Sample records for active filler metals

  1. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal must...

  2. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal must...

  3. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  4. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  5. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  6. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  7. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  8. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility wasmore » compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.« less

  9. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  10. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  11. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    NASA Astrophysics Data System (ADS)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  12. The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals

    PubMed Central

    Chen, Yunxia; Cui, Haichao; Lu, Binfeng; Lu, Fenggui

    2017-01-01

    The microstructures and weldability of a brazed joint of 1Cr18Ni9Ti austenitic stainless steel with BNi-2, BNi82CrSiBFe and BMn50NiCuCrCo filler metals in vacuum were investigated. It can be observed that an interdiffusion region existed between the filler metal and the base metal for the brazed joint of Ni-based filler metals. The width of the interdiffusion region was about 10 μm, and the microstructure of the brazed joint of BNi-2 filler metal was dense and free of obvious defects. In the case of the brazed joint of BMn50NiCuCrCo filler metal, there were pits, pores and crack defects in the brazing joint due to insufficient wettability of the filler metal. Crack defects can also be observed in the brazed joint of BNi82CrSiBFe filler metal. Compared with BMn50NiCuCrCo and BNi82CrSiBFe filler metals, BNi-2 filler metal is the best material for 1Cr18Ni9Ti austenitic stainless steel vacuum brazing because of its distinct weldability. PMID:28772745

  13. Nickel-chromium-silicon brazing filler metal

    DOEpatents

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  14. High-Temperature Active Soldering of SiC Particle-Reinforced Al-MMC Using a Novel ZnAlGaMgTi Filler Metal

    NASA Astrophysics Data System (ADS)

    Chen, Biqiang; Zhang, Guifeng; Zhang, Linjie; Xu, Tingting

    2017-10-01

    In order to broaden the application of SiC particle-reinforced aluminum matrix composite in electronics packaging, newly developed ZnAlGaMgTi filler with a low melting point of 418-441 °C was utilized as filler metal for active soldering of aluminum matrix composites (70 vol.%, SiCp/Al-MMCs) for the first time. The effect of loading pressure on joint properties of ZnAlGaMgTi active filler was investigated. The experimental results indicated that novel filler could successfully solder Al-MMCs, and the presence of Mg in the filler enhanced the penetration of Zn, while the forming of Zn-rich barrier layer influenced the active element MPD (melting point depressant) diffusion into parent composite, and the bulk-like (Mg-Si)-rich phase and Ti-containing phase were readily observed at the interface and bond seam. With the increase in loading pressure, the runout phenomenon appeared more significant, and the filler foil thickness and the Zn penetration depth varied pronouncedly. Sound joints with maximum shear strength of 29.6 MPa were produced at 480 °C at 1 MPa, and the crack occurred adjacent to the boundary of SiC particle and then propagated along the interface. A novel model describing the significant mutual diffusion of Al and Zn atoms between the parent material and solder was proposed.

  15. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  16. The use of Ni-Cr-Si-Be filler metals for brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Fedotov, V.; Suchkov, A.; Penyaz, M.; Fedotov, I.; Tarasov, B.

    2016-04-01

    Nanocrystalline ribbon filler metal-alloys of system Ni-Cr-Si-Be are produced by the rapidly quenching of the melt method. By these filler metals carried out hight temperature vacuum brazing of austenitic steels (12Kh18N10T and Kh18N8G2) and austenitic-ferritic class EI-811 (12Kh21N5T). The basic laws of structure-phase state foundation of brazed joints are determined, features of the interaction of the molten filler metal to the brazed materials are identified, the optimal temperature and time parameters of the brazing process are determined.

  17. Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Zhao, L.; Kopp, N.; Samadian Anavar, S.

    2014-03-01

    Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

  18. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    NASA Astrophysics Data System (ADS)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  20. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  1. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  2. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  3. Physical Metallurgy, Weldability, and in-Service Performance of Nickel-Chromium Filler Metals Used in Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Young, George A.; Etien, Robert A.; Hackett, Micah J.; Tucker, Julie D.; Capobianco, Thomas E.

    Wrought Alloy 690 is well established for corrosion resistant nuclear applications but development continues to improve the weldability of a filler metal that retains the corrosion resistance and phase stability of the base metal. High alloy Ni-Cr filler metals are prone to several types of welding defects and new alloys are emerging for commercial use. This paper uses experimental and computational methods to illustrate key differences among welding consumables. Results show that solidification segregation is critical to understanding the weldability and environmentally-assisted cracking resistance of these alloys. Primary water stress corrosion cracking tests show a marked decrease in crack growth rates near 21 wt. % Cr at the grain boundary. While filler metals with 21-29 wt.% grain boundary Cr show similar PWSCC resistance, the higher alloyed grades are more prone to solidification cracking. Modeling and aging studies indicate that in some filler metals minor phase formation (e.g., Laves and σ) and long range order (LRO) must be assessed to ensure adequate weldability and inservice performance.

  4. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  5. Filler metal selection for welding a high nitrogen stainless steel

    NASA Astrophysics Data System (ADS)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  6. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  7. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  8. Influence of fillers on the alkali activated chamotte

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bumanis, G.; Vitola, L.; Bajare, D.

    2017-10-01

    Alkali-activated materials (AAM) exhibit remarkable high-temperature resistance which makes them perspective materials for high-temperature applications, for instance as fire protecting and insulating materials in industrial furnaces. Series of experiments were carried out to develop optimum mix proportions of AAM based on chamotte with quartz sand (Q), olivine sand (OL) and firebrick sawing residues (K26) as fillers. Aluminium scrap recycling waste was considered as a pore forming agent and 6M NaOH alkali activation solution has been used. Lightweight porous AAM have been obtained with density in range from 600 to 880 kg/m3 and compressive strength from 0.8 to 2.7 MPa. The XRD and high temperature optical microscopy was used to characterize the performance of AAM. The mechanical, physical and structural properties of the AAM were determined after the exposure to elevated temperatures at 800 and 1000°C. The results indicate that most promising results for AAM were with K26 filler where strength increase was observed while Q and OL filler reduced mechanical properties due to structure deterioration caused by expansive nature of selected filler.

  9. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  10. Understanding the reliability of solder joints used in advanced structural and electronics applications: Part 1 - Filler metal properties and the soldering process

    DOE PAGES

    Vianco, Paul T.

    2017-02-01

    Soldering technology has made tremendous strides in the past half-century. Whether structural or electronic, all solder joints must provide a level of reliability that is required by the application. This Part 1 report examines the effects of filler metal properties and soldering process on joint reliability. Solder alloy composition must have the appropriate melting and mechanical properties that suit the product's assembly process(es) and use environment. The filler metal must also optimize solderability (wetting-and-spreading) to realize the proper joint geometry. Here, the soldering process also affects joint reliability. The choice of flux and thermal profile support the solderability performance ofmore » the molten filler metal to successfully fill the gap and complete the fillet.« less

  11. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-07-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell ( n A u-v ) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_{{A}}^{{u - v}} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5˜45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2˜10 wt%. Thus, Ti-based filler metal with Zr content being 2˜10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n A u-v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface.

  12. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  13. Laser welding aluminum without filler metal using continuous wave and pulsed Nd:YAG lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bransch, H.N.

    1994-12-31

    A problem with automotive aluminum tubing applications, particularly for air conditioning heat exchanger assemblies, is terminating the tube reliably and inexpensively. An alternative to upsetting and mchining threads to the tube end is welding a nut (made from a stronger, easily machinable alloy such as Al 5456 or Al 6061) to lengths of tubing (made from a softer alloy such as Al 3003). Laser welding was investigated in order to reduce heat input and increase process speeds copared to brazing or gas metal arc welding (GMAW). Nd:YAG lasers were selected as beam source because of better absorptivity of the wavelengthmore » compared to CO{sub 2} lasers and simplified tooling with fiber optic beam delivery. It wa determined that a pulsed Nd:YAG laser produced 1.0 mm penetration at 0.3 m/min with 400 W average power, and 1.0 mm penetration at 0.75 m/min with 1000 W average power, however, an Al 4047 filler metal was required to eliminate solidification cracking. A 1900 W CW laser could weld the Al 3003 tube to the Al 5456 nut without filler metal, however, there was insufficient penetration (0.25 mm) to meet the mechanical and hermeticity requirements. To enhance penetration, but still reduce the tendency for hot cracking, the 1900 W average power beam was sine wave modulated from 400 W to 3600 W at 250 Hz and usd to weld the Al 3003 directly to the Al 5456. These parameters produced 1.2 mm penetration at 1.2 m/min without significant cracking and without using a filler metal. In addition, the welds passed all hermeticity and tensile strength tests. This combination of materials, joint design, and laser parameters produced tube assemblies that passed a leak check (300 psi nitrogen in 60{degrees}C water for 1 min) and tensile (tube breakage 100 mm from the joint, 5.2 kN tensile strength).« less

  14. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  15. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    NASA Astrophysics Data System (ADS)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  16. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  17. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    PubMed Central

    Brostow, Witold; Lobland, Haley E. Hagg; Hnatchuk, Nathalie; Perez, Jose M.

    2017-01-01

    Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention. PMID:28336900

  18. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  19. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.

  20. Quantitative characterization of brazing performance for Sn-plated silver alloy fillers

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2017-12-01

    Two types of AgCuZnSn fillers were prepared based on BAg50CuZn and BAg34CuZnSn alloy through a combinative process of electroplating and thermal diffusion. The models of wetting entropy and joint strength entropy of AgCuZnSn filler metals were established. The wetting entropy of the Sn-plated silver brazing alloys are lower than the traditional fillers, and its joint strength entropy value is slightly higher than the latter. The wetting entropy value of the Sn-plated brazing alloys and traditional filler metal are similar to the change trend of the wetting area. The trend of the joint strength entropy value with those fillers are consisted with the tensile strength of the stainless steel joints with the increase of Sn content.

  1. Effects of Different Filler Metals on the Mechanical Behaviors of GTA Welded AA7A52(T6)

    NASA Astrophysics Data System (ADS)

    Shu, Fengyuan; Lv, Yaohui; Liu, Yuxin; Lin, Jianjun; Sun, Zhe; Xu, Binshi; He, Peng

    2014-06-01

    ER4043, ER5356, and AA7A52 on behalf of the Al-Si, Al-Mg, and Al-Zn-Mg-based welding material, respectively, were chosen as the filler metal to weld AA7A52(T6) plates by GTAW. The variance in mechanical performances of the joints caused by the various filler materials was investigated with reference to the SEM and EDS test results for the weld seam and the fracture surface. Failure was found in the seam for all the welded joints. With regard to the joint obtained with ER4043 welding wire, the total elongation was limited by the brittle intergranular compound Mg2Si of which Mg was introduced by convection mass transfer. As for the other two welds, the content ratio of Zn and Mg was found to play the dominant role in deciding the mechanical properties of the intergranular Mg-Zn compounds which were responsible for the tensile behavior of the joints. The content ratio (wt.%) of beyond 2:1 gave birth to the strengthening phase MgZn2 leading to a ductile fracture. Cr in the seam obtained with AA7A52 filler metal was found to enhance the strength of the joint through isolated particles.

  2. Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding

    NASA Astrophysics Data System (ADS)

    Wu, Weite; Tsai, C. H.

    1999-02-01

    The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential (Δ T). These characteristics correlate with greater hot cracking susceptibility of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundies.

  3. Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.; Tsai, C.H.

    1999-02-01

    The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential ({Delta} T). These characteristics correlate with greater hot cracking susceptibilitymore » of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundaries.« less

  4. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  5. Effect of filler metals on the mechanical properties of Inconel 625 and AISI 904L dissimilar weldments using gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.

    2017-11-01

    In the present research work, dissimilar welding between Inconel 625 super alloy and AISI 904L super austenitic stainless steel using manual multi-pass continuous current gas tungsten arc (CCGTA) welding process employed with ERNiCrMo-4 and ERNiCrCoMo-1 fillers were performed to determine the mechanical properties and weldability. Tensile test results corroborated that the fracture had occurred at the parent metal of AISI 904L irrespective of filler used for all the trials. The presence of the macro and micro void coalescence in the fibrous matrix characterised for ductile mode of fracture. The hardness values at the weld interface of Inconel 625 side were observed to be higher for ERNiCrMo-4 filler due to the presence of strengthening elements such as W, Mo, Ni and Cr. The impact test accentuated that the weldments using ERNiCrMo-4 filler offered better impact toughness (41J) at room temperature. Bend test results showed that the weldments using these fillers exhibited good ductility without cracks.

  6. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    NASA Astrophysics Data System (ADS)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  7. Joint Workplan on Filler Investigations for DPCs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane

    2017-12-01

    This workplan addresses filler attributes (i.e., possible requirements), assumptions needed for analysis, selection of filler materials, testing needs, and a long-range perspective on R&D activities leading to filler demonstration and a safety basis for implementation.

  8. Effect of Filler and Heat Treatment on the Physical and Mechanical Properties of the Brazed Joint between Carbide Tip and Steel

    NASA Astrophysics Data System (ADS)

    Winardi, Y.; Triyono; Wijayanta, A. T.

    2017-02-01

    In this study, the effect of filler and heat treatment on the physical and mechanical properties of the brazed joint carbide tip and steel was investigated. Tip carbide YG6 and low carbon steel (SS400) is joining by torch brazing with two filler metals, silver, and copper filler. Heat treatment was performed in induction furnace. Microstructure and shear strength of the brazed joint have been investigated. Many silver filler layer are formed on the surface of the base metal rather then using copper filler. The highest shear strength is achieved using a silver filler metal at temperatur 725°C. The highest shear load is 18.62 kN.

  9. Use of filler limestone and construction and demolition residues for remediating soils contaminated with heavy metals: an assessment by means of plant uptake.

    NASA Astrophysics Data System (ADS)

    Banegas, Ascension; Martinez-Sanchez, Maria Jose; Agudo, Ines; Perez-Sirvent, Carmen

    2010-05-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (lettuce, broccoli and alfalfa), different parts of which are destined for human and animal consumption (leaves, roots, fruits). The plants were cultivated in four types of soil, one uncontaminated (T1), one soil collected in the surrounding area of Sierra Minera (T2), the third being remediated with residues coming from demolition and construction activities (T3) and the four remediated with filler limestone (T4). To determine the metal content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. The DTPA-extractable content was also determined to calculate the bioavailable amount of metal. Finally, the translocation factor (TF) and bioconcentration factor (BCF) were calculated. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer and Cd, Pb and Zn was determined by electrothermal atomization atomic absorption spectrometry (ETAAS) or flame atomic absorption spectrometry (FAAS). Samples of the leached water were also obtained and analyzed. According to our results, the retention of the studied elements varies with the type of plant and is strongly decreased by the incorporation of filler limestone and/or construction and demolition residues to the soils. This practice represents a suitable way to reduce the risk posed to the biota by the presence of high levels of heavy metal in soil.

  10. Effect of Auxiliary Preheating of the Filler Wire on Quality of Gas Metal Arc Stainless Steel Claddings

    NASA Astrophysics Data System (ADS)

    Shahi, Amandeep S.; Pandey, Sunil

    2008-02-01

    Weld cladding is a process for producing surfaces with good corrosion resistant properties by means of depositing/laying of stainless steels on low-carbon steel components with an objective of achieving maximum economy and enhanced life. The aim of the work presented here was to investigate the effect of auxiliary preheating of the solid filler wire in mechanized gas metal arc welding (GMAW) process (by using a specially designed torch to preheat the filler wire independently, before its emergence from the torch) on the quality of the as-welded single layer stainless steel overlays. External preheating of the filler wire resulted in greater contribution of arc energy by resistive heating due to which significant drop in the main welding current values and hence low dilution levels were observed. Metallurgical aspects of the as welded overlays such as chemistry, ferrite content, and modes of solidification were studied to evaluate their suitability for service and it was found that claddings obtained through the preheating arrangement, besides higher ferrite content, possessed higher content of chromium, nickel, and molybdenum and lower content of carbon as compared to conventional GMAW claddings, thereby giving overlays with superior mechanical and corrosion resistance properties. The findings of this study not only establish the technical superiority of the new process, but also, owing to its productivity-enhanced features, justify its use for low-cost surfacing applications.

  11. Percolation behavior of polymer/metal composites on modification of filler

    NASA Astrophysics Data System (ADS)

    Panda, M.; Srinivas, V.; Thakur, A. K.

    2014-02-01

    Polymer-metal composites with different fillers, such as nanocrystalline nickel (n-Ni), core shell n-Ni and nickel oxide (NiO)[n-Ni@NiO] were prepared under the same processing conditions with polyvinyledene fluoride matrix. The larger value of critical exponents (s and s') and percolation threshold (fc 0.30) for n-Ni@NiO composites as compared to n-Ni composites (fc 0.07) and a comparable effective dielectric constant (ɛeff 300) with low loss tangent (tan δ 0.1) at 100 Hz in case of percolative n-Ni@NiO composite was observed. The core shell structure [n-Ni@NiO] also shows a very high value of ɛeff 6000 with tan δ 8 at 40 Hz. The results have been explained by using boundary layer capacitor effect and the percolation theory. The difference in fc and critical exponents is attributed to NiO insulating layer that gives rise to different extent of continuumness at fc and have been explained with the help of Swiss cheese model.

  12. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler.

    PubMed

    Miki, Saeki; Kitagawa, Haruaki; Kitagawa, Ranna; Kiba, Wakako; Hayashi, Mikako; Imazato, Satoshi

    2016-09-01

    A surface pre-reacted glass-ionomer (S-PRG) filler is a technology of interest for providing bio-functions to restorative materials. Resin composites containing S-PRG filler have been reported to show less plaque accumulation and reduced bacterial attachment. In this study, experimental resin composites containing S-PRG filler at various concentrations were fabricated, and the inhibitory effects on bacterial growth on their surface and the association of ions released from S-PRG filler with antibacterial activity were evaluated. Five kinds of experimental resin composites containing S-PRG filler at 0, 13.9, 27.3, 41.8, or 55.9 (vol.%) were fabricated. Streptococcus mutans was cultured on the cured discs for 18h to examine the growth of bacteria in contact with the surface of the experimental resins. The concentrations of Al(3+), BO3(3-), F(-), Na(+), SiO3(2-), or Sr(2+) released from each experimental resin into water were measured. The standardized solutions of each ion were prepared at the concentrations determined to be released from the experimental resin, and their inhibitory effects of single ion species on S. mutans growth were evaluated by using each standardized solution. Resin composites containing S-PRG filler at 13.9 (vol.%) or greater inhibited S. mutans growth on their surface. When S. mutans was incubated in the presence of six kinds of ions at the concentrations released from the resin composite containing S-PRG filler at 55.9 (vol.%), a significant reduction in bacterial number was observed for BO3(3-), F(-), Al(3+), and SiO3(2-). Among these four ions, BO3(3-) and F(-) demonstrated the strongest inhibitory effect on S. mutans growth. Our findings suggest that resin composites containing S-PRG filler inhibit the growth of S. mutans on their surface. BO3(3-), F(-), Al(3+) and SiO3(2-) released from S-PRG filler have the ability to inhibit S. mutans growth, and the inhibitory effects are mainly attributed to release of BO3(3-) and F(-). Copyright

  13. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  14. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  15. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    PubMed

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  17. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials.

    PubMed

    Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua

    2014-08-26

    Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.

  18. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials

    PubMed Central

    Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua

    2014-01-01

    Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials. PMID:28788181

  19. Microstructural evolution of SiC joints soldered using Zn-Al filler metals with the assistance of ultrasound.

    PubMed

    Wu, Bingzhi; Leng, Xuesong; Xiu, Ziyang; Yan, Jiuchun

    2018-06-01

    SiC ceramics were successfully soldered with the assistance of ultrasound. Two kinds of filler metals, namely non-eutectic Zn-5Al-3Cu and eutectic Zn-5Al alloys, were used. The effects of ultrasonic action on the microstructure and mechanical properties of the soldered joints were investigated. The results showed that ultrasound could promote the wetting and bonding between the SiC ceramic and filler metals within tens of seconds. For the Zn-5Al-3Cu solder, a fully grain-refined structure in the bond layer was obtained as the ultrasonic action time increased. This may lead to a substantial enhancement in the strength of the soldered joints. For the Zn-5Al solder, the shear strength of the soldered joints was only ∼102 MPa when the ultrasonic action time was shorter, and fractures occurred in the brittle lamellar eutectic phases in the center of the bond layer. With increasing ultrasonic action time, the lamellar eutectic phase in the bond layer of SiC joints could be completely transformed to a fine non-lamellar eutectic structure. Meanwhile, the grains in the bond layer were obviously refined. Those results led to the remarkable enhancement of the shear strength of the joints (∼138 MPa) using the Zn-5Al solder, which had approached that enhancement using the Zn-5Al-3Cu solder. The enhanced mechanical properties of the joints were attributed to the significant refinement of the grains and the change in the eutectic structure in the bond layer. Prolonged enhanced heterogeneous nucleation triggered by ultrasonic cavitation is the predominant refinement mechanism of the bond metals of the SiC joints. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus ofmore » heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.« less

  1. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    NASA Astrophysics Data System (ADS)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  2. Metal ions from S‐PRG filler have the potential to prevent periodontal disease

    PubMed Central

    Iwamatsu‐Kobayashi, Yoko; Abe, Syouta; Fujieda, Yoshiyasu; Orimoto, Ai; Kanehira, Masafumi; Handa, Keisuke; Venkataiah, Venkata Suresh; Zou, Wei; Ishikawa, Masaki

    2017-01-01

    Abstract The surface pre‐reacted glass ionomer (S‐PRG) filler, a component of composite resin, is capable of releasing metal ions that possess antibacterial activity against caries and periodontal pathogens. Although S‐PRG has been suggested to be involved in oral disease prevention, no reports have been published regarding its preventive effect on periodontal disease in vivo. The present study investigated whether the eluate from S‐PRG (S‐PRG eluate) has a suppressive effect on tissue destruction induced in a mouse model of ligature‐induced periodontal disease. Twenty‐seven C57BL/6 mice were divided into three groups of nine animals each, no ligature group (Lig(−)), ligature group (Lig(+)S‐PRG(−)) and ligature with S‐PRG eluate group (Lig(+)S‐PRG(+)). Alveolar bone loss was evaluated using micro‐computed tomography scanning. Histologic changes were detected by hematoxylin and eosin staining. The infiltration of inflammatory cells was assessed by Ly6G and F4/80 staining immunohistochemically. The distribution of metal ions was detected by time‐of‐flight secondary ion mass spectrometry. S‐PRG eluate clearly inhibited alveolar bone loss and bone density. The histological analysis revealed that S‐PRG eluate reduced destruction of the collagen bundle in the periodontal ligament and the infiltration of inflammatory cells. Immunohistochemical analysis showed that the S‐PRG eluate significantly suppressed the number of infiltrating neutrophils and macrophages. Time‐of‐flight secondary ion mass spectrometry analysis revealed that more boron ions were present in the Lig(+)S‐PRG(+) group than in the Lig(+)S‐PRG(−) group. Our results suggest that the S‐PRG eluate has a preventive effect against tissue destruction in periodontal disease through its anti‐inflammatory effects in vivo. PMID:29744190

  3. Filler Wire Development for 2195 Aluminum-Lithium

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cho, Alex; Russell, Carolyn; Zimmerman, Frank

    1998-01-01

    The presentation outline summarizes activities supporting the development of filler wire for 215 aluminum-lithium. The specific objective of the research was to identify an Al-Cu based filler wire chemistry which reduces weld susceptibility in 2195 Aluminum-Lithium welds and repairs welds along with providing adequate mechanical properties. This report is in viewgraph form.

  4. Heat transfer enhancement for spent nuclear fuel assembly disposal packages using metallic void fillers: A prevention technique for solidification shrinkage-induced interfacial gaps

    NASA Astrophysics Data System (ADS)

    Park, Yongsoo; McKrell, Thomas J.; Driscoll, Michael J.

    2017-06-01

    This study considers replacing the externally accessible void spaces inside a disposal package containing a spent nuclear fuel assembly (SNFA) with high heat conducting metal to increase the effective thermal conductivity of the package and simplify the heat transfer mechanism inside the package by reducing it to a conduction dominant problem. The focus of the study is on preventing the gaps adjacent to the walls of the package components, produced by solidification shrinkage of poured liquid metal. We approached the problem by providing a temporary coating layer on the components to avoid direct build-up of thick metal oxides on their surface to promote metallic bonding at the interfaces under a non-inert environment. Laboratory scale experiments without SNFA were performed with Zn coated low carbon steel canisters and Zamak-3 void filler under two different filling temperature conditions - below and above the melting point of Zn (designated BMP and AMP respectively). Gap formation was successfully prevented in both cases while we confirmed an open gap in a control experiment, which used an uncoated canister. Minor growth of Al-Fe intermetallic phases was observed at the canister/filler interface of the sample produced under the BMP condition while their growth was significant and showed irregularly distributed morphology in the sample produced under the AMP condition, which has a potential to mitigate excessive residual stresses caused by shrinkage prevention. A procedure for the full-scale application was specified based on the results.

  5. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.

    2017-02-01

    The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.

  6. Study on ductility dip cracking susceptibility in Filler Metal 82 during welding

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Qing; Lu, Hao; Cui, Wei

    2011-06-01

    In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.

  7. Laser Brazing Characteristics of Al to Brass with Zn-Based Filler

    NASA Astrophysics Data System (ADS)

    Tan, Caiwang; Liu, Fuyun; Sun, Yiming; Chen, Bo; Song, Xiaoguo; Li, Liqun; Zhao, Hongyun; Feng, Jicai

    2018-05-01

    Laser brazing of Al to brass in lap configuration with Zn-based filler was performed in this work. The process parameters including laser power, defocused distance were found to have a significant influence on appearance, microstructure and mechanical properties. The process parameters were optimized to be laser power of 2700 W and defocusing distance of + 40 mm from brass surface. In addition, preheating exerted great influence on wetting and spreading ability of Zn filler on brass surface. The microstructure observation showed the thickness of reaction layer (CuZn phase) at the interface of the brass side would grow with the increase in laser power and the decrease in the laser defocusing distance. Moreover, preheating could increase the spreading area of the filler metal and induced the growth of the reaction layer. The highest tensile-shear load of the joint could reach 2100 N, which was 80% of that of Al alloy base metal. All the joints fractured along the CuZn reaction layer and brass interface. The fracture morphology displayed the characteristics of the cleavage fracture when without preheating before welding, while it displayed the characteristics of the quasi-cleavage fracture with preheating before welding.

  8. Working Memory in the Processing of Long-Distance Dependencies: Interference and Filler Maintenance

    ERIC Educational Resources Information Center

    Ness, Tal; Meltzer-Asscher, Aya

    2017-01-01

    During the temporal delay between the filler and gap sites in long-distance dependencies, the "active filler" strategy can be implemented in two ways: the filler phrase can be actively maintained in working memory ("maintenance account"), or it can be retrieved only when the parser posits a gap ("retrieval account").…

  9. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganjeh, E., E-mail: navidganjehie@sina.kntu.ac.ir; Sarkhosh, H.; Bajgholi, M.E.

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni andmore » Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for

  10. Influence of reactive fillers on concrete corrosion resistance

    NASA Astrophysics Data System (ADS)

    Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.

    2018-03-01

    Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.

  11. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  12. Development of radiopaque, biocompatible, antimicrobial, micro-particle fillers for micro-CT imaging of simulated periodontal pockets.

