc around SMBH yield valuable information for these tests, the radiation in the range of 1-100 keV being at present the most informative source. However, there are a number of obstacles for such a study due to different physical processes that complicate the interpretation of observations in different bands of the electromagnetic radiation. In this paper, we review the current concepts concerning the structure of AGNs with a focus on the central part of these objects th at require relativistic theories for their understanding. The basic notions of the unified AGN schemes are considered; some modifications are reviewed. The paper contains the following sections. I. Introduction; II. Observational manifestations and classification of galaxies with active nuclei (II.A. Optical observations; II.B. Radio observations; II.C. X-ray data; II.D Infrared data; II.E. AGN anatomy with multywave data); III. AGN "central machine"; III.A. Black holes; III.B. Accretion disc types; III.C. Corona; III.D. AGN unified scheme); IV. Simulation X-ray AGN spectra (IV.A. The power-law contimuum and the exponential cut-off; IV.B. The absorption of X-rays; IV.C. Reflection; IV.D. Fe K a line; IV.E. Spin paradigm); V. AGN as a laboratory to test the fundamental interactions (V.A. Strong gravitational fields; V.B. Dynamic dark energy near compact astrophysical objects

  8. Comet Hyakutake to Approach the Earth in Late March 1996

    NASA Astrophysics Data System (ADS)

    1996-03-01

    Astronomers Prepare for a Rare Event In the early morning of January 31, 1996, Japanese amateur astronomer Yuji Hyakutake made his second comet discovery within five weeks. He found the new comet near the border between the southern constellations of Hydra (The Water-Snake) and Libra (The Scales), amazingly just three degrees from the position where he detected another comet on December 26, 1995. After two weeks of hectic activity among amateur and professional astronomers all over the world, much interesting information has now been gathered about the new comet which has been designated C/1996 B2 (Hyakutake) . In particular, it has been found to move in a near-parabolic orbit that will bring it unusually close to the Earth next month. It is then expected to become bright enough to be seen with the unaided eye and to remain so during several weeks thereafter. Preparations are now made to observe the celestial visitor with a large number of telescopes, on the ground and in space. This event offers a rare opportunity to study the immediate surroundings of a cometary nucleus in detail and the specialists intend to make the most of it. Discovery and orbit Yuji Hyakutake, of profession photoengraver and a well-known amateur astronomer, announced his new discovery without delay, and within 24 hours, it had been sighted by several other observers in Japan and Australia. Experienced comet-watchers described its appearance as `diffuse with central condensation and of magnitude 11-12', i.e. a little more than 100 times fainter than what can be seen with the unaided eye. This brightness is not unusual for a comet discovered by an amateur, although it would probably have been missed, had it been just a little fainter. In the present case, the decisive factors for Hyakutake's success were undoubtedly his very powerful equipment (25 x 150 binoculars) and the advantageous combination of the comet's southern position in the sky and his location in Kagoshima, the southernmost

  9. Comet ISON Streaks Toward the Sun

    NASA Image and Video Library

    2013-11-22

    Date: 19 Nov 2013 Comet ISON shows off its tail in this three-minute exposure taken on 19 Nov. 2013 at 6:10 a.m. EST, using a 14-inch telescope located at the Marshall Space Flight Center. The comet is just nine days away from its close encounter with the sun; hopefully it will survive to put on a nice show during the first week of December. The star images are trailed because the telescope is tracking on the comet, which is now exhibiting obvious motion with respect to the background stars over a period of minutes. At the time of this image, Comet ISON was some 44 million miles from the sun -- and 80 million miles from Earth -- moving at a speed of 136,700 miles per hour. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way

  10. The comet moment as a measure of DNA damage in the comet assay.

    PubMed

    Kent, C R; Eady, J J; Ross, G M; Steel, G G

    1995-06-01

    The development of rapid assays of radiation-induced DNA damage requires the definition of reliable parameters for the evaluation of dose-response relationships to compare with cellular endpoints. We have used the single-cell gel electrophoresis (SCGE) or 'comet' assay to measure DNA damage in individual cells after irradiation. Both the alkaline and neutral protocols were used. In both cases, DNA was stained with ethidium bromide and viewed using a fluorescence microscope at 516-560 nm. Images of comets were stored as 512 x 512 pixel images using OPTIMAS, an image analysis software package. Using this software we tested various parameters for measuring DNA damage. We have developed a method of analysis that rigorously conforms to the mathematical definition of the moment of inertia of a plane figure. This parameter does not require the identification of separate head and tail regions, but rather calculates a moment of the whole comet image. We have termed this parameter 'comet moment'. This method is simple to calculate and can be performed using most image analysis software packages that support macro facilities. In experiments on CHO-K1 cells, tail length was found to increase linearly with dose, but plateaued at higher doses. Comet moment also increased linearly with dose, but over a larger dose range than tail length and had no tendency to plateau.

  11. NASA Hubble Sees Comet ISON Intact

    NASA Image and Video Library

    2013-10-09

    This image from NASA Hubble Space Telescope of the sunward plunging comet ISON suggests that the comet is intact despite some predictions that the fragile icy nucleus might disintegrate as the sun warms it. In this NASA Hubble Space Telescope image taken on October 9, 2013 the comet's solid nucleus is unresolved because it is so small. If the nucleus broke apart then Hubble would have likely seen evidence for multiple fragments. Moreover, the coma or head surrounding the comet's nucleus is symmetric and smooth. This would probably not be the case if clusters of smaller fragments were flying along. What's more, a polar jet of dust first seen in Hubble images taken in April is no longer visible and may have turned off. This color composite image was assembled using two filters. The comet's coma appears cyan, a greenish-blue color due to gas, while the tail is reddish due to dust streaming off the nucleus. The tail forms as dust particles are pushed away from the nucleus by the pressure of sunlight. The comet was inside Mars' orbit and 177 million miles from Earth when photographed. Comet ISON is predicted to make its closest approach to Earth on 26 December, at a distance of 39.9 million miles. http://photojournal.jpl.nasa.gov/catalog/PIA18153

  12. Comets in Indian Scriptures

    NASA Astrophysics Data System (ADS)

    Das Gupta, P.

    2016-01-01

    The Indo-Aryans of ancient India observed stars and constellations for ascertaining auspicious times in order to conduct sacrificial rites ordained by the Vedas. Naturally, they would have sighted comets and referred to them in the Vedic texts. In Rigveda (circa 1700-1500 BC) and Atharvaveda (circa 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Rigveda speaks of a fig tree whose aerial roots spread out in the sky (Parpola 2010). Had this imagery been inspired by the resemblance of a comet's tail with long and linear roots of a banyan tree (ficus benghalensis)? Varahamihira (AD 550) and Ballal Sena (circa AD 1100-1200) described a large number of comets recorded by ancient seers, such as Parashara, Vriddha Garga, Narada, and Garga, to name a few. In this article, we propose that an episode in Mahabharata in which a radiant king, Nahusha, who rules the heavens and later turns into a serpent after he kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  13. The end states of long-period comets and the origin of Halley-type comets

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Gallardo, Tabaré; Young, Juan D.

    2016-09-01

    We analyse a sample of 73 old long-period comets (LPCs) (orbital periods 200 < P < 1000 yr) with perihelion distances q < 2.5 au, discovered in the period 1850-2014. We cloned the observed comets and also added fictitious LPCs with perihelia in the Jupiter's zone. We consider both a purely dynamical evolution and a physico-dynamical one with different physical lifetimes. We can fit the computed energy distribution of comets with q < 1.3 au to the observed one only within the energy range 0.01 < x < 0.04 au-1 (or periods 125 < P < 1000 yr), where the `energy' is taken as the inverse of the semimajor axis a, namely x ≡ 1/a. The best results are obtained for physical lifetimes of about 200-300 revolutions (for a comet with a standard q = 1 au). We find that neither a purely dynamical evolution, nor a physico-dynamical one can reproduce the long tail of larger binding energies (x ≳ 0.04 au-1) that correspond to most Halley-type comets (HTCs) and Jupiter-family comets. We conclude that most HTCs are not the end states of the evolution of LPCs, but come from a different source, a flattened one that we identify with the Centaurs that are scattered to the inner planetary region from the trans-Neptunian belt. These results also show that the boundary between LPCs and HTCs should be located at an energy x ˜ 0.04 au-1 (P ˜ 125 yr), rather than the conventional classical boundary at P = 200 yr.

  14. Rosetta - a comet ride to solve planetary mysteries

    NASA Astrophysics Data System (ADS)

    2003-01-01

    be kept in hibernation during most of its 8-year trek towards Wirtanen. What makes Rosetta's cruise so long? To reach Comet Wirtanen, the spacecraft needs to go out in deep space as far from the Sun as Jupiter is. No launcher could possibly get Rosetta there directly. ESA's spacecraft will gather speed from gravitational ‘kicks’ provided by three planetary fly-bys: one of Mars in 2005 and two of Earth in 2005 and 2007. During the trip, Rosetta will also visit two asteroids, Otawara (in 2006) and Siwa (in 2008). During these encounters, scientists will switch on Rosetta's instruments for calibration and scientific studies. Long trips in deep space include many hazards, such as extreme changes in temperature. Rosetta will leave the benign environment of near-Earth space to the dark, frigid regions beyond the asteroid belt. To manage these thermal loads, experts have done very tough pre-launch tests to study Rosetta's endurance. For example, they have heated its external surfaces to more than 150°C, then quickly cooled it to -180°C in the next test. The spacecraft will be fully reactivated prior to the comet rendezvous manoeuvre in 2011. Then, Rosetta will orbit the comet - an object only 1.2 km wide - while it cruises through the inner Solar System at 135 000 kilometres per hour. At that time of the rendezvous - around 675 million km from the Sun - Wirtanen will hardly show any surface activity. It means that the carachteristic coma (the comet’s ‘atmosphere’) and the tail will not be formed yet, because of the large distance from the Sun. The comet's tail is in fact made of dust grains and frozen gases from the comet's surface that vapourise because of the Sun's heat. During 6-month, Rosetta will extensively map the comet surface, prior to selecting a landing site. In July 2012, the lander will self-eject from the spacecraft from a height of just one kilometre. Touchdown will take place at walking speed - less than 1 metre per second. Immediately after

  15. Changing Speed of Comets

    ERIC Educational Resources Information Center

    Follows, Mike

    2003-01-01

    It is shown that highly elliptical orbits, such as those of comets, can be explained well in terms of energy rather than forces. The principle of conservation of energy allows a comet's velocity to be calculated at aphelion and perihelion. An example asks students to calculate whether they can run fast enough to escape from a small asteroid.…

  16. Piece of a Comet

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image shows a comet particle collected by the Stardust spacecraft. The particle is made up of the silicate mineral forsterite, also known as peridot in its gem form. It is surrounded by a thin rim of melted aerogel, the substance used to collect the comet dust samples. The particle is about 2 micrometers across.

