Sample records for active compound oxyresveratrol

  1. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling.

    PubMed

    Chen, Yi-Ching; Tien, Yin-Jing; Chen, Chun-Houh; Beltran, Francesca N; Amor, Evangeline C; Wang, Ran-Juh; Wu, Den-Jen; Mettling, Clément; Lin, Yea-Lih; Yang, Wen-Chin

    2013-02-23

    Morus alba has long been used in traditional Chinese medicine to treat inflammatory diseases; however, the scientific basis for such usage and the mechanism of action are not well understood. This study investigated the action of M. alba on leukocyte migration, one key step in inflammation. Gas chromatography-mass spectrometry (GC-MS) and cluster analyses of supercritical CO2 extracts of three Morus species were performed for chemotaxonomy-aided plant authentication. Phytochemistry and CXCR4-mediated chemotaxis assays were used to characterize the chemical and biological properties of M. alba and its active compound, oxyresveratrol. fluorescence-activated cell sorting (FACS) and Western blot analyses were conducted to determine the mode of action of oxyresveratrol. Chemotaxonomy was used to help authenticate M. alba. Chemotaxis-based isolation identified oxyresveratrol as an active component in M. alba. Phytochemical and chemotaxis assays showed that the crude extract, ethyl acetate fraction and oxyresveratrol from M. alba suppressed cell migration of Jurkat T cells in response to SDF-1. Mechanistic study indicated that oxyresveratrol diminished CXCR4-mediated T-cell migration via inhibition of the MEK/ERK signaling cascade. A combination of GC-MS and cluster analysis techniques are applicable for authentication of the Morus species. Anti-inflammatory benefits of M. alba and its active compound, oxyresveratrol, may involve the inhibition of CXCR-4-mediated chemotaxis and MEK/ERK pathway in T and other immune cells.

  2. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling

    PubMed Central

    2013-01-01

    Background Morus alba has long been used in traditional Chinese medicine to treat inflammatory diseases; however, the scientific basis for such usage and the mechanism of action are not well understood. This study investigated the action of M. alba on leukocyte migration, one key step in inflammation. Methods Gas chromatography-mass spectrometry (GC-MS) and cluster analyses of supercritical CO2 extracts of three Morus species were performed for chemotaxonomy-aided plant authentication. Phytochemistry and CXCR4-mediated chemotaxis assays were used to characterize the chemical and biological properties of M. alba and its active compound, oxyresveratrol. fluorescence-activated cell sorting (FACS) and Western blot analyses were conducted to determine the mode of action of oxyresveratrol. Results Chemotaxonomy was used to help authenticate M. alba. Chemotaxis-based isolation identified oxyresveratrol as an active component in M. alba. Phytochemical and chemotaxis assays showed that the crude extract, ethyl acetate fraction and oxyresveratrol from M. alba suppressed cell migration of Jurkat T cells in response to SDF-1. Mechanistic study indicated that oxyresveratrol diminished CXCR4-mediated T-cell migration via inhibition of the MEK/ERK signaling cascade. Conclusions A combination of GC-MS and cluster analysis techniques are applicable for authentication of the Morus species. Anti-inflammatory benefits of M. alba and its active compound, oxyresveratrol, may involve the inhibition of CXCR-4-mediated chemotaxis and MEK/ERK pathway in T and other immune cells. PMID:23433072

  3. Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis.

    PubMed

    Park, Jiaa; Park, Joon Heum; Suh, Hwa-Jin; Lee, In Chul; Koh, Jaesook; Boo, Yong Chool

    2014-07-01

    Resveratrol and oxyresveratrol are naturally occurring phenolic compounds with various bioactivities, but their uses in cosmetics have been partly limited by their chemical instabilities. This study was performed to examine the anti-melanogenic effects of the acetylated derivatives from resveratrol and oxyresveratrol. Resveratrol and oxyresveratrol were chemically modified to triacetyl resveratrol and tetraacetyl oxyresveratrol, respectively. The acetylated compounds were less susceptible than the parent compounds to oxidative discoloration. The acetylated compounds inhibited the activities of tyrosinases less than parent compounds in vitro, but they were as effective at cellular melanogenesis inhibition, indicating bioconversion to parent compounds inside cells. Supporting this notion, the parent compounds were regenerated when the acetylated compounds were digested with cell lysates. Although resveratrol and triacetyl resveratrol inhibited tyrosinase activity less effectively than oxyresveratrol and tetraacetyl oxyresveratrol in vitro, they inhibited cellular melanogenesis more effectively. This discrepancy was explained by strong inhibition of tyrosinase expression by resveratrol and triacetyl resveratrol. Experiments using a reconstituted skin model indicated that resveratrol derivatives can affect melanin synthesis and cell viability to different extents. Collectively, this study suggests that acetylated derivatives of resveratrol have great potential as anti-melanogenic agents for cosmetic use in terms of efficacy, safety, and stability.

  4. Quantitative analysis of oxyresveratrol in different plant parts of Morus species and related Genera by HPTLC

    USDA-ARS?s Scientific Manuscript database

    Four aromatic compounds; oxyresveratrol (1), mulberroside A (2), cudraflavone C (3) and kuwanone J (4) were isolated from the stems of Morus rubra L. The quantitative determination of oxyresveratrol from M. rubra L., M. alba L. and related genera by high performance thin layer chromatography (HPTLC)...

  5. Use of reversed phase high pressure liquid chromatography for the physicochemical and thermodynamic characterization of oxyresveratrol/beta-cyclodextrin complexes.

    PubMed

    Rodríguez-Bonilla, Pilar; López-Nicolás, José Manuel; García-Carmona, Francisco

    2010-06-01

    Knowledge of the complexation process of oxyresveratrol with beta-cyclodextrin (beta-CD) under different physicochemical conditions is essential if this potent antioxidant compound is to be used successfully in both food and pharmaceutical industries as ingredient of functional foods or nutraceuticals, despite its poor stability and bioavailability. In this paper, the complexation of oxyresveratrol with natural CDs was investigated for first time using RP-HPLC and mobile phases to which alpha-, beta-, and gamma-CD were added. Among natural CDs, the interaction of oxyresveratrol with beta-CD was more efficient than with alpha- and gamma-CD. The decrease in the retention times with increasing concentrations of beta-CD (0-4 mM) showed that the formation constants (KF) of the oxyresveratrol/beta-CD complexes were strongly dependent on both the water-methanol proportion and the temperature of the mobile phase employed. However, oxyresveratrol formed complexes with beta-CD with a 1:1 stoichiometry in all the physicochemical conditions tested. Moreover, to obtain information about the mechanism of the oxyresveratrol affinity for beta-CD, the thermodynamic parameters DeltaG degrees, DeltaH degrees and DeltaS degrees were obtained. Finally, to gain information on the effect of the structure of different compounds belonging to the stilbenoids family on the KF values, the complexation of other molecules, resveratrol, pterostilbene and pinosylvin, was studied and compared with the results obtained for the oxyresveratrol/beta-CD complexes. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Oxyresveratrol, a Stilbene Compound from Morus alba L. Twig Extract Active Against Trichophyton rubrum.

    PubMed

    Lu, Hai-Peng; Jia, Ya-Nan; Peng, Ya-Lin; Yu, Yan; Sun, Si-Long; Yue, Meng-Ting; Pan, Min-Hui; Zeng, Ling-Shu; Xu, Li

    2017-12-01

    Morus alba L. (mulberry) twig is known to have an inhibitory effect on pathogens in traditional Chinese medicine. In the present study, the dermophytic fungus, Trichophyton rubrum, was used to evaluate the inhibitory effect of total M. alba twig extract and extracts obtained using solvents with different polarities by the method of 96-well MTT colorimetry. The main active substance was isolated and identified by tracking its activity. In addition, the inhibitory effects of active extracts and a single active substance were investigated in combination with miconazole nitrate. Our data indicated that ethyl acetate extracts of mulberry twig (TEE) exhibited a desired inhibitory activity on T. rubrum with the minimum inhibitory concentration (MIC) of 1.000 mg/mL. With activity tracking, the main substance showing antimicrobial activity was oxyresveratrol (OXY), which was isolated from TEE. Its MIC for inhibiting the growth of T. rubrum was 0.500 mg/mL. The combined use of miconazole nitrate and OXY showed a synergistic inhibitory effect, as shown by a significant decrease in the MIC of both components. Based on the OXY content in TEE, the contribution rate of OXY to the inhibitory effect of TEE on T. rubrum was 80.52%, so it was determined to be the main antimicrobial substance in M. alba twig. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Kinetic characterization of oxyresveratrol as a tyrosinase substrate.

    PubMed

    Ortiz-Ruiz, Carmen Vanessa; Ballesta de Los Santos, Manuel; Berna, Jose; Fenoll, Jose; Garcia-Ruiz, Pedro Antonio; Tudela, Jose; Garcia-Canovas, Francisco

    2015-11-01

    Oxyresveratrol is a stilbenoid described as a powerful inhibitor of tyrosinase and proposed as skin-whitening and anti-browning agent. However, the enzyme is capable of acting on it, considering it as a substrate, as it has been proved in the case of its analogous resveratrol. Tyrosinase hydroxylates the oxyresveratrol to an o-diphenol and oxidizes the latter to an o-quinone, which finally isomerizes to p-quinone. For these reactions to take place the presence of the Eox (oxy-tyrosinase) form is necessary. The kinetic analysis of the proposed mechanism has allowed the kinetic characterization of this molecule as a substrate of tyrosinase, affording a catalytic constant of 5.39 ± 0.21 sec(-1) and a Michaelis constant of 8.65 ± 0.73 µM. © 2015 International Union of Biochemistry and Molecular Biology.

  8. Microemulsion-based oxyresveratrol for topical treatment of herpes simplex virus (HSV) infection: physicochemical properties and efficacy in cutaneous HSV-1 infection in mice.

    PubMed

    Sasivimolphan, Pattaraporn; Lipipun, Vimolmas; Ritthidej, Garnpimol; Chitphet, Khanidtha; Yoshida, Yoshihiro; Daikoku, Tohru; Sritularak, Boonchoo; Likhitwitayawuid, Kittisak; Pramyothin, Pornpen; Hattori, Masao; Shiraki, Kimiyasu

    2012-12-01

    The physicochemical properties of the optimized microemulsion and the permeating ability of oxyresveratrol in microemulsion were evaluated, and the efficacy of oxyresveratrol microemulsion in cutaneous herpes simplex virus type 1 (HSV-1) infection in mice was examined. The optimized microemulsion was composed of 10% w/w of isopropyl myristate, 35% w/w of Tween 80, 35% w/w of isopropyl alcohol, and 20% w/w of water. The mean particle diameter was 9.67 ± 0.58 nm, and the solubility of oxyresveratrol in the microemulsion was 196.34 ± 0.80 mg/ml. After accelerated and long-term stability testing, the microemulsion base and oxyresveratrol-loaded microemulsion were stable. The cumulative amount of oxyresveratrol permeating through shed snake skin from microemulsion at 6 h was 93.04 times compared to that of oxyresveratrol from Vaseline, determined at 20% w/w concentration. In cutaneous HSV-1 infection in mice, oxyresveratrol microemulsion at 20%, 25%, and 30% w/w, topically applied five times daily for 7 days after infection, was significantly effective in delaying the development of skin lesions and protecting from death (p < 0.05) compared with the untreated control. Oxyresveratrol microemulsion at 25% and 30% w/w was significantly more effective than that of 30% w/w of oxyresveratrol in Vaseline (p < 0.05) and was as effective as 5% w/w of acyclovir cream, topically applied five times daily (p > 0.05). These results demonstrated that topical oxyresveratrol microemulsion at 20-30% w/w was suitable for cutaneous HSV-1 mouse infection.

  9. Fermentation of Smilax china root by Aspergillus usami and Saccharomyces cerevisiae promoted concentration of resveratrol and oxyresveratrol and the free-radical scavenging activity.

    PubMed

    Yoon, So-Ra; Yang, Seung-Hwan; Suh, Joo-Won; Shim, Soon-Mi

    2014-07-01

    Smilax china root, which is rich in resveratrol and oxyresveratrol, has been used as emergency foods as well as folk medicine. This study investigated changes in concentration of bioactive components and the free-radical scavenging capacity of Smilax china root during fermentation by Aspergillus usami and Saccharomyces cerevisiae. Resveratrol, oxyresveratrol and piceid were quantified as major constituents in Smilax china root by using UPLC-ESI-MS. The concentration of oxyresveratrol and resveratrol remarkably increased through fermentation and the transformation of piceid to resveratrol. Its concentration in 4% Smilax china root was 1.16-2.95 times higher than that of a 2% preparation throughout fermentation. The vitamin C equivalent antioxidant capacity of 2% Smilax china root was 1.51-1.91 times higher than that of 4% Smilax china root during fermentation. Meanwhile, ABTS free-radical scavenging capacity was enhanced up to 95.07 and 99.35% for 2% and 4% Smilax china root, respectively. Results from our study propose that bioactive components in Smilax China root were highly extracted by fermentation followed by saccharification and ethanol production, resulting in enhanced free-radical scavenging capacity. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  10. An improved highly sensitive method to determine low oxyresveratrol concentrations in rat plasma and its pharmacokinetic application.

    PubMed

    Tian, Fangzhen; Wei, Hongtu; Jia, Tanghong; Tian, Hua

    2014-05-01

    Existing methods to determine oxyresveratrol, a trans-polyphenolic stilbene, lack selectivity, require large plasma sample volumes or have time-consuming sample preparation and chromatographic isolation. Here an improved highly sensitive liquid chromatography-tandem mass spectrometry method was developed to determine low oxyresveratrol concentrations in rat plasma. The plasma samples were prepared by liquid-liquid extraction with acetoacetate. The analytes were separated on Venusil hydrophilic interaction chromatography (HILIC) column (2.1 × 50 mm, 5.0 µm) guarded by a HILIC column (4 × 3.0 mm, 5.0 µm). The mobile phase consisted of acetonitrile-water (containing 1 mmol/L ammonium formate) at gradient elution mode with a flow rate of 0.3 mL/min. Resveratrol was used as the internal standard. An electrospray ionization source was applied and operated in the negative multiple reaction monitoring (MRM) mode. Oxyresveratrol and resveratrol were detected on MRM by the transitions from the precursor to the product ion (m/z 243.1 → 175.1 and 227.1 → 143.0). The total running time was 5 min and the retention times of oxyresveratrol and resveratrol were 1.97 and 1.82 min. Chromatograms showed no endogenous interfering peaks with blank samples. The linear calibration curve was obtained over the concentration range of 1-500 ng/mL. The injection volume was 10 μL and the limit of quantification was 1 ng/mL. The extraction recovery varied from 78.2 to 84.3% for low, medium and high quality control samples. At the same time, the intra- and inter-day relative standard deviations were <6.78 and <10.02%, respectively, while the corresponding intra- and inter-day accuracy relative error values fell in the range of 3.75-6.67%. The HPLC-MS/MS method was successfully applied to a pharmacokinetics study, in which the experimental rats received a single dose of oxyresveratrol (10 mg/kg, intragastric administration). The pharmacokinetic results are presented

  11. Oxyresveratrol ameliorates nonalcoholic fatty liver disease by regulating hepatic lipogenesis and fatty acid oxidation through liver kinase B1 and AMP-activated protein kinase.

    PubMed

    Lee, Ju-Hee; Baek, Su Youn; Jang, Eun Jeong; Ku, Sae Kwang; Kim, Kyu Min; Ki, Sung Hwan; Kim, Chang-Eop; Park, Kwang Il; Kim, Sang Chan; Kim, Young Woo

    2018-06-01

    Oxyresveratrol (OXY) is a naturally occurring polyhydroxylated stilbene that is abundant in mulberry wood (Morus alba L.), which has frequently been supplied as a herbal medicine. It has been shown that OXY has regulatory effects on inflammation and oxidative stress, and may have potential in preventing or curing nonalcoholic fatty liver disease (NAFLD). This study examined the effects of OXY on in vitro model of NAFLD in hepatocyte by the liver X receptor α (LXRα)-mediated induction of lipogenic genes and in vivo model in mice along with its molecular mechanism. OXY inhibited the LXRα agonists-mediated sterol regulatory element binding protein-1c (SREBP-1c) induction and expression of the lipogenic genes and upregulated the mRNA of fatty acid β-oxidation-related genes in hepatocytes, which is more potent than genistein and daidzein. OXY also induced AMP-activated protein kinase (AMPK) activation in a time-dependent manner. Moreover, AMPK activation by the OXY treatment helped inhibit SREBP-1c using compound C as an AMPK antagonist. Oral administration of OXY decreased the Oil Red O stained-positive areas significantly, indicating lipid droplets and hepatic steatosis regions, as well as the serum parameters, such as fasting glucose, total cholesterol, and low density lipoprotein-cholesterol in high fat diet fed-mice, as similar with orally treatment of atorvastatin. Overall, this result suggests that OXY has the potency to inhibit hepatic lipogenesis through the AMPK/SREBP-1c pathway and can be used in the development of pharmaceuticals to prevent a fatty liver. Copyright © 2018. Published by Elsevier B.V.

  12. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus.

    PubMed

    Fang, Song-Chwan; Hsu, Chin-Lin; Yen, Gow-Chin

    2008-06-25

    Artocarpus heterophyllus Lam is a large evergreen tree cultivated throughout Southeast Asia for its fruits. Its leaves and roots have been used for medicinal purposes. The aim of this work was to study the in vitro anti-inflammatory effects of phenolic compounds isolated from the ethyl acetate extracts of the fruits of Artocarpus heterophyllus. Three phenolic compounds were characterized as artocarpesin [5,7,2',4'-tetrahydroxy-6-(3-methylbut-3-enyl) flavone] ( 1), norartocarpetin (5,7,2',4'-tetrahydroxyflavone) ( 2), and oxyresveratrol [ trans-2,4,3',5'-tetrahydroxystilbene] ( 3) by spectroscopic methods and through comparison with data reported in the literatures. The anti-inflammatory effects of the isolated compounds ( 1- 3) were evaluated by determining their inhibitory effects on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. These three compounds exhibited potent anti-inflammatory activity. The results indicated that artocarpesin ( 1) suppressed the LPS-induced production of nitric oxide (NO) and prostaglandin E 2 (PGE 2) through the down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Thus, artocarpesin ( 1) may provide a potential therapeutic approach for inflammation-associated disorders.

  13. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells.

    PubMed

    Hwang, Dahyun; Jo, HyunA; Hwang, Seonwook; Kim, Jeong-Keun; Kim, In-Ho; Lim, Young-Hee

    2017-01-01

    Strengthening of intestinal tight junctions provides an effective barrier from the external environment. Goblet cell-derived trefoil factor 3 (TFF3) increases transepithelial resistance by upregulating the expression of tight junction proteins. Oxyresveratrol (OXY) is a hydroxyl-substituted stilbene found in the roots, leaves, stems, and fruit of many plants and known to have various biological activities. In this study, we investigated the strengthening effect of OXY on intestinal tight junctions through stimulation of TFF production in goblet cells. We prepared conditioned medium from LS 174T goblet cells treated with OXY (GCO-CM) and investigated the effect of GCO-CM on strengthening tight junctions of Caco-2 cells. The mRNA and protein expression levels of major tight junction components (claudin-1, occludin, and ZO-1) were measured by quantitative real-time PCR and western blotting, respectively. Transepithelial electric resistance (TEER) was measured using an ohm/V meter. Monolayer permeability was evaluated by paracellular transport of fluorescein isothiocyanate-dextran. OXY showed a strong antioxidant activity. It significantly increased the expression level of TFF3 in LS 174T goblet cells. GCO-CM prepared by treatment with 2.5, 5, and 10μg/ml OXY did not show cytotoxicity in Caco-2 cells. GCO-CM increased the mRNA and protein expression levels of claudin-1, occludin, and ZO-1. It also significantly increased tight junction integrity and reduced permeability in a dose-dependent manner. OXY stimulates the expression of TFF3 in goblet cells, which might increase the integrity of the intestinal tight junction barrier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Φ-order spectrophotokinetic characterisation and quantification of trans-cis oxyresveratrol reactivity, photodegradation and actinometry.

    PubMed

    Maafi, Mounir; Al-Qarni, Mohammed Ahmed

    2018-01-05

    A new Φ-order kinetic method was proposed in this study for the investigation of trans-cis photoisomerization reaction of Oxyresveratrol (ORVT) subjected to non-isosbestic irradiation. In ethanolic media, it has been proven that forward (Φ A→B λ irr ) and reverse (Φ B→A λ irr ) reaction quantum yields were dependent on the monochromatic irradiation wavelength according to sigmoid patterns over the spectral ranges of their electronic absorption (260-360nm). An 11.4- and 6.6-fold increases were recorded for Φ B→A λ irr and Φ A→B λ irr , respectively. The efficiencies of the former (Φ B→A λ irr , ranging between 2.3×10 -2 and 26.3×10 -2 ) were 33 to 60% smaller than those of the respective Φ A→B λ irr measured at the irradiation wavelengths selected. Overall, between 57 and 97% degradation of the initial trans-ORVT was observed under relatively weak light intensities, with the highest values recorded at the longest wavelengths. These findings strongly recommend protection from light in all situations of this biologically important phytomolecule that possesses therapeutic value of interest to pharmaceutical applications. The Φ-order kinetics also offered a simple way to develop a reliable actinometric method that proved ORVT to be an efficient actinometer for the dynamic range 295-360nm. The usefulness of Φ-order kinetics for the investigation and quantification of phytoproducts' photodegradation was discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Oxyresveratrol and ascorbic acid O/W microemulsion: Preparation, characterization, anti-isomerization and potential application as antibrowning agent on fresh-cut lotus root slices.

    PubMed

    He, Jianfei; Zhu, Qin; Dong, Xue; Pan, Hongyang; Chen, Jie; Zheng, Zong-Ping

    2017-01-01

    The purpose of this study is to prepare an oxyresveratrol (Oxy) microemulsion (ME) with improved Oxy's solubility and stability and to investigate its antibrowning effects on fresh-cut lotus root slices. The formula of OxyME consisted of ethyl butyrate, Tween 80, PEG400, and water with w/w of 4%, 10.67%, 5.33%, and 80%, respectively. Encapsulating Oxy into OxyME greatly increased its solubility and stability compared with that of in water. Strong antibrowning effects were observed on fresh-cut lotus root slices treated with OxyME, even better than 4-hexylresorcinol. The addition of ascorbic acid (VC) into OxyME greatly improved the Oxy stability in long-term storage and antibrowning effects on fresh-cut lotus root slices. However, the simultaneous addition of calcium chloride and VC did not obviously improve the antibrowning effects compared with the addition of VC alone. These results indicated that Oxy+VCME may be suitable as an antibrowning agent for fresh-cut vegetables. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Preparation and antibacterial activity of compound chitosan-compound Yizhihao-nanoparticles.

    PubMed

    Ou, Sheng; Zhang, Yang-de

    2008-05-01

    To prepare chitosan (CS)-compound Yizhihao-nanoparticles (NP) and to investigate its antibacterial activity. CS NPs were formed by the incorporation of CS and Na3 PO4. CS-compound Yizhihao NPs were prepared by ion-cross-linking. The particle sizes and surface charges of CS NPs were determined by Malvern Zetasizer 1000-HAS and atomic force microscope (AFM), respectively. The antibacterial activity of CS-compound Yizhihao-NPs was studied in vitro and compared with that of compound Yizhihao powder. Malvern Zetasizer 1000-HAS and AFM demonstrated that the diameter of CS-compound Yizhihao NPs was (137.00+/-14.28)nm and CS NPs had (16.90+/-1.32)mV positive surface charges. The minimal inhibitory concentrations (MIC) of CS-compound Yizhihao NPs on Staphylococcus aureus,Pneumococcus,beta-hemolytic streptococcus, and Escherichia coli were 1:32,1:32,1:16,and 1:2, respectively. The minimal bactericidal concentrations (MBC) of CS-compound Yizhihao-NPs on Staphylococcus aureus, Pneumococcus, beta-hemolytic streptococcus, and Escherichia coli were 1:16,1:16,1:8, and 1:2, respectively. The antibacterial efficacy of CS-compound Yizhihao-NPs to Staphylococcus aureus, Pneumococcus, and beta-hemolytic streptococcus had been improved significantly (P< 0.05). CS-compound Yizhihao-nanoparticles have obvious antibacterial activity to the Staphylococcus aureus,Pneumococcus,and beta-hemolytic streptococcus,which lays the experimental foundation for new preparation of traditional Chinese medicine in future research.

  17. Integrated HPTLC-based Methodology for the Tracing of Bioactive Compounds in Herbal Extracts Employing Multivariate Chemometrics. A Case Study on Morus alba.

    PubMed

    Chaita, Eliza; Gikas, Evagelos; Aligiannis, Nektarios

    2017-03-01

    In drug discovery, bioassay-guided isolation is a well-established procedure, and still the basic approach for the discovery of natural products with desired biological properties. However, in these procedures, the most laborious and time-consuming step is the isolation of the bioactive constituents. A prior identification of the compounds that contribute to the demonstrated activity of the fractions would enable the selection of proper chromatographic techniques and lead to targeted isolation. The development of an integrated HPTLC-based methodology for the rapid tracing of the bioactive compounds during bioassay-guided processes, using multivariate statistics. Materials and Methods - The methanol extract of Morus alba was fractionated employing CPC. Subsequently, fractions were assayed for tyrosinase inhibition and analyzed with HPTLC. PLS-R algorithm was performed in order to correlate the analytical data with the biological response of the fractions and identify the compounds with the highest contribution. Two methodologies were developed for the generation of the dataset; one based on manual peak picking and the second based on chromatogram binning. Results and Discussion - Both methodologies afforded comparable results and were able to trace the bioactive constituents (e.g. oxyresveratrol, trans-dihydromorin, 2,4,3'-trihydroxydihydrostilbene). The suggested compounds were compared in terms of R f values and UV spectra with compounds isolated from M. alba using typical bioassay-guided process. Chemometric tools supported the development of a novel HPTLC-based methodology for the tracing of tyrosinase inhibitors in M. alba extract. All steps of the experimental procedure implemented techniques that afford essential key elements for application in high-throughput screening procedures for drug discovery purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    PubMed Central

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine. PMID:26931617

  19. Influence of surfactants in self-microemulsifying formulations on enhancing oral bioavailability of oxyresveratrol: Studies in Caco-2 cells and in vivo.

    PubMed

    Sangsen, Yaowaporn; Wiwattanawongsa, Kamonthip; Likhitwitayawuid, Kittisak; Sritularak, Boonchoo; Graidist, Potchanapond; Wiwattanapatapee, Ruedeekorn

    2016-02-10

    Self-microemulsifying drug delivery systems (SMEDDS) containing two types (Tween80 and Labrasol) and two levels (low; 5% and high; 15%) of co-surfactants were formulated to evaluate the impact of surfactant phase on physical properties and oral absorption of oxyresveratrol (OXY). All formulations showed a very rapid release in the simulated gastric fluid (SGF) pH 1.2. After dilution with different media, the microemulsion droplet sizes of the Tween80-based (∼26 to 36 nm) were smaller than that of the Labrasol-based systems (∼34 to 45 nm). Both systems with high levels of surfactant increased the Caco-2 cells permeability of OXY compared to those with low levels of surfactant (1.4-1.7 folds) and the unformulated OXY (1.9-2.0 folds). It was of interest, that there was a reduction (4.4-5.3 folds) in the efflux transport of OXY from both systems compared to the unformulated OXY. The results were in good agreement with the in vivo absorption studies of such OXY-formulations in rats. Significantly greater values of Cmax and AUC(0-10h) (p<0.05) were obtained from the high levels of Tween80-based (F(r,0-10h) 786.32%) compared to those from the Labrasol-based system (F(r,0-10h) 218.32%). These finding indicate the importance of formulation variables such as type and quantity of surfactant in the SMEDDS to enhance oral drug bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Feasibility of Active Machine Learning for Multiclass Compound Classification.

    PubMed

    Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias

    2016-01-25

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.

  1. Mesoionic compounds with antifungal activity against Fusarium verticillioides.

    PubMed

    Paiva, Rojane de Oliveira; Kneipp, Lucimar Ferreira; dos Reis, Camilla Moretto; Echevarria, Aurea

    2015-02-04

    Fungi contaminate the food of humans and animals, are a risk to health, and can cause financial losses. In this work, the antifungal activities of 16 mesoionic compounds (MI 1-16) were evaluated against mycotoxigenic fungi, including Aspergillus spp., Fusarium verticillioides and Penicillium citrinum. Furthermore, the decreased ergosterol in the total lipid content of Fusarium verticillioides was investigated. F. verticillioides was the most sensitive fungus to the mesoionic compounds. Among the evaluated compounds, MI-11 and MI-16 presented higher antifungal effects against F. verticillioides, with MIC values of 7.8 μg/ml, and MI-2 and MI-3 followed, with MICs of 15.6 μg/ml. The most active compounds were those with heterocyclic ring phenyl groups substituted by electron donor moieties (MI-11 and MI-16). Among some compounds with higher activity (MI-2, MI-11 and MI-16), decreased ergosterol content in the total lipid fraction of F. verticillioides was demonstrated. MI-2 reduced the ergosterol content approximately 40% and 80% at concentrations of 7.8 μg/ml and 15.6 μg/ml, respectively, and MI-11 and MI-16 decreased the content by 30% and 50%, respectively, when at a concentration of 7.8 μg/ml. These findings indicate that mesoionic compounds have significant antifungal activity against F. verticillioides.

  2. Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Gonzalez-Espindola, Luis Angel; Alonso-Castro, Angel Josabad; Gonzalez-Martinez, Marisela del Rocio; Domínguez, Fabiola; Garcia-Carranca, Alejandro

    2011-08-01

    Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However, the antimicrobial properties of Magnolia dealbata have not been experimentally evaluated. The antimicrobial effects of an ethanol extract of Magnolia dealbata seeds (MDE) and its active compounds honokiol (HK) and magnolol (MG) were tested against the phytopathogen Clavibacter michiganensis subsp. michiganensis and several human multi-drug resistant pathogens using the disk-diffusion assay. The effects of MDE and its active compounds on the viability of human peripheral blood mononuclear cells (PBMC) were evaluated using MTT assay. MDE and its active compounds had antimicrobial activity (inhibition zone > 10 mm) against C. michiganensis, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter lwoffii, Candida albicans, Candida tropicalis and Trichosporon belgeii. The results suggest that M. dealbata and its active compounds have selective antimicrobial effects against drug-resistant fungal and Gram (-) bacteria and exert minimal toxic effects on human PMBC.

  3. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    PubMed

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bactericidal activity of glutaraldehyde-like compounds from olive products.

    PubMed

    Medina, Eduardo; Brenes, Manuel; García, Aranzazu; Romero, Concepción; de Castro, Antonio

    2009-12-01

    The bactericidal effects of several olive compounds (nonenal, oleuropein, tyrosol, the dialdehydic form of decarboxymethyl elenolic acid either free [EDA] or linked to tyrosol [TyEDA] or to hydroxytyrosol [HyEDA]), other food phenolic compounds (catechin, epicatechin, eugenol, thymol, carvacrol, and carnosic acid), and commercial disinfectants (glutaraldehyde [GTA] and ortho-phthalaldehyde [OPA]), were tested against strains of Pseudomonas fluorescens, Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. It was found that the bactericidal activities of olive GTA-like compounds (EDA, HyEDA, and TyEDA) were greater than those exerted by several food phenolic substances. Surprisingly, these olive antimicrobials were as active as the synthetic biocides GTA and OPA against the four bacteria studied. Thus, it has been proposed that the bactericidal activity of the main olive antimicrobials is primarily due to their dialdehydic structure, which is similar to that of the commercial biocides GTA and OPA. Our results clearly reveal that olive GTA-like compounds possess a strong bactericidal activity even greater than that of other food phenolic compounds or synthetic biocides.

  5. Antioxidative activities and active compounds of extracts from Catalpa plant leaves.

    PubMed

    Xu, Hongyu; Hu, Gege; Dong, Juane; Wei, Qin; Shao, Hongbo; Lei, Ming

    2014-01-01

    In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g · DW) was the highest, followed by those in C. fargesii Bur. (25.55 mg/g · DW) and C. ovata G. Don (24.96 mg/g · DW). According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6) leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA) fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE), and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1) and apigenin (2), respectively.

  6. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts.

    PubMed

    Okumura, Koharu; Hosoya, Takahiro; Kawarazaki, Kai; Izawa, Norihiko; Kumazawa, Shigenori

    2016-06-01

    Fava beans are eaten all over the world and recently, marketing for their sprouts began in Japan. Fava bean sprouts contain more polyphenols and l-3,4-dihydroxyphenylalanine (l-DOPA) than the bean itself. Our antioxidant screening program has shown that fava bean sprouts also possess a higher antioxidant activity than other commercially available sprouts and mature beans. However, the individual constituents of fava bean sprouts are not entirely known. In the present study, we investigated the phenolic compounds of fava bean sprouts and their antioxidant activity. Air-dried fava bean sprouts were treated with 80% methanol and the extract was partitioned in water with chloroform and ethyl acetate. HPLC analysis had shown that the ethyl acetate-soluble parts contained phenolic compounds, separated by preparative HPLC to yield 5 compounds (1-5). Structural analysis using NMR and MS revealed that the compounds isolated were kaempferol glycosides. All isolated compounds had an α-rhamnose at the C-7 position with different sugars attached at the C-3 position. Compounds 1-5 had β-galactose, β-glucose, α-rhamnose, 6-acetyl-β-galactose and 6-acetyl-β-glucose, respectively, at the C-3 position. The amount of l-DOPA in fava bean sprouts was determined by the quantitative (1) H NMR technique. The l-DOPA content was 550.45 mg ± 11.34 /100 g of the raw sprouts. The antioxidant activities of compounds 2-5 and l-DOPA were evaluated using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay. l-DOPA showed high antioxidant activity, but the isolated kaempferol glycosides showed weak activity. Therefore, it can be suggested that l-DOPA contributed to the antioxidant activity of fava bean sprouts. © 2016 Institute of Food Technologists®

  7. Characterization of a New Flavone and Tyrosinase Inhibition Constituents from the Twigs of Morus alba L.

    PubMed

    Zhang, Long; Tao, Guanjun; Chen, Jie; Zheng, Zong-Ping

    2016-09-02

    The twigs of Morus alba L. were found to show strong tyrosinase inhibition activity, and the responsible active components in the extract were further investigated in this study. A flavone, named morusone (1), and sixteen known compounds 2-17 were isolated from M. alba twigs and their structures were identified by interpretation of the corresponding ESI-MS and NMR spectral data. In the tyrosinase inhibitory test, the compounds steppogenin (IC50 0.98 ± 0.01 µM), 2,4,2',4'-tetrahydroxychalcone (IC50 0.07 ± 0.02 µM), morachalcone A (IC50 0.08 ± 0.02 µM), oxyresveratrol (IC50 0.10 ± 0.01 µM), and moracin M (8.00 ± 0.22 µM) exhibited significant tyrosinase inhibition activities, much stronger than that of the positive control kojic acid. These results suggest that M. alba twig extract should served as a good source of natural tyrosinase inhibitors for use in foods as antibrowning agents or in cosmetics as skin-whitening agents.

  8. Antioxidative Activities and Active Compounds of Extracts from Catalpa Plant Leaves

    PubMed Central

    Xu, Hongyu; Hu, Gege; Dong, Juane; Wei, Qin; Shao, Hongbo; Lei, Ming

    2014-01-01

    In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g·DW) was the highest, followed by those in C. fargesii Bur. (25.55 mg/g·DW) and C. ovata G. Don (24.96 mg/g·DW). According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6) leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA) fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE), and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1) and apigenin (2), respectively. PMID:25431795

  9. The Mast Cell Degranulator Compound 48/80 Directly Activates Neurons

    PubMed Central

    Schemann, Michael; Kugler, Eva Maria; Buhner, Sabine; Eastwood, Christopher; Donovan, Jemma; Jiang, Wen; Grundy, David

    2012-01-01

    Background Compound 48/80 is widely used in animal and tissue models as a “selective” mast cell activator. With this study we demonstrate that compound 48/80 also directly activates enteric neurons and visceral afferents. Methodology/Principal Findings We used in vivo recordings from extrinsic intestinal afferents together with Ca++ imaging from primary cultures of DRG and nodose neurons. Enteric neuronal activation was examined by Ca++ and voltage sensitive dye imaging in isolated gut preparations and primary cultures of enteric neurons. Intraluminal application of compound 48/80 evoked marked afferent firing which desensitized on subsequent administration. In egg albumen-sensitized animals, intraluminal antigen evoked a similar pattern of afferent activation which also desensitized on subsequent exposure to antigen. In cross-desensitization experiments prior administration of compound 48/80 failed to influence the mast cell mediated response. Application of 1 and 10 µg/ml compound 48/80 evoked spike discharge and Ca++ transients in enteric neurons. The same nerve activating effect was observed in primary cultures of DRG and nodose ganglion cells. Enteric neuron cultures were devoid of mast cells confirmed by negative staining for c-kit or toluidine blue. In addition, in cultured enteric neurons the excitatory action of compound 48/80 was preserved in the presence of histamine H1 and H2 antagonists. The mast cell stabilizer cromolyn attenuated compound 48/80 and nicotine evoked Ca++ transients in mast cell-free enteric neuron cultures. Conclusions/Significance The results showed direct excitatory action of compound 48/80 on enteric neurons and visceral afferents. Therefore, functional changes measured in tissue or animal models may involve a mast cell independent effect of compound 48/80 and cromolyn. PMID:23272218

  10. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity

    PubMed Central

    Godoy, Luis D.; Lucas, Julianna E.; Bender, Abigail J.; Romanick, Samantha S.; Ferguson, Bradley S.

    2017-01-01

    Scope Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of HDACs, impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Methods and results Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. Conclusion This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. PMID:27981795

  11. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity.

    PubMed

    Godoy, Luis D; Lucas, Julianna E; Bender, Abigail J; Romanick, Samantha S; Ferguson, Bradley S

    2017-04-01

    Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of histone deacetylases (HDACs), impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    PubMed

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Progress in the field of physiologically active lanosterol compounds

    NASA Astrophysics Data System (ADS)

    Reshetova, I. G.; Tkhaper, R. K.; Kamernitskii, Alexey V.

    1992-08-01

    This review correlates the studies (up to 1991) on the isolation, structural determination, biological activity, and synthesis of physiologically active polyoxidised lanosterol derivatives of vegetable (inotodiol, ganoderic acids) and animal (seychellogenin) origin. The cytotoxic, cardiovascular, and other forms of activity of compounds of this type are of considerable interest in relation to their medical use. It is noted that the functionalised side chain (in an open form or containing lactones, lactols, etc.) is generally responsible for the activity exhibited by lanosterol derivatives. Two basic approaches to the derivation of these structures are defined: either by complete reconstruction of the side chain of lanosterol (degradation and rebuilding with oxygen-containing residues) or by progressive functionalisation of the Δ24-side chain of lanosterol. The synthesis of the known anticancer compound "inotodiol", seychellogenins, ganoderic acids, and other compounds are described. The bibliography includes 105 references.

  14. Different phenolic compounds activate distinct human bitter taste receptors.

    PubMed

    Soares, Susana; Kohl, Susann; Thalmann, Sophie; Mateus, Nuno; Meyerhof, Wolfgang; De Freitas, Victor

    2013-02-20

    Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations.

  15. Antileishmanial activities of dihydrochalcones from piper elongatum and synthetic related compounds. Structural requirements for activity.

    PubMed

    Hermoso, Alicia; Jiménez, Ignacio A; Mamani, Zulma A; Bazzocchi, Isabel L; Piñero, José E; Ravelo, Angel G; Valladares, Basilio

    2003-09-01

    Two dihydrochalcones (1 and 2) were isolated from Piper elongatum Vahl by activity-guided fractionation against extracellular promastigotes of Leishmania braziliensis in vitro. Their structures were elucidated by spectral analysis, including homonuclear and heteronuclear correlation NMR experiments. Derivatives 3-7 and 20 synthetic related compounds (8-27) were also assayed to establish the structural requirements for antileishmanial activity. Compounds 1-11 that proved to be more active that ketoconazol, used as positive control, were further assayed against promastigotes of Leishmania tropica and Leishmania infantum. Compounds 7 and 11, with a C(6)-C(3)-C(6) system, proved to be the most promising compounds, with IC(50) values of 2.98 and 3.65 microg/mL, respectively, and exhibited no toxic effect on macrophages (around 90% viability). Correlation between the molecular structures and antileishmanial activity is discussed in detail.

  16. Synthesis and evaluation of curcumin-related compounds for anticancer activity.

    PubMed

    Wei, Xingchuan; Du, Zhi-Yun; Zheng, Xi; Cui, Xiao-Xing; Conney, Allan H; Zhang, Kun

    2012-07-01

    Sixty-one curcumin-related compounds were synthesized and evaluated for their anticancer activity toward cultured prostate cancer PC-3 cells, pancreas cancer Panc-1 cells and colon cancer HT-29 cells. Inhibitory effects of these compounds on the growth of PC-3, Panc-1 and HT-29 cells were determined by the MTT assay. Compounds E10, F10, FN1 and FN2 exhibited exceptionally potent inhibitory effects on the growth of cultured PC-3, Panc-1 and HT-29 cells. The IC(50) for these compounds was lower than 1 μM in all three cell lines. E10 was 72-, 46- and 117-fold more active than curcumin for inhibiting the growth of PC-3, Panc-1 and HT-29 cells, respectively. F10 was 69-, 34- and 72-fold more active than curcumin for inhibiting the growth of PC-3, Panc-1 and HT-29 cells, respectively. FN1 and FN2 had about the same inhibitory effect as E10 and F10 toward Panc-1 cells but were less active than E10 and F10 toward PC-3 and HT-29 cells. The active compounds were potent stimulators of apoptosis. The present study indicates that E10, F10, FN1 and FN2 may have useful anticancer activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran.

    PubMed

    Wang, Wei; Guo, Jia; Zhang, Junnan; Peng, Jie; Liu, Tianxing; Xin, Zhihong

    2015-03-15

    The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds, cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9) and para-hydroxy benzaldehyde (10). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5 and 7 exhibited strong DPPH and ABTS(+) radical scavenging activities, followed by compounds 4 and 6. Compound 1 and 2 showed potent DPPH and ABTS(+) radical scavenging activities, compound 8 displayed moderate antioxidant activity against ABTS(+) radical, whereas compound 9 and 10 showed weak antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    PubMed

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.

  19. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb

    PubMed Central

    2014-01-01

    Background In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Methods Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. Results The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. Conclusion These results

  20. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb.

    PubMed

    Liu, Xi; Zhu, Liancai; Tan, Jun; Zhou, Xuemei; Xiao, Ling; Yang, Xian; Wang, Bochu

    2014-01-10

    In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. These results imply that the FC and the TC could be

  1. Isolation and Antimicrobial Activity of Flavonoid Compounds from Mahagony Seeds (Swietenia macrophylla, King)

    NASA Astrophysics Data System (ADS)

    Mursiti, S.; Supartono

    2017-02-01

    Flavonoid is one of the secondary metabolites compounds in mahogany seeds. Mahogany seeds can be used as an antimicrobial. This study aims to determine the antimicrobial activity of flavonoid compounds from mahogany seeds against Escherichia coli (E.coli) and Bacillus cereus (B.cereus). Isolation of flavonoid compounds done step by step. First, the maceration using n-hexane, then with methanol. The methanol extract was dissolved in ethyl acetate and aquadest, then separated. Ethyl acetate extract evaporated Flavonoid compounds were. The testing of antimicrobial activity of flavonoid compounds using the absorption method. The results showed that the antimicrobial activity of flavonoid compounds from mahogany seeds shows the inhibitory activity and provide clear zone against bacteria E.coli with value Inhibitory Regional Diameter 18.50 mm respectively, and 14.50 mm to the bacteria. Based on the results of the study, it can be concluded that flavonoid compounds from mahogany seeds have antimicrobial activity against E.coli and B.cereus.

  2. Alkaline phosphatase activity-guided isolation of active compounds and new dammarane-type triterpenes from Cissus quadrangularis hexane extract.

    PubMed

    Pathomwichaiwat, Thanika; Ochareon, Pannee; Soonthornchareonnon, Noppamas; Ali, Zulfiqar; Khan, Ikhlas A; Prathanturarug, Sompop

    2015-02-03

    The stem of Cissus quadrangularis L. (CQ) is used in traditional medicine to treat bone fractures and swelling. Anti-osteoporotic activity of CQ hexane extract has been reported, but the active compounds in this extract remain unknown. Thus, we aimed to identify the active compounds in CQ hexane extract using bioassay-guided isolation. The CQ hexane extract was fractionated sequentially with benzene, dichloromethane, ethyl acetate, and methanol. The examination of CQ extract and its fractions was guided by bioassays for alkaline phosphatase (ALP) activity during the differentiation of MC3T3-E1 osteoblastic cells. The cells were treated with or without the CQ extract and its fractions for a period of time, and then the stimulatory effect of the alkaline phosphatase enzyme, a bone differentiation marker, was investigated. The compounds obtained were structurally elucidated using spectroscopic techniques and re-evaluated for activity during bone differentiation. A total of 29 compounds were isolated, viz., triterpenes, fatty acid methyl esters, glycerolipids, steroids, phytols, and cerebrosides. Four new dammarane-type triterpenes were isolated for the first time from nature, and this report is the first to identify this group of compounds from the Vitaceae family. Seven compounds, viz., glycerolipids and squalene, stimulated ALP activity at a dose of 10μg/mL. Moreover, the synergistic effect of these compounds on bone formation was demonstrated. This report describes, for the first time, the isolation of active compounds from CQ hexane extract; these active compounds will be useful for the quality control of extracts from this plant used to treat osteoporosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Aqua mediated synthesis of bio-active compounds.

    PubMed

    Panda, Siva S

    2013-05-01

    Recently the aqueous medium has attracted the interest of organic chemists, and many. Moreover, in the past 20 years, the drug-discovery process has undergone extraordinary changes, and high-throughput biological screening of potential drug candidates has led to an ever-increasing demand for novel drug-like compounds. Noteworthy advantages were observed during the course of study on aqua mediated synthesis of compounds of medicinal importance. The established advantages of water as a solvent for reactions are, water is the most abundant and available resource on the planet and many biochemical processes occur in aqueous medium. This review will focus on describing new developments in the application of water in medicinal chemistry for the synthesis of bio-active compounds possessing various biological properties.

  4. Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater.

    PubMed

    Camacho-Muñoz, Dolores; Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2014-09-01

    The distribution of pharmaceutically active compounds in the environment has been reported in several works in which wastewater treatment plants have been identified as the main source of these compounds to the environment. The concentrations of these compounds in influent wastewater can vary widely not only during the day but also along the year, because of the seasonal-consumption patterns of some pharmaceuticals. However, only few studies have attempted to assess the hourly variability of the concentrations of pharmaceutically active compounds in wastewater. In this work, the distribution and seasonal and hourly variability of twenty-one pharmaceuticals, belonging to seven therapeutic groups, have been investigated in urban and industrial wastewater. The highest concentrations of pharmaceutically active compounds, except salicylic acid, were found in urban wastewater, especially in the case of anti-inflammatory drugs and caffeine. The highest concentrations of salicylic acid were measured in industrial wastewater, reaching concentration levels up to 3295μgL(-)(1). The studied pharmaceutically active compounds showed different distribution patterns during winter and summer periods. Temporal variability of pharmaceutically active compounds during a 24-h period showed a distribution in concordance with their consumption and excretion patterns, in the case of urban wastewater, and with the schedule of industrial activities, in the case of industrial wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Miriam N.; Nolan, Gail T.; Hood, Steven R.

    2005-12-01

    The pregnane X receptor (PXR) mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The receptor is expressed in liver and intestinal tissues and is activated by a wide range of compounds. The ability of a diverse range of dietary compounds to activate PXR-mediated transcription was assayed in HuH7 cells following transient transfection with human PXR (hPXR). The compounds investigated included phytochemicals such as lignans and phytoestrogens, organochlorine dietary contaminants such as polychlorinated biphenyls (PCBs) and triclosan and selected steroid, drug and herbal compounds. The hPXR activation at the top concentrations tested (10 {mu}M) relative to themore » positive control 10 {mu}M rifampicin ranged from 1.3% (trans-resveratrol) to 152% (ICI 182780). Hydroxylated compounds were marginally more potent than the parent compounds (tamoxifen activation was 74.6% whereas 4 hydroxytamoxifen activation was 84.2%) or significantly greater (vitamin D{sub 3} activation was 1.6%, while hydroxylated vitamin D{sub 3} activation was 55.6%). Enterolactone, the metabolite of common dietary lignans, was a medium activator of PXR (35.6%), compared to the lower activation of a parent lignan, secoisolariciresinol (20%). Two non-hydroxylated PCB congeners (PCB 118 and 153), which present a larger fraction of the PCB contamination of fatty foods, activated hPXR by 26.6% and 17%, respectively. The pesticide trans-nonachlor activation was 53.8%, while the widely used bacteriocide triclosan was a medium activator of hPXR at 46.2%. The responsiveness of PXR to activation by lignan metabolites suggests that dietary intake of these compounds may affect the metabolism of drugs that are CYP3A substrates. Additionally, the evidence that organochlorine chemicals, particularly the ubiquitous triclosan, activate hPXR suggests that these environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR

  6. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.

    PubMed

    Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz

    2018-05-29

    The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.

  7. Analysis of Functional Constituents in Mulberry (Morus alba L.) Twigs by Different Cultivars, Producing Areas, and Heat Processings

    PubMed Central

    Choi, Sang Won; Jang, Yeon Jeong; Lee, Yu Jin; Leem, Hyun Hee; Kim, Eun Ok

    2013-01-01

    Four functional constituents, oxyresveratrol 3′-O-β-D-glucoside (ORTG), oxyresveratrol (ORT), t-resveratrol (RT), and moracin (MC) were isolated from the ethanolic extract of mulberry (Morus alba L.) twigs by a series of isolation procedures, including solvent fractionation, and silica-gel, ODS-A, and Sephadex LH-20 column chromatographies. Their chemical structures were identified by NMR and FABMS spectral analysis. Quantitative changes of four phytochemicals in mulberry twigs were determined by HPLC according to cultivar, producing area, and heat processing. ORTG was a major abundant compound in the mulberry twigs, and its levels ranged from 23.7 to 105.5 mg% in six different mulberry cultivars. Three other compounds were present in trace amounts (<1 mg/100 g) or were not detected. Among mulberry cultivars examined, “Yongcheon” showed the highest level of ORTG, whereas “Somok” had the least ORTG content. Levels of four phytochemicals in the mulberry twigs harvested in early September were higher than those harvested in early July. Levels of ORTG and ORT in the “Cheongil” mulberry twigs produced in the Uljin area were higher than those produced in other areas. Generally, levels of ORTG and ORT in mulberry twigs decreased with heat processing, such as steaming, and microwaving except roasting, whereas those of RT and MC did not considerably vary according to heat processing. These results suggest that the roasted mulberry twigs may be useful as potential sources of functional ingredients and foods. PMID:24551827

  8. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea.

    PubMed

    Kim, Min-Young; Seguin, Philippe; Ahn, Joung-Kuk; Kim, Jong-Jin; Chun, Se-Chul; Kim, Eun-Hye; Seo, Su-Hyun; Kang, Eun-Young; Kim, Sun-Lim; Park, Yool-Jin; Ro, Hee-Myong; Chung, Ill-Min

    2008-08-27

    A study was conducted to determine the content of phenolic compounds and the antioxidative activity of five edible and five medicinal mushrooms commonly cultivated in Korea. Phenolic compounds were analyzed using high performance liquid chromatography, and antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and superoxide dismutase activity. A total of 28 phenolic compounds were detected in the mushrooms studied. The average total concentration of phenolic compounds was 326 microg/g, the average being of 174 microg/g in edible mushrooms and 477 microg/g in medicinal mushrooms. The average total flavonoids concentration was 49 microg/g, with averages of 22 and 76 microg/g in edible and medicinal mushrooms, respectively. The DPPH radical scavenging activities ranged between 15 (Pleurotus eryngii) and 70% (Ganoderma lucidum) when reaction time was for 1 min. When reaction time was 30 min, the values ranged between 5 (Pleurotus eryngii) and 78% (Agaricus bisporus). The SOD activity averaged 28% among the 10 mushroom species, averages for edible and medicinal mushrooms being comparable. DPPH activities was significantly correlated (p < 0.01) with total content of phenolic compounds in edible mushrooms, while in medicinal mushrooms there was a significant correlation (p < 0.01) between SOD activity and total concentration of phenolic compounds. Numerous significant positive correlations were observed between phenolic compounds detected and antioxidative potential.

  9. Structure-Activity Correlations with Compounds Related to Abscisic Acid 1

    PubMed Central

    Sondheimer, Ernest; Walton, Daniel C.

    1970-01-01

    Inhibition of cell expansion of excised embryonic axes of Phaseolus vulgaris was used to evaluate the growth-inhibiting activity of abscisic acid and related compounds. None of the 13 compounds tested was as active as abscisic acid. 4-Hydroxyisophorone, a substance representative of the abscisic acid ring system was essentially inactive; cis, trans-3-methylsorbic acid, a compound resembling the side chain of abscisic acid, had low activity; and cis, trans-β-ionylideneacetic acid was one-sixth as active. Loss of the ring double bond results in a drastic decrease in biological activity. Comparison of our results with those reported previously leads to the suggestion that the double bond of the cyclohexyl moiety may have an important function in determining the degree of activity of cis, trans-ionylideneacetic acids. Two modes of action are discussed. It seems possible that the ring double bond is involved in covalent bonding in binding of the abscisic acid analogue to macromolecules. This may require formation of an intermediate epoxide. It can also be argued that stereochemical differences between cyclohexane derivatives are important factors in determining the degree of biological activity. PMID:5423465

  10. Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds.

    PubMed

    Cho, Ji Young

    2012-01-01

    The KNS-16 algicidal strain was isolated from a harmful alga bloom (HAB) area and identified as Alteromonas sp. based on 16S rDNA sequencing. The KNS-16 strain was found to control HABs by producing algicidal compounds in an indirect interaction. Four active compounds were isolated from KNS-16 culture, and their structures were analyzed by interpreting nuclear magnetic resonance and mass spectroscopy data. The structures were identified as 2-undecen-1'-yl-4-quinolone (1), 2-undecyl-4-quinolone (2), 3-hexyl-6-pentyl-4-hydroxyl-2H-pyran-2-one (3), and 6-heptyl-3-hexyl-4-hydroxyl-2H-pyran-2-one (4). Compound 1 was most active against HABs such as Heterosigma akashiwo, Cochlodinium polykrikoides, and Alexandrium tamarense with LC(50) values of 0.5-1.1 µg/mL. The four compounds exhibited high LC(50) values against aquaculture algae such as Tetaselmis suecica, Isochrysis galbana, and Pavlova lutheri at 39-66 µg/mL. Based on toxicity tests on the brine shrimp Artemia salina and the rotifer Brachionus rotundiformis, the four compounds showed ranges of 409-608 and 189-224 µg/mL of LC(50) for the two organisms, respectively. The LC(50) values for juvenile fish of Sebastes schlegelii were 284-304 µg/mL.