    PubMed

    Elashiry, M; Meghil, M M; Kalathingal, S; Buchanan, A; Rajendran, M; Elrefai, R; Ochieng, M; Elawady, A; Arce, R M; Sandhage, K H; Cutler, C W

    2018-04-01

    Approximately 10 9 bacteria can be harbored within periodontal pockets (PP) along with inflammatory byproducts implicated in the pathophysiology of systemic diseases linked to periodontitis (PD). Calculation of this inflammatory burden has involved estimation of total pocket surface area using analog data from conventional periodontal probing which is unable to determine the three-dimensional (3-D) nature of PP. The goals of this study are to determine the radiopacity, biocompatibility, and antimicrobial activity of transient micro-particle fillers in vitro and demonstrate their capability for 3-D imaging of artificial PP (U.S. Patent publication number: 9814791 B2). Relative radiopacity values of various metal oxide fillers were obtained from conventional radiography and micro-computed tomography (μCT) using in vitro models. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to measure the biocompatibility of calcium tungstate (CaWO 4 ) particles by determination of viable keratinocytes percentage (%) after exposure. After introducing an antibacterial compound (K21) to the radiopaque agent, antimicrobial tests were conducted using Porphyromonas gingivalis (P. gingivalis) and Streptococcus gordonii (S. gordonii) strains and blood agar plates. CaWO 4 micro-particle-bearing fillers exhibited an X-ray radiopacity distinct from tooth structures that enabled 3-D visualization of an artificial periodontal pocket created around a human tooth. MTT assays indicated that CaWO 4 micro-particles are highly biocompatible (increasing the viability of exposed keratinocytes). Radiopaque micro-particle fillers combined with K21 showed significant antimicrobial activity for P. gingivalis and S. gordonii. The plausibility of visualizing PP with 3-D radiographic imaging using new radiopaque, biocompatible, transient fillers was demonstrated in vitro. Antibacterial (or other) agents added to this formula could provide beneficial therapeutic features

  13. Investigation on localized corrosion of 304 stainless steel joints brazed using Sn-plated Ag alloy filler in NaCl aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-03-01

    Novel AgCuZnSn filler metal with high Sn contents was prepared from BAg50CuZn filler metal by a process of electroplating and thermal diffusion, and the prepared filler metal was applied to induction brazing of 304 stainless steel. The corrosion behavior of the brazed joints was evaluated based on localized corrosion analysis, the morphology of the joints were analyzed by SEM after immersion in a 3.5 vol% NaCl aqueous solution. The results indicated that corrosion groove occurred near the interface between the stainless steel base metal and the brazing seam. A wide range of defects such as holes and cracks appeared on the surface of the base metal, while the brazing seam zone almost no corrosion defects occur. With the increase of corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the base metal was slightly greater than that of the brazing seam. The corrosion potential of the brazing seam and 304 stainless steel were -0.7758 V and -0.7863 V, respectively.

  14. Microscopic and ultrastructural evidences in human skin following calcium hydroxylapatite filler treatment.

    PubMed

    Zerbinati, Nicola; D'Este, Edoardo; Parodi, Pier Camillo; Calligaro, Alberto

    2017-07-01

    This study uses light and electron microscopes to gain a better knowledge of the interactions of calcium hydroxylapatite filler with the connective tissue of the skin and the modifications of the human deep dermis, after 2 months of treatment. Some morphological evidences of this observational study of filler treated tissue support-specific mechanism involved in the structural modifications of both filler microspherules and cells of the connective tissue. They demonstrate the absence of any immunological reaction and show that the used filler is modified very slowly over time by the action of cells of the connective tissue closely related to the filler without any activity of phagocytosis. Furthermore, associated with the modifications of the filler, evidences of stimulatory effects on dermal fibroblasts are reported.

  15. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  16. Monitorization of technosols in old mining sites treated with calcareous fillers

    NASA Astrophysics Data System (ADS)

    Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Garcia-Lorenzo, MariLuz; Gonzalez, Eva; Perez-Espinosa, Victor; Martínez-Lopez, Salvadora; Hernandez, Carmen; Molina, Jose; Martínez, Lucia B.

    2014-05-01

    A large number of soils around the world are contaminated by heavy metals due to mining activities, generating adverse effects on human health and the environment. In response to these negative effects, a variety of technologies to remediate soils affected by heavy metals have been developed. Among them, in situ immobilization by means of soil amendment is a non-intrusive and cost effective alternative, that transforms the highly mobile toxic heavy metals to physico-chemically stable forms, reducing their mobility and environmental risks. Limestone filler is a good selection for such a purpose, because of its low permeability and low solubility, due to its high degree of physical-chemical stability and because is a non-toxic material with a high finely divided calcium carbonate content. In addition, the use of this amendment could revalorize the residues, reducing the costs of the process. The objective of this work was to evaluate the effectiveness of a immobilization technique in sediments contaminated by heavy metals as a results of mining activities. The study area was Portman bay, located close to the mining region of La Unión and subjected to mining from the time of the Roman Empire to 1991. Wastes from mining activities mainly consisted in ore materials (galena, pyrite and sphalerite), phyllosilicates, in addition to siderite, iron oxides and sometimes alteration products such as jarosite, alunite, kaolinite and greenalite. These materials have suffered a concentration process by floatation with sea water and, as a result of the discharge, the whole of the bay has filled up with wastes which also extend into the Mediterranean Sea. Two experimental areas, approximately 1 Ha each one, were selected and technosols were developed as follows: original sediments from the bay, sediments mixed with limestone filler in a 1:1 proportion, gravel to avoid capillary and natural soil to allow plant growth. After the remediation technique was applied, monitorization of

  17. Soy-based fillers for thermoset composites

    NASA Astrophysics Data System (ADS)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  18. Influences of Cr/Ni equivalent ratios of filler wires on pitting corrosion and ductility-dip cracking of AISI 316L weld metals

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, D. G.; Sung, J. H.; Kim, I. S.; Ko, D. E.; Kang, N. H.; Hong, H. U.; Park, J. H.; Lee, H. W.

    2011-02-01

    To study the pitting corrosion of AISI 316L weld metals according to the chromium/nickel equivalent ratio (Creq/Nieq ratio), three filler wires were newly designed for the flux-cored arc welding process. The weld metal with delta-ferrite at less than 3 vol.%, was observed for ductility-dip cracking (DDC) in the reheated region after multi-pass welding. The tensile strength and yield strength increased with increasing Creq/Nieq ratio. The result of anodic polarization tests in a 0.1 M NaCl solution at the room temperature (25) for 45 min, revealed that the base metal and weld metals have a similar corrosion potential of -0.34 VSCE. The weld metal with the highest content of Cr had the highest pitting potential (0.39 VSCE) and the passivation range (0.64 VSCE) was higher than the base metal (0.21 VSCE and 0.46 VSCE, respectively). Adding 0.001 M Na2S to the 0.1M NaCl solution, the corrosion occurred more severely by H2S. The corrosion potentials of the base metal and three weld metals decreased to -1.0 VSCE. DDC caused the decrease of the pitting potential by inducing a locally intense corrosion attack around the crack openings.

  19. Passive Cooling Enabled by Polymer Composite Coating: Dependence on Filler, Filler Size and Coating Thickness

    NASA Astrophysics Data System (ADS)

    Shao, Yue; Shi, Frank G.

    2017-07-01

    The effective passive radiation cooling that is enabled by silicone-based composites is investigated for its dependence on coating thickness and filler size in the range of nanometers to micrometers. It is established, contrary to prior reports, that the effective passive radiation cooling does not exhibit a filler size dependence, i.e., there is no optimal size at which a maximum cooling would be reached. However, the apparent cooling effect is filler type dependent and among the fillers investigated, Al2O3 exhibits the best apparent cooling effect. In addition, the apparent cooling effect is dependent on coating thickness: the thickness dependence is non-monotonic, and the maximum cooling occurs at an optimal thickness of 70 μm, regardless of filler type. Potential significant implications of the findings are also discussed.

  20. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    NASA Astrophysics Data System (ADS)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  1. Does filler database size influence identification accuracy?

    PubMed

    Bergold, Amanda N; Heaton, Paul

    2018-06-01

    Police departments increasingly use large photo databases to select lineup fillers using facial recognition software, but this technological shift's implications have been largely unexplored in eyewitness research. Database use, particularly if coupled with facial matching software, could enable lineup constructors to increase filler-suspect similarity and thus enhance eyewitness accuracy (Fitzgerald, Oriet, Price, & Charman, 2013). However, with a large pool of potential fillers, such technologies might theoretically produce lineup fillers too similar to the suspect (Fitzgerald, Oriet, & Price, 2015; Luus & Wells, 1991; Wells, Rydell, & Seelau, 1993). This research proposes a new factor-filler database size-as a lineup feature affecting eyewitness accuracy. In a facial recognition experiment, we select lineup fillers in a legally realistic manner using facial matching software applied to filler databases of 5,000, 25,000, and 125,000 photos, and find that larger databases are associated with a higher objective similarity rating between suspects and fillers and lower overall identification accuracy. In target present lineups, witnesses viewing lineups created from the larger databases were less likely to make correct identifications and more likely to select known innocent fillers. When the target was absent, database size was associated with a lower rate of correct rejections and a higher rate of filler identifications. Higher algorithmic similarity ratings were also associated with decreases in eyewitness identification accuracy. The results suggest that using facial matching software to select fillers from large photograph databases may reduce identification accuracy, and provides support for filler database size as a meaningful system variable. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Reuse of EAF Slag as Reinforcing Filler for Polypropylene Matrix Composites

    NASA Astrophysics Data System (ADS)

    Cornacchia, G.; Agnelli, S.; Gelfi, M.; Ramorino, G.; Roberti, R.

    2015-06-01

    Electric-arc furnace (EAF) slag, the by-product of steel fabricated at the EAF, is in most cases still sent to dumps, with serious environmental consequences. This work shows an innovative, economically convenient application for EAF slag: its use as reinforcing filler for polypropylene. Composites based on polypropylene containing 10-40 wt.% of EAF slag particles were prepared by melt compounding followed by injection molding. A physical-chemical analysis of the EAF slag was performed to determine microstructural features and main component phases. Leaching tests demonstrated that, although EAF slag can release small amounts of toxic elements, such as heavy metals, incorporating such material into the polymeric matrix immobilizes the heavy metals inside that matrix. The mechanical characterization of the polymer-based composites was performed. Incorporating EAF slag particles raises the Young's modulus and the tensile strength at yield, whereas elongation at break and the impact strength of the polymer-based composite are significantly reduced only when large amounts of filler are added, i.e., 30% or more.

  3. The impact of fillers on lineup performance.

    PubMed

    Wetmore, Stacy A; McAdoo, Ryan M; Gronlund, Scott D; Neuschatz, Jeffrey S

    2017-01-01

    Filler siphoning theory posits that the presence of fillers (known innocents) in a lineup protects an innocent suspect from being chosen by siphoning choices away from that innocent suspect. This mechanism has been proposed as an explanation for why simultaneous lineups (viewing all lineup members at once) induces better performance than showups (one-person identification procedures). We implemented filler siphoning in a computational model (WITNESS, Clark, Applied Cognitive Psychology 17:629-654, 2003), and explored the impact of the number of fillers (lineup size) and filler quality on simultaneous and sequential lineups (viewing lineups members in sequence), and compared both to showups. In limited situations, we found that filler siphoning can produce a simultaneous lineup performance advantage, but one that is insufficient in magnitude to explain empirical data. However, the magnitude of the empirical simultaneous lineup advantage can be approximated once criterial variability is added to the model. But this modification works by negatively impacting showups rather than promoting more filler siphoning. In sequential lineups, fillers were found to harm performance. Filler siphoning fails to clarify the relationship between simultaneous lineups and sequential lineups or showups. By incorporating constructs like filler siphoning and criterial variability into a computational model, and trying to approximate empirical data, we can sort through explanations of eyewitness decision-making, a prerequisite for policy recommendations.

  4. Polyurethane Filler for Electroplating

    NASA Technical Reports Server (NTRS)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  5. Fillers in dermatology: from past to present.

    PubMed

    Chacon, Anna H

    2015-11-01

    Injectable fillers were introduced in dermatology as a method for reconstructing facial deformities and restoring the aging face. Although fillers have become a popular option among cosmetic patients, clinical experience has shown that fillers must be used with caution, as complications can occur. This article provides a brief review of the history of filler agents currently available for soft tissue augmentation. Although no single filler is ideal for all patients, indications, and situations, residents should be aware of the properties and characteristics that make each product unique.

  6. The Hyaluronic Acid Fillers: Current Understanding of the Tissue Device Interface.

    PubMed

    Greene, Jacqueline J; Sidle, Douglas M

    2015-11-01

    The article is a detailed update regarding cosmetic injectable fillers, specifically focusing on hyaluronic acid fillers. Hyaluronic acid-injectable fillers are used extensively for soft tissue volumizing and contouring. Many different hyaluronic acid-injectable fillers are available on the market and differ in terms of hyaluronic acid concentration, particle size, cross-linking density, requisite needle size, duration, stiffness, hydration, presence of lidocaine, type of cross-linking technology, and cost. Hyaluronic acid is a natural component of many soft tissues, is identical across species minimizing immunogenicity has been linked to wound healing and skin regeneration, and is currently actively being studied for tissue engineering purposes. The biomechanical and biochemical effects of HA on the local microenvironment of the injected site are key to its success as a soft tissue filler. Knowledge of the tissue-device interface will help guide the facial practitioner and lead to optimal outcomes for patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film

    NASA Astrophysics Data System (ADS)

    Rochima, Emma; Fiyanih, Elisah; Afrianto, Eddy; Subhan, Ujang; Praseptiangga, Danar; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    This research aimed to investigate the effect of nanochitosan (CSNPs) suspension by beads milling method as filler in carrageenan-tapioca biocomposite film. In addition, the antibacterial activity of CSNPs as filler with two food pathogenic bacteria, Staphylococcus aureus and Escherichia coli and then influence of nano fillers for appearance of films were observed. The incorporation of CSNPs suspension with 0.5, 1, 1.5 and 2 (%v/v) in carrageenan-tapioca film exhibited antibacterial activity againts both bacteria. CSNPs had slightly higher antimicrobial activity against E. coli aureus compared to S. aureus at all concentrations due to different mechanisms. Therefore, the best antimicrobial activity was obtained from 1 wt%. Furthermore the best antimicrobial activity was characterized by means of the thickness and transparency. The result showed that the thickness of film was 0.059 mm and the transparency was 87.88. It was concluded that the incorporation of CSNPs suspension 1 wt% in carrageenan-tapioca composite film is suitable for developing active packaging.

  8. Nuclear Technology. Course 28: Welding Inspection. Module 28-8, Filler Metal Control.

    ERIC Educational Resources Information Center

    Espy, John

    This eighth in a series of ten modules for a course titled Welding Inspection describes controls necessary to place the proper electrode or rod at each welding station. More specifically, the module describes use of the American Welding Society specifications, control of weld filler material after receipt from the supplier, and methods of ensuring…

  9. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  10. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir; Shamanian, Morteza; Eskandarian, Masoomeh

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientationmore » relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal

  11. Filler particle size and composite resin classification systems.

    PubMed

    Lang, B R; Jaarda, M; Wang, R F

    1992-11-01

    The currently used composite resin classification systems need review if they are to continue to serve as descriptives and quantitative parameters denoting the filler particle content of these materials. Examination of the particles in 12 composite resins using a technique of washing the filler particles from the matrix of the composite resin was presented as yet another method of grouping composites according to filler particle content. Light microscopic examination of the filler particles that remained provided a separation of the 12 materials into four easily distinguished groups based on filler particle sizes. The wear of the 12 composite resins determined in a previous study was examined in relation to the classification of the materials by the currently available systems. The wear values were also examined using the groupings of the materials according to their filler particle sizes as determined by separating the particles from the matrix by the washing technique. Grouping composites on the basis of the filler particle sizes found after washing was easily correlated with wear and supported the suggestion that composites with smaller filler particles wear less.

  12. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir; Shamanian, Morteza; Eskandarian, Masoomeh

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreasedmore » the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.« less

  13. Performance of solvent-borne intumescent fire protective coating with Palm oil clinker as novel bio-filler on steel

    NASA Astrophysics Data System (ADS)

    Mustapa, S. A. S.; Ramli Sulong, N. H.

    2017-06-01

    This research deals with contribution of hybrid fillers with palm oil clinker (POC) as a novel bio-filler in solvent-borne intumescent fire protective coating for steel. The hybrid fillers with POC were mixed in appropriate amount of additives and acrylic binder to produce the intumescent coatings. The intumescent coatings were characterized by using Bunsen burner test, surface spread of flame, thermogravimetric analysis, field emission scanning electron microscopy, static immersion and Instron micro tester equipment. Specimen with POC as a single filler has significantly enhanced the fire protection performances of the intumescent coating due to the high thermal stability of POC, where less than 10% of temperature different when compared to specimens with hybrid fillers. From the flame spread classification, class 1 is the best classification while Class 4 is the worst and considered high risk. All specimens was classified as class 1 since the final spread of flame was less than 165 mm. For hybrid fillers composition, specimen consist of POC/Al(OH)3/TiO2 has significantly improved the water resistance of the coating due to the low solubility of Al(OH)3 in water, while specimen contain of Mg(OH)2 had higher mechanical strength due to the strong bonding between the metal surface and acrylic binder/Mg(OH)2 filler. It was found that coating with the incorporation of all hybrid fillers gives excellent fire protection performance with good thermal stability, water resistance and mechanical properties. It can be concluded that, the selection of appropriate composition of fillers and binder in intumescent coating was highly influence the intumescent coating performance.

  14. Optimizing outcomes with polymethylmethacrylate fillers.

    PubMed

    Gold, Michael H; Sadick, Neil S

    2018-06-01

    The ideal filler should be long-lasting, biocompatible, chemically inert, soft and easy to use, and have a long history of safety. This review focuses on the evolution and development of the PMMA-collagen gel, Bellafill, and the 10 years of postmarketing experience of Bellafill since it received premarket approval (PMA) from the FDA as Artefill in 2006. Artefill was rebranded to Bellafill in 2015. The authors conducted a literature search on PubMed for key articles describing the steps in which Arteplast, a PMMA filler developed in 1989, led to the development of Bellafill, the only PMMA filler approved by the US FDA for the treatment of nasolabial folds and acne scar correction. The factors governing efficacy and safety were also evaluated for the major PMMA fillers available in the world. The process of manufacturing and purifying PMMA has played a major role in minimizing adverse events for Bellafill. Postmarketing surveillance data for the 2007-2016 period show that for more than 530 000 Bellafill syringes distributed worldwide, 11 confirmed granulomas (excluding clinical trial data) (0.002% of syringes sold) have been reported. Data on other PMMA fillers are limited and inconsistent. The authors suggest that adverse events are often attributable to lack of proficiency in treatment technique and other factors. Bellafill has demonstrated an excellent safety and effectiveness profile in multiple clinical studies, customer feedback, and 10 years of postmarketing surveillance experience. Adverse events occur with all fillers for a variety of reasons. In addition to quality of the product, injector skill and technique are critical to ensuring good clinical outcomes. © 2018 Wiley Periodicals, Inc.

  15. Influence of Mode of Metal Transfer on Microstructure and Mechanical Properties of Gas Metal Arc-Welded Modified Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mukherjee, Manidipto; Pal, Tapan Kumar

    2012-06-01

    This article describes in detail the effect of the modes of metal transfer on the microstructure and mechanical properties of gas metal arc-welded modified ferritic stainless steel (SSP 409M) sheets (as received) of 4 mm thickness. The welded joints were prepared under three modes of metal transfer, i.e., short-circuit (SC), spray (S), transfer, and mix (M) mode transfer using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5 pct CO2. The welded joints were evaluated by means of microstructural, hardness, notched tensile strength, Charpy impact toughness, and high cycle fatigue. The dependence of weld metal microstructure on modes of metal transfer and filler wires has been determined by dilution calculation, WRC-1992 diagram, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM), and transmission electron microscopy (TEM). It was observed that the microstructure as well as the tensile, Charpy impact, and high cycle fatigue of weld metal is significantly affected by the mode of metal transfer and filler wire used. However, the heat-affected zone (HAZ) is affected only by the modes of metal transfer. The results have been correlated with the microstructures of weld and HAZ developed under different modes of metal transfer.

  16. FILLERS-Q: an instrument for assessing patient experiences after treatment with facial injectable soft tissue fillers.

    PubMed

    Sclafani, Anthony P; Pizzi, Laura; Jutkowitz, Eric; Mueller, Nancy; Jung, Matthew

    2010-08-01

    Patient-reported outcomes data are limited after injectable soft tissue filler treatment. Patient-reported outcome measures (PROMs) are becoming integral to medical practices in other specialties and will become so as well in facial plastic surgery. The obvious differences in types of disorders treated and the outcomes of primary importance seen between general medical/surgical and facial plastic surgery practices make institution of standard outcomes studies difficult in facial plastic surgery. However, understanding the patient's experience and satisfaction with treatment is essential to continue to provide excellent care to facial aesthetic patients. This article describes use of a new survey instrument, Facial Injectables: Longevity, Late and Early Reactions and Satisfaction Questionnaire (FILLERS-Q), in assessing patient response to facial injections of soft tissue fillers. FILLERS-Q is a 43-item questionnaire that captures patient demographics (4 items), patient satisfaction with treatment (10 items), procedure-related events (3 to 7 items), impact on relationships (9 to 15 items), and economic considerations related to dermal filler treatment (3 to 7 items). The results provide a "snapshot" of patients treated in an individual surgeon's practice. (c) Thieme Medical Publishers.

  17. Organic filler from golden apple snails shells to improve the silicone rubber insulator properties

    NASA Astrophysics Data System (ADS)

    Tepsila, Sujirat; Suksri, Amnart

    2018-02-01

    This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.

  18. Thermal Analysis of Filler Reinforced Polymeric Composites

    NASA Astrophysics Data System (ADS)

    Ghadge, Mahesh Devidas

    Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is

  19. Wrinkle Fillers

    MedlinePlus

    ... A sore at the injection site Allergic reaction Necrosis (tissue death) The following rare side effects have ... injection, and do not inject dermal fillers into blood vessels in the face. Before injection, thoroughly inform the ...

  20. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  1. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    NASA Astrophysics Data System (ADS)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  2. Rheological properties of styrene-butadiene rubber filled with electron beam modified surface treated dual phase fillers

    NASA Astrophysics Data System (ADS)

    Shanmugharaj, A. M.; Bhowmick, Anil K.

    2004-01-01

    The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.

  3. Electroconductive Composites from Polystyrene Block Copolymers and Cu–Alumina Filler

    PubMed Central

    Nadeem, QuratulAin; Fatima, Tasneem; Prinsen, Pepijn; ur Rehman, Aziz; Gill, Rohama; Mahmood, Rashid; Luque, Rafael

    2016-01-01

    Technological advancements and development of new materials may lead to the manufacture of sustainable energy-conducting devices used in the energy sector. This research attempts to fabricate novel electroconductive and mechanically stable nanocomposites via an electroless deposition (ELD) technique using electrically insulating materials. Metallic Cu is coated onto Al2O3 by ELD, and the prepared filler is then integrated (2–14 wt %) into a matrix of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-graft-maleic anhydride (PS-b-(PE-r-B)-b-PS-g-MA). Considerable variations in composite phases with filler inclusion exist. The Cu crystallite growth onto Al2O3 was evaluated by X-ray diffraction (XRD) analysis and energy dispersive spectrometry (EDS). Scanning electron microscopy (SEM) depicts a uniform Cu coating on Al2O3, while homogeneous filler dispersion is exhibited in the case of composites. The electrical behavior of composites is enhanced drastically (7.7 × 10−5 S/cm) upon incorporation of Cu–Al2O3 into an insulating polymer matrix (4.4 × 10−16 S/cm). Moreover, mechanical (Young’s modulus, tensile strength and % elongation at break) and thermal (thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC)) properties of the nanocomposites also improve substantially. These composites are likely to meet the demands of modern high-strength electroconductive devices. PMID:28774110

  4. High-frequency sonography of temporary and permanent dermal fillers.

    PubMed

    Grippaudo, Francesca Romana; Mattei, Mauro

    2010-08-01

    Dermal fillers are used widely; some have a permanent effect, whereas others are temporary. The aim of this study is to describe the ultrasonographic features of permanent and temporary fillers injected into patients for cosmetic purposes. Between December 2006 and April 2009, 36 subjects, aged 25-45, who had received lips or nasolabial fold filler augmentation, were enrolled for a high-frequency sonographic examination by a blinded investigator. The criteria for exclusion were a history of autoimmunity, infection, neoplastic diseases or episodes of local reactions to the injected filler. Twenty patients underwent a sonographic exam after the injection of a temporary filler (collagen or hyaluronic acid) by FRG; the rest were enrolled among patients seeking a consultation for further cosmetic reasons, but had been treated with an identifiable filler before. It was always possible to identify the filler at the site of injection. Seldom was it possible to discover a silent inflammatory reaction, otherwise unsuspected. The sonographic images differed according to the temporary or the permanent nature of the filler. Ultrasonography has proved to be a useful, non-invasive tool for the identification of the presence and type of the filler injected.

  5. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  6. Investigation of Pd-Modified Ag-CuO Air Braze Filler Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darsell, Jens T.; Hardy, John S.; Kim, Jin Yong

    2006-01-10

    Palladium was added as a ternary component to a series of silver - copper oxide alloys in an effort to increase the use temperature of these materials for potential ceramic air brazing applications. Large portions of the silver component of the Ag-CuO system were substituted by palladium forming the following alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase inmore » the solidus and liquidus temperatures of the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments that palladium causes an increase in the wetting angle for all of the samples tested. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicates that the microstructure of the braze consists of Ag-Pd solid solution with CuOx precipitates. In general, a reaction layer consisting of CuAlO2 forms adjacent to the alumina substrate. However, the formation of this layer is apparently hindered by the addition of large amounts of palladium, causing poor wetting behavior, as denoted by substantial porosity

  7. Filler Wire Development for 2195 Aluminum-Lithium. Pt. 2

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Cho, Alex

    1998-01-01

    The objective of the research was to determine the susceptibility of submitted welded 2195 plate in an AI (Alternate Immersion) environment. Forty-day AI exposure was completed on 8 welded 2195 stress corrosion samples. No stress corrosion cracking (SCC) was found on any of the samples tested. All 8 samples experienced exfoliation corrosion attack in the heat-affected zone (HAZ) adjacent to the weld. All samples were examined metallographically and showed varying degrees of intergranular corrosion (IG). The filler metal on all samples showed moderate to heavy pitting.

  8. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    PubMed

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  9. Characterization of a sustainable sulfur polymer concrete using activated fillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence

    Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less

  10. Characterization of a sustainable sulfur polymer concrete using activated fillers

    DOE PAGES

    Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence; ...

    2016-01-02

    Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less

  11. Injectable fillers: review of material and properties.

    PubMed

    Attenello, Natalie Huang; Maas, Corey S

    2015-02-01

    With an increasing understanding of the aging process and the rapidly growing interest in minimally invasive treatments, injectable facial fillers have changed the perspective for the treatment and rejuvenation of the aging face. Other than autologous fat and certain preformed implants, the collagen family products were the only Food and Drug Administration approved soft tissue fillers. But the overwhelming interest in soft tissue fillers had led to the increase in research and development of other products including bioengineered nonpermanent implants and permanent alloplastic implants. As multiple injectable soft tissue fillers and biostimulators are continuously becoming available, it is important to understand the biophysical properties inherent in each, as these constitute the clinical characteristics of the product. This article will review the materials and properties of the currently available soft tissue fillers: hyaluronic acid, calcium hydroxylapatite, poly-l-lactic acid, polymethylmethacrylate, and autologous fat (and aspirated tissue including stem cells). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. 7 CFR 58.514 - Container fillers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging Frozen...

  13. Biodegradation of natural reinforcing fillers for polymer composites

    NASA Astrophysics Data System (ADS)

    Mastalygina, E. E.; Pantyukhov, P. V.; Popov, A. A.

    2018-05-01

    Twelve different natural raw materials were selected as possible fillers for eco-friendly biocomposites. The target was to find the most biodegradable ones. Two mycological tests were held: in the aqueous and agar media. It was found that two tests showed different results. In aqueous media, the fillers with a high content of water-soluble and easy-hydrolysed compounds demostrated the most intensive biofouling. In agar media, the entire filler was exposed to biodigestion by fungi. Therefore, multi-compound fillers with a set of different macro- and microelements were more biodegradable than others.

  14. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  15. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  16. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture.

    PubMed

    Sabetghadam, Anahid; Liu, Xinlei; Benzaqui, Marvin; Gkaniatsou, Effrosyni; Orsi, Angelica; Lozinska, Magdalena M; Sicard, Clemence; Johnson, Timothy; Steunou, Nathalie; Wright, Paul A; Serre, Christian; Gascon, Jorge; Kapteijn, Freek

    2018-06-04

    To gain insight into the influence of metal-organic framework (MOF) fillers and polymers on membrane performance, eight different composites were studied by combining four MOFs and two polymers. MOF materials (NH 2 -MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, and two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were selected as matrices. The best-performing MOF-polymer composites were prepared by loading 25 wt % of MIL-96(Al) as filler, which improved the permeability and selectivity of 6FDA-DAM to 32 and 10 %, while for Pebax they were enhanced to 25 and 18 %, respectively. The observed differences in membrane performance in the separation of CO 2 from N 2 are explained on the basis of gas solubility, diffusivity properties, and compatibility between the filler and polymer phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste

    NASA Astrophysics Data System (ADS)

    Müller, Miroslav; Valášek, Petr

    2018-05-01

    A research on composite adhesive bonds reinforced with waste from hen eggs processing, i.e. egg shell waste (ESW) is based on an assumption of the utilization of agricultural/food production waste. The aim of the research is to gain new pieces of knowledge about the material utilization of ESW, i.e. to evaluate possibilities of the use of various concentrations of ESW microparticles smaller than 100 µm based on hen egg shells as the filler in a structural resin used for a creation of adhesive bonds from bearing metal elements. An adhesive bond strength, an elongation at break and a fracture surface were evaluated within the research on adhesive bonds. The experiment results proved the efficiency of ESW filler in the area of composite adhesive bonds. The adhesive bond strength was increased up of more than 17 % by adding 40 wt.% of ESW microparticles.