  17. New Image of Comet Halley in the Cold

    NASA Astrophysics Data System (ADS)

    2003-09-01

    international spacecraft armada when it last passed through the inner solar system in 1986? And which put on a fine display in the sky at that time? Now, 17 years after that passage, this cosmic traveller has again been observed at the European Southern Observatory. Moving outward along its elongated orbit into the deep-freeze outer regions of the solar system, it is now almost as far away as Neptune, the most distant giant planet in our system. At 4,200 million km from the Sun, Comet Halley has now completed four-fifths of its travel towards the most distant point of this orbit. As the motion is getting ever slower, it will reach that turning point in December 2023, after which it begins its long return towards the next passage through the inner solar system in 2062. The new image of Halley was taken with the Very Large Telescope (VLT) at Paranal (Chile); a "cleaned" version is shown in PR Photo 27a/03 . It was obtained as a byproduct of an observing program aimed at studying the population of icy bodies at the rim of the solar system. The image shows the raven-black, 10-km cometary nucleus of ice and dust as an unresolved faint point of light, without any signs of activity. A cold and inactive "dirty snowball" The brightness of the comet was measured as visual magnitude V = 28.2, or nearly 1000 million times fainter than the faintest objects that can be perceived in a dark sky with the unaided eye. The pitch black nucleus of Halley reflects about 4% of the sunlight; it is a very "dirty" snowball indeed. We know from the images obtained by the ESA Giotto spacecraft in 1986 that it is avocado-shaped and on the average measures about 10 km diameter across. The VLT observation is therefore equivalent to seeing a 5-cm piece of coal at a distance of 20,500 km (about the distance between the Earth's poles) and to do so in the evening twilight. This is because at the large distance of Comet Halley, the infalling sunlight is 800 times fainter than here on Earth. The measured

  18. Touch the comet! Testing of the "Rosetta's Comet Touchdown" educational kit in the Széchenyi István High School, Sopron, Hungary.

    NASA Astrophysics Data System (ADS)

    Lang, A.; Wesely, N.; Soós, B.; Sléber, B.; Majnovics, Z.; Ettingshausen, M.; Bodnár, L.; Németh, A.; Roos, M.

    2011-10-01

    In our school works a course in robotics where students build and program robots from a LEGO MINDSTORMS kit. We took part in the Hunveyor- Husar project with a Mars rover based on a rover model kit, of which the operating arms are built out of LEGO and controlled by an MINDSTORMS NXT computer. We presented our rover on the EPSC in Rome last September 2010 We presented our rover on the EPSC in Rome in September 2010. At that same conference the "Rosetta's Comet Touchdown" educational kit was officially presented. We were very interested and in conversation with the people from the project, we agreed that our school in Sopron would also participate in testing the kit. . The kit comes with a set of Interdisciplinary Activity Sheets (IAS, downloadable from Vimeo channel1) and a great feature is that the proposed activities in the IAS cover three areas: science, art/history and engineering. The 31 students from our class divided up in groups and each group chose a different topic: History of comets in Hungarian culture; Designing a T-shirt; Research on comets; Hungary in the Rosetta mission; Animation of Rosetta's orbit in space; building a LEGO MINDSTORM model; a film was made of the activities . In this presentation we report in particular the activities of the LEGO building team.

  19. Report of Some Comets: The Discovery of Uranus and Comets by William, Caroline, and John Herschel

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Olson, R. J. M.

    2011-01-01

    We report on the discovery and drawings of comets by William, Caroline, and John Herschel. The first discovery, by William Herschel, in 1781 from Bath, published in the Philosophical Transactions of the Royal Society with the title "Report of a Comet," turned out to be Uranus, the first planet ever discovered, Mercury through Saturn having been known since antiquity. William's sister Caroline was given duties of sweeping the skies and turned out to be a discoverer of 8 comets in her own right, in addition to keeping William's notes. Caroline's comets were discovered from Slough between 1786 and 1797. In the process, we also discuss original documents from the archives of the Royal Society and of the Royal Astronomical Society. We conclude by showing comet drawings that we have recently attributed to John Herschel, including Halley's Comet from 1836, recently located in the Ransom Center of the University of Texas at Austin. Acknowledgments: Planetary astronomy at Williams College is supported in part by grant NNX08AO50G from NASA Planetary Astronomy. We thank Peter Hingley of the Royal Astronomical Society and Richard Oram of the Harry Ransom Center of The University of Texas at Austin for their assistance.

  20. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    PubMed Central

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087

  1. Spacecraft Images Comet Target Jets

    NASA Image and Video Library

    2010-11-04

    NASA Deep Impact spacecraft High- and Medium-Resolution Imagers HRI and MRI captured multiple jets emanating from comet Hartley 2 turning on and off while the spacecraft is 8 million kilometers 5 million miles away from the comet.

  2. Comet ISON May Have Survived

    NASA Image and Video Library

    2013-11-30

    This movie shows Comet ISON orbiting around the sun – represented by the white circle -- on Nov. 28, 2013. ISON looks smaller as it streams away, but scientists believe its nucleus may still be intact. The video covers Nov. 27, 2013, 3:30 p.m. EST to Nov. 29, 2013, 8:30 a.m. EST. Continuing a history of surprising behavior, material from Comet ISON appeared on the other side of the sun on the evening on Nov. 28, 2013, despite not having been seen in observations during its closest approach to the sun. The question remains whether it is merely debris from the comet, or if some portion of the comet's nucleus survived, but late-night analysis from scientists with NASA's Comet ISON Observing Campaign suggest that there is at least a small nucleus intact. Credit: ESA/NASA/SOHO/Jhelioviewer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. A Model for the Breakup of Comet Linear (C/1999 S4)

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.

    2001-01-01

    We propose a mechanism based on the rubble-pile hypothesis of the cometary nucleus (Weissman 1986) to explain the catastrophic breakup of comet LINEAR (C/1999 S4) observed during July-August 2000. We suggest that a solid nucleus made up of 10-100 m "cometesimals" (Weidenschilling 1997) contains a network of inter-connected voids in the inter-cometesimal regions. The production of super-volatile (i.e., species more volatile than water) gases into these voids occurs due to the thermal wave propagating through the nucleus and associated phase transitions of water ice. The network of voids provides an efficient pathway for rapid propagation of these gases within the nucleus resulting in gas pressure caused stresses over a wide regime of the nucleus. This provides a mechanism for catastrophic breakups of small cometary nuclei such as comet LINEAR (C/1999 S4) as well as for some observed cometary outbursts including those that occur at large heliocentric distances (e.g., West et al. 1991). We emphasize the importance of techniques such as radar reflection tomography and radiowave transmission tomography (e.g., Kofman et al. 1998) aboard cometary missions to determine the three dimensional structure of the nucleus in particular the extent of large scale voids.

  4. Origin and Evolution of Comet Clouds

    NASA Astrophysics Data System (ADS)

    Higuchi, Arika

    2007-01-01

    The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.

  5. Comet Siding Spring Seen Next to Mars

    NASA Image and Video Library

    2017-12-08

    This composite NASA Hubble Space Telescope Image captures the positions of comet Siding Spring and Mars in a never-before-seen close passage of a comet by the Red Planet, which happened at 2:28 p.m. EDT October 19, 2014. The comet passed by Mars at approximately 87,000 miles (about one-third of the distance between Earth and the Moon). At that time, the comet and Mars were approximately 149 million miles from Earth. The comet image shown here is a composite of Hubble exposures taken between Oct. 18, 8:06 a.m. EDT to Oct. 19, 11:17 p.m. EDT. Hubble took a separate photograph of Mars at 10:37 p.m. EDT on Oct. 18. The Mars and comet images have been added together to create a single picture to illustrate the angular separation, or distance, between the comet and Mars at closest approach. The separation is approximately 1.5 arc minutes, or one-twentieth of the angular diameter of the full Moon. The background starfield in this composite image is synthesized from ground-based telescope data provided by the Palomar Digital Sky Survey, which has been reprocessed to approximate Hubble’s resolution. The solid icy comet nucleus is too small to be resolved in the Hubble picture. The comet’s bright coma, a diffuse cloud of dust enshrouding the nucleus, and a dusty tail, are clearly visible. This is a composite image because a single exposure of the stellar background, comet Siding Spring, and Mars would be problematic. Mars is actually 10,000 times brighter than the comet, and so could not be properly exposed to show detail in the Red Planet. The comet and Mars were also moving with respect to each other and so could not be imaged simultaneously in one exposure without one of the objects being motion blurred. Hubble had to be programmed to track on the comet and Mars separately in two different observations. The images were taken with Hubble’s Wide Field Camera 3. Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

  6. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G

    2016-01-21

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.

  7. Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG

    NASA Astrophysics Data System (ADS)

    Henri, P.; Vallières, X.; Hajra, R.; Goetz, C.; Richter, I.; Glassmeier, K.-H.; Galand, M.; Rubin, M.; Eriksson, A. I.; Nemeth, Z.; Vigren, E.; Beth, A.; Burch, J. L.; Carr, C.; Nilsson, H.; Tsurutani, B.; Wattieaux, G.

    2017-07-01

    The ESA's comet chaser Rosetta has monitored the evolution of the ionized atmosphere of comet 67P/Churyumov-Gerasimenko (67P/CG) and its interaction with the solar wind, during more than 2 yr. Around perihelion, while the cometary outgassing rate was highest, Rosetta crossed hundreds of unmagnetized regions, but did not seem to have crossed a large-scale diamagnetic cavity as anticipated. Using in situ Rosetta observations, we characterize the structure of the unmagnetized plasma found around comet 67P/CG. Plasma density measurements from RPC-MIP are analysed in the unmagnetized regions identified with RPC-MAG. The plasma observations are discussed in the context of the cometary escaping neutral atmosphere, observed by ROSINA/COPS. The plasma density in the different diamagnetic regions crossed by Rosetta ranges from ˜100 to ˜1500 cm-3. They exhibit a remarkably systematic behaviour that essentially depends on the comet activity and the cometary ionosphere expansion. An effective total ionization frequency is obtained from in situ observations during the high outgassing activity phase of comet 67P/CG. Although several diamagnetic regions have been crossed over a large range of distances to the comet nucleus (from 50 to 400 km) and to the Sun (1.25-2.4 au), in situ observations give strong evidence for a single diamagnetic region, located close to the electron exobase. Moreover, the observations are consistent with an unstable contact surface that can locally extend up to about 10 times the electron exobase.

  8. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  9. The Infrared Activity of Comet P/Halley 1986 III at Heliocentric Distances from 0.6 to 3.0 AU

    NASA Astrophysics Data System (ADS)

    Homich, A. A.; Gehrz, R. D.; Hanner, M. S.; Tokunaga, A. T.

    2001-05-01

    We present an analysis of the combined infrared data obtained on Comet P/Halley 1986 III acquired by Gehrz and Ney (1992), Hanner et al. (1987), Tokunaga et al. (1986, 1988), Green et al. (1986), Ryan and Campins (1991), Campins and Ryan (1989), and Bregman et al. (1987). This data base, the largest single body of infrared photometric data for any comet, spans a wavelength range from 0.7 to 23 μ m and describes the activity of P/Halley at heliocentric distances from 0.6 to 3.0 AU. The quantitative corrections and calibration procedures required to intercompare the individual data sets are described. Long-term trends in the heliocentric dependance of P/Halley's grain color temperature Tobs, silicate emission optical strength M10, grain albedo A, grain superheat S, apparent luminosity L, and infrared monochromatic fluxes are discussed. The infrared data sets are compared with data sets at other wavelengths for evidence of short-duration bursts associated with the activity of the comet's nucleus. We conclude that short duration outbursts at small heliocentric distances produce small grains whose thermal emission during the outburst dominates the normal background thermal emission from larger grains. These outbursts are not observed at heliocentric distances larger than 2.0 AU pre-perihelion, but cannot be ruled out for the post-perihelion data. We discuss the nuclear activity implied by both the long-term trends and the short period outburst behavior. This research was supported by NASA, the National Science Foundation, the U.S. Air Force, the University of Minnesota Institute of Technology Dean's Office and Graduate School, and the University of Wyoming.