  11. How to acquire new biological activities in old compounds by computer prediction

    NASA Astrophysics Data System (ADS)

    Poroikov, V. V.; Filimonov, D. A.

    2002-11-01

    Due to the directed way of testing chemical compounds' in drug research and development many projects fail because serious adverse effects and toxicity are discovered too late, and many existing prospective activities remain unstudied. Evaluation of the general biological potential of molecules is possible using a computer program PASS that predicts more than 780 pharmacological effects, mechanisms of action, mutagenicity, carcinogenicity, etc. on the basis of structural formulae of compounds, with average accuracy ˜85%. PASS applications to both databases of available samples included hundreds of thousands compounds, and small collections of compounds synthesized by separate medicinal chemists are described. It is shown that 880 compounds from Prestwick chemical library represent a very diverse pharmacological space. New activities can be found in existing compounds by prediction. Therefore, on this basis, the selection of compounds with required and without unwanted properties is possible. Even when PASS cannot predict very new activities, it may recognize some unwanted actions at the early stage of R&D, providing the medicinal chemist with the means to increase the efficiency of projects.

  12. Advances in the development of AMPK-activating compounds.

    PubMed

    Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    AMP-activated protein kinase (AMPK) is an energy sensing enzyme that controls glucose and lipid metabolism. This review summarizes the present data on AMPK as a pharmacologic target for the treatment of metabolic disorders. The mechanisms governing AMPK activity and how this enzyme controls different metabolic pathways are reviewed briefly, and details about the effect that AMPK activators have on glucose metabolism are provided. Evidence obtained using the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) suggests that AMPK promotes glucose transport into skeletal muscles and that this enzyme inhibits hepatic glucose production. AICAR also induces fatty acid oxidation in muscle and inhibits cholesterol synthesis in the liver. The metabolic effects of AICAR on glucose and lipid metabolism indicate that AMPK may be a good pharmacologic target for the treatment of type 2 diabetes and hypercholesterolemia. Novel AMPK-specific compounds are allowing researchers to examine whether this enzyme is a useful pharmacologic target for the treatment of human disease and whether chronic activation of AMPK will be safe.

  13. Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Wong, Stella Y Y; Grant, Irene R; Friedman, Mendel; Elliott, Christopher T; Situ, Chen

    2008-10-01

    The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 microg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37 degrees C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis. The most effective compound was trans-cinnamaldehyde, with a MIC of 25.9 microg/ml, followed by cinnamon oil (26.2 microg/ml), oregano oil (68.2 microg/ml), carvacrol (72.2 microg/ml), 2,5-dihydroxybenzaldehyde (74 microg/ml), and 2-hydroxy-5-methoxybenzaldehyde (90.4 microg/ml). With the exception of carvacrol, a phenolic compound, three of the four most active compounds are aldehydes, suggesting that the structure of the phenolic group or the aldehyde group may be important to the antibacterial activity. No difference in compound activity was observed between the three M. avium subsp. paratuberculosis strains studied. Possible mechanisms of the antimicrobial effects are discussed.

  14. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    PubMed

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  16. Antibacterial Activities of Naturally Occurring Compounds against Mycobacterium avium subsp. paratuberculosis▿

    PubMed Central

    Wong, Stella Y. Y.; Grant, Irene R.; Friedman, Mendel; Elliott, Christopher T.; Situ, Chen

    2008-01-01

    The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 μg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37°C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis. The most effective compound was trans-cinnamaldehyde, with a MIC of 25.9 μg/ml, followed by cinnamon oil (26.2 μg/ml), oregano oil (68.2 μg/ml), carvacrol (72.2 μg/ml), 2,5-dihydroxybenzaldehyde (74 μg/ml), and 2-hydroxy-5-methoxybenzaldehyde (90.4 μg/ml). With the exception of carvacrol, a phenolic compound, three of the four most active compounds are aldehydes, suggesting that the structure of the phenolic group or the aldehyde group may be important to the antibacterial activity. No difference in compound activity was observed between the three M. avium subsp. paratuberculosis strains studied. Possible mechanisms of the antimicrobial effects are discussed. PMID:18676709

  17. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shiguang; Mao, Li; Ji, Feng, E-mail: huaiaifengjidr@163.com

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the othermore » hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.« less

  18. Repellent activity of estrogenic compounds toward zoospores of the phytopathogenic fungus Aphanomyces cochlioides.

    PubMed

    Islam, M T; Tahara, S

    2001-01-01

    Screening chemical compounds, we found that a xenoestrogen, bisphenol A, showed potent repellent activity against the zoospores of Aphanomyces cochlioides. Based on this finding, we tested a number of androgenic and estrogenic compounds (e.g. testosterone, progesterone, estradiols, diethylstilbestrol, estrone, estriol, pregnenolone, dienestrol etc.) on the motility behavior of A. cochlioides zoospores. Interestingly, most of the estrogenic compounds exhibited potent repellent activity (1 microg/ml or less by the "particle method") toward the motile zoospores of A. cochlioides. We derivatized some of the estrogens and discussed the relationship between the structure of active molecules and their repellent activity. Apparently, aromatization of the A ring with a free hydroxyl group at C-3 position of a steroidal structure is necessary for higher repellent activity. Interestingly, methylation of diethylstilbestrol (DES) yielded completely different activity i.e. both mono- and di-methyl ethers of DES showed attractant activity. Moreover, the attracted zoospores were encysted and then germinated in the presence of di-methyl ether of DES. The potential usefulness of this repellent test is discussed for the detection of estrogenic activity of naturally occurring compounds, and the possible role of phytoestrogens in host/parasite interactions. So far, this will be the first report of repellent activity of estrogenic compounds toward trivial fungal zoospores.

  19. Removal of pharmaceutically active compounds in nitrifying-denitrifying plants.

    PubMed

    Suárez, S; Ramil, M; Omil, F; Lema, J M

    2005-01-01

    The behaviour of nine pharmaceutically active compounds (PhACs) of different diagnostic groups is studied during a nitrifying-denitrifying process in an activated sludge system. The compounds selected cover a wide range of frequently used substances such as anti-epileptics (carbamazepine), tranquillisers (diazepam), anti-depressants (fluoxetine and citalopram), anti-inflammatories (ibuprofen, naproxen and diclofenac) and estrogens (estradiol and ethinylestradiol). The main objective of this research is to investigate the effect of acclimation of biomass on the removal rates of these compounds, either by maintaining a high sludge retention time or at long-term operation. The removal rates achieved for nitrogen and carbon in the experimental unit exceed 90% and were not affected by the addition of PhACs. Carbamazepine, diazepam and diclofenac were only removed to a small extent. On the other hand, higher removal rates have been observed for naproxen and ibuprofen (68% and 82%), respectively.

  20. Antimicrobial activity of fractions and compounds from Calophyllumbrasiliense (Clusiaceae/Guttiferae).

    PubMed

    Pretto, Juliana B; Cechinel-Filho, Valdir; Noldin, Vânia F; Sartori, Mara R K; Isaias, Daniela E B; Cruz, Alexandre Bella

    2004-01-01

    Calophyllum brasiliense (Clusiaceae/Guttiferae) is a native Brazilian medicinal plant traditionally used against several diseases, including infectious pathologies. Crude methanolic extracts (CME) and two fractions, denoted non-polar (soluble in chloroform) and polar (nonsoluble in chloroform), were prepared from different parts of the plant (roots, stems, leaves, flowers and fruits) and studied. The following compounds were isolated and tested against pathogenic bacteria and yeasts by determination of the minimal inhibitory concentration (MIC): brasiliensic acid (1), gallic acid (2), epicatechin (3), protocatechuic acid (4), friedelin (5) and 1,5-dihydroxyxanthone (6). The results indicated that all the parts of the plant exhibited antimicrobial activity against Gram-positive bacteria, which are selectively inhibited by components of C. brasiliense. No activity was observed against Gram-negative bacteria and yeasts tested. Regarding the isolated compounds, substance 4 showed antimicrobial activity against all the tested microorganisms, whereas compound 6 exhibited antimicrobial activity only against Gram-positive bacteria. The results from the current study confirm and justify the popular use of this plant to treat infectious processes.

  1. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  2. The Antimicrobial Activities of Extract and Compounds Isolated from Brillantaisia lamium

    PubMed Central

    Tamokou, Jean De Dieu; Kuiate, Jules Roger; Tene, Mathieu; Kenla Nwemeguela, Timothée Julbelin; Tane, Pierre

    2011-01-01

    Background: Brillantaisia lamium is an erect branched herb, which grows to a height of 1.50 m in moist tropical areas, both in full sun and partial shade. In , the aerial part of this plant is used in the treatment of various microbial infections such as skin diseases and infections of urinary tract. The aim of this study was to evaluate the antimicrobial activities of CH2Cl2: MeOH (1:1) extract, fractions and compounds from the aerial part of B. lamium. Methods: The plant was dried and extracted by maceration in CH2Cl2: MeOH (1:1 v/v). Structures of the compounds from the CH2Cl2: MeOH (1:1) soluble fraction were determined by spectroscopic methods and compared with published data. The broth micro dilution method was used to evaluate the antimicrobial activities against bacteria and fungal species. Results: Four known compounds: aurantiamide acetate (1), lupeol (2), lespedin (3), sitosterol 3-O-β-D-glucopyranoside (4) and a mixture of sterols: campesterol (5), stigmasterol (6) and β-sitosterol (7) were isolated from CH2Cl2: MeOH (1:1) extract of B. lamium aerial parts. The crude extract, fractions and isolated compounds exhibited both antibacterial and antifungal activities that varied with microorganism (MIC=6.25 – 1000 µg/ml). Compound 3 was the most active (MIC=6.25 – 100 µg/ml) while Staphylococcus aureus, Enterococcus faecalis, Candida tropicalis and Cryptococcus neoformans were the most sensitive to all the tested compounds. Conclusion: The overall results of this study indicate that the CH2Cl2: MeOH (1:1) extract and some of isolated compounds have interesting antimicrobial properties and can be used for the treatment of fungal and bacterial infections. PMID:23365474

  3. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.

    PubMed

    Ares, Ana M; Nozal, María J; Bernal, José

    2013-10-25

    Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Structure-activity relationship and docking studies of thiazolidinedione-type compounds with monoamine oxidase B.

    PubMed

    Carroll, Richard T; Dluzen, Dean E; Stinnett, Hilary; Awale, Prabha S; Funk, Max O; Geldenhuys, Werner J

    2011-08-15

    The neuroprotective activity of pioglitazone and rosiglitazone in the MPTP parkinsonian mouse prompted us to evaluate a set of thiazolidinedione (TZD) type compounds for monoamine oxidase A and B inhibition activity. These compounds were able to inhibit MAO-B over several log units of magnitude (82 nM to 600 μM). Initial structure-activity relationship studies identified key areas to modify the aromatic substituted TZD compounds. Primarily, substitutions on the aromatic group and the TZD nitrogen were key areas where activity was enhanced within this group of compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity.

    PubMed

    Dung, Hoang Viet; Cuong, To Dao; Chinh, Nguyen Minh; Quyen, Do; Kim, Jeong Ah; Byeon, Jeong Su; Woo, Mi Hee; Choi, Jae Sui; Min, Byung Sun

    2015-01-01

    A new alkenylphenol, bavinol A (1), together with six known compounds (2-7) were isolated from the aerial parts of Piper bavinum (Piperaceae). The chemical structures of these compounds were determined by spectroscopic analyses including 2D NMR spectroscopy. The anti-Alzheimer effects of compounds 1-7 were evaluated from acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. Bavinol A (1), ampelopsin (3), and violanthin (4) exhibited AChE inhibitory activities with IC50 values of 29.80, 59.47 and 79.80 μM. Compound 1 also showed the most potent BChE inhibitory activity with an IC50 value of 19.25 μM.

  6. Synthesis of Some Novel Thiadiazole Derivative Compounds and Screening Their Antidepressant-Like Activities.

    PubMed

    Can, Nafiz Öncü; Can, Özgür Devrim; Osmaniye, Derya; Demir Özkay, Ümide

    2018-03-21

    Novel thiadiazole derivatives were synthesized through the reaction of acetylated 2-aminothiadiazole and piperazine derivatives. The chemical structures of the compounds were clarified by Infrared Spectroscopy (IR), ¹H Nuclear Magnetic Resonance Spectroscopy (¹H-NMR), 13 C Nuclear Magnetic Resonance Spectroscopy ( 13 C-NMR) and Electronspray Ionisation Mass Spectroscopy (ESI-MS) spectroscopic methods. Antidepressant-like activities were evaluated by the tail-suspension (TST) and modified forced swimming (MFST) methods. Besides, possible influence of the test compounds on motor activities of the animals were examined by activity cage tests. In the TST, administration of the compounds 2c , 2d , 2e , 2f , 2g and 2h significantly decreased the immobility time of mice regarding the control values. Further, in the MFST, the same compounds reduced the total number of immobility behaviors while increasing swimming performance. However, no change was observed in the total number of climbing behaviors. These data suggested that compounds 2c , 2d , 2e , 2f , 2g and 2h possess notable antidepressant-like activities. Reference drug fluoxetine (10 mg/kg) was also exhibited its antidepressant activity, as expected. No significant difference was seen between the locomotor activity values of the test groups signifying that observed antidepressant-like activities are specific. Theoretical calculation of absorption, distribution, metabolism, excretion (ADME) properties for the obtained compounds were performed and obtained data supported the antidepressant-like potential of these novel thiadiazole derivatives.

  7. Compound annotation with real time cellular activity profiles to improve drug discovery.

    PubMed

    Fang, Ye

    2016-01-01

    In the past decade, a range of innovative strategies have been developed to improve the productivity of pharmaceutical research and development. In particular, compound annotation, combined with informatics, has provided unprecedented opportunities for drug discovery. In this review, a literature search from 2000 to 2015 was conducted to provide an overview of the compound annotation approaches currently used in drug discovery. Based on this, a framework related to a compound annotation approach using real-time cellular activity profiles for probe, drug, and biology discovery is proposed. Compound annotation with chemical structure, drug-like properties, bioactivities, genome-wide effects, clinical phenotypes, and textural abstracts has received significant attention in early drug discovery. However, these annotations are mostly associated with endpoint results. Advances in assay techniques have made it possible to obtain real-time cellular activity profiles of drug molecules under different phenotypes, so it is possible to generate compound annotation with real-time cellular activity profiles. Combining compound annotation with informatics, such as similarity analysis, presents a good opportunity to improve the rate of discovery of novel drugs and probes, and enhance our understanding of the underlying biology.

  8. Role of ozone and granular activated carbon in the removal of mutagenic compounds.

    PubMed Central

    Bourbigot, M M; Hascoet, M C; Levi, Y; Erb, F; Pommery, N

    1986-01-01

    The identification of certain organic compounds in drinking water has led water treatment specialists to be increasingly concerned about the eventual risks of such pollutants to the health of consumers. Our experiments focused on the role of ozone and granular activated carbon in removing mutagenic compounds and precursors that become toxic after chlorination. We found that if a sufficient dose of ozone is applied, its use does not lead to the creation of mutagenic compounds in drinking water and can even eliminate the initial mutagenicity of the water. The formation of new mutagenic compounds seems to be induced by ozonation that is too weak, although these mutagens can be removed by GAC filtration. Ozone used with activated carbon can be one of the best means for eliminating the compounds contributing to the mutagenicity of water. A combined treatment of ozone and activated carbon also decreases the chlorine consumption of the treated water and consequently reduces the formation of chlorinated organic compounds. PMID:3816720

  9. TTI-237: a novel microtubule-active compound with in vivo antitumor activity.

    PubMed

    Beyer, Carl F; Zhang, Nan; Hernandez, Richard; Vitale, Danielle; Lucas, Judy; Nguyen, Thai; Discafani, Carolyn; Ayral-Kaloustian, Semiramis; Gibbons, James J

    2008-04-01

    5-Chloro-6-[2,6-difluoro-4-[3-(methylamino)propoxy]phenyl]-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine butanedioate (TTI-237) is a microtubule-active compound of novel structure and function. Structurally, it is one of a class of compounds, triazolo[1,5a]pyrimidines, previously not known to bind to tubulin. Functionally, TTI-237 inhibited the binding of [(3)H]vinblastine to tubulin, but it caused a marked increase in turbidity development that more closely resembled the effect observed with docetaxel than that observed with vincristine. The morphologic character of the presumptive polymer is unknown at present. When applied to cultured human tumor cells at concentrations near its IC(50) value for cytotoxicity (34 nmol/L), TTI-237 induced multiple spindle poles and multinuclear cells, as did paclitaxel, but not vincristine or colchicine. Flow cytometry experiments revealed that, at low concentrations (20-40 nmol/L), TTI-237 produced sub-G(1) nuclei and, at concentrations above 50 nmol/L, it caused a strong G(2)-M block. The compound was a weak substrate of multidrug resistance 1 (multidrug resistance transporter or P-glycoprotein). In a cell line expressing a high level of P-glycoprotein, the IC(50) of TTI-237 increased 25-fold whereas those of paclitaxel and vincristine increased 806-fold and 925-fold, respectively. TTI-237 was not recognized by the MRP or MXR transporters. TTI-237 was active in vivo in several nude mouse xenograft models of human cancer, including LoVo human colon carcinoma and U87-MG human glioblastoma, when dosed i.v. or p.o. Thus, TTI-237 has a set of properties that distinguish it from other classes of microtubule-active compounds.

  10. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway

    PubMed Central

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459

  11. Design of an activity landscape view taking compound-based feature probabilities into account.

    PubMed

    Zhang, Bijun; Vogt, Martin; Bajorath, Jürgen

    2014-09-01

    Activity landscapes (ALs) of compound data sets are rationalized as graphical representations that integrate similarity and potency relationships between active compounds. ALs enable the visualization of structure-activity relationship (SAR) information and are thus computational tools of interest for medicinal chemistry. For AL generation, similarity and potency relationships are typically evaluated in a pairwise manner and major AL features are assessed at the level of compound pairs. In this study, we add a conditional probability formalism to AL design that makes it possible to quantify the probability of individual compounds to contribute to characteristic AL features. Making this information graphically accessible in a molecular network-based AL representation is shown to further increase AL information content and helps to quickly focus on SAR-informative compound subsets. This feature probability-based AL variant extends the current spectrum of AL representations for medicinal chemistry applications.

  12. Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.).

    PubMed

    Cho, In Hee; Kim, Se Young; Choi, Hyung-Kyoon; Kim, Young-Suk

    2006-08-23

    The characteristic aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.) were investigated by gas chromatography-olfactometry using aroma extract dilution analysis. 1-Octen-3-one (mushroom-like) was the major aroma-active compound in raw pine-mushrooms; this compound had the highest flavor dilution factor, followed by ethyl 2-methylbutyrate (floral and sweet), linalool (citrus-like), methional (boiled potato-like), 3-octanol (mushroom-like and buttery), 1-octen-3-ol (mushroom-like), (E)-2-octen-1-ol (mushroom-like), and 3-octanone (mushroom-like and buttery). By contrast, methional, 2-acetylthiazole (roasted), an unknown compound (chocolate-like), 3-hydroxy-2-butanone (buttery), and phenylacetaldehyde (floral and sweet), which could be formed by diverse thermal reactions during the cooking process, together with C8 compounds, were identified as the major aroma-active compounds in cooked pine-mushrooms.

  13. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum.

    PubMed

    Li, Wei; Lee, Sang Hyun; Jang, Hae Dong; Ma, Jin Yeul; Kim, Young Ho

    2017-01-11

    Hericium erinaceum , commonly called lion's mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate ( 6 ), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1 - 5 and five sterols 7 - 11 . The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, ¹D-NMR (¹H, 13 C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1 - 11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1 , 3 , and 4 showed potent reducing capacity. Moreover, compounds 1 , 2 , 4 , and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods.

  14. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    NASA Astrophysics Data System (ADS)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  16. In vitro antimicrobial activity of extracts and isolated compound from Dalbergia stipulacea Roxb. leaves

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep

    2017-07-01

    The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.

  17. The influence of interactions among phenolic compounds on the antiradical activity of chokeberries (Aronia melanocarpa).

    PubMed

    Jakobek, Lidija; Seruga, Marijan; Krivak, Petra

    2011-06-01

    In the present work, interactions between phenolic compounds from chokeberries and their influence on the antiradical activity was studied. Three fractions were isolated from chokeberries containing different classes of phenolic compounds. The first fraction contained a major part of phenolic acids and flavonols, the second anthocyanins, and the third insoluble phenols and proanthocyanidins. The phenolic compound content was determined using high-performance liquid chromatography, and the antiradical activity using the DPPH test. In order to evaluate the effects of interactions between phenolic compounds on the antiradical activity, the antiradical activity of individual phenolic fractions was compared with that obtained by mixing phenolic fractions. Phenolic mixtures showed the decrease in the antiradical activity in comparison with the individual phenolic fractions. These results suggest the existence of complex interactions among phenolic compounds that caused the decrease of the antiradical activity. Interactions among chokeberry phenols promoted a negative synergism.

  18. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    PubMed

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  19. Porritoxins, metabolites of Alternaria porri, as anti-tumor-promoting active compounds.

    PubMed

    Horiuchi, Masayuki; Tokuda, Harukuni; Ohnishi, Keiichiro; Yamashita, Masakazu; Nishino, Hoyoku; Maoka, Takashi

    2006-02-01

    To search for possible cancer chemopreventive agents from natural sources, we performed primary screening of metabolites of Alternaria porri by examining their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. The ethyl acetate extract of A. porri showed the inhibitory effect on EBV-EA activation. Three porritoxins (1-3) were obtained as inhibitory active compounds for EBV-EA from ethyl acetate extract. 6-(3',3'-Dimethylallyloxy)-4-methoxy-5-methylphthalide (2) showed the strongest activity among them. Inhibitory effect of porritoxin (1) and (2) was superior to that of beta-carotene, a well-known anti-tumor promoter. Furthermore, the structure-activity correlation of porritoxins and their related compounds were discussed.

  20. Effect of vanadium compounds on acid phosphatase activity.

    PubMed

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  1. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens.

    PubMed

    Tiwari, Vishvanath; Roy, Ranita; Tiwari, Monalisa

    2015-01-01

    Bacterial pathogens cause a number of lethal diseases. Opportunistic bacterial pathogens grouped into ESKAPE pathogens that are linked to the high degree of morbidity, mortality and increased costs as described by Infectious Disease Society of America. Acinetobacter baumannii is one of the ESKAPE pathogens which cause respiratory infection, pneumonia and urinary tract infections. The prevalence of this pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source and resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. The high level of acquired and intrinsic carbapenem resistance mechanisms acquired by these bacteria makes their eradication difficult. The pharmaceutical industry has no solution to this problem. Hence, it is an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In order to do this, here we have made an effort to review the active compounds of plants that have potent antibacterial activity against many bacteria including carbapenem resistant strain of A. baumannii. We have also briefly highlighted the separation and identification methods used for these active compounds. This review will help researchers involved in the screening of herbal active compounds that might act as a replacement for carbapenem.

  2. A ranking method for the concurrent learning of compounds with various activity profiles.

    PubMed

    Dörr, Alexander; Rosenbaum, Lars; Zell, Andreas

    2015-01-01

    In this study, we present a SVM-based ranking algorithm for the concurrent learning of compounds with different activity profiles and their varying prioritization. To this end, a specific labeling of each compound was elaborated in order to infer virtual screening models against multiple targets. We compared the method with several state-of-the-art SVM classification techniques that are capable of inferring multi-target screening models on three chemical data sets (cytochrome P450s, dehydrogenases, and a trypsin-like protease data set) containing three different biological targets each. The experiments show that ranking-based algorithms show an increased performance for single- and multi-target virtual screening. Moreover, compounds that do not completely fulfill the desired activity profile are still ranked higher than decoys or compounds with an entirely undesired profile, compared to other multi-target SVM methods. SVM-based ranking methods constitute a valuable approach for virtual screening in multi-target drug design. The utilization of such methods is most helpful when dealing with compounds with various activity profiles and the finding of many ligands with an already perfectly matching activity profile is not to be expected.

  3. Quantum chemical and statistical study of megazol-derived compounds with trypanocidal activity

    NASA Astrophysics Data System (ADS)

    Rosselli, F. P.; Albuquerque, C. N.; da Silva, A. B. F.

    In this work we performed a structure-activity relationship (SAR) study with the aim to correlate molecular properties of the megazol compound and 10 of its analogs with the biological activity against Trypanosoma cruzi (trypanocidal or antichagasic activity) presented by these molecules. The biological activity indication was obtained from in vitro tests and the molecular properties (variables or descriptors) were obtained from the optimized chemical structures by using the PM3 semiempirical method. It was calculated ˜80 molecular properties selected among steric, constitutional, electronic, and lipophilicity properties. In order to reduce dimensionality and investigate which subset of variables (descriptors) would be more effective in classifying the compounds studied, according to their degree of trypanocidal activity, we employed statistical methodologies (pattern recognition and classification techniques) such as principal component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), and discriminant function analysis (DFA). These methods showed that the descriptors molecular mass (MM), energy of the second lowest unoccupied molecular orbital (LUMO+1), charge on the first nitrogen at substituent 2 (qN'), dihedral angles (D1 and D2), bond length between atom C4 and its substituent (L4), Moriguchi octanol-partition coefficient (MLogP), and length-to-breadth ratio (L/Bw) were the variables responsible for the separation between active and inactive compounds against T. cruzi. Afterwards, the PCA, KNN, and DFA models built in this work were used to perform trypanocidal activity predictions for eight new megazol analog compounds.

  4. Antibacterial, anti-inflammatory and anti-oxidatant activities of various isolated compounds from Cratoxylum species.

    PubMed

    Rodanant, Pirasut; Boonnak, Nawong; Surarit, Rudee; Kuvatanasuchati, Jintakorn; Lertsooksawat, Wannee

    2017-05-01

    The objective of this study was to investigate the bioactivity of twenty-nine known isolated compounds from Cratoxylum species including three anthraquinones, four triterpenes, and twenty-two xanthones. All isolated compounds were subjected to antibacterial, anti-inflammatory and anti-oxidant activities. Cytotoxicity evaluations were performed by MTT assay. The anti-oxidatant activity was performed using DPPH assay. The anti-inflammatory activity was evaluated from the production of cytokines TNF-α and IL1-β using ELISA assay. Human gingival fibroblasts and monocytes could tolerate both anthraquinones and triterpenes. All isolated anthraquinones showed moderate-to-high antibacterial efficacy while compound A3 also demonstrated moderate anti-inflammatory effect. None of the isolated triterpenes, except for T1, inhibited the expression of TNF-α. A number of isolated xanthones was toxic to HGFs and monocytes. Compound X5, X14 and a 1:1 mixture of X5 and X6 showed comparative anti-inflammatory activity to dexamethasone. Several triterpene and xanthone compounds also expressed antibacterial effect against P. gingivalis. Some isolated xanthones exerted anti-oxidant activity comparable to ascorbic acid. Accordingly, selected pure compounds from plants of Cratoxylum genus might be of benefit in developing medications that are important in treating periodontal diseases.

  5. The Antimicrobial Activity of Annona emarginata (Schltdl.) H. Rainer and Most Active Isolated Compounds against Clinically Important Bacteria.

    PubMed

    Dolab, Juan G; Lima, Beatriz; Spaczynska, Ewelina; Kos, Jiri; Cano, Natividad H; Feresin, Gabriela; Tapia, Alejandro; Garibotto, Francisco; Petenatti, Elisa; Olivella, Monica; Musiol, Robert; Jampilek, Josef; Enriz, Ricardo D

    2018-05-16

    Annona emarginata (Schltdl.) H. Rainer, commonly known as "arachichú", "araticú", "aratigú", and "yerba mora", is a plant that grows in Argentina. Infusions and decoctions are used in folk medicine as a gargle against throat pain and for calming toothache; another way to use the plant for these purposes is chewing its leaves. Extracts from bark, flowers, leaves, and fruits from A. emarginata were subjected to antibacterial assays against a panel of Gram (+) and Gram (-) pathogenic bacteria according to Clinical and Laboratory Standards Institute protocols. Extracts from the stem bark and leaves showed moderate activity against the bacteria tested with values between 250⁻1000 µg/mL. Regarding flower extracts, less polar extracts (hexane, dichloromethane) showed very strong antibacterial activity against methicillin-sensitive Staphylococcus aureus ATCC 25923 and methicillin-resistant S. aureus ATCC 43300 with values between 16⁻125 µg/mL. Additionally, hexane extract showed activity against Klebsiella pneumoniae (MIC = 250 µg/mL). The global methanolic extract of the fruits (MeOHGEF) was also active against the three strains mentioned above, with MICs values 250⁻500 µg/mL. Bioassay-guided fractionation of MeOHGEF led to the isolation of a new main compound-( R )-2-(4-methylcyclohex-3-en-1-yl)propan-2-yl ( E )-3-(4-hydroxyphenyl)acrylate ( 1 ). The structure and relative configurations have been determined by means of 1D and 2D NMR techniques, including COSY, HMQC, HMBC, and NOESY correlations. Compound 1 showed strong antimicrobial activity against all Gram (+) species tested (MICs = 3.12⁻6.25 µg/mL). In addition, the synthesis and antibacterial activity of some compounds structurally related to compound 1 (including four new compounds) are reported. A SAR study for these compounds was performed based on the results obtained by using molecular calculations.

  6. Anti-trypanosomal activities and structural chemical properties of selected compound classes.

    PubMed

    Ponte-Sucre, Alicia; Bruhn, Heike; Schirmeister, Tanja; Cecil, Alexander; Albert, Christian R; Buechold, Christian; Tischer, Maximilian; Schlesinger, Susanne; Goebel, Tim; Fuß, Antje; Mathein, Daniela; Merget, Benjamin; Sotriffer, Christoph A; Stich, August; Krohne, Georg; Engstler, Markus; Bringmann, Gerhard; Holzgrabe, Ulrike

    2015-02-01

    Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families.

  7. Quinolone Amides as Antitrypanosomal Lead Compounds with In Vivo Activity.

    PubMed

    Hiltensperger, Georg; Hecht, Nina; Kaiser, Marcel; Rybak, Jens-Christoph; Hoerst, Alexander; Dannenbauer, Nicole; Müller-Buschbaum, Klaus; Bruhn, Heike; Esch, Harald; Lehmann, Leane; Meinel, Lorenz; Holzgrabe, Ulrike

    2016-08-01

    Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments

  8. Anti-inflammatory activities of compounds from twigs of Morus alba.

    PubMed

    Tran, Huynh Nguyen Khanh; Nguyen, Van Thu; Kim, Jeong Ah; Rho, Seong Soo; Woo, Mi Hee; Choi, Jae Sui; Lee, Jeong-Hyung; Min, Byung Sun

    2017-07-01

    Five new compounds, 10-oxomornigrol F (1), (7″R)-(-)-6-(7″-hydroxy-3″,8″-dimethyl-2″,8″-octadien-1″-yl)apigenin (2), ramumorin A (3), ramumorin B (4), and (4S,7S,8R)-trihydroxyoctadeca-5Z-enoic acid (5), together with 31 known compounds (6-36), were isolated from the twigs of Morus alba (Moraceae). The chemical structures of these compounds were established using spectroscopic analyses, 1D and 2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and Mosher's methods. The anti-inflammatory activities of the compounds were evaluated by investigating their ability to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW 264.7 cells. Compounds 1, 2, 13, 17, 19, 25-28, and 32 showed inhibitory effects with IC 50 values ranging from 2.2 to 5.3μg/mL. Compounds 1, 2, 17, 25, and 32 reduced LPS-induced inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner. In addition, pretreating the cells with compound 1, 17, and 32 significantly suppressed LPS-induced expression of cyclooxygenase-2 (COX-2) protein. Copyright © 2017. Published by Elsevier B.V.

  9. Antioxidative and melanogenesis-inhibitory activities of caffeoylquinic acids and other compounds from moxa.

    PubMed

    Akihisa, Toshihiro; Kawashima, Kohta; Orido, Masashi; Akazawa, Hiroyuki; Matsumoto, Masahiro; Yamamoto, Ayako; Ogihara, Eri; Fukatsu, Makoto; Tokuda, Harukuni; Fuji, Jizaemon

    2013-03-01

    The MeOH extract of moxa, the processed leaves of Artemisia princeps PAMP. (Asteraceae), exhibited potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and melanogenesis-inhibitory activity in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 melanoma cells. Eight caffeoylquinic acids, 1 and 6-12, five flavonoids, 13-17, two benzoic acid derivatives, 18 and 19, three coumarin derivatives, 20-22, four steroids, 23-26, and six triterpenoids, 27-32, were isolated from the MeOH extract. Upon evaluation of compounds 1, 6-23, and four semisynthetic caffeoylquinic acid esters, 2-5, for their DPPH radical-scavenging activity, 15 compounds, 1-13, 17, and 19, showed potent activities (IC(50) 3.1-16.8 μM). The 15 compounds exhibited, moreover, potent inhibitory activities (51.1-92.5% inhibition) against peroxidation of linoleic acid emulsion at 10 μg/ml concentration. In addition, when 27 compounds, 1-8, 10, 12, 13, 15-18, 20-25, and 27-32, were evaluated for their inhibitory activity against melanogenesis in α-MSH-stimulated B16 melanoma cells, five caffeoylquinic acids, i.e., chlorogenic acid (1), ethyl chlorogenate (3), propyl chlorogenate (4), isopropyl chlorogenate (5), and butyl chlorogenate (6), along with homoorientin (17) and vanillic acid (18), exhibited inhibitory activities with 33-62% reduction of melanin content at 100 μM concentration with no or almost no toxicity to the cells (89-114% of cell viability at 100 μM). Western blot analysis showed that compound 6 reduced the protein levels of microphtalmia-associated transcription factor (MITF), tyrosinase, tyrosine-related protein 1 (TRP-1), and TRP-2 mostly in a concentration-dependent manner, suggesting that this compound inhibits melanogenesis on α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase, TRP-1, and TRP-2. Furthermore, four compounds, 13, 15, 16, and 30, exhibited

  10. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2015-07-01

    Scaffold hopping and activity cliff formation define opposite ends of the activity landscape feature spectrum. To rationalize these events at the level of scaffolds, active compounds involved in scaffold hopping were required to contain topologically distinct scaffolds but have only limited differences in potency, whereas compounds involved in activity cliffs were required to share the same scaffold but have large differences in potency. A systematic search was carried out for compounds involved in scaffold hopping and/or activity cliff formation. Results obtained for compound data sets covering more than 300 human targets revealed clear trends. If scaffolds represented multiple but fewer than 10 active compounds, nearly 90% of all scaffolds were exclusively involved in hopping events. With increasing compound coverage, the fraction of scaffolds involved in both scaffold hopping and activity cliff formation significantly increased to more than 50%. However, ∼40% of the scaffolds representing large numbers of active compounds continued to be exclusively involved in scaffold hopping. More than 200 scaffolds with broad target coverage were identified that consistently represented potent compounds and yielded an abundance of scaffold hops in the low-nanomolar range. These and other subsets of scaffolds we characterized are of prime interest for structure-activity relationship (SAR) exploration and compound design. Therefore, the complete scaffold classification generated in the course of our analysis is made freely available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Identifying relationships between unrelated pharmaceutical target proteins on the basis of shared active compounds.

    PubMed

    Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen

    2017-08-01

    Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.

  12. Leishmanicidal activity of Nystatin (mycostatin): a potent polyene compound.

    PubMed

    Ali, S A; Iqbal, J; Nabeel; Khalil, Y; Manzoor, A; Bukhari, I; Ahmad, B; Yasinzai, M M

    1997-10-01

    The susceptibility of promastigote of Leishmania major to Nystatin in vitro was examined. L. major (MHOM/PK/88/DESTO) promastigote were cultured in medium 199 supplemented with 10% heat inactivated foetal bovine serum and 2% urine. The growth of the promastigote was monitored in the absence and presence of the experimental compound (Nystatin) for upto 5 days post-inoculation. The EC50 value (the concentration of drug necessary to inhibit the growth rate of cells to 50% of the control value) obtained for Nystatin against the promastigote of L. major was less than 9.76 iu ml. Certain polyene compounds like Amphotericin-B and Nystatin (mycostatin) are familiar for their fungicidal activity. Amphotericin-B is used since long as antileishmanial drug as well. Results obtained suggest that Nystatin has a very good anti leishmanial activity in vitro. The mode of action proposed for this drug is same as for Amphotericin-B as both of these polyene compounds interact with the various sterols present on the surface of the parasite, thus unusual gaps and pores are formed on the surface that results in the leakage of the ions. This leakage finally leads to the destruction of the parasite.

  13. Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation

    PubMed Central

    Zhou, Li; Zheng, Yu; Li, Zhuoying; Bao, Lingxia; Dou, Yin; Tang, Yuan; Zhang, Jianxiang; Zhou, Jianzhi; Liu, Ya; Jia, Yi; Li, Xiaohui

    2016-01-01

    Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis. PMID:27399689

  14. Identification of three novel natural product compounds that activate PXR and CAR and inhibit inflammation

    PubMed Central

    Kittayaruksakul, Suticha; Zhao, Wenchen; Xu, Meishu; Ren, Songrong; Lu, Jing; Wang, Ju; Downes, Michael; Evans, Ronald M.; Venkataramanan, Raman; Chatsudthipong, Varanuj; Xie, Wen

    2013-01-01

    The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) have been known to play a role in xenobiotic metabolism by regulating the expression of drug-metabolizing enzymes and transporters. In addition, PXR agonists were found to exert therapeutic effects through multiple mechanisms, such as detoxification of bile acids and inhibition of inflammation. In this study, we first investigated the effects of three natural product compounds, carapin, santonin and isokobusone, on the activity of PXR and CAR. These compounds activated both PXR and CAR in transient transfection and luciferase reporter gene assays. Mutagenesis studies showed that two amino acid residues, Phe305 of the rodent PXR and Leu308 of the human PXR, are critical for the recognition of these compounds by PXR. Importantly, the activation of PXR and CAR by these compounds induced the expression of drug-metabolizing enzymes in primary human and mouse hepatocytes. Furthermore, activation of PXR by these compounds inhibited the expression of inflammatory mediators in response to lipopolysaccharide (LPS). The effects of these natural compounds on drug metabolism and inflammation were abolished in PXR−/− hepatocytes. These natural compounds can be explored for their potential in the treatment of diseases where the PXR activation has been shown to be beneficial, such as inflammatory bowel disease, cholestasis, and hyperbilirubinemia. PMID:23896737

  15. Insights into structure and activity of natural compound inhibitors of pneumolysin

    PubMed Central

    Li, Hongen; Zhao, Xiaoran; Deng, Xuming; Wang, Jianfeng; Song, Meng; Niu, Xiaodi; Peng, Liping

    2017-01-01

    Pneumolysin is the one of the major virulence factor of the bacterium Streptococcus pneumoniae. In previous report, it is shown that β-sitosterol, a natural compound without antimicrobial activity, is a potent antagonist of pneumolysin. Here, two new pneumolysin natural compound inhibitors, with differential activity, were discovered via haemolysis assay. To explore the key factor of the conformation for the inhibition activity, the interactions between five natural compound inhibitors with differential activity and pneumolysin were reported using molecular modelling, the potential of mean force profiles. Interestingly, it is found that incorporation of the single bond (C22-C23-C24-C25) to replace the double bond (hydrocarbon sidechain) improved the anti-haemolytic activity. In view of the molecular modelling, binding of the five inhibitors to the conserved loop region (Val372, Leu460, and Tyr461) of the cholesterol binding sites led to stable complex systems, which was consistent with the result of β-sitosterol. Owing to the single bond (C22-C23-C24-C25), campesterol and brassicasterol could form strong interactions with Val372 and show higher anti-haemolytic activity, which indicated that the single bond (C22-C23-C24-C25) in inhibitors was required for the anti-haemolytic activity. Overall, the current molecular modelling work provides a starting point for the development of rational design and higher activity pneumolysin inhibitors. PMID:28165051

  16. Isolation of the active compound in Mauria heterophylla, a Peruvian plant with antibacterial activity.

    PubMed

    Mori, Tatsuya; Chang, Cecilia; Maurtua, Dora; Hammond, Gerald B

    2006-02-01

    A fraction from the ethanol extract of the Peruvian medicinal plant Mauria heterophylla (Anacardiaceae) showed antibacterial activity against Escherichia coli 35992, Staphylococcus aureus 20213 and Pseudomonas aeruginosa 15442. Further fractionation led to the isolation and characterization of ethyl gallate as the antibacterial active compound. Copyright 2006 John Wiley & Sons, Ltd.

  17. Jasmonate signaling in plant stress responses and development - active and inactive compounds.

    PubMed

    Wasternack, Claus; Strnad, Miroslav

    2016-09-25

    Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound

    PubMed Central

    2012-01-01

    Background Natural products could play an important role in the challenge to discover new anti-malarial drugs. In a previous study, Dicoma tomentosa (Asteraceae) was selected for its promising anti-plasmodial activity after a preliminary screening of several plants traditionally used in Burkina Faso to treat malaria. The aim of the present study was to further investigate the anti-plasmodial properties of this plant and to isolate the active anti-plasmodial compounds. Methods Eight crude extracts obtained from D. tomentosa whole plant were tested in vitro against two Plasmodium falciparum strains (3D7 and W2) using the p-LDH assay (colorimetric method). The Peters’ four-days suppressive test model (Plasmodium berghei-infected mice) was used to evaluate the in vivo anti-plasmodial activity. An in vitro bioguided fractionation was undertaken on a dichloromethane extract, using preparative HPLC and TLC techniques. The identity of the pure compound was assessed using UV, MS and NMR spectroscopic analysis. In vitro cytotoxicity against WI38 human fibroblasts (WST-1 assay) and haemolytic activity were also evaluated for extracts and pure compounds in order to check selectivity. Results The best in vitro anti-plasmodial results were obtained with the dichloromethane, diethylether, ethylacetate and methanol extracts, which exhibited a high activity (IC50 ≤ 5 μg/ml). Hot water and hydroethanolic extracts also showed a good activity (IC50 ≤ 15 μg/ml), which confirmed the traditional use and the promising anti-malarial potential of the plant. The activity was also confirmed in vivo for all tested extracts. However, most of the active extracts also exhibited cytotoxic activity, but no extract was found to display any haemolytic activity. The bioguided fractionation process allowed to isolate and identify a sesquiterpene lactone (urospermal A-15-O-acetate) as the major anti-plasmodial compound of the plant (IC50 < 1 μg/ml against both 3D7 and W2 strains). This was also

  19. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting.

    PubMed

    Terpinc, Petra; Cigić, Blaž; Polak, Tomaž; Hribar, Janez; Požrl, Tomaž

    2016-11-01

    The impact of malting on the profile of the phenolic compounds and the antioxidant properties of two buckwheat varieties was investigated. The highest relative increases in phenolic compounds were observed for isoorientin, orientin, and isovitexin, which are consequently major inducible phenolic compounds during malting. Only a minor relative increase was observed for the most abundant phenolic compound, rutin. The radical-scavenging activity of buckwheat seeds was evaluated using ABTS and DPPH assays. A considerable increase in total phenolic compounds and higher antioxidant activity were observed after 64h of germination, whereas kilning resulted in decreased total phenolic compounds and antioxidant activity. Higher antioxidant activities for extracts were found for buffered solvents than for pure methanol and water. Changes in the composition of the phenolic compounds and increased antioxidant content were confirmed by several methods, indicating that buckwheat malt can be used as a food rich in antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Antifeedant compounds from three species of Apiaceae active against the field slug, Deroceras reticulatum (Muller).

    PubMed

    Birkett, Michael A; Dodds, Catherine J; Henderson, Ian F; Leake, Lucy D; Pickett, John A; Selby, Martin J; Watson, Peter

    2004-03-01

    Extracts of volatiles from foliage of three plants in the Apiaceae, Conium maculatum L. (hemlock), Coriandrum sativum L. (coriander), and Petroselinum crispum Mill. (Nym.) (parsley), previously shown to exhibit antifeedant activity in assays with the field slug, Deroceras reticulatum (Muller) (Limacidae: Pulmonata), were studied further to identify the active components. Coupled gas chromatography-mass spectrometry (GC-MS) and neurophysiological assays using tentacle nerve preparations resulted in the identification of 11 active compounds from the three extracts. Wheat flour feeding bioassays were used to determine which of these compounds had the highest antifeedant activity. One of the most active compounds was the alkaloid gamma-coniceine, from C. maculatum. The role of potentially toxic alkaloids as semiochemicals and the potential for using such compounds as crop protection agents to prevent slug feeding damage is discussed.

  1. Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions.

    PubMed

    Honda, Toshio

    2012-01-01

    Synthesis of biologically active compounds, including natural products and pharmaceutical agents, is an important and interesting research area since the large structural diversity and complexity of bioactive compounds make them an important source of leads and scaffolds in drug discovery and development. Many structurally and also biologically interesting compounds, including marine natural products, have been isolated from nature and have also been prepared on the basis of a computational design for the purpose of developing medicinal chemistry. In order to obtain a wide variety of derivatives of biologically active compounds from the viewpoint of medicinal chemistry, it is essential to establish efficient synthetic procedures for desired targets. Newly developed reactions should also be used for efficient synthesis of desired compounds. Thus, recent progress in the synthesis of biologically active compounds by focusing on the development of new reactions is summarized in this review article.

  2. Efficient discovery of responses of proteins to compounds using active learning

    PubMed Central

    2014-01-01

    Background Drug discovery and development has been aided by high throughput screening methods that detect compound effects on a single target. However, when using focused initial screening, undesirable secondary effects are often detected late in the development process after significant investment has been made. An alternative approach would be to screen against undesired effects early in the process, but the number of possible secondary targets makes this prohibitively expensive. Results This paper describes methods for making this global approach practical by constructing predictive models for many target responses to many compounds and using them to guide experimentation. We demonstrate for the first time that by jointly modeling targets and compounds using descriptive features and using active machine learning methods, accurate models can be built by doing only a small fraction of possible experiments. The methods were evaluated by computational experiments using a dataset of 177 assays and 20,000 compounds constructed from the PubChem database. Conclusions An average of nearly 60% of all hits in the dataset were found after exploring only 3% of the experimental space which suggests that active learning can be used to enable more complete characterization of compound effects than otherwise affordable. The methods described are also likely to find widespread application outside drug discovery, such as for characterizing the effects of a large number of compounds or inhibitory RNAs on a large number of cell or tissue phenotypes. PMID:24884564

  3. Herbicidal activity of pure compound isolated from rhizosphere inhabiting Aspergillus flavus.

    PubMed

    Khattak, Saeed Ullah; Lutfullah, Ghosia; Iqbal, Zafar; Rehman, Irshad Ur; Ahmad, Jamshaid; Khan, Abid Ali

    2018-05-01

    In the quest for bioactive natural products of fungal origin, Aspergillus flavus was isolated from rhizosphere of Mentha piperita using Potato Dextrose Agar (PDA) and Czapec Yeast Broth (CYB) nutrient media for metabolites production. In total, three different metabolites were purified using HPLC/LCMS and the structures were established using 500 Varian NMR experiments. Further the isolated metabolites in different concentrations (10, 100, 1000 μg/mL) were tested for herbicidal activity using Completely Randomized design (CRD) against the seeds of Silybum marianum and Avena fatua which are major threats to wheat crop in Pakistan. Among the isolated metabolites, one compound was found active against the test weed species whose activity is reported in the present work. The chemical name of the compound is 2-(1, 4-dihydroxybutan-2-yl)-1, 3-dihydroxy-6, 8-dimethoxyanthracene-9, 10(4aH, 9aH)-dione with mass of 388. Results showed that all seeds germinated in control treatment; however, with the metabolite treated, the growth was retarded to different levels in all parts of the weeds. At a dose of 1000 μg/mL of the pure compound, 100% seeds of S. marianum and 60% seeds of A. fatua were inhibited. Interestingly, the pure compound exhibited less inhibition of 10% towards the seeds of common wheat (Triticum aestivum).

  4. Synthesis and anti-lung cancer activity of a novel arsenomolybdate compound

    NASA Astrophysics Data System (ADS)

    Zhu, Tian-Tian; Wang, Juan; Chen, Song-Hu

    2017-12-01

    The new compound based on Wells-Dawson-type arsenomolybdate: [{Cu10(pz)11Cl4}{As2IIIAs2VMo6VMo12VIO62}]·H2O (1) has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis, X-ray powder diffraction (XRPD), XPS spectroscopy and thermogravimetric analysis (TG). Compound 1 is consisted of two As caps Wells-dawson-type arsenomolybdate and {Cu10(py)11} complexes by chloride bridge. In addition, the antitumor effects of the title compound 1 were studied on three human lung cancer cells (A549, SK-LU-1 and SW1573). The results showed that compared with the positive reference drug carboplatin, compound 1 displayed efficient antitumor activity.

  5. Synthesis and Biological Evaluation of Ginsenoside Compound K Derivatives as a Novel Class of LXRα Activator.

    PubMed

    Huang, Yan; Liu, Hongmei; Zhang, Yingxian; Li, Jin; Wang, Chenping; Zhou, Li; Jia, Yi; Li, Xiaohui

    2017-07-24

    Compound K is one of the active metabolites of Panaxnotoginseng saponins, which could attenuate the formation of atherosclerosis in mice modelsvia activating LXRα. We synthesized and evaluated a series of ginsenoside compound K derivatives modified with short chain fatty acids. All of the structures of this class of ginsenoside compound K derivative exhibited comparable or better biological activity than ginsenoside compound K. Especially structure 1 exhibited the best potency (cholesteryl ester content: 41.51%; expression of ABCA1 mRNA: 319%) and low cytotoxicity.

  6. A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides.

    PubMed

    Sultana, Nasim; Afolayan, A J

    2007-08-01

    Arctotis arctotoides is a perennial herb used medicinally for the treatment of various ailments in the Eastern Cape, South Africa. Different extracts of the plant were investigated for their antimicrobial constituents. This led to the isolation and identification of a new daucosterol derivative 3-O-[beta-D-(6'-nonadeanoate)glucopyranosyl]-beta-sitosterol and seven known compounds namely: serratagenic acid, stigmasterol, daucosterol, zaluzanin D, dehydrocostuslactone, nepetin, and pedalitin. The structures of the compounds were elucidated on the basis of spectral analysis, including homo and hetero nuclear correlation NMR experiments (COSY, NOESY, HMQC, HMBC) and mass spectra as well as by comparison with available data in the literature. The compounds exhibited antibacterial activity except stigmasterol, daucosterol and dehydrocostuslactone. Nepetin was the most active against Bacillus subtilis and Staphylococcus aureus with the minimum inhibitory concentrations of 4 microg mL( - 1) and 31 microg mL( - 1), respectively, while others exhibited moderate activity.

  7. [Study of antioxidant activity of phenolic compounds from some species of Georgian flora].

    PubMed

    Alaniia, M; Shalashvili, K; Sagareishvili, T; Kavtaradze, N; Sutiashvili, M

    2013-09-01

    The antioxidant activity of extracts obtained from different parts of Georgian flora species Hamamelis virginiana L., Astragalus caucasicus Pall., Astragalus microcephalus Willd., Vitis vinifera L., Rhododendron ponticum L., Rhododendron Ungernii Trautv., Ginkgo biloba L., Salvia officinalis L., Querqus iberica Stev., Maclura aurantiaca Nutt., Cotinus coggygria Ledeb., Fraxinus ornus L., Urtica dioica L., Rhododendron caucasicum Pall., Pueraria hirsuta Matsum., Geranium pusillum L., Astragalus Tanae Sosn., Pinus silvestris L. has been studied. Comparison with ethylentetraacetate and α-tocopherole revealed high efficacy of all extracts studied. 45 individual phenolic compounds were isolated and described by chemical examination of biologically active objects. Common sage (Salvia officinalis) extract turned out as the most active (200 %). The chemical study revealed the dominant content of condensed tannins and low molecular phenolic compounds, which may be attributed to the high antioxidant activity. Biologically active antiatherosclerotic food additive "Salbin" was developed on the basis of Common sage - Salvia officinalis L. phenolic compounds.

  8. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.

    PubMed

    Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann

    2013-11-15

    Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. In vitro plant tissue culture: means for production of biological active compounds.

    PubMed

    Espinosa-Leal, Claudia A; Puente-Garza, César A; García-Lara, Silverio

    2018-05-07

    Plant tissue culture as an important tool for the continuous production of active compounds including secondary metabolites and engineered molecules. Novel methods (gene editing, abiotic stress) can improve the technique. Humans have a long history of reliance on plants for a supply of food, shelter and, most importantly, medicine. Current-day pharmaceuticals are typically based on plant-derived metabolites, with new products being discovered constantly. Nevertheless, the consistent and uniform supply of plant pharmaceuticals has often been compromised. One alternative for the production of important plant active compounds is in vitro plant tissue culture, as it assures independence from geographical conditions by eliminating the need to rely on wild plants. Plant transformation also allows the further use of plants for the production of engineered compounds, such as vaccines and multiple pharmaceuticals. This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production.

  10. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database

    PubMed Central

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877

  11. The antibacterial activity of compounds isolated from oakmoss against Legionella pneumophila and other Legionella spp.

    PubMed

    Nomura, Harue; Isshiki, Yasunori; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi

    2012-01-01

    Oakmoss is a natural fragrance ingredient exhibiting highly specific, potent antibacterial activity against Legionella pneumophila, a causative agent of severe water-bone pneumonia. In the present study, the antibacterial activity of individual compounds isolated from oakmoss was investigated against L. pneumophila and other Legionella spp. A total of 18 known compounds and two minor novel compounds (i.e., 3-methoxy-5-methylphenyl-2,4-dihydroxy-6-methylbenzoate (compound 9) and 8-(2,4-dihydroxy-6-(2-oxoheptyl)-phenoxy)-6-hydroxy-3-pentyl-1H-isochromen-1-one (compound 20)) were purified from oakmoss. The minimum inhibitory concentrations (MICs) against clinical and environmental isolates of L. pneumophila, L. bozemanii, L. micdadei, L. longbeachae, and L. dumoffii for 11 of the 20 compounds were less than 100 µg/mL (range 0.8-64.0 µg/mL). Novel compounds 9 and 20 exhibited potent antibacterial activity against L. pneumophila strains (MIC ranges of 1.3-8.0 µg/mL and 3.3-13.3 µg/mL, respectively) and also against four other Legionella species (MIC ranges of 0.8-8.0 µg/mL and 3.3-21.3 µg/mL, respectively). Time-kill assays indicated that compounds 9 and 20 kill bacteria at a concentration equivalent to 2×MIC after 1 h and 6 h co-incubations, respectively. While oakmoss and the purified components exhibited antibacterial activity against Legionella spp., they were not active against other Gram-negative and -positive bacteria such as Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus.