  18. Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler.

    PubMed

    Stencel, Robert; Kasperski, Jacek; Pakieła, Wojciech; Mertas, Anna; Bobela, Elżbieta; Barszczewska-Rybarek, Izabela; Chladek, Grzegorz

    2018-06-18

    Secondary caries is one of the important issues related to using dental composite restorations. Effective prevention of cariogenic bacteria survival may reduce this problem. The aim of this study was to evaluate the antibacterial activity and physical properties of composite materials with silver sodium hydrogen zirconium phosphate (SSHZP). The antibacterial filler was introduced at concentrations of 1%, 4%, 7%, 10%, 13%, and 16% ( w / w ) into model composite material consisting of methacrylate monomers and silanized glass and silica fillers. The in vitro reduction in the number of viable cariogenic bacteria Streptococcus mutans ATCC 33535 colonies, Vickers microhardness, compressive strength, diametral tensile strength, flexural strength, flexural modulus, sorption, solubility, degree of conversion, and color stability were investigated. An increase in antimicrobial filler concentration resulted in a statistically significant reduction in bacteria. There were no statistically significant differences caused by the introduction of the filler in compressive strength, diametral tensile strength, flexural modulus, and solubility. Statistically significant changes in degree of conversion, flexural strength, hardness (decrease), solubility (increase), and in color were registered. A favorable combination of antibacterial properties and other properties was achieved at SSHZP concentrations from 4% to 13%. These composites exhibited properties similar to the control material and enhanced in vitro antimicrobial efficiency.

  19. Dispersed metal-toughened ceramics and ceramic brazing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.

    1983-01-01

    An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurementmore » of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.« less

  20. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.

    1989-01-01

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  1. Fillers as Signs of Distributional Learning

    ERIC Educational Resources Information Center

    Taelman, Helena; Durieux, Gert; Gillis, Steven

    2009-01-01

    A longitudinal analysis is presented of the fillers of a Dutch-speaking child between 1;10 and 2;7. Our analysis corroborates familiar regularities reported in the literature: most fillers resemble articles in shape and distribution, and are affected by rhythmic and positional constraints. A novel finding is the impact of the lexical environment:…

  2. Intumescent-ablator coatings using endothermic fillers

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1978-01-01

    An intumescent-ablator coating composition which contains the ammonium salt of 1,4-nitroaniline-2-sulfonic acid or 4,4 dinitrosul fanilide, a polymeric binder system and about 5 to 30% weight of an endothermic filler is reported. The filler has a decomposition temperature about or within the exothermic region of the intumescent agent.

  3. Selecting fillers on emotional appearance improves lineup identification accuracy.

    PubMed

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Filler migration and extensive lesions after lip augmentation: Adverse effects of polydimethylsiloxane filler.

    PubMed

    Abtahi-Naeini, Bahareh; Faghihi, Gita; Shahmoradi, Zabihollah; Saffaei, Ali

    2018-01-07

    Polydimethylsiloxane (PDMS), also called liquid silicone, belongs to a group of polymeric compounds that are commonly referred to as silicones. These filling agents have been used as injectable filler for soft tissue augmentation. There are limited experiences about management of the severe complications related to filler migration associated with PDMS injection. We present a 35-year-old female with severe erythema, edema over her cheeks and neck, and multiple irregularities following cosmetic lip augmentation with PDMS. Further studies are required for management of this complicated case of PDMS injection. © 2018 Wiley Periodicals, Inc.

  5. Welding of HSLA-100 steel using ultra low carbon bainitic weld metal to eliminate preheating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devletian, J.H.; Singh, D.; Wood, W.E.

    1996-12-31

    Advanced high strength steels such as the Navy`s HSLA-100 and HSLA-80 contain sufficiently low carbon levels to be weldable without preheating. Unfortunately, commercial filler metals specifically designed to weld these steels without costly preheating have not yet been developed. The objective of this paper is to show that the Navy`s advanced steels can be welded by gas metal-arc (GMAW) and gas tungsten-arc welding (GTAW) without preheating by using filler metal compositions that produce weld metal with an ultra-low carbon bainitic (ULCB) microstructure. Filler metals were fabricated from vacuum induction melted (VIM) ingots containing ultra-low levels of C, O and N.more » HSLA-100 plate and plate from the VIM ingots were welded by both GMAW and GTAW with Ar-5% CO{sub 2} shielding gas using welding conditions to achieve cooling times from 800 to 500 C (t{sub 8-5}) from 35 to 14 sec. Weld metal tensile, hardness and CVN impact toughness testing as well as microstructural studies using transmission electron microscopy were conducted. The ULCB weld metal was relatively insensitive to cooling rate, resulting in good strength and toughness values over a wide range of t{sub 8-5} cooling times. Filler metal compositions which met the mechanical property requirements for HSLA-100, HSLA-80 and HSLA-65 weld metal were developed.« less

  6. Microstructure of Vacuum-Brazed Joints of Super-Ni/NiCr Laminated Composite Using Nickel-Based Amorphous Filler Metal

    NASA Astrophysics Data System (ADS)

    Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan

    2013-06-01

    Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.

  7. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  8. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  9. A regression analysis of filler particle content to predict composite wear.

    PubMed

    Jaarda, M J; Wang, R F; Lang, B R

    1997-01-01

    It has been hypothesized that composite wear is correlated to filler particle content. There is a paucity of research to substantiate this theory despite numerous projects evaluating the correlation. The purpose of this study was to determine whether a linear relationship existed between composite wear and filler particle content of 12 composites. In vivo wear data had been previously collected for the 12 composites and served as basis for this study. Scanning electron microscopy and backscatter electron imaging were combined with digital imaging analysis to develop "profile maps" of the filler particle composition of the composites. These profile maps included eight parameters: (1) total number of filler particles/28742.6 microns2, (2) percent of area occupied by all of the filler particles, (3) mean filler particle size, (4) percent of area occupied by the matrix, (5) percent of area occupied by filler particles, r (radius) 1.0 < or = micron, (6) percent of area occupied by filler particles, r = 1.0 < or = 4.5 microns, (7) percent of area occupied by filler particles, r = 4.5 < or = 10 microns, and (8) percent of area occupied by filler particles, r > 10 microns. Forward stepwise regression analyses were used with composite wear as the dependent variable and the eight parameters as independent variables. The results revealed a linear relationship between composite wear and the filler particle content. A mathematical formula was developed to predict composite wear.

  10. Ultrasound detection and identification of cosmetic fillers in the skin.

    PubMed

    Wortsman, X; Wortsman, J; Orlandi, C; Cardenas, G; Sazunic, I; Jemec, G B E

    2012-03-01

    While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated with the presence of those agents. We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Fillers are recognizable on ultrasound and generate different patterns of echogenicity and posterior acoustic artefacts. Cosmetic fillers were identified in 118 dermatological patients; most commonly hyaluronic acid among degradable agents and silicone oil among non-degradable. Fillers deposits were loosely scattered throughout the subcutaneous tissue, with occasional infiltration of local muscles and loco-regional lymph nodes. Accompanying dermatopathies were represented by highly localized inflammatory processes unresponsive to conventional treatment, morphea-like reactions, necrosis of fatty tissue and epidermal cysts; in the case of non-degradable agents, the associated dermatopathies were transient, resolving upon disappearance of the filler. Cosmetic filler agents may be detected and identified during routine ultrasound of dermatological lesions; the latter appear to be pathologically related to the cosmetic procedure. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  11. Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties.

    PubMed

    Falcone, Samuel J; Berg, Richard A

    2008-10-01

    Temporary dermal fillers composed of crosslinked hyaluronic acid (XLHA) are space filling gels that are readily available in the United States and Europe. Several families of dermal fillers based on XLHA are now available and here we compare the physical and rheological properties of these fillers to the clinical effectiveness. The XLHA fillers are prepared with different crosslinkers, using HA isolated from different sources, have different particle sizes, and differ substantially in rheological properties. For these fillers, the magnitude of the complex viscosity, |eta*|, varies by a factor of 20, the magnitude of the complex rigidity modulus, |G*|, and the magnitude of the complex compliance, |J*| vary by a factor of 10, the percent elasticity varies from 58% to 89.9%, and the tan delta varies from 0.11 to 0.70. The available clinical data cannot be correlated with either the oscillatory dynamic or steady flow rotational rheological properties of the various fillers. However, the clinical data appear to correlate strongly with the total concentration of XLHA in the products and to a lesser extent with percent elasticity. Hence, our data suggest the following correlation: dermal filler persistence = [polymer] x [% elasticity] and the clinical persistence of a dermal filler composed of XLHA is dominated by the mass and elasticity of the material implanted. This work predicts that the development of future XLHA dermal filler formulations should focus on increasing the polymer concentration and elasticity to improve the clinical persistence.

  12. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  13. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  14. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  15. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  16. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  17. Safety and effectiveness of hyaluronic acid fillers in skin of color.

    PubMed

    Grimes, Pearl E; Thomas, Jane A; Murphy, Diane K

    2009-09-01

    To assess the safety and effectiveness of hyaluronic acid (HA) fillers in skin of color. Two prospective studies followed up subjects with Fitzpatrick skin phototypes of IV, V, or VI for 24 weeks after dermal filler injections. In a double-blind, randomized study, subjects were injected with one of three high concentration (24 mg/mL) HA fillers (Juvéderm Ultra, Ultra Plus, and 30) in one nasolabial fold and Zyplast collagen in the other. In an open-label, randomized study, subjects received one of three low concentration (5.5 mg/mL) HA fillers (Hylaform, Hylaform Plus, and Captique) in both nasolabial folds. A total of 160 subjects (a subset of 439 study subjects) were randomized and treated with one of the three high concentration fillers, and 119 subjects were randomized and treated with one of the three low concentration fillers. For subjects treated with the high concentration fillers there were no occurrences of hypersensitivity or hypertrophic scarring, and no increased incidence of hyperpigmentation or hypopigmentation in non-Caucasian vs. Caucasian subjects. For subjects treated with the low concentration fillers there were no occurrences of keloid formation, hypertrophic scarring, hypopigmentation, hypersensitivity, and three instances of mild hyperpigmentation. For all of the fillers the majority of subjects maintained >/=1 point improvement in nasolabial fold severity scores through 24 weeks. All of the HA fillers were well tolerated in individuals with skin of color and demonstrated effectiveness throughout the 24 week period. Furthermore, the fillers provided smooth, natural-looking wrinkle correction in darker skin types.

  18. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    PubMed

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. High-Temperature Insulating Gap Filler

    NASA Technical Reports Server (NTRS)

    Toombs, Gordon R.; Oyoung, Kevin K.; Stevens, Everett G.

    1991-01-01

    New inorganic, ceramic filler for gaps between refractory ceramic tiles offers high resistance to heat and erosion. Consists of ceramic-fiber fabric precoated with silica and further coated with silica containing small amount of silicon carbide powder to increase thermal emittance. Developed as replacement for organic filler used on thermal-protection system of Space Shuttle. Promises to serve for many missions and to reduce cost and delay of refurbishing aerospace craft. Used as sealing material in furnaces or as heat shield for sensitive components in automobiles, aircraft, and home appliances.

  20. The Study of the Interaction between Silica Filler and Silicone Rubber

    NASA Astrophysics Data System (ADS)

    Liu, Jiesheng; Gong, Xiaoqiang; Zhang, Rongtang

    2018-01-01

    The interaction between silica filler and silicone rubber was studied by swelling ratio, Kraus curve and crosslinking density test. The results showed that lower values of Vro/Vrf and swelling ratio in modified filler system suggests good filler-matrix interactions. The composites with silane coupling agents show higher crosslink-density compared that of untreated ones. In the light of the above statement, it can be concluded that modification of filler is the crucial factor in creating a good interaction between the filler and silicone rubber.

  1. The effect of filler loading and morphology on the mechanical properties of contemporary composites.

    PubMed

    Kim, Kyo-Han; Ong, Joo L; Okuno, Osamu

    2002-06-01

    Little information exists regarding the filler morphology and loading of composites with respect to their effects on selected mechanical properties and fracture toughness. The objectives of this study were to: (1) classify commercial composites according to filler morphology, (2) evaluate the influence of filler morphology on filler loading, and (3) evaluate the effect of filler morphology and loading on the hardness, flexural strength, flexural modulus, and fracture toughness of contemporary composites. Field emission scanning electron microscopy/energy dispersive spectroscopy was used to classify 3 specimens from each of 14 commercial composites into 4 groups according to filler morphology. The specimens (each 5 x 2.5 x 15 mm) were derived from the fractured remnants after the fracture toughness test. Filler weight content was determined by the standard ash method, and the volume content was calculated using the weight percentage and density of the filler and matrix components. Microhardness was measured with a Vickers hardness tester, and flexural strength and modulus were measured with a universal testing machine. A 3-point bending test (ASTM E-399) was used to determine the fracture toughness of each composite. Data were compared with analysis of variance followed by Duncan's multiple range test, both at the P<.05 level of significance. The composites were classified into 4 categories according to filler morphology: prepolymerized, irregular-shaped, both prepolymerized and irregular-shaped, and round particles. Filler loading was influenced by filler morphology. Composites containing prepolymerized filler particles had the lowest filler content (25% to 51% of filler volume), whereas composites containing round particles had the highest filler content (59% to 60% of filler volume). The mechanical properties of the composites were related to their filler content. Composites with the highest filler by volume exhibited the highest flexural strength (120 to 129 MPa

  2. A systematic review of filler agents for aesthetic treatment of HIV facial lipoatrophy (FLA).

    PubMed

    Jagdeo, Jared; Ho, Derek; Lo, Alex; Carruthers, Alastair

    2015-12-01

    HIV facial lipoatrophy (FLA) is characterized by facial volume loss. HIV FLA affects the facial contours of the cheeks, temples, and orbits, and is associated with social stigma. Although new highly active antiretroviral therapy medications are associated with less severe FLA, the prevalence of HIV FLA among treated individuals exceeds 50%. The goal of our systematic review is to examine published clinical studies involving the use of filler agents for aesthetic treatment of HIV FLA and to provide evidence-based recommendations based on published efficacy and safety data. A systematic review of the published literature was performed on July 1, 2015, on filler agents for aesthetic treatment of HIV FLA. Based on published studies, poly-L-lactic acid is the only filler agent with grade of recommendation: B. Other reviewed filler agents received grade of recommendation: C or D. Poly-L-lactic acid may be best for treatment over temples and cheeks, whereas calcium hydroxylapatite, with a Food and Drug Administration indication of subdermal implantation, may be best used deeply over bone for focal enhancement. Additional long-term randomized controlled trials are necessary to elucidate the advantages and disadvantages of fillers that have different biophysical properties, in conjunction with cost-effectiveness analysis, for treatment of HIV FLA. Published by Elsevier Inc.

  3. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    NASA Astrophysics Data System (ADS)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  4. Optical coherence tomography for image-guided dermal filler injection and biomechanical evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wang, Shang; Yee, Richard W.; Han, Zhaolong; Aglyamov, Salavat R.; Larin, Kirill V.

    2017-02-01

    Dermal fillers are a very popular anti-ag ing treatment with estimated sales in the billions of dollars and millions of procedures performed. As the aging population continues to grow, these figures are only e xpected to increase. Dermal fillers have various compositions depending on their intended applicati on. Reactions to dermal fillers can be severe, such as ischemic events and filler migration to the eyes. Howe ver, these adverse reactions are rare. Nevertheless, the capability to perform imag e-guided filler injections would minimize th e risk of such reacti ons. In addition, the biomechanical properties of various fillers have been evalua ted, but there has been no investigation on the effects of filler on the biomechanical properties of skin. In this work, we utilize optical cohe rence tomography (OCT) for visualizing dermal filler injections with micrometer-scale sp atial resolution. In addition, we utilize noncontact optical coherence elastography (OCE) to quantify the changes in the biomechan ical properties of pig skin after the dermal filler injections. OCT was successfully able to visualize the dermal filler injecti on process, and OCE showed that the viscoelasticity of the pig skin was increased locally at the filler injection sites. OCT may be able to provide real-time image guidance in 3D, and when combined with functional OCT techniques such as optical microangiography, could be used to avoid blood vessels during the injection.

  5. Microvascular complications associated with injection of cosmetic facelift dermal fillers

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Prendes, Mark; Chang, Shu-Hong; Wang, Ruikang K.

    2015-02-01

    Minimally-invasive cosmetic surgeries such as injection of subdermal fillers have become very popular in the past decade. Although rare, some complications may follow injections such as tissue necrosis and even blindness. There exist two hypothesis regarding source of these complications both of which include microvasculature. The first hypothesis is that fillers in between the tissue structures and compress microvasculature that causes blockage of tissue neutrition and oxygen exchange in the tissue. In another theory, it is hypothesized that fillers move inside major arteries and block the arteries/veins. In this paper, we study these hypotheses using optical coherence tomography and optical microangiography technologies with different hyaluronic-acid fillers in a mouse ear model. Based on our observations, the fillers eventually block arteries/veins if injected directly into them that eventually causes tissue necrosis.

  6. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  7. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  8. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  9. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  10. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  11. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  12. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  13. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  14. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  15. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  16. Evaluating Waste Charcoal as Potential Rubber Composite Filler

    USDA-ARS?s Scientific Manuscript database

    Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, charcoal in the form of pyrolyzed agricultural products was evaluated as potential carbon-based filler for rubber composites made with carboxylated styrene-butadiene lat...

  17. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.

  18. Effect of filler properties in composite resins on light transmittance characteristics and color.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Takahashi, Hideo; Ban, Seiji

    2007-01-01

    The purpose of this investigation was to examine the effect of filler particle size and shape as well as filler content on light transmittance characteristics and color of experimental composite resins. A mixture of 30 mol% Bis-GMA and 70 mol% TEGDMA was prepared as a base monomer and to which a photoinitiator (camphorquinone) and a co-initiator (N,N-dimethylaminoethyl methacrylate) were added. Four different irregular- and spherical-shaped filler types with an average particle size of 1.9-11.1 microm were added to the mixture in three different filler contents of 20, 30, and 40 vol%. Light transmittance characteristics including light diffusion characteristics of the materials were evaluated. Color values and color differences among filler contents of the materials were also determined. Materials containing smaller and irregular-shaped fillers showed higher light transmittance and diffusion angle distribution with a sharper peak, as compared with those containing larger and spherical-shape fillers. It was also found that there was a significant correlation between the specific surface area of fillers and the color difference of the materials containing the fillers. Our results indicated that the shape of filler particles, as well as particle size and filler content, significantly affected the light transmittance characteristics--including light diffusion characteristics--and color of composite resins.

  19. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  20. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  1. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  2. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  3. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  4. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists of...

  5. Y-Circulator with Dielectric Filler

    DTIC Science & Technology

    1981-12-10

    Y , y LU UL iLU V Shch, shch SK K, k ’b 7p•• S. WA L,b/ V Y , y M m M, m bb b b H H H N N , n 33 a 9 E, e 0 o 0 0 O, o m 00 m Yu, yu n n 17 m...ii ’I ! DOC 1275 PAGE 1 Y -CIRCULATOR WITH DIELECTRIC FILLER A. K. Stolyarov, I. P. Tyukov, V. N . Shakhgedanov, A. A. Shilova. The known Y -circulators...FTD-ID( RS)T-1275-81 FOREIGN TECHNOLOGY DIVISION 0, Y -CIRCULATOR WIrH DIELECTRIC FILLER by A.K. Stolyarov, I.P. Tyukov, et

  6. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism.

    PubMed

    Kitagawa, Haruaki; Miki-Oka, Saeki; Mayanagi, Gen; Abiko, Yuki; Takahashi, Nobuhiro; Imazato, Satoshi

    2018-03-01

    Resin composites containing surface pre-reacted glass-ionomer (S-PRG) fillers have been reported to inhibit Streptococcus mutans growth on their surfaces, and their inhibitory effects were attributed to BO 3 3- and F - ions. The aim of this study was to evaluate S. mutans acid production through glucose metabolism on resin composite containing S-PRG fillers and assess inhibitory effects of BO 3 3- and F - on S. mutans metabolic activities. The pH change through S. mutans acid production on experimental resin composite was periodically measured after the addition of glucose. Inhibitory effects of BO 3 3- or F - solutions on S. mutans metabolism were evaluated by XTT assays and measurement of the acid production rate. The pH of experimental resin containing S-PRG fillers was significantly higher than that of control resin containing silica fillers (p < 0.05). OD 450 values by XTT assays and S. mutans acid production rates significantly decreased in the presence of BO 3 3- and F - compared with the absence of these ions (p < 0.05). pH reduction by S. mutans acid production was inhibited on resin composite containing S-PRG fillers. Moreover, S. mutans glucose metabolism and acid production were inhibited in the presence of low concentrations of BO 3 3- or F - . BO 3 3- or F - released from resin composite containing S-PRG fillers exhibits inhibitory effects on S. mutans metabolism at concentrations lower than those which inhibit bacterial growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  8. Treatment of Soft Tissue Filler Complications: Expert Consensus Recommendations.

    PubMed

    Urdiales-Gálvez, Fernando; Delgado, Nuria Escoda; Figueiredo, Vitor; Lajo-Plaza, José V; Mira, Mar; Moreno, Antonio; Ortíz-Martí, Francisco; Del Rio-Reyes, Rosa; Romero-Álvarez, Nazaret; Del Cueto, Sofía Ruiz; Segurado, María A; Rebenaque, Cristina Villanueva

    2018-04-01

    Dermal fillers have been increasingly used in minimally invasive facial esthetic procedures. This widespread use has led to a rise in reports of associated complications. The aim of this expert consensus report is to describe potential adverse events associated with dermal fillers and to provide guidance on their treatment and avoidance. A multidisciplinary group of experts in esthetic treatments convened to discuss the management of the complications associated with dermal fillers use. A search was performed for English, French, and Spanish language articles in MEDLINE, the Cochrane Database, and Google Scholar using the search terms "complications" OR "soft filler complications" OR "injectable complications" AND "dermal fillers" AND "Therapy". An initial document was drafted by the Coordinating Committee, and it was reviewed and modified by the experts, until a final text was agreed upon and validated. The panel addressed consensus recommendations about the classification of filler complications according to the time of onset and about the clinical management of different complications including bruising, swelling, edema, infections, lumps and bumps, skin discoloration, and biofilm formation. Special attention was paid to vascular compromise and retinal artery occlusion. Clinicians should be fully aware of the signs and symptoms related to complications and be prepared to confidently treat them. Establishing action protocols for emergencies, with agents readily available in the office, would reduce the severity of adverse outcomes associated with injection of hyaluronic acid fillers in the cosmetic setting. This document seeks to lay down a set of recommendations and to identify key issues that may be useful for clinicians who are starting to use dermal fillers. Additionally, this document provides a better understanding about the diagnoses and management of complications if they do occur. This journal requires that authors assign a level of evidence to each

  9. Reactive Diazonium-Modified Silica Fillers for High-Performance Polymers.

    PubMed

    Sandomierski, Mariusz; Strzemiecka, Beata; Chehimi, Mohamed M; Voelkel, Adam

    2016-11-08

    We describe a simple way of modification of three silica-based fillers with in situ generated 4-hydroxymethylbenzenediazonium salt ( + N 2 -C 6 H 4 -CH 2 OH). The rationale for using a hydroxyl-functionalized diazonium salt is that it provides surface-functionalized fillers that can react with phenolic resins. The modification of silica by diazonium salts was assessed using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy permitted the tracking of benzene ring breathing and C-C. The absence of the characteristic N≡N stretching vibration in the 2200-2300 cm -1 range indicates the loss of the diazonium group. XPS results indicate a higher C/Si atomic ratio after the diazonium modification of fillers and the presence of π-π* C1s satellite peaks characteristic of the surface-tethered aromatic species. Adhesion of aryl layers to the silicas is excellent because they withstand harsh thermal and organic solvent treatments. Phenolic resins (used, for example, as binders in abrasive products) were filled with diazonium-modified silicas at 10-25 wt %. The reactivity of the fillers toward phenolic resins was evaluated by the determination of the flow distance. After annealing at 180 °C, the diazonium-modified silica/phenolic resin composites were mechanically tested using the three-point flexural method. The flexural strength was found to be up to 35% higher than that of the composites prepared without any diazonium salts. Diazonium-modified silica with surface-bound -CH 2 -OH groups is thus ideal reactive filler for phenolic resins. Such filler ensures interfacial chemical reactions with the matrix and imparts robust mechanical properties to the final composites. This specialty diazonium-modified silica will find potential application as fillers in the composites for the abrasive industry. More generally, aryl diazonium salts are a unique new series of compounds for tailoring the surface properties of fillers

  10. Myomodulation with Injectable Fillers: An Innovative Approach to Addressing Facial Muscle Movement.

    PubMed

    de Maio, Maurício

    2018-06-01

    Consideration of facial muscle dynamics is underappreciated among clinicians who provide injectable filler treatment. Injectable fillers are customarily used to fill static wrinkles, folds, and localized areas of volume loss, whereas neuromodulators are used to address excessive muscle movement. However, a more comprehensive understanding of the role of muscle function in facial appearance, taking into account biomechanical concepts such as the balance of activity among synergistic and antagonistic muscle groups, is critical to restoring facial appearance to that of a typical youthful individual with facial esthetic treatments. Failure to fully understand the effects of loss of support (due to aging or congenital structural deficiency) on muscle stability and interaction can result in inadequate or inappropriate treatment, producing an unnatural appearance. This article outlines these concepts to provide an innovative framework for an understanding of the role of muscle movement on facial appearance and presents cases that illustrate how modulation of muscle movement with injectable fillers can address structural deficiencies, rebalance abnormal muscle activity, and restore facial appearance. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  11. Dielectric properties of inorganic fillers filled epoxy thin film

    NASA Astrophysics Data System (ADS)

    Norshamira, A.; Mariatti, M.

    2015-07-01

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe2O3) and Titanium Dioxide (TiO2) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  12. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    PubMed

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  13. Update on botulinum toxin and dermal fillers.

    PubMed

    Berbos, Zachary J; Lipham, William J

    2010-09-01

    The art and science of facial rejuvenation is an ever-evolving field of medicine, as evidenced by the continual development of new surgical and nonsurgical treatment modalities. Over the past 10 years, the use of botulinum toxin and dermal fillers for aesthetic purposes has risen sharply. Herein, we discuss properties of several commonly used injectable products and provide basic instruction for their use toward the goal of achieving facial rejuvenation. The demand for nonsurgical injection-based facial rejuvenation products has risen enormously in recent years. Used independently or concurrently, botulinum toxin and dermal filler agents offer an affordable, minimally invasive approach to facial rejuvenation. Botulinum toxin and dermal fillers can be used to diminish facial rhytides, restore facial volume, and sculpt facial contours, thereby achieving an aesthetically pleasing, youthful facial appearance.

  14. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study

    NASA Astrophysics Data System (ADS)

    Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin

    2014-07-01

    Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.

  15. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.

    PubMed

    Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku

    2017-02-28

    The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.

  16. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler

    PubMed Central

    Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku

    2017-01-01

    The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603

  17. Mechanical properties of welded joints of the reduced-activation ferritic steel: 8% Cr-2% W-0.2% V-0.04% Ta-Fe

    NASA Astrophysics Data System (ADS)

    Hayakawa, H.; Yoshitake, A.; Tamura, M.; Natsume, S.; Gotoh, A.; Hishinuma, A.

    1991-03-01

    A reduced-activation ferritic steel, 8Cr-2W-0.2V-0.04Ta-Fe (F-82H) has been developed by JAERI and NKK to improve creep properties and toughness as compared with HT9. The mechanical properties and phase stability of the steel were reported at the previous conferences, ICFRM-2 and 3. This paper is concerned with the mechanical properties of weld metal and welded joints using a newly-developed filler wire of F-82H which contains less C and Ta than the base metal. The design concept of chemical composition of the filler wire was based on as much reduction of activity after irradiation as possible and considerations of the hardenability and toughness of the weld metal. Mechanical properties, such as tensile strength and toughness, of the weld metal and welded joints produced by GTAW after stress-relieving heat treatment were investigated. The results showed that this welding material has almost the same properties as the base metal.