  10. Abundant Solar Nebula Solids in Comets

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  11. Low-frequency waves at comet 67P/Churyumov-Gerasimenko. Observations compared to numerical simulations

    NASA Astrophysics Data System (ADS)

    Koenders, C.; Perschke, C.; Goetz, C.; Richter, I.; Motschmann, U.; Glassmeier, K. H.

    2016-10-01

    Context. A new type of low-frequency wave was detected by the magnetometer of the Rosetta Plasma Consortium at the comet during the initial months after the arrival of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. This large-amplitude, nearly continuous wave activity is observed in the frequency range from 30 mHz to 80 mHz where 40 mHz to 50 mHz is the dominant frequency. This type of low frequency is not closely related to the gyrofrequency of newborn cometary ions, which differs from previous wave activity observed in the interaction region of comets with the solar wind. Aims: This work aims to reveal a global view on the wave activity region using simulations of the comet-solar wind interaction region. Parameters, such as wavelength, propagation direction, and propagation patterns, are within the focus of this study. While the Rosetta observations only provide local information, numerical simulations provide further information on the global wave properties. Methods: Standard hybrid simulations were applied to the comet-solar wind interaction scenario. In the model, the ions were described as particles, which allows us to describe kinetic processes of the ions. The electrons were described as a fluid. Results: The simulations exhibit a threefold wave structure of the interaction region. A Mach cone and a Whistler wing are observed downstream of the comet. The third kind of wave activity found are low-frequency waves at 97 mHz, which corresponds to the waves observed by Richter et al. (2015, Ann. Geophys., 33, 1031). These waves are caused by the initial pick-up of the cometary ions that are perpendicular to the solar wind flow and in the interplanetary magnetic field direction. The associated electric current becomes unstable. The simulations show that wave activity is only detectable in the + E hemisphere and that the Mach cone and whistler wings need to be distinguished from the newly found instability driven wave activity. The movie associated to

  12. ScienceCast 96: Sunset Comet

    NASA Image and Video Library

    2013-03-14

    Comet Pan-STARRS has survived its encounter with the sun and is now emerging from twilight in the sunset skies of the northern hemisphere. A NASA spacecraft monitoring the comet has beamed back pictures of a wild and ragged tail.

  13. Interaction of the solar wind with comets: a Rosetta perspective

    PubMed Central

    2017-01-01

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov–Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring--beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the ‘singing’ of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554976

  14. Interaction of the solar wind with comets: a Rosetta perspective

    NASA Astrophysics Data System (ADS)

    Glassmeier, Karl-Heinz

    2017-05-01

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov-Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring-beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the `singing' of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue 'Cometary science after Rosetta'.

  15. Comet 'Bites the Dust' Around Dead Star

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Infrared Spectrometer Graph

    This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system.

    The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain.

    The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust.

    This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29

  16. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team

    2015-08-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.

  17. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  18. Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Asphaug, Erik; McKinnon, William B.; Melosh, H. J.; Weissman, Paul R.

    1996-01-01

    Prominent crater chains on Ganymede and Callisto are most likely the impact scars of comets tidally disrupted by Jupiter and are not secondary crater chains. We have examined the morphology of these chains in detail in order to place constraints on the properties of the comets that formed them and the disruption process. In these chains, intercrater spacing varies by no more than a factor of 2 and the craters within a given chain show almost no deviation from linearity (although the chains themselves are on gently curved small circles). All of these crater chains occur on or very near the Jupiter-facing hemisphere. For a given chain, the estimated masses of the fragments that formed each crater vary by no more than an order of magnitude. The mean fragment masses for all the chains vary by over four orders of magnitude (W. B. McKinnon and P. M. Schenk 1995, Geophys. Res. Lett. 13, 1829-1832), however. The mass of the parent comet for each crater chain is not correlated with the number of fragments produced during disruption but is correlated with the mean mass of the fragments produced in a given disruption event. Also, the larger fragments are located near the center of each chain. All of these characteristics are consistent with those predicted by disruption simulations based on the rubble pile cometary nucleus model (in which nuclei are composed on numerous small fragments weakly bound by self-gravity), and with those observed in Comet D/Shoemaker-Levy 9. Similar crater chains have not been found on the other icy satellites, but the impact record of disrupted comets on Callisto and Ganymede indicates that disruption events occur within the Jupiter system roughly once every 200 to 400 years.

  19. The outbursts of the comet 29P/Schwassmann-Wachmann 1: A new approach to the old problem

    NASA Astrophysics Data System (ADS)

    Gronkowski, P.

    2014-02-01

    As far as outbursts activity is concerned, the 29P/Schwassmann-Wachmann 1 is the exceptional comet. This Centaur object shows quasi-regular flares with periodicities of 50 days eriodicity (Trigo-Rodriguez et al. 2010). In the introductory part of the presented paper the most well-known hypotheses which try to explain this cometary behaviour are reviewed. The second, actual part of this paper presents the new model for the outburst activity of this comet. The model is based on the idea of Ipatov (2012), according to which there are large cavities %%in comets %%with material under gas pressure, below a considerable fraction of the comet's surface containing material under high gas pressure. In favourite conditions the surface layers over the cavities are thrown away and the interior of these cavities is exposed. Consequently, an outburst of the comet's brightness may be observed. The main characteristics of an outburst of this comet, the brightness jump, %%in its brightness is calculated. Numerical simulations were carried out for wide range of possible cometary parameters. The obtained results are in good agreement with the real observations.

  20. Comet Halley Returns. A Teacher's Guide, 1985-1986.

    ERIC Educational Resources Information Center

    Chapman, Robert D.; Bondurant, R. Lynn, Jr.

    This booklet was designed as an aid for elementary and secondary school teachers. It is divided into two distinct parts. Part I is a brief tutorial which introduces some of the most important concepts about comets. Areas addressed include: the historical importance of Comet Halley; how comets are found and names; cometary orbits; what Comet Halley…

  1. Molecular parity violation via comets?

    PubMed

    Meierhenrich, U; Thiemann, W H; Rosenbauer, H

    1999-01-01

    Recent theoretical and experimental investigations referring to the origin of homochirality are reviewed and integrated into the hitherto known state of the art. Attention is directed to an extraterrestrial scenario, which describes the interaction of circularly polarized synchrotron radiation with interstellar organic matter. Following this Bonner-Rubenstein hypothesis, optically active molecules could be transferred to Earth via comets. We plan to identify any enantiomeric enhancement in organic molecules of the cometary matter in situ. The present preliminary experimental study intends to optimize gas-chromatographic conditions for the separation of racemates into their enantiomer constituents on the surface of the comet 46P/Wirtanen. Underivatized racemic pairs of alcohols, diols, and phenyl-substituted amines have been separated with the help of a stationary trifluoroacetyl-cyclodextrin phase. We are still developing a technique that will enable us to detect any enantiomeric enhancement of specific simple organic molecules both in cometary or Martian matter in situ and in meteorites found on Earth. Copyright 1999 Wiley-Liss, Inc.

  2. The Diversity of Carbon in Cometary Refractory Dust Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2018-01-01

    When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.

  3. Comet Wild 2 - Stardust Approach Image

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken during the close approach phase of Stardust's Jan 2, 2004 flyby of comet Wild 2. It is a distant side view of the roughly spherical comet nucleus. One hemisphere is in sunlight and the other is in shadow analogous to a view of the quarter moon. Several large depressed regions can be seen. Comet Wild 2 is about five kilometers (3.1 miles) in diameter.

  4. The Internal Structure of Jupiter Family Comet Nuclei: The Talps or Layered Pile Model

    NASA Astrophysics Data System (ADS)

    Belton, Michael J.; Members of theDeep Impact Science Team

    2006-09-01

    The characteristics of layered structures seen on the nucleus of Tempel 1 in the Deep Impact images, and also seen on Wild 2 and Borrelly are noted. We consider the implications of the hypothesis that such structures are ubiquitous on Jupiter Family Comets and is an essential element of their internal stucture. If correct this hypothesis implies that the internal structure of JFCs are primordial remnants of the early agglomeration phase and that the physical structure of their interiors, except for possible compositional changes, is essentially as it was when they were formed. This hypothesis has implications for their place of origin and their subsequent collisional evolution. Current models of the latter are in conflict with this hypothesis. Possible resolutions of this conflict are noted. A new conceptual model of the interior of a typical JFC called the Talps or "layered pile" model is presented.

  5. Migration of comets to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Mather, John C.

    2007-05-01

    The orbital evolution of 30,000 objects with initial orbits close to those of Jupiter-family comets (JFCs) and also of 15,000 dust particles was integrated [1-3]. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU, or even got inner-Earth (Q<0.983 AU), Aten, or typical asteroidal orbits, and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Most of former trans-Neptunian objects that have typical near-Earth object (NEO) orbits moved in such orbits for Myrs, so during most of this time they were extinct comets. From a dynamical point of view, the fraction of extinct comets among NEOs can exceed several tens of percent, but, probably, many extinct comets disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes were large. The probability of the collision of Comet 10P with the Earth during a dynamical lifetime of the comet was P[E]≈1.4•10-4, but 80% of this mean probability was due only to one object among 2600 considered objects with orbits close to that of Comet 10P. For runs for Comet 2P, P[E]≈(1-5)•10-4. For most other considered JFCs, 10-6 < P[E] < 10-5. For Comets 22P and 39P, P[E]≈ (1-2)•10-6; and for Comets 9P, 28P and 44P, P[E]≈(2-5)•10-6. For all considered JFCs, P[E]>4•10-6. The Bulirsh-Stoer method of integration and a symplectic method gave similar results. In our runs the probability of a collision of one object with the Earth could be greater than the sum of probabilities for thousands of other objects. The ratios of probabilities of collisions of JFCs with Venus and Mars to the mass of a planet usually were not smaller than that for Earth. For dust particles started from comets and asteroids, P[E ]was maximum for diameters d~100 μm. These maximum values of P [E] were usually (exclusive for 2P) greater at least by an order of

  6. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop.