  12. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  13. Bioactive compounds and antioxidant activities of some cereal milling by-products.

    PubMed

    Smuda, Sayed Saad; Mohsen, Sobhy Mohamed; Olsen, Karsten; Aly, Mohamed Hassan

    2018-03-01

    The present study was performed to evaluate the phytochemicals profiles of some cereal milling by-products such as wheat (bran, germ and shorts), rice (bran, germ and husk) and corn (bran, germ and germ meal) to assess their potentiality as bioactive compounds sources. Distilled water, ethanol, methanol, and acetone separately were used as solvents for the extraction of phytochemicals compounds. The antioxidant activity (AOA), total phenolics content (TPC), and total flavonoids content (TFC) of the extracts were investigated using various in vitro assays. The results showed that tannins content was ranged from 113.4 to 389.5 (mg/100 g sample).The study revealed that TPC and TFC of cereal by-products extracts were significantly different for various solvents. TPC content varied from 366.1 to 1924.9 mg/100 g and TFC content varied from 139.3 to 681.6 mg/100 g. High carotenoids content was observed for corn germ meal and minimum for wheat bran. Distilled water, ethanol and methanol extracts showed significantly different antioxidant activity. Significant variations were observed with regard to AOA of different cereal by-products by using various solvents. The ethanol and methanol were observed to be the best solvents to extract phenolic compounds and antioxidant activity, while acetone extract showed less efficiency. Also, the cereal milling by-products were rich in bioactive compounds and could be used as a value added products.

  14. Relationships Between Bioactive Compound Content and
the Antiplatelet and Antioxidant Activities of Six Allium Vegetable Species

    PubMed Central

    Beretta, Hebe Vanesa; Bannoud, Florencia; Insani, Marina; Berli, Federico; Hirschegger, Pablo; Galmarini, Claudio Rómulo

    2017-01-01

    Summary Allium sp. vegetables are widely consumed for their characteristic flavour. Additionally, their consumption may provide protection against cardiovascular disease due to their antiplatelet and antioxidant activities. Although antiplatelet and antioxidant activities in Allium sp. are generally recognised, comparative studies of antiplatelet and antioxidant potency among the main Allium vegetable species are lacking. Also, the relationship between organosulfur and phenolic compounds and these biological activities has not been well established. In this study, the in vitro antiplatelet and antioxidant activities of the most widely consumed Allium species are characterised and compared. The species total organosulfur and phenolic content, and the HPLC profiles of 11 phenolic compounds were characterised and used to investigate the relationship between these compounds and antiplatelet and antioxidant activities. Furthermore, antiplatelet activities in chives and shallot have been characterised for the first time. Our results revealed that the strongest antiplatelet agents were garlic and shallot, whereas chives had the highest antioxidant activity. Leek and bunching onion had the weakest both biological activities. Significantly positive correlations were found between the in vitro antiplatelet activity and total organosulfur (R=0.74) and phenolic (TP) content (R=0.73), as well as between the antioxidant activity and TP (R=0.91) and total organosulfur content (R=0.67). Six individual phenolic compounds were associated with the antioxidant activity, with catechin, epigallocatechin and epicatechin gallate having the strongest correlation values (R>0.80). Overall, our results suggest that both organosulfur and phenolic compounds contribute similarly to Allium antiplatelet activity, whereas phenolics, as a whole, are largely responsible for antioxidant activity, with broad variation observed among the contributions of individual phenolic compounds. PMID:28867958

  15. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    PubMed Central

    2012-01-01

    Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm. PMID:22540963

  16. Pulse seed germination improves antioxidative activity of phenolic compounds in stripped soybean oil-in-water emulsions.

    PubMed

    Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan

    2018-06-01

    The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOEpatents

    DiSpirito, Alan A [Ames, IA; Zahn, James A [Harbor Beach, MI; Graham, David W [Lawrence, KS; Kim, Hyung J [St. Paul, MN; Alterman, Michail [Lawrence, KS; Larive, Cynthia [Lawrence, KS

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  18. Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties.

    PubMed

    Dicko, Mamoudou H; Gruppen, Harry; Traore, Alfred S; van Berkel, Willem J H; Voragen, Alphons G J

    2005-04-06

    The screening of 50 sorghum varieties showed that, on average, germination did not affect the content in total phenolic compounds but decreased the content of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols. Independent of germination, there are intervarietal differences in antioxidant activities among sorghum varieties. Phenolic compounds and antioxidant activities were more positively correlated in ungerminated varieties than in germinated ones. Sorghum grains with pigmented testa layer, chestnut color glumes, and red plants had higher contents, larger diversity of phenolic compounds, and higher antioxidant activities than other sorghums. Some red sorghum varieties had higher antioxidant activities (30-80 mumol of Trolox equiv/g) than several sources of natural antioxidants from plant foods. Among varieties used for "to", "dolo", couscous, and porridge preparation, the "dolo"(local beer) varieties had the highest average content and diversity in phenolic compounds as well as the highest antioxidant activities. The biochemical markers determined are useful indicators for the selection of sorghum varieties for food and agronomic properties.

  19. Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques.

    PubMed

    Mulero, Juana; Zafrilla, Pilar; Cayuela, Jose M; Martínez-Cachá, Adela; Pardo, Francisco

    2011-04-01

    Wine phenolic composition depends on the grapes used to make wine and on vinification conditions. The occurrence of these biological compounds has stimulated numerous studies focused on understanding the mechanisms that influence their concentrations in wine. This article studied the effect of different vinification techniques on the antioxidant activity and on the phenolic compounds of red wine made from the variety of Monastrell grapes obtained by organic culture. To this purpose, 3 different vinification procedures were carried out: vinification after prolonged maceration, vinification with the addition of enological enzymes, and traditional vinification procedures (used as control).The results showed similar values of antioxidant activity in all 3 types of wine elaborated and found no differences in the concentrations of the different types of phenolic compounds in wine made with the 3 different methods. The evolution of antioxidant activity and phenolic compounds tested in wines during 3 mo of storage showed a similar pattern. Organic wine has acquired an important role in the economic world and its important, working in oenology to research in this field.

  20. A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity.

    PubMed

    Frattaruolo, Luca; Lacret, Rodney; Cappello, Anna Rita; Truman, Andrew W

    2017-11-17

    Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.

  1. Phytochemical Analysis, Identification and Quantification of Antibacterial Active Compounds in Betel Leaves, Piper betle Methanolic Extract.

    PubMed

    Syahidah, A; Saad, C R; Hassan, M D; Rukayadi, Y; Norazian, M H; Kamarudin, M S

    2017-01-01

    The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle . Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method. The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1. Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

  2. Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum).

    PubMed

    Sandoval-Castro, Claudia Jaqueline; Valdez-Morales, Maribel; Oomah, B Dave; Gutiérrez-Dorado, Roberto; Medina-Godoy, Sergio; Espinosa-Alonso, L Gabriela

    2017-06-01

    Bioactive compounds and antioxidant activity were evaluated from industrial Jalapeño pepper byproducts and simulated non processed byproducts from two Mexican states (Chihuahua and Sinaloa) to determine their value added potential as commercial food ingredients. Aqueous 80% ethanol produced about 13% of dry extract of polar compounds. Total phenolic content increased and capsaicin and dihydrocapsaicin decreased on scalding samples (80 °C, 2 min) without affecting ascorbic acid. The major phenolic compounds, rutin, epicatechin and catechin comprised 90% of the total compounds detected by HPLC of each Jalapeño pepper byproducts. ORAC analysis showed that the origin and scalding process affected the antioxidant activity which correlated strongly with capsaicin content. Although scalding decreased capsaicinoids (up to 42%), phenolic content by (up to 16%), and the antioxidant activity (variable). Jalapeño pepper byproduct is a good source of compounds with antioxidant activity, and still an attractive ingredient to develop useful innovative products with potential food/non-food applications simultaneously reducing food loss and waste.

  3. Texas Native Plants Yield Compounds with Cytotoxic Activities against Prostate Cancer Cells.

    PubMed

    Shaffer, Corena V; Cai, Shengxin; Peng, Jiangnan; Robles, Andrew J; Hartley, Rachel M; Powell, Douglas R; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L

    2016-03-25

    There remains a critical need for more effective therapies for the treatment of late-stage and metastatic prostate cancers. Three Texas native plants yielded three new and three known compounds with antiproliferative and cytotoxic activities against prostate cancer cells with IC50 values in the range of 1.7-35.0 μM. A new sesquiterpene named espadalide (1), isolated from Gochnatia hypoleuca, had low micromolar potency and was highly effective in clonogenic assays. Two known bioactive germacranolides (2 and 3) were additionally isolated from G. hypoleuca. Dalea frutescens yielded two new isoprenylated chalcones, named sanjuanolide (4) and sanjoseolide (5), and the known sesquiterpenediol verbesindiol (6) was isolated from Verbesina virginica. Mechanistic studies showed that 1-4 caused G2/M accumulation and the formation of abnormal mitotic spindles. Tubulin polymerization assays revealed that 4 increased the initial rate of tubulin polymerization, but did not change total tubulin polymer levels, and 1-3 had no effects on tubulin polymerization. Despite its cytotoxic activity, compound 6 did not initiate changes in cell cycle distribution and has a mechanism of action different from the other compounds. This study demonstrates that new compounds with significant biological activities germane to unmet oncological needs can be isolated from Texas native plants.

  4. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  5. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae).

    PubMed

    Dzoyem, Jean P; Melong, Raduis; Tsamo, Armelle T; Tchinda, Alembert T; Kapche, Deccaux G W F; Ngadjui, Bonaventure T; McGaw, Lyndy J; Eloff, Jacobus N

    2017-03-06

    Entada abyssinica is a plant traditionally used against gastrointestinal bacterial infections. Eight compounds including three flavonoids, three terpenoids, a monoglyceride and a phenolic compound isolated from E. abyssinica were investigated for their cytotoxicity, antibacterial and antioxidant activity. Compounds 7 and 2 had remarkable activity against Salmonella typhimurium with the lowest respective minimum inhibitory concentration (MIC) values of 1.56 and 3.12 µg/mL. The antioxidant assay gave IC 50 values varied from 0.48 to 2.87 μg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, from 2.53 to 17.04 μg/mL in the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay and from 1.43 to 103.98 µg/mL in the FRAP assay. Compounds had relatively low cytotoxicity (LC 50 values ranging from 22.42 to 80.55 µg/mL) towards Vero cells. Ursolic acid had the most potent cytotoxicity against THP-1 and RAW 264.7 cells with LC 50 values of 9.62 and 4.56 μg/mL respectively, and selectivity index values of 7.32 and 15.44 respectively. Our findings suggest that among the terpenoid and flavonoid compounds studied, entadanin (compound 7) possess tremendous antibacterial activity against S. typhimurium and could be developed for the treatment of bacterial diseases.

  6. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits

    PubMed Central

    Oszmiański, Jan; Nowicka, Paulina; Teleszko, Mirosława; Wojdyło, Aneta; Cebulak, Tomasz; Oklejewicz, Krzysztof

    2015-01-01

    Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF) and antioxidant activity (ferric reducing ability of plasma (FRAP) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)) by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones). In samples, where pressurized liquid extraction (PLE) was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%), flavonols (max. 44%) and anthocyanins (max. 29%), than after extraction by the ultrasonic technique extraction (UAE) method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA) revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids. PMID:26132562

  7. Herb Medicines against Osteoporosis: Active Compounds & Relevant Biological Mechanisms.

    PubMed

    Wu, Lei; Ling, Zhuoyan; Feng, Xueqin; Mao, Caiping; Xu, Zhice

    2017-01-01

    Osteoporosis is one of common bone disorders, affecting millions of people worldwide. Treatments of osteoporosis consist of pharmacotherapy and non-pharmacological interventions, such as mineral supplementation, lifestyle changes, and exercise programs. Due to the minimum side effects and favorable cost-effective therapeutic effects, herbal medicine has been widely applied in clinical practices for more than 2,000 years in China. Of the many traditional formulas reported for treating bone diseases, 4 single herbs namely (1) Herba Epimedii, (2) Rhizoma Drynariae, (3) Fructus Psoraleae, and (4) Cortex Eucommiae, are considered as the featured "Kidney-Yang" tonics, and frequently and effectively applied for preventing and treating osteoporosis. With the accruing development of modern chemistry, hundreds of active compounds have been identified and isolated for their anti-osteoporotic effects. This review would first sketch the phytochemistry of these featured "Kidney- Yang" tonics and present the pharmacological characteristics of the most abundant and bioactive compounds derived from the herb Herba Epimedii and Rhizoma Drynariae, including icariin and naringin. Then, the cellular and molecular underpinnings under anti-osteoporotic effects of icariin and naringin are discussed. The concerned structure-function relationships of the featured active herbal compounds would also be reviewed so as to pave the way for future drug design in treating osteoporosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Four new compounds isolated from Psoralea corylifolia and their diacylglycerol acyltransferase (DGAT) inhibitory activity.

    PubMed

    Lin, Xin; Li, Ban-Ban; Zhang, Le; Li, Hao-Ze; Meng, Xiao; Jiang, Yi-Yu; Lee, Hyun-Sun; Cui, Long

    2018-05-14

    A new bakuchiol compound Δ 11 -12-hydroxy-12-dimethyl bakuchiol (1), a new flavanone compound 2(S)-6-methoxy-7- hydroxymethylene-4'-hydroxyl-flavanone (8), and two new isoflavanone compounds 4',7-dihydroxy-3'-(6"β-hydroxy-3″,7″-dimethyl-,2″,7″-dibutenyl)-geranylisoflavone (9) and 4',7-dihydroxy-3'-(7″-hydroxy-7″-methyl-2″,5″-dibutenyl)-geranylisoflavone (10) together with eight known compounds (2-7, 11, 12) were isolated from the P. corylifolia. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1/2. Among them, compounds 3, 9 and 10 were found to exhibit selective inhibitory activity on DGAT1 with IC 50 values ranging from 93.7 ± 1.3 to 96.2 ± 1.1 μM. Compound 1 showed inhibition activity on DGAT1 with IC 50 values 73.4 ± 1.3 μM and inhibition of DGAT2 with IC 50 value 121.1 ± 1.3 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    PubMed

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  10. Natural low-molecular mass organic compounds with oxidase activity as organocatalysts.

    PubMed

    Nishiyama, Tatsuya; Hashimoto, Yoshiteru; Kusakabe, Hitoshi; Kumano, Takuto; Kobayashi, Michihiko

    2014-12-02

    Organocatalysts, low-molecular mass organic compounds composed of nonmetallic elements, are often used in organic synthesis, but there have been no reports of organocatalysts of biological origin that function in vivo. Here, we report that actinorhodin (ACT), a natural product derived from Streptomyces coelicolor A3(2), acts as a biocatalyst. We purified ACT and assayed its catalytic activity in the oxidation of L-ascorbic acid and L-cysteine as substrates by analytical methods for enzymes. Our findings were as follows: (i) oxidation reactions producing H2O2 proceeded upon addition of ACT to the reaction mixture; (ii) ACT was not consumed during the reactions; and (iii) a small amount (catalytic amount) of ACT consumed an excess amount of the substrates. Even at room temperature, atmospheric pressure, and neutral pH, ACT showed catalytic activity in aqueous solution, and ACT exhibited substrate specificity in the oxidation reactions. These findings reveal ACT to be an organocatalyst. ACT is known to show antibiotic activity, but its mechanism of action remains unknown. On the basis of our results, we propose that ACT kills bacteria by catalyzing the production of toxic levels of H2O2. We also screened various other natural products of bacterial, plant, and animal origins and found that several of the compounds exhibited catalytic activity, suggesting that living organisms produce and use these compounds as biocatalysts in nature.

  11. Evaluation of Natural Compounds for Antimicrobial Activity in the Introductory Microbiology Laboratory.

    ERIC Educational Resources Information Center

    Finer, Kim R.

    1997-01-01

    Presents an experiment that provides students with an opportunity to investigate folk medicine and herbal cures and their accompanying claims. Involves isolating some active compounds from plant materials and demonstrating their antibacterial activity. (JRH)

  12. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.

  13. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds.

    PubMed

    Fusi, Jonathan; Bianchi, Sara; Daniele, Simona; Pellegrini, Silvia; Martini, Claudia; Galetta, Fabio; Giovannini, Luca; Franzoni, Ferdinando

    2018-05-01

    Oxidative stress arises from an imbalance between the production of free radicals and antioxidant defences. Several studies have suggested that dietary antioxidants (such as polyphenols and berberine) may counteract oxidative stress through the involvement of the Sirtuin 1/Adenosine Monophosphate-Activated Protein Kinase (SIRT1/AMPK) pathway. The aim of this study was to evaluate the direct and specific antioxidant activity of some natural compounds, as well as their ability to modulate the expression of SIRT1 and the activation of AMPK. Quercetin, tyrosol, ferulic acid, catechin, berberine and curcumin were evaluated for their specific and direct antioxidant activity with TOSC assay. Their ability to modulate SIRT1 and AMPK was assessed by immunoblotting assay, while their cytotoxicity by CellTiter-Blue Cell Viability Assay. No statistically significant decrease (p > 0.05) in the number of viable cells was found upon challenging with the natural compounds. Quercetin exhibited the highest antioxidant activity against peroxyl radical and peroxinitrate derivates, while curcumin showed the best anti-hydroxyl activity with respect to the other compounds and, most importantly, respect to the reference antioxidants. Finally, all the tested compounds significantly increased the SIRT1 expression and the activation of AMPK. Our results clearly disclose the specific antioxidant activity of these natural compounds and their ability to increase SIRT1 expression and AMPK activation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Acquisition of Compound Words in Chinese-English Bilingual Children: Decomposition and Cross-Language Activation

    ERIC Educational Resources Information Center

    Cheng, Chenxi; Wang, Min; Perfetti, Charles A.

    2011-01-01

    This study investigated compound processing and cross-language activation in a group of Chinese-English bilingual children, and they were divided into four groups based on the language proficiency levels in their two languages. A lexical decision task was designed using compound words in both languages. The compound words in one language contained…

  15. HPLC-based activity profiling for antiplasmodial compounds in the traditional Indonesian medicinal plant Carica papaya L.

    PubMed

    Julianti, Tasqiah; De Mieri, Maria; Zimmermann, Stefanie; Ebrahimi, Samad N; Kaiser, Marcel; Neuburger, Markus; Raith, Melanie; Brun, Reto; Hamburger, Matthias

    2014-08-08

    Leaf decoctions of Carica papaya have been traditionally used in some parts of Indonesia to treat and prevent malaria. Leaf extracts and fraction have been previously shown to possess antiplasmodial activity in vitro and in vivo. Antiplasmodial activity of extracts was confirmed and the active fractions in the extract were identified by HPLC-based activity profiling, a gradient HPLC fractionation of a single injection of the extract, followed by offline bioassay of the obtained microfractions. For preparative isolation of compounds, an alkaloidal fraction was obtained via adsorption on cationic ion exchange resin. Active compounds were purified by HPLC-MS and MPLC-ELSD. Structures were established by HR-ESI-MS and NMR spectroscopy. For compounds 5 and 7 absolute configuration was confirmed by comparison of experimental and calculated electronic circular dichroism (ECD) spectroscopy data, and by X-ray crystallography. Compounds were tested for bioactivity in vitro against four parasites (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum), and in the Plasmodium berghei mouse model. Profiling indicated flavonoids and alkaloids in the active time windows. A total of nine compounds were isolated. Four were known flavonols--manghaslin, clitorin, rutin, and nicotiflorin. Five compounds isolated from the alkaloidal fraction were piperidine alkaloids. Compounds 5 and 6 were inactive carpamic acid and methyl carpamate, while three alkaloids 7-9 showed high antiplasmodial activity and low cytotoxicity. When tested in the Plasmodium berghei mouse model, carpaine (7) did not increase the survival time of animals. The antiplasmodial activity of papaya leaves could be linked to alkaloids. Among these, carpaine was highly active and selective in vitro. The high in vitro activity could not be substantiated with the in vivo murine model. Further investigations are needed to clarify the divergence between our negative in vivo results

  16. Relationship between electronic properties and drug activity of seven quinoxaline compounds: A DFT study

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Roonasi, Payman; Assle taghipour, Khatoon; van der Spoel, David; Manzetti, Sergio

    2015-07-01

    The quantum chemical calculations at the DFT/B3LYP level of theory were carried out on seven quinoxaline compounds, which have been synthesized as anti-Mycobacterium tuberculosis agents. Three conformers were optimized for each compound and the lowest energy structure was found and used in further calculations. The electronic properties including EHOMO, ELUMO and related parameters as well as electron density around oxygen and nitrogen atoms were calculated for each compound. The relationship between the calculated electronic parameters and biological activity of the studied compounds were investigated. Six similar quinoxaline derivatives with possible more drug activity were suggested based on the calculated electronic descriptors. A mechanism was proposed and discussed based on the calculated electronic parameters and bond dissociation energies.

  17. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure-activity relationship.

    PubMed

    Wang, Hui; Jiang, Mingyue; Li, Shujun; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-09-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger ( A. niger ) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models ( R 2  = 0.9346 for A. niger , R 2  = 0.9590 for P. citrinum, ) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi.

  18. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    PubMed Central

    Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758

  19. Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial

    NASA Astrophysics Data System (ADS)

    Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.

    2018-04-01

    Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.

  20. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities.

    PubMed

    Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal

    2016-01-01

    Compound 2 was synthesized by reacting CS 2 /KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.

  1. Extracts of Phenolic Compounds from Seeds of Three Wild Grapevines—Comparison of Their Antioxidant Activities and the Content of Phenolic Compounds

    PubMed Central

    Weidner, Stanisław; Powałka, Anna; Karamać, Magdalena; Amarowicz, Ryszard

    2012-01-01

    Phenolic compounds were extracted from three wild grapevine species: Vitis californica, V. riparia and V. amurensis seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing the Folin-Ciocalteu’s phenol reagent while the content of tannins was assayed with the vanillin and BSA precipitation methods. Additionally, the DPPH free radical scavenging activity and the reduction power of the extracts were measured. The RP-HPLC method was applied to identify the phenolic compounds in the extracts, such as phenolic acids and catechins. The seeds contained large amounts of tannins, catechins and gallic acid and observable quantities of p-coumaric acid. The total content of phenolic compounds and tannins was similar in the extracts from V. californica and V. riparia seeds. However, the total content of total phenolic compounds and tannins in the extracts from V. californica and V. riperia seeds were about two-fold higher than that in the extracts from V. amurensis seeds. Extracts from seeds of the American species (V. californica and V. riparia) contained similarly high concentrations of tannins, whereas extracts from seeds of V. amurensis had approximately half that amount of these compounds. The content of catechin and epicatechin was similar in all extracts. The highest DPPH• anti-radical scavenging activity was observed in the acetonic and methanolic extracts of V. californica and V. riparia seeds— while the acetonic extract from the V. californica seeds was the strongest reducing agent. PMID:22489161

  2. Isolation and characterization of the compounds responsible for the antimutagenic activity of Combretum microphyllum (Combretaceae) leaf extracts.

    PubMed

    Makhafola, Tshepiso Jan; Elgorashi, Esameldin Elzein; McGaw, Lyndy Joy; Awouafack, Maurice Ducret; Verschaeve, Luc; Eloff, Jacobus Nicolaas

    2017-09-06

    Mutations play a major role in the pathogenesis and development of several chronic degenerative diseases including cancer. It follows, therefore that antimutagenic compound may inhibit the pathological process resulting from exposure to mutagens. Investigation of the antimutagenic potential of traditional medicinal plants and compounds isolated from plant extracts provides one of the tools that can be used to identify compounds with potential cancer chemopreventive properties. The aim of this study was to isolate and characterise the compounds responsible for the antimutagenic activity of Combretum microphyllum. The methanol leaf extract of C. microphyllum was evaluated for antimutagenicity in the Ames/microsome assay using Salmonella typhimurium TA98. TA100 and TA102. Solvent-solvent fractionation was used to partition the extracts and by using bioassay-guided fractionation, three compounds were isolated. The antimutagenic activity of the three compounds were determined in the Ames test using Salmonella typhimurium TA98, TA100 and TA102. The antioxidant activity of the three compounds were determined by the quantitative 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging method. The cytotoxicity was determined in the MTT assay using human hepatocytes. A bioassay-guided fractionation of the crude extracts for antimutagenic activity led to the isolation of three compounds; n-tetracosanol, eicosanoic acid and arjunolic acid. Arjunolic acid was the most active in all three tested strains with a antimutagenicity of 42 ± 9.6%, 36 ± 1.5% and 44 ± 0.18% in S. typhimurium TA98, TA100 and TA102 respectively at the highest concentration (500 μg/ml) tested, followed by eicosanoic acid and n-tetracosanol. The antioxidant activity of the compounds were determined using the quantitative 2,2 diphenyl-1-picryhydrazyl (DPPH)-free radical scavenging method. Only arjunolic acid had pronounced antioxidant activity (measured as DPPH-free scavenging activity) with an

  3. Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation

    PubMed Central

    Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien

    2013-01-01

    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933

  4. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints.

    PubMed

    Vogt, Martin; Bajorath, Jürgen

    2008-01-01

    Bayesian classifiers are increasingly being used to distinguish active from inactive compounds and search large databases for novel active molecules. We introduce an approach to directly combine the contributions of property descriptors and molecular fingerprints in the search for active compounds that is based on a Bayesian framework. Conventionally, property descriptors and fingerprints are used as alternative features for virtual screening methods. Following the approach introduced here, probability distributions of descriptor values and fingerprint bit settings are calculated for active and database molecules and the divergence between the resulting combined distributions is determined as a measure of biological activity. In test calculations on a large number of compound activity classes, this methodology was found to consistently perform better than similarity searching using fingerprints and multiple reference compounds or Bayesian screening calculations using probability distributions calculated only from property descriptors. These findings demonstrate that there is considerable synergy between different types of property descriptors and fingerprints in recognizing diverse structure-activity relationships, at least in the context of Bayesian modeling.

  5. Target Fishing for Chemical Compounds using Target-Ligand Activity data and Ranking based Methods

    PubMed Central

    Wale, Nikil; Karypis, George

    2009-01-01

    In recent years the development of computational techniques that identify all the likely targets for a given chemical compound, also termed as the problem of Target Fishing, has been an active area of research. Identification of likely targets of a chemical compound helps to understand problems such as toxicity, lack of efficacy in humans, and poor physical properties associated with that compound in the early stages of drug discovery. In this paper we present a set of techniques whose goal is to rank or prioritize targets in the context of a given chemical compound such that most targets that this compound may show activity against appear higher in the ranked list. These methods are based on our extensions to the SVM and Ranking Perceptron algorithms for this problem. Our extensive experimental study shows that the methods developed in this work outperform previous approaches by 2% to 60% under different evaluation criterions. PMID:19764745

  6. Anti-inflammatory activity of different agave plants and the compound cantalasaponin-1.

    PubMed

    Monterrosas-Brisson, Nayeli; Ocampo, Martha L Arenas; Jiménez-Ferrer, Enrique; Jiménez-Aparicio, Antonio R; Zamilpa, Alejandro; Gonzalez-Cortazar, Manases; Tortoriello, Jaime; Herrera-Ruiz, Maribel

    2013-07-10

    Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants' leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA) technique. A dose of 6 mg/ear of acetone extract from the three agave species induced anti-inflammatory effects, however, the one from A. americana proved to be the most active. Different fractions of this species showed biological activity. Finally the F5 fraction at 2.0 mg/ear induced an inhibition of 85.6%. We identified one compound in this fraction as (25R)-5α-spirostan-3β,6α,23α-triol-3,6-di-O-β-D-glucopyranoside (cantalasaponin-1) through 1H- and 13C-NMR spectral analysis and two dimensional experiments like DEPT NMR, COSY, HSQC and HMBC. This steroidal glycoside showed a dose dependent effect of up to 90% of ear edema inhibition at the highest dose of 1.5 mg/ear.

  7. Hybrid energy storage systems utilizing redox active organic compounds

    DOEpatents

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  8. Biochemical Screening of Five Protein Kinases from Plasmodium falciparum against 14,000 Cell-Active Compounds

    PubMed Central

    Crowther, Gregory J.; Hillesland, Heidi K.; Keyloun, Katelyn R.; Reid, Molly C.; Lafuente-Monasterio, Maria Jose; Ghidelli-Disse, Sonja; Leonard, Stephen E.; He, Panqing; Jones, Jackson C.; Krahn, Mallory M.; Mo, Jack S.; Dasari, Kartheek S.; Fox, Anna M. W.; Boesche, Markus; El Bakkouri, Majida; Rivas, Kasey L.; Leroy, Didier; Hui, Raymond; Drewes, Gerard; Maly, Dustin J.; Van Voorhis, Wesley C.; Ojo, Kayode K.

    2016-01-01

    In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds’ mechanisms of action—i.e., the specific molecular targets by which they kill the parasite—would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children’s Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 μM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible. PMID:26934697

  9. Antialgal compounds with antialgal activity against the common red tide microalgae from a green algae Ulva pertusa.

    PubMed

    Sun, Ying-Ying; Zhou, Wen-Jing; Wang, Hui; Guo, Gan-Lin; Su, Zhen-Xia; Pu, Yin-Fang

    2018-08-15

    Nine antialgal active compounds, (i.e. trehalose (1), twenty-two methyl carbonate (2), (-)-dihydromenisdaurilide (3), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (4), isophytol (5), 8-hexadecenol (6), 17-hydroxyheptadecanoic acid (7), trans-asarone (8) and 2-amino-3-mercaptopropanoic acid (9)) were isolated from Ulva pertusa for the first time by sephadex LH-20 column chromatography, silica gel column chromatography and repeated preparative TLC. Except for compound 4, all compounds represented novel isolated molecules from marine macroalgae. Further, antialgal activities of these compounds against Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globosa, Prorocentrum donghaiense and Skeletonema costatum were investigated for the first time. Results showed these nine compounds have selectivity antialgal effects on all test red tide microalgae, and antialgal activities against red tide microalgae obviously enhanced with the increase of concentration of antialgal compounds. Based on this, EC 50-96 h values of these nine compounds for six red tide microalgae were obtained for the first time. By analyzing and comparing EC 50-96 h values, it has been determined that seven compounds (1, 3, 4, 6, 7, 8 and 9) showed the superior application potential than potassium dichromate or gossonorol and other six compounds as a characteristic antialgal agent against Heterosigma akashiwo, Karenia mikimitoi and Prorocentrum donghaiense. Overall this study has suggested that green algae Ulva pertusa is a new source of bioactive compounds with antialgal activity. Copyright © 2018. Published by Elsevier Inc.

  10. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  11. Validation of chemical compound library screening for transcriptional co-activator with PDZ-binding motif inhibitors using GFP-fused transcriptional co-activator with PDZ-binding motif.

    PubMed

    Nagashima, Shunta; Maruyama, Junichi; Kawano, Shodai; Iwasa, Hiroaki; Nakagawa, Kentaro; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Nishina, Hiroshi; Hata, Yutaka

    2016-06-01

    Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages.

    PubMed

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-09-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols.

  13. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages

    PubMed Central

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-01-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718

  14. Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa.

    PubMed

    Li, Zhenghua; Geng, Mengxin; Yang, Hong

    2015-01-01

    A freshwater algicidal bacterial strain, Lzh-5, isolated from Lake Taihu, with strong algicidal activity against Microcystis aeruginosa, was identified as Bacillus sp. based on its phenotypic characteristics and 16S ribosomal RNA (rRNA) gene sequence. The algicidal mode of Bacillus sp. Lzh-5 was indirect, attacking M. aeruginosa cells by releasing algicidal compounds. Two algicidal compounds (S-5A and S-5B) produced by Bacillus sp. Lzh-5 were purified with ethyl acetate extraction, column chromatography, and high-performance liquid chromatography and identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione based on liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses. The active algicidal compounds S-5A (hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) and S-5B (3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) displayed high levels of algicidal activity against M. aeruginosa 9110, with LD50 values of 5.7 and 19.4 μg/ml, respectively. This is the first report of 3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione as an algicidal compound. Compounds S-5A and S-5B also induced obvious morphological changes in M. aeruginosa 9110. In cocultures of M. aeruginosa 9110 and Bacillus sp. Lzh-5, the cell density of Bacillus sp. Lzh-5 and the concentrations of S-5A and S-5B correlated positively with the algicidal activity. Our results indicate that strain Lzh-5 and its two algicidal compounds are potentially useful for controlling cyanobacterial blooms in Lake Taihu.

  15. Anticancer activity of botanical compounds in ancient fermented beverages (review).

    PubMed

    McGovern, P E; Christofidou-Solomidou, M; Wang, W; Dukes, F; Davidson, T; El-Deiry, W S

    2010-07-01

    Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future.

  16. Phytochemical screening and in-vitro antioxidant activity isolated bioactive compounds from Tridax procumbens Linn.

    PubMed

    Saxena, Manjusha; Mir, Abrar Hussain; Sharma, Manik; Malla, Mohd Yousu; Qureshi, Sumeerah; Mir, Mohd Iqbal; Chaturvedi, Yogesh

    2013-12-15

    Tridax procumbens L., Asteraceae, has been extensively used for various ailments in the Ayurvedic system of medicine. Previous studies have revealed remarkable phytoconstituents from Tridax procumbens L. with significant antioxidant activity. The aim of the present study is to measure the anti-DPPH activity of the purified isolated compounds from n butanol soluble part and ethyl acetate soluble part of successive methanolic extract of Tridax procumbens L. We thus quantified the total phenolic and total flavonoids in different purified isolated compounds, the whole of the tests were evaluated with a sample cone. of 100 microg mL(-1) and were determined spectrophotometrically using Folin-ciocaltue and AlCl3 reagents, respectively. DPPH (1,1-diphenyl, 2-picryl hydrazyl) assay was used to determine the in vitro antioxidant activity of different isolated compounds. Isolated compounds, one from ethyl acetate soluble part (EF-I) and one from n butanol soluble part (BF-II) were reported to possess a significant anti DPPH activity with lowest IC50 values 67.26 and 80.90 microg mL(-1), respectively while comparable to standard ascorbic acid with IC50 value of 59.62 microg mL(-1), due to the high concentration of phenols 146.4 microg mL(-1) from EF-I and 142.2 microg mL(-1) from BF-II and flavonoids 48 and 42.5 microg mL(-1) found in EF-I and BF-II isolated compounds, respectively.

  17. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  18. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds

  19. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1993-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds.

  20. Effective adsorption of phenolic compound from aqueous solutions on activated semi coke

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Dai, Yuan; Zhang, Yu; Fu, Feng

    2017-03-01

    Activated Semi coke was prepared by KOH activation and employed as adsorbent to study adsorption function of phenolic compound from aqueous solutions. The adsorption result showed that the adsorption capacity of the activated semi coke for phenolic compound increased with contact time and adsorbent dosage, and slightly affected by temperature. The surface structure property of the activated semi coke was characterized by N2 adsorption, indicating that the activated semi coke was essentially macroporous, and the BET surface area was 347.39 m2 g-1. Scanning electron microscopy indicated that the surface of the activated semi coke had a high developed pore. The adsorption kinetics were investigated according to pseudofirst order, pseudosecond order and intraparticle diffusion, and the kinetics data were fitted by pseudosecond order model, and intraparticle diffusion was not the only rate-controlling step. Adsorption isotherm was studied by Langmuir, Freundlich, Temkin, Redlich-Peterson, Sips and Toth models. The result indicated that adsorption isotherm data could fit well with Langmuir, Redlich-Peterson, Sips and Toth models.

  1. Compounds from Sedum caeruleum with antioxidant, anticholinesterase, and antibacterial activities.

    PubMed

    Bensouici, Chawki; Kabouche, Ahmed; Karioti, Anastasia; Öztürk, Mehmet; Duru, Mehmet Emin; Bilia, Anna Rita; Kabouche, Zahia

    2016-01-01

    This is the first study on the phytochemistry, antioxidant, anticholinesterase, and antibacterial activities of Sedum caeruleum L. (Crassulaceae). The objective of this study is to isolate the secondary metabolites and determine the antioxidant, anticholinesterase, and antibacterial activities of S. caeruleum. Six compounds (1-6) were isolated from the extracts of S. caeruleum and elucidated using UV, 1D-, 2D-NMR, and MS techniques. Antioxidant activity was investigated using DPPH(•), CUPRAC, and ferrous-ions chelating assays. Anticholinesterase activity was determined against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the Ellman method. Antibacterial activity was performed according to disc diffusion and minimum inhibitory concentration (MIC) methods. Isolated compounds were elucidated as ursolic acid (1), daucosterol (2), β-sitosterol-3-O-β-D-galactopyranoside (3), apigenin (4), apigetrin (5), and apiin (6). The butanol extract exhibited highest antioxidant activity in all tests (IC50 value: 28.35 ± 1.22 µg/mL in DPPH assay, IC50 value: 40.83 ± 2.24 µg/L in metal chelating activity, and IC50 value: 23.52 ± 0.44 µg/L in CUPRAC), and the highest BChE inhibitory activity (IC50 value: 36.89 ± 0.15 µg/L). Moreover, the chloroform extract mildly inhibited (MIC value: 80 µg/mL) the growth of all the tested bacterial strains. Ursolic acid (1), daucosterol (2), β-sitosterol-3-O-β-D-galactopyranoside (3), apigenin (4), apigetrin (5), and apiin (6) were isolated from Sedum caeruleum for the first time. In addition, a correlation was observed between antioxidant and anticholinesterase activities of bioactive ingredients of this plant.

  2. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds

    PubMed Central

    Winkler, Christoph K.; Tasnádi, Gábor; Clay, Dorina; Hall, Mélanie; Faber, Kurt

    2012-01-01

    Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues. PMID:22498437

  3. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis.

    PubMed

    Castillo-Garit, Juan Alberto; Abad, Concepción; Rodríguez-Borges, J Enrique; Marrero-Ponce, Yovani; Torrens, Francisco

    2012-01-01

    The neglected tropical diseases (NTDs) affect more than one billion people (one-sixth of the world's population) and occur primarily in undeveloped countries in sub-Saharan Africa, Asia, and Latin America. Available drugs for these diseases are decades old and present an important number of limitations, especially high toxicity and, more recently, the emergence of drug resistance. In the last decade several Quantitative Structure-Activity Relationship (QSAR) studies have been developed in order to identify new organic compounds with activity against the parasites responsible for these diseases, which are reviewed in this paper. The topics summarized in this work are: 1) QSAR studies to identify new organic compounds actives against Chaga's disease; 2) Development of QSAR studies to discover new antileishmanial drusg; 3) Computational studies to identify new drug-like compounds against human African trypanosomiasis. Each topic include the general characteristics, epidemiology and chemotherapy of the disease as well as the main QSAR approaches to discovery/identification of new actives compounds for the corresponding neglected disease. The last section is devoted to a new approach know as multi-target QSAR models developed for antiparasitic drugs specifically those actives against trypanosomatid parasites. At present, as a result of these QSAR studies several promising compounds, active against these parasites, are been indentify. However, more efforts will be required in the future to develop more selective (specific) useful drugs.

  5. Compounds from Cynomorium songaricum with Estrogenic and Androgenic Activities Suppress the Oestrogen/Androgen-Induced BPH Process.

    PubMed

    Wang, Xueni; Tao, Rui; Yang, Jing; Miao, Lin; Wang, Yu; Munyangaju, Jose Edouard; Wichai, Nuttapong; Wang, Hong; Zhu, Yan; Liu, Erwei; Chang, Yanxu; Gao, Xiumei

    2017-01-01

    To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ER α or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. The nuclear translocation of ER α was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ER α and ER β were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ER α , ER β , and AR in the prostate. Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.

  6. Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds.

    PubMed

    Freire, Rosemayre S; Morais, Selene M; Catunda-Junior, Francisco Eduardo A; Pinheiro, Diana C S N

    2005-07-01

    Some derivatives of trans-anethole [1-methoxy-4-(1-propenyl)-benzene] (1) were synthesized, by introducing hydroxyl groups in the double bond of the propenyl moiety. Two types of reactions were performed: (i) oxymercuration/demercuration that formed two products, the mono-hydroxyl derivative, 1-hydroxy-1-(4-methoxyphenyl)-propane (2) and in lesser extent the dihydroxyl derivative, 1,2-dihydroxy-1-(4-methoxyphenyl)-propane (3) and (ii) epoxidation with m-chloroperbenzoic acid that also led to the formation of two products, the dihydroxyl derivative (3) and the correspondent m-chloro-benzoic acid mono-ester, 1-hydroxy-1(4-methoxyphenyl)-2-m-chlorobenzoyl-propane (4). The structures of these compounds were confirmed mainly by mass, IR, 1H and 13C NMR spectral data. The activity of anethole and hydroxylated derivatives was evaluated using antioxidant, anti-inflammatory and gastroprotector tests. Compounds (2) and (3) were more active antioxidant agents than (1) and (4). In the anti-inflammatory assay, anethole showed lower activity than hydroxylated derivatives. Anethole and in lesser extent its derivatives 2 and 4 showed significant gastroprotector activity. All tested compounds do not alter significantly the total number of white blood cells.

  7. Active compounds, antioxidant activity and α-glucosidase inhibitory activity of different varieties of Chaenomeles fruits.

    PubMed

    Miao, Jing; Li, Xia; Zhao, Chengcheng; Gao, Xiaoxiao; Wang, Ying; Gao, Wenyuan

    2018-05-15

    Chaenomeles is an important source for food industry in China, and its planting area is expanding year by year. This study was conducted to evaluate different varieties of Chaenomeles by comparing the chemical compositions, antioxidant activity and α-glucosidase inhibitory activity of peels and fleshes from twelve varieties of Chaenomeles. In the results, peels of Chaenomeles contain more phenolics, flavonoids and triterpenes, and show better antioxidant activity and α-glucosidase inhibitory activity than their fleshes. All varieties of Chaenomeles perform different depend on cultivar and climatic conditions. Oleanolic acid, ursolic acid, protocatechuic acid, rutin, catechin, caffeic acid, syringic acid, epicatechin, hyperin, quercetin, kaempferol and chlorogenic acid are main active compounds in Chaenomeles. Zheng'an, Liufu, Zimugua1, Qijiang and Changjun get Top five scores. This is the first study on the peels and fleshes of twelve varieties of Chaenomeles, and it gives insights into variety selection in the planting and production of Chaenomeles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    NASA Astrophysics Data System (ADS)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  9. Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae)

    PubMed Central

    2011-01-01

    Background Artocarpus communis is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antimicrobial activities of the methanol extract (ACB) and compounds isolated from the bark of this plant, namely peruvianursenyl acetate C (1), α-amyrenol or viminalol (2), artonin E (4) and 2-[(3,5-dihydroxy)-(Z)-4-(3-methylbut-1-enyl)phenyl]benzofuran-6-ol (5). Methods The liquid microdilution assay was used in the determination of the minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC), against seven bacterial and one fungal species. Results The MIC results indicated that ACB as well as compounds 4 and 5 were able to prevent the growth of all tested microbial species. All other compounds showed selective activities. The lowest MIC value of 64 μg/ml for the crude extract was recorded on Staphylococcus aureus ATCC 25922 and Escherichia coli ATCC 8739. The corresponding value of 32 μg/ml was recorded with compounds 4 and 5 on Pseudomonas aeruginosa PA01 and compound 5 on E. coli ATCC 8739, their inhibition effect on P. aeruginosa PA01 being more than that of chloramphenicol used as reference antibiotic. Conclusion The overall results of this study provided supportive data for the use of A. communis as well as some of its constituents for the treatment of infections associated with the studied microorganisms. PMID:21612612

  10. Gastroprotective effects and antimicrobial activity of Lithraea molleoides and isolated compounds against Helicobacter pylori.

    PubMed

    Garro, María Filomena; Salinas Ibáñez, Angel Gabriel; Vega, Alba Edith; Arismendi Sosa, Andrea Celeste; Pelzer, Lilian; Saad, José Roberto; Maria, Alejandra Olivia

    2015-12-24

    Lithraea molleoides (Vell.) Engl. (Anacardiaceae) is a medicinal plant traditionally used in South America to treat various ailments, including diseases of the digestive system. To evaluate the in vivo antiulcer and antimicrobial activities against Helicobacter pylori of L. molleoides and its isolated compounds. Methanolic extract 250 and 500 mg/kg, (LmE 250 and LmE 500, respectively) and infusions, 10 g and 20 g en 100mL (LmI 10 and LmI 20, respectively) of L. molleoides was evaluated for antiulcer activity against 0.6N HCl, 0.2N NaOH, 200mg/kg acetilsalicilic acid and absolute ethanol-induced gastric ulcers in rats. The degree of erosion in the glandular part of the stomach was assessed from a scoring system. Acute toxicity in mice was also evaluated. The antiulcer effect of the isolated compounds (catechol, mannitol, rutin, gallic acid, ferulic acid and caffeic acid, 100mg/kg) was evaluated against absolute ethanol-induced gastric ulcers in rats. The anti-Helicobacter pylori activity of L. molleoides and isolated compounds was performed using broth dilution methods. The LmE 250, LmE 500, LmI 10 and LmI 20 produced significant inhibition on the ulcer index in 0.6N HCl, 0.2N NaOH, 200mg/kg acetilsalicilic acid and absolute ethanol- induced gastric ulcers in rats. The isolated compounds, catechol, mannitol, rutin, ferulic acid and caffeic acid were active in absolute ethanol- induced gastric ulcers in rats. L. molleoides and different compounds showed antimicrobial activity in all strains tested. The lowest MIC value (0. 5 μg/mL) was obtained with catechol in six of eleven strains assayed. No signs of toxicity were observed with doses up to 2g/kg in an acute toxicity assay. These findings indicate that L. molleoides displays potential antiulcerogenic and antimicrobial activities and the identification of active principles could support the use of this plant for the treatment of digestive affections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. High-Throughput Gene Expression Profiles to Define Drug Similarity and Predict Compound Activity.

    PubMed

    De Wolf, Hans; Cougnaud, Laure; Van Hoorde, Kirsten; De Bondt, An; Wegner, Joerg K; Ceulemans, Hugo; Göhlmann, Hinrich

    2018-04-01

    By adding biological information, beyond the chemical properties and desired effect of a compound, uncharted compound areas and connections can be explored. In this study, we add transcriptional information for 31K compounds of Janssen's primary screening deck, using the HT L1000 platform and assess (a) the transcriptional connection score for generating compound similarities, (b) machine learning algorithms for generating target activity predictions, and (c) the scaffold hopping potential of the resulting hits. We demonstrate that the transcriptional connection score is best computed from the significant genes only and should be interpreted within its confidence interval for which we provide the stats. These guidelines help to reduce noise, increase reproducibility, and enable the separation of specific and promiscuous compounds. The added value of machine learning is demonstrated for the NR3C1 and HSP90 targets. Support Vector Machine models yielded balanced accuracy values ≥80% when the expression values from DDIT4 & SERPINE1 and TMEM97 & SPR were used to predict the NR3C1 and HSP90 activity, respectively. Combining both models resulted in 22 new and confirmed HSP90-independent NR3C1 inhibitors, providing two scaffolds (i.e., pyrimidine and pyrazolo-pyrimidine), which could potentially be of interest in the treatment of depression (i.e., inhibiting the glucocorticoid receptor (i.e., NR3C1), while leaving its chaperone, HSP90, unaffected). As such, the initial hit rate increased by a factor 300, as less, but more specific chemistry could be screened, based on the upfront computed activity predictions.

  12. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, T.

    1994-06-07

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figs.

  13. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Tuan Vodinh.

    1993-12-21

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figures.

  14. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya.

    PubMed

    Shameem, Nowsheen; Kamili, Azra N; Ahmad, Mushtaq; Masoodi, F A; Parray, Javid A

    2017-04-01

    The antimicrobial properties of morel compounds from wild edible mushrooms (Morchella esculenta and Verpa bohemica) from Kashmir valley was investigated against different clinical pathogens. The butanol crude fraction of most popular or true morel M. esculenta showed highest 19 mm IZD against E.coli while as same fraction of Verpa bohemica exhibited 15 mm IZD against same strain. The ethyl acetate and butanol crude fractions of both morels also exhibited good antifungal activity with highest IZD shown against A. fumigates. The three morel compounds showed quite impressive anti bacterial and fungal activities. The Cpd 3 showed highest inhibitory activity almost equivalent to the synthetic antibiotics used as control. The MIC/MBC values revealed the efficiency of isolated compounds against the pathogenic strains. In the current study significant inhibitory activity of morel compounds have been obtained paying the way for their local use from ancient times. Copyright © 2017. Published by Elsevier Ltd.

  15. Bioactive compounds and antioxidant activity of wolfberry infusion

    PubMed Central

    Sun, Yujing; Rukeya, Japaer; Tao, Wenyang; Sun, Peilong; Ye, Xingqian

    2017-01-01

    An infusion of the wolfberry (Lycium barbarum L.) is a traditional Asian herbal tea. This is the most commonly consumed form of dried wolfberry worldwide, yet little scientific information on wolfberry infusions is available. We investigated the effects of making infusions with hot water on the color, the content of bioactive compounds (polysaccharides, polyphenols, flavonoids and carotenoids) and the antioxidant ability of wolfberry infusions. The contents of bioactive compounds and the antioxidant activity of a wolfberry infusion increased with increased infusion temperature and time. Total polysaccharides content (TPOC), total polyphenols (TPC), total flavonoids (TFC) and total carotenoids contents (TCC) were important for determining the antioxidant capacity of wolfberry infusions with the contribution to antioxidant activity in the order TPC > TFC > TCC > TPOC. Hierarchical cluster analysis indicated preparation conditions of 100 °C for 1~3 h, 90 °C for 2~3 h and 80 °C for 2.5~3 h were equivalent as regards the value of TPC, TPOC, TFC, TCC, FRAP, DPPH and ABTS. The results of this study suggest the length of time of making a wolfberry infusion in actual real life practice is too short and different dietary habits associated with the intake of wolfberry infusion might provide the same bioactive nutrients. PMID:28102295

  16. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.

    PubMed

    Chitambar, Christopher R; Antholine, William E

    2013-03-10

    Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.

  17. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Treesearch

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  18. Chemical composition and antioxidant activity of phenolic compounds from Dioscorea (Yam) leaves.

    PubMed

    Zhou, Li; Shi, Xinmin; Ren, Xiangmei; Qin, Zhihong

    2018-05-01

    This study was aimed to assess the potential of Dioscorea (yam) leaves as a source of antioxidants. Microwave-assisted extraction (MAE) process was used to prepare the extracts. The phenolic compounds in Dioscorea leaves extracts were analyzed by HPLC-DAD-ESI-MS/MS method and the contents of major compounds were determined. Results indicated that a total of 17 phenolic compounds were separated identified by means of UV and mass spectra compared with authentic reference substances and/or reported values in the literature. The main phenolic compound was rosmarinic acid and its highest amount was found in Dioscorea glabra Roxb. leaves (22.31±1.33 mg/g DW). Rutin was the dominant flavonoid followed by quercetin which highest amount was found in Dioscorea alata leaves (8.66±0.29 mg/g DW). Antioxidant activity of the extracts was estimated by the use of DPPH and ABTS assays. Both kinds of leaves exhibited satisfied antioxidant capacity which was correlated with phenolic contents. In the cytoprotective effect on HUVECs viability assay, Dioscorea glabra Roxb. leaves extract was found to be more active than that of Dioscorea alata against H 2 O 2 -induced oxidative stress. Our findings support the promising role of Dioscorea leaves that can be used as an interesting source of phenolic antioxidants.

  19. Influence of the active compounds of Perilla frutescens leaves on lipid membranes.

    PubMed

    Duelund, Lars; Amiot, Arnaud; Fillon, Alexandra; Mouritsen, Ole G

    2012-02-24

    The leaves of the annual plant Perilla frutescens are used widely as a spice and a preservative in Asian food as well as in traditional medicine. The active compounds in the leaves are the cyclic monoterpene limonene (1) and its bio-oxidation products, perillaldehyde (2), perillyl alcohol (3), and perillic acid (4). These compounds are known to be biologically active and exhibit antimicrobial, anticancer, and anti-inflammatory effects that could all be membrane mediated. In order to assess the possible biophysical effects of these compounds on membranes quantitatively, the influence of limonene and its bio-oxidation products has been investigated on a membrane model composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), and electron paramagnetic resonance spectroscopy (EPR). It was found that limonene (1), perillyl alcohol (2), and perillaldehyde (3) partitioned into the DMPC membrane, whereas perillic acid (4) did not. The DSC results demonstrated that all the partitioning compounds strongly perturbed the phase transition of DMPC, whereas no perturbation of the local membrane order was detected by EPR spectroscopy. The results of the study showed that limonene (1) and its bio-oxidation products affect membranes in rather subtle ways.

  20. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain.