  18. Fillers: from the past to the future.

    PubMed

    Glogau, Richard G

    2012-06-01

    Modern medical use of injectable soft-tissue augmentation fillers has evolved from the introduction of bovine collage implants to an array of synthesized materials in the current domestic and foreign markets. The concept of augmentation has moved from simple lines, scars, and wrinkles to revolumizing the aging face. A brief overview of the past, present, and future injectable fillers is presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. A systematic review of dermal fillers for age-related lines and wrinkles.

    PubMed

    Sturm, Lana P; Cooter, Rodney D; Mutimer, Keith L; Graham, John C; Maddern, Guy J

    2011-01-01

    Dermal fillers are gaining popularity for rapid aesthetic improvement. Long-term efficacy and safety have not been well documented. The aim of this systematic review was to assess the safety and efficacy of injectable dermal fillers compared with other facial augmentation techniques for the management of age-related lines and wrinkles. Studies including patients receiving injectable semi-permanent or permanent dermal fillers for age-related lines and wrinkles were included in this review. Efficacy outcomes (including changes in skin thickness and patient satisfaction) and safety outcomes (including mortality, lumps and infections) were examined. Three randomized control trials and six case series were included. Permanent and semi-permanent dermal fillers improved subjective ratings of appearance and resulted in higher patient satisfaction than temporary fillers. Long-term efficacy appeared good in the few studies that reported it. Short-term safety appeared favourable. Lumps were reported in all but one study but received little follow-up. Long-term safety data were limited. The treatment of age-related lines and wrinkles with permanent and semi-permanent dermal fillers is more efficacious compared with temporary fillers in those studies that compared them. Case series evidence suggests that these fillers achieve their objective, which is to decrease the visible effects of age-related changes. These fillers appear at least as safe as temporary fillers in the short term in those studies that compared them. Long-term safety could not be determined. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  20. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  1. Dielectric properties of inorganic fillers filled epoxy thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norshamira, A., E-mail: myra.arshad@gmail.com; Mariatti, M., E-mail: mariatti@usm.my

    2015-07-22

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types ofmore » fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.« less

  2. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    NASA Astrophysics Data System (ADS)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  3. Fiber Laser Welding-Brazing Characteristics of Dissimilar Metals AZ31B Mg Alloys to Copper with Mg-Based Filler

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoye; Tan, Caiwang; Meng, Shenghao; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai

    2018-03-01

    Fiber laser welding-brazing of 1-mm-thick AZ31B Mg alloys to 1.5-mm-thick copper (T2) with Mg-based filler was performed in a lap configuration. The weld appearance, interfacial microstructure and mechanical properties were investigated with different heat inputs. The results indicated that processing windows for optimizing appropriate welding parameters were relatively narrow in this case. Visually acceptable joints with certain strength were achieved at appropriate welding parameters. The maximum tensile-shear fracture load of laser-welded-brazed Mg/Cu joint could reach 1730 N at the laser power of 1200 W, representing 64.1% joint efficiency relative to AZ31Mg base metal. The eutectic structure (α-Mg + Mg2Cu) and Mg-Cu intermetallic compound was observed at the Mg/Cu interface, and Mg-Al-Cu ternary intermetallic compound were identified between intermetallics and eutectic structure at high heat input. All the joints fractured at the Mg-Cu interface. However, the fracture mode was found to differ. For laser power of 1200 W, the surface was characterized by tearing edge, while that with poor joint strength was almost dominated by smooth surface or flat tear pattern.

  4. New Manufacturing Method for Paper Filler and Fiber Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doelle, Klaus

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings overmore » $$12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $$3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons

  5. Use of nut shells as fillers in polymer composites

    USDA-ARS?s Scientific Manuscript database

    The three nutshell fillers including walnut, almond and pistachio nutshell were added to PLA. All the physical properties of samples deteriorated relative to PLA. When subjected to heat pre-treatment, although the physical properties of PLA-filler samples still deteriorated, the extent of deteriorat...

  6. Charcoal byproducts as potential styrene-butadiene rubber composte filler

    USDA-ARS?s Scientific Manuscript database

    Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, various renewable charcoals in the form of pyrolyzed agricultural byproducts were evaluted as potential carbon-based filler for rubber composites made with carboxylated s...

  7. The effect of filler on the protein content and interferences in rubber latices

    NASA Astrophysics Data System (ADS)

    Ruhida, A. R.; Hassan, Aziz

    2017-12-01

    It is well known that the application of commercial fillers like calcium carbonate has widely been used in natural rubber latex (NRL) gloves as well as other dipped products such as balloons, condom and catheters. The main reason of adding the fillers into the rubber compound was as cheapening aid and to improve the end-product properties. Due to its functional benefit, many studies have been conducted on the application and beneficial usage of fillers in natural rubber (NR) compounds and natural rubber latex (NRL) dipped goods namely gloves. However most of the studies were basically emphasizing on the effect of fillers on the physical properties and surface morphology of rubber. Not many studies have been conducted to investigate the effect of filler on the protein content in NRL products. Earlier work by other workers has only been concentrating on the effect of nano-sized calcium carbonate fillers in NR latex gloves. Because of the concern on the issue of latex protein allergy; it is thus important to study the effect of filler on protein content and its interferences in the rubber lattices. This paper will seek to elaborate on the effect of filler content on the total protein and extractable protein (EP) content of NR latex films at various filler loadings before and after ageing. The effect of interferences by filler that was mixed into the NR latex on the total nitrogen and EP content were also measured and shown.

  8. Vibration anesthesia for the reduction of pain with facial dermal filler injections.

    PubMed

    Mally, Pooja; Czyz, Craig N; Chan, Norman J; Wulc, Allan E

    2014-04-01

    Vibration anesthesia is an effective pain-reduction technique for facial cosmetic injections. The analgesic effect of this method was tested in this study during facial dermal filler injections. The study aimed to evaluate the safety and efficacy of vibration anesthesia for these facial injections. This prospective study analyzed 41 patients who received dermal filler injections to the nasolabial folds, tear troughs, cheeks, and other facial sites. The injections were administered in a randomly assigned split-face design. One side of the patient's face received vibration together with dermal filler injections, whereas the other side received dermal filler injections alone. The patients completed a posttreatment questionnaire pertaining to injection pain, adverse effects, and preference for vibration with future dermal filler injections. The patients experienced both clinically and statistically significant pain reduction when a vibration stimulus was co-administered with the dermal filler injections. No adverse events were reported. The majority of the patients (95 %) reported a preference for vibration anesthesia with subsequent dermal filler injections. Vibration is a safe and effective method of achieving anesthesia during facial dermal filler injections. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. The effect of filler addition and oven temperature to the antioxidant quality in the drying of Physalis angulata leaf extract obtained by subcritical water extraction

    NASA Astrophysics Data System (ADS)

    Susanti, R. F.; Natalia, Desy

    2016-11-01

    In traditional medicine, Physalis angulata which is well known as ceplukan in Indonesia, has been utilized to cure several diseases by conventional extraction in hot water. The investigation of the Swietenia mahagoni extract activity in modern medicine typically utilized organic solvents such as ethanol, methanol, chloroform and hexane in extraction. In this research, subcritical water was used as a solvent instead of organic solvent to extract the Pysalis angulata leaf part. The focus of this research was the investigation of extract drying condition in the presence of filler to preserve the quality of antioxidant in Swietenia mahagoni extract. Filler, which is inert, was added to the extract during drying to help absorb the water while protect the extract from exposure in heat during drying. The effects of filler types, concentrations and oven drying temperatures were investigated to the antioxidant quality covering total phenol and antioxidant activity. Aerosil and microcrystalline cellulose (MCC) were utilized as fillers with concentration was varied from 0-30 wt% for MCC and 0-15 wt% for aerosil. The oven drying temperature was varied from 40-60 oC. The results showed that compare to extract dried without filler, total phenol and antioxidant activity were improved upon addition of filler. The higher the concentration of filler, the better the antioxidant; however it was limited by the homogeneity of filler in the extract. Both of the variables (oven temperature and concentration) played an important role in the improvement of extract quality of Swietenia mahagoni leaf. It was related to the drying time which can be minimized to protect the deterioration of extract from heat. In addition, filler help to provide the powder form of extract instead of the typical extract form which is sticky and oily.

  10. Effect of biobased fillers nature on biodeterioration of hybrid polyethylene composites by mold fungi

    NASA Astrophysics Data System (ADS)

    Mastalygina, E. E.; Popov, A. A.; Pantyukhov, P. V.

    2017-06-01

    The paper is devoted to investigation of deterioration of natural fillers and polyethylene composites on their basis (polyethylene/filler=70/30) due to the action of mold fungi. The fillers chemical composition, dimensional parameters and biodegradability have been analyzed as factors exert a considerable impact on composite materials biodeterioration. It has been found that the principal factor determining the biodeterioration of polyethylene/filler composites by mold fungi is chemical composition of a filler and, in turn, its biodegradability. The excess of holocellulose content over lignin content and high protein content in a filler are able to induce biofouling of the polymeric composite materials. The presence of soluble and easy hydrolysed fraction in a filler increases its availability in a polymeric matrix. According to the study results, most effective natural fillers as additives stimulating polyethylene composites biodegradability are milled straw of seed flax and hydrolyzed keratin of bird’s feather.

  11. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  12. Successful Management of Infected Facial Filler with Brucella.

    PubMed

    Alshaer, Zahra; Alsaadi, Yazeed; Mrad, Mohamed Amir

    2018-06-11

    The widespread desire to maintain youth and beauty with minimally invasive procedures made the use of soft tissue fillers an attractive option to correct numerous aesthetic problems. However, many complications have emerged recently especially with the use of non-FDA-approved permanent materials. In this case report, we are demonstrating the effective management of a patient with Brucella isolated from a facial abscess at the site of prior permanent filler injection done 17 years ago. A 56-year-old woman presented complaining of painful swelling of the right cheek after a failed trial of filler evacuation and intralesional corticosteroid injection. The patient was interviewed carefully, and physical examination was performed, followed by culture and imaging. The patient had a facial abscess that was complicated by parotid infiltration by Brucella. Eventually she was managed successfully by anti-Brucella antibiotics for 6 months with no further complaints. A review of causative organisms in the literature along with recommendations for management is discussed. Permanent fillers have shown many complications that can occur even years after injection. Therefore, physicians should be careful when using permanent fillers and should restrict their use to certain situations. Moreover, rare infections must be kept in mind and careful history, including travel history and animal contact, needs to be considered particularly in the unusual scenarios. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  13. System compliance dictates the effect of composite filler content on polymerization shrinkage stress.

    PubMed

    Wang, Zhengzhi; Chiang, Martin Y M

    2016-04-01

    The effect of filler content in dental restorative composites on the polymerization shrinkage stress (PS) is not straightforward and has caused much debate in the literature. Our objective in this study was to clarify the PS/filler content relationship based on analytical and experimental approaches, so that guidelines for materials comparison in terms of PS and clinical selection of dental composites with various filler content can be provided. Analytically, a simplified model based on linear elasticity was utilized to predict PS as a function of filler content under various compliances of the testing system, a cantilever beam-based instrument used in this study. The predictions were validated by measuring PS of composites synthesized using 50/50 mixtures of two common dimethacrylate resins with a variety of filler contents. Both experiments and predictions indicated that the influence of filler content on the PS highly depended on the compliance of the testing system. Within the clinic-relevant range of compliances and for the specific sample configuration tested, the PS increased with increasing filler content at low compliance of instrument, while increasing the compliance caused the effect of filler content on the PS to gradually diminish. Eventually, at high compliance, the PS inverted and decreased with increasing filler content. This compliance-dependent effect of filler content on PS suggests: (1) for materials comparison in terms of PS, the specific compliance at which the comparison being done should always be reported and (2) clinically, composites with relatively lower filler content could be selected for such cavities with relatively lower compliance (e.g. a Class-I cavity with thick tooth walls or the basal part in a cavity) and vice versa in order to reduce the final PS. Published by Elsevier Ltd.

  14. Recommendations for Filler Material Composition and Delivery Method for Bench-Scale Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane

    This report supplements Joint Workplan on Filler Investigations for DPCs (SNL 2017) providing new and some corrected information for use in planning Phase 1 laboratory testing of slurry cements as possible DPC fillers. The scope description is to "Describe a complete laboratory testing program for filler composition, delivery, emplacement in surrogate canisters, and post-test examination. To the extent possible specify filler material and equipment sources." This report includes results from an independent expert review (Dr. Arun Wagh, retired from Argonne National Laboratory and contracted by Sandia) that helped to narrow the range of cement types for consideration, and to providemore » further guidance on mix variations to optimize injectability, durability, and other aspects of filler performance.« less

  15. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    NASA Astrophysics Data System (ADS)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  16. Neutron Spectrometry for Identification of filler material in UXO - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliss, Mary

    2007-09-12

    Unexploded ordnance (UXO)-contaminated sites often include ordnance filled with inert substances that were used in dummy rounds. During UXO surveys, it is difficult to determine whether ordnance is filled with explosives or inert material (e.g., concrete, plaster-of-paris, wax, etc.) or is empty. Without verification of the filler material, handling procedures often necessitate that the object be blown in place, which has potential impacts to the environment, personnel, communities and survey costs. The Department of Defense (DoD) needs a reliable, timely, non-intrusive and cost-effective way to identify filler material before a removal action. A new technology that serves this purpose wouldmore » minimize environmental impacts, personnel safety risks and removal costs; and, thus, would be especially beneficial to remediation activities.« less

  17. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    NASA Astrophysics Data System (ADS)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  18. Facial soft-tissue fillers conference: assessing the state of the science.

    PubMed

    Rohrich, Rod J; Hanke, C William; Busso, Mariano; Carruthers, Alastair; Carruthers, Jean; Fagien, Steven; Fitzgerald, Rebecca; Glogau, Richard; Greenberger, Phyllis E; Lorenc, Z Paul; Marmur, Ellen S; Monheit, Gary D; Pusic, Andrea; Rubin, Mark G; Rzany, Berthold; Sclafani, Anthony; Taylor, Susan; Weinkle, Susan; McGuire, Michael F; Pariser, David M; Casas, Laurie A; Collishaw, Karen J; Dailey, Roger A; Duffy, Stephen C; Edgar, Elizabeth Jan; Greenan, Barbara L; Haenlein, Kelly; Henrichs, Ronald A; Hume, Keith M; Lum, Flora; Nielsen, David R; Poulsen, Lisle; Shoaf, Lori; Schoaf, Lori; Seward, William; Begolka, Wendy Smith; Stanton, Robert G; Svedman, Katherine J; Thomas, J Regan; Sykes, Jonathan M; Wargo, Carol; Weiss, Robert A

    2011-04-01

    : The American Society of Plastic Surgeons and the American Academy of Dermatology, with the support of other sister societies, conducted the Facial Soft-Tissue Fillers: Assessing the State of the Science conference in December of 2009. The American Society of Plastic Surgeons and the American Academy of Dermatology established a panel of leading experts in the field of soft-tissue fillers-from researchers to clinicians-and other stakeholders for the conference to examine and discuss issues of patient safety, efficacy, and effectiveness in relation to the approved and off-label use of soft-tissue fillers, and other factors, including the training and level of experience of individuals administering fillers. This report represents the systematic literature review that examines comprehensively the available evidence and gaps in the evidence related to soft-tissue fillers, to inform and support the work of the state-of-the-science conference panel. This evidence-based medicine review will serve as the foundation for future evidence-based medicine reports in this growing field.

  19. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  20. Fillers as Signals: Evidence from a Question-Answering Paradigm

    ERIC Educational Resources Information Center

    Walker, Esther J.; Risko, Evan F.; Kingstone, Alan

    2014-01-01

    The present study examined the influence of a human or computer "partner" on the production of fillers ("um" and "uh") during a question and answer task. Experiment 1 investigated whether or not responding to a human partner as opposed to a computer partner results in a higher rate of filler production. Participants…

  1. Effect of mechanical properties of fillers on the grindability of composite resin adhesives.

    PubMed

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru

    2010-10-01

    The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  2. Suspect filler similarity in eyewitness lineups: a literature review and a novel methodology.

    PubMed

    Fitzgerald, Ryan J; Oriet, Chris; Price, Heather L

    2015-02-01

    Eyewitness lineups typically contain a suspect (guilty or innocent) and fillers (known innocents). The degree to which fillers should resemble the suspect is a complex issue that has yet to be resolved. Previously, researchers have voiced concern that eyewitnesses would be unable to identify their target from a lineup containing highly similar fillers; however, our literature review suggests highly similar fillers have only rarely been shown to have this effect. To further examine the effect of highly similar fillers on lineup responses, we used morphing software to create fillers of moderately high and very high similarity to the suspect. When the culprit was in the lineup, a higher correct identification rate was observed in moderately high similarity lineups than in very high similarity lineups. When the culprit was absent, similarity did not yield a significant effect on innocent suspect misidentification rates. However, the correct rejection rate in the moderately high similarity lineup was 20% higher than in the very high similarity lineup. When choosing rates were controlled by calculating identification probabilities for only those who made a selection from the lineup, culprit identification rates as well as innocent suspect misidentification rates were significantly higher in the moderately high similarity lineup than in the very high similarity lineup. Thus, very high similarity fillers yielded costs and benefits. Although our research suggests that selecting the most similar fillers available may adversely affect correct identification rates, we recommend additional research using fillers obtained from police databases to corroborate our findings.

  3. Influence of filler loading on the two-body wear of a dental composite.

    PubMed

    Hu, X; Marquis, P M; Shortall, A C

    2003-07-01

    The purpose of the study was to explore the fundamental wear behaviour of a dental composite with different filler loadings under two-body wear conditions. The parent resin and filler components were mixed according to different weight ratios to produce experimental composites with filler loadings ranging from 20 to 87.5% by weight. A two-body wear test was conducted on the experimental composites using a wear-testing machine. The machine was designed to simulate the impact of the direct cyclic masticatory loading that occurs in the occlusal contact area in vivo. The results showed that there was little increase in the rate of wear with filler loadings below 60 wt%, but a sharp increase between 80 and 87.5 wt% in filler loading. Wide striations and bulk loss of material were apparent on the wear surfaces at higher filler loadings. Coefficients of friction increased with filler loading and followed the increase in rate of wear loss closely. It was concluded that, under two-body wear conditions, addition of high levels of filler particles into the resin matrix could reduce the wear resistance of dental composites. This finding may help when designing future dental composites for use in particular clinical settings.

  4. Are functional fillers improving environmental behavior of plastics? A review on LCA studies.

    PubMed

    Civancik-Uslu, Didem; Ferrer, Laura; Puig, Rita; Fullana-I-Palmer, Pere

    2018-06-01

    The use of functional fillers can be advantageous in terms of cost reduction and improved properties in plastics. There are many types of fillers used in industry, organic and inorganic, with a wide application area. As a response to the growing concerns about environmental damage that plastics cause, recently fillers have started to be considered as a way to reduce it by decreasing the need for petrochemical resources. Life cycle assessment (LCA) is identified as a proper tool to evaluate potential environmental impacts of products or systems. Therefore, in this study, the literature regarding LCA of plastics with functional fillers was reviewed in order to see if the use of fillers in plastics could be environmentally helpful. It was interesting to find out that environmental impacts of functional fillers in plastics had not been studied too often, especially in the case of inorganic fillers. Therefore, a gap in the literature was identified for the future works. Results of the study showed that, although there were not many and some differences exist among the LCA studies, the use of fillers in plastics industry may help to reduce environmental emissions. In addition, how LCA methodology was applied to these materials was also investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. High speed chalcogenide glass electrochemical metallization cells with various active metals.

    PubMed

    Hughes, Mark A; Burgess, Alexander; Hinder, Steven; Gholizadeh, A Baset; Craig, Christopher; Hewak, Daniel W

    2018-08-03

    We fabricated electrochemical metallization cells using a GaLaSO solid electrolyte, an InSnO inactive electrode and active electrodes consisting of various metals (Cu, Ag, Fe, Cu, Mo, Al). Devices with Ag and Cu active metals showed consistent and repeatable resistive switching behaviour, and had a retention of 3 and >43 days, respectively; both had switching speeds of <5 ns. Devices with Cr and Fe active metals displayed incomplete or intermittent resistive switching, and devices with Mo and Al active electrodes displayed no resistive switching ability. Deeper penetration of the active metal into the GaLaSO layer resulted in greater resistive switching ability of the cell. The off-state resistivity was greater for more reactive active metals which may be due to a thicker intermediate layer.

  6. Mesoporous silica fillers and resin composition effect on dental composites cytocompatibility.

    PubMed

    Attik, Nina; Hallay, Franck; Bois, Laurence; Brioude, Arnaud; Grosgogeat, Brigitte; Colon, Pierre

    2017-02-01

    Many new dental composites containing mesoporous silica fillers have been developed to improve rheological properties and enhance the resin-filler interface. To investigate the correlation between the cytocompatibility of several dental composites and their composition; two aspects have been considered: presence of bisphenol A (BPA)-glycidyl methacrylate (Bis-GMA) or triethyleneglycol-dimethacrylate (TEGDMA) among the resin monomers and presence of porous particles among the filler blends. Five commercial composites with different resin matrices and mineral fillers were compared to four experimental composites designed without any BPA-based monomers or TEGDMA. Porous fillers, with or without silanation, were added in some of the experimental composites. Two reference resin matrices were also selected. Cytocompatibility with cultured primary human gingival fibroblasts was assessed by confocal laser scanning microscopy with time-lapse imaging. Fourier transform infrared spectroscopy was used to control monomer conversion rate. Conversion rates of the experimental composites ranged from 57% to 71%, a comparable ratio for dental composites. Experimental samples were better tolerated than tested commercial samples not containing TEGDMA and significantly better than those containing TEGDMA. Experimental composites with porous fillers exhibited good cytocompatibility, especially when surfaces were silanated. Cytotoxicity was associated with resin amount and especially resin nature. Composites containing porous fillers might behave as if the resin trapped into pores has no effect on toxicity. The cytotoxicity of composites with and without BPA derivatives was mainly attributed to the release of residual TEGDMA rather than the BPA derivatives. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. The effect of filler addition and oven temperature to the antioxidant quality in the drying of Physalis angulata fruit extract obtained by subcritical water extraction

    NASA Astrophysics Data System (ADS)

    Susanti, R. F.; Christianto, G.

    2016-01-01

    Physalis angulata or ceplukan is medicinal herb, which grows naturally in Indonesia. It has been used in traditional medicine to treat several diseases. It is also reported to have antimycobacterial, antileukemic, antipyretic. In this research, Pysalis angulata fruit was investigated for its antioxidant capacity. In order to avoid the toxic organic solvent commonly used in conventional extraction, subcritical water extraction method was used. During drying, filler which is inert was added to the extract. It can absorb water and change the oily and sticky form of extract to powder form. The effects of filler types, concentrations and drying temperatures were investigated to the antioxidant quality covering total phenol, flavonoid and antioxidant activity. The results showed that total phenol, flavonoid and antioxidant activity were improved by addition of filler because the drying time was shorter compared to extract without filler. Filler absorbs water and protects extract from exposure to heat during drying. The combination between high temperature and shorter drying time are beneficial to protect the antioxidant in extract. The type of fillers investigation showed that aerosil gave better performance compared to Microcrystalline Celullose (MCC).

  8. Comparative study on thermodynamic characteristics of AgCuZnSn brazing alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-01-01

    AgCuZnSn brazing alloys were prepared based on the BAg50CuZn filler metal through electroplating diffusion process, and melting alloying method. The thermodynamics of phase transformations of those fillers were analyzed by non-isothermal differentiation and integration methods of thermal analysis kinetics. In this study, it was demonstrated that as the Sn content increased, the reaction fractional integral curves of AgCuZnSn fillers from solid to liquid became straighter at the endothermic peak. Under the same Sn contents, the reaction fractional integral curve of the Sn-plated filler metal was straighter, and the phase transformation activation energy was higher compared to the traditional silver filler metal. At the 7.2 wt% Sn content, the activation energies and pre-exponential factors of the two fillers reached the maximum, then the phase transformation rate equations of the Sn-plated silver filler and the traditional filler were determined as: k = 1.41 × 1032exp(-5.56 × 105/RT), k = 7.29 × 1020exp(-3.64 × 105/RT), respectively.

  9. Elastomer coated filler and composites thereof comprising at least 60% by weight of a hydrated filler and an elastomer containing an acid substituent

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Ingham, J. D.; Reilly, W. W. (Inventor)

    1983-01-01

    The impact resistance of flame retardant composites, especially thermoplastic molding: compounds containing over 60% hydrated mineral filler such as Al(OH)3 or Mg(OH)2 as improved by coating the filler with 1 to 20% of an elastomer. The composite will fail by crazing or shearing rather than by brittle fracture. A well bonded elastomeric interphase resulted by utilizing acidic substituted resins such as ethyl-hexyl acrylate-acrylic acid copolymers which bond to and are cross-linked by the basic filler particles. Further improvement in impact resistance was provided by incorporating 1 to 10% of a resin fiber reinforcement such as polyvinyl alcohol fibers that decompose to yield at least 30% water when heated to decomposition temperature.

  10. The duration of hyaluronidase and optimal timing of hyaluronic acid (HA) filler reinjection after hyaluronidase injection.

    PubMed

    Kim, H J; Kwon, S B; Whang, K U; Lee, J S; Park, Y L; Lee, S Y

    2018-02-01

    Hyaluronidase injection is a commonly performed treatment for overcorrection or misplacement of hyaluronic acid (HA) filler. Many patients often wants the HA filler reinjection after the use of hyaluronidase, though the optimal timing of reinjection of HA filler still remains unknown. To provide the optimal time interval between hyaluronidase injections and HA filler reinjections. 6 Sprague-Dawley rats were injected with single monophasic HA filler. 1 week after injection, the injected sites were treated with hyaluronidase. Then, HA fillers were reinjected sequentially with differing time intervals from 30 minutes to 14 days. 1 hour after the reinjection of the last HA filler, all injection sites were excised for histologic evaluation. 3 hours after reinjection of HA filler, the appearance of filler material became evident again, retaining its shape and volume. 6 hours after reinjection, the filler materials restored almost its original volume and there were no significant differences from the positive control. Our data suggest that the hyaluronidase loses its effect in dermis and subcutaneous tissue within 3-6 hours after the injection and successful engraftment of reinjected HA filler can be accomplished 6 hours after the injection.

  11. Reaction layer characterization of the braze joint of silicon nitride to stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, R.; Indacochea, J. E.

    1994-10-01

    This investigation studies the role of titanium in the development of the reaction layer in braze joining silicon nitride to stainless steel using titanium-active copper-silver filler metals. This reaction layer formed as a result of titanium diffusing to the filler metal/silicon nitride interface and reacting with the silicon nitride to form the intermetallics, titanium nitride (TiN) and titanium suicide (Ti 5Si3). This reaction layer, as recognized in the literature, allows wetting of the ceramic substrate by the molten filler metal. The reaction layer thickness increases with temperature and time. Its growth rate obeys the parabolic relationship. Activation energies of 220.1 and 210.9 kj/mol were calculated for growth of the reaction layer for the two filler metals used. These values are close to the activation energy of nitrogen in TiN (217.6 kj/mol). Two filler metals were used in this study, Ticusil (68.8 wt% Ag, 26.7 wt% Cu, 4.5 wt% Ti) and CB4 (70.5 wt% Ag, 26.5 wt% Cu, 3.0 wt% Ti). The joints were processed in vacuum at temperatures of 840 to 900 °C at various times. Bonding strength is affected by reaction layer thickness in the absence of Ti-Cu intermetallics in the filler metal matrix.

  12. Reduction of liquid metal embrittlement in copper-brazed stainless steel joints

    NASA Astrophysics Data System (ADS)

    Uhlig, T.; Fedorov, V.; Elßner, M.; Wagner, G.; Weis, S.

    2017-03-01

    Due to its very good formability and the low raw material cost, pure copper in form of foils is commonly used to braze plate heat exchangers made of stainless steel. The difference in the electrochemical potentials of brazing filler and base material leads to corrosion effects in contact with electrolytes. This may lead to leakages, which decrease the reliability of the heat exchanger during service in potable water. The dissolution of the emerging corrosion products of brazing filler and base material induces the migration of heavy metal ions, such as Cu2+ and Ni2+, into the potable water. The so-called liquid metal embrittlement, which takes place during the brazing process, may intensify the corrosion. The brazing filler infiltrates the stainless steel along the grain boundaries and causes an embrittlement. This paper deals with the determination of the grain boundary erosion dependent on the degree of deformation and heat treatment of the stainless steel AISI 316L.