    PubMed

    Koppen, Gudrun; Azqueta, Amaya; Pourrut, Bertrand; Brunborg, Gunnar; Collins, Andrew R; Langie, Sabine A S

    2017-05-01

    The International Comet Assay Workshops are a series of scientific conferences dealing with practical and theoretical aspects of the Comet Assay (single-cell gel electrophoresis)-a simple method for detecting DNA strand breaks. The first paper describing such an assay was published over 30 years ago in 1984 by Swedish researchers O. Ostling and K. J. Johanson. Appropriately, the theme for the 2015 meeting was looking to the future: 'The Next 3 Decades of the Comet Assay'. The programme included 25 oral and 43 poster presentations depicting the latest advances in technical developments as well as applications of the comet assay in genotoxicity testing (in vitro and in vivo) and biomonitoring of both humans and the environment. Open discussion sessions based on questions from the participants allowed exchange of practical details on current comet assay protocols. This report summarises technical issues of high importance which were discussed during the sessions. We provide information on ways to improve the assay performance, by testing for cytotoxicity, by using reference samples to reduce or allow for inter-experimental variation, and by standardising quantification of the damage, including replicates and scoring enough comets to ensure statistical validity. After 30 years of experimentation with the comet assay, we are in a position to control the important experimental parameters and make the comet assay a truly reliable method with a wealth of possible applications. © The Author 2017. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1989-01-01

    The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins by Oort that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic

  8. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Reitmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1997-01-01

    The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of

  9. COMET KOHAUTEK - ART CONCEPTS

    NASA Image and Video Library

    1973-11-27

    S73-37273 (24 Dec. 1973) --- An artist's concept illustrating the trajectory of the newly-discovered Comet Kohoutek in relation to the sun and to Earth and the plane of Earth's orbit. The picture show's the position of Kohoutek on Christmas Eve, 1973. The Skylab space station in Earth orbit will provide a favorable location from which to observe the passing of the comet. Photo credit: NASA

  10. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Members of the audience look on as Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  11. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?

    PubMed

    Karlsson, Hanna L; Di Bucchianico, Sebastiano; Collins, Andrew R; Dusinska, Maria

    2015-03-01

    The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods. © 2014 Wiley Periodicals, Inc.

  12. Dust emission from comets at large heliocentric distances. I - The case of comet Bowell /1980b/

    NASA Technical Reports Server (NTRS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-01-01

    Alternative processes of dust emission from comets at large heliocentric distances are considered, in order to explain the dust coma observed in comet Bowell (1980b) at a heliocentric distance as large as 7.17 AU. It is shown that the electrostatic blow-off of dust from a charged, H2O-dominated nucleus having a layer of loose, fine dust may be the formation process of the dust coma, with the coma size expected from the process being comparable to the observed value and the dust grain size being equal to or less than 0.4 microns in size. The upper limit for the total mass in the coma is 3.9 x 10 to the 8th g, and the spatial extension less than 10,000 km. The observed activity may alternatively be due to dust entrainment by the sublimating gas from a CO2-dominated nucleus.

  13. Where Do Comets Come From?

    ERIC Educational Resources Information Center

    Van Flandern, Tom

    1982-01-01

    Proposes a new origin for comets in the solar system, namely, that comets originated in the breakup of a body orbiting the sun in or near the present location of the asteroid belt in the relatively recent past. Predictions related to the theory are discussed. (Author/JN)

  14. NEOWISE View of Comet Christensen

    NASA Image and Video Library

    2015-11-23

    An infrared view from NASA's NEOWISE mission of the Oort cloud comet C/2006 W3 (Christensen). The spacecraft observed this comet on April 20th, 2010 as it traveled through the constellation Sagittarius. Comet Christensen was nearly 370 million miles (600 million kilometers) from Earth at the time. The image is half of a degree of the sky on each side. Infrared light with wavelengths of 3.4, 12 and 22 micron channels are mapped to blue, green, and red, respectively. The signal at these wavelengths is dominated primarily by the comet's dust thermal emission, giving it a golden hue. The WISE spacecraft was put into hibernation in 2011 upon completing its goal of surveying the entire sky in infrared light. WISE cataloged three quarters of a billion objects, including asteroids, stars and galaxies. In August 2013, NASA decided to reinstate the spacecraft on a mission to find and characterize more asteroids. http://photojournal.jpl.nasa.gov/catalog/PIA20118

  15. Temporary satellite capture of comets by Jupiter

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2012-05-01

    This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart's sense, not associated with a transition of the small body into Jupiter's family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets' orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane ( a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in

  16. Modeling Subsidence-Like Events on Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Rosenberg, Eric; Prialnik, Dina

    2017-10-01

    There is ample evidence, particularly from the Rosetta mission, that cometary nuclei have very low tensile strength. Consequently, morphological changes are expected to occur, caused by buildup of pressure due to gas release in the interior of the nucleus. Such changes have been observed on the surface of comet 67P/Churyumov-Gerasimenko, as reported for example by Groussin et al.(2015). A mechanism for explaining comet surface depressions has been recently proposed by Prialnik & Sierks (2017). Here we report on a numerical study, elaborating on this mechanism. Essentially, the model considers a cometary nucleus composed of a low-density mixture of ice and dust, assuming that the ice is amorphous and traps volatile gasses, such as CO and CO2. The model assumes that the tensile strength of the subsurface material is low and that the surface is covered by a thin crust of low permeability. As the comet evolves, the amorphous ice crystallizes, and the crystallization front recedes from the surface, releasing the trapped gasses, which accumulate beneath the surface, building up pressure. The gas pressure weakens the material strength, but sustains the gas-filled layer against hydrostatic pressure. Eventually, the gas will break its way through the outer crust in an outburst. The rapid pressure drop may cause the collapse of the gas depleted layer, as seen on the nucleus of 67P/Churyumov-Gerasimenko. This mechanism is similar to subsidence events in gas fields on earth.We have performed quasi-3D numerical simulations in an attempt to determine the extent of the area that would be affected by such a mechanism. The frequency of such subsidence events and the depth of the collapse are investigated as functions of solar angle and spin axis inclination. The necessary conditions for outburst-induced collapse are determined and confronted with observations.References:Groussin, O., Sierks, H., et al. 2015, A&A, 583, A35Prialnik, D. & Sierks, H., 2017, MNRAS, in press

  17. Opportunities for ballistic missions to Halley's comet

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1977-01-01

    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. A large scientific return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. Two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a 3 year period. One spacecraft would intercept Halley's comet before its perihelion passage in December 1985 and then go on to comet Borrelly with an encounter in January 1988. The other spacecraft would be targeted for a postperihelion Halley intercept in March 1986 before proceeding toward an encounter with comet Tempel 2 in September 1988.

  18. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  19. Halley’s comet; a benevolent visitor to Earth

    USGS Publications Warehouse

    Spall, H.

    1986-01-01

    In 1705 Edmund Halley, Professor of Geometry at Oxford University, collected and organized a mass of information on comets observed in 1531, 1607, and 1682, a task for which he had an uncommon genius. He was able to show that the comets had very similar orbits, and correctly drew the conclusion that they were the same object and more importantly that comets could therefore be periodic. He predicted that this comet would again be visible from the Earth in 1759. Since then it has been known as Halley's comet and it has played a significant role in the development of astronomy. 

  20. Comet ISON Approaching the Sun [hd video

    NASA Image and Video Library

    2013-11-27

    This movie from NASA’s STEREO spacecraft's Heliospheric Imager shows Comet ISON, Mercury, Comet Encke and Earth over a five-day period from Nov. 20 to Nov. 25, 2013. The sun sits right of the field of view of this camera. Comet ISON, which will round the sun on Nov. 28, is what's known as a sungrazing comet, due to its close approach. Foreshortening or the angle at which these images were obtained make Earth appear as if it is closer to the sun than Mercury. If you look closely you will also see a dimmer and smaller comet Encke near comet ISON. A comet’s journey through the solar system is perilous and violent. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. Even if the comet does not survive, tracking its journey will help scientists understand what the comet is made of, how it reacts to its environment, and what this explains about the origins of the solar system. Closer to the sun, watching how the comet and its tail interact with the vast solar atmosphere can teach scientists more about the sun itself. Image Credit: NASA/STEREO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Theories of comets to the age of Laplace

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    Although the development of ideas about cometary motion has been investigated in several projects, a comprehensive and detailed survey of physical theories of comets has not been conducted. The available works either illustrate relatively short periods in the history of physical cometology or portray a landscape view without adequate details. The present study is an attempt to depict the details of the major physical theories of comets from Aristotle to the age of Laplace. The basic question from which this project originated was simple: how did natural philosophers and astronomers define the nature and place of a new category of celestial objects--the comets--after Brahe's estimation of cometary distances? However, a study starting merely from Brahe without covering classical and medieval thought about comets would be incomplete. Thus, based on the fundamental physical characteristics attributed to comets, the history of cometology may be divided into three periods: from Aristotle to Brahe, in which comets were assumed to be meteorological phenomena; from Brahe to Newton, when comets were admitted as celestial bodies but with unknown trajectories; and from Newton to Laplace, in which they were treated as members of the solar system having more or less the same properties of the planets. By estimating the mass of comets in the 1800s, Laplace diverted cometology into a different direction wherein they were considered among the smallest bodies in the solar system and deprived of the most important properties that had been used to explain their physical constitution during the previous two millennia. Ideas about the astrological aspects of comets are not considered in this study. Also, topics concerning the motion of comets are explained to the extent that is helpful in illustrating their physical properties. The main objective is to demonstrate the foundations of physical theories of comets, and the interaction between observational and mathematical astronomy, and

  2. Halley's Comet Makes a Comeback.

    ERIC Educational Resources Information Center

    Glenn, William H.

    1984-01-01

    Presents information on Halley's Comet including its discovery, impact on history, planned investigations related to its 1986 return, where and when to make observations, and predicted calendar of events. Gives general information on comets such as physical structure, theoretical origin, and paths and provides an annotated reference list. (JM)

  3. Comet Halley and nongravitational forces

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The motion of comet Halley is investigated over the 1607-1911 interval. The required nongravitational-force model was found to be most consistent with a rocket-type thrust from the vaporization of water ice in the comet's nucleus. The nongravitational effects are time-independent over the investigated interval.

  4. A Continuing Analysis of Possible Activity Drivers for the Enigmatic Comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Schambeau, Charles Alfred; Fernandez, Yanga; Samarasinha, Nalin; Sarid, Gal; Mueller, Beatrice; Meech, Karen; Woodney, Laura

    2015-11-01

    We present results from our continuing effort to understand activity drivers in Comet 29P/Schwassmann-Wachmann 1 (SW1). While being in a nearly circular orbit around 6 AU, SW1 is continuously active and experiences frequent outbursts. Our group’s effort is focusing on finding constraints on physical and dynamical properties of SW1’s nucleus and their incorporation into a thermophysical model [1,2] to explain this behavior. Now we are analyzing coma morphology of SW1 before, during, and after outburst to place constraints on the spin-pole direction, spin period, and surface areas of activity (a spin period lower limit has been measured). Also, we are using the thermal model to investigate if the continuous activity comes from one or multiple processes, such as the release of trapped supervolatiles during the amorphous to crystalline (A-C) water ice phase transition and/or the direct sublimation of pockets of supervolatile ices, which may be primordial or from the condensation of gases released during the A-C phase transition. To explain the possibly quasi-periodic but frequent outbursts, we are looking into subsurface cavities where internal pressures can build, reaching and exceeding surrounding material strengths [3,4] and/or thermal waves reaching a pocket of supervolatile ices, causing a rapid increase in the sublimation rate. For all these phenomena, the model is constrained by comparing the output dust mass loss rate and its variability with what has been observed through optical imaging of the comet at various points in its orbit. We will present preliminary thermal modeling of a homogeneous progenitor nucleus that evolves into a body showing internal material layering, the generation of CO and CO2 ice pockets, and the production of outbursts, thus bringing us closer to explaining the behavior of this intriguing comet.[1] Sarid, G., et al.: 2005, PASP, 117, 843. [2] Sarid, G.: 2009, PhD Thesis, Tel Aviv Univ. [3] Gronkowski, P., 2014, Astron. Nachr./AN 2

  5. Observations of ammonia in comets with Herschel

    NASA Astrophysics Data System (ADS)

    Biver, N.; Bockelée-Morvan, D.; Hartogh, P.; Crovisier, J.; de Val-Borro, M.; Kidger, M.; Küppers, M.; Lis, D.; Moreno, R.; Szutowicz, S.; HssO Team

    2014-07-01

    Ammonia is the most abundant nitrogen bearing species in comets. However, it has been scarcely observed in comets due to the weakness of the lines observable from the ground at infrared and centimetre wavelengths. Nevertheless, its main photodissociation product NH_2 has been observed in several comets in the visible. The fundamental rotational J_{K}=(1_0-0_0) transition of NH_3 at 572.5 GHz has been observed in comets since 2004, with the Odin satellite (Biver et al. 2007). In the frame of the Herschel guaranteed time key program ''HssO'' (Hartogh et al. 2009), ammonia was detected with the HIFI instrument in comets 10P/Tempel 2 (Biver et al. 2012), 45P/Honda- Mrkos-Pajdusakova, 103P/Hartley 2, and C/2009 P1 (Garradd). The hyperfine structure of the line is resolved. We have built a complete excitation model to interpret these observations, including the radial distribution in comet 103P. The derived abundances relative to water are on the order of 0.5 %, similar to the values inferred from visible observations of NH_2.