    PubMed

    Esteban, S; Gorga, M; Petrovic, M; González-Alonso, S; Barceló, D; Valcárcel, Y

    2014-01-01

    Endocrine-disrupting compounds (EDCs) are chemical compounds with the ability to alter the hormonal systems of organisms. Such compounds are used in several industrial and domestic activities and reach the aquatic environment via wastewater discharge. The aim of this study is to assess the occurrence of 30 EDCs and related compounds in the surface waters of central Spain and to determine the overall estrogenic activity of environmental samples. This study analyzed a large number of EDCs and other emergent or suspected compounds with endocrine-disrupting activity. The results have shown the presence of 19 EDCs at concentrations ranging from 2 to 5928 ng L(-1). Organophosphorus-based flame retardants, alkylphenolic compounds and anticorrosives were found at the highest concentrations. Furthermore, although insufficient data are available to calculate an average over time, these preliminary results show the need to monitor the waters in both rivers studied. Alkylphenolic compounds, particularly nonylphenol, were the main contributors to overall estrogenicity. A higher concentration of the compounds studied was detected in the river Jarama, although the estrogenicity expressed as estradiol equivalents (EEQs) was higher in the river Manzanares due to a higher concentration of nonylphenol. However, the total estrogenicity did not exceed 1 ng L(-1) (EEQ), which is the level that may cause estrogenic effects in aquatic organisms, in any of the samples. In conclusion, the potential estrogenic risk in both rivers is low, although organophosphorus-based flame retardants may increase this risk as they were found at high levels in all samples. Unfortunately, these compounds could not be taken into account when calculating the estrogenic activity due to the lack of activity data for them. For future investigations, it will be important to assess the estrogenicity provided by these flame retardants. Due to the significant concentrations of EDCs detected in both rivers, further

  1. Activities of various compounds against murine and primate polyomaviruses.

    PubMed Central

    Andrei, G; Snoeck, R; Vandeputte, M; De Clercq, E

    1997-01-01

    Polyomavirus infections in humans are due to BK virus (BKV) and JC virus (JCV). Diseases associated with human polyomaviruses occur mostly in immunocompromised adults, e.g., progressive multifocal leukoencephalopathy (PML), caused by JCV, in AIDS patients and hemorrhagic cystitis and uretral stenosis, caused by BKV, in transplant recipients. No therapy is available for these diseases, which necessitates the development of chemical entities that are active against polyomaviruses. Several antiviral compounds were evaluated to determine their effects on the in vitro replication of mouse polyomavirus and the primate viruses simian virus 40 (SV40), SV40 PML-1, and SV40 PML-2. The activity of the different compounds was assessed by a cytopathic effect reduction assay and confirmed in a virus yield assay. Cidofovir [HPMPC; (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine] and its cyclic counterpart emerged as the most selective antipolyomavirus agents. The 50% inhibitory concentrations for HPMPC were in the range of 4 to 7 micrograms/ml, and its selectivity index varied from 11 to 20 for mouse polyomavirus and from 23 to 33 for SV40 strains in confluent cell monolayers. Cell cytotoxicity was up to 15-fold greater in growing cells. Other acyclic nucleoside phosphonates (i.e., HPMPA; [(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine] and PMEG [9-(2-phosphonylmethoxyethyl)-guanine]) also showed some activity but had low selectivity. None of the other drugs tested against these animal viruses (i.e., acyclovir, ganciclovir, brivudine, ribavirin, foscarnet, and cytarabine) showed significant activity. Thus, HPMPC deserves further evaluation as a candidate drug for polyomavirus infections in the immunocompromised host. PMID:9055998

  2. Activation of nitrite. [Interaction of amino compounds to form carcinogenic N-nitroso compounds in digestive tract of animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lijinsky, W.

    At low doses dietary nitrite has no obvious deleterious effect, even when ingested for long periods, and nitrites have been used for a long time as flavoring and coloring additives to meat and fish and as preservatives in food in which there is a danger of botulism. In recent years there has been increasing concern that one form of activation of nitrite might be related to cancer. That is the property of interaction with amino compounds to form N-nitroso compounds, which are potent chemical carcinogens. Results are reported from studies on the carcinogenic effects of nitrite and amines in rats.more » (CH)« less

  3. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks

    NASA Astrophysics Data System (ADS)

    Kunimoto, Ryo; Bajorath, Jürgen

    2017-09-01

    Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.

  4. Design, synthesis, antiviral activity and mode of action of phenanthrene-containing N-heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine.

    PubMed

    Yu, Xiuling; Wei, Peng; Wang, Ziwen; Liu, Yuxiu; Wang, Lizhong; Wang, Qingmin

    2016-02-01

    The phenanthroindolizidine alkaloid antofine and its analogues have excellent antiviral activity against tobacco mosaic virus (TMV). To simplify the structure and the synthesis of the phenanthroindolizidine alkaloid, a series of phenanthrene-containing N-heterocyclic compounds (compounds 1 to 33) were designed and synthesised, based on the intermolecular interaction of antofine and TMV RNA, and systematically evaluated for their anti-TMV activity. Most of these compounds exhibited good to reasonable anti-TMV activity. The optimum compounds 5, 12 and 21 displayed higher activity than the lead compound antofine and commercial ribavirin. Compound 12 was chosen for field trials of antiviral efficacy against TMV, and was found to exhibit better activity than control plant virus inhibitors. Compounds 5 and 12 were chosen for mode of action studies. The changes in fluorescence intensity of compounds 5 and 12 on separated TMV RNA showed that these small molecules can also bind to TMV RNA, but the mode is very different from that of antofine. The compounds combining phenanthrene and an N-heterocyclic ring could maintain the anti-TMV activity of phenanthroindolizidines, but their modes of action are different from that of antofine. The present study lays a good foundation for us to find more efficient anti-plant virus reagents. © 2015 Society of Chemical Industry.

  5. A community computational challenge to predict the activity of pairs of compounds.

    PubMed

    Bansal, Mukesh; Yang, Jichen; Karan, Charles; Menden, Michael P; Costello, James C; Tang, Hao; Xiao, Guanghua; Li, Yajuan; Allen, Jeffrey; Zhong, Rui; Chen, Beibei; Kim, Minsoo; Wang, Tao; Heiser, Laura M; Realubit, Ronald; Mattioli, Michela; Alvarez, Mariano J; Shen, Yao; Gallahan, Daniel; Singer, Dinah; Saez-Rodriguez, Julio; Xie, Yang; Stolovitzky, Gustavo; Califano, Andrea

    2014-12-01

    Recent therapeutic successes have renewed interest in drug combinations, but experimental screening approaches are costly and often identify only small numbers of synergistic combinations. The DREAM consortium launched an open challenge to foster the development of in silico methods to computationally rank 91 compound pairs, from the most synergistic to the most antagonistic, based on gene-expression profiles of human B cells treated with individual compounds at multiple time points and concentrations. Using scoring metrics based on experimental dose-response curves, we assessed 32 methods (31 community-generated approaches and SynGen), four of which performed significantly better than random guessing. We highlight similarities between the methods. Although the accuracy of predictions was not optimal, we find that computational prediction of compound-pair activity is possible, and that community challenges can be useful to advance the field of in silico compound-synergy prediction.

  6. Compounds from African Medicinal Plants with Activities Against Selected Parasitic Diseases: Schistosomiasis, Trypanosomiasis and Leishmaniasis.

    PubMed

    Simoben, Conrad V; Ntie-Kang, Fidele; Akone, Sergi H; Sippl, Wolfgang

    2018-05-09

    Parasitic diseases continue to represent a threat on a global scale, particularly among the poorest countries in the world. This is particularly because of the absence of vaccines, and in some cases, resistance against available drugs, currently being used for their treatment. In this review emphasis is laid on natural products and scaffolds from African medicinal plants (AMPs) for lead drug discovery and possible further development of drugs for the treatment of parasitic diseases. In the discussion, emphasis has been laid on alkaloids, terpenoids, quinones, flavonoids and narrower compound classes of compounds with micromolar range activities against Schistosoma, Trypanosoma and Leishmania species. In each subparagraph, emphasis is laid on the compound subclasses with most promising in vitro and/or in vivo activities of plant extracts and isolated compounds. Suggestions for future drug development from African medicinal plants have also been provided. This review covering 167 references, including 82 compounds, provides information published within two decades (1997-2017).

  7. The novel antibacterial compound walrycin A induces human PXR transcriptional activity

    PubMed Central

    Berthier, Alexandre; Oger, Frédérik; Gheeraert, Céline; Boulahtouf, Abdel; Le Guével, Rémy; Balaguer, Patrick; Staels, Bart; Salbert, Gilles; Lefebvre, Philippe

    2012-01-01

    The human pregnane X receptor (PXR) is a ligand-regulated transcription factor belonging to the nuclear receptor superfamily. PXR is activated by a large, structurally diverse, set of endogenous and xenobiotic compounds, and coordinates the expression of genes central to metabolism and excretion of potentially harmful chemicals and therapeutic drugs in humans. Walrycin A is a novel antibacterial compound targeting the WalK/WalR two-component signal transduction system of Gram (+) bacteria. Here we report that, in hepatoma cells, walrycin A potently activates a gene set known to be regulated by the xenobiotic sensor PXR. Walrycin A was as efficient as the reference PXR agonist rifampicin to activate PXR in a transactivation assay at non cytoxic concentrations. Using a limited proteolysis assay, we show that walrycin A induces conformational changes at a concentration which correlates with walrycin A ability to enhance the expression of prototypic target genes, suggesting that walrycin A interacts with PXR. The activation of the canonical human PXR target gene CYP3A4 by walrycin A is dose- and PXR-dependent. Finally, in silico docking experiments suggest that the walrycin A oxidation product Russig’s blue is the actual a ligand for PXR. Taken together, these results identify walrycin A as novel human PXR activator. PMID:22314385

  8. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  9. Phenolic compounds can delay the oxidation of polyunsaturated fatty acids and the growth of Listeria monocytogenes: structure-activity relationships.

    PubMed

    Pernin, Aurélia; Dubois-Brissonnet, Florence; Roux, Stéphanie; Masson, Marine; Bosc, Véronique; Maillard, Marie-Noëlle

    2018-04-20

    Phenolic compounds present a potential solution to ensuring food quality and safety. Indeed, they can limit oxidation reactions and bacterial growth in food products. Although their antioxidant mechanisms of action are well known, their antibacterial ones are less well understood, especially in light of their chemical structures. The aim of this study was to first quantify both aspects of a series of natural phenolic compounds and then link these activities to their chemical structure. We evaluated antioxidant activity by measuring the capacity of phenolic compounds to delay free linoleic acid oxidation caused by the action of a hydrophilic azo-radical initiator (AAPH). We evaluated antibacterial activity by measuring the growth inhibition of Listeria monocytogenes and determining the non-inhibitory and minimum inhibitory concentrations for each compound. Compounds with ortho-diphenolic structures were the best antioxidants, whereas those belonging to the simple phenol category were the best antibacterial compounds. The physico-chemical properties of the compounds influenced both activities, but not in the same way. The chemical environment of the phenolic group and the presence of delocalization structures are the most important parameters for antioxidant activity, whereas the partition coefficient logP is one of the most important factors involved in antibacterial activity. This article is protected by copyright. All rights reserved.

  10. A SAR and QSAR study of new artemisinin compounds with antimalarial activity.

    PubMed

    Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T

    2013-12-30

    The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  11. Antileishmanial activity of the hydroalcoholic extract of Miconia langsdorffii, isolated compounds, and semi-synthetic derivatives.

    PubMed

    Peixoto, Juliana A; Andrade E Silva, Márcio Luis; Crotti, Antônio E M; Cassio Sola Veneziani, Rodrigo; Gimenez, Valéria M M; Januário, Ana H; Groppo, Milton; Magalhães, Lizandra G; Dos Santos, Fransérgio F; Albuquerque, Sérgio; da Silva Filho, Ademar A; Cunha, Wilson R

    2011-02-22

    The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.

  12. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels

    PubMed Central

    Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang

    2012-01-01

    Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778

  13. Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds.

    PubMed

    Bernard, Angela; Lacroix, Céline; Cabiddu, Maria G; Neyts, Johan; Leyssen, Pieter; Pompei, Raffaello

    2015-04-01

    The Enterovirus genus of the Picornaviridae is represented by several viral pathogens that are associated with human disease, namely Poliovirus 1, Enterovirus 71 and Rhinoviruses. Enterovirus 71 has been associated with encephalitis, while Rhinoviruses are a major cause of asthma exacerbations and chronic obstructive pulmonary disease. Based on the structure of both pleconaril and pirodavir, we previously synthesized some original compounds as potential inhibitors of Rhinovirus replication. These compounds were explored for in vitro antiviral potential on other human pathogenic Enteroviruses, namely Enterovirus 71 on rhabdo-myosarcoma cells, Coxsackievirus B3 on Vero cells, Poliovirus 1 and Echovirus 11 on BGM cells. Activity was confirmed for compound against Rhinovirus 14. Furthermore, few compounds showed a cell-protective effect on Enterovirus 71, presented a marked improvement as compared to the reference drug pleconaril for inhibitory activity on both Enterovirus 71 and Poliovirus 1. The most striking observation was the clear cell protective effect for the set of analogues in a virus-cell-based assay for Echovirus 11 with an effective concentration (EC50) as low as 0.3 µM (Selectivity index or SI = 483), and selectivity indexes greater than 857 (EC50 = 0.6 µM) and 1524 (EC50 = 0.33 µM). Some of the evaluated compounds showed potent and selective antiviral activity against several enterovirus species, such as Enterovirus 71 (EV-A), Echovirus 11 (EV-B), and Poliovirus 1 (EV-C). This could be used as a starting point for the development of other pleconaril/pirodavir-like enterovirus inhibitors with broad-spectrum activity and improved effects as compared to the reference drugs. © The Author(s) 2015.

  14. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  15. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    PubMed

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  16. [The content of phenolic compounds and antioxidant activity ready to eat desserts for infants].

    PubMed

    Filipiak-Florkiewicz, Agnieszka; Dereń, Katarzyna

    2011-01-01

    The aim of this study was to determine the content of phenolic compounds and antioxidant activity in ready-to-eat desserts for babies. The experimental material consisted of six kinds of fruit desserts taken from the market in 2008, in which the content of dry matter phenolic compounds and antioxidant activity levels on the basis of free radical quenching ability ABTS were determined. The largest share of dry matter was found in apricot mousse with apples and bananas (16.9%). The largest amounts of phenolic compounds were found in the cream with apple and wild rose (186.3 mg/100 g) and apple with forest fruits (170.7 mg/100 g). The highest antioxidant activity among the desserts was determined in cream with apple and wild rose (14.2 micromol Trolox/g) and apple mousse with peaches (12.8 micromol Trolox/g). The antioxidant capacity of the remaining examined purée was slightly lower and ranged from 11.4-11.7 micromol Trolox/g.

  17. Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity.

    PubMed

    Kuntzler, Suelen Goettems; Costa, Jorge Alberto Vieira; Morais, Michele Greque de

    2018-05-31

    Electrospun nanofibers can be formed with chitosan as the polymers found in biological sources have antibacterial ability. The objective of this work was to evaluate whether chitosan/polyethylene oxide (PEO) blend nanofibers containing microalgal phenolic compounds exhibit antibacterial activity. Nanofibers produced with a 3% chitosan/2% PEO blend containing 1% phenolic compounds had an average diameter of 214 ± 37 nm, which resulted in a high temperature of maximum degradation, an important parameter for food packaging. The potential antibacterial activity of this nanofibers was confirmed by their inhibition of Staphylococcus aureus ATCC 25923 (6.4 ± 1.1 mm) and Escherichia coli ATCC 25972 (5.5 ± 0.4 mm). The polymeric nanofibers produced from chitosan and containing phenolic compounds have properties that therefore allow their application as active packaging. In addition, chitosan is an excellent polymer for packaging as it presents biodegradability, biocompatibility and, non-toxicity. Copyright © 2018. Published by Elsevier B.V.

  18. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  19. A new phenolic compound with antioxidant activity from the branches and leaves of Pyrus pashia.

    PubMed

    Li, Zhen-Jie; Zheng, Xi; Wan, Chun-Ping; Cai, Le; Li, Ying; Huang, Lin; Ding, Zhong-Tao

    2016-01-01

    The branches and leaves of Pyrus pashia are used to cure abdominal pain and diarrhoea in Chinese folk medicine. A new phenilic compound, 4-O-β-d-glucopyranosylbenzyl-benzoate ester (1), along with 21 known ones (2-22) were isolated from the branches and leaves of this plant. Compounds 2 and 3 displayed remarkable antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl radical (IC50 = 13.26 ± 0.04 μM, 13.28 ± 0.11 μM, respectively), which were at the same grade as positive control rutin. The caffeoyl group in compounds 2 and 3 was supposed to play an important role in the antioxidant activities.

  20. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice.

    PubMed

    Alberti, Ágnes; Béni, Szabolcs; Lackó, Erzsébet; Riba, Pál; Al-Khrasani, Mahmoud; Kéry, Ágnes

    2012-11-01

    Sempervivum tectorum L. (houseleek) leaf juice has been known as a traditional herbal remedy. The aim of the present study was the chemical characterization of its phenolic compounds and to develop quantitation methods for its main flavonol glycoside, as well as to evaluate its antinociceptive activity. Lyophilized houseleek leaf juice was studied by HPLC-DAD coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to identify flavonol glycosides, hydroxy-benzoic and hydroxy-cinnamic acids. Ten flavonol glycosides and sixteen phenolic acid compounds were identified or tentatively characterized. Structure of the main flavonol compound was identified by nuclear magnetic resonance spectroscopy. Three characteristic kaempferol glycosides were isolated and determined by LC-ESI-MS/MS with external calibration method, using the isolated compounds as standard. The main flavonol glycoside was also determined by HPLC-DAD. Validated HPLC-DAD and LC-ESI-MS/MS methods were developed to quantify kaempferol-3-O-rhamnosyl-glucoside-7-O-rhamnoside and two other kaempferol glycosides. Antinociceptive activity of houseleek leaf juice was investigated by writhing test of mice. Sempervivum extract significantly reduced pain in the mouse writhing test. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata.

    PubMed

    Meerungrueang, W; Panichayupakaranant, P

    2014-09-01

    Medicinal plants involved in traditional Thai longevity formulations are potential sources of antimicrobial compounds. To evaluate the antimicrobial activities of some extracts from medicinal plants used in traditional Thai longevity formulations against some oral pathogens, including Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans, and Candida albicans. An extract that possessed the strongest antimicrobial activity was fractionated to isolate and identify the active compounds. Methanol and ethyl acetate extracts of 25 medicinal plants used as Thai longevity formulations were evaluated for their antimicrobial activity using disc diffusion (5 mg/disc) and broth microdilution (1.2-2500 µg/mL) methods. The ethyl acetate extract of Ficus foveolata Wall. (Moraceae) stems that exhibited the strongest antibacterial activity was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract of F. foveolata showed the strongest antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 19.5-39.0 and 39.0-156.2 µg/mL, respectively. On the basis of an antibacterial assay-guided isolation, seven antibacterial compounds, including 2,6-dimethoxy-1,4-benzoquinone (1), syringaldehyde (2), sinapaldehyde (3), coniferaldehyde (4), 3β-hydroxystigmast-5-en-7-one (5), umbelliferone (6), and scopoletin (7), were purified. Among these isolated compounds, 2,6-dimethoxy-1,4-benzoquinone (1) exhibited the strongest antibacterial activities against S. pyogenes, S. mitis, and S. mutans with MIC values of 7.8, 7.8, and 15.6 µg/mL, and MBC values of 7.8, 7.8, and 31.2 µg/mL, respectively. In addition, this is the first report of these antibacterial compounds in the stems of F. foveolata.

  2. Identification of Active Compounds in the Root of Merung (Coptosapelta tomentosa Valeton K. Heyne)

    NASA Astrophysics Data System (ADS)

    Fitriyana

    2018-04-01

    The roots of Merung (Coptosapelta tomentosa Valeton K. Heyne) are a group of shrubs usually found on the margins of secondary dryland forest. Empirically, local people have been using the roots of Merung for medical treatment. However, some researches show that the plant extract is used as a poisonous material applied on the tip of the arrow (dart). Based on the online literature study, there are less than 5 articles that provide information about the active compound of this root extract. This study aimed to give additional information more deeply about the content of active compound of Merung root extract in three fractions, n-hexane (nonpolar), ethyl acetate (semi polar) and methanol (polar). The extract was then analysed using Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS analysis of root extract in n-hexane showed there were 56 compounds, with the main compound being decanoic acid, methyl ester (peak 5, 10.13%), 11-Octadecenoic acid, methyl ester (peak 15, 10.43%) and 1H-Pyrazole, 3- (4-chlorophenyl) -4, 5-dihydro-1-phenyl (peak 43, 11.25%). Extracts in ethyl acetate fraction obtained 81 compounds. The largest component is Benzoic acid (peak 19, 22.40%), whereas in methanol there are 38 compounds, of which the main component is 2-Furancarboxaldehyde, 5-(hydroxyl methyl) (peak 29, 30.46%).

  3. Production of antioomycete compounds active against the phytopathogens Phytophthora sojae and Aphanomyces cochlioides by clavicipitoid entomopathogenic fungi.

    PubMed

    Putri, Sastia Prama; Ishido, Kei-Ichi; Kinoshita, Hiroshi; Kitani, Shigeru; Ihara, Fumio; Sakihama, Yasuko; Igarashi, Yasuhiro; Nihira, Takuya

    2014-05-01

    A total of 412 strains belonging to 14 genera of clavicipitoid entomopathogenic fungi (EPF) were screened for activities against two economically important plant pathogenic oomycetes, Phytophthora sojae and Aphanomyces cochlioides. To identify the antioomycete compounds produced by EPF, the extracts of 13 highly active EPF strains were characterized in detail by high performance liquid chromatography with diode array detection and high-resolution mass spectrometric detection and antioomycete assay. The antioomycete activity of several Metarhizium extracts was associated with previously isolated aurovertins, fungerin, N-(methyl-3-oxodec-6-enoyl)-2-pyrroline, and N-(methyl-3-oxodecanoyl)-2-pyrroline. The depsipeptide beauvericin was confirmed to be one of the active principles of three strains of Isaria tenuipes, which strongly inhibited mycelial growth of both P. sojae and A. cochlioides. Two known bioactive metabolites, paecilosetin and aranorosinol A, together with a novel and potent antioomycete compound, farinomalein, were isolated from the extracts of Isaria farinosa and all compounds were confirmed to have antioomycete activity. Identification of 8 antioomycete compounds from 13 clavicipitioid EPF demonstrated a new potential use of EPF as a source of compounds for the control of soil-borne plant pathogenic oomycetes. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity.

    PubMed

    Kuntzler, Suelen Goettems; Almeida, Ana Claudia Araujo de; Costa, Jorge Alberto Vieira; Morais, Michele Greque de

    2018-07-01

    Polymer nanofibers produced by electrospinning are promising for use in food packaging because of their nanometric diameter, which provides a barrier to external conditions above the possible incorporation of the active compounds. The microalga Spirulina sp. LEB 18 synthesizes bioproducts, such as polyhydroxybutyrate (PHB), which is biodegradable and has similar mechanical and thermal properties to polymers of petrochemical origin. Moreover, phenolic compounds of microalgae have antibacterial, antifungal, and antioxidant activities, which is a differential for the development of packaging. The objective of the study was to develop a nanomaterial with antibacterial action from bioproducts of microalgal origin. PHB nanofibers containing phenolic compounds presented average diameter of 810±85nm exhibited hydrophobicity, which gave protection to the food relative to the moisture outside the package. These nanofibers showed inhibition of the growth of Staphylococcus aureus ATCC 25923 with a zone of 7.5±0.4mm. Thermal and mechanical properties have confirmed the potential applicability of this material as food packaging. This new nanomaterial combines a packaging function to protect products and to be biodegradable with the antibacterial activity that prevents the proliferation of microorganisms and ensures the quality and preservation of food. Published by Elsevier B.V.

  5. Effects of temperature and medium composition on inhibitory activities of gossypol-related compounds against aflatoxigenic fungi.

    PubMed

    Mellon, J E; Dowd, M K; Beltz, S B

    2013-07-01

    To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus. The compounds were tested at a concentration of 100 μg ml(-1) in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein-supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti-aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein-amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti-aflatoxigenic activity in the YES medium. Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol-related compounds against aflatoxigenic fungi. Studies utilizing gossypol-related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins. Published [2013]. This article is a

  6. A screening method for cardiovascular active compounds in marine algae.

    PubMed

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Co-evaluation of plant extracts as petrochemical substitutes and for biologically active compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McChesney, J.D.; Adams, R.P.

    Recent efforts to discover phytochemicals that could substitute for petroleum-derived fuels and industrial feedstocks have not given much attention to the potential of these same phytochemicals to provide sources of biologically active compounds. The suitability of extraction products made to assess specific plants as potential botanochemical sources has been evaluated for use in screening procedures for evidence of biologically active compounds. Screening procedures for antibacterial, antifungal and toxic properties are discussed. Screening results are presented for extracts of nearly 80 species of plants from the southeastern United States and southern Great Plains that had previously been evaluated as sources ofmore » botanochemicals.« less

  8. Supercritical fluid extraction and analysis of compounds from Clivia miniata for uterotonic activity.

    PubMed

    Sewram, V; Raynor, M W; Mulholland, D A; Raidoo, D M

    2001-07-01

    In this descriptive study, the superciritical fluid extract of the roots of Clivia miniata L. was tested for uterotonic activity using guinea pig uterine smooth muscle in vitro. Extraction was performed with water modified supercritical carbon dioxide at 400 atm and 80 degrees C. The uterine contractions induced by this extract were compared to those induced by the aqueous extract and found to be active at lower doses. The active compounds were isolated and the structures elucidated by spectroscopic and chromatographic techniques. Both linoleic acid and 5-hydroxymethyl-2-furancarboxaldehyde isolated from the extract were found to induce muscle contractions individually. The pharmacological mode of action of 5-hydroxymethyl-2-furancarboxaldehyde was assessed using two receptor agonists and antagonists. This compound was found to mediate its effect through cholinergic receptors.

  9. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    PubMed

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  10. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    PubMed

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  11. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load.

    PubMed

    Gottardi, W; Klotz, S; Nagl, M

    2014-06-01

    To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.

  12. Apple Pomace as Potential Source of Natural Active Compounds.

    PubMed

    Waldbauer, Katharina; McKinnon, Ruxandra; Kopp, Brigitte

    2017-08-01

    Apple pomace is a waste product of the apple manufacturing industry that has been in the focus of life sciences as it represents a low-cost source of fruit-derived compounds. High fruit consumption is associated with beneficial health effects, and therefore, apple pomace and its constituents raise therapeutic interest. The present work reviews (i) the chemical constituents of apple pomace, (ii) optimized extraction methods of apple pomace compounds, and (iii) biological activities of apple pomace. Current evidence of apple pomace influence on digestion and metabolism, cholesterol and triglyceride homeostasis, diabetes, and sex hormones is summarized. Furthermore, studies regarding its antioxidative, anti-inflammatory, antiproliferative, antibacterial and antiviral effects are presented. The review concludes that apple pomace is an underutilized waste product of the apple industry with the potential of being processed for its nutritional and pharmaceutical value. Georg Thieme Verlag KG Stuttgart · New York.

  13. Inhibitors of 7-Dehydrocholesterol Reductase: Screening of a Collection of Pharmacologically Active Compounds in Neuro2a Cells.

    PubMed

    Kim, Hye-Young H; Korade, Zeljka; Tallman, Keri A; Liu, Wei; Weaver, C David; Mirnics, Karoly; Porter, Ned A

    2016-05-16

    A small library of pharmacologically active compounds (the NIH Clinical Collection) was assayed in Neuro2a cells to determine their effect on the last step in the biosynthesis of cholesterol, the transformation of 7-dehydrocholesterol (7-DHC) to cholesterol promoted by 7-dehydrocholesterol reductase, DHCR7. Of some 727 compounds in the NIH Clinical Collection, over 30 compounds significantly increased 7-DHC in Neuro2a cells when assayed at 1 μM. Active compounds that increased 7-DHC with a Z-score of +3 or greater generally gave rise to modest decreases in desmosterol and increases in lanosterol levels. Among the most active compounds identified in the library were the antipsychotic, antidepressant, and anxiolytic compounds that included perospirone, nefazodone, haloperidol, aripiprazole, trazodone, and buspirone. Fluoxetine and risperidone were also active at 1 μM, and another 10 compounds in this class of pharmaceuticals were identified in the screen at concentrations of 10 μM. Increased levels of 7-DHC are associated with Smith-Lemli-Opitz syndrome (SLOS), a human condition that results from a mutation in the gene that encodes DHCR7. The SLOS phenotype includes neurological deficits and congenital malformations, and it is linked to a higher incidence of autism spectrum disorder. The significance of the current study is that it identifies common pharmacological compounds that may induce a biochemical presentation similar to SLOS. Little is known about the side effects of elevated 7-DHC postdevelopmentally, and the elevated 7-DHC that results from exposure to these compounds may also be a confounder in the diagnosis of SLOS.

  14. Docking and Hydropathic Scoring of Polysubstituted Pyrrole Compounds with Anti-Tubulin Activity

    PubMed Central

    Tripathi, Ashutosh; Fornabaio, Micaela; Kellogg, Glen E.; Gupton, John T.; Gewirtz, David A.; Yeudall, W. Andrew; Vega, Nina E.; Mooberry, Susan L.

    2008-01-01

    Compounds that bind at the colchicine site of tubulin have drawn considerable attention with studies indicating that these agents suppress microtubule dynamics and inhibit tubulin polymerization. Data for eighteen polysubstituted pyrrole compounds are reported, including antiproliferative activity against human MDA-MB-435 cells and calculated free energies of binding following docking the compounds into models of αβ-tubulin. These docking calculations coupled with HINT interaction analyses are able to represent the complex structures and the binding modes of inhibitors such that calculated and measured free energies of binding correlate with an r2 of 0.76. Structural analysis of the binding pocket identifies important intermolecular contacts that mediate binding. As seen experimentally, the complex with JG-03-14 (3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2- carboxylic acid ethyl ester) is the most stable. These results illuminate the binding process and should be valuable in the design of new pyrrole-based colchicine site inhibitors as these compounds have very accessible syntheses. PMID:18083520

  15. Antileishmanial, antimalarial and antimicrobial activities of the extract and isolated compounds from Austroplenckia populnea (Celastraceae).

    PubMed

    Andrade, Sérgio F; da Silva Filho, Ademar A; de O Resende, Dimas; Silva, Márcio L A; Cunha, Wilson R; Nanayakkara, N P Dhammika; Bastos, Jairo Kenupp

    2008-01-01

    Austroplenckia populnea (Celastraceae), known as "marmelinho do campo", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial, antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC50 values of 0.7 microg mL(-1) and 5.5 microg mL(-1), respectively, while amphotericin B showed an IC50 value of 0.1 microg mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC50 value of 52 microg mL(-1), while compounds 2 and 3 displayed an IC50 value of 18 microg mL(-1) In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.

  16. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae)

    PubMed Central

    2013-01-01

    Background The aim of this study was to evaluate the antimicrobial activity and the cytotoxicity of the ethanol crude extract, fractions and isolated compounds from the twigs of Eriosema robustum, a plant used for the treatment of coughs and skin diseases. Methods Column chromatographic and spectroscopic techniques were used to isolate and identify eight compounds, robusflavones A (1) and B (2), orostachyscerebroside A (3), stigmasterol (4), 1-O-heptatriacontanoyl glycerol (5), eicosanoic acid (6), 3-O-β-D-glucopyranoside of sitosterol (7) and 6-prenylpinocembrin (8), from E. robustum. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi and bacteria, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to evaluate the cytotoxicity. Results Fraction B had significant antimicrobial activity against Aspergillus fumigatus and Cryptoccocus neoformans (MIC 0.08 mg/ml), whilst the crude extract and fraction A had moderate activity against A. fumigatus and Candida albicans (MIC 0.16 mg/ml). Fraction A however had excellent activity against Staphylococcus aureus (MIC 0.02 mg/ml), Enterococcus faecalis and Escherichia coli (MIC 0.04 mg/ml). The crude extract had significant activity against S. aureus, E. faecalis and E. coli. Fraction B had good activity against E. faecalis and E. coli (MIC 0.08 mg/ml). All the isolated compounds had a relatively weak antimicrobial activity. An MIC of 65 μg/ml was obtained with robusflavones A (1) and B (2) against C. albicans and A. fumigatus, orostachyscerebroside A (3) against A. fumigatus, and robusflavone B (2) against C. neoformans. Compound 8 had the best activity against bacteria (average MIC 55 μg/ml). The 3 fractions and isolated compounds had LC50 values between 13.20 to > 100 μg/ml against Vero cells yielding selectivity indices between 0.01 and 1.58. Conclusion The isolated compounds generally had a much

  17. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae).

    PubMed

    Awouafack, Maurice D; McGaw, Lyndy J; Gottfried, Sebastian; Mbouangouere, Roukayatou; Tane, Pierre; Spiteller, Michael; Eloff, Jacobus N

    2013-10-29

    The aim of this study was to evaluate the antimicrobial activity and the cytotoxicity of the ethanol crude extract, fractions and isolated compounds from the twigs of Eriosema robustum, a plant used for the treatment of coughs and skin diseases. Column chromatographic and spectroscopic techniques were used to isolate and identify eight compounds, robusflavones A (1) and B (2), orostachyscerebroside A (3), stigmasterol (4), 1-O-heptatriacontanoyl glycerol (5), eicosanoic acid (6), 3-O-β-D-glucopyranoside of sitosterol (7) and 6-prenylpinocembrin (8), from E. robustum. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi and bacteria, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to evaluate the cytotoxicity. Fraction B had significant antimicrobial activity against Aspergillus fumigatus and Cryptoccocus neoformans (MIC 0.08 mg/ml), whilst the crude extract and fraction A had moderate activity against A. fumigatus and Candida albicans (MIC 0.16 mg/ml). Fraction A however had excellent activity against Staphylococcus aureus (MIC 0.02 mg/ml), Enterococcus faecalis and Escherichia coli (MIC 0.04 mg/ml). The crude extract had significant activity against S. aureus, E. faecalis and E. coli. Fraction B had good activity against E. faecalis and E. coli (MIC 0.08 mg/ml). All the isolated compounds had a relatively weak antimicrobial activity. An MIC of 65 μg/ml was obtained with robusflavones A (1) and B (2) against C. albicans and A. fumigatus, orostachyscerebroside A (3) against A. fumigatus, and robusflavone B (2) against C. neoformans. Compound 8 had the best activity against bacteria (average MIC 55 μg/ml). The 3 fractions and isolated compounds had LC50 values between 13.20 to > 100 μg/ml against Vero cells yielding selectivity indices between 0.01 and 1.58. The isolated compounds generally had a much lower activity than expected based on the activity

  18. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    PubMed

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  19. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    PubMed Central

    Mikaili, Peyman; Maadirad, Surush; Moloudizargari, Milad; Aghajanshakeri, Shahin; Sarahroodi, Shadi

    2013-01-01

    Objective(s): Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. Materials and Methods: For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. Conclusion: Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents. PMID:24379960

  20. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  1. Taste-active compound levels in Korean native chicken meat: The effects of bird age and the cooking process.

    PubMed

    Jayasena, Dinesh D; Jung, Samooel; Kim, Hyun Joo; Yong, Hae In; Nam, Ki Chang; Jo, Cheorun

    2015-08-01

    The effects of bird age and the cooking process on the levels of several taste-active compounds, including inosine 5'-monophosphate (IMP), glutamic acid, cysteine, reducing sugars, as well as oleic, linoleic, arachidonic, and docosahexaenoic acids (DHA), in the breast and leg meats from a certified meat-type commercial Korean native chicken (KNC) strain (Woorimatdag) were investigated. KNC cocks were raised under similar standard conditions at a commercial chicken farm, and breast and leg meats from birds of various ages (10, 11, 12, 13, and 14 wk; 10 birds/age group) were obtained. After raw and cooked meat samples were prepared, they were analyzed for the aforementioned taste-active compounds. Compared to the leg meat, KNC breast meat had higher levels of IMP, arachidonic acid, and DHA, but lower levels of the other taste-active compounds (P < 0.05). KNC meat lost significant amounts of all the taste-active compounds, excluding oleic and linoleic acids, during the cooking process (P < 0.05). However, bird age only had a minor effect on the levels of these taste-active compounds. The results of this study provide useful information regarding the levels of taste-active compounds in KNC meat from birds of different ages, and their fate during the cooking process. This information could be useful for selection and breeding programs, and for popularizing native chicken meat. © 2015 Poultry Science Association Inc.

  2. Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies

    PubMed Central

    de Souza, Nicolli Bellotti; de Andrade, Isabel M; Carneiro, Paula F; Jardim, Guilherme AM; de Melo, Isadora MM; da Silva, Eufrânio N; Krettli, Antoniana Ursine

    2014-01-01

    Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study. PMID:25099332

  3. Imperanene, a novel phenolic compound with platelet aggregation inhibitory activity from Imperata cylindrica.

    PubMed

    Matsunaga, K; Shibuya, M; Ohizumi, Y

    1995-01-01

    Imperanene, a novel phenolic compound [1] has been isolated from Imperata cylindrica. Its structure was elucidated by spectroscopic evidence. Imperanene showed platelet aggregation inhibitory activity.

  4. Low-molecular-weight compounds with anticoagulant activity from the scorpion Heterometrus laoticus venom.

    PubMed

    Thien, Tran Vu; Anh, Hoang Ngoc; Trang, Nguyen Thi Thuy; Trung, Phung Van; Khoa, Nguyen Cuu; Osipov, A V; Dubovskii, P V; Ivanov, I A; Arseniev, A S; Tsetlin, V I; Utkin, Yu N

    2017-09-01

    Low-molecular-weight compounds with anticoagulant activity were isolated from the scorpion Heterometrus laoticus venom. The determination of the structure of the isolated compounds by nuclear magnetic resonance and mass spectrometry showed that one of the isolated compounds is adenosine, and the other two are dipeptides leucyl-tryptophan and isoleucyl-tryptophan. The anticoagulant properties of adenosine, which is an inhibitor of platelet aggregation, is well known, but its presence in scorpion venom is shown for the first time. The ability of leucyl-tryptophan and isoleucyl-tryptophan to slow down blood clotting and their presence in scorpion venom are also established for the first time.

  5. Multiple Comparisons of Glucokinase Activation Mechanisms of Five Mulberry Bioactive Ingredients in Hepatocyte.

    PubMed

    He, Hao; Yu, Wan-Guo; Yang, Jun-Peng; Ge, Sheng; Lu, Yan-Hua

    2016-03-30

    Glucokinase (GK) activity, which is rapidly regulated by glucokinase regulatory protein (GKRP) in the liver, is crucial for blood glucose homeostasis. In this paper, the GK activation mechanisms of 1-deoxynojrimycin (DNJ), resveratrol (RES), oxyresveratrol (OXY), cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) were compared. The results revealed that DNJ, RES, C3G, and C3R could differently improve glucose consumption and enhance intracellular GK activities. DNJ and RES significantly promoted GK translocation at 12.5 μM, whereas other ingredients showed moderate effects. DNJ, C3G, and C3R could rupture intramolecular hydrogen bonds of GK to accelerate its allosteric activation at early stage. RES and OXY could bind to a "hydrophobic pocket" on GK to stabilize the active GK at the final stage. Otherwise, RES, OXY, C3G, and C3R could interact with GKRP at the F1P binding site to promote GK dissociation and translocation. Enzymatic assay showed that RES (15-50 μM) and OXY (25-50 μM) could significantly enhance GK activities, which was caused by their binding properties with GK. Moreover, the most dramatic up-regulation effects on GK expression were observed in C3G and C3R groups. This work expounded the differences between GK activation mechanisms, and the new findings would help to develop new GK activators.

  6. Cerebroside D, a glycoceramide compound, improves experimental colitis in mice with multiple targets against activated T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xue-Feng; Wu, Xing-Xin; Guo, Wen-Jie

    2012-09-15

    In the present paper, we aimed to examine the novel effects of cerebroside D, a glycoceramide compound, on murine experimental colitis. Cerebroside D significantly reduced the weight loss, mortality rate and alleviated the macroscopic and microscopic appearances of colitis induced by dexran sulfate sodium. This compound also decreased the levels of TNF-α, IFN-γ and IL-1β in intestinal tissue of mice with experimental colitis in a concentration-dependent manner, accompanied with markedly increased serum level of IL-10. Cerebroside D inhibited proliferation and induced apoptosis of T cells activated by concanavalin A or anti-CD3 plus anti-CD28 antibodies. The compound did not show anmore » effect on naive lymphocytes but prevented cells from entering S phase and G2/M phase during T cells activation. Moreover, the treatment of cerebroside D led to apoptosis of activated T cells with the cleavage of caspase 3, 9, 12 and PARP. These results showed multiple effects of cerebroside D against activated T cells for a novel approach to treatment of colonic inflammation. Highlights: ► Cerebroside D, a glycoceramide compound, alleviated DSS induced colitis. ► The mechanism of the compound involved multiple effects against activated T cells. ► It regulated cytokine profiles in mice with experimental colitis. ► It prevented T cells from entering S and G2/M phases during activation. ► It led to apoptosis of activated T cells with the cleavage of caspases and PARP.« less

  7. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    PubMed

    Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-03-22

    Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by

  8. A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    PubMed Central

    Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-01-01

    Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for

  9. Influence of Cooking Methods on Bioactive Compound Content and Antioxidant Activity of Brussels Sprouts.

    PubMed

    Hwang, Eun-Sun

    2017-12-01

    The effects of different cooking methods on total bioactive compound content were determined, and in vitro antioxidant activity in 80% ethanolic extracts of Brussels sprouts was evaluated by spectrophotometric methods. Compared to uncooked, steamed, and microwaved Brussels sprouts extracted with 80% ethanol contained higher amounts of total polyphenols. Uncooked Brussels sprouts contained the highest amounts of total flavonoids. Microwaved Brussels sprouts contained the highest amounts of total carotenoids (0.35 mg/g) and chlorophylls (3.01 mg/g), followed by steamed and uncooked samples. Uncooked fresh Brussels sprouts showed the highest antioxidant activity followed by microwaved and steamed sprouts. Antioxidant activity was measured with the 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl racial scavenging assays as well as the reducing power activity assay, and antioxidant activity was found to increase in a concentration-dependent manner. Based on these results, cooking or heat treatment may decrease antioxidant activities, although their effect on bioactive compound content remains controversial.

  10. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    NASA Astrophysics Data System (ADS)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-12-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  11. Reductive alkylation of active methylene compounds with carbonyl derivatives, calcium hydride and a heterogeneous catalyst.

    PubMed

    Guyon, Carole; Duclos, Marie-Christine; Sutter, Marc; Métay, Estelle; Lemaire, Marc

    2015-07-07

    A one-pot two-step reaction (Knoevenagel condensation - reduction of the double bond) has been developed using calcium hydride as a reductant in the presence of a supported noble metal catalyst. The reaction between carbonyl compounds and active methylene compounds such as methylcyanoacetate, 1,3-dimethylbarbituric acid, dimedone and the more challenging dimethylmalonate, affords the corresponding monoalkylated products in moderate to good yields (up to 83%) with minimal reduction of the starting carbonyl compounds.

  12. The use of microfluorometric method for activity-guided isolation of antiplasmodial compound from plant extracts.

    PubMed

    Shuaibu, M N; Wuyep, P A; Yanagi, T; Hirayama, K; Tanaka, T; Kouno, I

    2008-05-01

    In vitro antiplasmodial activity of methanolic extracts of 16 medicinal plants was evaluated by fluorometric assay using PicoGreen. The IC50s, as determined by parasite DNA concentration, ranged from <11 to >200 and <13 to >200 microg/ml for Plasmodium falciparum 3D7 and K1, respectively; and the most active extracts were those from Anogeissus leiocarpus and Terminalia avicennoides (<11-> or =14 microg/ml). Aqueous, butanolic, ethyl acetate, and methanolic fractions of these two extracts revealed butanolic fraction to have a relatively better activity (IC50, 10-12 microg/ml). Activity-guided chromatographic separation of the butanolic fraction on Sephadex LH-20 followed by nuclear magnetic resonance and correlation high-performance liquid chromatography revealed the presence of known hydrolysable tannins and some related compounds-castalagin, ellagic acid, flavogallonic acid, punicalagin, terchebulin, and two other fractions. The IC50s of all these compounds ranged between 8-21 microg/ml (8-40 microM) against both the strains. Toxicity assay with mouse fibroblasts showed all the extracts and isolated compounds to have IC50 > or = 1500 microg/ml, except for Momordica balsamina with <1500 microg/l. All the extracts and isolated compounds did not affect the integrity of human erythrocyte membrane at the observed IC50s. However, adverse effects manifest in a concentration-dependent fashion (from IC50 > or = 500 microg/ml).

  13. Case study: Comparison of biological active compounds in milk from organic and conventional dairy herds

    USDA-ARS?s Scientific Manuscript database

    Conflicting reports of the quantities of biologically active compounds present in milk from organic grass-fed and conventional herds show that more research is required, especially as these compounds are linked to human health benefits and can improve the health value consumers place on dairy produc...

  14. Redox-active compounds with a history of human use: antistaphylococcal action and potential for repurposing as topical antibiofilm agents.

    PubMed

    Ooi, N; Eady, E A; Cove, J H; O'Neill, A J

    2015-02-01

    To investigate the antistaphylococcal/antibiofilm activity and mode of action (MOA) of a panel of redox-active (RA) compounds with a history of human use and to provide a preliminary preclinical assessment of their potential for topical treatment of staphylococcal infections, including those involving a biofilm component. Antistaphylococcal activity was evaluated by broth microdilution and by time-kill studies with growing and slow- or non-growing cells. The antibiofilm activity of RA compounds, alone and in combination with established antibacterial agents, was assessed using the Calgary Biofilm Device. Established assays were used to examine the membrane-perturbing effects of RA compounds, to measure penetration into biofilms and physical disruption of biofilms and to assess resistance potential. A living skin equivalent model was used to assess the effects of RA compounds on human skin. All 15 RA compounds tested displayed antistaphylococcal activity against planktonic cultures (MIC 0.25-128 mg/L) and 7 eradicated staphylococcal biofilms (minimum biofilm eradication concentration 4-256 mg/L). The MOA of all compounds involved perturbation of the bacterial membrane, whilst selected compounds with antibiofilm activity caused destructuring of the biofilm matrix. The two most promising agents [celastrol and nordihydroguaiaretic acid (NDGA)] in respect of antibacterial potency and selective toxicity against bacterial membranes acted synergistically with gentamicin against biofilms, did not damage artificial skin following topical application and exhibited low resistance potential. In contrast to established antibacterial drugs, some RA compounds are capable of eradicating staphylococcal biofilms. Of these, celastrol and NDGA represent particularly attractive candidates for development as topical antistaphylococcal biofilm treatments. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  15. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes

    PubMed Central

    Sykes, Melissa L.; Avery, Vicky M.

    2015-01-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. PMID:27120069

  16. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes.

    PubMed

    Sykes, Melissa L; Avery, Vicky M

    2015-12-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Anti-Alzheimer's disease activity of compounds from the root bark of Morus alba L.

    PubMed

    Kuk, Eun Bi; Jo, A Ra; Oh, Seo In; Sohn, Hee Sook; Seong, Su Hui; Roy, Anupom; Choi, Jae Sue; Jung, Hyun Ah

    2017-03-01

    The inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays important roles in prevention and treatment of Alzheimer's disease (AD). Among the individual parts of Morus alba L. including root bark, branches, leaves, and fruits, the root bark showed the most potent enzyme inhibitory activities. Therefore, the aim of this study was to evaluate the anti-AD activity of the M. alba root bark and its isolate compounds, including mulberrofuran G (1), albanol B (2), and kuwanon G (3) via inhibition of AChE, BChE, and BACE1. Compounds 1 and 2 showed strong AChE- and BChE-inhibitory activities; 1-3 showed significant BACE1 inhibitory activity. Based on the kinetic study with AChE and BChE, 2 and 3 showed noncompetitive-type inhibition; 1 showed mixed-type inhibition. Moreover, 1-3 showed mixed-type inhibition against BACE1. The molecular docking simulations of 1-3 demonstrated negative binding energies, indicating a high affinity to AChE and BACE1. The hydroxyl group of 1-3 formed hydrogen bond with the amino acid residues located at AChE and BACE1. Consequently, these results indicate that the root bark of M. alba and its active compounds might be promising candidates for preventive and therapeutic agents for AD.

  18. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGES

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  19. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities.

    PubMed

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.

  20. QSAR and 3D-QSAR studies applied to compounds with anticonvulsant activity.

    PubMed

    Garro Martinez, Juan C; Vega-Hissi, Esteban G; Andrada, Matías F; Estrada, Mario R

    2015-01-01

    Quantitative structure-activity relationships (QSAR and 3D-QSAR) have been applied in the last decade to obtain a reliable statistical model for the prediction of the anticonvulsant activities of new chemical entities. However, despite the large amount of information on QSAR, no recent review has published and discussed this data in detail. In this review, the authors provide a detailed discussion of QSAR studies that have been applied to compounds with anticonvulsant activity published between the years 2003 and 2013. They also evaluate the mathematical approaches and the main software used to develop the QSAR and 3D-QSAR model. QSAR methodologies continue to attract the attention of researchers and provide valuable information for the development of new potentially active compounds including those with anticonvulsant activity. This has been helped in part by improvements in the size and performance of computers; the development of specific software and the development of novel molecular descriptors, which have given rise to new and more predictive QSAR models. The extensive development of descriptors, and the way by which descriptor values are derived, have allowed the evolution of the QSAR methods. This evolution could strengthen the QSAR methods as an important tool in research and development of new and more potent anticonvulsant agents.

  1. From bird's eye views to molecular communities: two-layered visualization of structure-activity relationships in large compound data sets

    NASA Astrophysics Data System (ADS)

    Kayastha, Shilva; Kunimoto, Ryo; Horvath, Dragos; Varnek, Alexandre; Bajorath, Jürgen

    2017-11-01

    The analysis of structure-activity relationships (SARs) becomes rather challenging when large and heterogeneous compound data sets are studied. In such cases, many different compounds and their activities need to be compared, which quickly goes beyond the capacity of subjective assessments. For a comprehensive large-scale exploration of SARs, computational analysis and visualization methods are required. Herein, we introduce a two-layered SAR visualization scheme specifically designed for increasingly large compound data sets. The approach combines a new compound pair-based variant of generative topographic mapping (GTM), a machine learning approach for nonlinear mapping, with chemical space networks (CSNs). The GTM component provides a global view of the activity landscapes of large compound data sets, in which informative local SAR environments are identified, augmented by a numerical SAR scoring scheme. Prioritized local SAR regions are then projected into CSNs that resolve these regions at the level of individual compounds and their relationships. Analysis of CSNs makes it possible to distinguish between regions having different SAR characteristics and select compound subsets that are rich in SAR information.

  2. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology

    PubMed Central

    Huang, Jihan; Cheung, Fan; Tan, Hor-Yue; Hong, Ming; Wang, Ning; Yang, Juan; Feng, Yibin; Zheng, Qingshan

    2017-01-01

    Yinchenhao decoction (YCHD) is a traditional Chinese medicine formulation, which has been widely used for the treatment of jaundice for 2,000 years. Currently, YCHD is used to treat various liver disorders and metabolic diseases, however its chemical/pharmacologic profiles remain to be elucidated. The present study identified the active compounds and significant pathways of YCHD based on network pharmacology. All of the chemical ingredients of YCHD were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. Absorption, distribution, metabolism and excretion screening with oral bioavailability (OB) screening, drug-likeness (DL) and intestinal epithelial permeability (Caco-2) evaluation were applied to discover the bioactive compounds in YCHD. Following this, target prediction, pathway identification and network construction were employed to clarify the mechanism of action of YCHD. Following OB screening, and evaluation of DL and Caco-2, 34 compounds in YCHD were identified as potential active ingredients, of which 30 compounds were associated with 217 protein targets. A total of 31 significant pathways were obtained by performing enrichment analyses of 217 proteins using the JEPETTO 3.x plugin, and 16 classes of gene-associated diseases were revealed by performing enrichment analyses using Database for Annotation, Visualization and Integrated Discovery v6.7. The present study identified potential active compounds and significant pathways in YCHD. In addition, the mechanism of action of YCHD in the treatment of various diseases through multiple pathways was clarified. PMID:28791364

  3. Synthesis of Polyheteroaromatic Compounds via Rhodium-Catalyzed Multiple C-H Bond Activation and Oxidative Annulation.

    PubMed

    Peng, Shiyong; Liu, Suna; Zhang, Sai; Cao, Shengyu; Sun, Jiangtao

    2015-10-16

    Polyheteroaromatic compounds are potential optoelectronic conjugated materials due to their electro- and photochemical properties. Transition-metal-catalyzed multiple C-H activation and sequential oxidative annulation allows rapidly assembling of those compounds from readily available starting materials. A rhodium-catalyzed cascade oxidative annulation of β-enamino esters or 4-aminocoumarins with internal alkynes is described to access those compounds, featuring multiple C-H/N-H bond cleavages and sequential C-C/C-N bond formations in one pot.

  4. Anti-HIV-1 Integrase Activity and Molecular Docking Study of Compounds from Caesalpinia  sappan L.

    PubMed

    Tewtrakul, Supinya; Chaniad, Prapaporn; Pianwanit, Somsak; Karalai, Chatchanok; Ponglimanont, Chanita; Yodsaoue, Orapun

    2015-05-01

    Caesalpinia sappan L. (Caesalpiniaceae) has been traditionally used as blood tonic, expectorant, and astringent by boiling with water. Searching for HIV-1 integrase (IN) inhibitors from this plant is a promising approach. The EtOH extract of C. sappan and its isolated compounds were tested for their anti-HIV-1 IN effect using the multiplate integration assay, and the active compounds were determined for their mechanisms by molecular docking technique. Extraction from the heartwoods and roots of C. sappan led to the isolation of nine compounds. Among the compounds tested, sappanchalcone (2) displayed the strongest effect against HIV-1 IN with an IC50 value of 2.3 μM followed by protosappanin A (9, IC50  = 12.6 μM). Structure-activity relationships of compounds from C. sappan were found, in which the vicinal hydroxyl moiety were essential for anti-HIV-1 IN effect of compounds 2 and 9 by binding with the amino acid residues Gln148 and Thr66 in the core domain of the HIV- 1 IN enzyme, respectively. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Chemical composition and antioxidant activity of phenolic compounds and essential oils from Calamintha nepeta L.

    PubMed

    Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir

    2018-05-24

    Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.

  6. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    PubMed Central

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4′-dihydroxy-3′-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM) and a lower effect against CML cells (IC50 = 27.5–30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  7. Polymer application for separation/filtration of biological active compounds

    NASA Astrophysics Data System (ADS)

    Tylkowski, B.; Tsibranska, I.

    2017-06-01

    Membrane technology is an important part of the engineer's toolbox. This is especially true for industries that process food and other products with their primary source from nature. This review is focused on ongoing development work using membrane technologies for concentration and separation of biologically active compounds, such as polyphenols and flavonoids. We provide the readers not only with the last results achieve in this field but also, we deliver detailed information about the membrane types and polymers used for their preparation.

  8. Identification of major phenolic compounds from Nephelium lappaceum L. and their antioxidant activities.

    PubMed

    Thitilertdecha, Nont; Teerawutgulrag, Aphiwat; Kilburn, Jeremy D; Rakariyatham, Nuansri

    2010-03-09

    Nephelium lappaceum is a tropical fruit whose peel possesses antioxidant properties. Experiments on the isolation and identification of the active constituents were conducted, and on their antioxidant activity using a lipid peroxidation inhibition assay. The methanolic extract of N. lappaceum peels exhibited strong antioxidant properties. Sephadex LH-20 chromatography was utilized in the isolation of each constituent and the antioxidant properties of each was studied. The isolated compounds were identified as ellagic acid (EA) (1), corilagin (2) and geraniin (3). These compounds accounted for 69.3% of methanolic extract, with geraniin (56.8%) as the major component, and exhibited much greater antioxidant activities than BHT in both lipid peroxidation (77-186 fold) and DPPH* (42-87 fold) assays. The results suggest that the isolated ellagitannins, as the principal components of rambutan peels, could be further utilized as both a medicine and in the food industry.