  13. Measurement of composite resin filler particles by using scanning electron microscopy and digital imaging.

    PubMed

    Jaarda, M J; Lang, B R; Wang, R F; Edwards, C A

    1993-04-01

    Composite resins are routinely classified on the basis of filler particle size for purposes of research, clinical applications, and communications. The size and characterizations of filler particles have also been considered a significant factor in the rate of wear of composites. Making valid correlations between the filler particles within a composite and wear requires accuracy of filler particle size and characterization. This study was initiated to examine two methods that would (1) qualify the filler particle content of a composite resin and (2) quantify the number, size, and the area occupied by the filler particles in composite resins. Three composite resins, BIS-FIL I, Visio-Fil, and Ful-Fil, were selected as the materials to be examined, on the basis of their published composite classification type as fine particle. The findings demonstrated that scientific methods are available to examine qualitatively and measure quantitatively the composite resin filler particles in terms of their numbers, sizes, and area occupied by use of a scanning electron microscope and digital imaging. Significant differences in the filler particle numbers, sizes, and the area occupied were found for the three composite resins in this study that were classified as fine particle.

  14. Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence.

    PubMed

    Halimi, C; Montembault, A; Guerry, A; Delair, T; Viguier, E; Fulchiron, R; David, L

    2015-01-01

    A new generation of dermal filler for wrinkle filler based on chitosan was compared to current hyaluronic acid-based dermal fillers by using a new rheological performance criterion based on viscosity during injection related to Newtonian viscosity. In addition an in vivo evaluation was performed for preclinical evidence of chitosan use as dermal filler. In this way, biocompatibility and dermis reconstruction was evaluated on a pig model.

  15. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  16. Avoiding and Treating Blindness From Fillers: A Review of the World Literature.

    PubMed

    Beleznay, Katie; Carruthers, Jean D A; Humphrey, Shannon; Jones, Derek

    2015-10-01

    As the popularity of soft tissue fillers increases, so do the reports of adverse events. The most serious complications are vascular in nature and include blindness. To review the cases of blindness after filler injection, to highlight key aspects of the vascular anatomy, and to discuss prevention and management strategies. A literature review was performed to identify all the cases of vision changes from filler in the world literature. Ninety-eight cases of vision changes from filler were identified. The sites that were high risk for complications were the glabella (38.8%), nasal region (25.5%), nasolabial fold (13.3%), and forehead (12.2%). Autologous fat (47.9%) was the most common filler type to cause this complication, followed by hyaluronic acid (23.5%). The most common symptoms were immediate vision loss and pain. Most cases of vision loss did not recover. Central nervous system complications were seen in 23.5% of the cases. No treatments were found to be consistently successful in treating blindness. Although the risk of blindness from fillers is rare, it is critical for injecting physicians to have a firm knowledge of the vascular anatomy and to understand key prevention and management strategies.

  17. Rheological properties of cross-linked hyaluronic acid dermal fillers.

    PubMed

    Santoro, Stefano; Russo, Luisa; Argenzio, Vincenzo; Borzacchiello, Assunta

    2011-01-01

    Ha based dermal fillers in recent years aroused big interest in the area of cosmetic surgery for the rejuvenation of the dermis. There is not a ideal dermal filler (DF) for all applications and in commerce there are many types of DF that differ for their chemical-physical properties. So the aim of this paper is to correlate the rheological and physical properties of different DF to their clinical effectiveness. In this frame the samples have been subjected to oscillation dynamic rheological and steady shear measurements. Our results demonstrate that the viscoelastic properties of different DF varie strongly also considering fillers of the same family. Furthermore it was found that the materials physical properties influence significantly the performance of dermal filler. In particular the clinical data appear to correlate with the concentration of the polymer and with the product between the concentration and the percent elasticity, so these should be crucial parameters for the clinical performance of DF. So rheological data can be a tool to have an indication on the efficacy and longevity of DF but it has to be considered that production technology, in-vivo-conditions, injector skills and experience influence them also significantly.

  18. Comparison of TT-F-1098 Solvent-Thinned Block Fillers with Water-Thinnable Block Fillers.

    DTIC Science & Technology

    1985-03-01

    saved money , because the latex is less roller were visible. The appearance of the surface expensive than the epoxy it replaced. In both cases...a previous coating. A kit manu- The appearance of all the fillers was satisfactory. factured b, Paul N. Gardner Company, Inc., Lauder - Voids were

  19. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.

  20. Calculating permittivity of semi-conductor fillers in composites based on simplified effective medium approximation models

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Wu, Qin; Hu, Jianbing; Xu, Zhichao; Peng, Cheng; Xia, Zexu

    2018-03-01

    Interface induced polarization has a significant impact on permittivity of 0–3 type polymer composites with Si based semi-conducting fillers. Polarity of Si based filler, polarity of polymer matrix and grain size of filler are closely connected with induced polarization and permittivity of composites. However, unlike 2–2 type composites, the real permittivity of Si based fillers in 0–3 type composites could be not directly measured. Therefore, achieving the theoretical permittivity of fillers in 0–3 composites through effective medium approximation (EMA) models should be very necessary. In this work, the real permittivity results of Si based semi-conducting fillers in ten different 0–3 polymer composite systems were calculated by linear fitting of simplified EMA models, based on particularity of reported parameters in those composites. The results further confirmed the proposed interface induced polarization. The results further verified significant influences of filler polarity, polymer polarity and filler size on induced polarization and permittivity of composites as well. High self-consistency was gained between present modelling and prior measuring. This work might offer a facile and effective route to achieve the difficultly measured dielectric performances of discrete filler phase in some special polymer based composite systems.

  1. Adjustable high emittance gap filler. [reentry shielding for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Stewart, D. A.; Smith, M.; Estrella, C. A.; Goldstein, H. E. (Inventor)

    1981-01-01

    A flexible, adjustable refractory filler is disclosed for filling gaps between ceramic tiles forming the heat shield of a space shuttle vehicle, to protect its aluminum skin during atmospheric reentry. The easily installed and replaced filler consists essentially of a strip of ceramic cloth coated, at least along both its longitudinal edges with a room temperature vulcanizable silicone rubber compound with a high emittance colored pigment. The filler may have one or more layers as the gap width requires. Preferred materials are basket weave aluminoborosilicate cloth, and a rubber compounded with silicon tetraboride as the emittance agent and finely divided borosilicate glass containing about 7.5% B2O3 as high temperature binder. The filler cloth strip or tape is cut to proper width and length, inserted into the gap, and fastened with previously applied drops of silicone rubber adhesive.

  2. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  3. Comparison of joint designs for laser welding of cast metal plates and wrought wires.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2013-01-01

    The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding.

  4. Effect of monopolar radiofrequency treatment over soft-tissue fillers in an animal model: part 2.

    PubMed

    Shumaker, Peter R; England, Laura J; Dover, Jeffrey S; Ross, E Victor; Harford, Robert; Derienzo, Damian; Bogle, Melissa; Uebelhoer, Nathan; Jacoby, Mark; Pope, Karl

    2006-03-01

    Monopolar radiofrequency (RF) treatment is used by physicians to heat skin and promote tissue tightening and contouring. Cosmetic fillers are used to soften deep facial lines and wrinkles. Patients who have had dermal fillers implanted may also benefit from or are candidates for monopolar RF skin tightening. This study examined the effect of RF treatment on various dermal filler substances. This is the second part of a two-part study. A juvenile farm pig was injected with dermal fillers including cross-linked human collagen (Cosmoplast), polylactic acid (PLA) (Sculptra), liquid injectable silicone (Silikon 1000), calcium hydroxylapatite (CaHA) (Radiesse), and hyaluronic acid (Restylane). Skin injected with dermal fillers was RF-treated using a 1.5-cm2 treatment tip and treatment levels typically used in the clinical setting. Fillers were examined histologically 5 days, 2 weeks, or 1 month after treatment. Histological specimens were scored for inflammatory response, foreign body response, and fibrosis in order to assess the effect of treatment on early filler processes, such as inflammation and encapsulation. Each filler substance produced a characteristic inflammatory response. No immediate thermal effect of RF treatment was observed histologically. RF treatment resulted in statistically significant increases in the inflammatory, foreign body, and fibrotic responses associated with the filler substances. Monopolar RF treatment levels that are typically used in the clinical setting were employed in this animal study. RF treatment resulted in measurable and statistically significant histological changes associated with the various filler materials. Additional clinical and histological studies are required to determine the optimal timing of monopolar RF treatment and filler placement for maximal potential aesthetic outcome. 2006 Wiley-Liss, Inc.

  5. Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal

    NASA Astrophysics Data System (ADS)

    Schempp, Philipp; Cross, Carl Edward; Pittner, Andreas; Rethmeier, Michael

    2013-07-01

    Grain refinement provides an important possibility to enhance the mechanical properties ( e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape ( CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size.

  6. Technical Considerations for Filler and Neuromodulator Refinements

    PubMed Central

    Wilson, Anthony J.; Chang, Brian L.; Percec, Ivona

    2016-01-01

    Background: The toolbox for cosmetic practitioners is growing at an unprecedented rate. There are novel products every year and expanding off-label indications for neurotoxin and soft-tissue filler applications. Consequently, aesthetic physicians are increasingly challenged by the task of selecting the most appropriate products and techniques to achieve optimal patient outcomes. Methods: We employed a PubMed literature search of facial injectables from the past 10 years (2005–2015), with emphasis on those articles embracing evidence-based medicine. We evaluated the scientific background of every product and the physicochemical properties that make each one ideal for specific indications. The 2 senior authors provide commentary regarding their clinical experience with specific technical refinements of neuromodulators and soft-tissue fillers. Results: Neurotoxins and fillers are characterized by unique physical characteristics that distinguish each product. This results in subtle but important differences in their clinical applications. Specific indications and recommendations for the use of the various neurotoxins and soft-tissue fillers are reviewed. The discussion highlights refinements in combination treatments and product physical modifications, according to specific treatment zones. Conclusions: The field of facial aesthetics has evolved dramatically, mostly secondary to our increased understanding of 3-dimensional structural volume restoration. Our work reviews Food and Drug Administration–approved injectables. In addition, we describe how to modify products to fulfill specific indications such as treatment of the mid face, décolletage, hands, and periorbital regions. Although we cannot directly evaluate the duration or exact physical properties of blended products, we argue that “product customization” is safe and provides natural results with excellent patient outcomes. PMID:28018778

  7. Refractory metal joining for first wall applications

    NASA Astrophysics Data System (ADS)

    Cadden, C. H.; Odegard, B. C.

    2000-12-01

    The potential use of high temperature coolant (e.g. 900°C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000°C to 1275°C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.

  8. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhang, Junyu; Wu, Qingsheng

    2017-07-01

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h.

  9. Influence of different fillers on the properties of an experimental vinyl polysiloxane.

    PubMed

    Meincke, Débora Könzgen; Ogliari, Aline de Oliveira; Ogliari, Fabrício Aulo

    2016-01-01

    The aim of the study was to evaluate the effect of the incorporation of different fillers on an experimental vinyl polysiloxane (VPS) at two different concentrations, 20% and 40%. Different fillers were added to an experimental VPS. The study was developed in two stages: (i) incorporation of fillers in different concentrations: (a) 20 wt% fillers, and (b) 40 wt%. The fillers were added to experimental VPS and mixed with a speed mixer; (ii) characterization of experimental VPS; after the base paste and catalyst paste were mixed, the experimental VPS was used to make specimens specifically for each test, which were stored at 23°C for 24 hours. The tests were designed according to the specific standardization for the analysis of tensile strength, detail reproduction, Shore A hardness, and elastic recovery. For analysis of filler size pattern, scanning electron microscopy at 1500× magnification was used. The aerosil OX-50 40% (AE), and pure aluminum hydroxide 40% (PAH) groups presented the highest tensile strength and Shore A hardness values. However, those were the only groups that did not present continuous detail reproduction of an intersection of 20 μm line. The elastic recovery was not statistically significant. The undesirable characteristics of VPS (lowest Shore A hardness and tensile strength) were observed when it was added to the composition of acrylic polymer (AP) and fiberglass (FG) in both concentrations, 20% and 40%. In groups AE and PAH, agglomerates of nanofillers were shown in SEM micrography, while the other groups presented different shapes and fillers sizes.

  10. Dermal Filler Injection: A Novel Approach for Limiting Infarct Expansion

    PubMed Central

    Ryan, Liam P.; Matsuzaki, Kanji; Noma, Mio; Jackson, Benjamin M.; Eperjesi, Thomas J.; Plappert, Theodore J.; St. John-Sutton, Martin G.; Gorman, Joseph H.; Gorman, Robert C.

    2011-01-01

    Background Early infarct expansion after coronary occlusion compromises contractile function in perfused myocardial regions and promotes adverse long-term left ventricular (LV) remodeling. We hypothesized that injection of a tissue-expanding dermal filler material into a myocardial infarction (MI) would attenuate infarct expansion and limit LV remodeling. Methods Fifteen sheep were subjected to an anteroapical MI involving approximately 20% of the LV followed by the injection of 1.3 mL of a calcium hydroxyapatite–based dermal filler into the infarct. Real-time three-dimensional echocardiography was performed at baseline, 30 minutes after MI, and 15 minutes after injection to assess infarct expansion. Sixteen additional sheep were subjected to the same infarction and followed echocardiographically and hemodynamically for 4 weeks after MI to assess chronic remodeling. Eight animals had injection with dermal filler as described above immediately after MI, and 8 animals were injected with an equal amount of saline solution. Results All animals exhibited infarct expansion soon after coronary occlusion. The regional ejection fraction of the apex became negative after infarction, consistent with systolic dyskinesia. Injection of the dermal filler converted the apical wall motion from dyskinetic to akinetic and resulted immediately in significant decreases in global, regional, and segmental LV volumes. Chronically, relative to saline control, dermal filler injection significantly reduced LV end-systolic volume (62.2 ± 3.6 mL versus 44.5 ± 3.9 mL; p < 0.05) and improved global ejection fraction (0.295 ± 0.016 versus 0.373 ± 0.017; p < 0.05) at 4 weeks after infarction. Conclusions Injection of an acellular dermal filler into an MI immediately after coronary occlusion reduces early infarct expansion and limits chronic LV remodeling. PMID:19101288

  11. Evaluating the Properties of Dissimilar Metal Welding Between Inconel 625 and 316L Stainless Steel by Applying Different Welding Methods and Consumables

    NASA Astrophysics Data System (ADS)

    Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza

    2018-04-01

    The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.

  12. Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler

    NASA Astrophysics Data System (ADS)

    Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim

    2016-07-01

    The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.

  13. New Manufacturing Method for Paper Filler and Fiber Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doelle, Klaus

    2011-06-26

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections and it is important to understand the effect that different types of calcium carbonates have on the paper properties made of 100% eucalyptus pulp.more » The current study is focused on selecting the most suitable market available calcium carbonate for the production of uncoated Eucalyptus digital printing paper, targeting a potential filler increase of 5% above the currently used filler content. We made hand sheets using 13 different varieties of widely used calcium carbonates [Nine samples of PCC (two rhombic and seven scalenohedral, covering a wide particle size range from 1.2 {micro}m to 2.9 {micro}m), and four samples of GCC (three anionic and one cationic, with a particle size range from 0.7 {micro}m to 1.5 {micro}m)] available in the market followed by a 12” pilot plant paper machine run. The detailed analysis on the main structural, optical and strength properties of the hand sheets found that the most suitable calcium carbonate for uncoated Eucalyptus digital printing paper production is scalenohedral PCC, with a particle size of 1.9 {micro}m for its positive effects on thickness, stiffness, brightness and opacity of paper.« less

  14. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  15. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  16. Effect of filler type and polishing on the discoloration of composite resin artificial teeth.

    PubMed

    Imamura, Soichiro; Takahashi, Hidekazu; Hayakawa, Iwao; Loyaga-Rendon, Paola G; Minakuchi, Shunsuke

    2008-11-01

    In this study, the effects of filler type and polishing on the discoloration of composite resin artificial teeth were examined. Four types of experimental resins were prepared: one was a matrix resin, while the others were composite resins containing three different types of fillers (nano-sized silica filler with or without silanization, and prepolymerized filler). Specimens were immersed in distilled water, coffee, red wine, or curry. Color change after immersion was measured using a colorimeter. Color difference values (delta E) and changes in translucency parameter (delta TP) were statistically analyzed using three-way ANOVA and Tukey's comparison. On the influence of the polishing factor, statistically significant differences were neither observed in delta E nor delta TP between polished and non-polished tooth surfaces. On the contrary, the influences of filler type and discoloration medium, and their interaction thereof, were significant. With unsilanized filler, the delta E value of composite resin artificial teeth was significantly increased.

  17. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, C.

    2001-01-01

    The objective of this research was to assess the B218 weld filler wire for Super Lightweight External Tank production, which could improve current production welding and repair productivity. We took the following approaches: (1) Perform a repair weld quick look evaluation between 4043/B218 and B218/B218 weld filler wire combinations and evaluation tensile properties for planished and unplanished conditions; and (2) Perform repair weld evaluation on structural simulation panel using 4043-B218 and B218/B218 weld filler wire combinations and evaluation tensile and simulated service fracture properties for planished and unplanished conditions.

  18. Experimental Evaluation of Cement Replacement Fillers on the Performance of Slurry Seal

    NASA Astrophysics Data System (ADS)

    Fakhri, Mansour; Alrezaei, Hossein Ali; Naji Almasi, Soroush

    2016-10-01

    Reducing the level of roads service is a process that starts from the first day of the operation of road and the slope of deterioration curve of road sustainability becomes faster with the passage of time. After building the road, adopting an economic approach in order to maintain the road is very important. Slurry seal as one type of protective asphalts that works by sealing inactive cracks of the road and increasing skid resistance is the most effective types of restoration with environmentally friendly behaviour. Fillers are responsible for adjusting set time in slurry seal. Cement is the most common filler used in slurry seal. Cements having suitable properties as a filler, has a very energy demanding manufacturing process and a notable amount of energy is used for manufacturing cement in the country annually. On the other hand, manufacturing process and application of cement have increased levels of pollutant gases, followed by significant environmental pollution. So in this study other options as a filler such as hydrated lime, stone powder and the slag from iron melting furnace were compared with two common types of cement (Portland and type-v cement) in the mixtures of slurry seal by wet abrasion and cohesion tests. Results indicated that, in both tests, lime and slag fillers had behaviours close to the cement filler.

  19. 7 CFR 58.710 - Fillers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... strainer should be installed between the cooker and the filler. The hoppers of all filters shall be covered but the cover may have sight ports. If necessary, the hopper may have an agitator to prevent buildup... measurements. Product contact surfaces shall be of stainless steel or other corrosion resistant material...

  20. Fillers in the skin of color population.

    PubMed

    Heath, Candrice R; Taylor, Susan C

    2011-05-01

    The skin of color population in the United States is rapidly growing and the cosmetic industry is responding to the demand for skin of color targeted treatments. The aging face in skin of color patients has a unique pattern that can be successfully augmented by dermal fillers. Though many subjects with skin of color were not included in the pre-market dermal filler clinical trials, some post-market studies have examined the safety and risks of adverse events in this population. The safety data from a selection of these studies was examined. Though pigmentary changes occurred, there have been no reports of keloid development. Developing a patient-specific care plan and instituting close follow up is emphasized.

  1. Degradation kinetics of ethylene-octene copolymer/wood flour biocomposites in dependence to filler content

    NASA Astrophysics Data System (ADS)

    Zykova, A. K.; Pantyukhov, P. V.; Monakhova, T. V.; Popov, A. A.

    2017-06-01

    This article is focused on thermal oxidative degradation and biodegradation in soil of biocomposites based on ethylene-octene copolymer (EOC), filled by wood flour (from 30 to 70% wt.), in dependence to the filler content. The study of oxidative degradation of composites was carried out at two temperatures (80 and 130°C respectively). The induction period and the rates of oxidation were determined. It was concluded that as filler content raises, the induction period increases. It can be explained by the higher specific area of composites in comparison with pure EOC. However, high filled composites (60 and 70 % of the filler) are oxidized with a huge induction period because polyphenols in the filler inhibit the oxidation process. Biodegradation test under laboratory conditions was carried out to investigate the biodegradability of the material. Composites with lower filler content have lower weight loss rate. Small particles are capsulated by polymer and are isolated from moisture and microorganisms. On the other hand, at a high filling of the composite small particles stick together and act as large ones. Such filler agglomerates are connected with each other and allow microorganisms to penetrate into the composite. It was concluded as filler content raises the mass loss increases.

  2. Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools

    PubMed Central

    Strzemiecka, Beata; Klapiszewski, Łukasz; Jamrozik, Artur; Szalaty, Tadeusz J.; Matykiewicz, Danuta; Sterzyński, Tomasz; Voelkel, Adam; Jesionowski, Teofil

    2016-01-01

    Functional lignin–SiO2 hybrid fillers were prepared for potential application in binders for phenolic resins, and their chemical structure was characterized. The properties of these fillers and of composites obtained from them with phenolic resin were compared with those of systems with lignin or silica alone. The chemical structure of the materials was investigated by Fourier transform infrared spectroscopy (FT-IR) and carbon-13 nuclear magnetic resonance spectroscopy (13C CP MAS NMR). The thermal stability of the new functional fillers was examined by thermogravimetric analysis–mass spectrometry (TG-MS). Thermo-mechanical properties of the lignin–silica hybrids and resin systems were investigated by dynamic mechanical thermal analysis (DMTA). The DMTA results showed that abrasive composites with lignin–SiO2 fillers have better thermo-mechanical properties than systems with silica alone. Thus, fillers based on lignin might provide new, promising properties for the abrasive industry, combining the good properties of lignin as a plasticizer and of silica as a filler improving mechanical properties. PMID:28773639

  3. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater.

    PubMed

    Yang, Ruihong; Zhu, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-04-29

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na₂SO₄ additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography-mass spectrometry (GC-MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet-visible spectroscopy (UV-VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency.

  4. Blindness caused by cosmetic filler injection: a review of cause and therapy.

    PubMed

    Carruthers, Jean D A; Fagien, Steve; Rohrich, Rod J; Weinkle, Susan; Carruthers, Alastair

    2014-12-01

    Vascular occlusion causing blindness is a rare yet greatly feared complication of the use of facial aesthetic fillers. The authors performed a review of the aesthetic literature to ascertain the reported cases of blindness and the literature reporting variations in the vascular anatomy of the human face. The authors suggest a small but potentially helpful addition to the accepted management of the acute case. Cases of blindness, mostly irreversible, from aesthetic filler injections have been reported from Asia, Europe, and North America. Autologous fat appears to be the most frequent filler causing blindness. Some cases of partial visual recovery have been reported with hyaluronic acid and calcium hydroxylapatite fillers. The sudden profusion of new medical and nonmedical aesthetic filler injectors raises a new cause for alarm about patient safety. The published reports in the medical literature are made by experienced aesthetic surgeons and thus the actual incidence may be even higher. Also, newer injectors may not be aware of the variations in the pattern of facial vascular arborization. The authors present a summary of the relevant literature to date and a suggested helpful addition to the protocols for urgent management.

  5. Study of piezoelectric filler on the properties of PZT-PVDF composites

    NASA Astrophysics Data System (ADS)

    Matei, Alina; Å¢ucureanu, Vasilica; Vlǎzan, Paulina; Cernica, Ileana; Popescu, Marian; RomaniÅ£an, Cosmin

    2017-12-01

    The ability to obtain composites with desired functionalities is based on advanced knowledge of the processes synthesis and of the structure of piezoceramic materials, as well the incorporation of different fillers in selected polymer matrix. Polyvinylidene fluoride (PVDF) is a fluorinated polymer with excellent mechanical and electric properties, which it was chosen as matrix due to their applications in a wide range of industrial fields [1-4]. The present paper focuses on the development of composites based on PZT particles as filler obtained by conventional methods and PVDF as polymer matrix. The synthesis of PVDF-PZT composites was obtained by dispersing the ceramic powders in a solution of PVDF in N-methyl-pyrrolidone (NMP) under mechanical mixing and ultrasonication, until a homogenous mixture is obtained. The properties of the piezoceramic fillers before and after embedding into the polymeric matrix were investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy and X-ray diffraction. In the FTIR spectra, appear a large number of absorption bands which are exclusive of the phases from PVDF matrix confirming the total embedding of PZT filler into matrix. Also, the XRD pattern of the composites has confirmed the presence of crystalline phases of PVDF and the ceramic phase of PZT. The SEM results showed a good distribution of fillers in the matrix.

  6. Filler Items and Social Desirability in Rotter's Locus of Control Scale

    ERIC Educational Resources Information Center

    Kestenbaum, Joel M.; Hammersla, Joy

    1976-01-01

    Three experiments were conducted with college psychology students to determine whether the use of filler items in Rotter's I-E scale fulfills its stated objective of obscuring the purpose of the scale. Fillers didn't effect I-E scores, impede subjects from faking good, or obscure knowledge of the scale. (Author/DEP)

  7. Process for recovering filler from polymer

    DOEpatents

    Smith, Maurice L.; Smith, Robert M.

    1978-01-01

    This disclosure relates to a process for recovering filler material from a polymeric matrix by reacting the matrix at an elevated temperature in a gas atmosphere with a controlled oxidizing potential and thereafter separating and cleaning the residue from the reaction mixture.

  8. Avoiding and treating dermal filler complications.

    PubMed

    Lemperle, Gottfried; Rullan, Peter P; Gauthier-Hazan, Nelly

    2006-09-01

    All fillers are associated with the risk of both early and late complications. Early side effects such as swelling, redness, and bruising occur after intradermal or subdermal injections. The patient has to be aware of and accept these risks. Adverse events that last longer than 2 weeks can be attributable to technical shortcomings (e.g., too superficial an implantation of a long-lasting filler substance). Such adverse events can be treated with intradermal 5-fluorouracil, steroid injections, vascular lasers, or intense pulsed light, and later with dermabrasion or shaving. Late adverse events also include immunologic phenomena such as late-onset allergy and nonallergic foreign body granuloma. Both react well to intralesional steroid injections, which often have to be repeated to establish the right dose. Surgical excisions shall remain the last option and are indicated for hard lumps in the lips and visible hard nodules or hard granuloma in the subcutaneous fat.

  9. Numbers or apologies? Customer reactions to telephone waiting time fillers.

    PubMed

    Munichor, Nira; Rafaeli, Anat

    2007-03-01

    The authors examined the effect of time perception and sense of progress in telephone queues on caller reactions to 3 telephone waiting time fillers: music, apologies, and information about location in the queue. In Study 1, conducted on 123 real calls, call abandonment was lowest, and call evaluations were most positive with information about location in the queue as the time filler. In Study 2, conducted with 83 participants who experienced a simulated telephone wait experience, sense of progress in the queue rather than perceived waiting time mediated the relationship between telephone waiting time filler and caller reactions. The findings provide insight for the management and design of telephone queues, as well as theoretical insight into critical cognitive processes that underlie telephone waiting, opening up an important new research agenda. (c) 2007 APA, all rights reserved.

  10. Upper Face: Clinical Anatomy and Regional Approaches with Injectable Fillers.

    PubMed

    Sykes, Jonathan M; Cotofana, Sebastian; Trevidic, Patrick; Solish, Nowell; Carruthers, Jean; Carruthers, Alastair; Moradi, Amir; Swift, Arthur; Massry, Guy G; Lambros, Val; Remington, B Kent

    2015-11-01

    The use of facial fillers has been rapidly increased as the range of injectable products and indications continues to expand. Complications may arise from improper placement or technique. This article highlights the importance of anatomic knowledge when using injectable fillers in the face. A detailed review of the clinical anatomy of the upper face is performed. Regional approaches are described using the applied anatomy to efficiently and safely augment the different subunits of the upper face. Key aspects of safe and successful injection of fillers in the upper face include a thorough knowledge of the location of fat compartments and neurovascular structures. Awareness of these structures enables the practitioner to maximize injections, while avoiding damage to important nerves and vessels. A detailed knowledge of the anatomy and properties of the product is paramount to maximize the efficacy while minimizing the risk of complications.

  11. Metal-Filled Adhesives Amenable To X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Hermansen, Ralph D.; Sutherland, Thomas H.; Predmore, Roamer

    1994-01-01

    Adhesive joints between metal parts made amenable to nondestructive radiographic inspection by incorporating radiopaque fillers that increase x-ray contrasts of joints. Adhesives can be epoxies, urethanes, acrylics, phenolics, or silicones, with appropriate curing agents and with such modifiers as polysulfides, polyamides, or butadiene rubbers.

  12. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    NASA Astrophysics Data System (ADS)

    N, Mohamed Shahid U.; Deshpande, Abhijit P.; Lakshmana Rao, C.

    2015-09-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation.

  13. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties.