  6. THE COVERING FACTOR OF WARM DUST IN WEAK EMISSION-LINE ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xudong; Liu, Yuan, E-mail: zhangxd@ihep.ac.cn, E-mail: liuyuan@ihep.ac.cn

    2016-10-20

    Weak emission-line active galactic nuclei (WLAGNs) are radio-quiet active galactic nuclei (AGNs) that have nearly featureless optical spectra. We investigate the ultraviolet to mid-infrared spectral energy distributions of 73 WLAGNs (0.4 < z < 3) and find that most of them are similar to normal AGNs. We also calculate the covering factor of warm dust of these 73 WLAGNs. No significant difference is indicated by a KS test between the covering factor of WLAGNs and normal AGNs in the common range of bolometric luminosity. The implication for several models of WLAGNs is discussed. The super-Eddington accretion is unlikely to bemore » the dominant reason for the featureless spectrum of a WLAGN. The present results are still consistent with the evolution scenario, i.e., WLAGNs are in a special stage of AGNs.« less

  7. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.

    PubMed

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank

    2008-01-25

    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  8. Long-period comet impact risk mitigation with Earth-based laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2017-09-01

    Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.

  9. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shou, Y.; Combi, M.; Gombosi, T.

    2015-08-20

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006more » P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.« less

  10. To Catch A Comet...Learning From Halley's.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Comet chronicles and stories extend back over thousands of years. A common theme has been that comets are a major cause of catastrophe and tragedy here on earth. In addition, both Aristotle and Ptolemy believed that comets were phenomena within the earth's atmosphere, and it wasn't until the 16th century, when Danish astronomer Tycho Brache…

  11. Once a myth, now an object of study - How the perception of comets has changed over the centuries

    NASA Astrophysics Data System (ADS)

    2004-02-01

    In February 2004, Rosetta will be setting off on its long journey through our solar system to meet up with Comet Churyumov-Gerasimenko. It will take the European Space Agency (ESA) space probe ten years to reach its destination. The comet, which moves in an elliptical orbit around the Sun, will at rendezvous be some 675 million kilometres from the Sun, near the point in its orbit farthest from the Sun. The meeting point was not chosen at random: at this point the comet is still barely active, it is still in fact a frozen lump of ice and interplanetary dust, in all probability the matter from which our solar system emerged four and a half billion years ago. Rosetta’s job is to find out more about these strange bodies that travel through our solar system. As it moves on, the comet will begin to change. As it approaches the Sun, it will - like all comets - become active: in the warmth of the Sun’s rays, the ices evaporate, tearing small dust particles from the surface. This produces the comet head (the coma) and tail. Only these two phenomena are visible from Earth. The comet nucleus itself is far too tiny - Churyumov-Gerasimenko measures about 4 kilometres across - to be viewed from Earth. As Dr Uwe Keller of the Max Planck Institute for Aeronomy in Kaltenburg-Lindau, the scientist responsible for the Osiris camera carried by Rosetta, explains, “Formation of the coma and tail during solar flyby skims several metres of matter off the comet’s surface. In the case of a small comet like Churyumov-Gerasimenko, the shrinkage is a good 1% each time round.” As it flies past the Sun every 6.6 years it can look forward to a short future, especially on a cosmic timescale. Comets - a mystical view Visible cometary phenomena have fascinated human beings from time immemorial - and frightened them too. Even today mystical explanations prevail among some of the Earth’s peoples. The Andaman islanders, a primitive people living in the Gulf of Bengal, see comets as burning

  12. Radio Observations of Organics in Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; Coulson, Iain; Remijan, Anthony J.

    2012-01-01

    A major observational challenge in cometary science is to quantify the extent to which chemical compounds can be linked to either interstellar or nebular chemistry. Recently, there have been complimentary observations from multiple facilities to try to unravel the chemical complexity of comets and their origins. Incorporating results from various techniques can gain further insight into the abundances, production rates, distributions, and formation mechanisms of molecules in these objects [I]. Such studies have provided great detail towards molecules with a-typical chemistries, such as H2CO [2]. We report multiwavelength spectral observations of comets from two dynamical families including the JFC 103P/Hartley 2 and a long period comet C/2009 PI (Garradd) with the Arizona Radio Observatory's SMT and 12-m telescopes, as well as the NRAO Greenbank telescope, and the James Clerk Maxwell Telescope. Multiple parent volatiles (e.g. HCN, CH30H, CO) as well as daughter products (e.g, CS and 01-1) have been detected in these objects. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition. Previous work has revealed a range of abundances of parent species (from "organics-poor" to "organics-rich") with respect to water among comets [3,4,5], however the statistics are not well constrained.

  13. Photographic observations of six comets

    NASA Astrophysics Data System (ADS)

    de Sanctis, G.; Ferreri, W.; Zappala, V.

    Sixty-nine positions of six comets are given as obtained from photographic observations made at the Observatory of Torino from October 1980 to September 1982. Positions are given for Comets Encke, Stephan-Oterma, Meier, Bradfield, Panther, and Austin. Plates were measured with a Zeiss two-coordinate measuring machine. The AGK3 catalog was used to obtain the positions of reference stars and the coordinates of an additional cataloged star near the position of the comet on the plate. The mean values of the differences between the cataloged positions were found to be 0.72 arcsec and 0.52 arcsec in right ascension and declination, respectively.

  14. Comets - Chemistry and chemical evolution

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1982-01-01

    Research on the chemical composition and conditions in comets and their possible role in the origin of life on earth is surveyed. The inorganic and organic compounds and ions indicated in the ultraviolet and visible spectra of comets are noted, and evidence for the existence of at least a small proportion of complex organic molecules in comets is presented. It is then pointed out that while cometary material could have reached the earth and provided volatile elements from which biochemical compounds could have formed, it is unlikely that a cometary nucleus could have withstood the temperatures and pressures necessary to sustain an environment in which life could have originated.

  15. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1985-01-01

    The development and utilization of an optimized computer program to analyze orbital stabilization by repeated calculations is presented. The stability of comets in the Opik-Oort Cloud about the Sun against perturbations by the Galactic center involve the same basic type of calculation. The supposed persistence of these bodies in orbits over the life of the solar system, depends upon the stability of bodies of negligible mass in orbits around a body whose mass is small compared to the central mass about which they revolve. The question remains of preferential orientation of extremely eccentric comet orbits, possibly to explain the asymmetry observed among new comet motions. A third application of the computing programs is suited to meteoroids that may exist in orbits about asteroids and that may endanger science spacecraft making flybys too near to asteroids. As in the double-comet case, solar activity and solar gravitational perturbations limit the attendance to an asteroid by small meteroids in their orbits. It is found that the mass distances planned for asteroid fly-bys are adequate.

  16. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Haley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Stephen M.

    2011-01-01

    On November 4, 2010 the already "in-flight" Deep Impact spacecraft flew within 700km of comet 103P/Hartley 2 as part of its extended mission EPOXI, the 5th time to date any spacecraft visited a comet. In 2005, the spacecraft had previously imaged a probe impact comet Tempel 1. The EPOXI flyby marked the first time in history that two comets were explored with the same instruments on a re-used spacecraft-with hardware and software originally designed and optimized for a different mission. This made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby. As part of the spacecraft team preparations, the ADCS team had to perform thorough sequence reviews, key spacecraft activities and onboard calibrations. These activities included: review of background sequences for the initial conditions vector, sun sensor coefficients, and reaction wheel assembly (RWA) de-saturations; design and execution of 10 trajectory correction maneuvers; science calibration of the two telescope instruments; a flight demonstration of the fastest turns conducted by the spacecraft between Earth and comet point; and assessment of RWA health (given RWA problems on other spacecraft).

  17. On the problem of origin of periodic comets.

    NASA Astrophysics Data System (ADS)

    Guliev, A. S.

    The problem of origin of periodic comets is viewed under various aspects. A steady growth of the fraction of these comets in the overall population of comets is emphasized. The number of discovered periodic comets with small eccentricities and with the Jacobi constant close to 3 is also growing eventually. Comparison of maximum magnitudes of the same comets in different apparitions at the same elongations as well as the analysis of exhausted comets indicate that the age of these objects does not exceed 1000 years. Capture is considered as an efficient mechanism for preserving equilibrium over reasonable time intervals. The analysis of the data given by Everhart and the calculations of the evolution of cometary orbits reveal small efficiency of capture. Comparison of the number of well established capture cases with the corresponding time interval shows that the age of the system of periodic comets must be 17000 years within the framework of this mechanism. This is most unlikely. Secular variations in the distributions of semimajor axes, inclinations, longitudes of perihelia, eccentricities of orbits of periodic comets are analysed. On the average, the eccentricities tend to increase, but this conflicts with the capture mechanism. A conclusion is made that the concept of capture in its classical and modern versions is unable to solve the problem of the origin of periodic comets on the whole. Other, more effective sources and mechanisms seem to be also in operation in enlarging the cometary system.