  9. 6-Methylsulfinylhexyl isothiocyanate and its homologues as food-originated compounds with antibacterial activity against Escherichia coli and Staphylococcus aureus.

    PubMed

    Ono, H; Tesaki, S; Tanabe, S; Watanabe, M

    1998-02-01

    Cruciferae plants, banana and coriander each showed antibacterial activity. The highest activity among the food-stuffs tested was found in the stems of wasabi. An ethereal extract from wasabi stems had potent antibacterial activity and we isolated the active compound from the extract. Instrumental analysis identified the compound as 6-methylsulfinylhexyl isothiocyanate. Some homologues of 6-methylsulfinylhexyl isothiocyanate were also active against Escherichia coli and Staphylococcus aureus.

  10. Phenolic compounds from Citrus leaves: antioxidant activity and enzymatic browning inhibition.

    PubMed

    Khettal, Bachra; Kadri, Nabil; Tighilet, Karim; Adjebli, Ahmed; Dahmoune, Farid; Maiza-Benabdeslam, Fadila

    2017-03-01

    Background Phenolic compounds from Citrus are known to be a topic of many studies due to their biological properties including antioxidant activity. Methods Methanolic and aqueous extracts were isolated from Citrus leaves of different species (C. clementina, C. limon, C. hamlin, C. navel, C. aurantifolia, C. aurantium and C. grandis) harvested in Algeria. Results The results showed that aqueous extracts of all species are rich in total phenolic compounds and flavonoids (from 68.23 to 125.28 mg GAE/g DM) and (from 11.99 to 46.25 mg QE/g DM) respectively. The methanolic and aqueous extracts were examined for in vitro antioxidant properties using various antioxidant assays. For aqueous extracts, C. limon showed an important DPPH radical scavenging activity (IC50 35.35 µg/mL), and C. clementina exerted the highest ABTS radical scavenging activity (1,174.43 µM ET/g DM) and a significant ferric reducing potential (30.60 mg BHAE/g DM). For methanolic extracts, C. clementina showed the highest antioxidant activity for all the realized assays (IC50 41.85 µg/mL, 378.63 µM ET/g DM and 13.85 mg BHAE/g DM) for DPPH, ABTS radicals scavenging activities and ferric reducing potential respectively. Antiperoxidase and antipolyphenol oxidase activities of these samples were also evaluated. Conclusions In this investigation, the assessment of antiperoxidase activity proved that the leaves extracts of different species were able to inhibit peroxidase activity. However, this inhibition varied with the species and the source of these enzymes. On the other hand, the aqueous extracts of different species showed moderate inhibition of polyphenol oxidase, while no effect on these enzymes was obtained with methanolic extracts.

  11. Comparative study on the larvicidal activity of drimane sesquiterpenes and nordrimane compounds against Drosophila melanogaster til-til.

    PubMed

    Montenegro, Ivan; Pino, Luis; Werner, Enrique; Madrid, Alejandro; Espinoza, Luis; Moreno, Luis; Villena, Joan; Cuellar, Mauricio

    2013-04-10

    Natural compounds from Drimys winteri Forst and derivatives exhibited larvicidal effects against Drosophila melanogaster til-til. The most active compound was isodrimenin (4). The highest lethal concentration to the larvae of D. melanogaster was 4.5 ± 0.8 mg/L. At very low concentrations drimenol (1), confertifolin (3), and drimanol (5) displayed antifeedant and larvae growth regulatory activity. The antifeedant results of nordrimanic and drimanic compounds were better in first instar larvae. The EC₅₀ value of polygodial (2) was 60.0 ± 4.2 mg/L; of diol 15 45.0 ± 2.8 mg/L, and of diol 17 36.9 ± 3.7 mg/L, while the new nordrimane compound 12 presented a value of 83.2 ± 3.5 mg/L.

  12. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    PubMed

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits.

    PubMed

    Tamrakar, Akhilesh K; Yadav, Prem P; Tiwari, Priti; Maurya, Rakesh; Srivastava, Arvind K

    2008-08-13

    To identify pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits. Streptozotocin-induced diabetic rats and hyperglycemic, hyperlipidemic and hyperinsulinemic db/db mice were used to investigate the antihyperglycemic activity of pongamol and karangin isolated from the fruits of Pongamia pinnata. In streptozotocin-induced diabetic rats, single dose treatment of pongamol and karanjin lowered the blood glucose level by 12.8% (p<0.05) and 11.7% (p<0.05) at 50mg /kg dose and 22.0% (p<0.01) and 20.7% (p<0.01) at 100mg/kg dose, respectively after 6h post-oral administration. The compounds also significantly lowered blood glucose level in db/db mice with percent activity of 35.7 (p<0.01) and 30.6 (p<0.01), respectively at 100mg/kg dose after consecutive treatment for 10 days. The compounds were observed to exert a significant inhibitory effect on enzyme protein tyrosine phosphatase-1B (EC 3.1.3.48). The results showed that pongamol and karangin isolated from the fruits of Pongamia pinnata possesses significant antihyperglycemic activity in Streptozotocin-induced diabetic rats and type 2 diabetic db/db mice and protein tyrosine phosphatase-1B may be the possible target for their activity.

  14. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  15. Kinetic and Isotherm Modelling of the Adsorption of
Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    PubMed Central

    Casazza, Alessandro A.; Perego, Patrizia

    2015-01-01

    Summary The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL), the maximum sorption capacity of activated carbon expressed as mg of caffeic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to better describe the sorption system. The results confirmed the efficiency of activated carbon to remove almost all phenolic compound fractions from olive mill effluent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries. PMID:27904350

  16. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds.

    PubMed

    Muganga, Raymond; Angenot, Luc; Tits, Monique; Frédérich, Michel

    2014-04-01

    In our previous study, we reported the interesting in vitro antiplasmodial activity of some Rwandan plant extracts. This gave rise to the need for these extracts to also be evaluated in vivo and to identify the compounds responsible for their antiplasmodial activity. The aim of our study was, on the one hand, to evaluate the antiplasmodial activity in vivo and the safety of the selected Rwandan medicinal plants used in the treatment of malaria, with the objective of promoting the development of improved traditional medicines and, on the other hand, to identify the active ingredients in the plants. Plant extracts were selected according to their selectivity index. The in vivo antiplasmodial activity of aqueous, methanolic, and dichloromethane extracts was then evaluated using the classical 4-day suppressive test on Plasmodium berghei infected mice. The activity of the plant extracts was estimated by measuring the percentage of parasitemia reduction, and the survival of the experimental animals was recorded. A bioguided fractionation was performed for the most promising plants, in terms of antiplasmodial activity, in order to isolate active compounds identified by means of spectroscopic and spectrometric methods. The highest level of antiplasmodial activity was observed with the methanolic extract of Fuerstia africana (> 70 %) on days 4 and 7 post-treatment after intraperitoneal injection and on day 7 using oral administration. After oral administration, the level of parasitemia reduction observed on day 4 post-infection was 44 % and 37 % with the aqueous extract of Terminalia mollis and Zanthoxylum chalybeum, respectively. However, the Z. chalybeum extract presented a high level of toxicity after intraperitoneal injection, with no animals surviving on day 1 post-treatment. F. africana, on the other hand, was safer with 40 % mouse survival on day 20 post-treatment. Ferruginol is already known as the active ingredient in F. Africana, and ellagic acid (IC50

  17. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-09-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2‧-dihydroxy-3‧,4‧-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products.

  18. Qualitative comparison of active compounds between red and green Mariposa Christia Vespertillonis leaves extracts

    NASA Astrophysics Data System (ADS)

    Osman, M. S.; Ghani, Z. A.; Ismail, N. F.; Razak, N. A. A.; Jaapar, J.; Ariff, M. A. M.

    2017-09-01

    At present time, Mariposa Christia Vespertillonis (MCV) leave has become popular for its anti-cancer and thus is used widely among the traditional medicine in Malaysia. There are several types of MCV plants and the one that is currently well-known for traditional medicine in Malaysia is the green MCV (GMCV). Red MCV (RMCV) is another type of MCV plant which can also be found easily in Malaysia. In this study, the active compounds for GMCV and RMCV will be compared and analyzed by using Liquid Chromatography - Mass Spectrometry (LC-MS). The active compounds will be extracted from the MCV leaves by using Supercritical Fluid Extraction (SFE). The findings of this study indicates the global yield of the MCV oils is 31 mg/g while the compound identification indicates the presence of anti-cancer, anti-inflammatory and beneficial phytochemicals. This work is an explorative study to reveal the potential of MCV to be extracted using SFE method as potential therapeutic plants for the traditional medicine in Malaysia.

  19. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni

    PubMed Central

    Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin

    2016-01-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  20. Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?

    NASA Astrophysics Data System (ADS)

    Dimova, Dilyana; Bajorath, Jürgen

    2017-07-01

    Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.

  1. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    PubMed

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables.

    PubMed

    Li, Zhifeng; Lee, Hui Wen; Liang, Xu; Liang, Dong; Wang, Qi; Huang, Dejian; Ong, Choon Nam

    2018-05-10

    The phenolic profiles of 12 cruciferous vegetables (pakchoi, choysum, Chinese cabbage, kailan, Brussels sprout, cabbage, cauliflower, broccoli, rocket salad, red cherry radish, daikon radish, and watercress) were studied with UHPLC-MS/MS. Antioxidant activity and total phenolic content (TPC) were also evaluated. A total of 74 phenolic compounds were identified, including 16 hydroxycinnamic acids and derivatives, and 58 flavonoids and derivatives. The main flavonoids identified were glycosylated quercetin, kaempferol and isorhamnetin, and the main hydroxycinnamic acids were ferulic, sinapic, caffeic and p -coumaric acids. Principal component analysis (PCA) revealed that the distribution of phenolic compounds in different genera of cruciferous vegetables was in accordance with their conventional taxonomy. The DPPH, ORAC and TPC values ranged from 1.11 to 9.54 µmoles Trolox equivalent/g FW, 5.34 to 32.92 µmoles Trolox equivalent/g FW, and 0.16 to 1.93 mg gallic acid equivalent/g FW respectively. Spearman’s correlation showed significant ( p < 0.05) positive correlations between TPC, flavonoids and antioxidant activity.

  3. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX.

    PubMed

    Omardien, Soraya; Ter Beek, Alexander; Vischer, Norbert; Montijn, Roy; Schuren, Frank; Brul, Stanley

    2018-06-14

    An empirical approach was taken to screen a novel synthetic compound library designed to be active against Gram-positive bacteria. We obtained five compounds that were active against spores from the model organism Bacillus subtilis and the food-borne pathogen Bacillus cereus during our population based experiments. Using single cell live imaging we were able to observe effects of the compounds on spore germination and outgrowth. Difference in sensitivity to the compounds could be observed between B. subtilis and B. cereus using live imaging, with minor difference in the minimal inhibitory and bactericidal concentrations of the compounds against the spores. The compounds all delayed the bursting time of germinated spores and affected the generation time of vegetative cells at sub-inhibitory concentrations. At inhibitory concentrations spore outgrowth was prevented. One compound showed an unexpected potential for preventing spore germination at inhibitory concentrations, which merits further investigation. Our study shows the valuable role single cell live imaging can play in the final selection process of antimicrobial compounds.

  4. Antimicrobial activity-guided identification of compounds from the deciduous leaves of Malus doumeri by HPLC-ESI-QTOF-MS/MS.

    PubMed

    Shen, Bingbing; Zhou, Rongrong; Yang, Yupei; Li, Jiayu; Liang, Xuejuan; Chen, Lin; Huang, Luqi; Zhang, Shuihan

    2018-04-03

    This paper intends to identify the antimicrobial activity compounds from the deciduous leaves of Malus doumeri (Dong Li Tea) by HPLC-ESI-QTOF-MS/MS. The ethanol extracts of Malus doumeri were partitioned into petroleum ether, dichloromethane, ethyl acetate, n-butanol and water fraction, respectively. The antimicrobial screening experiments showed that ethyl acetate fraction has a certain antibacterial activity by inhibition zone method in vitro. And then we used the HPLC-ESI-QTOF-MS/MS method to verify the identities of bioactive compounds. Finally, 41 compounds were determined and 11 of which were firstly reported in this plant. Notably, compounds (32, 34, 38) are new dihydrochalcones, and three chlorogenic acid analogues (10, 13, 17) may be potential antimicrobial active ingredient. Which is of great significance to the isolation of novel compounds and the discovery of new natural preservative candidates from the deciduous leaves of Malus doumeri.

  5. New Ferrocene Compounds as Selective Cyclooxygenase (COX-2) Inhibitors: Design, Synthesis, Cytotoxicity and Enzyme-inhibitory Activity.

    PubMed

    Farzaneh, Shabnam; Zeinalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin

    2018-01-01

    Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity

  6. Selection of quantum chemical descriptors by chemometric methods in the study of antioxidant activity of flavonoid compounds

    NASA Astrophysics Data System (ADS)

    Weber, K. C.; Honório, K. M.; da Silva, S. L.; Mercadante, R.; da Silva, A. B. F.

    In the present study, the aim was to select electronic properties responsible for free radical scavenging ability of a set of 25 flavonoid compounds employing chemometric methods. Electronic parameters were calculated using the AM1 semiempirical method, and chemometric methods (principal component analysis, hierarchical cluster analysis, and k-nearest neighbor) were used with the aim to build models able to find relationships between electronic features and the antioxidant activity presented by the compounds studied. According to these models, four electronic variables can be considered important to discriminate more and less antioxidant flavonoid compounds: polarizability (α), charge at carbon 3 (QC3), total charge at substituent 5 (QS5), and total charge at substituent 3' (QS3'). The features found as being responsible for the antioxidant activity of the flavonoid compounds studied are consistent with previous results found in the literature. The results obtained can also bring improvements in the search for better antioxidant flavonoid compounds.

  7. Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth.

    PubMed

    Boulinguiez, B; Le Cloirec, P

    2009-01-01

    The study assesses the adsorption onto activated carbon materials of selected volatile organic compounds -VOCs- (dichloromethane, 2-propanol, toluene, siloxane D4) in a biogas matrix composed of methane and carbon dioxide (55:45 v/v). Three different adsorbents are tested, two of them are granular activated carbon (GAC), and the last is an activated carbon fiber-cloth (ACFC). The adsorption isotherm data are fitted by different models by nonlinear regression. The Langmuir-Freundlich model appears to be the adequate one to describe the adsorption phenomena independently of the VOC considered or the adsorbent. The adsorbents present attractive adsorption capacity of the undesirable compounds in biogas atmosphere though the maximum adsorption capacities for a VOC are quite different from each other. The adsorption kinetics are characterized through three coefficients: the initial adsorption coefficient, the external film mass transfer coefficient and the internal diffusion coefficient of Weber. The ACFC demonstrates advanced kinetic yields compared to the granular activated carbon materials whatever VOC is considered. Therefore, pre-upgrading of biogas produced from wastewater sludge or co-digestion system by adsorption onto activated carbon appears worth investigating. Especially with ACFC material that presents correct adsorption capacities toward VOCs and concrete regeneration process opportunity to realize such process.

  8. Phytochemical Compounds and Antioxidant Activity in Different Cultivars of Cranberry (Vaccinium Macrocarpon L).

    PubMed

    Oszmiański, Jan; Kolniak-Ostek, Joanna; Lachowicz, Sabina; Gorzelany, Józef; Matłok, Natalia

    2017-11-01

    Cranberries can be a component of a healthy diet, because they are a great source of health-promoting compounds and nutrients. The aims of this study were to evaluated phytochemicals and antioxidant activity in 6 cultivars of cranberry fruit grown in Poland. The content of polyphenols, carotenoids, chlorophylls, and triterpenoids were determined with the use of UPLC-PDA-MS/MS, although antioxidant activity was examined with DPPH, ABTS, and FRAP assays. The cvs. "Franklin," "Howes," and "Stevens" were characterized by the highest concentration of total polyphenols (4219, 3995, and 3584 mg/100 g dm), triterpenoids (3582, 3671, and 3451 mg/kg dm), carotenoids (9.75, 8.52, and 7.94 mg/kg dm), and antioxidant activity (ABTS: 226, 264, 246; FRAP: 102, 139, 124; DPPH: 235, 320, 284 μmolTE/g dm), making these 3 cultivars especially recommendable for consumption. Furthermore, a positive correlation between content of phytochemicals and antioxidant activity was found. The manuscript "Phytochemical compounds and antioxidant activity in different cultivars of cranberry (Vaccinium macrocarpon L)" represents cultivars commonly grown in Poland that maybe beneficial offer the food industry, to develop attractive foods with a high content of biologically active substances. © 2017 Institute of Food Technologists®.

  9. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds.

    PubMed

    Nunes, Túlio M; Mateus, Sidnei; Favaris, Arodi P; Amaral, Mônica F Z J; von Zuben, Lucas G; Clososki, Giuliano C; Bento, José M S; Oldroyd, Benjamin P; Silva, Ricardo; Zucchi, Ronaldo; Silva, Denise B; Lopes, Norberto P

    2014-12-12

    In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones.

  10. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds

    PubMed Central

    Nunes, Túlio M.; Mateus, Sidnei; Favaris, Arodi P.; Amaral, Mônica F. Z. J.; von Zuben, Lucas G.; Clososki, Giuliano C.; Bento, José M. S.; Oldroyd, Benjamin P.; Silva, Ricardo; Zucchi, Ronaldo; Silva, Denise B.; Lopes, Norberto P.

    2014-01-01

    In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones. PMID:25502598

  11. Anti-bacterial activity of synthetic N-heterocyclic oxidizing compounds.

    PubMed

    Babalola, G O

    1998-01-01

    Synthetic chlorochromate derivatives of pyridine and quinoline were active in vitro against type cultures of Escherichia coli (ATCC 128), Staphylococcus aureus (ATCC 14775), Pseudomonas aeruginosa (ATCC 10145) and Bacillus subtilis (NCTC 8236). The minimum inhibitory concentrations (MIC) were 125-250 micrograms ml-1 and 250-500 micrograms ml-1 for pyridinium chlorochromate and quinolinium chlorochromate, respectively. An established derivative of quinoline (Perfloxacin) had an MIC of 125-250 micrograms ml-1. The extinction time for 10(5) cfu in broth was 90 min for pyridinium chlorochromate and 120 min for quinolinium chlorochromate, except for B. subtilis which survived up to about 180 min and 360 min. A combination of the two compounds produced an antagonistic effect. The 50% lethal dose (LD50 toxicity) in mice was estimated at 76 micrograms g-1 and 33 micrograms g-1 body weight for the quinolinium and pyridinium chlorochromates. The compounds also exhibited some potential for suppressing a simulated staphylococcal infection in mice at the dosage levels of ca 22 micrograms g-1 for pyridinium chlorochromate and 45 micrograms g-1 for quinolinium chlorochromate.

  12. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.

    PubMed

    Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang

    2012-01-01

    Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.

  13. Effect of polyphenolic compounds on the growth and cellulolytic activity of a strain of Trichoderma viride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrieta-Escobar, A.; Belin, J.M.

    1982-04-01

    Polyphenolic compounds are often regarded as inhibitors of microorganism growth. However, polyphenolic compounds can also induce stimulating effects on the growth, respiration, fermentation and excretion of amino acids. Depending on the concentration of polyphenolic compounds in the medium, opposed effects (inhibition, stimulation) can be observed. The purpose of this article is to study the effects of condensed tannins and some monomers on the growth and cellulolytic activity of Trichoderma viride. (Refs. 30).

  14. Fatty acid composition of intramuscular fat and odour-active compounds of lamb commercialized in northern Spain.

    PubMed

    Bravo-Lamas, Leire; Barron, Luis J R; Farmer, Linda; Aldai, Noelia

    2018-05-01

    Muscle fatty acid composition and odour-active compounds released during cooking were characterized in lamb chops (Longissimus thoracis et lumborum, n = 48) collected at retail level in northern Spain. Lamb samples were classified in two groups according to their 10 t/11 t-18:1 ratio: ≤1 (10 t-non-shifted, n = 21) and >1 (10 t-shifted, n = 27). Higher n-3 polyunsaturated fatty acid, vaccenic (11 t-18:1) and rumenic acid (9c,11 t-18:2), and iso-branched chain fatty acid contents were found in non-shifted lamb samples while n-6 polyunsaturated fatty acid, internal methyl-branched chain fatty acid, and 10 t-18:1 contents were greater in shifted samples. Regardless the fatty acid profile differences between lamb sample groups, odour-active compound profile was very similar and mostly affected by the cooking conditions. Overall, the main odour-active compounds of cooked lamb were described as "green", "meaty", "roasted", and "fatty" being methyl pyrazine, methional, dimethyl pyrazine, and dimethyl trisulphide the main odour-active compounds. Aldehydes and alcohols were the most abundant volatiles in all samples, and they were mostly originated from the oxidation of unsaturated fatty acids during cooking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Separation of Biologically Active Compounds by Membrane Operations.

    PubMed

    Zhu, Xiaoying; Bai, Renbi

    2017-01-01

    Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The "cold" separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of

  16. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  17. The melanin synthesis inhibition and radical scavenging activities of compounds isolated from the aerial part of Lespedeza cyrtobotrya.

    PubMed

    Lee, Mi Yeon; Kim, Jin Hee; Choi, Jung Nam; Kim, Jiyoung; Hwang, Geum Sook; Lee, Choonghwan

    2010-06-01

    The EtOAc fraction of Lespedeza cyrtobotrya showed mushroom tyrosinase inhibitory and radical scavenging activity. Four active compounds were isolated based on LH-20 chromatography and HPLC, and the structures were elucidated on the basis of their LC-MS and NMR spectral data, as 2-(2,4-Dihydroxyphenyl)-6-hydroxybenzofuran (1), eriodictyol-7-O-glucopyranoside (2), haginin A (3), and dalbergioidin (4), respectively. 2-(2,4-Dihydroxyphenyl)-6-hydroxybenzofuran (1) showed mushroom tyrosinase inhibitory activity with an IC50 value of 5.2 micronM and acted as a competitive inhibitor. Furthermore, 37.3 micronM of compound 1 reduced 50 % of the melanin content on a human melanoma (MNT-1) cells. The radical scavenging activity of 2-(2,4-dihydroxyphenyl)-6-hydroxybenzofuran (1), eriodictyol-7-O-glucopyranoside (2), haginin A (3), and dalbergioidin (4) was shown with IC50 values of 11.0, 24.5, 9.0 and 36.5 micronM in an ABTS system and with IC50 values of 42.7, 36.0, 37.7 and 61.7 micronM in a DPPH system, respectively. The mushroom tyrosinase inhibitory activity of EtOAc fraction of Lespedeza cyrtobotrya was contributed by compound 1, 3 and 4, and radical scavenging activity of it was contributed by compound 1-4.

  18. Compound C Inhibits Vascular Smooth Muscle Cell Proliferation and Migration in an AMP-Activated Protein Kinase-Independent Fashion

    PubMed Central

    Peyton, Kelly J.; Yu, Yajie; Yates, Benjamin; Shebib, Ahmad R.; Liu, Xiao-ming; Wang, Hong

    2011-01-01

    6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02–10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G0/G1 phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease. PMID:21566210

  19. Compound C inhibits vascular smooth muscle cell proliferation and migration in an AMP-activated protein kinase-independent fashion.

    PubMed

    Peyton, Kelly J; Yu, Yajie; Yates, Benjamin; Shebib, Ahmad R; Liu, Xiao-ming; Wang, Hong; Durante, William

    2011-08-01

    6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02-10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G(0)/G(1) phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease.

  20. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains

    PubMed Central

    2013-01-01

    Background The emergence of multidrug-resistant bacteria is a world health problem. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) strains, is one of the most important human pathogens associated with hospital and community-acquired infections. The aim of this work was to evaluate the antibacterial activity of a Pseudomonas aeruginosa-derived compound against MRSA strains. Methods Thirty clinical MRSA strains were isolated, and three standard MRSA strains were evaluated. The extracellular compounds were purified by vacuum liquid chromatography. Evaluation of antibacterial activity was performed by agar diffusion technique, determination of the minimal inhibitory concentration, curve of growth and viability and scanning electron microscopy. Interaction of an extracellular compound with silver nanoparticle was studied to evaluate antibacterial effect. Results The F3 (ethyl acetate) and F3d (dichloromethane- ethyl acetate) fractions demonstrated antibacterial activity against the MRSA strains. Phenazine-1-carboxamide was identified and purified from the F3d fraction and demonstrated slight antibacterial activity against MRSA, and synergic effect when combined with silver nanoparticles produced by Fusarium oxysporum. Organohalogen compound was purified from this fraction showing high antibacterial effect. Using scanning electron microscopy, we show that the F3d fraction caused morphological changes to the cell wall of the MRSA strains. Conclusions These results suggest that P. aeruginosa-produced compounds such as phenazines have inhibitory effects against MRSA and may be a good alternative treatment to control infections caused by MRSA. PMID:23773484

  1. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes

    PubMed Central

    Gokulakrishnan, J; Kuppusamy, Elumalai; Shanmugam, Dhanasekaran; Appavu, Anandan; Kaliyamoorthi, Krishnappa

    2013-01-01

    Objective To determine the repellent and pupicidal activities of Pogostemon cablin (P. cablin) chemical compositions were assayed for their toxicity against selected important vector mosquitoes, viz., Aedes aegypti (Ae. aegypti), Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus) (Diptera: Culicidae). Methods The plants dry aerial parts were subjected to hydrodistillation using a modified Clevenger-type apparatus. The composition of the essential oil was analyzed by Gas Chromatography (GC) and GC mass spectrophotometry. Evaluation was carried out in a net cage (45 cm×30 cm×45 cm) containing 100 blood starved female mosquitoes and were assayed in the laboratory condition by using the protocol of WHO 2010. The repellent activity of P. cablin chemical compositions at concentration of 2mg/cm2were applied on skin of fore arm in man and exposed against adult female mosquitoes. The pupicidal activity was determined against selected important vector mosquitoes to concentration of 100 mg/L and mortality of each pupa was recorded after 24 h of exposure to the compounds. Results Chemical constituents of 15 compounds were identified in the oil of P.cablin compounds representing to 98.96%. The major components in essential oil were â-patchoulene, á-guaiene, ã-patchoulene, á-bulnesene and patchouli alcohol. The repellent activity of patchouli alcohol compound was found to be most effective for repellent activity and 2 mg/cm2 concentration provided 100% protection up to 280 min against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, respectively. Similarly, pupae exposed to 100 mg/L concentrations of P. cablin chemical compositions. Among five compounds tested patchouli alcoholwas found to be most effective for pupicidal activity provided 28.44, 26.28 and 25.36 against Ae.aegypti, An.stephensi and Cx. quinquefasciatus, respectively. The percent adult emergence was inversely proportional to the concentration of compounds and directly

  2. Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Takumi; Saitoh, Sachie; Hosaka, Manami

    2009-02-06

    Electrophilic compounds protect neurons through the activation of the Keap1/Nrf2 pathway and the induction of phase-2 enzymes [T. Satoh, S.A. Lipton, Redox regulation of neuronal survival by electrophilic compounds, Trends Neurosci. 30 (2007) 38-45; T. Satoh, S. Okamoto, J. Cui, Y. Watanabe, K. Furuta, M. Suzuki, K. Tohyama, S.A. Lipton, Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc. Natl. Acad. Sci. USA 103 (2006) 768-773]. Hydroquinone-type electrophilic compounds such as tert-butyl hydroquinone (TBHQ) and carnosic acid (CA) have attracted special attention, because the oxidative conversion of 'hydroquinone' to 'quinone' is essential for the transcriptional activationmore » of the above-mentioned enzymes [T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto, Y. Shimojo, C. Kitajima, J. Cui, J. Kamins, S. Okamoto, T. Shirasawa, S.A. Lipton, Carnosic acid, a catechol-type electrophilic compound, protect neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of specific cysteine, J. Neurochem. 104 (2008) 1161-1131; A.D. Kraft, D.A. Johnson, J.A. Johnson, Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J. Neurosci. 24 (2004) 1101-1112]. In the present study, we examined the relationship between electrophilicity and the protective effects afforded by electrophilic compounds. Electrophilicity was assessed in terms of the ability of a compound to bind to a cysteine on bovine serum albumin, by which we found that neuroprotective hydroquinones [TBHQ (para-) and CA (ortho-)] had distinctive patterns of cysteine binding compared with other electrophilic compounds. Further, we found that isomers of simple ortho- and para-hydroquinones such as 2-methylhydroquinone (para-) and 4-methyl-catechol (ortho-) [not in abstract

  3. Alpha-keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells.

    PubMed

    Nian, Hui; Bisson, William H; Dashwood, Wan-Mohaiza; Pinto, John T; Dashwood, Roderick H

    2009-08-01

    Methylselenocysteine (MSC) and selenomethionine (SM) are two organoselenium compounds receiving interest for their potential anticancer properties. These compounds can be converted to beta-methylselenopyruvate (MSP) and alpha-keto-gamma-methylselenobutyrate (KMSB), alpha-keto acid metabolites that share structural features with the histone deacetylase (HDAC) inhibitor butyrate. We tested the organoselenium compounds in an in vitro assay with human HDAC1 and HDAC8; whereas SM and MSC had little or no activity up to 2 mM, MSP and KMSB caused dose-dependent inhibition of HDAC activity. Subsequent experiments identified MSP as a competitive inhibitor of HDAC8, and computational modeling supported a mechanism involving reversible interaction with the active site zinc atom. In human colon cancer cells, acetylated histone H3 levels were increased during the period 0.5-48 h after treatment with MSP and KMSB, and there was dose-dependent inhibition of HDAC activity. The proportion of cells occupying G(2)/M of the cell cycle was increased at 10-50 microM MSP and KMSB, and apoptosis was induced, as evidenced by morphological changes, Annexin V staining and increased cleaved caspase-3, -6, -7, -9 and poly(adenosine diphosphate-ribose)polymerase. P21WAF1, a well-established target gene of clinically used HDAC inhibitors, was increased in MSP- and KMSB-treated colon cancer cells at both the messenger RNA and protein level, and there was enhanced P21WAF1 promoter activity. These studies confirm that in addition to targeting redox-sensitive signaling molecules, alpha-keto acid metabolites of organoselenium compounds alter HDAC activity and histone acetylation status in colon cancer cells, as recently observed in human prostate cancer cells.

  4. Cationic compounds with activity against multidrug-resistant bacteria: interest of a new compound compared with two older antiseptics, hexamidine and chlorhexidine.

    PubMed

    Grare, M; Dibama, H Massimba; Lafosse, S; Ribon, A; Mourer, M; Regnouf-de-Vains, J-B; Finance, C; Duval, R E

    2010-05-01

    Use of antiseptics and disinfectants is essential in infection control practices in hospital and other healthcare settings. In this study, the in vitro activity of a new promising compound, para-guanidinoethylcalix[4]arene (Cx1), has been evaluated in comparison with hexamidine (HX) and chlorhexidine (CHX), two older cationic antiseptics. The MICs for 69 clinical isolates comprising methicillin-resistant Staphylococcus aureus, methicillin-sensitive S. aureus, coagulase-negative staphylococci (CoNS) (with or without mecA), vancomycin-resistant enterococci, Enterobacteriaceae producing various beta-lactamases and non-fermenting bacilli (Pseudomonas aeruginosa, Acinetobacter baumanii, Stenotrophomonas maltophilia) were determined. Cx1 showed similar activity against S. aureus, CoNS and Enterococcus spp., irrespective of the presence of mecA or van genes, or associated resistance genes, with very good activity against CoNS (MIC <1 mg/L). Variable activities were observed against Enterobacteriaceae; the MICs determined seemed to be dependent both on the genus (MICs of 2, 8 and 64 mg/L for Escherichia coli, Klebsiella pneumoniae and Yersinia enterocolitica, respectively) and on the resistance phenotype production of [Extended Spectrum beta-Lactase (ESBLs) or other beta-lactamases; overproduction of AmpC]. Poor activity was found against non-fermenting bacilli, irrespective of the resistance phenotype. CHX appeared to be the most active compound against all strains, with broad-spectrum and conserved activity against multidrug-resistant strains. HX showed a lower activity, essentially against Gram-positive strains. Consequently, the differences observed with respect to Cx1 suggest that they are certainly not the consequence of antibiotic resistance phenotypes, but rather the result of membrane composition modifications (e.g. of lipopolysaccharide), or of the presence of (activated) efflux-pumps. These results raise the possibility that Cx1 may be a potent new antibacterial

  5. Rhenium(I) tricarbonyl compounds of bioactive thiosemicarbazones: Synthesis, characterization and activity against Trypanosoma cruzi.

    PubMed

    Rodríguez Arce, Esteban; Machado, Ignacio; Rodríguez, Belén; Lapier, Michel; Zúñiga, María Carolina; Maya, Juan Diego; Olea Azar, Claudio; Otero, Lucía; Gambino, Dinorah

    2017-05-01

    American Trypanosomiasis is a chronic infection discovered and described in 1909 by the Brazilian scientist Carlos Chagas. It is caused by the protozoan parasite Trypanosoma cruzi. Although it affects about 10million people in Latin America, the current chemotherapy is still inadequate. The discovery of new drugs is urgently needed. Our group is focused on the development of prospective metal-based drugs mainly based on bioactive ligands and pharmacologically interesting metal ions. In this work three new rhenium(I) tricarbonyl compounds fac-[Re I (CO) 3 Br(HL)] where HL=5-nitrofuryl containing thiosemicarbazones were synthesized and fully characterized in solution and in the solid state. The in vitro evaluation of the compounds on T. cruzi trypomastigotes (Dm28c strain) showed that the Re(I) compounds are 8 to 15 times more active than the reference drug Nifurtimox and show a 4 to 17 fold increase in activity in respect to the free (HL) ligands. Obtained compounds also show good selectivity indexes (IC 50 endothelial cells Ea.hy926 /IC 50 T. cruzi (Dm28c tripomastigotes) ). 1 H NMR and MS studies, performed with time, showed that the fac-[Re(CO) 3 Br(HL)] species convert into the dimers [Re 2 (CO) 6 (L) 2 ] in solution. Crystal structure of [Re I 2 (CO) 6 (L2) 2 ], the product of complexes' dimerization, was solved. Related to the mechanism of action, the studied compounds do not generate radical oxygen species in the parasite (as 5-nitrofuryl derived thiosemicarbazones do) probably due to the unfavorable nitro reduction potential of the generated dimeric species. On the contrary, the compounds produce a decrease of the oxygen consumption rate of the parasites, maybe inhibiting their mitochondrial respiration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Evaluation of anti-sepsis activity by compounds with high affinity to lipid a from HuanglianJiedu decoction.

    PubMed

    Xu, Yubin; Guo, Song; Chen, Guirong; Zhang, Mingbo; Zhang, Xu; Dou, Deqiang

    2017-12-01

    HuanglianJiedu decoction (HJD) is a classic prescription for heat-clearing away and detoxifying, which is used for the clinical treatment of sepsis, due to sepsis refers to the systemic inflammatory response induced by infection in western medicine, and infection belongs to the category of poison-heat syndrome in traditional Chinese medicine. Previous study had elucidated the effective components from HJD with high affinity to lipid A, which can generate the release of pro-inflammatory-cytokines, resulting in sepsis. Now the anti-sepsis activities of these compounds were evaluated. Immunofluorescence, immunohistochemical staining, ELISA and MTT methods were used to evaluated these compounds. Immunofluorescence analysis evaluated the effects of compounds on the binding of FITC-LPS to RAW264.7 cells, and showed the fluorescence intensity was significant attenuated in geniposides, palmatine, baicalin and berberine groups (64 and 128 μg/mL) compared with model group (p < 0.05), which showed these compounds inhibit the combination of LPS with receptor of cells; immunohistochemical staining and ELISA method showed the TLR4 receptor expression, IL-6 and TNF-α levels were significant decreased in the groups treated with compounds, indicating that geniposides, baicalin, palmatine and berberine can play the role of anti-sepsis by inhibiting the expression of TLR4, the releasing of IL-6 and TNF-α; MTT assay showed that palmatine and berberine had a weak effect on cell viability, while others not, indicating that the compounds have protective activity. It could be concluded the high affinity binding between these compounds and lipid A may be an important basis for its anti-LPS activity in vitro.

  7. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    PubMed

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  8. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies

    USGS Publications Warehouse

    Ying, Guang-Guo; Kookana, Rai S.; Kolpin, Dana W.

    2009-01-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  9. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies.

    PubMed

    Ying, Guang-Guo; Kookana, Rai S; Kolpin, Dana W

    2009-08-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  10. A new parameter to simultaneously assess antioxidant activity for multiple phenolic compounds present in food products.

    PubMed

    Yang, Hong; Xue, Xuejia; Li, Huan; Tay-Chan, Su Chin; Ong, Seng Poon; Tian, Edmund Feng

    2017-08-15

    In this work, we established a new methodology to simultaneously assess the relative reaction rates of multiple antioxidant compounds in one experimental set-up. This new methodology hypothesizes that the competition among antioxidant compounds towards limiting amount of free radical (in this article, DPPH) would reflect their relative reaction rates. In contrast with the conventional detection of DPPH decrease at 515nm on a spectrophotometer, depletion of antioxidant compounds treated by a series of DPPH concentrations was monitored instead using liquid chromatography coupled with quadrupole time-of-flight (LC-QTOF). A new parameter, namely relative antioxidant activity (RAA), has been proposed to rank these antioxidants according to their reaction rate constants. We have investigated the applicability of RAA using pre-mixed standard phenolic compounds, and also extended this application to two food products, i.e. red wine and green tea. It has been found that RAA correlates well with the reported k values. This new parameter, RAA, provides a new perspective in evaluating antioxidant compounds present in food and herbal matrices. It not only realistically reflects the antioxidant activity of compounds when co-existing with competitive constituents; and it could also quicken up the discovery process in the search for potent yet rare antioxidants from many herbs of food/medicinal origins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. In Vitro and In Vivo Activities of Dicationic Diguanidino Compounds against Echinococcus multilocularis Metacestodes

    PubMed Central

    Küster, Tatiana; Kriegel, Nadja; Boykin, David W.; Stephens, Chad E.

    2013-01-01

    Alveolar echinococcosis (AE) is a disease predominantly affecting the liver, with metacestodes (larvae) of the tapeworm Echinococcus multilocularis proliferating and exhibiting tumor-like infiltrative growth. For many years, chemotherapeutical treatment against alveolar echinococcosis has relied on the benzimidazoles albendazole and mebendazole, which require long treatment durations and exhibit parasitostatic rather than parasiticidal efficacy. Although benzimidazoles have been and still are beneficial for the patients, there is clearly a demand for alternative and more efficient treatment options. Aromatic dications, more precisely a small panel of di-N-aryl-diguanidino compounds, were screened for efficacy against E. multilocularis metacestodes in vitro. Only those with a thiophene core group were active against metacestodes, while furans were not. The most active compound, DB1127, was further investigated in terms of in vivo efficacy in mice experimentally infected with E. multilocularis metacestodes. This diguanidino compound was effective against AE when administered intraperitoneally but not when applied orally. Thus, thiophene-diguanidino derivatives with improved bioavailability when administered orally could lead to treatment options against AE. PMID:23716058

  12. The uterotonic activity of compounds isolated from the supercritical fluid extract of Ekebergia capensis.

    PubMed

    Sewram, V; Raynor, M W; Mulholland, D A; Raidoo, D M

    2000-12-01

    The wood of Ekebergia capensis Sparrm. is used by the local Zulu community in KwaZulu-Natal Province, South Africa to facilitate childbirth. In this investigation, the uterotonic properties of extracts from this tree were evaluated using both pregnant and non-pregnant guinea pig uterine smooth muscle in vitro. The extracts were prepared using water modified supercritical carbon dioxide at 400 atm and 80 degrees C. As samples of these extracts displayed positive results when screened for uterotonic activity, gravity column chromatography followed by NMR spectroscopy was performed in an attempt to isolate and elucidate the structures of the compounds that were present in the extract. The extract yielded five known compounds of which only two, viz. oleanonic acid and 3-epioleanolic acid, displayed uterotonic activity. Receptor binding assays were subsequently performed with 3-epioleanolic acid to ascertain its mode of action. Bradykinin (30 ng/100 microl) and acetylcholine (1 microg/100 microl) were used as the B2 and cholinergic receptor agonists respectively with icatibant (HOE 140) (30 ng/100 microl) and atropine (60 micro/100 microl) as their corresponding antagonists. 3-epioleanolic acid was observed to mediate its effect through the cholinergic receptor. The results of this study show that two compounds from the extract of this tree possess varying degrees of agonist activity on uterine smooth muscle with minor changes in the molecular structure affecting its intrinsic activity on uterine muscle.

  13. Synthesis of Hydroxide-TiO2 Compounds with Photocatalytic Activity for Degradation of Phenol

    NASA Astrophysics Data System (ADS)

    Contreras-Ruiz, J. C.; Martínez-Gallegos, S.; Ordoñez, E.; González-Juárez, J. C.; García-Rivas, J. L.

    2017-03-01

    Photocatalytic degradation of phenol using titanium dioxide (TiO2), either alone or in combination with other materials, has been tested. Mg/Al hydrotalcites prepared by two methods using inorganic (HC) or organic (HS) chemical reagents, along with mixed oxides produced by calcination of these products (HCC and HSC), were mixed with titanium isopropoxide to obtain hydroxide-TiO2 compounds (HCC-TiO2 and HSC-TiO2) and their photocatalytic activity tested in solutions of 10 mg/L phenol at 120 min under illumination at λ UV = 254 nm with power of 4 W or 8 W. The obtained materials were characterized by various techniques, revealing that TiO2 was incorporated into the mixed oxides of the calcined hydrotalcite to form the above-mentioned compounds. The photocatalytic test results indicate that the activity of HCC-TiO2 can be attributed to increased phenol adsorption by hydrotalcite for transfer to the active photocatalytic phase of the impregnated TiO2 particles, while the better results obtained for HSC-TiO2 are due to greater catalyst impregnation on the surface of the calcined hydrotalcite, reducing the screening phenomenon and achieving HSC-TiO2 degradation of up to 21.0% at 8 W. Reuse of both compounds indicated tight combination of HCC or HSC with TiO2, since in four successive separation cycles there was little reduction of activity, being associated primarily with material loss during recovery.

  14. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs)-naproxen and carbamazepine and one endocrine disrupting compound (EDC)-nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol.

  15. A comparative study of aroma-active compounds between dark and milk chocolate: relationship to sensory perception.

    PubMed

    Liu, Jianbin; Liu, Mengya; He, Congcong; Song, Huanlu; Guo, Jia; Wang, Ye; Yang, Haiying; Su, Xiaoxia

    2015-04-01

    The most important aroma-active compounds of two types of chocolate and cocoa liquor used for their production were analysed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). Furthermore, the relationship between odorants and sensory perception of chocolate was measured by quantitative analysis, sensory evaluation and correlation analysis. In addition, some chemicals were added to the original dark or milk chocolate to validate their roles in the aroma property of chocolate. A total of 32 major aroma-active compounds were identified in the chocolate with the flavour dilution factors of 27-729 by AEDA, including seven aldehydes, six pyrazines, three pyrroles, four carboxylic acids, four lactones, two alcohols, two ketones, one ester, one pyrone, one furan and one sulfur-containing compound. Further quantitative analysis showed that dark chocolate had higher contents of pyrazine, pyrrole, carboxylic acids, alcohols and Strecker aldehydes, whereas the concentration of lactones, esters, long chain aldehydes and ketones were higher in the milk type. Differences in volatile composition and descriptive flavour attributes between the dark and milk chocolate were observed. The relationship between aroma-active compounds and sensory perception in the chocolate was verified. © 2014 Society of Chemical Industry.

  16. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  17. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis

    PubMed Central

    2010-01-01

    Background The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. Methods The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. Results The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. Conclusion This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds. PMID:20939907

  18. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Johann, Susana; Sá, Nívea P; Lima, Luciana A R S; Cisalpino, Patricia S; Cota, Betania B; Alves, Tânia M A; Siqueira, Ezequias P; Zani, Carlos L

    2010-10-12

    The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds.

  19. Antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds from stem bark of Albizia adianthifolia (Mimosoideae).

    PubMed

    Tamokou, Jean de Dieu; Simo Mpetga, Deke James; Keilah Lunga, Paul; Tene, Mathieu; Tane, Pierre; Kuiate, Jules Roger

    2012-07-18

    Albizia adianthifolia is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds isolated from the stem bark of this plant. The plant extract was prepared by maceration in ethyl acetate. Its fractionation was done by column chromatography and the structures of isolated compounds were elucidated using spectroscopic data in conjunction with literature data. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and trolox equivalent antioxidant capacity (TEAC) assays were used to detect the antioxidant activity. Broth micro-dilution method was used for antimicrobial test. Total phenol content was determined spectrophotometrically in the extracts by using Folin-Ciocalteu method. The fractionation of the extract afforded two known compounds: lupeol (1) and aurantiamide acetate (2) together with two mixtures of fatty acids: oleic acid and n-hexadecanoic acid (B₁); n-hexadecanoic acid, octadecanoic acid and docosanoic acid (B₂). Aurantiamide acetate was the most active compound. The total phenol concentration expressed as gallic acid equivalents (GAE) was found to vary from 1.50 to 13.49 μg/ml in the extracts. The antioxidant activities were well correlated with the total phenol content (R² = 0.946 for the TEAC method and R² = 0.980 for the DPPH free-radical scavenging assay). Our results clearly reveal that the ethyl acetate extract from the stem bark of A. adianthifolia possesses antioxidant and antimicrobial principles. The antioxidant activity of this extract as well as that of compound 2 are being reported herein for the first time. These results provide promising baseline information for the potential use of this plant as well as compound 2 in the treatment of oxidative damage and infections associated with the studied microorganisms.

  20. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibitedmore » both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.« less

  1. Phenolic compounds from the flowers of Nepalese medicinal plant Aconogonon molle and their DPPH free radical-scavenging activities.

    PubMed

    Joshi, Khem Raj; Devkota, Hari Prasad; Watanabe, Takashi; Yahara, Shoji

    2014-01-01

    Eleven phenolic compounds, quercetin (1), quercetin 3-O-β-d-galactopyranoside (2), quercetin 3-O-(6″-O-galloyl)-β-d-galactopyranoside (3), quercetin 3-O-(6″-O-caffeoyl)-β-d-galactopyranoside (4), quercetin 3-O-β-d-glucopyranoside (5), rutin (6) quercetin 3-O-α-l-arabinopyranoside (7), quercetin 3-O-α-l-arabinofuranoside (8), protocatechulic acid (9), gallic acid (10) and chlorogenic acid (11), were isolated from the flowers of Aconogonon molle, a Nepalese medicinal plant. Structures of these compounds were elucidated on the basis of spectroscopic methods. All these compounds were isolated for the first time from flowers, and five compounds (4, 5, 8, 9 and 11) were isolated for the first time from A. molle. All of these isolated compounds were evaluated for their in vitro antioxidant activity by using the 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method. Quercetin (1), quercetin glycosides (2-8) and gallic acid (10) exhibited potent antioxidant activity.

  2. Spectral characterization and antibacterial activity of an isolated compound from Memecylon edule leaves.

    PubMed

    Srinivasan, R; Natarajan, D; Shivakumar, M S

    2017-03-01

    Memecylon edule Roxb. (Melastamataceae family) is a small evergreen tree reported as having ethnobotanical and pharmacological properties. The present study was aimed to investigate the spectral characterization and antibacterial activity of isolated pure compound (3β-hydroxyurs-12-en-28-oic acid (ursolic acid)) from Memecylon edule leaves by performing bioassay guided isolation method. The structure derivation of isolated compound was done by different spectral studies like UV, FT-IR, LC-MS, CHNS analysis, 1D ( 1 H, 13 C and DEPT-135) and 2D-NMR (HSQC and HMBC), respectively. About 99.29% purity of the compound was found in LC analysis. 1 H NMR spectrum results of compound shown 48 protons appear at different shielded region and most of the protons were present in aliphatic region. Whereas, 13 C NMR spectral data resulted seven methyl carbons (CH3), nine methylene carbons (CH2), seven methine carbons (CH) and six non-hydrogenated carbons (C) which are characteristic of pentacyclic triterpene. The isolated pure compound was tested for its antibacterial properties against targeted human pathogens by performing agar well diffusion, MIC and MBC assays and the result exhibits better growth inhibitory effects against S. epidermidis and S. pneumoniae, with the MIC values of 1.56 and 3.15μg/ml. The outcome of this study suggests that the bioactive compound is used for development of plant based drugs in pharmaceutical industry for combating microbial mediated diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    PubMed Central

    Richter, Ingrid; Fidler, Andrew E.

    2014-01-01

    Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319

  4. Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge.

    PubMed

    Jiang, H; Zhan, W Q; Liu, X; Jiang, S X

    2008-12-01

    The antioxidant properties of the various extracts and flavonoids prepared from Oxytropis falcate Bunge were investigated by 1,1-diphenyl-2-picryldydrazyl (DPPH) radical-scavenging assay. In the chloroform, ethyl acetate and n-butanol extracts, the ethyl acetate extract exhibited the highest antioxidant activity (IC(50) = 2.05 mg mL(-1)). Furthermore, rhamnocitrin, kaempferol, rhamnetin, 2',4'-dihydroxychalcone and 2',4', beta-trihydroxy-dihydrochalcone were purified from chloroform and ethyl acetate extracts. The radical-scavenging activities of the five compounds were also measured and the results showed that kaempferol (IC(50) = 0.11 mg mL(-1)), rhamnetin (IC(50) = 0.14 mg mL(-1)) and rhamnocitrin (IC(50) = 0.15 mg mL(-1)) exhibited considerable antioxidant activities, but the antioxidant activities of the two dihydrochalcones were very weak. Although these flavonoids are known, this is the first report of antioxidant activity in this plant.

  5. Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds

    PubMed Central

    Boudhar, Aicha; Ng, Xiao Wei; Loh, Chiew Yee; Chia, Wan Ni; Tan, Zhi Ming; Nosten, Francois

    2016-01-01

    Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria. PMID:26953199

  6. Caatinga plants: Natural and semi-synthetic compounds potentially active against Trichomonas vaginalis.

    PubMed

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; da Silva, Gloria Narjara Santos; Silva, Denise Brentan; Lopes, Norberto Peporine; Gnoatto, Simone Cristina Baggio; da Silva, Márcia Vanusa; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis causes trichomoniasis; the most common but overlooked non-viral sexually transmitted disease worldwide. The treatment is based at 5'-nitroimidazoles, however, failure are related to resistance of T. vaginalis to chemotherapy. Caatinga is a uniquely Brazilian region representing a biome with type desert vegetation and plants present diverse biological activity, however, with few studies. The aim of this study was to investigate the activity against T. vaginalis of different plants from Caatinga and identify the compounds responsible by the activity. A bioguided fractionation of Manilkara rufula was performed and four major compounds were identified: caproate of α-amyrin (1b), acetate of β-amyrin (2a), caproate of β-amyrin (2b), and acetate of lupeol (3a). In addition, six derivatives of α-amyrin (1), β-amyrin (2) and lupeol (3) were synthesized and tested against the parasite. Ursolic acid (5) reduced about 98% of parasite viability after 2h of incubation and drastic ultrastructural alterations were observed by scanning electron microscopy. Moreover, 5 presented high cytotoxicity to HMVII and HeLa cell line and low cytotoxicity against Vero line at 50 μM (MIC against the parasite). Metronidazole effect against T. vaginalis resistant isolate was improved when in association with 5. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    PubMed

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds

    NASA Astrophysics Data System (ADS)

    Sadasivam, K.; Kumaresan, R.

    2011-03-01

    The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.

  9. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    PubMed

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  10. Novel long-chain compounds with both immunomodulatory and MenA inhibitory activities against Staphylococcus aureus and its biofilm.

    PubMed

    Choi, Seoung-Ryoung; Frandsen, Joel; Narayanasamy, Prabagaran

    2017-01-10

    Menaquinone (MK) biosynthesis pathway is a potential target for evaluating antimicrobials in gram-positive bacteria. Here, 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) was targeted to reduce methicillin-resistant Staphylococcus aureus (MRSA) growth. MenA inhibiting, long chain-based compounds were designed, synthesized and evaluated against MRSA and menaquinone utilizing bacteria in aerobic conditions. The results showed that these bacteria were susceptible to most of the compounds. Menaquinone (MK-4) supplementation rescued MRSA growth, suggesting these compounds inhibit MK biosynthesis. 3a and 7c exhibited promising inhibitory activities with MICs ranging 1-8 μg/mL against MRSA strains. The compounds did not facilitate small colony variant formation. These compounds also inhibited the biofilm growth by MRSA at high concentration. Compounds 3a, 6b and 7c displayed a promising extracellular bactericidal activity against MRSA at concentrations equal to and four-fold less than their respective MICs. We also observed cytokines released from THP-1 macrophages treated with compounds 3a, 6b and 7c and found decreases in TNF-α and IL-6 release and increase in IL-1β. These data provide evidence that MenA inhibitors act as TNF-α and IL-6 inhibitors, raising the potential for development and application of these compounds as potential immunomodulatory agents.

  11. Identification of Rotundone as a Potent Odor-Active Compound of Several Kinds of Fruits.

    PubMed

    Nakanishi, Akira; Fukushima, Yusuke; Miyazawa, Norio; Yoshikawa, Keisuke; Maeda, Tomoko; Kurobayashi, Yoshiko

    2017-06-07

    An investigation of the aromas of grapefruit, orange, apple, and mango revealed the presence of an odor-active compound that gave off a strong woody odor when assessed by gas chromatography-olfactometry. We isolated the compound from a high-boiling fraction of an orange essential oil, and subsequent nuclear magnetic resonance analyses of the isolated compound identified it as rotundone. Mass spectra and retention indices obtained from aroma concentrates of grapefruit, apple, and mango were identical to those of rotundone, which was therefore determined to be the common woody compound in these fruits. Sensory analyses were performed to assess the effects of rotundone on model beverages of the various fruits. It was revealed that rotundone added at even subthreshold levels to model beverages did not confer directly the woody odor, but had significant effects on the overall flavors of the beverages, helping them to better approximate the natural flavors of the fruits.

  12. Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris.