    PubMed

    Randolph, Luc D; Palin, William M; Leloup, Gaëtane; Leprince, Julian G

    2016-12-01

    The mechanical properties of dental resin-based composites (RBCs) are highly dependent on filler characteristics (size, content, geometry, composition). Most current commercial materials are marketed as "nanohybrids" (i.e. filler size <1μm). In the present study, filler characteristics of a selection of RBCs were described, aiming at identifying correlations with physico-mechanical properties and testing the relevance of the current classification. Micron/sub-micron particles (> or <500nm) were isolated from 17 commercial RBCs and analyzed by laser diffractrometry and/or electron microscopy. Filler and silane content were evaluated by thermogravimetric analysis and a sedimentation technique. The flexural modulus (E flex ) and strength (σ flex ) and micro-hardness were determined by three-point bending or with a Vickers indenter, respectively. Sorption was also determined. All experiments were carried out after one week of incubation in water or 75/25 ethanol/water. Average size for micron-sized fillers was almost always higher than 1μm. Ranges for mechanical properties were: 3.7filler contents (>75wt%) were associated with the highest mechanical properties (E flex and σ flex >12GPa and 130MPa, respectively) and lowest solvent sorption (∼0.3%). Mechanical properties and filler characteristics significantly vary among modern RBCs and the current classification does not accurately illustrate either. Further, the chemical stability of RBCs differed, highlighting differences in resin and silane composition. Since E flex and sorption were well correlated to the filler content, a simple and unambiguous classification based on such characteristic is suggested, with three levels (ultra-low fill, low-fill and compact resin composites). Copyright © 2016 The Academy of Dental Materials. All

  14. Fabrication of porous titanium scaffold materials by a fugitive filler method.

    PubMed

    Hong, T F; Guo, Z X; Yang, R

    2008-12-01

    A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.

  15. Severe Acute Local Reactions to a Hyaluronic Acid-derived Dermal Filler

    PubMed Central

    Hays, Geoffrey P.; Caglia, Anthony E.; Caglia, Michael

    2010-01-01

    Injectable fillers are normally well tolerated by patients with little or no adverse effects. The most common side effects include swelling, redness, bruising, and pain at the injection site. This report describes three cases in which patients injected with a hyaluronic acid-derived injectable filler that is premixed with lidocaine developed adverse reactions including persistent swelling, pain, and nodule formation. Two of the three patients' abscesses were cultured for aerobic and anaerobic bacteria and mycobacterium. All three cultures were negative. Abscess persistence in all cases necessitated physical removal and/or enzymatic degradation with hyaluronidase. The effects subsided only after the product had been removed. Two of these patients were subsequently treated with other hyaluronic acid-derived dermal fillers without adverse events. PMID:20725567

  16. The Efficacy, Longevity, and Safety of Combined Radiofrequency Treatment and Hyaluronic Acid Filler for Skin Rejuvenation

    PubMed Central

    Kim, Hyuk; Park, Kui Young; Choi, Sun Young; Koh, Hyun-Ju; Park, Sun-Young; Park, Won-Seok; Bae, Il-Hong

    2014-01-01

    Background Recent advances in hyaluronic acid (HA) fillers and radiofrequency (RF) devices have been made in the context of skin rejuvenation and cosmetic surgery. Moreover, combination regimens with both techniques are currently being developed. Objective The present study was designed to examine the clinical and histologic effects of a new needle that incorporates an RF device for HA injections. Methods A new intradermal needle RF device (INNOfill; Pacific Pharma, Korea) was assessed in the present study. In the animal arm, procollagen production was measured by using enzyme-linked immunosorbent assay, the filler volume was quantified by incorporating a dye with filler, and the filler distribution was assessed through the changes in tissue structure. In the human arm, the efficacy of the combination regimen was assessed by using the wrinkle severity rating scale (WSRS). Results In the animal study, RF treatment increased procollagen production in a time-dependent fashion. The total volume was significantly increased with the RF treatment when compared with the filler injections alone, and lasted for up to 7 weeks after treatment. Additionally, the filler distribution was reduced in animals treated with RF when compared with the untreated group. In the human study, the nasolabial folds of subjects treated with RF before filler injections exhibited a significantly greater change in the WSRS score from baseline when compared with the nasolabial folds treated with filler injections alone. Conclusion A new device incorporating RF treatment before HA filler injection may represent a biocompatible and long-lasting advance in skin rejuvenation. PMID:25143672

  17. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  18. Morphological characterization of ceramic fillers made from Indonesian natural sand as restorative dental materials

    NASA Astrophysics Data System (ADS)

    Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.

    2018-02-01

    Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.

  19. Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation.

    PubMed

    Liu, Xinlei; Wang, Xuerui; Bavykina, Anastasiya V; Chu, Liangyong; Shan, Meixia; Sabetghadam, Anahid; Miro, Hozanna; Kapteijn, Freek; Gascon, Jorge

    2018-06-13

    The preparation and the performance of mixed matrix membranes based on metal-organic polyhedra (MOPs) are reported. MOP fillers can be dispersed as discrete molecular units (average 9 nm in diameter) when low filler cargos are used. In spite of the low doping amount (1.6 wt %), a large performance enhancement in permeability, aging resistance, and selectivity can be achieved. We rationalize this effect on the basis of the large surface to volume ratio of the filler, which leads to excellent dispersion at low concentrations and thus alters polymer packing. Although membranes based only on the polymer component age quickly with time, the performance of the resulting MOP-containing membranes meets the commercial target for postcombustion CO 2 capture for more than 100 days.

  20. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  1. Effect of various filler types on the properties of porous asphalt mixture

    NASA Astrophysics Data System (ADS)

    Shukry, Nurul Athma Mohd; Hassan, Norhidayah Abdul; Ezree Abdullah, Mohd; Rosli Hainin, Mohd; Yusoff, Nur Izzi Md; Putra Jaya, Ramadhansyah; Mohamed, Azman

    2018-04-01

    The open structure of porous asphalt exposes a large surface area to the effects of air and water, which accelerates the oxidation rate and affects the coating properties of the binder. These factors may influence the adhesive strength of the binder-aggregate and lead to cohesive failure within the binder film, contributing to aggregate stripping and moisture damage. The addition of fillers in asphalt mixtures has been identified to stiffen the asphalt binder and improve mixture strength. This study investigates the effect of various filler types (hydrated lime, cement, and diatomite) on the properties of porous asphalt. Compacted samples of porous asphalt were prepared using Superpave gyratory compactor at the target air void content of 21%. Each sample was incorporated with 2% of filler and polymer-modified binder of PG76. The morphology and chemical composition of fillers were investigated with a field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) analysis. The properties of porous asphalt were evaluated in terms of permeability, abrasion loss, resilient modulus, and indirect tensile strength. All mixtures were found to show high permeability rates. Mixtures with hydrated lime exhibited lower abrasion loss compared to mixtures with cement and diatomite. The use of diatomite increases the resistance of the mixtures to rutting and moisture damage compared to other fillers as shown by the enhanced resilient modulus and indirect tensile strength.

  2. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    PubMed Central

    Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  3. Waste-wood-derived fillers for plastics

    Treesearch

    Brent English; Craig M. Clemons; Nicole Stark; James P. Schneider

    1996-01-01

    Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper...

  4. Study of Tetrapodal ZnO-PDMS Composites: A Comparison of Fillers Shapes in Stiffness and Hydrophobicity Improvements

    PubMed Central

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers. PMID:25208080

  5. Study of tetrapodal ZnO-PDMS composites: a comparison of fillers shapes in stiffness and hydrophobicity improvements.

    PubMed

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers.

  6. [Dental plaque microcosm biofilm behavior on a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt].

    PubMed

    Junling, Wu; Qiang, Zhang; Ruinan, Sun; Ting, Zhu; Jianhua, Ge; Chuanjian, Zhou

    2015-12-01

    To develop a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt, and to measure its effect on human dental plaque microcosm biofilm. A novel nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt was synthesized according to methods introduced in previous research. Samples of the novel nano-antibacterial inorganic fillers were modified by a coupling agent and then added into resin composite at 0%, 5%, 10%, 15% or 20% mass fractions; 0% composite was used as control. A flexural test was used to measure resin composite mechanical properties. Results showed that a dental plaque microcosm biofilm model with human saliva as inoculum was formed. Colony-forming unit (CFU) counts, lactic acid production, and live/dead assay of biofilm on the resin composite were calculated to test the effect of the resin composite on human dental plaque microcosm biofilm. The incorporation of nano-antibacterial inorganic fillers with as much as 15% concentration into the resin composite showed no adverse effect on the mechanical properties of the resin composite (P > 0.05). Resin composite containing 5% or more nano-antibacterial inorganic fillers significantly inhibited the metabolic activity of dental plaque microcosm biofilm, suggesting its strong antibacterial potency (P < 0.05). This novel resin composite exhibited a strong antibacterial property upon the addition of up to 5% nano-antibacterial inorganic fillers, thereby leading to effective caries inhibition in dental application.

  7. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    NASA Astrophysics Data System (ADS)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  8. Effect of matrix chemical heterogeneity on effective filler interactions in model polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Hall, Lisa; Schweizer, Kenneth

    2010-03-01

    The microscopic Polymer Reference Interaction Site Model theory has been applied to spherical and rodlike fillers dissolved in three types of chemically heterogeneous polymer melts: alternating AB copolymer, random AB copolymers, and an equimolar blend of two homopolymers. In each case, one monomer species adsorbs more strongly on the filler mimicking a specific attraction, while all inter-monomer potentials are hard core which precludes macrophase or microphase separation. Qualitative differences in the filler potential-of-mean force are predicted relative to the homopolymer case. The adsorbed bound layer for alternating copolymers exhibits a spatial moduluation or layering effect but is otherwise similar to that of the homopolymer system. Random copolymers and the polymer blend mediate a novel strong, long-range bridging interaction between fillers at moderate to high adsorption strengths. The bridging strength is a non-monotonic function of random copolymer composition, reflecting subtle competing enthalpic and entropic considerations.

  9. Hydrodynamic parameters of mesh fillers relevant to miniature regenerative cryocoolers

    NASA Astrophysics Data System (ADS)

    Landrum, E. C.; Conrad, T. J.; Ghiaasiaan, S. M.; Kirkconnell, Carl S.

    2010-06-01

    Directional hydrodynamic parameters of two fine-mesh porous materials that are suitable for miniature regenerative cryocoolers were studied under steady and oscillating flows of helium. These materials included stacked discs of #635 stainless steel (wire diameter of 20.3 μm) and #325 phosphor bronze (wire diameter of 35.6 μm) wire mesh screens, which are among the commercially available fillers for use in small-scale regenerators and heat exchangers, respectively. Experiments were performed in test sections in which pressure variations across these fillers, in the axial and lateral (radial) directions, were measured under steady and oscillatory flows. The directional permeability and Forchheimer's inertial coefficient were then obtained by using a Computational Fluid Dynamics (CFD)-assisted method. The oscillatory flow experiments covered a frequency range of 50-200 Hz. The results confirmed the importance of anisotropy in the mesh screen fillers, and indicated differences between the directional hydrodynamic resistance parameters for steady and oscillating flow regimes.

  10. Property of filler-loaded magnetic ferrite from plastic waste bottle used to treat municipal domestic sewage.

    PubMed

    Zhao, Ru-Jin; Gong, Li-Ying; Zhu, Hai-Dong; Liu, Qiao; Xu, Li-Xia; Lu, Lu; Yang, Qi-Zhi

    2018-06-01

    The present work investigates the properties of self-made magnetic filler from plastic waste bottle and explores a new technology approach of waste plastic resource utilization. The magnetic filler was prepared by air plasma modification and loading magnetic ferrite on the plastic strip from waste plastic bottle. The surface properties of magnetic filler were characterized by Atomic Force Microscope (AFM), contact angle system and Fourier Transform Infrared (FTIR). AFM images of original and modified plastic strip showed that low-temperature plasma treatment markedly increased the surface roughness of plastic strip. The mean roughness (Ra) of plastic strip rose from 1.116 to 5.024 nm. FTIR spectra indicated that a lot of polar oxygenic groups were introduced onto the surface of plastic by plasma modification. Modification by low-temperature plasma increased the hydrophilicity of plastic strip surface. When treatment time is 40 s, water contact angle of plastic strip surface reduced from 78.2° of original plastic strip to 25.3°. When used in bioreactor, magnetic filler had very favorable microenvironment for microorganism growth. Magnetic filler was more efficient for removing chemical oxygen demand (COD) and [Formula: see text] in sewage than nonmagnetic filler. The resource utilization of plastic wastes will become reality if the magnetic filler is applied widely.

  11. Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation.

    PubMed Central

    Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw

    2003-01-01

    Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598

  12. Ionic liquid as a potential solvent for preparation of collagen-alginate-hydroxyapatite beads as bone filler.

    PubMed

    Iqbal, Bushra; Sarfaraz, Zenab; Muhammad, Nawshad; Ahmad, Pervaiz; Iqbal, Jibran; Khan, Zia Ul Haq; Gonfa, Girma; Iqbal, Farasat; Jamal, Arshad; Rahim, Abdur

    2018-07-01

    In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.

  13. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Svizero, Nádia da Rocha; Bim Júnior, Odair; Valduga, Claudete Justina; Graeff, Carlos Frederico de Oliveira; Sauro, Salvatore

    2016-06-01

    The aim of this study is to evaluate the distribution of the filler size along with the zeta potential, and the integrity of silane-bonded filler surface in different types of restorative dental composites as a function of the material age condition. Filtek P60 (hybrid composite), Filtek Z250 (small-particle filled composite), Filtek Z350XT (nanofilled composite), and Filtek Silorane (silorane composite) (3M ESPE) were tested at different stage condition (i.e., fresh/new, aged, and expired). Composites were submitted to an accelerated aging protocol (Arrhenius model). Specimens were obtained by first diluting each composite specimen in ethanol and then dispersed in potassium chloride solution (0.001 mol%). Composite fillers were characterized for their zeta potential, mean particle size, size distribution, via poly-dispersion dynamic light scattering. The integrity of the silane-bonded surface of the fillers was characterized by FTIR. The material age influenced significantly the outcomes; Zeta potential, filler characteristics, and silane integrity varied both after aging and expiration. Silorane presented the broadest filler distribution and lowest zeta potential. Nanofilled and silorane composites exhibited decreased peak intensities in the FTIR analysis, indicating a deficiency of the silane integrity after aging or expiry time. Regardless to the material condition, the hybrid and the small-particle-filled composites were more stable overtime as no significant alteration in filler size distribution, diameter, and zeta potential occurred. A deficiency in the silane integrity in the nanofilled and silorane composites seems to be affected by the material stage condition. The materials conditions tested in this study influenced the filler size distribution, the zeta potential, and integrity of the silane adsorbed on fillers in the nanofilled and silorane composites. Thus, this may result in a decrease of the clinical performance of aforementioned composites, in

  14. Efficacy and durability of hyaluronic acid fillers for malar enhancement: A prospective, randomized, split-face clinical controlled trial.

    PubMed

    Jeong, Ki Heon; Gwak, Min Jae; Moon, Sung Kyung; Lee, Sang Jun; Shin, Min Kyung

    2018-06-01

    Various hyaluronic acid fillers can be used for facial attenuation and rejuvenation. The efficacy and durability of hyaluronic acid fillers are of major concern to dermatologists and patients. This study aimed to evaluate three-dimensional morphology, tissue distribution, and changes in volume after injection of two different hyaluronic acid fillers. Ten Korean women were enrolled in this study. Each subject was injected with monophasic hyaluronic acid filler in one malar area and biphasic filler in the other. Clinical outcome was measured before and after injection, and after 2, 4, 6, 8, 12, and 24 weeks, using the Global Aesthetic Improvement Scale, photographs and Moire's topography. Facial magnetic resonance imaging (MRI) was performed twice over six months. Both products showed good results after injection and demonstrated good durability over time. MRI was a useful modality for assessing tissue distribution and volume changes. The effects and durability after injection of monophasic hyaluronic acid filler and biphasic hyaluronic acid filler are generally comparable.

  15. Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly(styrene-butadiene)

    USDA-ARS?s Scientific Manuscript database

    Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...

  16. Electrically insulating thermal nano-oils using 2D fillers.

    PubMed

    Taha-Tijerina, Jaime; Narayanan, Tharangattu N; Gao, Guanhui; Rohde, Matthew; Tsentalovich, Dmitri A; Pasquali, Matteo; Ajayan, Pulickel M

    2012-02-28

    Different nanoscale fillers have been used to create composite fluids for applications such as thermal management. The ever increasing thermal loads in applications now require advanced operational fluids, for example, high thermal conductivity dielectric oils in transformers. These oils require excellent filler dispersion, high thermal conduction, but also electrical insulation. Such thermal oils that conform to this thermal/electrical requirement, and yet remain in highly suspended stable state, have not yet been synthesized. We report here the synthesis and characterization of stable high thermal conductivity Newtonian nanofluids using exfoliated layers of hexagonal boron nitride in oil without compromising its electrically insulating property. Two-dimensional nanosheets of hexagonal boron nitride are liquid exfoliated in isopropyl alcohol and redispersed in mineral oil, used as standard transformer oil, forming stable nanosuspensions with high shelf life. A high electrical resistivity, even higher than that of the base oil, is maintained for the nano-oil containing small weight fraction of the filler (0.01 wt %), whereas the thermal conductivity was enhanced. The low dissipation factor and high pour point for this nano-oil suggests several applications in thermal management.

  17. Thin-walled composite tubes using fillers subjected to quasistatic axial compression

    NASA Astrophysics Data System (ADS)

    AL-Qrimli, Haidar F.; Mahdi, Fadhil A.; Ismail, Firas B.; Alzorqi, Ibrahim S.

    2015-04-01

    It has been demonstrated that composites are lightweight, fatigue resistant and easily melded, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterization, manufacturing and joining process. The total of 36 specimens have been fabricated using the fibre-glass and resin (epoxy) with a two different geometries (circular and corrugated) each one will be filled with five types of filler (Rice Husk, Wood Chips, Aluminium Chips, Coconut Fibre, Palm Oil Fibre) all these type will be compared with empty Tubes for circular and corrugated in order to comprehend the crashworthiness parameters (initial failure load, average load, maximum crushing load, load ratio, energy absorption, specific energy absorption, volumetric energy absorption, crushing force efficiency and crush strain relation) which are considered very sufficient parameters in the design of automotive industry parts. All the tests have been done using the “INSTRON Universal machine” which is computerized in order to simply give a high precision to the collection of the results, along with the use of quasi-static load to test and observe the behaviour of the fabricated specimens.

  18. Geochemical and mineralogical characteristics of percolates and its evaporates from Technosols before and after limestone filler stabilisation.

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Hernandez-Cordoba, Manuel

    2017-04-01

    The chemistry of waters is recognized as a relevant monitoring tool when assessing the adverse effects of acid mine drainage. The weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This communication deals with the leachability of potentially toxic elements (PTE) eluting from technosols formed from soils affected by mining activities and limestone filler. A total of three contaminated soils affected by opencast mining were selected and mixed with limestone filler at three percentages: 10 %, 20 % and 30 %, providing nine stabilised samples. These samples were stored in containers and moistened simulating rainfall. The percolates obtained were collected, and the PTEs content (As, Cd, Cu, Fe, Pb and Zn) was determined. Evaporation-precipitation experiments were carried out in these waters, and the mineralogical composition of efflorescences was evaluated. The study area is heavily polluted as a result of historical mining and processing activities, producing large amount of wastes, characterised by high trace elements content and acidic pH. The results obtained for the percolates after the rain episode showed that, before the stabilization approach, waters had an acidic pH, high electrical conductivity and high PTEs content. When these soils were mixed with 10, 20 and 30 % of limestone filler, the pH was neutral and the soluble trace element content strongly decreased, being under the detection limit when limestone percentage was 20 % and 30 %. The mineralogical composition of efflorescences before the stabilisation approach showed that predominant minerals were copiapite, followed by gypsum and bilinite. Other soluble sulphates were determined in lower percentage, such as hexahydrite, halotriquite or pickeringite. After the mixing with 10 % of limestone filler, the evaporates

  19. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  20. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... construction and all parts, including valves and filler heads accessible for cleaning. New or replacement equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry Milk...

  1. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dali; Hubbard, Kevin Mark; Devlin, David James

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in itsmore » composite form.« less

  2. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    NASA Astrophysics Data System (ADS)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.

    2002-12-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.

  3. Three-body-wear resistance of the experimental composites containing filler treated with hydrophobic silane coupling agents.

    PubMed

    Nihei, Tomotaro; Dabanoglu, Alp; Teranaka, Toshio; Kurata, Shigeaki; Ohashi, Katsura; Kondo, Yukishige; Yoshino, Norio; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2008-06-01

    This paper evaluated the wear resistance of resin composite materials with fillers which were modified with a novel hydrophobic silane coupling agent. The novel silane coupling agent containing hydrophobic phenyl group 3-(3-methoxy-4-methacryloyloxyphenyl)propyltrimethoxysilane (p-MBS) was synthesized. The experimental light-cure hybrid composites containing 85wt% of filler modified with this silane were formulated. Twelve specimens were prepared for the three-body-wear test with the ACTA machine and the collected data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparison test as the post hoc test. The wear of the composites containing fillers treated with p-MBS was significantly lower compared with the composite materials containing fillers pretreated with 3-methacryloyloxypropyltrimethoxysilane or the commercially composites (AP-X and ELS extra low shrinkage) after a wear test for 200,000 cycles (p<0.05). It is suggested that the resin composites containing fillers modified with the novel hydrophobic silane has high wear resistant, because of the coupling layers treated with this silane had an excellent affinity with the base resin and formed a highly hydrophobic layer on the filler surface.

  4. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panin, S. V., E-mail: svp@ispms.tsc.ru; Kornienko, L. A.; Poltaranin, M. A.

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  5. Epoxy Resin Composite Based on Functional Hybrid Fillers

    PubMed Central

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-01-01

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177

  6. Evaluation of rice husk ash as filler in tread compounds

    NASA Astrophysics Data System (ADS)

    Fernandes, M. R. S.; Furtado, C. R. G.; de Sousa, A. M. F.

    2014-05-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety).

  7. Evaluation of rice husk ash as filler in tread compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, M. R. S., E-mail: monica.fernandes@lanxess.com; Furtado, C. R. G., E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de, E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same timemore » better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)« less

  8. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Starch Co-filler

    USDA-ARS?s Scientific Manuscript database

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  9. Effect of Silver-Emitting Filler on Antimicrobial and Mechanical Properties of Soft Denture Lining Material

    PubMed Central

    Jabłońska-Stencel, Ewa; Pakieła, Wojciech; Mertas, Anna; Bobela, Elżbieta; Kasperski, Jacek; Chladek, Grzegorz

    2018-01-01

    Colonization of silicone-based soft lining materials by pathogenic yeast-type fungi is a common problem associated with the use of dentures. In this study, silver sodium hydrogen zirconium phosphate (SSHZP) was introduced into polydimethylsiloxane-based material as an antimicrobial filler at concentrations of 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, and 14% (w/w). The in vitro antimicrobial efficacy was investigated. Candida albicans was used as a characteristic representative of pathogenic oral microflora. Staphylococcus aureus and Escherichia coli were used as the typical Gram-positive and Gram-negative bacterial strains, respectively. The effect of filler addition on the Shore A hardness, tensile strength, tensile bond strength, sorption, and solubility was investigated. An increase in the filler concentration resulted in an increase in hardness, sorption, and solubility, and for the highest concentration, a decrease in bond strength. The favorable combination of antimicrobial efficacy with other properties was achieved at filler concentrations ranging from 2% to 10%. These composites exhibited mechanical properties similar to the material without the antimicrobial filler and enhanced in vitro antimicrobial efficiency. PMID:29470441

  10. Thermal Conductivity of Polymer/Nano-filler Blends

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donovan M.; Working, Dennis C.; Connell, John W.; Smith, Joseph G.; Sun, Y. P.; Lin, Y.

    2006-01-01

    To improve the thermal conductivity of an ethylene vinyl acetate copolymer, Elvax 260 was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. In an attempt to improve compatibility between the Elvax and nanofillers, MWCNTs and EGs were modified through non covalent and covalent attachment of alkyl groups. Ribbons were extruded to form samples in which the nanofillers were aligned, and samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Thermal conductivity measurements were performed using a Nanoflash technique. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction. The results of this study will be presented.

  11. Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers.

    PubMed

    Chun, Cheolbyong; Lee, Deuk Yong; Kim, Jin-Tae; Kwon, Mi-Kyung; Kim, Young-Zu; Kim, Seok-Soon

    2016-01-01

    Hyaluronic acid (HA) dermal biphasic fillers are synthesized for their efficacy in correcting aesthetic defects such as wrinkles, scars and facial contouring defects. The fillers consist of crosslinked HA microspheres suspended in a noncrosslinked HA. To extend the duration of HAs within the dermis and obtain the particle texturing feel, HAs are crosslinked to obtain the suitable mechanical properties. Hyaluronic acid (HA) dermal biphasic fillers are prepared by mixing the crosslinked HA microspheres and the noncrosslinked HAs. The elastic modulus of the fillers increased with raising the volume fraction of the microspheres. The mechanical properties and the particle texturing feel of the fillers made from crosslinked HA (1058 kDa) microspheres suspended in noncrosslinked HA (1368 kDa) are successfully achieved, which are adequate for the fillers. Dermal biphasic HA fillers made from 1058 kDa exhibit suitable elastic moduli (211 to 420 Pa) and particle texturing feel (scale 7 ~ 9).

  12. Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites

    Treesearch

    David P. Harper; Thomas L. Eberhardt

    2010-01-01

    Micron-sized particles, prepared from loblolly pine (Pinus taeda L.) wood and bark, were evaluated for use in wood-plastic composites (WPCs). Particles were also prepared from hard (periderm) and soft (obliterated phloem) components in the bark and compared to whole wood (without bark) filler commonly used by the WPC industry. All bark fillers had...

  13. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate--polylactide composites.

    PubMed

    Bleach, N C; Nazhat, S N; Tanner, K E; Kellomäki, M; Törmälä, P

    2002-04-01

    A bioabsorbable self-reinforced polylactide/biphasic calcium phosphate (BCP) composite is being developed for fracture fixation plates. One manufacturing route is to produce preimpregnated sheets by pulling polylactide (PLA) fibres through a suspension of BCP filler in a PLA solution and compression moulding the prepreg to the desired shape. To aid understanding of the process, interactions between the matrix and filler were investigated. Composite films containing 0-0.25 volume fraction filler, produced by solvent casting, were analysed using SEM, tensile testing and dynamic mechanical analysis (DMA). Homogeneous films could be made, although some particle agglomeration was seen at higher filler volume fractions. As the filler content increased, the failure strain decreased due to a reduction in the amount of ductile polymer present and the ultimate tensile strength (UTS) decreased because of agglomeration and void formation at higher filler content. The matrix glass transition temperature increased due to polymer chain adsorption and immobilization onto the BCP particles. Complex damping mechanisms, such as particle-particle agglomeration, may exist at the higher BCP volume fractions.

  14. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr; CEA, LETI, Minatec Campus, 38000 Grenoble; Gravoueille, M.

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlightedmore » that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.« less

  15. Development of sputtered techniques for thrust chambers, task 1. [evaluation of filler materials for regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.

    1974-01-01

    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.

  16. Properties of concrete containing coconut shell powder (CSP) as a filler

    NASA Astrophysics Data System (ADS)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  17. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Treesearch

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  18. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    NASA Astrophysics Data System (ADS)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  19. Oxidation resistant filler metals for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  20. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    NASA Astrophysics Data System (ADS)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  1. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    PubMed Central

    Domun, Nadiim; Paton, Keith R.; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-01-01

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly. PMID:29048345

  2. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    PubMed

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  3. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    PubMed

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  4. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites

    PubMed Central

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-01-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742

  5. Laser Transmission Welding of CFRTP Using Filler Material

    NASA Astrophysics Data System (ADS)

    Berger, Stefan; Schmidt, Michael

    In the automotive industry the increasing environmental awareness is reflected through consistent lightweight construction. Especially the use of carbon fiber reinforced thermoplastics (CFRTP) plays an increasingly important role. Accordingto the material substitution, the demand for adequate joining technologies is growing. Therefore, laser transmission welding with filler material provides a way to combine two opaque joining partners by using process specific advantages of the laser transmission welding process. After introducing the new processing variant and the used experimental setup, this paper investigates the process itselfand conditions for a stable process. The influence of the used process parameters on weld quality and process stability is characterized by tensile shear tests. The successfully performed joining of PA 6 CF 42 organic sheets using natural PA 6 as filler material underlines the potential of the described joining method for lightweight design and other industrial applications.