  18. What is a Sungrazing Comet? [hd video

    NASA Image and Video Library

    2013-11-27

    Sungrazing comets are a special class of comets that come very close to the sun at their nearest approach, a point called perihelion. To be considered a sungrazer, a comet needs to get within about 850,000 miles from the sun at perihelion. Many come even closer, even to within a few thousand miles. Being so close to the sun is very hard on comets for many reasons. They are subjected to a lot of solar radiation which boils off their water or other volatiles. The physical push of the radiation and the solar wind also helps form the tails. And as they get closer to the sun, the comets experience extremely strong tidal forces, or gravitational stress. In this hostile environment, many sungrazers do not survive their trip around the sun. Although they don't actually crash into the solar surface, the sun is able to destroy them anyway. Many sungrazing comets follow a similar orbit, called the Kreutz Path, and collectively belong to a population called the Kreutz Group. In fact, close to 85% of the sungrazers seen by the SOHO satellite are on this orbital highway. Scientists think one extremely large sungrazing comet broke up hundreds, or even thousands, of years ago, and the current comets on the Kreutz Path are the leftover fragments of it. As clumps of remnants make their way back around the sun, we experience a sharp increase in sungrazing comets, which appears to be going on now. Comet Lovejoy, which reached perihelion on December 15, 2011 is the best known recent Kreutz-group sungrazer. And so far, it is the only one that NASA's solar-observing fleet has seen survive its trip around the sun. Comet ISON, an upcoming sungrazer with a perihelion of 730,000 miles on November 28, 2013, is not on the Kreutz Path. In fact, ISON's orbit suggests that it may gain enough momentum to escape the solar system entirely, and never return. Before it does so, it will pass within about 40 million miles from Earth on December 26th. More information on this topic available at: www.nasa.gov/content/goddard/timeline-of-comet

  19. Structure and Formation of Comets: Updates from Post-Rosetta Solid Fraction Analyses

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Bentley, M. S.; Kofman, W. W.; Brouet, Y.; Ciarletti, V.; Hadamcik, E.; Herique, A.; Lasue, J.; Mannel, T.; Schmied, R.

    2016-12-01

    The combination of investigations of 67P/C-G by Rosetta, theoretical and experimental studies, and remote observations allowed unprecedented insight into the structure and formation of comets. Rosetta mission has provided ground-truth for the low-density and high porosity of the nucleus, without heterogeneities larger than a few meters in its small lobe [1,2]. Further studies related to CONSERT experiment now suggest that the porosity increases inside the nucleus [3,4]. Rosetta has also provided ground-truth for the aggregated structure of dust particles within a wide range of sizes in the inner coma [e.g. 5-7]. Such discoveries confirm previous interpretations of remote observations of solar light scattered by dust in cometary comae. Differences in structure between the two parts of the nucleus, strongly suspected from previous high-resolution images of the surface [8] and possibly suggested from some remote observations in fragmenting sub-nuclei [9], might be pointed out from data obtained shortly before Rosetta controlled descent in September 2016. Further analyses by MIDAS of dust particles morphology at submicron-sizes [7,10], as well as compilations of remote observations of solar light scattered by 67P/C-G [11], are presently taking place. We will discuss how such results could lead to a better understanding of dust growth processes during the formation, specifically of 67P/C-G, and more generally, thanks to the link now provided between structural properties of dust and remote polarimetric observations, of comet's nuclei in the early Solar System. References. 1 Kofman et al. Science 2015. 2 Pätzold et al. Nature 2016. 3 Ciarletti et al. A&A 2015. 4 Brouet et al. MNRAS 2016 (under revision). 5. Rotundi et al. Science 2015. 6 Langevin et al. Icarus 2016. 7 Bentley et al. Nature 2016. 8 Massironi et al. Nature 2016. 9 Hadamcik et al. A&A 2016. 10. Mannel et al. Leiden symposium 2016. 11 Hadamcik et al. Leiden symposium 2016.

  20. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  1. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  2. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    NASA Astrophysics Data System (ADS)

    Disanti, Michael A.; Mumma, Michael J.

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  3. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    NASA Astrophysics Data System (ADS)

    Disanti, Michael A.; Mumma, Michael J.

    2008-07-01

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2 5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  4. Cosmogenic nuclide production within the atmosphere and long period comets

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew C.

    The Earth is constantly bombarded by cosmic rays. These high energy particles collide with target nuclei, producing a shower of secondary particles. These secondaries contribute significantly to the radiation background at sea level and in the atmosphere, as well as producing rare cosmogenic nuclides. This contribution is variable over long time scales as astrophysical events change the cosmic ray flux incident on the Earth. Our work re-examines a previously proposed climate effect of increased cosmic ray flux due to galactic location. Although our work does not support this effect, cosmic ray secondaries remain a threat to terrestrial biota. We calculate the cosmogenic neutron flux within the atmosphere as a function of primary spectrum. This work is pivotal in determining the radiation dose due to any arbitrary astrophysical event where the primary spectrum is known. Additionally, this work can be used to determine the cosmogenic nuclide production from such an event. These neutrons are the fundamental source of cosmogenic nuclides within our atmosphere and extraterrestrial matter. We explore the idea that excursions in 14C and 10Be abundances in the atmosphere may arise from direct deposition by long-period comet impacts, and those in 26Al from any bolide. We find that the amount of nuclide mass on large long-period comets entering the Earth's atmosphere may be sufficient for creating anomalies in the records of 14C and 10Be from past impacts. In particular, the estimated mass of the proposed Younger Dryas comet is consistent with its having deposited sufficient isotopes to account for recorded nuclide increases at that time. The 26Al/10Be ratio is much larger in extraterrestrial objects than in the atmosphere, and so, we note that measuring this ratio in ice cores is a suitable further test for the Younger Dryas impact hypothesis. This portion of our work may be used to find possible impact events in the geologic record as well as determination of a large

  5. Variability in Comet P/Swift-Tuttle

    NASA Technical Reports Server (NTRS)

    Schulz, Rita; Mcfadden, Lucy A.; Chamberlin, Alan B.; A'Hearn, Michael F.; Schleicher, David G.

    1994-01-01

    Spatial profiles of the coma of Comet P/Swift-Tuttle perpendicular to the projected Sun-comet line were obtained for the emission bands of CN, C2, and C3 as well as for two continuum bands from spectrophotometric observations taken from Oct. 5 to 8, 1992. The intensities were converted into emissivities per sq km in the cases of the continua and into column densities for the emission band profiles. Spatial and temporal variabilities have been found in all five investigated components, which are consistent with the rotational period of the nucleus determined from the observations of the comet during its last perihelion passage in 1862. The emission band profiles were fitted with the vectorial model and the production rates of CN, C2, and C3 were determined. One half of the profiles was fitted adequately under steady state conditions for the production rate in a first approximation, whereas the other half showed prominent bumps, which could only be explained by introducing a time-dependent production rate. Further investigations showed evidence for the presence of gaseous as well as dust jets in the coma, which indicated the presence of at least two active areas on the surface of the nucleus. The projected radial expansion velocities of two different features were determined to be (430 +/- 100) and (460 +/- 100) m/sec, respectively.

  6. A catalog of observed nuclear magnitudes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P < 20 yr) is presented with our ``best estimates'' of their absolute nuclear magnitudes H_N = V(1,0,0). The catalog includes all the nuclear magnitudes reported after 1950 until August 1998 that appear in the International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  7. The discovery rate of new comets in the age of large surveys. Trends, statistics, and an updated evaluation of the comet flux

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.

    We analyze a sample of 58 Oort cloud comets (OCCs) (original orbital energies x in the range 0 < x < 100, in units of 10-6 AU-1), plus 45 long-period comets with negative orbital energies or poorly determined or undetermined x, discovered during the period 1999-2007. To analyze the degree of completeness of the sample, we use Everhart's (1967 Astr. J 72, 716) concept of “excess magnitude” (in magnitudes × days), defined as the integrated magnitude excess that a given comet presents over the time above a threshold magnitude for detection. This quantity is a measure of the likelihood that the comet will be finally detected. We define two sub-samples of OCCs: 1) new comets (orbital energies 0 < x < 30) as those whose perihelia can shift from outside to the inner planetary region in a single revolution; and 2) inner cloud comets (orbital energies 30 ≤ x < 100), that come from the inner region of the Oort cloud, and for which external perturbers (essentially galactic tidal forces and passing stars) are not strong enough to allow them to overshoot the Jupiter-Saturn barrier. From the observed comet flux and making allowance for missed discoveries, we find a flux of OCCs brighter than absolute total magnitude 9 of ≃0.65 ± 0.18 per year within Earth's orbit. From this flux, about two-thirds corresponds to new comets and the rest to inner cloud comets. We find striking differences in the q-distribution of these two samples: while new comets appear to follow an uniform q-distribution, inner cloud comets show an increase in the rate of perihelion passages with q.

  8. The fuelling of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Begelman, Mitchell C.; Frank, Julian

    1990-01-01

    Accretion mechanisms for powering the central engines of active galactic nuclei (AGN) and possible sources of fuel are reviewed. It is a argued that the interstellar matter in the main body of the host galaxy is channeled toward the center, and the problem of angular momentum transport is addressed. Thin accretion disks are not a viable means of delivering fuel to luminous AGN on scales much larger than a parsec because of the long inflow time and effects of self-gravity. There are also serious obstacles to maintaining and regulating geometrically thick, hot accretion flows. The role of nonaxisymmetric perturbations of the gravitational potential on galactic scales and their triggers is emphasized. A unified model is outlined for fueling AGN, in which the inflow on large scales is driven by gravitational torques, and on small scales forms a mildly self-gravitating disk of clouds with inflow driven by magnetic torques or cloud-cloud collisions.

  9. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; hide

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  10. Primary DNA damage assessed with the comet assay and comparison to the absorbed dose of diagnostic X-rays in children.

    PubMed

    Milkovic, Durdica; Garaj-Vrhovac, Vera; Ranogajec-Komor, Mária; Miljanic, Saveta; Gajski, Goran; Knezevic, Zeljka; Beck, Natko

    2009-01-01

    The aim of this work is to assess DNA damage in peripheral blood lymphocytes of children prior to and following airway X-ray examinations of the chest using the alkaline comet assay and to compare data with the measured absorbed dose. Twenty children with pulmonary diseases, between the ages of 5 and 14 years, are assessed. Absorbed dose measurements are conducted for posterior-anterior projection on the forehead, thyroid gland, gonads, chest, and back. Doses are measured using thermoluminescent and radiophotoluminescent dosimetry systems. Differences between tail lengths, tail intensity, and tail moments as well as for the long-tailed nuclei before and after exposures are statistically significant and are dependent on the individual. The results demonstrate the usefulness of the comet assay as a measure of X-ray damage to lymphocytes in a clinical setting. Doses measured with both dosimeters show satisfactory agreement (0.01 mSv) and are suitable for dosimetric measurements in X-ray diagnostics.

  11. Geomorphology of comet 67P/Churyumov–Gerasimenko

    USGS Publications Warehouse

    Birch, Samuel P. D.; Tang, Y.; Hayes, A. G.; Kirk, Randolph L.; Bodewitz, D.; Campins, H.; Fernandez, Y.; de Freitas Bart, R.; Kutsop, N. W.; Sierks, H.; Soderblom, J. M.; Squyres, S. W.; Vincent, J.-B.