    PubMed

    Neiens, Silva D; Steinhaus, Martin

    2018-02-14

    The volatiles isolated from samples of the special flavor hop varieties, Huell Melon and Polaris, and from the aroma hop variety, Hallertau Tradition, by solvent extraction and solvent-assisted flavor evaporation (SAFE) were subjected to a comparative aroma extract dilution analysis (cAEDA), which resulted in 46 odor-active compounds in the flavor dilution (FD) factor range of 16 to 2048. On the basis of high FD factors, myrcene, (3R)-linalool, and 2- and 3-methylbutanoic acid were confirmed as important variety-independent hop odorants. (1R,4S)-Calamenene was identified for the first time as an odor-active compound in hops. Clear differences in the FD factors and their subsequent objectification by stable isotope dilution quantitation suggested that high concentrations of the esters ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, and propyl 2-methylbutanoate cause the characteristic fruity, cantaloupe-like odor note in Huell Melon hops, whereas the fruity and minty odor notes in Polaris are associated with high amounts of 3-methylbutyl acetate and 1,8-cineole.

  13. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States.

    PubMed

    Halvorsen, Bente L; Carlsen, Monica H; Phillips, Katherine M; Bøhn, Siv K; Holte, Kari; Jacobs, David R; Blomhoff, Rune

    2006-07-01

    Supplements containing ascorbic acid, alpha-tocopherol, or beta-carotene do not protect against oxidative stress-related diseases in most randomized intervention trials. We suggest that other redox-active phytochemicals may be more effective and that a combination of different redox-active compounds (ie, antioxidants or reductants) may be needed for proper protection against oxidative damage. We aimed to generate a ranked food table with values for total content of redox-active compounds to test this alternative antioxidant hypothesis. An assay that measures the total concentration of redox-active compounds above a certain cutoff reduction potential was used to analyze 1113 food samples obtained from the US Department of Agriculture National Food and Nutrient Analysis Program. Large variations in the content of antioxidants were observed in different foods and food categories. The food groups spices and herbs, nuts and seeds, berries, and fruit and vegetables all contained foods with very high antioxidant contents. Most food categories also contained products almost devoid of antioxidants. Of the 50 food products highest in antioxidant concentrations, 13 were spices, 8 were in the fruit and vegetables category, 5 were berries, 5 were chocolate-based, 5 were breakfast cereals, and 4 were nuts or seeds. On the basis of typical serving sizes, blackberries, walnuts, strawberries, artichokes, cranberries, brewed coffee, raspberries, pecans, blueberries, ground cloves, grape juice, and unsweetened baking chocolate were at the top of the ranked list. This ranked antioxidant food table provides a useful tool for investigations into the possible health benefit of dietary antioxidants.

  14. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Peldszus, S.; Huck, P.M.

    The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surfacemore » diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.« less

  15. Isolation, characterization and HPLC quantification of compounds from Aquilegia fragrans Benth: Their in vitro antibacterial activities against bovine mastitis pathogens.

    PubMed

    Mushtaq, Saleem; Aga, Mushtaq A; Qazi, Parvaiz H; Ali, Md Niamat; Shah, Aabid Manzoor; Lone, Sajad Ahmad; Shah, Aiyatullah; Hussain, Aehtesham; Rasool, Faheem; Dar, Hafizullah; Shah, Zeeshan Hamid; Lone, Shabir H

    2016-02-03

    The underground parts of Aquilegia fragrans are traditionally used for the treatment of wounds and various inflammatory diseases like bovine mastitis. However, there are no reports on the phytochemical characterization and antibacterial studies of A. fragrans. To isolate compounds from the methanol extract of the underground parts of A. fragrans and determine their antibacterial activity against the pathogens of bovine mastitis. The study was undertaken in order to scientifically validate the traditional use of A. fragrans. Five compounds were isolated from the methanol extract of the underground parts of A. fragrans using silica gel column chromatography. Structural elucidation of the isolated compounds was done using spectral data analysis and comparison with literature. High performance liquid chromatography (HPLC) was used for the qualitative and quantitative determination of isolated compounds in the crude methanol extract. The methanol extract and isolated compounds were evaluated for antibacterial activities against mastitis pathogens using broth micro-dilution technique. The five isolated compounds were identified as (1) 2, 4-dihydroxyphenylacetic acid methyl ester (2) β-sitosterol (3) Aquilegiolide (4) Glochidionolactone-A and (5) Magnoflorine. A quick and sensitive HPLC method was developed for the first time for qualitative and quantitative determination of four isolated marker compounds from A. fragrans. The crude methanol extract and compound 5 exhibited weak antibacterial activities that varied between the bacterial species (MIC=500-3000 µg/ml). The above results show that the crude methanol extract and isolated compounds from A. fragrans exhibit weak antibacterial activities. Further phytochemical and pharmacological studies are required for proper scientific validation of the folk use of this plant species in the treatment of various inflammatory diseases like bovine mastitis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    PubMed Central

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H.

    2011-01-01

    Background Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management. PMID:21379573

  17. Identification of Three Classes of Heteroaromatic Compounds with Activity against Intracellular Trypanosoma cruzi by Chemical Library Screening

    PubMed Central

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S.; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis. PMID:19238193

  18. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    PubMed

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50): 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50) values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  19. Identification of active compounds from Aurantii Immatri Pericarpium attenuating brain injury in a rat model of ischemia-reperfusion.

    PubMed

    Yang, Eun-Ju; Lim, Sun Ha; Song, Kyung-Sik; Han, Hyung Soo; Lee, Jongwon

    2013-05-01

    Ischemic stroke is caused by brain injury due to prolonged ischemia by occlusion of cerebral arteries. In this study, we isolated active compounds from an ethanol extract of Aurantii Immatri Pericarpium (HY5356). We first showed by DNA fragmentation assay that HY5356 improved human hepatocellular carcinoma cells (HepG2) under hypoxic conditions by inhibiting apoptosis. When HY5356 was fractionated with dichloromethane (MC), ethyl acetate (EA) and n-butanol (BU), the MC fraction improved cell viability at the lowest concentration (100 μg/ml). Intraperitoneal injection of HY5356 (200 mg/kg) or the MC fraction (200 mg/kg) to rats prior to occlusion attenuated brain injury significantly in a rat model of ischemia-reperfusion. Adopting cell viability under hypoxic conditions as an activity screening system, we isolated nobiletin and tangeretin as active compounds. The results suggest that intake of Aurantii Immatri Pericarpium containing nobiletin and tangeretin as active compounds might be beneficial for preventing ischemic stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    PubMed Central

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.

    2014-01-01

    Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744

  1. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea.

    PubMed

    Passos, Giselle F; Fernandes, Elizabeth S; da Cunha, Fernanda M; Ferreira, Juliano; Pianowski, Luiz F; Campos, Maria M; Calixto, João B

    2007-03-21

    The anti-inflammatory and anti-allergic effects of the essential oil of Cordia verbenacea (Boraginaceae) and some of its active compounds were evaluated. Systemic treatment with the essential oil of Cordia verbenacea (300-600mg/kg, p.o.) reduced carrageenan-induced rat paw oedema, myeloperoxidase activity and the mouse oedema elicited by carrageenan, bradykinin, substance P, histamine and platelet-activating factor. It also prevented carrageenan-evoked exudation and the neutrophil influx to the rat pleura and the neutrophil migration into carrageenan-stimulated mouse air pouches. Moreover, Cordia verbenacea oil inhibited the oedema caused by Apis mellifera venom or ovalbumin in sensitized rats and ovalbumin-evoked allergic pleurisy. The essential oil significantly decreased TNFalpha, without affecting IL-1beta production, in carrageenan-injected rat paws. Neither the PGE(2) formation after intrapleural injection of carrageenan nor the COX-1 or COX-2 activities in vitro were affected by the essential oil. Of high interest, the paw edema induced by carrageenan in mice was markedly inhibited by both sesquiterpenic compounds obtained from the essential oil: alpha-humulene and trans-caryophyllene (50mg/kg, p.o.). Collectively, the present results showed marked anti-inflammatory effects for the essential oil of Cordia verbenacea and some active compounds, probably by interfering with TNFalpha production. Cordia verbenacea essential oil or its constituents might represent new therapeutic options for the treatment of inflammatory diseases.

  2. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities.

    PubMed

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  3. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities

    NASA Astrophysics Data System (ADS)

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  4. A Multiplexed Assay That Monitors Effects of Multiple Compound Treatment Times Reveals Candidate Immune-Enhancing Compounds.

    PubMed

    Zhao, Ziyan; Henowitz, Liza; Zweifach, Adam

    2018-05-01

    We previously developed a flow cytometry assay that monitored lytic granule exocytosis in cytotoxic T lymphocytes stimulated by contacting beads coated with activating anti-CD3 antibodies. That assay was multiplexed in that responses of cells that did or did not receive the activating stimulus were distinguished via changes in light scatter accompanying binding of cells to beads, allowing us to discriminate compounds that activate responses on their own from compounds that enhance responses in cells that received the activating stimulus, all within a single sample. Here we add a second dimension of multiplexing by developing means to assess in a single sample the effects of treating cells with test compounds for different times. Bar-coding cells before adding them to test wells lets us determine compound treatment time while also monitoring activation status and response amplitude at the point of interrogation. This multiplexed assay is suitable for screening 96-well plates. We used it to screen compounds from the National Cancer Institute, identifying several compounds that enhance anti-LAMP1 responses. Multiple-treatment-time (MTT) screening enabled by bar-coding and read via high-throughput flow cytometry may be a generally useful method for facilitating the discovery of compounds of interest.

  5. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    PubMed Central

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested. PMID:21845104

  6. Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit.

    PubMed

    Pereira, Gustavo Araujo; Arruda, Henrique Silvano; de Morais, Damila Rodrigues; Eberlin, Marcos Nogueira; Pastore, Glaucia Maria

    2018-06-01

    Soluble carbohydrates, volatile and phenolic compounds from calabura fruit as well as its antioxidant activity were assessed. The low amount of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) and similar amount of glucose and fructose allow us to classify the calabura berry as low-FODMAPs. The terpenes β-Farnesene and dendrolasin identified by SPME-GC-MS were the major volatile components. UHPLC-MS/MS analysis revelled gallic acid (5325 μg/g dw) and cyanidin-3-O-glucoside (171 μg/g dw) as the main phenolic compounds, followed by gentisic acid, gallocatechin, caffeic acid and protocatechuic acid. In addition, gallic acid was found mainly in esterified (2883 μg/g dw) and insoluble-bound (2272 μg/g dw) forms. Free and glycosylated forms showed however the highest antioxidant activity due to occurrence of flavonoids (0.28-27 μg/g dw) in these fractions, such as catechin, gallocatechin, epigallocatechin, naringenin, and quercetin. These findings clearly suggest that calabura is a berry with low energy value and attractive colour and flavour that may contribute to the intake of several bioactive compounds with antioxidant activity. Furthermore, this berry have great potential for use in the food industry and as functional food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits.

    PubMed

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  8. Olfactometric determination of the most potent odor-active compounds in salmon muscle (Salmo salar) smoked by using four smoke generation techniques.

    PubMed

    Varlet, Vincent; Serot, Thierry; Cardinal, Mireille; Knockaert, Camille; Prost, Carole

    2007-05-30

    The volatile compounds of salmon fillets smoked according to four smoked generation techniques (smoldering, thermostated plates, friction, and liquid smoke) were investigated. The main odor-active compounds were identified by gas chromatography coupled with olfactometry and mass spectrometry. Only the odorant volatile compounds detected by at least six judges (out of eight) were identified as potent odorants. Phenolic compounds and guaiacol derivatives were the most detected compounds in the olfactometric profile whatever the smoking process and could constitute the smoky odorant skeleton of these products. They were recovered in the aromatic extracts of salmon smoked by smoldering and by friction, which were characterized by 18 and 25 odor-active compounds, respectively. Furannic compounds were more detected in products smoked with thermostated plates characterized by 26 odorants compounds. Finally, the 27 odorants of products treated with liquid smoke were significantly different from the three others techniques applying wood pyrolysis because pyridine derivatives and lipid oxidation products were perceived in the aroma profile.

  9. Gastroprotective activity of the hydroethanolic extract and isolated compounds from the leaves of Solanum cernuum Vell.

    PubMed

    Abreu Miranda, Mariza; Lemos, Marivane; Alves Cowart, Kamila; Rodenburg, Douglas; D McChesney, James; Radwan, Mohamed M; Furtado, Niege Araçari Jacometti Cardoso; Kenupp Bastos, Jairo

    2015-08-22

    Solanum cernuum Vell. (Solanaceae) is a Brazilian medicinal plant, traditionally known as "panaceia". Its folk name is probably due to its wide range of applications in traditional medicine including the treatment of ulcers. To evaluate the gastroprotective activities of the hydroethanolic extract (ESC) of S. cernuum and its major isolated compounds using in vivo gastric ulcer models. The ESC extract was obtained by maceration followed by percolation of the dried and powdered leaves of S. cernuum in ethanol:water (7:3). The major compounds in the extract were isolated by applying various preparative chromatographic techniques. The gastroprotective activity was evaluated in mice using different gastric ulcer-induced models. The anti-Helicobacter pylori activity was performed using the agar-well diffusion and broth microdilution methods. The ESC extract showed gastroprotective effects in the assay of acute gastric ulcer-induced by HCl/EtOH, nonsteroidal anti-inflammatory drug, and acetic acid-induced chronic ulcer protocols. The results also demonstrated that the gastroprotection induced by ESC extract is related to the activity of nitric oxide and endogenous sulfhydryls, which are important gastroprotective factors. The ESC extract and the alkaloid cernumidine did not show activity against H. pylori in the concentrations tested. The present study showed that the crude extract of S. cernuum possessed gastroprotective activity which corroborating the traditional use of this plant for the treatment of gastric ulcers. The isolated flavonoids, quercitrin and afzelin as well as the phenylpropanoid, isoferulic acid are suggested to be the compounds responsible for the gastroprotective activity of S. cernuum extract. Copyright © 2015. Published by Elsevier Ireland Ltd.

  10. Immobilized magnetic beads-based multi-target affinity selection coupled with HPLC-MS for screening active compounds from traditional Chinese medicine and natural products.

    PubMed

    Chen, Yaqi; Chen, Zhui; Wang, Yi

    2015-01-01

    Screening and identifying active compounds from traditional Chinese medicine (TCM) and other natural products plays an important role in drug discovery. Here, we describe a magnetic beads-based multi-target affinity selection-mass spectrometry approach for screening bioactive compounds from natural products. Key steps and parameters including activation of magnetic beads, enzyme/protein immobilization, characterization of functional magnetic beads, screening and identifying active compounds from a complex mixture by LC/MS, are illustrated. The proposed approach is rapid and efficient in screening and identification of bioactive compounds from complex natural products.

  11. AMPK modulatory activity of olive-tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach.

    PubMed

    Jiménez-Sánchez, Cecilia; Olivares-Vicente, Mariló; Rodríguez-Pérez, Celia; Herranz-López, María; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Encinar, José Antonio; Micol, Vicente

    2017-01-01

    Olive-tree polyphenols have demonstrated potential for the management of obesity-related pathologies. We aimed to explore the capacity of Olive-tree leaves extract to modulate triglyceride accumulation and AMP-activated protein kinase activity (AMPK) on a hypertrophic adipocyte model. Intracellular triglycerides and AMPK activity were measured on the hypertrophic 3T3-L1 adipocyte model by AdipoRed and immunofluorescence microscopy, respectively. Reverse phase high performance liquid chromatography coupled to time-of-flight mass detection with electrospray ionization (RP-HPLC-ESI-TOF/MS) was used for the fractionation of the extract and the identification of the compounds. In-silico molecular docking of the AMPK alpha-2, beta and gamma subunits with the identified compounds was performed. Olive-tree leaves extract decreased the intracellular lipid accumulation through AMPK-dependent mechanisms in hypertrophic adipocytes. Secoiridoids, cinnamic acids, phenylethanoids and phenylpropanoids, flavonoids and lignans were the candidates predicted to account for this effect. Molecular docking revealed that some compounds may be AMPK-gamma modulators. The modulatory effects of compounds over the alpha and beta AMPK subunits appear to be less probable. Olive-tree leaves polyphenols modulate AMPK activity, which may become a therapeutic aid in the management of obesity-associated disturbances. The natural occurrence of these compounds may have important nutritional implications for the design of functional ingredients.

  12. AMPK modulatory activity of olive–tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach

    PubMed Central

    Jiménez-Sánchez, Cecilia; Olivares-Vicente, Mariló; Rodríguez-Pérez, Celia; Herranz-López, María; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Encinar, José Antonio; Micol, Vicente

    2017-01-01

    Scope Olive-tree polyphenols have demonstrated potential for the management of obesity-related pathologies. We aimed to explore the capacity of Olive-tree leaves extract to modulate triglyceride accumulation and AMP-activated protein kinase activity (AMPK) on a hypertrophic adipocyte model. Methods Intracellular triglycerides and AMPK activity were measured on the hypertrophic 3T3-L1 adipocyte model by AdipoRed and immunofluorescence microscopy, respectively. Reverse phase high performance liquid chromatography coupled to time-of-flight mass detection with electrospray ionization (RP-HPLC-ESI-TOF/MS) was used for the fractionation of the extract and the identification of the compounds. In-silico molecular docking of the AMPK alpha-2, beta and gamma subunits with the identified compounds was performed. Results Olive-tree leaves extract decreased the intracellular lipid accumulation through AMPK-dependent mechanisms in hypertrophic adipocytes. Secoiridoids, cinnamic acids, phenylethanoids and phenylpropanoids, flavonoids and lignans were the candidates predicted to account for this effect. Molecular docking revealed that some compounds may be AMPK-gamma modulators. The modulatory effects of compounds over the alpha and beta AMPK subunits appear to be less probable. Conclusions Olive-tree leaves polyphenols modulate AMPK activity, which may become a therapeutic aid in the management of obesity-associated disturbances. The natural occurrence of these compounds may have important nutritional implications for the design of functional ingredients. PMID:28278224

  13. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  14. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  15. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    DOEpatents

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  16. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-10-04

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  17. Compositions comprising a polypeptide having cellulolytic enhancing activity and an organic compound and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and an organic compound. The present invention also relates to methods of using the compositions.

  18. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  19. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  20. Bilingual reading of compound words.

    PubMed

    Ko, In Yeong; Wang, Min; Kim, Say Young

    2011-02-01

    The present study investigated whether bilingual readers activate constituents of compound words in one language while processing compound words in the other language via decomposition. Two experiments using a lexical decision task were conducted with adult Korean-English bilingual readers. In Experiment 1, the lexical decision of real English compound words was more accurate when the translated compounds (the combination of the translation equivalents of the constituents) in Korean (the nontarget language) were real words than when they were nonwords. In Experiment 2, when the frequency of the second constituents of compound words in English (the target language) was manipulated, the effect of lexical status of the translated compounds was greater on the compounds with high-frequency second constituents than on those with low-frequency second constituents in the target language. Together, these results provided evidence for morphological decomposition and cross-language activation in bilingual reading of compound words.

  1. Agroecosystem development of industrial fermentation waste -- characterization of aroma-active compounds from the cultivation medium of Lactobacillus brevis.

    PubMed

    Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Shinpuku, Hideto; Yonejima, Yasunori; Ikeda, Atsushi; Miyazawa, Mitsuo

    2015-01-01

    Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) during the cultivation process of Lactobacillus brevis were isolated by hydrodistillation (HD) and analyzed to determine the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 55 and 36 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were N-containing compounds, including 2,3-dimethylpyrazine (16, 37.1 %), methylpyrazine (4, 17.1 %). The important aroma-active compounds in the oils were detected by GC-Olfactometry (GC-O), and their intensity of aroma were measured by aroma extract dilution analysis (AEDA). Expressly, pyrazine compounds were determined as key aroma components; in particular, 2,5-dimethylpyrazine and 2,3-dimethylpyrazine were the most primary aroma-active compound in MAI oil. These results imply that the waste medium after incubation of L. brevis may be utilized as a source of volatile oils.

  2. Comparison of compounds of three Rubus species and their antioxidant activity.

    PubMed

    Caidan, Rezeng; Cairang, Limao; Pengcuo, Jiumei; Tong, Li

    2015-12-01

    Rubus amabilis, Rubus niveus Thunb., and Rubus sachalinensis are three Rubus species that are alternatively found in Manubzhithang, a Tibetan medicine, in different areas of China. The current study analyzed HPLC/UV chromatograms and it compared compounds of these three Rubus species in contrast to reference substances such as 2,6-dimethoxy-4-hydroxyphenol-1-O-β-D-glucopyranoside, procyanidin B4, and isovitexin-7-O-glucoside. The three Rubus species produced similar peaks in chromatograms. The antioxidant activity of the three Rubus species was determined using an assay for DPPH free radical scavenging activity. Results indicated that the three Rubus species extracts had almost the same level of free radical scavenging activity. Thus, findings indicated the rationality of substituting these species for one another as an ingredient in Manubzhithang.

  3. Phenolic Compounds and Antioxidant Activity of Different Organs of Potentilla fruticosa L. from Two Main Production Areas of China.

    PubMed

    Yu, Danmeng; Pu, Wenjun; Li, Dengwu; Wang, Dongmei; Liu, Qiaoxiao; Wang, Yongtao

    2016-09-01

    This report compared the phenolic compounds and antioxidant activity of the leaves, flowers, and stems of Potentilla fruticosa L. collected from two main production areas of P. R. China (Taibai Mountains and the Qinghai Huzhu Northern Mountains). The results indicated that there were significant differences in the phenol contents and antioxidant activities among the different organs and between the two productions. High-performance liquid-chromatography analysis indicated that hyperoside, (+)-catechin, ellagic acid, and rutin were the primary compounds in leaves and flowers; for stems, the content of six phenolic compounds, from two productions, were the lowest. The 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt (ABTS), ferric reducing power (FRAP), lipid peroxidation assays, and microbial test system (MTS) were used to evaluate the antioxidant activity. The results demonstrated that the leaves from two productions exhibited powerful antioxidant activity than other organs, which did not significantly differ from that of the positive control (rutin), followed by the flowers and stems. The correlation between the content of phytochemicals and the antioxidant activities of different organs showed that the total phenol, tannin, hyperoside, and (+)-catechin contents may influence the antioxidant activity, and these compounds can be used as markers for the quality control of P. fruticosa. © 2016 Wiley-VHCA AG, Zürich.

  4. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  5. Selective CB2 receptor agonists. Part 2: Structure-activity relationship studies and optimization of proline-based compounds.

    PubMed

    Riether, Doris; Zindell, Renee; Wu, Lifen; Betageri, Raj; Jenkins, James E; Khor, Someina; Berry, Angela K; Hickey, Eugene R; Ermann, Monika; Albrecht, Claudia; Ceci, Angelo; Gemkow, Mark J; Nagaraja, Nelamangala V; Romig, Helmut; Sauer, Achim; Thomson, David S

    2015-02-01

    Through a ligand-based pharmacophore model (S)-proline based compounds were identified as potent cannabinoid receptor 2 (CB2) agonists with high selectivity over the cannabinoid receptor 1 (CB1). Structure-activity relationship investigations for this compound class lead to oxo-proline compounds 21 and 22 which combine an impressive CB1 selectivity profile with good pharmacokinetic properties. In a streptozotocin induced diabetic neuropathy model, 22 demonstrated a dose-dependent reversal of mechanical hyperalgesia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Hydrodesulfurization catalysis by Chevrel phase compounds

    DOEpatents

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  7. Hydrodesulfurization catalyst by Chevrel phase compounds

    DOEpatents

    McCarty, K.F.; Schrader, G.L.

    1985-05-20

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M/sub x/Mo/sub 6/S/sub 8/, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS/sub 2/ catalysts. The most active catalysts were the ''large'' cation compounds (Ho, Pb, Sn), and the least active catalysts were the ''small'' cation compounds (Cu, Fe, Ni, Co.).

  8. Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses.

    PubMed

    Silva-BeltrÁn, Norma Patricia; Chaidez-Quiroz, Cristóbal; López-Cuevas, Osvaldo; Ruiz-Cruz, Saul; López-Mata, Marco A; Del-Toro-SÁnchez, Carmen Lizette; Marquez-Rios, Enrique; Ornelas-Paz, José de Jesús

    2017-02-28

    Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and 3.9 log₁₀, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.

  9. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.

    PubMed

    Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N

    2017-08-18

    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities

    PubMed Central

    Manyi-Loh, Christy E.; Ndip, Roland N.; Clarke, Anna M.

    2011-01-01

    Volatile organic compounds (VOCs) in honey are obtained from diverse biosynthetic pathways and extracted by using various methods associated with varying degrees of selectivity and effectiveness. These compounds are grouped into chemical categories such as aldehyde, ketone, acid, alcohol, hydrocarbon, norisoprenoids, terpenes and benzene compounds and their derivatives, furan and pyran derivatives. They represent a fingerprint of a specific honey and therefore could be used to differentiate between monofloral honeys from different floral sources, thus providing valuable information concerning the honey’s botanical and geographical origin. However, only plant derived compounds and their metabolites (terpenes, norisoprenoids and benzene compounds and their derivatives) must be employed to discriminate among floral origins of honey. Notwithstanding, many authors have reported different floral markers for honey of the same floral origin, consequently sensory analysis, in conjunction with analysis of VOCs could help to clear this ambiguity. Furthermore, VOCs influence honey’s aroma described as sweet, citrus, floral, almond, rancid, etc. Clearly, the contribution of a volatile compound to honey aroma is determined by its odor activity value. Elucidation of the aroma compounds along with floral origins of a particular honey can help to standardize its quality and avoid fraudulent labeling of the product. Although only present in low concentrations, VOCS could contribute to biomedical activities of honey, especially the antioxidant effect due to their natural radical scavenging potential. PMID:22272147

  11. Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy.

    PubMed

    Yin, Jun; Heo, Jun Hyeok; Hwang, Yoon Jeong; Le, Thi Tam; Lee, Min Won

    2016-07-07

    Adina rubella Hance (AR), a plant native to Korea, has been used as traditional medicine for dysentery, eczema, intoxication, and external hemorrhages. Previous phytochemical studies of AR have reported several components, including terpenoids, phenolics, and alkaloids. The current study evaluated the anti-oxidative and anti-inflammatory activities and 5α-reductase inhibition of isolated compounds of AR leaves to find a potential therapeutic agent for benign prostatic hypertrophy (BPH). Repeated chromatographic isolation of an 80% acetone extract of AR leaves yielded seven phenolic compounds: caffeic acid (1), chlorogenic acid (2), methyl chlorogenate (3), quercetin-3-rutinoside (4), kaempferol-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (5), hyperoside (6), and grandifloroside (7). Compound 7 is a novel compound in AR. Caffeoyl derivatives 1-3 and 7 showed good anti-oxidative activities. In particular, caffeic acid (1) and grandifloroside (7) showed potent anti-inflammatory activities, and 7 also exhibited potent inhibitory activity against TNF-α and 5α-reductase. Our results show that the extract and grandifloroside (7) from leaves of AR might be developed as a source of potent anti-oxidative and anti-inflammatory agents and therapeutic agent for BPH.

  12. Metabolite profiling and isolation of biologically active compounds from Scadoxus puniceus, a highly traded South African medicinal plant.

    PubMed

    Naidoo, Devashan; Slavětínská, Lenka Poštová; Aremu, Adeyemi O; Gruz, Jiri; Biba, Ondrej; Doležal, Karel; Van Staden, Johannes; Finnie, Jeffrey F

    2018-04-01

    Scadoxus puniceus (Amaryllidaceae), a medicinal plant of high value in South Africa, is used as a component of a traditional herbal tonic prescribed to treat several ailments. Ultra-high performance liquid chromatography-tandem mass spectrometry quantified the phenolic compounds in different organs of S. puniceus. Gravity column chromatography was used to separate fractions and active compounds. The structure of these compounds was determined using 1D and 2D nuclear magnetic resonance and mass spectroscopic techniques. A microplate technique was used to determine the acetylcholinesterase inhibitory activity of the pure compounds. Metabolite profiling revealed a greater profusion of hydroxycinnamic acids (69.5%), as opposed to hydroxybenzoic acids (30.5%). Chlorogenic acid was the most abundant (49.6% of hydroxycinnamic acids) compound. In addition to chlorogenic acid, the study is the first to report the presence of sinapic, gallic, and m-hydroxybenzoic acids in the Amaryllidaceae. Chromatographic separation of S. puniceus led to the isolation of haemanthamine (1), haemanthidine (2), and a rare chlorinated amide, metolachlor (3), the natural occurrence of which is described for the first time. Haemanthamine, haemanthidine, and metolachlor displayed strong acetylcholinesterase inhibitory activity (IC 50 ; 23.1, 23.7, and 11.5 μM, respectively). These results substantiate the frequent use of S. puniceus as a medicinal plant and hold much promise for further pharmaceutical development. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  14. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    PubMed

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  15. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants.

    PubMed

    Mustafa, R A; Abdul Hamid, A; Mohamed, S; Bakar, F Abu

    2010-01-01

    Free radical scavenging activity of 21 tropical plant extracts was evaluated using 1,1-diphenyl-2-picrylhydrazyl assay (DPPH). Total phenolic compounds and flavonoids were determined using Folin-Ciocalteu and HPLC, respectively. Results of the study revealed that all the plants tested exhibited excellent antioxidant activity with IC(50) in the range of 21.3 to 89.6 microg/mL. The most potent activity was demonstrated by Cosmos caudatus (21.3 microg/mL) and Piper betle (23.0 microg/mL) that are not significantly different than that of -tocopherol or BHA. L. inermis extract was found to consist of the highest concentration of phenolics, catechin, epicatechin, and naringenin. High content of quercetin, myricetin, and kaempferol were identified in Vitex negundo, Centella asiatica, and Sesbania grandiflora extracts, respectively. Luteolin and apigenin, on the other hand, were found in Premna cordifolia and Kaempferia galanga extracts. Strong correlation (R = 0.8613) between total phenolic compounds and total flavonoids (R = 0.8430) and that of antioxidant activity of the extracts were observed. The study revealed that phenolic, in particular flavonoids, may be the main contributors to the antioxidant activity exhibited by the plants. Potent antioxidant from natural sources is of great interest to replace the use of synthetic antioxidants. In addition, some of the plants have great potential to be used in the development of functional ingredients/foods that are currently in demand for the health benefits associated with their use.

  16. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity.

    PubMed

    Chew, Yik Ling; Mahadi, Adlina Maisarah; Wong, Kak Ming; Goh, Joo Kheng

    2018-02-20

    Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.

  17. Synthesis and biological activity of chimeric structures derived from the cytotoxic natural compounds dolastatin 10 and dolastatin 15.

    PubMed

    Poncet, J; Busquet, M; Roux, F; Pierré, A; Atassi, G; Jouin, P

    1998-04-23

    The natural cytotoxic compounds dolastatins 10 and 15 exhibit great similarities in structure and in their biological activity profiles. Two compounds (1 and 2) formed by interchanging the dolaisoleuine residue of dolastatin 10 and the MeVal-Pro dipeptide of dolastatin 15 were synthesized in order to evaluate the possible equivalence of these units. These compounds can be considered as chimeras of dolastatins 10 and 15 formed by the N-terminal part of the former and the C-terminal part of the latter and vice versa. Both analogues exhibited a marked decrease in their cytotoxic activity but showed similar differential cytotoxicity with regard to the cell lines assayed compared with the parent compounds. HT-29 cell line was the least sensitive one. However, this activity was in the nanomolar level and close to that of vincristine. The differences in their effect on tubulin polymerization were less pronounced. We confirmed the already known crucial role of the Dil residue in this assay. The nonequivalence of the Dil unit and the MeVal-Pro dipeptide probably reflects modification in the relative positions of the N-dimethylamino and the phenyl moieties.

  18. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    PubMed

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  19. Antiplasmodial activity of compounds from Sloanea rhodantha (Baker) Capuron var. rhodantha from the Madagascar rain forest.

    PubMed

    Cao, Shugeng; Ranarivelo, Lalasoa; Ratsimbason, Michel; Randrianasolo, Sennen; Ratovoson, Fidy; Andrianjafy, Mamisoa; Kingston, David G I

    2006-12-01

    Bioassay-directed separation of the butanol-soluble portion of an extract of Sloanea rhodantha (Baker) Capuron var. Rhodantha (Elaeocarpaceae) active against the drug-sensitive HB3 strain of Plasmodium falciparum led to the isolation of seven phenolic compounds, gallic acid (1), 3,5-di-O-galloylquinic acid (2), 1,6-di-O-galloyl glucopyranoside (3), 3,4,5-tri-O-galloylquinic acid (4), 1-O-eudesmoylquinic acid (5), 1,2,3,6-tetra-O-galloyl glucopyranoside (6), and 3,4,5-trimethoxyphenyl-(6'-O-galloyl)-O-b-D-glucopyranoside (7). The structure of the new compound 5 was established on the basis of interpretation of its 1D and 2D NMR spectroscopic data. Compounds 2, 3, 4, 6, and 7 showed weak inhibitory activity against the drug-sensitive HB3 and the drug-resistant FCM29 strains of P. falciparum, with IC (50) values ranging from 8.0 - 43.0 and 16.1 - 93.0 microg/mL, respectively.

  20. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    PubMed

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, Tuan V.

    1996-01-01

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  2. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, T.V.

    1996-06-11

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

  3. Characterization of volatiles and identification of odor-active compounds of rocket leaves.

    PubMed

    Raffo, Antonio; Masci, Maurizio; Moneta, Elisabetta; Nicoli, Stefano; Sánchez Del Pulgar, José; Paoletti, Flavio

    2018-02-01

    The volatile profile of crushed rocket leaves (Eruca sativa and Diplotaxis tenuifolia) was investigated by applying Headspace Solid-Phase MicroExtraction (HS-SPME), combined with GC-MS, to an aqueous extract obtained by homogenization of rocket leaves, and stabilized by addition of CaCl 2 . A detailed picture of volatile products of the lipoxygenase pathway (mainly C6-aldehydes) and of glucosinolate hydrolysis (mainly isothiocyanates), and their dynamics of formation after tissue disruption was given. Odor-active compounds of leaves were characterized by GC-Olfactometry (GC-O) and Aroma Extract Dilution Analysis (AEDA): volatile isolates obtained by HS-SPME from an aqueous extract and by Stir-Bar Sorptive Extraction (SBSE) from an ethanolic extract were analyzed. The most potent odor-active compounds fully or tentatively identified were (Z)- and (E)-3-hexenal, (Z)-1,5-octadien-3-one, responsible for green olfactory notes, along with 4-mercaptobutyl and 4-(methylthio)butyl isothiocyanate, associated with typical rocket and radish aroma. Relatively high odor potency was observed for 1-octen-3-one, (E)-2-octenal and 1-penten-3-one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds

    PubMed Central

    Moon, Young-Sun; Choi, Won-Sik; Park, Eun-Sil; Bae, In Kyung; Choi, Sung-Deuk; Paek, Ockjin; Kim, Sheen-Hee; Chun, Hyang Sook; Lee, Sung-Eun

    2016-01-01

    Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B1 production up to a concentration of 1000 μg/mL. Ten piperine-like synthetic compounds were synthesized that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 μg/mL. This synthetic compound was remarkable because the positive control thiabendazole had no inhibitory effect at this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore, the synthetic compound inhibited aflatoxin production by down-regulating these genes. PMID:27537912

  5. Development of LLDPE based active nanocomposite films with nanoclays impregnated with volatile compounds.

    PubMed

    Tornuk, Fatih; Sagdic, Osman; Hancer, Mehmet; Yetim, Hasan

    2018-05-01

    In this study, a novel procedure was performed for grafting of nanoclays (montmorillonite (MMT) and halloysite (HNT)) with essential oil constituents (thymol (THY), eugenol (EUG) and carvacrol (CRV)) using Tween 80 as surfactant and then the nanoclay particles were incorporated into LLDPE pellets (5 wt%) to produce active nanocomposite films using a twin screw extruder. The resulting nanocomposite films were analyzed for antimicrobial and antioxidant capacity as well as thickness, mechanical, color, barrier, thermal properties and surface morphology and molecular composition. Release of the active compounds from the films at the refrigerated and room temperature conditions were also tested. The results showed that the films had strong in vitro antibacterial activity against pathogenic bacteria (Salmonella Typhimurium, Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus) while their effect against lactic acid bacteria (Lactobacillus rhamnosus and Lb. casei) was limited. The lowest and highest DPPH scavenging ability levels were 65.59% and % 87.92, belonged to THY-MMT and EUG-MMT, respectively. Release of active compounds at 24 °C was much more rapid than at 4 °C. CRV-HNT and THY-HNT provided slower release than the other films. SEM results showed that nanoclays were uniformly dispersed in the polymer matrix with exceptional agglomerates. Incorporation of the active nanoclays significantly (P > 0.05) improved tensile strength and elongation of the films. The results confirmed that LLDPE based active nanocomposite films could be successfully produced due to its good interaction with MMT and HNT, activated with THY, EUG and CRV. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion.

    PubMed

    Guo, Ruixue; Chang, Xiaoxiao; Guo, Xinbo; Brennan, Charles Stephen; Li, Tong; Fu, Xiong; Liu, Rui Hai

    2017-11-15

    Phenolics, antioxidant and antiproliferative properties of Sea buckthorn berries were evaluated using a simulated in vitro digestion and compared with a chemical extraction method. Digested samples were subjected to antiproliferation evaluation against human liver, breast and colon cancer cells. Furthermore, the bioaccessibility of digested berries was evaluated using a Caco-2 cell culture model. Results revealed that after enzymatic digestion the phenolic compounds were quite different from the chemical extracts, more flavonoid aglycones were released, whereas less total phenolics, phenolic acids and flavonoid glycosides were detected. Although the extracellular antioxidant activity of the digesta was lower than that of extracts, the cellular antioxidant activity (CAA) and antiproliferative effects of berries were significantly enhanced by digestion. This was attributed to their higher flavonoid aglycone content and could be verified by testing individual active compounds, suggesting that the cellular uptake of samples might be improved, which was also certified by the Caco-2 cell uptake model. The digested samples showed an almost 5-fold cellular accumulative amount of isorhamnetin than pure isorhamnetin, which was attributed to the significant down regulation of the mRNA expression level of efflux transporters MRP2 and P-gp. This finding indicated that the digestion enhanced the bioaccessibility of bioactive compounds of berries.

  7. Synthesis, characterization, X-ray crystal structures of heterocyclic Schiff base compounds and in vitro cholinesterase inhibition and anticancer activity

    NASA Astrophysics Data System (ADS)

    Arafath, Md. Azharul; Adam, Farook; Al-Suede, Fouad Saleih R.; Razali, Mohd R.; Ahamed, Mohamed B. Khadeer; Abdul Majid, Amin Malik Shah; Hassan, Mohd Zaheen; Osman, Hasnah; Abubakar, Saifullah

    2017-12-01

    Four heterocyclic embedded Schiff base derivatives (1-4) were synthesized and characterized by melting point, elemental analysis, FTIR, 1H, 13C NMR, UV-Visible spectral data. The structures of compounds 1, 2 and 4 were successfully established through single crystal X-ray diffraction analysis. In vitro cholinesterase inhibition assays showed that the cyclized derivative 1 displayed higher BuChE enzyme inhibitory activity with IC50 value of 1.45 ± 0.09 μM. The anti-proliferative efficacies of the compounds were also evaluated using human colorectal HCT 116 and breast MCF-7 adenocarcinoma cell lines. In addition, a human normal endothelial cell line (Ea.hy926) was also tested to assess the safety and selectivity of the compounds towards normal and cancer cells, respectively. Among the compounds tested, compound 2 displayed potent cytotoxic effect (IC50 = 34 μM) against HCT 116 cells with highest selectivity index of 3.1 with respect to the normal endothelial cells. Whereas, compound 4 exhibited significant anti-proliferative effect (IC50 = 21.1 μM) against MCF-7 cells with highest selectivity index of 3.3 with respect to the normal endothelial cells. The docking result of these compounds against hAChE showed potent activities with different binding modes. These compounds could be a promising pharmacological agent to treat cancer and Alzheimer's disease.

  8. Identification of Compounds with Anti-Proliferative Activity against Trypanosoma brucei brucei Strain 427 by a Whole Cell Viability Based HTS Campaign

    PubMed Central

    Kaiser, Marcel; Chatelain, Eric; Moawad, Sarah R.; Ganame, Danny; Ioset, Jean-Robert; Avery, Vicky M.

    2012-01-01

    Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill. PMID:23209849

  9. Harnessing redox activity for the formation of uranium tris(imido) compounds

    NASA Astrophysics Data System (ADS)

    Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.

    2014-10-01

    Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

  10. The red wine extract-induced activation of endothelial nitric oxide synthase is mediated by a great variety of polyphenolic compounds.

    PubMed

    Auger, Cyril; Chaabi, Mehdi; Anselm, Eric; Lobstein, Annelise; Schini-Kerth, Valérie B

    2010-07-01

    Phenolic extracts from red wine (RWPs) have been shown to induce nitric oxide (NO)-mediated vasoprotective effects, mainly by causing the PI3-kinase/Akt-dependent activation of endothelial NO synthase (eNOS). RWPs contain several hundreds of phenolic compounds. The aim of the present study was to identify red wine phenolic compounds capable of activating eNOS in endothelial cells using multi-step fractionation. The red wine phenolic extract was fractionated using Sephadex LH-20 and preparative RP-HPLC approaches. The ability of a fraction to activate eNOS was assessed by determining the phosphorylation level of Akt and eNOS by Western blot analysis, and NO formation by electron spin resonance spectroscopy. Tentative identification of phenolic compounds in fractions was performed by MALDI-TOF and HPLC-MS techniques. Separation of RWPs by Sephadex LH-20 generated nine fractions (fractions A to I), of which fractions F, G, H and I caused significant eNOS activation. Fraction F was then subjected to semi-preparative RP-HPLC to generate ten subfractions (subfraction SF1 to SF10), all of which caused eNOS activation. The active fractions and subfractions contained mainly procyanidins and anthocyanins. Isolation of phenolic compounds from SF9 by semi-preparative RP-HLPC lead to the identification of petunidin-O-coumaroyl-glucoside as a potent activator of eNOS.

  11. Neural cell activation by phenolic compounds from the Siberian larch (Larix sibirica).

    PubMed

    Loers, Gabriele; Yashunsky, Dmitry V; Nifantiev, Nikolay E; Schachner, Melitta

    2014-07-25

    Small organic phenolic compounds from natural sources have attracted increasing attention due to their potential to ameliorate the serious consequences of acute and chronic traumata of the mammalian nervous system. In this contribution, it is reported that phenols from the knot zones of Siberian larch (Larix sibirica) wood, namely, the antioxidant flavonoid (+)-dihydroquercetin (1) and the lignans (-)-secoisolariciresinol (2) and (+)-isolariciresinol (3), affect migration and outgrowth of neurites/processes from cultured neurons and glial cells of embryonic and early postnatal mice. Compounds 1-3, which were available in preparative amounts, enhanced neurite outgrowth from cerebellar granule neurons, dorsal root ganglion neurons, and motoneurons, as well as process formation of Schwann cells in a dose-dependent manner in the low nanomolar range. Migration of cultured astrocytes was inhibited by 1-3, and migration of neurons out of cerebellar explants was enhanced by 1. These observations provide evidence for the neuroactive features of these phenolic compounds in enhancing the beneficial properties of neurons and reducing the inhibitory properties of activated astrocytes in an in vitro setting and encourage the further investigation of these effects in vivo, in animal models of acute and chronic neurological diseases.

  12. A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins.

    PubMed

    Bueno, Mónica; Campo, M Mar; Cacho, Juan; Ferreira, Vicente; Escudero, Ana

    2014-12-01

    The objective of the work is to understand the role of the different aroma compounds in the perception of the local "lamb flavour" concept. For this, a set of 70 loins (Longissimus dorsi) from approximately seventy day-old Rasa Aragonesa male lambs were grilled and the aroma-active chemicals released during the grilling process were trapped and analyzed. Carbonyl compounds were derivatizated and determined by GC-NCI-MS, whereas other aromatic compounds were directly analyzed by GC-GC-MS. Odour activity values (OAVs) were calculated using their odour threshold values in air. Lamb flavour could be satisfactory explained by a partial least-squares model (74% explained variance in cross-validation) built by the OAVs of 32 aroma-active chemical compounds. The model demonstrates that the lamb flavour concept is the result of a complex balance. Its intensity critically and positively depends to the levels of volatile fatty acids and several dimethylpyrazines while is negatively influenced by the different alkenals and alkadienals. (E,E)-2,4-decadienal and (E)-2-nonenal showed top OAVs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2008-06-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) (naproxen and carbamazepine) and one endocrine disrupting compound (nonylphenol) were evaluated on two types of activated carbon. When determining their isotherms at environmentally relevant concentration levels, it was found that at this low concentration range (10-800 ng/L), removals of the target compounds were contrary to expectations based on their hydrophobicity. Nonylphenol (log K(ow) 5.8) was most poorly adsorbed, whereas carbamazepine (log K(ow) 2.45) was most adsorbable. Nonylphenol Freundlich isotherms at this very low concentration range had a much higher 1/n compared to isotherms at much higher concentrations. This indicates that extrapolation from an isotherm obtained at a high concentration range to predict the adsorption of nonylphenol at a concentration well below the range of the original isotherm, leads to a substantial overestimation of its removals. Comparison of isotherms for the target compounds to those for other conventional micropollutants suggested that naproxen and carbamazepine could be effectively removed by applying the same dosage utilized to remove odorous compounds (geosmin and MIB) at very low concentrations. The impact of competitive adsorption by background natural organic matter (NOM) on the adsorption of the target compounds was quantified by using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach. The fulfilment of the requirements for applying the simplified IAST-EBC model, which leads to the conclusion that the percentage removal of the target compounds at a given carbon dosage is independent of the initial contaminant concentration, was confirmed for the situation examined in the paper. On this basis it is suggested that the estimated minimum carbon usage rates (CURs) to achieve 90% removal of these emerging contaminants would be valid at concentrations of less than 500 ng/L in

  14. Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts.

    PubMed

    Peiretti, Pier Giorgio; Meineri, Giorgia; Gai, Francesco; Longato, Erica; Amarowicz, Ryszard

    2017-09-01

    Phenolic compounds were extracted from pumpkin (Cucurbita pepo) seed and amaranth (Amaranthus caudatus) grain into 80% (v/v) methanol. The extracts obtained were characterised by the contents of total phenolic compounds (TPC), trolox equivalent antioxidant capacity (TEAC), ferric-reducing antioxidant power (FRAP) and antiradical activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH · ) radical. The content of individual phenolic compounds was determined by HPLC-DAD method. Pumpkin seeds showed the higher content of TPC than that from amaranth. The TEAC values of both extracts were similar each other. The lower value of FRAP was observed for pumpkin seed. Phenolic compound present in amaranth grain exhibited strongest antiradical properties against DPPH radical. Several peaks were present on the HPLC chromatograms of two extracts. The UV-DAD spectra confirmed the presence of vanillic acid derivatives in the amaranth grain. The three main phenolic compound present in pumpkin seed were characterised by UV-DAD spectra with maximum at 258, 266 and 278 nm.

  15. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp.

  16. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro.

    PubMed

    Manquián-Cerda, K; Escudey, M; Zúñiga, G; Arancibia-Miranda, N; Molina, M; Cruces, E

    2016-11-01

    Cadmium (Cd(2+)) can affect plant growth due to its mobility and toxicity. We evaluated the effects of Cd(2+) on the production of phenolic compounds and antioxidant response of Vaccinium corymbosum L. Plantlets were exposed to Cd(2+) at 50 and 100µM for 7, 14 and 21 days. Accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the antioxidant enzyme SOD was determined. The profile of phenolic compounds was evaluated using LC-MS. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power test (FRAP). Cd(2+) increased the content of MDA, with the highest increase at 14 days. The presence of Cd(2+) resulted in changes in phenolic compounds. The main phenolic compound found in blueberry plantlets was chlorogenic acid, whose abundance increased with the addition of Cd(2+) to the medium. The changes in the composition of phenolic compounds showed a positive correlation with the antioxidant activity measured using FRAP. Our results suggest that blueberry plantlets produced phenolic compounds with reducing capacity as a selective mechanism triggered by the highest activity of Cd(2+). Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells

    PubMed Central

    Kim, A D; Kang, K A; Kim, H S; Kim, D H; Choi, Y H; Lee, S J; Kim, H S; Hyun, J W

    2013-01-01

    Compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Whereas blockade of compound K-induced autophagy by 3-methyladenein and bafilomycin A1 significantly increased cell viability. In addition, compound K augmented the time-dependent expression of the autophagy-related proteins Atg5, Atg6, and Atg7. However, knockdown of Atg5, Atg6, and Atg7 markedly inhibited the detrimental impact of compound K on LC3-II accumulation and cell vitality. Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the antioxidant N-acetylcysteine. Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas downregulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression. Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells. PMID:23907464

  18. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay.

    PubMed

    Lee, Kwang Jin; Oh, You Chang; Cho, Won Kyung; Ma, Jin Yeul

    2015-01-01

    This study investigated the antioxidant activity of one hundred kinds of pure chemical compounds found within a number of natural substances and oriental medicinal herbs (OMH). Three different methods were used to evaluate the antioxidant activity of DPPH radical-scavenging activity, ABTS radical-scavenging activity, and online screening HPLC-ABTS assays. The results indicated that 17 compounds exhibited better inhibitory activity against ABTS radical than DPPH radical. The IC50 rate of a more practical substance is determined, and the ABTS assay IC50 values of gallic acid hydrate, (+)-catechin hydrate, caffeic acid, rutin hydrate, hyperoside, quercetin, and kaempferol compounds were 1.03 ± 0.25, 3.12 ± 0.51, 1.59 ± 0.06, 4.68 ± 1.24, 3.54 ± 0.39, 1.89 ± 0.33, and 3.70 ± 0.15 μg/mL, respectively. The ABTS assay is more sensitive to identifying the antioxidant activity since it has faster reaction kinetics and a heightened response to antioxidants. In addition, there was a very small margin of error between the results of the offline-ABTS assay and those of the online screening HPLC-ABTS assay. We also evaluated the effects of 17 compounds on the NO secretion in LPS-stimulated RAW 264.7 cells and also investigated the cytotoxicity of 17 compounds using a cell counting kit (CCK) in order to determine the optimal concentration that would provide an effective anti-inflammatory action with minimum toxicity. These results will be compiled into a database, and this method can be a powerful preselection tool for compounds intended to be studied for their potential bioactivity and antioxidant activity related to their radical-scavenging capacity.

  19. Phenolic Profiles and Contribution of Individual Compounds to Antioxidant Activity of Apple Powders.

    PubMed

    Raudone, Lina; Raudonis, Raimondas; Liaudanskas, Mindaugas; Viskelis, Jonas; Pukalskas, Audrius; Janulis, Valdimaras

    2016-05-01

    Apples (Malus domestica L.) are the most common source of phenolic compounds in northern European diet. Besides pectins, dietary fibers, vitamins, and oligosaccharides they contain phenolic compounds of different classes. Apple powders are convenient functional forms retaining significant amounts of phenolic antioxidants. In this study reducing and radical scavenging profiles of freeze-dried powders of "Aldas,ˮ "Auksis,ˮ "Connel Red,ˮ "Ligol,ˮ "Lodel,ˮ and "Rajkaˮ were determined and phenolic constituents were identified using ultra high-performance liquid chromatography coupled to quadrupole and time-of-flight mass spectrometers. A negative ionization mode was applied and seventeen compounds: phenolic acids (coumaroylquinic, chlorogenic), flavonoids (quercetin derivatives), and procyanidin derivatives (B1, B2, and C1) were identified in all tested apple samples. Total values of Trolox equivalents varied from 7.72 ± 0.32 up to 20.02 ± 0.52 and from 11.10 ± 0.57 up to 21.42 ± 0.75 μmol/g of dry weight of apple powder in FRAP (ferric reducing antioxidant power) and ABTS (2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) postcolumn assays, respectively. The greatest Trolox equivalent values were determined for apples of "Aldasˮ cultivar. Chlorogenic acid and procyanidin C1 were the most significant contributors to total reducing and radical scavenging activity in all apple cultivars tested, therefore they could be considered as markers of antioxidant activity. © 2016 Institute of Food Technologists®

  20. Evidence for Methyl-Compound-Activated Life in Coal Bed System 2 km Below Sea Floor

    NASA Astrophysics Data System (ADS)

    Trembath-reichert, E.; Morono, Y.; Dawson, K.; Wanger, G.; Bowles, M.; Heuer, V.; Hinrichs, K. U.; Inagaki, F.; Orphan, V. J.

    2014-12-01

    IODP Expedition 337 set the record for deepest marine scientific drilling down to 2.4 kmbsf. This cruise also had the unique opportunity to retrieve deep cores from the Shimokita coal bed system in Japan with the aseptic and anaerobic conditions necessary to look for deep life. Onboard scientists prepared nearly 1,700 microbiology samples shared among five different countries to study life in the deep biosphere. Samples spanned over 1 km in sampling depths and include representatives of shale, sandstone, and coal lithologies. Findings from previous IODP and deep mine expeditions suggest the genetic potential for methylotrophy in the deep subsurface, but it has yet to be observed in incubations. A subset of Expedition 337 anoxic incubations were prepared with a range of 13C-methyl substrates (methane, methylamine, and methanol) and maintained near in situ temperatures. To observe 13C methyl compound metabolism over time, we monitored the δ13C of the dissolved inorganic carbon (by-product of methyl compound metabolism) over a period of 1.5 years. Elemental analysis (EA), ion chromatograph (IC), 13C volatile fatty acid (VFA), and mineral-associated microscopy data were also collected to constrain initial and endpoint conditions in these incubations. Our geochemical evidence suggests that the coal horizon incubated with 13C-methane showed the highest activity of all methyl incubations. This provides the first known observation of methane-activated metabolism in the deep biosphere, and suggests there are not only active cells in the deeply buried terrigenous coal bed at Shimokita, but the presence of a microbial community activated by methylotrophic compounds.

  1. Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii.

    PubMed

    Tankeo, Simplice B; Damen, Francois; Awouafack, Maurice D; Mpetga, James; Tane, Pierre; Eloff, Jacobus N; Kuete, Victor

    2015-07-01

    Fagara tessmannii is a shrub of the African rainforests used to treat bacterial infections, cancers, swellings and inflammation. In the present study, the methanol extract from the leaves (FTL), bark (FTB), and roots (FTR) of this plant as well as fractions (FTR1-5) and compounds isolated from FTR namely β-sitosterol-3-O-β-d-glucopyranoside (1), nitidine chloride (2) and buesgenine (3), were tested for their antimicrobial activities against a panel of Gram-negative bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; Column chromatography was used for the fractionation and purification of the roots extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Results of the MIC determinations indicated that the crude extracts from the roots as well as fraction FTRa4 were active on all the 26 tested bacterial strains. MIC values below 100µg/mL were obtained with roots, leaves and bark extract respectively against 30.8%, 15.4% and 11.5% tested bacteria. The lowest MIC value below of 8µg/mL was obtained with extract from the roots against Escherichia coli MC100 strain. The lowest MIC value of 4µg/mL was also obtained with compound 3 against E. coli AG102 and Klebsiella pneumoniae ATCC11296 CONCLUSIONS: The present study demonstrates that F. tessmannii is a potential source of antimicrobial drugs to fight against MDR bacteria. Benzophenanthrine alkaloids 2 and 3 are the main antibacterial consituents of the roots of the plant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Antiosteoporotic compounds from seeds of Cuscuta chinensis.