  6. Influence of Nanodisperse Metal Fillers on the Viscoelastic Properties and Processes of Mechanical Relaxation of Polymer Systems

    NASA Astrophysics Data System (ADS)

    Kolupav, B. B.; Kolupaev, B. S.; Levchuk, V. V.; Maksimtsev, Yu. R.; Sidletskii, V. A.

    2017-05-01

    The results of research into the viscoelastic properties and processes of mechanical relaxation of polyvinylchloride (PVC) containing Cu nanoparticles obtained by means of electroerosion crushing and electrohydraulic destruction of agglomerates of disperse Cu in the presence of an ultrasonic field are presented. It is shown that, in the case of longitudinal shear deformation at a frequency of 0.4 × 106 s-1 over a wide range of temperatures and content of ingredients, viscoelastic phenomena depending on structural changes in the PVC system occur. An analysis of quantitative results of the elastic and viscoelastic deformation of a body is carried out taking into account the energy and entropy components of interaction of the polymer and filler at their interface.

  7. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation.

    PubMed

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Thimoty F; Toledano, Manuel

    2012-09-01

    Collagen dentin matrix may represent a suitable scaffold to be remineralized in the presence of bioactive materials. The purpose of this study was to determine if experimental resin cements containing bioactive fillers may modulate matrix metalloproteinase-mediated collagen degradation of etched dentin. Human dentin beams demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (Sylc; OSspray Ltd, London, UK), and (3) resin with β-tricalcium phosphate-modified calcium silicate cement (HCAT-β) particles. The filler/resin ratio was 40/60 wt%. The specimens were stored in artificial saliva, and the determination of C-terminal telopeptide (ICTP) was performed by radioimmunoassay after 24 hours, 1 week, and 4 weeks. Scanning electron microscopic analysis of dentin surfaces after 4 weeks of storage was also executed. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced the MMP activity in demineralized dentin. Resin-containing Bioglass 45S5 particles exerted higher and more stable protection of collagen at all tested dentin states and time points. HCAT-β induced collagen protection from MMPs only in EDTA-treated specimens. Dentin remineralization was achieved when dentin was infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced in resin-infiltrated dentin. The inclusion of Bioglass 45S5 particles exerted an additional protection of collagen during dentin remineralization. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    PubMed

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-11-23

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  9. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    PubMed Central

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  10. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  11. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    PubMed

    Curtis, Andrew R; Palin, William M; Fleming, Garry J P; Shortall, Adrian C C; Marquis, Peter M

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique. RBCs with microhybrid (Filtek Z250), 'nanohybrid' (Grandio) and 'nanofilled' (Filtek Supreme), filler particle morphologies were investigated. Filler particles were provided by the manufacturer or separated from the unpolymerized resin using a dissolution technique. Filler particles (n=30) were subjected to compression using a micromanipulation technique between a descending glass probe and a glass slide. The number of distinct fractures particles underwent was determined from force/displacement and stress/deformation curves and the force at fracture and pseudo-modulus of stress was calculated. Agglomerated fillers ('nanoclusters') exhibited up to four distinct fractures, while spheroidal and irregular particles underwent either a single fracture or did not fracture following micromanipulation. Z-tests highlighted failure of nanoclusters to be significant compared with spheroidal and irregular particles (P<0.05). The mean force at first fracture of the nanoclusters was greater (1702+/-909 microN) than spheroidal and irregular particles (1389+/-1342 and 1356+/-1093 microN, respectively). Likewise, the initial pseudo-modulus of stress of nanoclusters (797+/-555 MPa) was also greater than spheroidal (587+/-439 MPa) or irregular (552+/-275 MPa) fillers. The validity of employing the micromanipulation technique to determine the mechanical properties of filler particulates was established. The 'nanoclusters' exhibited a greater tendency to multiple fractures compared with conventional fillers and possessed a comparatively higher variability of pseudo-modulus and load prior to and at fracture, which may modify the damage tolerance of the overall RBC system.

  12. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    NASA Astrophysics Data System (ADS)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  13. Photosensitive filler minimizes internal stresses in epoxy resins

    NASA Technical Reports Server (NTRS)

    Dillon, J. N.

    1967-01-01

    Photosensitive filler is added to curable epoxy resins to minimize stress from internal shrinkage during curing or polymerization. Cinnamic acid resins and cinnamal ketones may be added in the amount of 1 to 3 percent by weight of the resin mixture.

  14. The effect of carbon black filler to the mechanical properties of natural rubber as base isolation system

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Mahadi, Z. A.; Ishak, I. S.

    2018-04-01

    This paper presented the study on the effect of carbon black as filler to the mechanical properties of natural rubber for base isolation system. This study used the five formulations with the different amount of carbon black filler for every sample. The samples were tested for tensile, hardness and resilience test. The samples were cured or vulcanized at 1500C for 23 minutes for every formulation. The filler used in this study was the carbon black filler with type N660. The tensile test was done to determine the ability of the sample in term of the elongation with the load at break. The hardness test, it has been done to determine the ability of the sample to resist the load. This hardness was measured in the unit of IRHD. The resilience test was being done to determine the properties of the sample in term of rebound characteristics. The finding of this study showed that, the high the loading of carbon black filler, the high the tensile strength of the sample and the high the hardness of the sample. In term of resilience, it was inversely proportional to the loading of the carbon black filler.

  15. Nanostructures and dynamics of macromolecules bound to attractive filler surfaces

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi

    We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  16. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    USDA-ARS?s Scientific Manuscript database

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  17. Characteristics of nitrogen removal and microbial community in biofilm system via combination of pretreated lignocellulosic carriers and various conventional fillers.

    PubMed

    Zhao, Jing; Feng, Lijuan; Dai, Jincheng; Yang, Guangfeng; Mu, Jun

    2017-12-01

    Each kind of conventional plastic filler (polyurethane filler, SPR-1 suspension filler, TA-II elastic filler and sphere filler) coupled with alkaline pretreated corncob (A.H.corncob) was applied in each bioreactor system for treating polluted water with nitrate and organics. Results demonstrated that addition of A.H.corncob could achieve simultaneous removal of nitrogen and organics, and coupling of SPR-1 suspension filler with A.H.corncob (R 2 ) had the best performance. In coupling system of R 2 , the total nitrogen (TN) removal rate improved from below 10% to 55.92 ± 18.27% with effluent COD Mn concentration maintaining at a low level of 2.67 ± 0.44 mg L -1 . Microbial analysis of combined filler system demonstrated that conventional plastic filler mainly accumulated non-solid-phase denitrifiers for both nitrate and organics removal including genera Salipiger, Enterobacteriaceae etc. while A.H.corncob carrier was stronghold of solid-phase denitrifiers (Runella, etc.) directly using lignocellulosic materials as carbon source and fermentative bacteria (Coprococcus, etc.) for supplementing available carbon sources for denitrifiers in the system, which were integrated to achieve simultaneous removal of nitrate and organics.

  18. Inflammatory nodules following soft tissue filler use: a review of causative agents, pathology and treatment options.

    PubMed

    Ledon, Jennifer A; Savas, Jessica A; Yang, Steven; Franca, Katlein; Camacho, Ivan; Nouri, Keyvan

    2013-10-01

    Nodule development is a common complication following the use of fillers for soft tissue augmentation and is commonly categorized as inflammatory or non-inflammatory in nature. Inflammatory nodules may appear anywhere from days to years after treatment, whereas non-inflammatory nodules are typically seen immediately following implantation and are usually secondary to improper placement of the filler. Although inflammatory nodules are more common with permanent fillers such as silicone, inflammatory nodule development following administration of temporary fillers such as hyaluronic acid and collagen has also been reported. Treated many times with corticosteroids due to their anti-inflammatory properties, inflammatory nodules may be secondary to infection or biofilm formation, warranting the use of alternative agents. Appropriate and prompt diagnosis is important in avoiding delay of treatment or long-term complications for the patient. This paper addresses the etiology, development, and studied treatment options available for inflammatory nodules secondary to each of the major classes of fillers. With this knowledge, practitioners may expeditiously recognize and manage this common side effect and thus maximize functional and aesthetic benefit.

  19. Filler features and their effects on wear and degree of conversion of particulate dental resin composites.

    PubMed

    Turssi, C P; Ferracane, J L; Vogel, K

    2005-08-01

    Based on the incomplete understanding on how filler features influence the wear resistance and monomer conversion of resin composites, this study sought to evaluate whether materials containing different shapes and combinations of size of filler particles would perform similarly in terms of three-body abrasion and degree of conversion. Twelve experimental monomodal, bimodal or trimodal composites containing either spherical or irregular shaped fillers ranging from 100 to 1500 nm were examined. Wear testings were conducted in the OHSU wear machine (n = 6) and quantified after 10(5) cycles using a profilometer. Degree of conversion (DC) was measured by FTIR spectrometry at the surface of the composites (n = 6). Data sets were analyzed using one-way Anova and Tukey's test at a significance level of 0.05. Filler size and geometry was found to have a significant effect on wear resistance and DC of composites. At specific sizes and combinations, the presence of small filler particles, either spherical or irregular, may aid in enhancing the wear resistance of composites, without compromising the percentage of reacted carbon double bonds.

  20. Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers

    NASA Astrophysics Data System (ADS)

    Zhang, Liqing; Ding, Siqi; Dong, Sufen; Li, Zhen; Ouyang, Jian; Yu, Xun; Han, Baoguo

    2017-12-01

    The use of conductive cement-based materials as sensors has attracted intense interest over past decades. In this paper, carbon nanotube (CNT)/nano carbon black (NCB) composite fillers made by electrostatic self-assembly are used to fabricate conductive cement-based materials. Electrical and piezoresistive properties of the fabricated cement-based materials are investigated. Effect of filler content, load amplitudes and rate on piezoresistive property within elastic regime and piezoresistive behaviors during compressive loading to destruction are explored. Finally, a model describing piezoresistive property of cement-based materials with CNT/NCB composite fillers is established based on the effective conductive path and tunneling effect theory. The research results demonstrate that filler content and load amplitudes have obvious effect on piezoresistive property of the composites materials, while load rate has little influence on piezoresistive property. During compressive loading to destruction, the composites also show sensitive piezoresistive property. Therefore, the cement-based composites can be used to monitor the health state of structures during their whole life. The built model can well describe the piezoresistive property of the composites during compressive loading to destruction. The good match between the model and experiment data indicates that tunneling effect actually contributes to piezoresistive phenomenon.

  1. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Wheat Starch Co-filler

    USDA-ARS?s Scientific Manuscript database

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  2. Characterization of carbon silica hybrid fillers obtained by pyrolysis of waste green tires by the STEM–EDX method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hartomy, Omar A.; Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491; Al-Ghamdi, Ahmed A.

    2015-03-15

    Dual phase carbon–silica hybrid fillers obtained by pyrolysis-cum-water vapor of waste green tires have been characterized by energy dispersive X-ray spectroscopy in a scanning transmission electron microscope, silicate analysis, weight analysis, atomic absorption spectroscopy and by inductively coupled plasma–optical emission spectroscopy. The results achieved have shown that the location and distribution of the phases in the carbon silica hybrid fillers as well as their most essential characteristics are influenced by the pyrolysis conditions. The carbon phase of the filler thus obtained is located predominantly in the space among silica aggregates which have already been existing while it has been formedmore » by elastomer destruction in the course of pyrolysis. The presence of ZnS also has been found in the hybrid fillers investigated. - Highlights: • Dual phase fillers obtained by pyrolysis of waste green tires have been characterized. • The STEM–EDX method was used for characterization. • The phase distributions in the fillers are influenced by the pyrolysis conditions.« less

  3. Method of bonding metals with a radio-opaque adhesive/sealant for void detection and product made

    NASA Technical Reports Server (NTRS)

    Hermansen, Ralph D. (Inventor); Sutherland, Thomas H. (Inventor); Predmore, Roamer (Inventor)

    1990-01-01

    A method and structure for providing radio-opaque polymer compounds for use in metal bonding and sealing. A powder filler comprising a high atomic number metal or compound thereof is incorporated into a polymer compound to render it more radio-opaque than the surrounding metal structures. Voids or other discontinuities in the radio-opaque polymer compound can then be detected by x-ray inspection or other non-destructive radiographic procedure.

  4. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    NASA Astrophysics Data System (ADS)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  5. Coarse-grained simulation of polymer-filler blends

    NASA Astrophysics Data System (ADS)

    Legters, Gregg; Kuppa, Vikram; Beaucage, Gregory; Univ of Dayton Collaboration; Univ of Cincinnati Collaboration

    The practical use of polymers often relies on additives that improve the property of the mixture. Examples of such complex blends include tires, pigments, blowing agents and other reactive additives in thermoplastics, and recycled polymers. Such systems usually exhibit a complex partitioning of the components. Most prior work has either focused on fine-grained details such as molecular modeling of chains at interfaces, or on coarse, heuristic, trial-and-error approaches to compounding (eg: tire industry). Thus, there is a significant gap in our understanding of how complex hierarchical structure (across several decades in length) develops in these multicomponent systems. This research employs dissipative particle thermodynamics in conjunction with a pseudo-thermodynamic parameter derived from scattering experiments to represent polymer-filler interactions. DPD simulations will probe how filler dispersion and hierarchical morphology develops in these complex blends, and are validated against experimental (scattering) data. The outcome of our approach is a practical solution to compounding issues, based on a mutually validating experimental and simulation methodology. Support from the NSF (CMMI-1636036/1635865) is gratefully acknowledged.

  6. Burn-Resistant, Strong Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Tayal, Moti J.

    2003-01-01

    Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres. The researchers studied several metals. Nickel and cobalt alloys exhibit high burn resistances and are dense. The researchers next turned to ceramics, which they knew do not act as ignition sources. Unlike metals, ceramics are naturally burn-resistant. Unfortunately, they also exhibit low fracture toughnesses.

  7. Brazilian Consensus Recommendation on the Use of Polymethylmethacrylate Filler in Facial and Corporal Aesthetics.

    PubMed

    Blanco Souza, Túlio Armanini; Colomé, Letícia Marques; Bender, Eduardo André; Lemperle, Gottfriede

    2018-06-05

    Considering that aesthetic benefits can be obtained with the use of permanent filling materials, this work focuses on the development of a consensus regarding the facial and corporal use of polymethylmethacrylate (PMMA) filler in Brazil. A questionnaire regarding PMMA treatment, which included items on the main indication, application site, volume of product applied, criteria for selection of the material, complications, contraindications, and individual professional experience, was distributed to the Expert Group members. In addition, the responses were summarized, constituting the starting point for the debate regarding the use of PMMA-based fillers on The First Brazilian PMMA Symposium to create a guideline to be followed in PMMA facial and corporal treatments. This survey involved 87,371 cases. PMMA treatment is recommended for restorative and aesthetic purposes in facial and corporal cases, particularly for facial balance. PMMA 30% filler is recommended in specific facial sites (nose, mentum, mandible angle, zygomatic arc, and malar). PMMA filler is contraindicated in other sites (lips) regardless of concentration. With regard to facial treatment, the juxtaperiostal is the application plane most recommended. For PMMA corporal application, intramuscular is the application plane most indicated, while intradermal and justadermal planes are contraindicated. The submuscular plane application is relative to PMMA filler concentration. The experts also inquired regarding the amount of PMMA recommended in each corporal site (50 mL in the calf, 100-150 mL in the gluteal region). These recommendations provide a guideline for physicians, supporting them to perform safe and efficacious treatment with PMMA fillers. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  8. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    PubMed Central

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt). The filler fractions in volume (vt) were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology. PMID:25165690

  9. Characterization of morphology and composition of inorganic fillers in dental alginates.

    PubMed

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  10. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition

    PubMed Central

    Gad, Mohammed M; Fouda, Shaimaa M; Al-Harbi, Fahad A; Näpänkangas, Ritva; Raustia, Aune

    2017-01-01

    This paper reviews acrylic denture base resin enhancement during the past few decades. Specific attention is given to the effect of fiber, filler, and nanofiller addition on poly(methyl methacrylate) (PMMA) properties. The review is based on scientific reviews, papers, and abstracts, as well as studies concerning the effect of additives, fibers, fillers, and reinforcement materials on PMMA, published between 1974 and 2016. Many studies have reported improvement of PMMA denture base material with the addition of fillers, fibers, nanofiller, and hybrid reinforcement. However, most of the studies were limited to in vitro investigations without bioactivity and clinical implications. Considering the findings of the review, there is no ideal denture base material, but the properties of PMMA could be improved with some modifications, especially with silanized nanoparticle addition and a hybrid reinforcement system. PMID:28553115

  11. Cross-linguistic evidence for memory storage costs in filler-gap dependencies with wh-adjuncts

    PubMed Central

    Stepanov, Arthur; Stateva, Penka

    2015-01-01

    This study investigates processing of interrogative filler-gap dependencies in which the filler integration site or gap is not directly subcategorized by the verb. This is the case when the wh-filler is a structural adjunct such as how or when rather than subject or object. Two self-paced reading experiments in English and Slovenian provide converging cross-linguistic evidence that wh-adjuncts elicit a kind of memory storage cost similar to that previously shown in the literature for wh-arguments. Experiment 1 investigates the storage costs elicited by the adjunct when in Slovenian, and Experiment 2 the storage costs elicited by how quickly and why in English. The results support the class of theories of storage costs based on the metric in terms of incomplete phrase structure rules or incomplete syntactic head predictions. We also demonstrate that the endpoint of the storage cost for a wh-adjunct filler provides valuable processing evidence for its base structural position, the identification of which remains a rather murky issue in current grammatical research. PMID:26388806

  12. Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites

    NASA Astrophysics Data System (ADS)

    Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.

    2018-04-01

    Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.

  13. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  14. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  15. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  16. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  17. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  18. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A [Davis, CA; Woolman, Joseph N [Davis, CA; Petrovic, John J [Los Alamos, NM

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  19. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers.

    PubMed

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-14

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10,000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm(-2). The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  20. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  1. Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers

    NASA Astrophysics Data System (ADS)

    Buczyński, Przemyslaw; Iwański, Marek

    2017-10-01

    The article presents the results of a cold recycled mix test with a foam bitumen including the addition of the inactive mineral filler as a dust of basalt. Basalt dust was derived from dedusting system by extraction of aggregates in the mine. Assessment of the impact of a basalt dust on the properties of a recycled base layer was carried out in terms of the amount of mineral filler (basalt) in the composition of the mineral mixture. This experiment involved a dosing of mineral filler in range from 5 to 20% with steps of 7.5% in the mineral mixture composition. The foamed bitumen was performed at optimum foaming process settings (ie. bitumen temperature, air pressure) and at 2.5% of the water content. The amount of a hydraulic binder as a Portland cement was 2.0%. The evaluation of rheological properties allowed to determine whether the addition of inactive mineral fillers can act as a stiffness modulus controller in the recycled base layer. The analysis of the rheological properties of a recycled base layer in terms of the amount of inactive fillers was performed in accordance with given standard EN 12697-26 Annex D. The study was carried out according to the direct tension-compression test methodology on cylindrical samples. The sample was subjected to the oscillatory sinusoidal strain ε0 < 25με. Studies carried out at a specific temperature set-points: - 7°C, 5°C, 13°C, 25°C and 40°C and at the frequency 0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz and 20 Hz. The obtained results allow to conclude that the use of an inactive filler can reduce the stiffness of an appropriate designed mixes of the cold recycled foundation. In addition, the analysis of the relation E‧-E″ showed a similar behaviour of a recycled base, regardless of the amount of inactive fillers in the mix composition, at high temperatures/high frequency of induced load.

  2. Synthesis of Superabsorbent Polymer via Inverse Suspension Method: Effect of Carbon Filler

    NASA Astrophysics Data System (ADS)

    Zakaria, Munirah Ezzah Tuan; Shima Jamari, Saidatul; Ling, Yeong Yi; Ghazali, Suriati

    2017-05-01

    This paper studies on the effect of the addition of carbon filler towards the performance of superabsorbent polymer composite (SAPc). In this work, the SAPc was synthesized using inverse suspension polymerization method. The process involved two different solutions; dispersed phase which contains partially neutralized acrylic acid, acrylamide, APS and NN-Methylenebisacrylamide, and continuous phase which contains cyclohexane, span-80 and carbon filler (at different weight percent). The optimum SAPs and filler ratio was measured in terms of water retention in soil and characterized by Mastersizer, FTIR and SEM. Biodegradability of the polymer was determined by soil burial test and SAPc with 0.02% carbon has highest biodegradability rate. SAPc with 0.04wt% carbon showed the optimal water retention percentage among all the samples. The synthesized SAPc producing spherical shapes with parallel alignment due to the addition of carbon fiber. It can be concluded that the addition of carbon fiber able to enhance the performance of the SAP composite (SAPc).

  3. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    PubMed

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  4. Preparation of Ultraviolet Curing Type Silicone Rubbers Containing Mesoporous Silica Fillers.

    PubMed

    Abdullah, Nawfel; Hossain, Md Shahriar A; Fatehmulla, Amanullah; Farooq, Wazirzada Aslam; Islam, Md Tofazzal; Miyamoto, Nobuyoshi; Bando, Yoshio; Kamachi, Yuichiro; Malgras, Victor; Yamauchi, Yusuke; Suzuki, Norihiro

    2018-01-01

    Here we have been focusing on mesoporous silica (MPS) as inorganic filler material to improve the mechanical strength of silicone rubbers. The MPS particles are more effective in reducing the coefficient of thermal expansion (CTE) and hardening silicone rubber composites when compared to commercially available nonporous silica particles. In this study, we utilize ultraviolet curing type silicone rubbers and prepare MPS composites according to a simple single-step method. From an industrial viewpoint, simplifying the fabrication processes is critical. The thermal stability and mechanical strength are examined in detail in order to showcase the effectiveness of MPS particles as filler materials.

  5. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  6. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands.

    PubMed

    Broere, Daniël L J; Modder, Dieuwertje K; Blokker, Eva; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-02-12

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rethinking the Role of Nitroglycerin Ointment in Ischemic Vascular Filler Complications: An Animal Model With ICG Imaging.

    PubMed

    Hwang, Catherine J; Morgan, Payam V; Pimentel, Aline; Sayre, James W; Goldberg, Robert A; Duckwiler, Gary

    2016-01-01

    Soft tissue dermal fillers, both temporary and permanent, are used frequently in facial rejuvenation. As the use of fillers increases, ischemic complications including skin necrosis are becoming more prevalent. In the literature, topical nitroglycerin paste has been recommended in the early treatment of patients presenting with ischemia. The purpose of this study was to evaluate the vascular perfusion effects of topical nitroglycerin paste in an animal model using indocyanine green (ICG) imaging. After Animal Research Committee approval, a rabbit ear model was used to create filler-associated skin ischemia. Ischemia was confirmed to occur after intra-arterial occlusion. Four commonly used soft tissue fillers were injected intra-arterially: Radiesse (Merz USA, Greensboro NC), Restylane (Galderma, Ft. Worth, TX), Juvederm Ultra (Allergan, Irvine CA), Belotero (Merz USA, Greensboro NC) (0.1 ml). A total of 15 ears were used, 1 control and 4 experimental per product. Thirty minutes after occlusion, nitroglycerin ointment USP, 2%(Nitro-Bid) was applied topically to the experimental ears. Vascular perfusion was evaluated with the SPY System (Novadaq Inc.) using ICG imaging. Perfusion images were obtained at baseline, immediately after, and 30 minutes after intra-arterial filler injection, and at 30, 60, 90, and 120 minutes after application of topical nitroglycerin ointment. In this rabbit ear model, no statistically significant improvement in perfusion was noted after topical application of nitroglycerin paste with ICG imaging. In addition, the skin of the rabbit ear post-nitroglycerin ointment appeared to have more of a congested appearance than the controls. Ischemic filler complications are becoming increasingly prevalent. Practitioners often treat these complications with topical nitroglycerin paste based on the knowledge that topical nitroglycerin causes vasodilation. In filler-induced tissue ischemia, however, filler product is present within arterioles

  8. Global Aesthetics Consensus: Hyaluronic Acid Fillers and Botulinum Toxin Type A—Recommendations for Combined Treatment and Optimizing Outcomes in Diverse Patient Populations

    PubMed Central

    Liew, Steven; Signorini, Massimo; Vieira Braz, André; Fagien, Steven; Swift, Arthur; De Boulle, Koenraad L.; Raspaldo, Hervé; Trindade de Almeida, Ada R.; Monheit, Gary

    2016-01-01

    Background: Combination of fillers and botulinum toxin for aesthetic applications is increasingly popular. Patient demographics continue to diversify, and include an expanding population receiving maintenance treatments over decades. Methods: A multinational panel of plastic surgeons and dermatologists convened the Global Aesthetics Consensus Group to develop updated guidelines with a worldwide perspective for hyaluronic acid fillers and botulinum toxin. This publication considers strategies for combined treatments, and how patient diversity influences treatment planning and outcomes. Results: Global Aesthetics Consensus Group recommendations reflect increased use of combined treatments in the lower and upper face, and some midface regions. A fully patient-tailored approach considers physiologic and chronologic age, ethnically associated facial morphotypes, and aesthetic ideals based on sex and culture. Lower toxin dosing, to modulate rather than paralyze muscles, is indicated where volume deficits influence muscular activity. Combination of toxin with fillers is appropriate for several indications addressed previously with toxin alone. New scientific data regarding hyaluronic acid fillers foster an evidence-based approach to selection of products and injection techniques. Focus on aesthetic units, rather than isolated rhytides, optimizes results from toxin and fillers. It also informs longitudinal treatment planning, and analysis of toxin nonresponders. Conclusions: The emerging objective of injectable treatment is facial harmonization rather than rejuvenation. Combined treatment is now a standard of care. Its use will increase further as we refine the concept that aspects of aging are intimately related, and that successful treatment entails identifying and addressing the primary causes of each. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V. PMID:27119917

  9. On dissimilar metal welding of AISI4140 and AISI410 by GTAW

    NASA Astrophysics Data System (ADS)

    Velu, M.; Dixit, Shantanu; Choure, Shubham

    2017-11-01

    This paper presents the results of metallurgical and mechanical examinations of Gas Tungsten Arc Welding of dissimilar steels AISI4140 and AISI410. Two different filler materials viz., ERNiCr3 and SS410 were used. The various properties of the weldments made using the fillers were compared to select the most appropriate one to get the sound joint. The ultimate tensile and yield strengths of the weldments of SS410 were greater than those of ERNiCr3. The fracture occurred at the weld in weldments made with ERNiCr3, whereas, in the base metal of AISI410 for weldments made with SS410. Microstructure of fusion zone of ERNiCr3 was fully austenitic. Microhardness values in the weld of SS410 were higher and fluctuating compared to those in the weld of ERNiCr3. From this research work, it shall be concluded that SS410 is the best filler material to weld these base materials.

  10. Verification of Embolic Channel Causing Blindness Following Filler Injection.

    PubMed

    Tansatit, Tanvaa; Moon, Hyoung Jin; Apinuntrum, Prawit; Phetudom, Thavorn

    2015-02-01

    Ocular complications following cosmetic filler injections are serious situations. This study provided scientific evidence that filler in the facial and the superficial temporal arteries could enter into the orbits and the globes on both sides. We demonstrated the existence of an embolic channel connecting the arterial system of the face to the ophthalmic artery. After the removal of the ocular contents from both eyes, liquid dye was injected into the cannulated channel of the superficial temporal artery in six soft embalmed cadavers and different color dye was injected into the facial artery on both sides successively. The interior sclera was monitored for dye oozing from retrograde ophthalmic perfusion. Among all 12 globes, dye injections from the 12 superficial temporal arteries entered ipsilateral globes in three and the contralateral globe in two arteries. Dye from the facial artery was infused into five ipsilateral globes and in three contralateral globes. Dye injections of two facial arteries in the same cadaver resulted in bilateral globe staining but those of the superficial temporal arteries did not. Direct communications between the same and different arteries of the four cannulated arteries were evidenced by dye dripping from the cannulating needle hubs in 14 of 24 injected arteries. Compression of the orbital rim at the superior nasal corner retarded ocular infusion in 11 of 14 arterial injections. Under some specific conditions favoring embolism, persistent interarterial anastomoses between the face and the eye allowed filler emboli to flow into the globe causing ocular complications.