    2017-01-01

    We present a global geomorphological map of comet 67P/Churyumov–Gerasimenko (67P/C-G) using data acquired by the Rosetta Orbiter’s OSIRIS Narrow Angle Camera. The images used in our study were acquired between 2014 August and 2015 May, before 67P/C-G passed through perihelion. Imagery of the Southern hemisphere was included in our study, allowing us to compare the contrasting hemispheres of 67P/C-G in a single study. Our work also puts into greater context the morphologies studied in previous works, and also the morphologies observed on previously visited cometary nuclei. Relative to other nuclei, 67P/C-G appears most similar to 81P/Wild 2, with a topographically heterogeneous surface dominated by smooth-floored pits. Our mapping describes the landscapes of 67P/C-G when they were first observed by Rosetta, and our map can be used to detect changes in surface morphologies after its perihelion passage. Our mapping reveals strong latitudinal dependences for emplaced units and a highly heterogeneous surface. Layered bedrock units that represent the exposed nucleus of 67P/C-G are dominant at southern latitudes, while topographically smooth, dust covered regions dominate the Northern hemisphere. Equatorial latitudes are dominated by smooth terrain units that show evidence for flow structures. We observe no obvious differences between the comet’s two lobes, with the only longitudinal variations being the Imhotep and Hatmehit basins. These correlations suggest a strong seasonal forcing on the surface evolution of 67P/C-G, where materials are transported from the Southern hemisphere to Northern hemisphere basins over multiple orbital time-scales.

  12. An Interview with Catherine Comet.

    ERIC Educational Resources Information Center

    Scanlan, Mary

    1992-01-01

    Offers an interview with Catherine Comet, music director of the Grand Rapids (Michigan) Symphony. Reviews her childhood and early study in France and her experiences at the Julliard School of Music and on the contest circuit. Explains how she became a professional conductor. Discusses Comet's view of the importance that classical music can have…

  13. Maria Mitchell's Comet - a Challenge Once More?

    NASA Astrophysics Data System (ADS)

    Boyce, P. B.; Graham, A. P.; Strelnitski, V.

    1997-12-01

    This year marks the sesquicentennial of the discovery of a fateful comet by Maria Mitchell (1 October 1847). This was one of the first telescopic comets ever discovered and the first one discovered by a woman. It brought Maria Mitchell the gold medal from the King of Denmark, the first appointment of a woman as professor of Astronomy (at Vassar College) and the fame to be the first (and for ninety years - the only) woman - member of the American Academy of Arts and Sciences. It gave Maria Mitchell an unusually favorable opportunity to struggle for the rights of American women in science. We restore the circumstances of this discovery, and present the results of a modern re-calculation of the orbit of the comet, including its present position in the sky and its ephemeris for the next 50 years. The comet is 32(m) now and will slowly decrease in brightness. Our ability to detect faint objects has improved dramatically over the 150 years since the comet was discovered. By extrapolation, we show that modern technology may catch up with the declining brightness of the comet by the middle of the next century. Another challenge for astronomers!

  14. The COMET Sleep Research Platform.

    PubMed

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  15. The COMET Sleep Research Platform

    PubMed Central

    Nichols, Deborah A.; DeSalvo, Steven; Miller, Richard A.; Jónsson, Darrell; Griffin, Kara S.; Hyde, Pamela R.; Walsh, James K.; Kushida, Clete A.

    2014-01-01

    Introduction: The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Background: Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments—positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. Discussion: The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. Conclusion: COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment. PMID:25848590

  16. Small is different: RPC observations of a small scale comet interacting with the solar wind

    NASA Astrophysics Data System (ADS)

    Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team

    2016-10-01

    Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind

  17. The Comet Halley Handbook: An Observer's Guide. Second Edition.

    ERIC Educational Resources Information Center

    Yeomans, Donald K.

    This handbook contains information on: (1) the orbit of comet Halley; (2) the expected physical behavior of comet Halley in 1985-1986, considering brightness estimates, coma diameters, and tail lengths; (3) observing conditions for comet Halley in 1985-1986; and (4) observing conditions for the dust tail of comet Halley in 1985-1986. Additional…

  18. Consequences of hot gas in the broad line region of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Mushotzky, R.

    1985-01-01

    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.

  19. Cometary Volatiles and the Origin of Comets

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Feaga, Lori M.; Keller, H. Uwe; Kawakita, Hideyo; Hampton, Donald L.; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Lucy A.; Meech, Karen J.; Schultz, Peter H.; hide

    2012-01-01

    We describe recent results on the CO/C02/H2O composition of comets and compare these with models of the protoplanetary disk. We argue that the cometary observations require reactions on grain surfaces to convert CO to CO2 and also require formation between the CO and CO2 snow lines. This then requires very early mixing of cometesimals in the protoplanetary disk analogous to the mixing described for the asteroid belt by Walsh and Morbidelli. We suggest that most comets formed in the region of the giant planets. the traditional source of the Oort-cloud comets but not of the Jupiter-family comets

  20. 67P, Singing Comet

    NASA Astrophysics Data System (ADS)

    Smirnova, Ekaterina

    2017-04-01

    I would like to propose to present a short science-art-music collaboration film called "67P, Singing Comet" (5:27 min). If time of the session will allow, prior to the film I would like to make a slide show introduction to this project, highlighting the inspiration - the mission Rosetta by the European Space Agency (ESA) - and the artistic collaboration that took place in creating this piece. Inspired by the ESA Rosetta mission to the comet 67P, Ekaterina Smirnova (artist and project director, New York), Lee Mottram (clarinetist, Wales), Takuto Fukuda (composer, Japan) and Brian Hekker (video editor, New York) collaborated to create a unique atmospheric piece. Water and the origins of life throughout the Universe (specifically the Earth) is an element of the mission and the focus of Ekaterina's artistic vision. Ekaterina literally and figuratively paints a sensory assemblage using a combination of synthetic and natural elements to shape this artistic creation. To paint her watercolor works she is using a replica of the water found on the comet and implementing her own heartbeat into the music to create a recognizable inward sound of life. The Electro-Acoustic composition by Takuto Fukuda features an electronically manipulated performance by clarinetist Lee Mottram. The piece ceremoniously begins with reverberant bursts of low-register atonal bells transporting the listener to their ethereal inner origins of body and mind. The imagination takes the experience to an unknown destination as it gains speed gliding through the visual and audible textures of space and time. The comet's water similarly reacts with an ebb and flow thawing ice to potentially give life a chance as it is thrust along an orbit around the Sun. Near then far from the heat the comet forms frozen particles from vapors as it reaches it's furthest stretches creating an aerodynamic tail of icicles that slowly dissipate in a cycle that repeats itself until the comet's ultimate collision with an

  1. Comet Hartley 2 Gets a Visitor Artist Concept

    NASA Image and Video Library

    2010-10-26

    This artist concept shows a view of NASA EPOXI mission spacecraft during its Nov. 4, 2010 flyby of comet Hartley 2. The fluffy shell around the comet, called a coma, is made up of gas and dust that blew off the comet core, or nucleus.

  2. Comet Hartley 2 Looms Large in the Sky

    NASA Image and Video Library

    2010-11-03

    NASA EPOXI mission took this image of comet Hartley 2 on Nov. 2, 2010. The spacecraft will fly by the comet on Nov. 4, 2010. The white blob and the halo around it are the comet outer cloud of gas and dust, called a coma.

  3. Astronomical Resources: A Selected Halley's Comet Reading List.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1985-01-01

    Presents annotated lists of: (1) general introductory books about comets and Comet Halley; (2) books about comet history and lore; (3) introductory books for younger children; and (4) books for the serious amateur astronomer. A list of magazine and journal articles is included. (JN)

  4. History of the dust released by comets

    NASA Technical Reports Server (NTRS)

    Jambor, B. J.

    1976-01-01

    The Finson-Brobstein theory is used to examine production and history of dust released from periodic comets and to compare dust size distribution in relation to the Zodiacal cloud. Results eliminate all of the bright new comets from contributors to the Zodiacal cloud. Among the periodic comets, all particles of size much smaller than 10 micrometer are also lost. Only the large particles remain as possible contributors.

  5. Study of Comets Composition and Structure

    NASA Astrophysics Data System (ADS)

    Khalaf, S. Z.; Selman, A. A.; Ali, H. S.

    2008-12-01

    The present paper focuses on the nature of the different interactions between cometary nucleus and tail with solar wind. The dynamics of the comet will impose many features that provide unique behavior of the comet when entering the solar system. These features are reviewed in this paper and few investigations are made. The calculations made in this work represent the analysis and interpretation of the different features of the comet, such as perihelion and eccentricity dependence on the gas production rate, and the dependence of the latter on the composition of the comet nucleus. The dependences of the heliocentric, bow shock, contact surface, and stand-off distances with gas production rate for many types of comets that cover linear and non-linear types are studied in this work. Important results are obtained which indicated the different physical interactions between cometary ions and solar wind. Furthermore, the important relation between mean molecular weight and gas production rate are analyzed and studied in this work and a conclusion is made that, as the gas production rate increases, the mean molecular weight will decrease exponentially. A detailed discussion for this unique relation is given.

  6. Two-Tailed Comet Assay (2T-Comet): Simultaneous Detection of DNA Single and Double Strand Breaks.

    PubMed

    Cortés-Gutiérrez, Elva I; Fernández, José Luis; Dávila-Rodríguez, Martha I; López-Fernández, Carmen; Gosálvez, Jaime

    2017-01-01

    A modification of the original comet assay was developed for the simultaneous evaluation of DNA single strand breaks (SSBs) and double strand breaks (DSBs) in human spermatozoa. The two-dimensional perpendicular tail comet assay (2T-comet) combines non-denaturing and denaturant conditions to the same sperm nucleoid. In this case, the species-specific deproteinized sperm is first subjected to an electrophoretic field under non-denaturing conditions to mobilize isolated free discrete DNA fragments produced from DSBs; this is then followed by a second electrophoresis running perpendicular to the first one but under alkaline conditions to produce DNA denaturation, exposing SSBs on the same linear DNA chain or DNA fragments flanked by DSBs. This procedure results in a two dimensional comet tail emerging from the core where two types of original DNA affected molecule can be simultaneously discriminated. The 2T-comet is a fast, sensitive, and reliable procedure to distinguish between single and double strand DNA damage within the same cell. It is an innovative method for assessing sperm DNA integrity, which has important implications for human fertility and andrological pathology. This technique may be adapted to assess different DNA break types in other species and other cell types.

  7. Behavioral Characteristics and CO+CO2 Production Rates of Halley-Type Comets Observed by NEOWISE

    NASA Astrophysics Data System (ADS)

    Rosser, Joshua David; Bauer, James M.; Mainzer, Amy K.; Kramer, Emily A.; Masiero, Joseph R.; Nugent, Carrie; Sonnett, Sarah M.; Fernandez, Yanga R.; Wright, Edward L.; WISE, NEOWISE

    2017-10-01

    From the NEOWISE dataset of comet images, 11 different Halley-Type Comets (HTCs) were identified and analyzed for dust production rates (Afρ), CO+CO2 production rates (QCO2), and nucleus size. The objects considered ranged in heliocentric distance from 1.21 AU to 2.66 AU and were only considered when showing signs of reasonable activity. When multiple epochs were included and when combined with data from previous WISE and NEOWISE studies, our dataset totaled to 21 observations; 13 of which included active comets, and 7 for which we calculated upper limits of production. Comet P/2010 JC81 was removed from consideration due to clear inactivity. For this study, active comets are defined as those which exhibit excess signal of at least 3σ in the 4.6 μm detection band, while comets for which upper limits were calculated demonstrated excess signal of 1σ in the 4.6 μm detection band. Furthermore, we confirmed the nucleus size of 27P, P/2006 HR30, C/2010 L5, P/2012 NJ, C/2016 S1. We found that given the range in heliocentric distance for this sample of HTCs, Afρ ranged from 0.790 ± 0.036 to 2.64 ± 0.14, and QCO2 ranged from 25.08 ± 0.08 to 26.71 ± 0.12. No significant correlation between dust production and heliocentric distance, nor CO+CO2 production with heliocentric distance was found for this population. This poster will display production rates and other physical properties of these HTCs, as well as place the ensemble of HTC production rate properties into context.