    PubMed

    Yang, Lijuan; Chen, Qianfeng; Wang, Fei; Zhang, Guolin

    2011-05-17

    The seeds of Cuscuta chinensis (Tu-Si-Zi, TSZ) have long been used for the treatment of osteoporosis in China and some Asian countries. The compounds in TSZ responsible for the antiosteoporotic activity are still poorly understood. The present study was designed to investigate the osteogenic compounds in TSZ, and to evaluate their antiosteoporotic effects in osteoblastic cells. Osteoblast-like UMR-106 cells were used for bioactivity-guided isolation of the active compounds. The activity of alkaline phosphatase (ALP) in UMR-106 cells was measured by p-nitrophenyl sodium phosphate assay. The proliferation of UMR-106 cells was assayed by Alamar-Blue method. Estrogenic activity of the extracts and isolated compounds was evaluated by activation of estrogen response element (ERE) luciferase reporter expression in HeLa cells co-transfected with human estrogen receptor subtypes (ERα or ERβ) expression vectors and 5×ERE luciferase reporter plasmid. Antiestrogenic activity of the extracts and isolated compounds were evaluated by activation of activator protein-1 (AP-1) luciferase reporter expression in HeLa cells co-transfected with human estrogen receptor subtypes (ERα or ERβ) expression vectors and 6×AP-1 luciferase reporter plasmid. ALP-guided fractionation led to the isolation of five known flavonoids, quercetin, kaempferol, isorhamnetin, hyperoside and astragalin from the crude ethanolic extract of TSZ. Further study showed that kaempferol and hyperoside significantly increased the ALP activity in UMR-106 cells. Astragalin promoted the proliferation of UMR-106 cells whereas other compounds had no such effect. The isolated compounds showed estrogenic activity but quercetin, kaempferol and isorhamnetin showed more potent ERβ agonist activity. However, compared with their ER agonist activity, only quercetin and kaempferol showed potent ER antagonist activity by activating ERα/β-mediated AP-1 reporter expression. Our findings validated the clinical use of TSZ in

  3. Identification of compounds inhibiting the C-S lyase activity of a cell extract from a Staphylococcus sp. isolated from human skin.

    PubMed

    Egert, M; Höhne, H-M; Weber, T; Simmering, R; Banowski, B; Breves, R

    2013-12-01

    The C-S lyase activity of bacteria in the human armpit releases highly malodorous, volatile sulfur compounds from nonvolatile precursor molecules. Such compounds significantly contribute to human body odour. Hence, C-S lyase represents an attractive target for anti-body-odour cosmetic products. Here, aiming at a final use in an ethanol-based deodorant formulation, 267 compounds and compound mixtures were screened for their ability to inhibit the C-S lyase activity of a Stapyhlococcus sp. crude extract. Staphylococcus sp. Isolate 128, closely related to Staphylococcus hominis, was chosen as the test bacterium, as it showed a reproducibly high specific C-S lyase activity on three different culturing media. Using a photometric assay and benzylcysteine as substrate, six rather complex, plant-derived compound mixtures and five well defined chemical compounds or compound mixtures were identified as inhibitors, leading to an inhibition of ≥70% at concentrations of ≤0·5% in the assay. The inhibition data have demonstrated that compounds with two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue are characteristic for the inhibition. The substances identified as C-S lyase inhibitors have the potential to improve the performance of anti-body-odour cosmetic products, for example, ethanol-based deodorants. Bacterial C-S lyase represents one of the key enzymes involved in human body odour formation. The aim of this study was to identify compounds inhibiting the C-S lyase activity of a Staphylococcus sp. isolate from the human skin. The compounds identified as the best inhibitors are characterized by the following features: two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue. They might be used to improve the performance of cosmetic products aiming to prevent the formation of microbially caused human body odour, for example, ethanol-based deodorants. © 2013 The Society for Applied Microbiology.

  4. The rational design of a novel potent analogue of the 5’-AMP-activated protein kinase inhibitor compound C with improved selectivity and cellular activity

    PubMed Central

    Machrouhi, Fouzia; Ouhamou, Nouara; Laderoute, Keith; Calaoagan, Joy; Bukhtiyarova, Marina; Ehrlich, Paula J.; Klon, Anthony E.

    2010-01-01

    We have designed and synthesized analogues of compound C, a non-specific inhibitor of 5’-AMP-activated protein kinase (AMPK), using a computational fragment-based drug design (FBDD) approach. Synthesizing only twenty-seven analogues yielded a compound that was equipotent to compound C in the inhibition of the human AMPK (hAMPK) α2 subunit in the heterotrimeric complex in vitro, exhibited significantly improved selectivity against a subset of relevant kinases, and demonstrated enhanced cellular inhibition of AMPK. PMID:20932747

  5. New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatas 1B.

    PubMed

    Zeng, Ke; He, Yan-Ni; Yang, Di; Cao, Jia-Qing; Xia, Xi-Chun; Zhang, Shi-Jun; Bi, Xiu-Li; Zhao, Yu-Qing

    2014-06-23

    Four new cucurbitane-type triterpene sapogenins, compounds 1-4, together with other eight known compounds were isolated from the acid-hydrolyzed fruits extract of Momordica charantia L. Their chemical structures were established by NMR, mass spectrometry and X-ray crystallography. Compounds 1-7 and 9-12 were evaluated for their inhibitory activities toward protein tyrosine phosphatase 1B (PTP1B), a tyrosine phosphatase that has been implicated as a key target for therapy against type II diabetes. Compounds 1, 2, 4, 7 and 9 were shown inhibitory activities of 77%, 62%, 62% 60% and 68% against PTP1B, respectively. All of these tested compounds were exhibited higher PTP1B inhibition activities than that of the Na3VO4, a known PTP1B inhibitor used as positive control in present study. Structure activity relationship (SAR) analysis indicated that the inhibition activity of PTP1B was associated with the presence and number of -OH groups. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion.

  7. Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some Portuguese shrub species extracts.

    PubMed

    Luís, Angelo; Domingues, Fernanda; Duarte, Ana Paula

    2011-12-01

    In the ecosystem of Serra Da Estrela, some plant species have the potential to be used as raw material for extraction of bioactive products. The goal of this work was to determine the phenolic, flavonoid, tannin and alkaloid contents of the methanolic extracts of some shrubs (Echinospartum ibericum, Pterospartum tridentatum, Juniperus communis, Ruscus aculeatus, Rubus ulmifolius, Hakea sericea, Cytisus multiflorus, Crataegus monogyna, Erica arborea and Ipomoea acuminata), and then to correlate the phenolic compounds and flavonoids with the antioxidant activity of each extract. The Folin-Ciocalteu's method was used for the determination of total phenols, and tannins were then precipitated with polyvinylpolypyrrolidone (PVPP); a colorimetric method with aluminum chloride was used for the determination of flavonoids, and a Dragendorff's reagent method was used for total alkaloid estimation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and beta-carotene bleaching tests were used to assess the antioxidant activity of extracts. The identification of phenolic compounds present in extracts was performed using RP-HPLC. A positive linear correlation between antioxidant activity index and total phenolic content of methanolic extracts was observed. The RP-HPLC procedure showed that the most common compounds were ferulic and ellagic acids and quercetin. Most of the studied shrubs have significant antioxidant properties that are probably due to the existence of phenolic compounds in the extracts. It is noteworthy to emphasize that for Echinospartum ibericum, Hakea sericea and Ipomoea acuminata, to the best of our knowledge, no phytochemical studies have been undertaken nor their use in traditional medicine been described.

  8. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    PubMed

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; p<0.001) whereas in red cabbage it was significantly reduced (34.6%; p<0.001). In the kale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Variation in bioactive compounds, antioxidant enzymes and radical-scavenging activity during flower development of Rosa hybrida

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Luo, Ya; Wang, Xiaorong; Chen, Qing; Sun, Bo; Wang, Yan; Liu, Zejing; Tang, Haoru

    2018-04-01

    Roses are one of the most important ornamental plants and have long been used for edible and medicinal flowers. In the present study, the effect of growth and florescence on changes in anthocyanins, proanthocyanidins (PAs), and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxide (APX) and glutathione reductase (GR) of two different colored Rosa hybrida genotypes were determined. Four complementary assays, l,l-diphenyl-2-picrylhydrazyl (DPPH), superoxide and hydroxyl radicals scavenging capacity, ferric reducing antioxidant power (FRAP) assay were used to screen the antioxidant activity of rose flower extracts. Significant variations in bioactive compounds, antioxidant enzymes and radical-scavenging activity were observed at six different developmental stages. No significant difference in antioxidant activity between the white cultivar and red cultivar was found. During flower development, total antioxidant activity and involved compounds decreased, however some antioxidant components such as anthocyanins increased. Overall, rose flowers from flower-bud stage to initiating bloom stage possess the high functional benefit and thus would be the appropriate harvesting stage in the view of nutritional consideration.

  10. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico.

    PubMed

    Moo-Huchin, Víctor M; Estrada-Mota, Iván; Estrada-León, Raciel; Cuevas-Glory, Luis; Ortiz-Vázquez, Elizabeth; Vargas y Vargas, María de Lourdes; Betancur-Ancona, David; Sauri-Duch, Enrique

    2014-01-01

    The aim to the study was to determine the physicochemical composition, bioactive compounds and antioxidant activity of fruits from Yucatan, Mexico such as star apple, cashew, mombin, mamey sapote, white sapote, sugar apple, sapodilla, dragon fruit, nance, ilama, custard apple, mamoncillo and black sapote. The physicochemical characteristics were different between fruits and were good sources of bioactive compounds. The edible part with the highest values of antioxidant activity were mamoncillo, star apple, mombin, cashew, white sapote, ilama, custard apple, sugar apple, and nance. Total soluble phenols content showed a correlation with antioxidant activity by ABTS (R=0.52, P⩽0.05) and DPPH (R=0.43, P⩽0.05). A high correlation was obtained between the two assays (ABTS and DPPH) used to measure antioxidant activity in the tropical fruit species under study (R=0.82, P⩽0.05). The results show promising perspectives for the exploitation and use of tropical fruits studied with significant levels of nutrients and antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evaluation of volatile components from spikenard: valerena-4,7(11)-diene is a highly active sedative compound.

    PubMed

    Takemoto, Hiroaki; Yagura, Toru; Ito, Michiho

    2009-10-01

    Valerena-4,7(11)-diene and beta-maaliene were isolated from spikenard for the first time, and the effects of inhaling these compounds were investigated. Both compounds reduced the locomotor activity of mice dose-dependently, even at a low dose. Valerena-4,7(11)-diene had a particularly profound effect, with the strongest sedative activity observed at a dose of 0.06%. Caffeine-treated mice that showed an area under the curve (AUC) for locomotor activity that was double that of controls were calmed to normal levels by administration of valerena-4,7(11)-diene. The continuous sleep time of pentobarbital-treated mice was prolonged by about 2.7 times with valerena-4,7(11)-diene, an effect similar to that of chlorpromazine administered orally.

  12. Antioxidant activities and skin hydration effects of rice bran bioactive compounds entrapped in niosomes.

    PubMed

    Manosroi, Aranya; Chutoprapat, Romchat; Sato, Yuji; Miyamoto, Kukizo; Hsueh, Kesyin; Abe, Masahiko; Manosroi, Worapaka; Manosroi, Jiradej

    2011-03-01

    Bioactive compounds [ferulic acid (F), gamma-oryzanol (O) and phytic acid (P)] in rice bran have been widely used as antioxidants in skin care products. However, one of the major problems of antioxidants is the deterioration of their activities during long exposure to air and light. Niosomes have been used to entrap many degradable active agents not only for stability improvement, but also for increasing skin hydration. The objective of this study was to determine antioxidant activities [by in vitro ORAC (oxygen radical absorbance capacity) and ex vivo lipid peroxidation inhibition assay] and in vivo human skin hydration effects of gel and cream containing the rice bran extracts entrapped in niosomes. Gel and cream containing the rice bran extracts entrapped in niosomes showed higher antioxidant activity (ORAC value) at 20-28 micromol of Trolox equivalents (TE) per gram of the sample than the placebo gel and cream which gave 16-18 micromolTE/g. Human sebum treated with these formulations showed more lipid peroxidation inhibition activity than with no treatment of about 1.5 times. The three different independent techniques including corneometer, vapometer and confocal Raman microspectroscopy (CRM) indicated the same trend in human skin hydration enhancement of the gel or cream formulations containing the rice bran extracts entrapped in niosomes of about 20, 3 and 30%, respectively. This study has demonstrated the antioxidant activities and skin hydration enhancement of the rice bran bioactive compounds when entrapped in niosomes and incorporated in cream formulations.

  13. Bioactive compounds and prebiotic activity in Thailand-grown red and white guava fruit (Psidium guajava L.).

    PubMed

    Thuaytong, W; Anprung, P

    2011-06-01

    This research involves the comparison of bioactive compounds, volatile compounds and prebiotic activity of white guava (Psidium guajava L.) cv. Pansithong and red guava cv. Samsi. The antioxidant activity values determined by 2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) assays were 10.28 µg fresh weight (fw)/µg DPPH and 78.56 µg Trolox equivalent (TE)/g fw for white guava and 7.82 µg/µg DPPH, fw and 111.06 µM TE/g fw for red guava. Ascorbic acid contents were 130 and 112mg/100g fw total phenolics contents 145.52 and 163.36 mg gallic acid equivalents (GAE)/100 g fw and total flavonoids contents 19.06 and 35.85 mg catechin equivalents (CE)/100 g fw, in white and red guava, respectively. Volatile compounds in guava were analyzed by the solid-phase microextraction (SPME)/gas chromatography (GC)/mass spectrometry (MS) method. The major constituents identified in white and red guavas were cinnamyl alcohol, ethyl benzoate, ß-caryophyllene, (E)-3-hexenyl acetate and α-bisabolene. Prebiotic activity scores for Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 were 0.12 and 0.28 in white guava, respectively, and 0.13 and 0.29 in red guava, respectively.

  14. 6-shogaol, a major compound in ginger, induces aryl hydrocarbon receptor-mediated transcriptional activity and gene expression.

    PubMed

    Yoshida, Kazutaka; Satsu, Hideo; Mikubo, Ayano; Ogiwara, Haru; Yakabe, Takafumi; Inakuma, Takahiro; Shimizu, Makoto

    2014-06-18

    Xenobiotics are usually detoxified by drug-metabolizing enzymes and excreted from the body. The expression of many of drug-metabolizing enzymes is regulated by the aryl hydrocarbon receptor (AHR). Some substances in vegetables have the potential to be AHR ligands. To search for vegetable components that exhibit AHR-mediated transcriptional activity, we assessed the activity of vegetable extracts and identified the active compounds using the previously established stable AHR-responsive HepG2 cell line. Among the hot water extracts of vegetables, the highest activity was found in ginger. The ethyl acetate fraction of the ginger hot water extract remarkably induced AHR-mediated transcriptional activity, and the major active compound was found to be 6-shogaol. Subsequently, the mRNA levels of AHR-targeting drug-metabolizing enzymes (CYP1A1, UGT1A1, and ABCG 2) and the protein level of CYP1A1 in HepG2 cells were shown to be increased by 6-shogaol. This is the first report that 6-shogaol can regulate the expression of detoxification enzymes by AHR activation.

  15. Treatment with activated carbon and other adsorbents as an effective method for the removal of volatile compounds in agricultural distillates.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Dziekońska-Kubczak, Urszula; Jusel, Tomaš

    2017-05-01

    This study investigates the effect of treatment with activated carbon and other adsorbents on the chemical composition and organoleptics of a barley malt-based agricultural distillate. Contact with activated carbon is one of the methods by which the quality of raw distillates and spirit beverages can be improved. Samples placed in contact with 1 g activated carbon (SpiritFerm) per 100 ml distillate with ethanol content of 50% v/v for 1 h showed the largest reductions in the concentrations of most volatile compounds (aldehydes, alcohols, esters). Increasing the dose of adsorbent to over 1 g 100 ml -1 did not improve the purity of the agricultural distillate significantly. Of the tested compounds, acetaldehyde and methanol showed the lowest adsorption on activated carbon. The lowest concentrations of these congeners (expressed in mg l -1 alcohol 100% v/v) were measured in solutions with ethanol contents of 70-80% v/v, while solutions with an alcoholic strength by volume of 40% did not show statistically significant decreases in these compounds in relation the control sample. The reductions in volatile compounds were compared with those for other adsorbents based on silica or activated carbon and silica. An interesting alternative to activated carbon was found to be an adsorbent prepared from activated carbon and silica (Spiricol). Treatment with this adsorbent produced distillate with the lowest concentrations of acetaldehyde and isovaleraldehyde, and led to the greatest improvement in its organoleptics.

  16. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds

    PubMed Central

    2012-01-01

    Background This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Methods Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. Results A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. Conclusion The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs. PMID:23176585

  17. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds.

    PubMed

    Diaz, Patricia; Jeong, Sang Chul; Lee, Samiuela; Khoo, Cheang; Koyyalamudi, Sundar Rao

    2012-11-24

    This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs.

  18. Occurrence, fate, and ecosystem implications of endocrine active compounds in select rivers of Minnesota

    NASA Astrophysics Data System (ADS)

    Writer, J.; Keefe, S.; Barber, L. B.; Brown, G.; Schoenfuss, H.; Kiesling, R.; Gray, J. L.

    2009-12-01

    Select endocrine active compounds (EACs) were measured in four rivers in southern Minnesota. Additionally, caged and wild fish were assessed for indication of endocrine disruption using plasma vitellogenin and histopathology. Low concentrations of EACs were identified in all rivers, as was elevated plasma vitellogenin in caged and wild fish, indicating potential endocrine disruption. To evaluate the persistence of these compounds in small rivers, a tracer study was performed on one of the rivers (Redwood River) using Lagrangian sampling coupled with hydrologic modeling incorporating transient storage. Mass exchange (transient storage, sorption) and degradation were approximated as pseudo first order processes, and in-stream removal rates were then computed by comparing conservative tracer concentrations to organic compound concentrations. Production of estrone and 4-nonylphenol in the studied reach as a result of biochemical transformation from their parent compounds (17β-estradiol and alkylphenolpolyethoxylates, respectively) was quantified. The distance required for 17β-estradiol and nonylphenol to undergo a 50% reduction in concentration was >2 km and >10 km, respectively. These results indicate that EACs are transported several kilometers downstream from discharge sources and therefore have the potential of adversely impacting the lotic ecosystem over these distances.

  19. Correlation of antimutagenic activity and suppression of CYP1A with the lipophilicity of alkyl gallates and other phenolic compounds.

    PubMed

    Feng, Qing; Kumagai, Takeshi; Nakamura, Yoshimasa; Uchida, Koji; Osawa, Toshihiko

    2003-05-09

    Alkyl gallates are widely used as food antioxidants. Methyl, ethyl, propyl, lauryl, and cetyl gallates showed antimutagenicity to activated 2-aminoanthracene (2AA)-induced SOS responses in Salmonella typhimurium TA1535/pSK1002. They also exhibited a suppressive effect on 3-methylcholanthrene (3-MC)-induced cytochrome P450 1A (CYP1A) in human hepatoma HepG2 cells, as indexed by the 7-ethoxyresorufin-O-deethylase (EROD) activity, and on CYP1A protein level. Both antimutagenicity and suppression of CYP1A appeared to be dependent on alkyl chain lengths, which suggested lipophilicity dependence. Based on those results, we investigated 26 other phenolic compounds for their lipophilicity, antimutagenicity and inhibition of EROD activity. The lipophilicity correlated well with the inhibition of EROD activity (r=0.78), and the inhibition of EROD activity correlated with the antimutagenicity of those compounds (r=0.71). The results suggest that the lipophilicity of the phenolic compounds may be an important factor in their ability to inhibit EROD activity.

  20. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  1. Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction.

    PubMed

    Jokić, Stela; Gagić, Tanja; Knez, Željko; Šubarić, Drago; Škerget, Mojca

    2018-06-11

    Large amounts of residues are produced in the food industries. The waste shells from cocoa processing are usually burnt for fuel or used as a mulch in gardens to add nutrients to soil and to suppress weeds. The objectives of this work were: (a) to separate valuable compounds from cocoa shell by applying sustainable green separation process—subcritical water extraction (SWE); (b) identification and quantification of active compounds, sugars and sugar degradation products in obtained extracts using HPLC; (c) characterization of the antioxidant activity of extracts; (d) optimization of separation process using response surface methodology (RSM). Depending on applied extraction conditions, different concentration of theobromine, caffeine, theophylline, epicatechin, catechin, chlorogenic acid and gallic acid were determined in the extracts obtained by subcritical water. Furthermore, mannose, glucose, xylose, arabinose, rhamnose and fucose were detected as well as their important degradation products such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid, lactic acid and formic acid.

  2. [The release of biologically active compounds from peat peloids].

    PubMed

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated.

  3. Merging the Structural Motifs of Functionalized Amino Acids and α-Aminoamides: Compounds with Significant Anticonvulsant Activities

    PubMed Central

    Salomé, Christophe; Salomé-Grosjean, Elise; Stables, James P.; Kohn, Harold

    2010-01-01

    Functional amino acids (FAAs) and α-aminoamides (AAAs) are two classes of antiepileptic drugs (AEDs) that exhibit pronounced anticonvulsant activities. We combined key structural pharmacophores present in FAAs and AAAs to generate a new series of compounds and document that select compounds exhibit activity superior to either the prototypical FAA (lacosamide) or the prototypical AAA (safinamide) in the maximal electroshock (MES) seizure model in rats. A representative compound, (R)-N-4′-((3″-fluoro)benzyloxy)benzyl 2-acetamido-3-methoxypropionamide ((R)-10), was tested in the MES (mice, ip), MES (rat, po), psychomotor 6 Hz (32 mA) (mice, ip), and hippocampal kindled (rat, ip) seizure tests providing excellent protection with ED50 values of 13, 14, ~10 mg/kg, and 12 mg/kg, respectively. In the rat sciatic nerve ligation model (ip), (R)-10 (12 mg/kg) provided an 11.2-fold attenuation of mechanical allodynia. In the mouse biphasic formalin pain model (ip), (R)-10 (15 mg/kg) reduced pain responses in the acute and the chronic inflammatory phases. PMID:20394379

  4. Merging the structural motifs of functionalized amino acids and alpha-aminoamides: compounds with significant anticonvulsant activities.

    PubMed

    Salomé, Christophe; Salomé-Grosjean, Elise; Stables, James P; Kohn, Harold

    2010-05-13

    Functional amino acids (FAAs) and alpha-aminoamides (AAAs) are two classes of antiepileptic drugs (AEDs) that exhibit pronounced anticonvulsant activities. We combined key structural pharmacophores present in FAAs and AAAs to generate a new series of compounds and document that select compounds exhibit activity superior to either the prototypical FAA (lacosamide) or the prototypical AAA (safinamide) in the maximal electroshock (MES) seizure model in rats. A representative compound, (R)-N-4'-((3''-fluoro)benzyloxy)benzyl 2-acetamido-3-methoxypropionamide ((R)-10), was tested in the MES (mice, ip), MES (rat, po), psychomotor 6 Hz (32 mA) (mice, ip), and hippocampal kindled (rat, ip) seizure tests providing excellent protection with ED(50) values of 13, 14, approximately 10 mg/kg, and 12 mg/kg, respectively. In the rat sciatic nerve ligation model (ip), (R)-10 (12 mg/kg) provided an 11.2-fold attenuation of mechanical allodynia. In the mouse biphasic formalin pain model (ip), (R)-10 (15 mg/kg) reduced pain responses in the acute and the chronic inflammatory phases.

  5. Characterization of Phenolic Compounds and Antioxidant and Anti-inflammatory Activities from Mamuyo (Styrax ramirezii Greenm.) Fruit.

    PubMed

    Timmers, Michael A; Guerrero-Medina, Jorge L; Esposito, Debora; Grace, Mary H; Paredes-López, Octavio; García-Saucedo, Pedro A; Lila, Mary Ann

    2015-12-09

    Extracts of Styrax ramirezii Greenm., a fruit traditionally valued for health and wellness in Mexico, were analyzed phytochemically and evaluated for antioxidant and anti-inflammatory activity. Six norneolignans were identified by HPLC-TOF-MS, and the two major compounds were isolated for further evaluation. The effects of the isolated norneolignans, egonol and homoegonol, on lipopolysaccharide (LPS)-induced nitric oxide (NO) production, reactive oxygen species (ROS) production, and biomarkers of inflammation were evaluated. Of the tested compounds, egonol potently inhibited the production of NO and also significantly reduced the release of ROS. Consistent with these observations, the mRNA expression levels of inducible nitric oxide synthase (iNOS) (0.668 ± 0.108), cyclooxygenase-2 (COX-2) (0.553 ± 0.007), interleukin-1β (IL-1β) (0.093 ± 0.005), and interleukin-6 (IL-6) (0.298 ± 0.076) were reduced by egonol. The activity for both egonol and homoegonol increased in a concentration-dependent manner. These results suggest the potential of S. ramirezii Greenm. fruit to contribute to a healthy diet, rich in antioxidant and anti-inflammatory compounds.

  6. Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS

    PubMed Central

    Köksal, Ekrem; Tohma, Hatice; Kılıç, Ömer; Alan, Yusuf; Aras, Abdülmelik; Gülçin, İlhami; Bursal, Ercan

    2017-01-01

    Continuing our work on the sources of natural bioactive compounds, we evaluated the antimicrobial and antioxidant activities of Nepeta trachonitica as well as its major phenolic content using the high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) technique. For antioxidant activity, ferric reducing antioxidant power (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) methods were performed to measure the reducing power and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was employed to evaluate the radical scavenging activity of the sample. For antimicrobial activity, three Gram-positive and four Gram-negative microbial species as well as three fungi species were tested. N. trachonitica appeared to have reasonable antioxidant activity and decent antimicrobial activity as indicated by the inhibition of the organisms’ growth. The most susceptible species were Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 11229 among the organisms tested. Ethanol extract of the plant has the highest effect on Saccharomyces cerevisiae but no effect on Yarrowia lipolytica. The HPLC-MS/MS analysis showed that at least 11 major phenolic compounds of N. trachonitica exist, the major ones being rosmarinic acid, chlorogenic acid and quinic acid. The obtained results suggest that N. trachonitica could be a promising source for food and nutraceutical industries because of its antimicrobial and antioxidant properties and phenolic compounds. PMID:28505129

  7. Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-05-31

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound. The present invention also relates to methods of using the compositions.

  8. The active and passive sampling of benzene, toluene, ethyl benzene and xylenes compounds using the inside needle capillary adsorption trap device.

    PubMed

    Shojania, S; Oleschuk, R D; McComb, M E; Gesser, H D; Chow, A

    1999-08-23

    A new and simple method of solventless extraction of volatile organic compounds (VOCs) from air is presented. The sampling device has an adsorbing carbon coating on the interior surface of a hollow needle, and is called the inside needle capillary adsorption trap (INCAT). This paper describes a study of the reproducibility in the preparation and sampling of the INCAT device. In addition, this paper examines the effects of sample volume in active sampling and exposure time in passive sampling on the analyte adsorption. Analysis was achieved by sampling the air from an environmental chamber doped with benzene, toluene, ethyl benzene and xylenes (BTEX) compounds. Initial rates of adsorption were found to vary among the different compounds, but ranged from 0.0099 to 0.016 nmol h(-1) for passive sampling and from 2.2 to 10 nmol h(-1) for active sampling. Analysis was done by thermal desorption of the adsorbed compounds directly into a gas chromatograph injection port. Quantification of the analysis was done by comparison to actively sampled activated carbon solid phase extraction (SPE) measurements.

  9. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    PubMed

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  10. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds

    PubMed Central

    Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.

    2017-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060

  11. Antioxidant activities and bioactive compounds of five Jalopeno peppers (Capsicum annuum) cultivars.

    PubMed

    Farhoudi, Roozbeh; Mehrnia, Mohammad Amin; Lee, Dong-Jin

    2017-12-06

    The present study was designed to evaluate the contents of different antioxidants compounds and their antioxidant activities in Jalopeno peppers (Capsicum annuum) cultivars (El Dorido, Grande, Tula, Sayula and El Rey) extracts. Free radical scavenging activity of Grande was recorded as high as 87% followed by El Dorido (83%). Results of reducing power (Fe 3+ to Fe 2+ ) showed that Grande (0.85%) and El Dorido (0.81%) fruit extract absorbance value were close to synthetic antioxidant BHT (0. 97%) obtained at100 μg/mL. The results showed that total phenolic content of El Dorido and Grande were significantly higher compared to other Jalapeno pepper. Results indicated strong and positive correlation between antioxidant activity and carotenoids content (r = 0.75), vitamin C (r = 0.78) and total capsaicinoids (r = 0.84), respectively. The results of the antioxidant activity assays showed that the El Dorido and Grande had strongest antioxidant activity compared to other peppers cultivars in this study.

  12. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel.

    PubMed

    Mphahlele, Rebogile R; Fawole, Olaniyi A; Makunga, Nokwanda P; Opara, Umezuruike L

    2016-05-26

    The use of pomegranate peel is highly associated with its rich phenolic concentration. Series of drying methods are recommended since bioactive compounds are highly sensitive to thermal degradation. The study was conducted to evaluate the effects of drying on the bioactive compounds, antioxidant as well as antibacterial and antityrosinase activities of pomegranate peel. Dried pomegranate peels with the initial moisture content of 70.30 % wet basis were prepared by freeze and oven drying at 40, 50 and 60 °C. Difference in CIE-LAB, chroma (C*) and hue angle (h°) were determined using colorimeter. Individual polyphenol retention was determined using LC-MS and LC-MS(E) while total phenolics concentration (TPC), total flavonoid concentration (TFC), total tannins concentration (TTC) and vitamin C concentration were measured using colorimetric methods. The antioxidant activity was measured by radical scavenging activity (RSA) and ferric reducing antioxidant power (FRAP). Furthermore, the antibacterial activity of methanolic peel extracts were tested on Gram negative (Escherichia coli and Klebsiella pneumonia) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) using the in vitro microdilution assays. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin as positive controls. Oven drying at 60 °C resulted in high punicalin concentration (888.04 ± 141.03 mg CE/kg dried matter) along with poor red coloration (high hue angle). Freeze dried peel contained higher catechin concentration (674.51 mg/kg drying matter) + catechin and -epicatechin (70.56 mg/kg drying matter) compared to oven dried peel. Furthermore, freeze dried peel had the highest total phenolic, tannin and flavonoid concentrations compared to oven dried peel over the temperature range studied. High concentration of vitamin C (31.19 μg AAE/g dried matter) was observed in the oven dried (40 °C) pomegranate peel

  13. Novel Indole-2-Carboxamide Compounds Are Potent Broad-Spectrum Antivirals Active against Western Equine Encephalitis Virus In Vivo

    PubMed Central

    Delekta, Phillip C.; Dobry, Craig J.; Sindac, Janice A.; Barraza, Scott J.; Blakely, Pennelope K.; Xiang, Jianming; Kirchhoff, Paul D.; Keep, Richard F.; Irani, David N.; Larsen, Scott D.

    2014-01-01

    ABSTRACT Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of

  14. Novel indole-2-carboxamide compounds are potent broad-spectrum antivirals active against western equine encephalitis virus in vivo.

    PubMed

    Delekta, Phillip C; Dobry, Craig J; Sindac, Janice A; Barraza, Scott J; Blakely, Pennelope K; Xiang, Jianming; Kirchhoff, Paul D; Keep, Richard F; Irani, David N; Larsen, Scott D; Miller, David J

    2014-10-01

    Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic

  15. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.

    PubMed

    Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup

    2012-03-01

    Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.

  16. Chemical structure of bismuth compounds determines their gastric ulcer healing efficacy and anti-Helicobacter pylori activity.

    PubMed

    Sandha, G S; LeBlanc, R; Van Zanten, S J; Sitland, T D; Agocs, L; Burford, N; Best, L; Mahoney, D; Hoffman, P; Leddin, D J

    1998-12-01

    The recognition of the role of Helicobacter pylori in the pathogenesis of peptic ulcer disease has led to renewed interest in bismuth pharmacology since bismuth compounds have both anti-Helicobacter pylori and ulcer healing properties. The precise chemical structure of current bismuth compounds is not known. This has hindered the development of new and potentially more efficacious formulations. We have created two new compounds, 2-chloro-1,3-dithia-2-bismolane (CDTB) and 1,2-[bis(1,3-dithia-2-bismolane)thio]ethane (BTBT), with known structure. In a rat model of gastric ulceration, BTBT was comparable to, and CDTB was significantly less effective than colloidal bismuth subcitrate in healing cryoprobe-induced ulcers. However, both BTBT and CDTB inhibited H. pylori growth in vitro at concentrations <1/10 that of colloidal bismuth subcitrate. The effects on ulcer healing are not mediated by suppression of acid secretion, pepsin inhibition, or prostaglandin production. Since all treated animals received the same amount of elemental bismuth, it appears that the efficacy of bismuth compounds varies with compound structure and is not simply dependent on the delivery of bismuth ion. Because the structure of the novel compounds is known, our understanding of the relationship of bismuth compound structure and to biologic activity will increase. In the future it may be possible to design other novel bismuth compounds with more potent anti-H. pylori and ulcer healing effects.

  17. Sorocenols G and H, Anti-MRSA Oxygen Heterocyclic Diels-Alder-type Adducts from Sorocea muriculata Roots

    USDA-ARS?s Scientific Manuscript database

    Bioassay-guided fractionation of a root extract of Sorocea muriculata led to the isolation and identification of two new oxygen heterocyclic Diels-Alder-type adducts, sorocenols G (1) and H (2), along with lupeol-3-(3'R-hydroxytetradecanoate) and oxyresveratrol. The structures of 1 and 2 were eluci...

  18. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years

    PubMed Central

    Chung, Ill-Min; Lim, Ju-Jin; Ahn, Mun-Seob; Jeong, Haet-Nim; An, Tae-Jin; Kim, Seung-Hyun

    2015-01-01

    Background The study of phenolic compounds profiles and antioxidative activity in ginseng fruit, leaves, and roots with respect to cultivation years, and has been little reported to date. Hence, this study examined the phenolic compounds profiles and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activities in the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) as a function of cultivation year. Methods Profiling of 23 phenolic compounds in ginseng fruit, leaves, and roots was investigated using ultra-high performance liquid chromatography with the external calibration method. Antioxidative activity of ginseng fruit, leaves, and roots were evaluated using the method of DPPH free-radical-scavenging activity. Results The total phenol content in ginseng fruit and leaves was higher than in ginseng roots (p < 0.05), and the phenol content in the ginseng samples was significantly correlated to the DPPH free-radical-scavenging activity (r = 0.928****). In particular, p-coumaric acid (r = 0.847****) and ferulic acid (r = 0.742****) greatly affected the DPPH activity. Among the 23 phenolic compounds studied, phenolic acids were more abundant in ginseng fruit, leaves, and roots than the flavonoids and other compounds (p < 0.05). In particular, chlorogenic acid, gentisic acid, p- and m-coumaric acid, and rutin were the major phenolic compounds in 3–6-yr-old ginseng fruit, leaves, and roots. Conclusion This study provides basic information about the antioxidative activity and phenolic compounds profiles in fruit, leaves, and roots of Korean ginseng with cultivation years. This information is potentially useful to ginseng growers and industries involved in the production of high-quality and nutritional ginseng products. PMID:26843824

  19. Disruption of ion homeostasis by verrucosin and a related compound.

    PubMed

    Akiyama, Koichi; Tone, Junichi; Yamauchi, Satoshi; Sugahara, Takuya; Maruyama, Masafumi; Kakinuma, Yoshimi

    2011-01-01

    We have found that (-)-virgatusin and related compounds have antimicrobial and antifungal activity. To identify further biological activities of these compounds, we tested the activity of acridine orange efflux, which shows ionophore-like disruption of cellular ion homeostasis activity. After testing 31 compounds, we found that verrucosin and a related compound had disruption activity.

  20. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine.

    PubMed

    Xiao, Zuobing; Fang, Lingling; Niu, Yunwei; Yu, Haiyan

    2015-11-01

    To compare the influence of cultivar and variety on the phenolic compounds and antioxidant activity (AA) of cherry wines, total phenolic (TP), total flavonoid (TF), total anthocyanin (TA), total tannin (TT), five individual phenolic acids, and AA were determined. An ultra-performance liquid chromatography tandem mass spectrometry (HPLC-DAD/ESI-MS) method was developed for the determination of gallic acid (GAE), p-hydroxybenzoic acid (PHB), chlorogenic acid (CHL), vanillic acid (VAN), and caffeic acid (CAF). A principal component analysis (PCA) and a cluster analysis (CA) were used to analyze differences related to cultivar and variety. The TP, TF, TA, TT, and AA of samples sourced from the Shandong province of China were higher than those from the Jiangsu province. The PCA and CA results showed that phenolic compounds in cherry wines were closely related to cultivar and variety and that cultivar had more influence on the phenolic compounds of cherry wines than variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Medicinal plants and their isolated compounds showing anti-Trichomonas vaginalis- activity.

    PubMed

    Mehriardestani, Mozhgan; Aliahmadi, Atousa; Toliat, Tayebeh; Rahimi, Roja

    2017-04-01

    Trichomonas vaginalis is a major of non-viral sexually-transmitted infection and an important cause of serious obstetrical and gynecological complications. Treatment options for trichomoniasis are limited to nitroimidazole compounds. The increasing resistance and allergic reactions to nitroimidazole and recurrent trichomoniasis make it essential to identify and develop new drugs against trichomoniasis. Medicinal plants are an important source for discovery of new medications. This review discusses the anti-trichomonas effects of medicinal plants and their chemical constituents to find better options against this pathogenic protozoon. Electronic databases were searched to collect all data from the year 2000 through September 2015 for in vitro, in vivo and clinical studies on the effect of medicinal plants on T. vaginalis. A total of 95 in vitro and clinical studies were identified. Only four human studies were found in this review. The Asteracea, Lamiaceae and Myrtaceae families contained the greatest number of plants with anti-trichomonas activity. Persea americana, Ocimum basilicum and Verbascum thapsus were the most efficacious against T. vaginalis. Plant metabolites containing alkaloids, isoflavonoid glucosides, essential oils, lipids, saponins and sesquiterpene lactones were found to possess anti-trichomonas properties. Assessing the structure-activity of highly-potent anti-trichomonas phytochemicals is suggested for finding natural, semisynthetic and synthetic anti-trichomonas compounds. Further clinical studies are necessary for confirmation of natural anti-trichomonas substances and completion of their safety profiles. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. QSAR-Driven Design and Discovery of Novel Compounds With Antiplasmodial and Transmission Blocking Activities.

    PubMed

    Lima, Marilia N N; Melo-Filho, Cleber C; Cassiano, Gustavo C; Neves, Bruno J; Alves, Vinicius M; Braga, Rodolpho C; Cravo, Pedro V L; Muratov, Eugene N; Calit, Juliana; Bargieri, Daniel Y; Costa, Fabio T M; Andrade, Carolina H

    2018-01-01

    Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium , affecting more than 200 million people worldwide every year and leading to about a half million deaths. Malaria parasites of humans have evolved resistance to all current antimalarial drugs, urging for the discovery of new effective compounds. Given that the inhibition of deoxyuridine triphosphatase of Plasmodium falciparum ( Pf dUTPase) induces wrong insertions in plasmodial DNA and consequently leading the parasite to death, this enzyme is considered an attractive antimalarial drug target. Using a combi-QSAR (quantitative structure-activity relationship) approach followed by virtual screening and in vitro experimental evaluation, we report herein the discovery of novel chemical scaffolds with in vitro potency against asexual blood stages of both P. falciparum multidrug-resistant and sensitive strains and against sporogonic development of P. berghei . We developed 2D- and 3D-QSAR models using a series of nucleosides reported in the literature as Pf dUTPase inhibitors. The best models were combined in a consensus approach and used for virtual screening of the ChemBridge database, leading to the identification of five new virtual Pf dUTPase inhibitors. Further in vitro testing on P. falciparum multidrug-resistant (W2) and sensitive (3D7) parasites showed that compounds LabMol-144 and LabMol-146 demonstrated fair activity against both strains and presented good selectivity versus mammalian cells. In addition, LabMol-144 showed good in vitro inhibition of P. berghei ookinete formation, demonstrating that hit-to-lead optimization based on this compound may also lead to new antimalarials with transmission blocking activity.

  3. Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains.

    PubMed

    Sannino, Filomena; Parrilli, Ermenegilda; Apuzzo, Gennaro Antonio; de Pascale, Donatella; Tedesco, Pietro; Maida, Isabel; Perrin, Elena; Fondi, Marco; Fani, Renato; Marino, Gennaro; Tutino, Maria Luisa

    2017-03-25

    The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 has been reported to produce several Volatile Organic Compounds (VOCs), which are able to inhibit the growth of Burkholderia cepacia complex (Bcc) strains, opportunistic pathogens responsible for the infection of immune-compromised patients. However, no specific antibacterial VOCs have been identified to date. The purpose of the present study was to identify specific VOCs that contribute to Bcc inhibition by the Antarctic strain. When grown on defined medium containing D-gluconate and L-glutamate as carbon, nitrogen and energy sources, P. haloplanktis TAC125 is unable to inhibit the growth of Bcc strains. However, single addition of several amino acids to the defined medium restores the P. haloplanktis TAC125 inhibition ability. With the aim of identifying specific volatile compound/s responsible for Bcc inhibition, we set up an apparatus for VOC capture, accumulation, and storage. P. haloplanktis TAC125 was grown in an automatic fermenter which was connected to a cooling system to condense VOCs present in the exhaust air outlet. Upon addition of methionine to the growth medium, the VOC methylamine was produced by P. haloplanktis TAC125. Methylamine was found to inhibit the growth of several Bcc strains in a dose-dependent way. Although it was reported that P. haloplanktis TAC125 produces VOCs endowed with antimicrobial activity, this is the first demonstration that methylamine probably contributes to the anti-Bcc activity of P. haloplanktis TAC125 VOCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Phenolic compounds from the aerial parts of Clematis viticella L. and their in vitro anti-inflammatory activities.

    PubMed

    Kırmızıbekmez, Hasan; İnan, Yiğit; Reis, Rengin; Sipahi, Hande; Gören, Ahmet C; Yeşilada, Erdem

    2018-03-12

    Phytochemical investigations on the EtOH extract of Clematis viticella led to the isolation of six flavonoid glycosides, isoorientin (1), isoorientin 3'-O-methyl ether (2), quercetin 7-O-α-L-rhamnopyranoside (3), quercetin 3,7-di-O-α-L-rhamnopyranoside (4), manghaslin (5) and chrysoeriol 7-O-β-D-glucopyranoside (6), one phenylethanol derivative, hydroxytyrosol (7), along with three phenolic acids, caffeic acid (8), (E)-p-coumaric acid (9) and p-hydroxybenzoic acid (10). The structures of the isolates were elucidated on the basis of NMR and HR-MS data. All compounds were isolated from C. viticella for the first time. Compounds 7 and 8 showed significant anti-inflammatory activity at 100 μM by reducing the release of NO in LPS-stimulated macrophages comparable to positive control indomethacin. Compounds 3 and 7 exhibited anti-inflammatory activity through lowering the levels of TNF-α while 1, 3 and 5 decreased the levels of neopterin better than the positive controls.

  5. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds

    PubMed Central

    2013-01-01

    Background Phenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups, besides many other electron donating and withdrawing groups, in addition to polyphenols with 1–3 hydroxyl groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were incorporated in ortho, meta and para positions. Results SAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems. Conclusions In conclusion, the

  6. Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of Cannabis sativa L.

    PubMed

    Smeriglio, Antonella; Galati, Enza M; Monforte, Maria T; Lanuzza, Francesco; D'Angelo, Valeria; Circosta, Clara

    2016-08-01

    The aim of this study was to characterize the polyphenolic compounds and antioxidant activity of cold-pressed seed oil from Finola cultivar of industrial hemp (Cannabis sativa L.). Several methodologies have been employed to evaluate the in vitro antioxidant activity of Finola hempseed oil (FHSO) and both lipophilic (LF) and hydrophilic fractions (HF). The qualitative and quantitative composition of the phenolic fraction of FHSO was performed by HPLC analyses. From the results is evident that FHSO has high antioxidative activity, as measured by DPPH radical (146.76 mmol of TE/100 g oil), inhibited β-carotene bleaching, quenched a chemically generated peroxyl radical in vitro and showed high ferrous ion chelating activity. Reactivity towards 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation and ferric-reducing antioxidant power values were 695.2 µmol of TE/100g oil and 3690.6 µmol of TE/100 g oil respectively. FHSO contains a significant amount of phenolic compounds of which 2780.4 mg of quercetin equivalent/100 g of total flavonoids. The whole oil showed higher antioxidant activity compared with LF and HF. Our findings indicate that the significant antioxidant properties shown from Finola seed oil might generally depend on the phenolic compounds, especially flavonoids, such as flavanones, flavonols, flavanols and isoflavones. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels

    PubMed Central

    Riera, CE; Menozzi-Smarrito, C; Affolter, M; Michlig, S; Munari, C; Robert, F; Vogel, H; Simon, SA; le Coutre, J

    2009-01-01

    Background and purpose: Oily extracts of Sichuan and Melegueta peppers evoke pungent sensations mediated by different alkylamides [mainly hydroxy-α-sanshool (α-SOH)] and hydroxyarylalkanones (6-shogaol and 6-paradol). We assessed how transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (TRPV1), two chemosensory ion channels, participate in these pungent sensations. Experimental approach: The structure–activity relationships of these molecules on TRPA1 and TRPV1 was measured by testing natural and synthetic analogues using calcium and voltage imaging on dissociated dorsal root ganglia neurons and human embryonic kidney 293 cells expressing the wild-type channels or specific cysteine mutants using glutathione trapping as a model to probe TRPA1 activation. In addition, using Trpv1 knockout mice, the compounds' aversive responses were measured in a taste brief-access test. Key results: For TRPA1 activation, the cis C6 double bond in the polyenic chain of α-SOH was critical, whereas no structural specificity was required for activation of TRPV1. Both 6-shogaol and 6-paradol were found to activate TRPV1 and TRPA1 channels, whereas linalool, an abundant terpene in Sichuan pepper, activated TRPA1 but not TRPV1 channels. Alkylamides and 6-shogaol act on TRPA1 by covalent bonding whereas none of these compounds activated TRPV1 through such interactions. Finally, TRPV1 mutant mice retained sensitivity to 6-shogaol but were not responsive to α-SOH. Conclusions and implications: The pungent nature of components of Sichuan and Melegueta peppers was mediated via interactions with TRPA1 and TRPV1 channels and may explain the aversive properties of these compounds. PMID:19594761

  8. Cytotoxicity and antimicrobial activity of the methanol extract and compounds from Polygonum limbatum.

    PubMed

    Dzoyem, Jean P; Nkuete, Antoine H L; Kuete, Victor; Tala, Michel F; Wabo, Hippolyte K; Guru, Santosh K; Rajput, Vikrant S; Sharma, Akash; Tane, Pierre; Khan, Inshad A; Saxena, Anil K; Laatsch, Hartmut; Tan, Ning-Hua

    2012-05-01

    The present study was designed to investigate the antimicrobial activity and the cytotoxicity of the methanol extract (PLA) as well as fractions (PLA1-4) and compounds [cardamomin (1), (±)-polygohomoisoflavanone (2), (S)-(-)-pinostrobin (3), 2',4'-dihydroxy-3',6'-dimethoxychalcone (4), (2S)-(-)-5-hydroxy-6,7-dimethoxyflavanone (5), and (2S)-(-)-5,7-dimethoxyflavanone (6)] obtained from leaves of Polygonum limbatum. The microbroth dilution was used to determine the minimal inhibitory concentration (MIC) of the samples against 11 microbial strains including Candida albicans, C. krusei, C. tropicalis, Aspergillus fumigatus, Pseudomonas aeruginosa, Escherichia coli, vancomycin-resistant Enterococcus faecalis (VRE), Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), S.epidermidis, and Mycobacterium tuberculosis H37Rv. The sulphorhodamine B cell growth inhibition assay was used to assess the cytotoxicity of the above samples on lung A549 adenocarcinoma, breast carcinoma MCF-7, prostate carcinoma PC-3, cervical carcinoma HeLa, and the acute monocytic leukemia cell line THP-1. The results of the MIC determination indicated that, apart from fraction PLA3, all other fractions as well as PLA and compound 3 were selectively active. MIC values were noted on 100 % of the 11 tested microorganisms for fraction PLA3, 72.7 % for PLA, fraction PLA2, and compound 4, 63.6 % for PLA1, and 54.5 % for fraction PLA4. The results of the cytotoxicity assay revealed that, except for A459 cells, more than 50 % inhibition of the proliferation was obtained with each of the tested samples on at least one of the four other cell lines. IC₅₀ values below 4 µg/mL were obtained with 1 and 4 on THP-1 cells. The overall results of the present study provided baseline information for the possible use of Polygonum limbatum as well as some of the isolated compounds for the control of cancer diseases and mostly leukemia. Georg Thieme Verlag KG Stuttgart · New York.

  9. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.

    PubMed

    Jung, Chanil; Park, Junyeong; Lim, Kwang Hun; Park, Sunkyu; Heo, Jiyong; Her, Namguk; Oh, Jeill; Yun, Soyoung; Yoon, Yeomin

    2013-12-15

    Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0-45 ppm), methoxyl (45-63 ppm), O-alkyl (63-108 ppm), and carboxyl carbon (165-187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (Kow) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property of adsorbates steadily throughout the study. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Antifouling Compounds from Marine Macroalgae

    PubMed Central

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-01-01

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way. PMID:28846625

  11. Antifouling Compounds from Marine Macroalgae.

    PubMed

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  12. Isolation, Identification, and Xanthine Oxidase Inhibition Activity of Alkaloid Compound from Peperomia pellucida

    NASA Astrophysics Data System (ADS)

    Fachriyah, E.; Ghifari, M. A.; Anam, K.

    2018-04-01

    The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.

  13. Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo.

    PubMed

    Wei, Shengnan; Li, Wei; Yu, Yang; Yao, Fan; A, Lixiang; Lan, Xiaoxin; Guan, Fengying; Zhang, Ming; Chen, Li

    2015-10-15

    Compound K (CK) is a final intestinal metabolite of protopanaxadiol-type ginsenoside. We have reported that CK presented anti-diabetic effect via diminishing the expressions of hepatic gluconeogenesis key enzyme. Here, we further explore the possible mechanism of CK on suppression hepatic gluconeogenesis via activation of adenosine-5'monophosphate kinase (AMPK) on type 2 diabetes mice in vivo and in HepG2 cells. Type 2 diabetes mice model was developed by high fat diet combined with STZ injection. 30mg/kg/d CK was orally administrated for 4weeks, the fasting blood glucose level and 2h OGTT were conducted, and the protein expression of AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) were examined. The mechanism of Compound K on hepatic gluconeogenesis was further explored in HepG2 hepatocytes. Glucose production, the protein expression of AMPK, PEPCK, G6pase and PGC-1α, hepatic nuclear factor 4α (HNF-4α) and forkhead transcription factor O1 (FOXO1) were determined after Compound K treatment at the presence of AMPK inhibitor Compound C. We observed that CK inhibited the expression of PEPCK and G6Pase in the liver and in HepG2 hepatocytes. Meanwhile, CK treatment remarkably increased the activation of AMPK, while decreasing the expressions of PGC-1α, HNF-4α and FOXO1. However, AMPK inhibitor Compound C could reverse these effects of CK on gluconeogenesis in part. The results indicated that the effect of CK on suppression hepatic gluconeogenesis might be via the activation the AMPK activity. Copyright © 2015. Published by Elsevier Inc.

  14. False HDAC Inhibition by Aurone Compound.

    PubMed

    Itoh, Yukihiro; Suzuki, Miki; Matsui, Taiji; Ota, Yosuke; Hui, Zi; Tsubaki, Kazunori; Suzuki, Takayoshi

    2016-01-01

    Fluorescence assays are useful tools for estimating enzymatic activity. Their simplicity and manageability make them suitable for screening enzyme inhibitors in drug discovery studies. However, researchers need to pay attention to compounds that show auto-fluorescence and quench fluorescence, because such compounds lower the accuracy of the fluorescence assay systems by producing false-positive or negative results. In this study, we found that aurone compound 7, which has been reported as a histone deacetylase (HDAC) inhibitor, gave false-positive results. Although compound 7 was identified by an in vitro HDAC fluorescence assay, it did not show HDAC inhibitory activity in a cell-based assay, leading us to suspect its in vitro HDAC inhibitory activity. As a result of verification experiments, we found that compound 7 interferes with the HDAC fluorescence assay by quenching the HDAC fluorescence signal. Our findings underscore the faults of fluorescence assays and call attention to careless interpretation.

  15. Antiviral Screening of Multiple Compounds against Ebola Virus.

    PubMed

    Dowall, Stuart D; Bewley, Kevin; Watson, Robert J; Vasan, Seshadri S; Ghosh, Chandradhish; Konai, Mohini M; Gausdal, Gro; Lorens, James B; Long, Jason; Barclay, Wendy; Garcia-Dorival, Isabel; Hiscox, Julian; Bosworth, Andrew; Taylor, Irene; Easterbrook, Linda; Pitman, James; Summers, Sian; Chan-Pensley, Jenny; Funnell, Simon; Vipond, Julia; Charlton, Sue; Haldar, Jayanta; Hewson, Roger; Carroll, Miles W

    2016-10-27

    In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  16. Rh(III)-Catalyzed C-H Activation of Benzoylacetonitriles and Tandem Cyclization with Diazo Compounds to Substituted Benzo[ de]chromenes.

    PubMed

    Fang, Feifei; Zhang, Chunmei; Zhou, Chaofan; Li, Yazhou; Zhou, Yu; Liu, Hong

    2018-04-06

    Rh (III)-catalyzed C-H activation of benzoylacetonitriles in coupling with diazo compounds was developed to synthesize diversified substituted benzo[ de]chromenes via a formal (4 + 2) cycloaddition with a diazo compound and subsequent tandem (4 + 2) cycloaddition with another diazo compound. Intriguingly, synthesis of substituted benzo[ de]chromenes and their decarboxylation products could be realized by controlling the reaction conditions. These reactions have a broad range of substrates, moderate to good yields, and high regioselectivity.

  17. Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds.

    PubMed

    Horenstein, Nicole A; Quadri, Marta; Stokes, Clare; Shoaib, Mohammed; Papke, Roger L

    2017-10-03

    The use of betel quid is the most understudied major addiction in the world. The neuropsychological activity of betel quid has been attributed to alkaloids of Areca catechu. With the goal of developing novel addiction treatments, we evaluate the muscarinic and nicotinic activity of the four major Areca alkaloids: arecoline, arecaidine, guvacoline, and guvacine and four structurally related compounds. Acetylcholine receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. Both arecoline- and guvacoline-activated muscarinic acetylcholine receptors (mAChR), while only arecoline produced significant activation of nicotinic AChR (nAChR). We characterized four additional arecoline-related compounds, seeking an analog that would retain selective activity for a α4* nAChR, with diminished effects on mAChR and not be a desensitizer of α7 nAChR. We show that this profile is largely met by isoarecolone. Three additional arecoline analogs were characterized. While the quaternary dimethyl analog had a broad range of activities, including activation of mAChR and muscle-type nAChR, the methyl analog only activated a range of α4* nAChR, albeit with low potency. The ethyl analog had no detectable cholinergic activity. Evidence indicates that α4* nAChR are at the root of nicotine addiction, and this may also be the case for betel addiction. Our characterization of isoarecolone and 1-(4-methylpiperazin-1-yl) ethanone as truly selective α4*nAChR selective partial agonists with low muscarinic activity may point toward a promising new direction for the development of drugs to treat both nicotine and betel addiction. Nearly 600 million people use Areca nut, often with tobacco. Two of the Areca alkaloids are muscarinic acetylcholine receptor agonists, and one, arecoline, is a partial agonist for the α4* nicotinic acetylcholine receptors (nAChR) associated with tobacco addiction. The profile of arecoline activity suggested its potential to be used as a

  18. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    PubMed Central

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  19. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    PubMed

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-05-11

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  20. Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia.

    PubMed

    Al-Rifai, Jawad H; Gabelish, Candace L; Schäfer, Andrea I

    2007-10-01

    The discovery that natural and synthetic chemicals, in the form of excreted hormones and pharmaceuticals, as well as a vast array of compounds with domestic and industrial applications, can enter the environment via wastewater treatment plants and cause a wide variety of environmental and health problems even at very low concentrations, suggests the need for improvement of water recycling. Three Australian wastewater recycling schemes, two of which employ reverse osmosis (RO) technology, the other applying ozonation and biological activated carbon filtration, have been studied for their ability to remove trace organic contaminants including 11 pharmaceutically active compounds and two non-steroidal estrogenic compounds. Contaminant concentrations were determined using a sensitive analytical method comprising solid phase extraction, derivatization and GC with MS using selected ion monitoring. In raw wastewater, concentrations of analgesics and non-steroidal anti-inflammatory medications were comparable to those found in wastewaters around the world. Remarkably, removal efficiencies for the three schemes were superior to literature values and RO was responsible for the greatest proportion of contaminant removal. The ability of RO membranes to concentrate many of the compounds was demonstrated and highlights the need for continued research into monitoring wastewater treatment, concentrate disposal, improved water recycling schemes and ultimately, safer water and a cleaner environment.

  1. Studies on the antioxidant activities of natural vanilla extract and its constituent compounds through in vitro models.

    PubMed

    Shyamala, B N; Naidu, M Madhava; Sulochanamma, G; Srinivas, P

    2007-09-19

    Vanilla extract was prepared by extraction of cured vanilla beans with aqueous ethyl alcohol (60%). The extract was profiled by HPLC, wherein major compounds, viz., vanillic acid, 4-hydroxybenzyl alcohol, 4-hydroxy-3-methoxybenzyl alcohol, 4-hydroxybenzaldehyde and vanillin, could be identified and separated. Extract and pure standard compounds were screened for antioxidant activity using beta-carotene-linoleate and DPPH in vitro model systems. At a concentration of 200 ppm, the extract showed 26% and 43% of antioxidant activity by beta-carotene-linoleate and DPPH methods, respectively, in comparison to corresponding values of 93% and 92% for BHA. Interestingly, 4-hydroxy-3-methoxybenzyl alcohol and 4-hydroxybenzyl alcohol exhibited antioxidant activity of 65% and 45% by beta-carotene-linoleate method and 90% and 50% by DPPH methods, respectively. In contrast, pure vanillin exhibited much lower antioxidant activity. The present study points toward the potential use of vanilla extract components as antioxidants for food preservation and in health supplements as nutraceuticals.

  2. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    EPA Science Inventory

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  3. Antibacterial and Antifungal Compounds from Marine Fungi

    PubMed Central

    Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. PMID:26042616

  4. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography.

    PubMed

    Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva

    2016-08-17

    The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity

    PubMed Central

    Tardif, Steve; Madamidola, Oladipo A.; Brown, Sean G.; Frame, Lorna; Lefièvre, Linda; Wyatt, Paul G.; Barratt, Christopher L.R.; Martins Da Silva, Sarah J.

    2014-01-01

    STUDY QUESTION Can we identify compound(s) with reported phosphodiesterase inhibitor (PDEI) activity that could be added to human spermatozoa in vitro to enhance their motility without compromising other sperm functions? SUMMARY ANSWER We have identified several compounds that produce robust and effective stimulation of sperm motility and, importantly, have a positive response on patient samples. WHAT IS KNOWN ALREADY For >20 years, the use of non-selective PDEIs, such as pentoxifylline, has been known to influence the motility of human spermatozoa; however, conflicting results have been obtained. It is now clear that human sperm express several different phosphodiesterases and these are compartmentalized at different regions of the cells. By using type-specific PDEIs, differential modulation of sperm motility may be achieved without adversely affecting other functions such as the acrosome reaction (AR). STUDY DESIGN, SIZE, DURATION This was a basic medical research study examining sperm samples from normozoospermic donors and subfertile patients attending the Assisted Conception Unit (ACU), Ninewells Hospital Dundee for diagnostic semen analysis, IVF and ICSI. Phase 1 screened 43 commercially available compounds with reported PDEI activity to identify lead compounds that stimulate sperm motility. Samples were exposed (20 min) to three concentrations (1, 10 and 100 µM) of compound, and selected candidates (n = 6) progressed to Phase 2, which provided a more comprehensive assessment using a battery of in vitro sperm function tests. PARTICIPANTS/MATERIALS, SETTING, METHODS All healthy donors and subfertile patients were recruited at the Medical Research Institute, University of Dundee and ACU, Ninewells Hospital Dundee (ethical approval 08/S1402/6). In Phase 1, poor motility cells recovered from the 40% interface of the discontinuous density gradient were used as surrogates for patient samples. Pooled samples from three to four different donors were utilized in

  6. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktailmore » consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.« less

  7. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens.

    PubMed

    Hagvall, Lina; Baron, Jens Malte; Börje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  8. Procaspase-activating compound-1 induces apoptosis in Trypanosoma cruzi.

    PubMed

    de Castro, Emanuella; Reus, Thamile Luciane; de Aguiar, Alessandra Melo; Ávila, Andrea Rodrigues; de Arruda Campos Brasil de Souza, Tatiana

    2017-12-01

    Some therapeutics for parasitic, cardiac and neurological diseases activate apoptosis. Therefore, the study of apoptotic proteins in pathogenic organisms is relevant. However, the molecular mechanism of apoptosis in unicellular organisms remain elusive, despite morphological evidence of its occurrence. In Trypanosoma cruzi, the causative agent of Chagas disease, metacaspase 3 (TcMCA3), seems to have a key role in parasite apoptosis. Accordingly, this work provides data concerning TcMCA3 regulation through its interaction with procaspase-activating compound 1 (PAC-1), a procaspase 3 activator. Indeed, PAC-1 reduced T. cruzi epimastigote viability with an IC 50 of 14.12 µM and induced loss of mitochondrial potential and exposure of phosphatidylserine, features of the apoptotic process. Notwithstanding, those PAC-1-inducible effects were not conserved in metacyclic trypomastigotes. Moreover, PAC-1 reduced the viability of mammalian cells with a greater IC 50 (25.70 µM) compared to T. cruzi epimastigotes, indicating distinct modes of binding between caspases and metacaspases. To shed light on the selectivity of metacaspases and caspases, we determined the structural features related to the PAC-1 binding sites in both types of proteins. These data are important for improving the understanding of the apoptosis pathway in T. cruzi so that TcMCA3 could be better targeted with future pharmaceuticals.

  9. Copper activation of organophosporus compounds detoxication by chicken serum.

    PubMed

    Monroy-Noyola, Antonio; Sogorb, Miguel Angel; Díaz-Alejo, Nuria; Vilanova, Eugenio

    2017-08-01

    Avian species contain low levels of enzymes that hydrolyze organophosphorus compounds (OPs), and chickens are used as a model of OPs delayed neurotoxicity. For both reasons, we studied the ability of chicken tissue for OP detoxication. A significant activating effect of Cu 2+ on the hydrolysis of O-hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) was observed in hen plasma and the microsomal fractions of the liver, brain, and mainly in hen serum, by spectrophotometric and chiral chromatography methods. The concentration of 1 mM of Cu 2+ or Zn 2+ showed 200% and 168% activation, respectively, in hen plasma compared with the Ca 2+ -dependent hydrolysis, whereas these cations had an inhibitory effect on soluble liver and brain fractions. An increase of 1.5 to 19.5 fold in HDCP hydrolyzing activity was obtained for the 30-250 μM Cu 2+ range when using chicken serum instead of hen plasma. This Cu 2+ -dependent hydrolysis in chicken serum was stereoselective for the R-(+)-HDCP isomer, which proved the opposite to the Ca 2+ -dependent stereoselective hydrolysis of the S-(-)-HDCP isomer reported in rat and rabbit serum. The level of copper needed to exert this effect should be further evaluated for its suitability for potential therapeutic and biotechnological applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues.

    PubMed

    Cruz, Rebeca; Gomes, Teresa; Ferreira, Anabela; Mendes, Eulália; Baptista, Paula; Cunha, Sara; Pereira, José Alberto; Ramalhosa, Elsa; Casal, Susana

    2014-02-15

    The antioxidant activity and individual bioactive compounds of lettuce, cultivated with 2.5-30% (v/v) of fresh or composted espresso spent coffee grounds, were assessed. A progressive enhancement of lettuce's antioxidant capacity, evaluated by radical scavenging effect and reducing power, was exhibited with the increment of fresh spent coffee amounts, while this pattern was not so clear with composted treatments. Total reducing capacity also improved, particularly for low spent coffee concentrations. Additionally, very significant positive correlations were observed for all carotenoids in plants from fresh spent coffee treatments, particularly for violaxanthin, evaluated by HPLC. Furthermore, chlorophyll a was a good discriminating factor between control group and all spent coffee treated samples, while vitamin E was not significantly affected. Espresso spent coffee grounds are a recognised and valuable source of bioactive compounds, proving herein, for the first time, to potentiate the antioxidant pool and quality of the vegetables produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Identification of active compounds from Caesalpinia sappan L. extracts suppressing IL-6 production in RAW 264.7 cells by PLS.

    PubMed

    Chu, Ming-Juan; Wang, You-Zhi; Itagaki, Kiyoshi; Ma, Hong-Xing; Xin, Ping; Zhou, Xue-Gang; Chen, Guo-You; Li, Sen; Sun, Shi-Qin

    2013-06-21

    Caesalpinia sappan L. is distributed in Southeast Asia and also used as herbal medicine for the treatment of various diseases such as burning sensations, leprosy, dysentery, osteoarthritis and rheumatoid arthritis (RA). The overproduction of IL-6 plays an important role in the prognosis of RA, but the active compounds from the extracts of Caesalpinia sappan L. suppressing IL-6 production remain unknown. Identifying the main active compounds of Caesalpinia sappan L. extracts inhibiting the IL-6 production in LPS-stimulated RAW 264.7 cells by partial least squares (PLS). Sixty-four samples with different proportions of compounds were prepared from Caesalpinia sappan L. by supercritical CO2 fluid extraction (SCFE) and refluxing. Each of 64 samples was applied to RAW 264.7 cells with LPS to evaluate whether IL-6 production by LPS is affected by addition of each sample. The IL-6 production in medium was determined by ELISA and the inhibitory activity of each sample was analyzed. In addition, the fingerprints of these 64 samples were also established by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS). We used the PLS, a simplified method, to evaluate the results from IL-6 production and fingerprints. Each of 64 samples markedly suppressed LPS-induced IL-6 production in RAW cells. The fingerprints by UPLC-MS clearly revealed variations among 64 samples produced in different extract conditions. The PLS analysis with IL-6 production and fingerprints by UPLC-MS suggested that the peaks 71, 93, 150, 157, 168 have more influence on the inhibitory activity of Caesalpinia sappan L. extracts. The peaks 71, 93, 150 are likely representing sappanone A, protosappanin E and neoprotosappanin, respectively. The peaks 157 and 168 are still at large. This is the first report that sappanone A, protosappanin E, neoprotosappanin and two unidentified compounds can be considered as possible active compounds that might inhibit IL-6 production

  12. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  13. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    PubMed

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  14. In vivo wound-healing activity of Euphorbia characias subsp. wulfenii: Isolation and quantification of quercetin glycosides as bioactive compounds.

    PubMed

    Özbilgin, Serkan; Acıkara, Özlem Bahadır; Akkol, Esra Küpeli; Süntar, Ipek; Keleş, Hikmet; İşcan, Gülçin Saltan

    2018-06-16

    The latex and the aerial parts of Euphorbia characias L. (Euphorbiaceae) have been used as medicinal plant to treat wounds and warts in traditional medicine. The effect of the plant extract was tested in vivo and in vitro with experimental models to find scientific evidence for traditional use in wound healing. Potentially active wound-healer compounds were isolated from the active fraction using fractionation procedures under the guidance of biological assay and the possible role of the compounds in the wound healing process was also determined. N-hexane, ethyl acetate, and methanol extracts were successively prepared from the aerial parts of E. characias subsp. wulfenii. The extracts were tested with linear incision, circular excision wound models and the hydroxyproline assay method to assess the wound-healing activity. The inhibition of the increase in capillary permeability induced by acetic acid, an acute inflammation model, was used to assay the anti-inflammatory activity. Different chromatographic separation techniques on sephadex and silica gel columns, and bioassay guided assay techniques have been used to isolate the active compounds of the plant. Moreover, hyaluronidase, collagenase and elastase enzymes inhibitory effect of active principle were investigated in vitro to find out the mechanism of action. The methanol (MeOH-ex) extract of the aerial parts of E. characias subsp. wulfenii showed significant wound healing activity (linear incision wound model: 43.04%; circular excision wound model 65.24%) and anti-inflammatory activity (34.74%). The methanol extract was separated into its fractions by column chromatography for isolation of efficient compounds. Biological activity of the fractions were assessed and further isolation and purification processes have been carried out in the active fraction. Isolation studies were carried out from the MeOH-ex fraction to obtain active constituents and their structures were elucidated to be quercetin-3-O

  15. Investigation on the activation of coal gangue by a new compound method.

    PubMed

    Li, Chao; Wan, Jianhua; Sun, Henghu; Li, Longtu

    2010-07-15

    In order to comprehensively utilize coal gangue as the main raw material in cementitious materials, improving its cementitious activity is a question of fundamental importance. In this paper, we present a new compound mechanical-hydro-thermal activation (CMHTA) technology to investigate the activation effect of coal gangue, and the traditional mechanical-thermal activation (TMTA) technology was used as reference. The purpose of this study is to give a detailed comparison between these two methods with regard to the mineral composition, crystal structure and microstructure, by XRD, IR, MAS NMR, XPS and mechanical property analysis. The prepared coal gangue based blended cement, containing 52% of activated coal gangue C (by CMHTA technology), has a better mechanical property than activated coal gangue T (by TMTA technology) and raw coal gangue. The results show that both of the TMTA and CMHTA technologies can improve the cementitious activity of raw gangue greatly. Moreover, compared with TMTA, the mineral phases such as feldspar and muscovite in raw coal gangue were partially decomposed, and the crystallinity of quartz decreased, due to the effect of adding CaO and hydro-thermal process of CMHTA technology. 2010 Elsevier B.V. All rights reserved.

  16. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  17. Analysis of Antibacterial Activity and Bioactive Compounds of the Giant Mushroom, Macrocybe gigantea (Agaricomycetes), from India.

    PubMed

    Gaur, Tanvi; Rao, P B

    2017-01-01

    The antibacterial activity, phenolic profile, and bioactive compounds of fruiting bodies from 2 strains (MA1 and MA2) of the giant mushroom Macrocybe gigantea were evaluated to access their nutraceutical efficacy. The antibacterial activity was higher in MA2 against all selected pathogenic bacteria. Selected phenolics were analyzed by high-performance liquid chromatography coupled with ultraviolet-visible detection. Gallic acid, ferulic acid, quercetin, p-hydroxy benzoic acid, cinnamic acid, and rutin contents (micrograms per gram dry weight) were quantified. Quercetin and rutin were absent in both strains of M. gigantea. M. gigantea MA2 showed relatively higher phenolic content (915.8 μg/g dry weight) than M. gigantea MA1 (854.4 μg/g dry weight). Among the phenolics, gallic acid is found in the largest amount; in M. gigantea MA2, it was 847.9 ± 2.67 μg/g dry weight. Gas chromatography-mass spectrometry analysis showed the presence of bioactive compounds in both strains; most compounds were antibacterial. Thus, the selected strains of M. gigantea can combat oxidative damage and can be used in foods, pharmaceuticals, and cosmetics because of their antioxidant potential.

  18. Discovery of New Compounds Active against Plasmodium falciparum by High Throughput Screening of Microbial Natural Products.

    PubMed

    Pérez-Moreno, Guiomar; Cantizani, Juan; Sánchez-Carrasco, Paula; Ruiz-Pérez, Luis Miguel; Martín, Jesús; El Aouad, Noureddine; Pérez-Victoria, Ignacio; Tormo, José Rubén; González-Menendez, Víctor; González, Ignacio; de Pedro, Nuria; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; González-Pacanowska, Dolores

    2016-01-01

    Due to the low structural diversity within the set of antimalarial drugs currently available in the clinic and the increasing number of cases of resistance, there is an urgent need to find new compounds with novel modes of action to treat the disease. Microbial natural products are characterized by their large diversity provided in terms of the chemical complexity of the compounds and the novelty of structures. Microbial natural products extracts have been underexplored in the search for new antiparasitic drugs and even more so in the discovery of new antimalarials. Our objective was to find new druggable natural products with antimalarial properties from the MEDINA natural products collection, one of the largest natural product libraries harboring more than 130,000 microbial extracts. In this work, we describe the optimization process and the results of a phenotypic high throughput screen (HTS) based on measurements of Plasmodium lactate dehydrogenase. A subset of more than 20,000 extracts from the MEDINA microbial products collection has been explored, leading to the discovery of 3 new compounds with antimalarial activity. In addition, we report on the novel antiplasmodial activity of 4 previously described natural products.

  19. Steroidal hormones and other endocrine active compounds in shallow groundwater in nonagricultural areas of Minnesota—Study design, methods, and data, 2009–10

    USGS Publications Warehouse

    Erickson, Melinda L.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, completed a study on the occurrence of steroidal hormones and other endocrine active compounds in shallow groundwater in nonagricultural areas of Minnesota during 2009–10. This report describes the study design and methods, and presents the data collected on steroidal hormones and other related compounds. Environmental and quality-control samples were collected from 40 wells as part of this study. Samples were analyzed by the U.S. Geological Survey National Water Quality Laboratory for 16 steroidal hormones and 4 other related compounds, of which all but 2 compounds are endocrine active compounds. Most of the water samples did not contain detectable concentrations of any of the 20 compounds analyzed. Water samples from three wells had detectable concentrations of one or more compounds. Bisphenol A was detected in samples from three wells, and trans-diethylstilbestrol was detected in one of the samples in which bisphenol A also was detected.

  20. Induction of apoptosis in human cervical carcinoma HeLa cells by active compounds from Hypericum ascyron L.

    PubMed

    Li, Xiu-Mei; Luo, Xue-Gang; He, Jun-Fang; Wang, Nan; Zhou, Hao; Yang, Pei-Long; Zhang, Tong-Cun

    2018-03-01

    Hypericum ascyron L. (Great St. Johnswort), which belongs to the Hypericaceae family, has been used for the treatment of hematemesis, metrorrhagia, rheumatism, swelling, stomach ache, abscesses, dysentery and irregular menstruation for >2,000 years in China. The aim of the present study was to clarify the anticancer activity compounds from H. ascyron L. and the underlying molecular mechanism. Anticancer activity of H. ascyron L. extract was evaluated using an MTT assay. To confirm the anticancer mechanism of activity compounds, Hoechst 33258, Annexin V-fluorescein isothiocyanate/propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate, rhodamine 123 staining and caspase-3 activity analysis were performed. The results demonstrated that the anti-proliferative action of the mixture of kaempferol 3-O-β-(2″-acetyl) galactopyranoside (K) and quercetin (Q) (molar ratio, 1:1) was significantly increased compared with either of these two compounds separately, and the active fraction of the H. ascyron L. extract |(HALE). HALE, indicating that the anti-proliferative function of H. ascyron L. may be a synergic effect of K and Q. Furthermore, the inhibitory effect of KQ on the growth of HeLa cells was mediated by the induction of apoptosis. To the best of our knowledge, the present study is the first to identify that KQ exhibits significant anti-proliferation activity on HeLa cells via the apoptotic pathway, and is also the first to evaluate the anticancer potential of H. ascyron L. The results of the present study may provide a rational base for the use of H. ascyron L. in the clinic, and shed light on the development of novel anticancer drugs.

  1. Anti-tumour activity of platinum compounds in advanced prostate cancer-a systematic literature review.

    PubMed

    Hager, S; Ackermann, C J; Joerger, M; Gillessen, S; Omlin, A

    2016-06-01

    For men with advanced castration-resistant prostate cancer (CRPC), several treatment options are available, including androgen receptor (AR) pathway inhibitors (abiraterone acetate, enzalutamide), taxanes (docetaxel, cabazitaxel) and the radionuclide (radium-223). However, cross-resistance is a clinically relevant problem. Platinum compounds have been tested in a number of clinical trials in molecularly unselected prostate cancer patients. Advances in CRPC molecular profiling have shown that a significant proportion of patients harbour DNA repair defects, which may serve as predictive markers for sensitivity to platinum agents. To systematically identify and analyse clinical trials that have evaluated platinum agents in advanced prostate cancer patients. PubMed was searched to identify published clinical trials of platinum agents in advanced prostate cancer. The PRIMSA statement was followed for the systematic review process. Identified trials are analysed for study design, statistical plan, assessments of anti-tumour activity and the potential value of predictive biomarkers. A total of 163 references were identified by the literature search and 72 publications that met the selection criteria were included in this review; of these 33 used carboplatin, 27 cisplatin, 6 satraplatin, 4 oxaliplatin and 2 other platinum compounds. Overall, anti-tumour activity varies in the range of 10%-40% for objective response and 20%-70% for PSA decline ≥50%. Response seemed highest for the combinations of carboplatin with taxanes or oxaliplatin with gemcitabine. The interpretation of the clinical data is limited by differences in response criteria used and patient populations studied. Platinum compounds have moderate anti-tumour activity in molecularly unselected patients with advanced prostate cancer. Translational evidence of DNA repair deficiency should be leveraged in future studies to select prostate cancer patients most likely to benefit from platinum-based therapy. © The

  2. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  3. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus alba Wood.

    PubMed

    Chaita, Eliza; Lambrinidis, George; Cheimonidi, Christina; Agalou, Adamantia; Beis, Dimitris; Trougakos, Ioannis; Mikros, Emmanuel; Skaltsounis, Alexios-Leandros; Aligiannis, Nektarios

    2017-03-23

    In therapeutic interventions associated with melanin hyperpigmentation, tyrosinase is regarded as a target enzyme as it catalyzes the rate-limiting steps in mammalian melanogenesis. Since many known agents have been proven to be toxic, there has been increasing impetus to identify alternative tyrosinase inhibitors, especially from natural sources. In this study, we investigated 900 extracts from Greek plants for potential tyrosinase inhibitive properties. Among the five most potent extracts, the methanol extract of Morus alba wood (MAM) demonstrated a significant reduction in intracellular tyrosinase and melanin content in B16F10 melanoma cells. Bioassay-guided isolation led to the acquisition of twelve compounds: oxyresveratrol (1), kuwanon C (2), mulberroside A (3), resorcinol (4), dihydrooxyresveratol (5), trans-dihydromorin (6), 2,4,3'-trihydroxydihydrostilbene (7), kuwanon H (8), 2,4-dihydroxybenzaldehyde (9), morusin (10), moracin M (11) and kuwanon G (12). Among these, 2,4,3'-trihydroxydihydrostilbene (7) is isolated for the first time from Morus alba and constitutes a novel potent tyrosinase inhibitor (IC50 0.8 ± 0.15). We report here for the first time dihydrooxyresveratrol (5) as a potent natural tyrosinase inhibitor (IC50 0.3 ± 0.05). Computational docking analysis indicated the binding modes of six tyrosinase inhibitors with the aminoacids of the active centre of tyrosinase. Finally, we found both MAM extract and compounds 1, 6 and 7 to significantly suppress in vivo melanogenesis during zebrafish embryogenesis.

  4. Cytotoxic Compounds from Brucea mollis

    PubMed Central

    Tung, Mai Hung Thanh; Đuc, Ho Viet; Huong, Tran Thu; Duong, Nguyen Thanh; Phuong, Do Thi; Thao, Do Thi; Tai, Bui Huu; Kim, Young Ho; Bach, Tran The; Cuong, Nguyen Manh

    2013-01-01

    Ten compounds, including soulameanone (1), isobruceine B (2), 9-methoxy-canthin-6-one (3), bruceolline F (4), niloticine (5), octatriacontan-1-ol (6), bombiprenone (7), α-tocopherol (8), inosine (9), and apigenin 7-O-β-D-glucopyranoside (10), were isolated from the leaves, stems, and roots of Brucea mollis Wall. ex Kurz. Their structures were determined using one-and two-dimensional NMR spectroscopy and mass spectrometry. All compounds were evaluated for their cytotoxic activity against KB (human carcinoma of the mouth), LU-1 (human lung adenocarcinoma), LNCaP (human prostate adeno-carcinoma), and HL-60 (human promyelocytic leukemia) cancer cell lines. Compound 2 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values of 0.39, 0.40, 0.34, and 0.23 μg/mL, respectively. In addition, compounds 3 and 5 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values around 1–4 μg/mL. Compounds 9-methoxycanthin-6-one (3) and niloticine (5) have been discovered for the first time from the Brucea genus. PMID:24106661

  5. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    PubMed Central

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  6. Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments.

    PubMed

    Guiné, Raquel P F; Barroca, Maria João; Gonçalves, Fernando J; Alves, Mariana; Oliveira, Solange; Mendes, Mateus

    2015-02-01

    Bananas (cv. Musa nana and Musa cavendishii) fresh and dried by hot air at 50 and 70°C and lyophilisation were analysed for phenolic contents and antioxidant activity. All samples were subject to six extractions (three with methanol followed by three with acetone/water solution). The experimental data served to train a neural network adequate to describe the experimental observations for both output variables studied: total phenols and antioxidant activity. The results show that both bananas are similar and air drying decreased total phenols and antioxidant activity for both temperatures, whereas lyophilisation decreased the phenolic content in a lesser extent. Neural network experiments showed that antioxidant activity and phenolic compounds can be predicted accurately from the input variables: banana variety, dryness state and type and order of extract. Drying state and extract order were found to have larger impact in the values of antioxidant activity and phenolic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.

  8. Compounds Derived from the Bhutanese Daisy, Ajania nubigena, Demonstrate Dual Anthelmintic Activity against Schistosoma mansoni and Trichuris muris.

    PubMed

    Wangchuk, Phurpa; Pearson, Mark S; Giacomin, Paul R; Becker, Luke; Sotillo, Javier; Pickering, Darren; Smout, Michael J; Loukas, Alex

    2016-08-01

    Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties. Here we studied four major compounds derived from A. nubigena for their anthelmintic properties against the nematode whipworm Trichuris muris and the platyhelminth blood fluke Schistosoma mansoni using the xWORM assay technique. Of four compounds tested, two compounds-luteolin (3) and (3R,6R)-linalool oxide acetate (1)-showed dual anthelmintic activity against S. mansoni (IC50 range = 5.8-36.9 μg/mL) and T. muris (IC50 range = 9.7-20.4 μg/mL). Using scanning electron microscopy, we determined luteolin as the most efficacious compound against both parasites and additionally was found effective against the schistosomula, the infective stage of S. mansoni (IC50 = 13.3 μg/mL). Luteolin induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. Our in vivo assessment of luteolin (3) against T. muris infection at a single oral dosing of 100 mg/kg, despite being significantly (27.6%) better than the untreated control group, was markedly weaker than mebendazole (93.1%) in reducing the worm burden in mice. Among the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths-T. muris and S. mansoni-and was effective against juvenile schistosomes, the stage that is refractory to the current

  9. In Vitro Evaluation of Antileishmanial Activity of Computationally Screened Compounds against Ascorbate Peroxidase To Combat Amphotericin B Drug Resistance

    PubMed Central

    Mansuri, Rani; Kumar, Ashish; Rana, Sindhuprava; Panthi, Bhavana; Ansari, M. Yousuf; Das, Sushmita; Dikhit, Manas Ranjan

    2017-01-01

    ABSTRACT In visceral leishmaniasis (VL), the host macrophages generate oxidative stress to destroy the pathogen, while Leishmania combats the harmful effect of radicals by redox homeostasis through its unique trypanothione cascade. Leishmania donovani ascorbate peroxidase (LdAPx) is a redox enzyme that regulates the trypanothione cascade and detoxifies the effect of H2O2. The absence of an LdAPx homologue in humans makes it an excellent drug target. In this study, the homology model of LdAPx was built, including heme, and diverse compounds were prefiltered (PAINS, ADMET, and Lipinski's rule of five) and thereafter screened against the LdAPx model. Compounds having good affinity in terms of the Glide XP (extra precision) score were clustered to select diverse compounds for experimental validation. A total of 26 cluster representatives were procured and tested on promastigote culture, yielding 12 compounds with good antileishmanial activity. Out of them, six compounds were safer on the BALB/c peritoneal macrophages and were also effective against disease-causing intracellular amastigotes. Three out of six compounds inhibited recombinant LdAPx in a noncompetitive manner and also demonstrated partial reversion of the resistance property in an amphotericin B (AmB)-resistant strain, which may be due to an increased level of reactive oxygen species (ROS) and decrease of glutathione (GSH) content. However, inhibition of LdAPx in resistant parasites enhanced annexin V staining and activation of metacaspase-like protease activity, which may help in DNA fragmentation and apoptosis-like cell death. Thus, the present study will help in the search for specific hits and templates of potential therapeutic interest and therefore may facilitate the development of new drugs for combination therapy against VL. PMID:28461317

  10. A Coupling of Benzamides and Donor/Acceptor Diazo–Compounds to form γ-Lactams via Rh(III)–Catalyzed C–H Activation

    PubMed Central

    Hyster, Todd K.; Ruhl, Kyle E.; Rovis, Tomislav

    2013-01-01

    The coupling of O-pivaloyl benzhydroxamic acids with donor/acceptor diazo compounds provides iso-indolones in high yield. The reaction tolerates a broad range of benzhydroxamic acids and diazo compounds including substituted 2,2,2-trifluorodiazo ethanes. Mechanistic experiments suggest that C–H activation is turnover limiting and irreversible, while insertion of the diazo compound favors electron deficient substrates. PMID:23548055

  11. Volatile flavor compounds, total polyphenolic contents and antioxidant activities of a China gingko wine.

    PubMed

    Wang, Xu; Xie, Kelin; Zhuang, Haining; Ye, Ran; Fang, Zhongxiang; Feng, Tao

    2015-09-01

    The volatile compounds in gingko wine, a novel functional wine, were extracted by head-space solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS) coupled with odor activity value (OAV) and relative odor contribution (ROC) analyses. In addition, the total polyphenolic content of gingko wine was determined using the Folin-Ciocalteu reagent, and its antioxidant capacity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Fifty-eight compounds were tentatively identified, including 13 esters, 10 alcohols, 11 acids, 12 carbonyl compounds, 2 lactones, 2 phenols, and 8 hydrocarbons. Ethyl hexanoate, ethyl pentanoate, nonanal, ethyl butyrate and ethyl heptanoate were the major contributors to the gingko wine aroma based on the results of OAV and ROC. The total phenols content of the gingko wine was 456 mg/L gallic acid equivalents, and its antioxidant capacity was higher than those of typical Chinese liquors analyzed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The bioactive compounds and antioxidant activity of ethanol and ethyl ecetate extracts of Candi Banana (Musa paradisiaca)

    NASA Astrophysics Data System (ADS)

    Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.

    2018-03-01

    Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.

  13. Preparation and use of maize tassels' activated carbon for the adsorption of phenolic compounds in environmental waste water samples.

    PubMed

    Olorundare, O F; Msagati, T A M; Krause, R W M; Okonkwo, J O; Mamba, B B

    2015-04-01

    The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84-98.49%, 80.75-97.11%, and 78.27-97.08% for BPA, o-NTP, and PCP, respectively). The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes.

  14. A flavonoid compound library screen revealed potent antiviral activity of plant-derived flavonoids on human enterovirus A71 replication.

    PubMed

    Min, Nyo; Leong, Pok Thim; Lee, Regina Ching Hua; Khuan, Jeffery Seng Eng; Chu, Justin Jang Hann

    2018-02-01

    Hand Foot Mouth Disease (HFMD), resulting from human enterovirus A71 (HEVA71) infection can cause severe neurological complications leading to fatality in young children. Currently, there is no approved antiviral for therapeutic treatment against HEVA71 infection. In this study, a 500-compound flavonoid library was screened to identify potential inhibitors of HEVA71 using high-throughput immunofluorescence-based phenotypic screening method. Two lead flavonoid compounds, ST077124 and ST024734 at the non-cytotoxic concentration of 50 μM were found to be effective antivirals that inhibited replication of HEVA71, reducing infectious viral titers by 3.5 log 10  PFU/ml and 2.5 log 10  PFU/ml respectively. Our study revealed that ST077124 is a specific antiviral compound that inhibits human enteroviruses while ST024734 exhibited antiviral activity against human enteroviruses as well as dengue virus type-2. We also identified that both compounds affected the viral RNA transcription and translation machinery of HEVA71 but did not interfere with the viral internal ribosomal entry site (IRES) activity. Hence, our findings strongly suggest that ST077124 and ST024734 are effective antiviral compounds of minimal cytotoxicity and could serve as promising therapeutic agents against HEVA71 infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structure-activity models of oral clearance, cytotoxicity, and LD50: a screen for promising anticancer compounds

    PubMed Central

    Boik, John C; Newman, Robert A

    2008-01-01

    Background Quantitative structure-activity relationship (QSAR) models have become popular tools to help identify promising lead compounds in anticancer drug development. Few QSAR studies have investigated multitask learning, however. Multitask learning is an approach that allows distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of correlated data features, nonlinear relationships between features and responses, and multitask learning. Multitask learning is particularly useful when the number of available training records is small relative to the number of features, as was the case with the oral clearance data. Results Multitask learning modestly but significantly improved the classification precision for the oral clearance model. For the cytotoxicity model, which was constructed using a large number of records, multitask learning did not affect precision but did reduce computation time. The models developed here were used to predict activities for 115,000 natural compounds. Hundreds of natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be cytotoxic, have high LD50 values, and have low to moderate oral clearance. Conclusion Multitask learning can be useful in some QSAR models. A suite of QSAR models was constructed and used to screen a large drug library for compounds likely to be cytotoxic to multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable pharmacokinetic properties in humans. PMID:18554402

  16. Structure-activity models of oral clearance, cytotoxicity, and LD50: a screen for promising anticancer compounds.

    PubMed

    Boik, John C; Newman, Robert A

    2008-06-13

    Quantitative structure-activity relationship (QSAR) models have become popular tools to help identify promising lead compounds in anticancer drug development. Few QSAR studies have investigated multitask learning, however. Multitask learning is an approach that allows distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of correlated data features, nonlinear relationships between features and responses, and multitask learning. Multitask learning is particularly useful when the number of available training records is small relative to the number of features, as was the case with the oral clearance data. Multitask learning modestly but significantly improved the classification precision for the oral clearance model. For the cytotoxicity model, which was constructed using a large number of records, multitask learning did not affect precision but did reduce computation time. The models developed here were used to predict activities for 115,000 natural compounds. Hundreds of natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be cytotoxic, have high LD50 values, and have low to moderate oral clearance. Multitask learning can be useful in some QSAR models. A suite of QSAR models was constructed and used to screen a large drug library for compounds likely to be cytotoxic to multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable pharmacokinetic properties in humans.

  17. Isolation and purification of antialgal compounds from the red alga Gracilaria lemaneiformis for activity against common harmful red tide microalgae.

    PubMed

    Sun, Ying-Ying; Meng, Kun; Su, Zhen-Xia; Guo, Gan-Lin; Pu, Yin-Fang; Wang, Chang-Hai

    2017-02-01

    Seven antialgal compounds (1-7) were successfully isolated from the red alga Gracilaria lemaneiformis through a combination of silica gel column chromatography and repeated preparative thin-layer chromatography. On the basis of the spectral data, the compounds were identified as gossonorol (1), 7,10-epoxy-ar-bisabol-11-ol (2), glycerol monopalmitate (3), stigmasterol (4), 15-hydroxymethyl-2, 6, 10, 18, 22, 26, 30-heptamethyl-14-methylene-17-hentriacontene (5), 4-hydroxyphenethyl alcohol (6), and margaric acid (7). These seven compounds were isolated from G. lemaneiformis for the first time, while the compounds 4, 6, and 7 were isolated from marine macroalgae for the first time. Furthermore, a quantitative relationship between the inhibition of algal growth and the concentration of each antialgal compound was determined and important parameters for future practical HAB control, e.g., EC 50-96h , were also obtained. The results indicated that isolated compounds 1-7 possess selective antialgal activity against the growth of several red tide microalgae (including Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globsa, Prorocentrum donghaiense, and Skeletonema costatum). Their antialgal activity against test red tide microalgae has not been previously reported. Furthermore, the EC 50-96h of one or more of the compounds towards the tested red microalgae was not only significantly less than 10 μg/mL but also was smaller than that of the characteristic antialgal agent potassium dichromate. The study demonstrates that compounds 1-7 possess significant application potential as antialgal agents against several harmful red tide microalgae.

  18. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA.

    PubMed

    Caballero, Julio; Fernández, Michael; Coll, Deysma

    2010-12-01

    Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies. © 2010 John Wiley & Sons A/S.

  19. Gene expression profiling in Ishikawa cells: A fingerprint for estrogen active compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehme, Kathleen; Simon, Stephanie; Mueller, Stefan O.

    2009-04-01

    Several anthropogenous and naturally occurring substances, referred to as estrogen active compounds (EACs), are able to interfere with hormone and in particular estrogen receptor signaling. EACs can either cause adverse health effects in humans and wildlife populations or have beneficial effects on estrogen-dependent diseases. The aim of this study was to examine global gene expression profiles in estrogen receptor (ER)-proficient Ishikawa plus and ER-deficient Ishikawa minus endometrial cancer cells treated with selected well-known EACs (Diethylstilbestrol, Genistein, Zearalenone, Resveratrol, Bisphenol A and o,p'-DDT). We also investigated the effect of the pure antiestrogen ICI 182,780 (ICI) on the expression patterns caused bymore » these compounds. Transcript levels were quantified 24 h after compound treatment using Illumina BeadChip Arrays. We identified 87 genes with similar expression changes in response to all EAC treatments in Ishikawa plus. ICI lowered the magnitude or reversed the expression of these genes, indicating ER dependent regulation. Apart from estrogenic gene regulation, Bisphenol A, o,p'-DDT, Zearalenone, Genistein and Resveratrol displayed similarities to ICI in their expression patterns, suggesting mixed estrogenic/antiestrogenic properties. In particular, the predominant antiestrogenic expression response of Resveratrol could be clearly distinguished from the other test compounds, indicating a distinct mechanism of action. Divergent gene expression patterns of the phytoestrogens, as well as weaker estrogenic gene expression regulation determined for the anthropogenous chemicals Bisphenol A and o,p'-DDT, warrants a careful assessment of potential detrimental and/or beneficial effects of EACs. The characteristic expression fingerprints and the identified subset of putative marker genes can be used for screening chemicals with an unknown mode of action and for predicting their potential to exert endocrine disrupting effects.« less

  20. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    PubMed Central

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  1. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  2. Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities.

    PubMed

    Chan, Man Nin; Kreidenweis, Sonia M; Chan, Chak K

    2008-05-15

    The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB)was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10(-1) to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities. The EDB data show that glyoxylic acid, 4-methylphthalic acid, monosaccharides (fructose and mannose), and disaccharides (maltose and lactose) did not crystallize and existed as metastable droplets at low relative humidity (RH). Hygroscopic data from this work and in the literature support earlier studies showing that the CCN activities of compounds with solubilities down to the order of 10(-1) g solute/100 g water can be predicted by standard Köhler theory with the assumption of complete dissolution of the solute at activation. We also demonstrate the use of evaporation data (or efflorescence data), which provides information on the water contents of metastable solutions below the compound deliquescence RH that can be extrapolated to higher dilutions, to predict the CCN activity of organic particles, particularly for sparingly soluble organic compounds that do not deliquesce at RH achievable in the EDB and in the hygroscopic tandem differential mobility analyzer.

  3. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  4. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico.

    PubMed

    Moo-Huchin, Víctor M; Moo-Huchin, Mariela I; Estrada-León, Raciel J; Cuevas-Glory, Luis; Estrada-Mota, Iván A; Ortiz-Vázquez, Elizabeth; Betancur-Ancona, David; Sauri-Duch, Enrique

    2015-01-01

    The aim of this study was to determine the antioxidant compounds, antioxidant activity and content of individual phenolic compounds of freeze-dried peel from three tropical fruits grown in Yucatan, México: purple star apple (Chrysophyllum cainito L.), yellow cashew and red cashew (Anacardium occidentale). The freeze-dried peels were good source of antioxidant compounds. ABTS and DPPH values in the peel from each fruit were 3050.95-3322.31 μM Trolox/100g dry weight (DW) or 890.19-970.01 mg of vitamin C/100 g DW, and 1579.04-1680.90 μM Trolox/100 g DW or 340.18-362.18 mg of vitamin C/100 g DW, respectively. Six phenolic compounds were identified in the peel from the tropical fruits studied: ferulic, caffeic, sinapic, gallic, ellagic and myricetin. This study demonstrated that freeze-dried peels from purple star apple, yellow cashew and red cashew, could serve as potential sources of antioxidants for use in food and pharmaceutical industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose-Efficacy Modeling.

    PubMed

    Le Bihan, Amélie; de Kanter, Ruben; Angulo-Barturen, Iñigo; Binkert, Christoph; Boss, Christoph; Brun, Reto; Brunner, Ralf; Buchmann, Stephan; Burrows, Jeremy; Dechering, Koen J; Delves, Michael; Ewerling, Sonja; Ferrer, Santiago; Fischli, Christoph; Gamo-Benito, Francisco Javier; Gnädig, Nina F; Heidmann, Bibia; Jiménez-Díaz, María Belén; Leroy, Didier; Martínez, Maria Santos; Meyer, Solange; Moehrle, Joerg J; Ng, Caroline L; Noviyanti, Rintis; Ruecker, Andrea; Sanz, Laura María; Sauerwein, Robert W; Scheurer, Christian; Schleiferboeck, Sarah; Sinden, Robert; Snyder, Christopher; Straimer, Judith; Wirjanata, Grennady; Marfurt, Jutta; Price, Ric N; Weller, Thomas; Fischli, Walter; Fidock, David A; Clozel, Martine; Wittlin, Sergio

    2016-10-01

    Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under

  6. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds.

    PubMed

    Rahmanpour, Rahman; Rea, Dean; Jamshidi, Shirin; Fülöp, Vilmos; Bugg, Timothy D H

    2016-03-15

    A Dyp-type peroxidase enzyme from thermophilic cellulose degrader Thermobifida fusca (TfuDyP) was investigated for catalytic ability towards lignin oxidation. TfuDyP was characterised kinetically against a range of phenolic substrates, and a compound I reaction intermediate was observed via pre-steady state kinetic analysis at λmax 404 nm. TfuDyP showed reactivity towards Kraft lignin, and was found to oxidise a β-aryl ether lignin model compound, forming an oxidised dimer. A crystal structure of TfuDyP was determined, to 1.8 Å resolution, which was found to contain a diatomic oxygen ligand bound to the heme centre, positioned close to active site residues Asp-203 and Arg-315. The structure contains two channels providing access to the heme cofactor for organic substrates and hydrogen peroxide. Site-directed mutant D203A showed no activity towards phenolic substrates, but reduced activity towards ABTS, while mutant R315Q showed no activity towards phenolic substrates, nor ABTS. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Study of Interactions between Active Compounds of Coffee and Willow (Salix sp.) Bark Water Extract

    PubMed Central

    Durak, Agata; Gawlik-Dziki, Urszula

    2014-01-01

    Coffee and willow are known as valuable sources of biologically active phytochemicals such as chlorogenic acid, caffeine, and salicin. The aim of the study was to determine the interactions between the active compounds contained in water extracts from coffee and bark of willow (Salix purpurea and Salix myrsinifolia). Raw materials and their mixtures were characterized by multidirectional antioxidant activities; however, bioactive constituents interacted with each other. Synergism was observed for ability of inhibition of lipid peroxidation and reducing power, whereas compounds able to scavenge ABTS radical cation acted antagonistically. Additionally, phytochemicals from willow bark possessed hydrophilic character and thermostability which justifies their potential use as an ingredient in coffee beverages. Proposed mixtures may be used in the prophylaxis or treatment of some civilization diseases linked with oxidative stress. Most importantly, strong synergism observed for phytochemicals able to prevent lipids against oxidation may suggest protective effect for cell membrane phospholipids. Obtained results indicate that extracts from bark tested Salix genotypes as an ingredient in coffee beverages can provide health promoting benefits to the consumers; however, this issue requires further study. PMID:25013777

  8. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro.

    PubMed

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  9. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    PubMed Central

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; Ameddah, Souad; Severino, Lorella

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  10. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds.

    PubMed

    Shen, Yi; Zhong, Linlin; Johnson, Stephen; Cao, Deliang

    2011-05-30

    Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Repeated Exposure to Sublethal Doses of the Organophosphorus Compound VX Activates BDNF Expression in Mouse Brain

    DTIC Science & Technology

    2012-01-01

    NUMBER activates BDNF expression in mouse brain 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Pizarro, JM, Chang, WE, Bah, MJ...of the Organophosphorus Compound VX Activates BDNF Expression in Mouse Brain Jose M. Pizarro,*,† Wenling E. Chang,†,‡ Mariama J. Bah,† Linnzi K. M...triphosphate and UTP, and 2 ll modified cytidine triphosphate solution [2mM]), 33P-UTP (specific activity of 5 3 109 cpm/lg), 2 ll RNA polymerase, 2 ll of

  12. Structural Activity of Bovidic Acid and Related Compounds as Feeding Deterrents against Aedes aegypti

    DTIC Science & Technology

    2007-01-01

    fatty acid analogues were evaluated against Aedes aegypti (L.) mosquitoes and results indicate that this may generate class of topical repellents for use...duced risk to humans, pets and environment, natu- Structural Activity of Bovidic Acid and Related Compounds as Feeding Deterrents against Aedes aegypti K...against insects that transmit pathogens to humans. KEY WORDS : Bovidic acid , feeding deterrents , Aedes aegypti , hydroxy furanoid

  13. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology.

    PubMed

    Chen, Shasha; Zeng, Zhi; Hu, Na; Bai, Bo; Wang, Honglun; Suo, Yourui

    2018-03-01

    Lycium ruthenicum Murr. (LR) is a functional food that plays an important role in anti-oxidation due to its high level of phenolic compounds. This study aims to optimize ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activities of obtained extracts from LR using response surface methodology (RSM). A four-factor-three-level Box-Behnken design (BBD) was employed to discuss the following extracting parameters: extraction time (X 1 ), ultrasonic power (X 2 ), solvent to sample ratio (X 3 ) and solvent concentration (X 4 ). The analysis of variance (ANOVA) results revealed that the solvent to sample ratio had a significant influence on all responses, while the extraction time had no statistically significant effect on phenolic compounds. The optimum values of the combination of phenolic compounds and antioxidant activities were obtained for X 1 =30min, X 2 =100W, X 3 =40mL/g, and X 4 =33% (v/v). Five phenolic acids, including chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid, were analyzed by HPLC. Our results indicated that optimization extraction is vital for the quantification of phenolic compounds and antioxidant activity in LR, which may be contributed to large-scale industrial applications and future pharmacological activities research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less.

    PubMed

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (-)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model.

  15. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  16. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  17. Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity.

    PubMed

    Silva, Eric Keven; Zabot, Giovani L; Cazarin, Cinthia B B; Maróstica, Mário R; Meireles, M Angela A

    2016-06-25

    The objective of this study was to evaluate the use of inulin (IN), a prebiotic carbohydrate without superficial activity, as an encapsulating matrix of lipophilic bioactive compounds. For achieving the encapsulation, IN was associated with biopolymers that present superficial activity: modified starch (HiCap), whey protein isolate (WPI) and gum acacia (GA). Encapsulation was performed through emulsification assisted by ultrasound followed by freeze-drying (FD) process to dry the emulsions. All blends retained geranylgeraniol. GA-IN blend yielded the highest geranylgeraniol retention (96±2wt.%) and entrapment efficiency (94±3wt.%), whilst WPI-IN blend yielded the highest encapsulation efficiency (88±2wt.%). After encapsulation, composition of geranylgeraniol in the annatto seed oil was maintained (23.0±0.5g/100g of oil). Such findings indicate that the method of encapsulation preserved the active compound. All blends were also effective for maintaining the antioxidant activity of the oil through ORAC and DPPH analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate.

    PubMed

    Santos, A; Fernandez, J; Rodriguez, S; Dominguez, C M; Lominchar, M A; Lorenzo, D; Romero, A

    2018-02-15

    In this work, in situ chemical oxidation (ISCO) with alkali activated persulfate has been tested for the elimination of HCH isomers and other chlorinated compounds in groundwater from Sabiñanigo (Sardas landfill), which was contaminated by solid and liquid wastes illegally dumped in the area by a company producing lindane. Due to the site lithology and the type of pollutants found in groundwater (HCHs and chlorobenzenes) alkali (NaOH) activated persulfate (PS) was selected as oxidant. The influence of variables such as PS concentration (42-200mM) and NaOH:PS molar ratio (2:1 to 4:1) on chlorinated compound abatement has been studied and a kinetic model to predict the composition of all chlorinated organic compounds (COCs) in the aqueous phase with time was obtained. It was found that a fast initial hydrodechlorination reaction took place in which HCH isomers reacted to trichlorobenzenes (mainly 1,2,4 TCB) at pH≥12. Mono-, di-, tri and tetrachlorobenzenes remaining were oxidized without producing aromatic intermediates. At the condition tested a first order kinetic model for COCs and PS concentration was obtained. Zero order alkali concentration was obtained while pH was being kept at 12 for the whole reaction time. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa

    PubMed Central

    Yue, Grace G. L.; Chan, Ben C. L.; Hon, Po-Ming; Lee, Mavis Y. H.; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B. S.

    2010-01-01

    The rhizome of Curcuma longa (CL) has been commonly used in Asia as a potential candidate for the treatment of different diseases, including inflammatory disorders and cancers. The present study evaluated the anti-proliferative activities of the isolated compounds (3 curcuminoids and 2 turmerones) from CL, using human cancer cell lines HepG2, MCF-7 and MDA-MB-231. The immunomodulatory activities of turmerones (α and aromatic) isolated from CL were also examined using human peripheral blood mononuclear cells (PBMC). Our results showed that the curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) and α-turmerone significantly inhibited proliferation of cancer cells in dose-dependent manner. The IC50 values of these compounds in cancer cells ranged from 11.0–41.8 μg/ml. Alpha-turmerone induced MDA-MB-231 cells to undergo apoptosis, which was confirmed by annexin-V & propidium iodide staining, and DNA fragmentation assay. The caspase cascade was activated as shown by a significant decrease of procaspases-3, -8 and -9 in α-turmerone treated cells. Both α-turmerone and aromatic-turmerone showed stimulatory effects on PBMC proliferation and cytokine production. The anti-proliferative effect of α-turmerone and immunomodulatory activities of ar-turmerone were shown for the first time. The findings revealed the potential use of CL crude extract (containing curcuminoids and volatile oil including turmerones) as chemopreventive agent. PMID:20438793

  20. Maillard reaction products derived from thiol compounds as inhibitors of enzymatic browning of fruits and vegetables: the structure-activity relationship.

    PubMed

    Billaud, C; Maraschin, C; Peyrat-Maillard, M-N; Nicolas, J

    2005-06-01

    Some thiol-derived Maillard reaction products (MRPs) may exert antioxidant activity, depending on the reaction conditions as well as on the sugar and the sulphydryl compound. Recently, we reported that MRPs derived from glucose or fructose with cysteine (CSH) or glutathione (GSH) mixtures greatly inhibited polyphenoloxidases (PPOs), oxidoreductases responsible for discoloration of fresh or minimally processed fruits and vegetables. Glucose and GSH were shown to be the most active in producing inhibitory MRPs. Therefore, we examined the way in which the nature of the reactants affected their synthesis, in order to establish a structure-activity relationship for the inhibitory products. Various aqueous (0.083 M, 0.125 M, or 0.25 M) mixtures of a sugar (hexose, pentose, or diholoside) with either a CSH-related compound (CSH, GSH, N-acetyl-cysteine, cysteamine, cysteic acid, methyl-cysteine, cysteine methyl ester), an amino acid (gamma-glutamic acid, glycine, methionine), or other sulfur compound (thiourea, 1,4-dithiothreitol, 2-mercaptoethanol) were heated at 103 degrees C for 14 h. Soluble MRPs were compared for their ability to inhibit apple PPO activity. In the presence of CSH, the rated sugars (same molar concentration) ranked as to inhibitory effect were pentoses > sucrose > hexoses > or = maltose. In the presence of glucose, the simultaneous presence of an amino group, a carboxyl group, and a free thiol group on the same molecule seemed essential for the production of highly inhibitory compounds.