  8. A GREAT search for Deuterium in Comets

    NASA Astrophysics Data System (ADS)

    Mumma, Michael

    2012-10-01

    Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only seven comets. Six were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.

  9. A GREAT search for Deuterium in Comets

    NASA Astrophysics Data System (ADS)

    Mumma, Michael

    2013-10-01

    Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only eight comets. Seven were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.

  10. The long-term dynamical behavior of short-period comets

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.; Duncan, Martin J.

    1993-01-01

    The orbits of the known short-period comets under the influence of the Sun and all the planets except Mercury and Pluto are numerically integrated. The calculation was undertaken in order to determine the dynamical lifetimes for these objects as well as explaining the current orbital element distribution. It is found that a comet can move between Jupiter-family and Halley-family comets several times in its dynamical lifetime. The median lifetime of the known short-period comets from the time they are first injected into a short-period comet orbit to ultimate ejection is approximately 50,000 years. The very flat inclination distribution of Jupiter-family comets is observed to become more distended as it ages. The only possible explanation for the observed flat distribution is that the comets become extinct before their inclination distribution can change significantly. It is shown that the anomalous concentration of the argument of perihelion of Jupiter-family comets near 0 and 180 deg is a direct result of their aphelion distance being close to 5.2AU and the comet being recently perturbed onto a Jupiter-family orbit. Also the concentration of their aphelion near Jupiter's orbit is a result of the conservation of the Tisserand invariant during the capture process.

  11. A quantitative comet infection assay for influenza virus

    PubMed Central

    Lindsay, Stephen M.; Timm, Andrea; Yin, John

    2011-01-01

    Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578

  12. Evaluation of genetic damage induced by glyphosate isopropylamine salt using Tradescantia bioassays.

    PubMed

    Alvarez-Moya, Carlos; Silva, Mónica Reynoso; Arámbula, Alma Rosa Villalobos; Sandoval, Alfonso Islas; Vasquez, Hugo Castañeda; González Montes, Rosa María

    2011-01-01

    Glyphosate is noted for being non-toxic in fishes, birds and mammals (including humans). Nevertheless, the degree of genotoxicity is seriously controversial. In this work, various concentrations of a glyphosate isopropylamine salt were tested using two methods of genotoxicity assaying, viz., the pink mutation assay with Tradescantia (4430) and the comet assay with nuclei from staminal cells of the same plant. Staminal nuclei were studied in two different forms, namely nuclei from exposed plants, and nuclei exposed directly. Using the pink mutation assay, isopropylamine induced a total or partial loss of color in staminal cells, a fundamental criterion utilized in this test. Consequently, its use is not recommended when studying genotoxicity with agents that produce pallid staminal cells. The comet assay system detected statistically significant (p < 0.01) genotoxic activity by isopropylamine, when compared to the negative control in both the nuclei of treated plants and directly treated nuclei, but only the treated nuclei showed a dose-dependent increase. Average migration in the nuclei of treated plants increased, when compared to that in treated nuclei. This was probably due, either to the permanence of isopropylamine in inflorescences, or to the presence of secondary metabolites. In conclusion, isopropylamine possesses strong genotoxic activity, but its detection can vary depending on the test systems used.

  13. Evaluation of genetic damage induced by glyphosate isopropylamine salt using Tradescantia bioassays

    PubMed Central

    Alvarez-Moya, Carlos; Silva, Mónica Reynoso; Arámbula, Alma Rosa Villalobos; Sandoval, Alfonso Islas; Vasquez, Hugo Castañeda; González Montes, Rosa María

    2011-01-01

    Glyphosate is noted for being non-toxic in fishes, birds and mammals (including humans). Nevertheless, the degree of genotoxicity is seriously controversial. In this work, various concentrations of a glyphosate isopropylamine salt were tested using two methods of genotoxicity assaying, viz., the pink mutation assay with Tradescantia (4430) and the comet assay with nuclei from staminal cells of the same plant. Staminal nuclei were studied in two different forms, namely nuclei from exposed plants, and nuclei exposed directly. Using the pink mutation assay, isopropylamine induced a total or partial loss of color in staminal cells, a fundamental criterion utilized in this test. Consequently, its use is not recommended when studying genotoxicity with agents that produce pallid staminal cells. The comet assay system detected statistically significant (p < 0.01) genotoxic activity by isopropylamine, when compared to the negative control in both the nuclei of treated plants and directly treated nuclei, but only the treated nuclei showed a dose-dependent increase. Average migration in the nuclei of treated plants increased, when compared to that in treated nuclei. This was probably due, either to the permanence of isopropylamine in inflorescences, or to the presence of secondary metabolites. In conclusion, isopropylamine possesses strong genotoxic activity, but its detection can vary depending on the test systems used. PMID:21637555

  14. Comet Siding Spring Mars Flyby

    NASA Image and Video Library

    2017-12-08

    On October 19, Comet Siding Spring will pass within 88,000 miles of Mars – just one third of the distance from the Earth to the Moon! Traveling at 33 miles per second and weighing as much as a small mountain, the comet hails from the outer fringes of our solar system, originating in a region of icy debris known as the Oort cloud. Comets from the Oort cloud are both ancient and rare. Since this is Comet Siding Spring’s first trip through the inner solar system, scientists are excited to learn more about its composition and the effects of its gas and dust on the Mars upper atmosphere. NASA will be watching closely before, during, and after the flyby with its entire fleet of Mars orbiters and rovers, along with the Hubble Space Telescope and dozens of instruments on Earth. The encounter is certain to teach us more about Oort cloud comets, the Martian atmosphere, and the solar system’s earliest ingredients. Learn more: www.youtube.com/watch?v=FG4KsatjFeI Credit: NASA’s Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Stardust: Catching a Comet and Bringing it Home

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.

    2007-01-01

    The NASA STARDUST mission collected thousands of particles from Comet Wild 2 that are now being studied by two hundred scientists around the world. The spacecraft captured the samples during a close flyby of the comet in 2004 and returned them to Earth with a dramatic entry into the atmosphere early in 2006. The precious cargo of comet dust is being studied to determine new information about the origin of the Sun and planets. The comet formed at the edge of the solar system, beyond the orbit of Neptune, and is a sample of the material from which the solar system was formed. One of the most dramatic early findings from the mission was that a comet that formed in the coldest place in the solar system contained minerals that formed in the hottest place in the solar system. The comet samples are telling stories of fire and ice and they providing fascinating and unexpected information about our origins.

  16. Comet Plunge and CME on the Sun

    NASA Image and Video Library

    2017-12-08

    A small comet was streaking towards the Sun when the Sun blew out a "halo" coronal mass ejection (CME) Aug. 19-20, 2013). The CME originated from the far side of the Sun and did not have any interaction with the comet. The comet, only perhaps 30 meters across, was not seen after it went out of view, likely disintegrated by the heat and radiation from the Sun. We call this a "full halo" CME since the front edge of the CME is expanding in all directions around the Sun like a halo. The images were taken by SOHO's coronagraphs in which a disk (red) blocks the Sun and some of the area around it so we can see faint structures beyond that. Here we superimposed the Sun from NASA's SDO. The movie covers about five hours of activity and can be seen here: www.flickr.com/photos/gsfc/9601034896/ Credit: NASA/Goddard/SOHO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Exposed bright features on the comet 67P/Churyumov-Gerasimenko: distribution and evolution

    NASA Astrophysics Data System (ADS)

    Deshapriya, J. D. P.; Barucci, M. A.; Fornasier, S.; Hasselmann, P. H.; Feller, C.; Sierks, H.; Lucchetti, A.; Pajola, M.; Oklay, N.; Mottola, S.; Masoumzadeh, N.; Tubiana, C.; Güttler, C.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; Cecco, M. De; Deller, J.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Hoang, H. V.; Hviid, S. F.; Ip, W.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, R.; Kührt, E.; Küppers, M.; Lara, L.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Preusker, F.; Shi, X.; Thomas, N.; Vincent, J.-B.

    2018-05-01

    Context. Since its arrival at the comet 67P/Churyumov-Gerasimenko in August 2014, the Rosetta spacecraft followed the comet as it went past the perihelion and beyond until September 2016. During this time there were many scientific instruments operating on board Rosetta to study the comet and its evolution in unprecedented detail. In this context, our study focusses on the distribution and evolution of exposed bright features that have been observed by OSIRIS, which is the scientific imaging instrument aboard Rosetta. Aims: We envisage investigating various morphologies of exposed bright features and the mechanisms that triggered their appearance. Methods: We co-registered multi-filter observations of OSIRIS images that are available in reflectance. The Lommel-Seeliger disk function was used to correct for the illumination conditions and the resulting colour cubes were used to perform spectrophotometric analyses on regions of interest. Results: We present a catalogue of 57 exposed bright features observed on the nucleus of the comet, all of which are attributed to the presence of H2O ice on the comet. Furthermore, we categorise these patches under four different morphologies and present geometric albedos for each category. Conclusions: Although the nucleus of 67P/Churyumov-Gerasimenko appears to be dark in general, there are localised H2O ice sources on the comet. Cometary activity escalates towards the perihelion passage and reveals such volatile ices. We propose that isolated H2O ice patches found in smooth terrains in regions, such as Imhotep, Bes, and Hapi, result from frost as an aftermath of the cessation of the diurnal water cycle on the comet as it recedes from perihelion. Upon the comet's return to perihelion, such patches are revealed when sublimation-driven erosion removes the thin dust layers that got deposited earlier. More powerful activity sources such as cometary outbursts are capable of revealing much fresher, less contaminated H2O ice that is

  18. Migration of comets to near-Earth space

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.

    The orbital evolution of more than 21000 Jupiter-crossing objects under the gravitational influence of planets was investigated. For orbits close to that of Comet 2P, the mean collision probabilities of Jupiter-crossing objects with the terrestrial planets were greater by two orders of magnitude than for some other comets. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects (<0.1%) got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Some of them even got inner-Earth orbits (Q<0.983 AU) and Aten orbits for millions of years. Most former trans-Neptunian objects that have typical near-Earth object orbits moved in such orbits for millions of years, so during most of this time they were extinct comets or disintegrated into mini-comets.

  19. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing (12)C, (16)O, and (40)Ca nuclei in preparation of clinical application.

    PubMed

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-01

    The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil

  20. Giacobini-Zinner comet: Polarimetric and physical observations

    NASA Technical Reports Server (NTRS)

    Martel, M. T.; Maines, P.; Grudzinska, S.; Stawikowski, A.

    1984-01-01

    The results of observations of the Giacobini-Zinner comet on 25 and 31 October 1959 are presented. The magnitude of the comet was measured photoelectrically in two spectral regions. The radius is on the order of one kilometer. The photoelectric measurements of comets 1959b and 1957c were used to measure the abundances of the CN and C2 radicals and of solid particles in the heads.