  11. Use of Almond Shells and Rice Husk as Fillers of Poly(Methyl Methacrylate) (PMMA) Composites.

    PubMed

    Sabbatini, Alessandra; Lanari, Silvia; Santulli, Carlo; Pettinari, Claudio

    2017-07-28

    In recent years, wood fibres have often been applied as the reinforcement of thermoplastic materials, such as polypropylene, whereas their use in combination with thermosetting resin has been less widespread. This study concerns the production of PMMA-based composites by partly replacing alumina trihydrate (ATH) with wood waste fillers, namely rice husks and almond shells, which would otherwise be disposed by incineration. The amount of filler introduced was limited to 10% as regards rice husks and 10 or 15% almond shells, since indications provided by reactivity tests and viscosity measurements did not suggest the feasibility of total replacement of ATH. As a matter of fact, the introduction of these contents of wood waste filler in PMMA-based composite did not result in any significant deterioration of its mechanical properties (Charpy impact, Rockwell M hardness and flexural performance). Some reduction of these properties was only observed in the case of introduction of 15% almond shells. A further issue concerned the yellowing of the organic filler under exposure to UV light. On the other hand, a very limited amount of water was absorbed, never exceeding values around 0.6%, despite the significant porosity revealed by the filler's microscopic evaluation. These results are particularly interesting in view of the application envisaged for these composites, i.e., wood replacement boards.

  12. Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites.

    PubMed

    Agustin-Salazar, Sarai; Cerruti, Pierfrancesco; Medina-Juárez, Luis Ángel; Scarinzi, Gennaro; Malinconico, Mario; Soto-Valdez, Herlinda; Gamez-Meza, Nohemi

    2018-04-24

    Lignocellulose from agro-food biowaste represents a valuable source of cost-effective structural fillers for wholly renewable polymer composites. In this work, pecan (Carya illinoinensis) nutshell (NS) fiber and its structural components, holocellulose (HC) and acid insoluble lignin (AIL), were isolated, characterized and used as reinforcing fillers to manufacture poly(lactic acid) (PLA) based biocomposites. Thermal, morphological and mechanical properties of the prepared materials were analyzed. NS and HC acted as heterogeneous nucleating agents, potentially able to control PLA physical aging. Moreover, they significantly enhanced the viscoelastic response of PLA, mainly restricting the melt molecular mobility due to hydrodynamic effects and the formation of a three-dimensional particulate network. Flexural tests demonstrated that HC induced a 25% increase in modulus compared to the plain polymer. AIL, conversely, conferred higher ductility to the PLA matrix producing an increase in stress and strain at break of 55% and 65%, respectively. Finally, all the biocomposites showed lower resilience with respect to plain PLA due to the lack of chemical adhesion between filler and matrix. These results emphasize the potential of NS as a source of reinforcing filler in polymer-based biocomposites. Copyright © 2018. Published by Elsevier B.V.

  13. Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers

    NASA Astrophysics Data System (ADS)

    Lorenz, H.; Klüppel, M.

    2012-11-01

    A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.

  14. Toxic metals in cigarettes and human health risk assessment associated with inhalation exposure.

    PubMed

    Benson, Nsikak U; Anake, Winifred U; Adedapo, Adebusayo E; Fred-Ahmadu, Omowunmi H; Ayejuyo, Olusegun O

    2017-11-08

    This study evaluated the concentrations of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn) in 10 branded cigarettes commonly consumed in Nigeria. Chemical sequential extraction method and pseudo-total metal digestion procedure were used for extraction of metals from filler tobacco and filter samples. Samples were analyzed using flame atomic absorption spectrometry (FAAS). The filler tobacco of cigarettes had Cd, Cu, Fe, Mn, Pb, and Zn concentrations in the ranges of 5.90-7.94, 18.26-34.94, 192.61-3494.05, 44.67-297.69, 17.21-74.78, and 47.02-167.31 μg/cigarette, respectively. The minimum and maximum concentrations in the filter samples were 8.67-12.34 μg/g of Cd, 1.77-36.48 μg/g of Cu, 1.83-15.27 μg/g of Fe, 3.82-7.44 μg/g of Mn, 4.09-13.78 μg/g of Pb, and 30.07-46.70 μg/g of Zn. The results of this study showed that the concentrations of heavy metals in the filler tobacco samples were consistently higher than those obtained for the cigarette filters except for Cd. Toxic metals were largely found in the most labile chemical fractions. Moderate to very high risks are found associated with potential exposure to Cd and Pb. The carcinogenic risks posed by Cd and Pb ranged between 1.87E-02 and 2.52E-02, 1.05E-03 and 4.76E-03, respectively, while the non-carcinogenic risk estimates for Cd and Pb were greater than 1.0 (HI > 1). Toxic metals in cigarette may have significant carcinogenic and non-carcinogenic health effects associated with inhalation exposure. Continuous monitoring and regulations of the ingredients of imported and locally produced tobacco products are advocated.

  15. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications

    PubMed Central

    Moura, Duarte; Mano, João F.; Paiva, Maria C.; Alves, Natália M.

    2016-01-01

    Abstract Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications. PMID:27877909

  16. [Delayed Infection after Upper Lip Augmentation with Absorbable Hyaluronic Acid Filler].

    PubMed

    Heim, N; Faron, A; Wiedemeyer, V; Teschke, M; Reich, R H; Martini, M

    2015-08-01

    Since introduction of the first fillers in the 1980s a multitude of substances has been developed and approved for facial contour augmentation and correction of skin defects. Here we present the interesting case of a patient who presented to us with a delayed infection 6 weeks after augmentation of the upper lip with a hyaluronic acid. We observed full convalescence after operative and high-dose antibiotic treatment of the abscesses. Generally speaking, complications after augmentation with resorbable fillers are rare. However, complications might occur even within unexpected time periods and therefore need our special attention. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Evaluating corn starch and corn stover biochar as renewable filler in carboxylated styrene-butadiene rubber composites

    USDA-ARS?s Scientific Manuscript database

    Corn starch, corn flour, and corn stover biochar were evaluated as potential renewable substitutes for carbon black as filler in rubber composites using carboxylated styrene-butadiene as the rubber matrix. Previous work has shown that starch-based fillers have very good reinforcement properties at t...

  18. XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts

    NASA Technical Reports Server (NTRS)

    Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.

    1993-01-01

    The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.

  19. Evaluation of the filler packing structures in dental resin composites: From theory to practice.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2018-07-01

    The aim of this study is to evaluate the packing properties of uniform silica particles and their mixture with secondary particles yielding maximally loaded dental composites. We intend to verify the difference between the idealized models (the close-packed structures and the random-packed structures) and the actual experimental results, in order to provide guidance for the preparation of dental composites. The influence of secondary particle size and the resin composition on the physical-mechanical properties and the rheological properties of the experimental dental composites was also investigated. Silica particles (S-920, S-360, and S-195) with average diameters of 920, 360, and 195nm were synthesized via the Stöber process. Their morphology and size distribution were determined by field-emission scanning electron microscopy and laser particle sizer. A series of silica fillers, S-920, S-920+195, S-920+360, and S-920+360+195, were then formulated with two Bis-GMA/TEGDMA resins (weight ratios of 70:30 and 50:50). For these experimental dental composites, their maximum filler loadings were assessed and compared to the theory. The mechanical properties, degree of conversion, depth of cure, and polymerization shrinkage of these composites were then evaluated. Their rheological behaviors were measured with a rheometer. Unimodal S-920 had the maximally filler loading of 70.80wt% with the 5B5T resin, close to the theoretical estimation of the random loose packing (71.92wt%). The maximum loading of the S-920+360+195 filled composite was 72.92wt% for the same resin, compared to the theoretical estimation of 89.29wt% obtained for the close-packed structures. These findings indicate that random loose packing matches more closely to the real packing state for the filler formulations used. When maximally loaded, the composite with S-920+360+195 produced the best mechanical properties and the lowest polymerization shrinkage. The degree of conversion and depth of cure were

  20. Clinical Application of Earlobe Augmentation with Hyaluronic Acid Filler in the Chinese Population.

    PubMed

    Qian, Wei; Zhang, Yan-Kun; Cao, Qian; Hou, Ying; Lv, Wei; Fan, Ju-Feng

    2017-02-01

    Larger earlobes, which are a symbol of "richness" in traditional Chinese culture, are favored by Chinese patients. The objective of this paper is to investigate the application of earlobe augmentation with hyaluronic acid (HA) filler injection and its clinical effects in the Chinese population. A total of 19 patients (38 ears) who received earlobe augmentation with HA filler injections between March 2013 and March 2015 were included. The clinical effects, duration, and complications of these cases were investigated. All patients who received earlobe HA injections showed immediate postoperative effects with obvious morphological improvement of their earlobes. The volume of HA filler injected into each ear was 0.3-0.5 ml. The duration of the effect was 6-9 months. Two of the 19 cases (3 ears) demonstrated mild bruising at the injection site, but the bruising completely disappeared within 7 days after the injection. No vascular embolism, infection, nodule, or granuloma complications were observed in the studied group. The application of earlobe augmentation with HA filler injection is a safe, effective, simple procedure for earlobe shaping. It has an easy clinical application with good clinical prospects. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  1. Discontinuous Development in the Acquisition of Filler-Gap Dependencies: Evidence from 15- and 20-Month-Olds

    ERIC Educational Resources Information Center

    Gagliardi, Annie; Mease, Tara M.; Lidz, Jeffrey

    2016-01-01

    This article investigates infant comprehension of filler-gap dependencies. Three experiments probe 15- and 20-month-olds' comprehension of two filler-gap dependencies: "wh"-questions and relative clauses. Experiment 1 shows that both age groups appear to comprehend "wh"-questions. Experiment 2 shows that only the younger…

  2. Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film.

    PubMed

    Biddeci, G; Cavallaro, G; Di Blasi, F; Lazzara, G; Massaro, M; Milioto, S; Parisi, F; Riela, S; Spinelli, G

    2016-11-05

    The purpose of this paper is to show how a functional bionanocomposite film with both antioxidant and antimicrobial activities was successfully prepared by the filling of a pectin matrix with modified Halloysite nanotubes (HNT) containing the essential peppermint oil (PO). Firstly, HNT surfaces were functionalized with cucurbit[6]uril (CB[6]) molecules with the aim to enhance the affinity of the nanofiller towards PO, which was estimated by means of HPLC experiments. The HNT/CB[6] hybrid was characterized by several methods (thermogravimetry, FT-IR spectroscopy and scanning electron microscopy) highlighting the influence of the supramolecular interactions on the composition, thermal behavior and morphology of the filler. Then, a pectin+HNT/CB[6] biofilm was prepared by the use of the casting method under specific experimental conditions in order to favor the entrapment of the volatile PO into the nanocomposite structure. Water contact angle measurements, thermogravimetry and tensile tests evidenced the effects of the modified filler on the thermo-mechanical and wettability properties of pectin, which were correlated to the microscopic structure of the biocomposite film. In addition, PO release in food simulant solvent was investigated at different temperatures (4 and 25°C), whereas the antioxidant activity of the nanocomposite film was estimated using the DPPH method. Finally, we studied the in vitro antibacterial activity of the biofilm against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive), which were isolated by beef and cow milk, respectively. These experiments were carried out at specific temperatures (4, 37 and 65°C) that can be useful for a multi-step food conservation. This paper puts forwards an easy strategy to prepare a functional sustainable edible film with thermo-sensitive antioxidant/antimicrobial activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Tuning filler shape, surface chemistry and ion content in nanofilled polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha V. N. R.

    We investigate how nanofiller surface chemistry and aspect ratio affect the performance of nanofilled solid polymer electrolytes. Polymer-based electrolytes are an attractive alternative to the organic electrolytes currently used in lithium ion batteries. We characterize acidic nanoparticle filled electrolytes and compare them to neutral particle-filled electrolytes previously measured in our lab. Dielectric spectroscopy measurements indicate that the highest increase in conductivity occurs at the eutectic composition (EO/Li=10) and is independent of filler surface chemistry. We measure PEO dynamics using quasi-elastic neutron scattering and do not observe any change in polymer dynamics with particle surface chemistry. When we examine the elastic incoherent structure factor associated with the rotational process, fillers are found to restrict the rotation of the highly conducting PEO6:LiClO4 tunnels. At the eutectic composition, these tunnels are stabilized at the filler surface even above PEO melting temperature. Marginal stability theory predicts formation of alternating layers of coexisting phases at the eutectic composition. We propose a new mechanism, via stabilization of alternating layers of PEO and highly conducting PEO 6:LiClO4 tunnels at the filler surface. When compared to spherical particles, more such structures would be stabilized at a filler surface with high aspect ratio. Consistent with this hypothesis, neutral gamma-Al2O3 nanowhiskers (2-4 nm in diameter and 200-400 nm in length) intensify the effect of neutral gamma-Al 2O3 nanoparticles. The diameters of the two fillers are similar, but the change in aspect ratio (1 to 100) improves conductivity by a factor of 5. This enhancement occurs at battery operation temperatures! Although the change in aspect ratio does not affect thermal transitions and segmental dynamics at optimal whisker loading, the rotation of PEO6 remnants is distinct at the eutectic composition. Because the mechanism by which

  4. A phase III, randomized, double-blind, matched-pairs, active-controlled clinical trial and preclinical animal study to compare the durability, efficacy and safety between polynucleotide filler and hyaluronic acid filler in the correction of crow's feet: a new concept of regenerative filler.

    PubMed

    Pak, Chang Sik; Lee, Jongho; Lee, Hobin; Jeong, Jaehoon; Kim, Eun-Hee; Jeong, Jinwook; Choi, Hyeyeon; Kim, Byunghwi; Oh, Sujin; Kim, Iksoo; Heo, Chan Yeong

    2014-11-01

    The Rejuran® is a new filler product made from purified polynucleotides. Here we present data from an animal study and a clinical trial to examine the durability, efficacy and safety of the Rejuran® on crow's feet. For the animal study, 25 mice were divided into three groups: Group 1 received phosphate buffered saline (PBS); Group 2 were treated with Yvoire®; and Group 3 were treated with Rejuran®. The durability and efficacy of each treatment were assessed by microscopy and staining. In the clinical trial, 72 patients were randomized to receive Rejuran® treatment for crow's feet on one side and Yvoire-Hydro® on the contralateral side, at a ratio of 1:1. Repeated treatments were performed every two weeks for a total of three times, over a total of 12 weeks' observation. All injections and observations of efficacy and safety were performed by the same two investigators. In the animal study, the Rejuran® group showed similar durability and inflammatory response to the Yvoire® group. Upon efficacy assessment, the Rejuran® group showed the greatest elasticity and collagen composition, and a significant difference in skin surface roughness and wrinkle depth. In the clinical trial, the primary and secondary objective efficacy outcome measure showed no statistical significance between the two groups, and in safety outcomes there were no unexpected adverse effects. Our data suggest that the Rejuran®, as a new regenerative filler, can be useful to reduce wrinkles, by showing evidence for its efficacy and safety.

  5. Preelectroplating Treatment Of Titanium Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Kelly, Michael L.; Harvey, James S.

    1992-01-01

    New technique used to treat titanium honeycomb core electrochemically by applying conversion coat to keep honeycomb active and receptive to electroplating with solution of sodium bichromate and hydrofluoric acid. Maskant permits electroplating of controlled amount of filler metal on edge of honeycomb. Eliminates excess copper filler.

  6. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  7. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites.

    PubMed

    Zainuddin, Siti Yasmine Zanariah; Ahmad, Ishak; Kargarzadeh, Hanieh; Abdullah, Ibrahim; Dufresne, Alain

    2013-02-15

    Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Iatrogenic occlusion of the ophthalmic artery after cosmetic facial filler injections: a national survey by the Korean Retina Society.

    PubMed

    Park, Kyu Hyung; Kim, Yong-Kyu; Woo, Se Joon; Kang, Se Woong; Lee, Won Ki; Choi, Kyung Seek; Kwak, Hyung Woo; Yoon, Ill Han; Huh, Kuhl; Kim, Jong Woo

    2014-06-01

    Iatrogenic occlusion of the ophthalmic artery and its branches is a rare but devastating complication of cosmetic facial filler injections. To investigate clinical and angiographic features of iatrogenic occlusion of the ophthalmic artery and its branches caused by cosmetic facial filler injections. Data from 44 patients with occlusion of the ophthalmic artery and its branches after cosmetic facial filler injections were obtained retrospectively from a national survey completed by members of the Korean Retina Society from 27 retinal centers. Clinical features were compared between patients grouped by angiographic findings and injected filler material. Visual prognosis and its relationship to angiographic findings and injected filler material. Ophthalmic artery occlusion was classified into 6 types according to angiographic findings. Twenty-eight patients had diffuse retinal and choroidal artery occlusions (ophthalmic artery occlusion, generalized posterior ciliary artery occlusion, and central retinal artery occlusion). Sixteen patients had localized occlusions (localized posterior ciliary artery occlusion, branch retinal artery occlusion, and posterior ischemic optic neuropathy). Patients with diffuse occlusions showed worse initial and final visual acuity and less visual gain compared with those having localized occlusions. Patients receiving autologous fat injections (n = 22) had diffuse ophthalmic artery occlusions, worse visual prognosis, and a higher incidence of combined brain infarction compared with patients having hyaluronic acid injections (n = 13). Clinical features of iatrogenic occlusion of the ophthalmic artery and its branches following cosmetic facial filler injections were diverse according to the location and extent of obstruction and the injected filler material. Autologous fat injections were associated with a worse visual prognosis and a higher incidence of combined cerebral infarction. Extreme caution and care should be taken during

  9. Effect of filler loading of characteristic natural rubber latex (NRL) film filled with nanocrystal cellulose (NCC) and dipersion agent polyvinylpyrrolidone (PVP)

    NASA Astrophysics Data System (ADS)

    Harahap, Hamidah; Lubis, Yuni Aldriani; Taslim, Iriany, Nasution, Halimatuddahliana; Agustini, Hamda Eka

    2018-04-01

    A study has been conducted on the effect of filler loading on NRL films filled with NCC from corn cob waste. This study reviews on the filler loading of NRL film characteristics. The process begins with the production of NCC filler and then proceed with the production NRL film which is processed by coagulant dipping method. NRL is filled with NCC and PVP as dispersion agent of 2, 4, 3, 8 grams (filler loading) and 1% PVP by weight. The production of NRL film started with pre-vulcanization process at 70 °C and followed by vulcanization process at 110 °C for 20 minutes. The results showed that higher filler loading improved the higher crosslink density and mechanical properties of NRL film.

  10. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    PubMed

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  11. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  12. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes

    PubMed Central

    Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing; Zhang, Rui; Xu, Rui; Chen, Peng-Yu; Peng, Hong-Jie; Huang, Jia-Qi

    2017-01-01

    Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic–polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all–solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathodes, the all–solid-state lithium metal batteries render excellent specific capacities of above 150 mAh⋅g−1 and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries. PMID:28973945

  13. Co-spray Drying with HPMC as a Platform to Improve Direct Compaction Properties of Various Tablet Fillers.

    PubMed

    Li, JinZhi; Zhao, LiJie; Lin, Xiao; Shen, Lan; Feng, Yi

    2017-11-01

    Many commonly used tablet fillers are not suitable for direct compaction process due to insufficient properties, mainly of flowability and compactability. This work therefore aimed to use co-spray drying with HPMC as a platform to improve direct compaction properties of various tablet fillers. Starch, calcium hydrogen phosphate dihydrate (DCPD), and mannitol were chosen as a representative of three types of commonly used fillers (i.e. organic macromolecules, water-insoluble inorganic salts, and water-soluble small molecular carbohydrates), respectively. The five-level central composite design-response surface methodology was used (i) to investigate the effects of HPMC level and solid content of the feed on various powder, tableting, and tablet properties of composite excipients, and (ii) to optimize the composition. The results showed that the impacts of the two factors on various properties of composite excipients showed great similarity, despite of significantly different primary properties of the parent fillers, and the HPMC level was the main contributor to the majority of the impacts. An increase in HPMC level significantly improved tablet tensile strength and various tableting parameters. For all the three fillers, their optimized composite excipients provided by the established models showed excellent performances as predicted. The platform suggested is confirmed to be effective and promising.

  14. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation

    PubMed Central

    Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping

    2014-01-01

    Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082

  15. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    NASA Astrophysics Data System (ADS)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  16. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    USDA-ARS?s Scientific Manuscript database

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  17. Development of brazing process for W-EUROFER joints using Cu-based fillers

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  18. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    NASA Astrophysics Data System (ADS)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  19. Gas-phase synthesis of magnetic metal/polymer nanocomposites.

    PubMed

    Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N

    2014-12-19

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  20. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  1. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    PubMed Central

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  2. The Classification and Prognosis of Periocular Complications Related to Blindness following Cosmetic Filler Injection.

    PubMed

    Myung, Yujin; Yim, Sangjun; Jeong, Jae Hoon; Kim, Baek-Kyu; Heo, Chan-Yeong; Baek, Rong-Min; Pak, Chang-Sik

    2017-07-01

    Common side effects during hyaluronic acid filler injections are typically mild and reversible, but several reports of blindness have received attention. The present study focused on orbital symptoms combined with blindness, aiming to classify affected patients and predict their disease course and prognosis. From September of 2012 to August of 2015, nine patients with vision loss after filler injection were retrospectively reviewed. Ptosis, ophthalmoplegia, and enophthalmos were recorded over a 6-month follow-up, and patients were classified into four types according to periocular symptom manifestation. Two patients were categorized as type I (blindness without ptosis or ophthalmoplegia), two patients as type II (blindness and ptosis without ophthalmoplegia), two patients as type III (blindness and ophthalmoplegia without ptosis), and three patients as type IV (blindness with ptosis and ophthalmoplegia). The present study includes previously unpublished information about orbital symptom manifestations and prognosis combined with blindness caused by retinal artery occlusion after cosmetic filler injection. Therapeutic, V.

  3. Influence of filler charge on gloss of composite materials before and after in vitro toothbrushing.

    PubMed

    Jassé, Fernanda Ferreira; de Campos, Edson Alves; Lefever, Dorien; Di Bella, Enrico; Salomon, Jean Pierre; Krejci, Ivo; Ardu, Stefano

    2013-11-01

    This study evaluated the gloss behaviour of experimental resin composites loaded with different filler percentages, immediately after polishing and after toothbrushing simulation. Sixteen disc-shaped specimens were fabricated for each different-charged composite (40%, 50%, 60%, 70% and 75%) and polished with SiC abrasive papers. Gloss measurements were made prior to simulated toothbrushing. The specimens were subjected to the simulation for 5, 15, 30 and 60 min using an electrical toothbrush with a standardized pressure while being immersed in a toothpaste/artificial saliva slurry. Baseline composite gloss values ranged from 69.7 (40%) to 81.3 (75%) GU (gloss units) and from 18.1 (40%) to 32.3 (75%) GU after 1h of brushing. Highest gloss values were obtained by 75%-charged resin, while the lowest values were obtained by the 40%-charged one. All tested materials showed a gloss decrease. However, the higher filler load a composite resin has, the higher gloss it can achieve. Gloss of resin composite materials is an important factor in determining aesthetic success of anterior restorations, and this property may vary according to the filler charge of the restorative material. Higher filler load of a composite resin results in higher gloss values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Acoustic Identification of Filler Materials in Unexploded Ordnance

    DTIC Science & Technology

    2006-04-01

    PBXN- 103 CH-6 PBXW- 108 Parrafin ( wax ) Baratol (76/24) Plaster TNT Octol (50/50) Comp B PETN Concrete Lo ng itu di na l V el oc ity (m /s ec...26 3.7.3 Identification of Wax fillers...plaster and wax from “other” items including explosives. A series of field tests are described that focus on acoustic measurements on both inert and live

  5. [Facial injections of hyaluronic acid-based fillers for malformations. Preliminary study regarding scar tissue improvement and cosmetic betterment].

    PubMed

    Franchi, G; Neiva-Vaz, C; Picard, A; Vazquez, M-P

    2018-06-01

    Cross-linked hyaluronic acid-based fillers have gained rapid acceptance for treating facial wrinkles, deep tissue folds and sunken areas due to aging. This study evaluates, in addition to space-filling properties, their effects on softness and elasticity as a secondary effect, following injection of 3 commercially available cross-linked hyaluronic acid-based fillers (15mg/mL, 17,5mg/mL and 20mg/mL) in patients presenting with congenital or acquired facial malformations. We started injecting gels of cross-linked hyaluronic acid-based fillers in those cases in 2013; we performed 46 sessions of injections in 32 patients, aged from 13-32. Clinical assessment was performed by the patient himself and by a plastic surgeon, 15 days after injections and 6-18 months later. Cross-linked hyaluronic acid-based fillers offered very subtle cosmetic results and supplemented surgery with a very high level of satisfaction of the patients. When injected in fibrosis, the first session enhanced softness and elasticity; the second session enhanced the volume. Cross-linked hyaluronic acid-based fillers fill sunken areas and better softness and elasticity of scar tissues. In addition to their well-understood space-filling function, as a secondary effect, the authors demonstrate that cross-linked hyaluronic acid-based fillers improve softness and elasticity of scarring tissues. Many experimental studies support our observations, showing that cross-linked hyaluronic acid stimulates the production of several extra-cellular matrix components, including dermal collagen and elastin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Effect of strain rate on mechanical properties of melt-processed soy flour composite filler and styrene-butadiene blends

    USDA-ARS?s Scientific Manuscript database

    Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dispersion of soy flour with styrene-butadiene rubber latex, dried, and cryogenically ground into powders. Upon crosslinking, th...

  7. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  8. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    PubMed

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gap Filler Induced Transition on the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Barnhardt, Michael D.; Tang, Chun Y.; Sozer, Emre; Candler, Graham

    2012-01-01

    Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.

  10. Role of Metal Ions on the Activity of Mycobacterium tuberculosis Pyrazinamidase

    PubMed Central

    Sheen, Patricia; Ferrer, Patricia; Gilman, Robert H.; Christiansen, Gina; Moreno-Román, Paola; Gutiérrez, Andrés H.; Sotelo, Jun; Evangelista, Wilfredo; Fuentes, Patricia; Rueda, Daniel; Flores, Myra; Olivera, Paula; Solis, José; Pesaresi, Alessandro; Lamba, Doriano; Zimic, Mirko

    2012-01-01

    Pyrazinamidase of Mycobacterium tuberculosis catalyzes the conversion of pyrazinamide to the active molecule pyrazinoic acid. Reduction of pyrazinamidase activity results in a level of pyrazinamide resistance. Previous studies have suggested that pyrazinamidase has a metal-binding site and that a divalent metal cofactor is required for activity. To determine the effect of divalent metals on the pyrazinamidase, the recombinant wild-type pyrazinamidase corresponding to the H37Rv pyrazinamide-susceptible reference strain was expressed in Escherichia coli with and without a carboxy terminal. His-tagged pyrazinamidase was inactivated by metal depletion and reactivated by titration with divalent metals. Although Co2+, Mn2+, and Zn2+ restored pyrazinamidase activity, only Co2+ enhanced the enzymatic activity to levels higher than the wild-type pyrazinamidase. Cu2+, Fe2+, Fe3+, and Mg2+ did not restore the activity under the conditions tested. Various recombinant mutated pyrazinamidases with appropriate folding but different enzymatic activities showed a differential pattern of recovered activity. X-ray fluorescence and atomic absorbance spectroscopy showed that recombinant wild-type pyrazinamidase expressed in E. coli most likely contained Zn. In conclusion, this study suggests that M. tuberculosis pyrazinamidase is a metalloenzyme that is able to coordinate several ions, but in vivo, it is more likely to coordinate Zn2+. However, in vitro, the metal-depleted enzyme could be reactivated by several divalent metals with higher efficiency than Zn. PMID:22764307

  11. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    NASA Astrophysics Data System (ADS)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  12. Studying Activity Series of Metals.

    ERIC Educational Resources Information Center

    Hoon, Tien-Ghun; And Others

    1995-01-01

    Presents teaching strategies that illustrate the linking together of numerous chemical concepts involving the activity of metals (quantitative analysis, corrosion, and electrolysis) through the use of deep-level processing strategies. Concludes that making explicit links in the process of teaching chemistry can lead effectively to meaningful…

  13. "Uh," "Um," and Autism: Filler Disfluencies as Pragmatic Markers in Adolescents with Optimal Outcomes from Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Irvine, Christina A.; Eigsti, Inge-Marie; Fein, Deborah A.

    2016-01-01

    Filler disfluencies--"uh" and "um"--are thought to serve distinct discourse functions. We examined fillers in spontaneous speech by youth with autism spectrum disorder (ASD), who struggle with pragmatic language, and by youth with ASD who have achieved an "optimal outcome" (OO), as well as in peers with typical…

  14. The Effect of Fracture Filler Composition on the Parameters of Shear Deformation Regime

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Ostapchuk, A.; Batuhtin, I.

    2015-12-01

    Geomechanical models of different slip mode nucleation and transformation can be developed basing on laboratory experiments, in which regularities of shear deformation of gouge-filled faults are studied. It's known that the spectrum of possible slip modes is defined by both macroscopic deformation characteristics of the fault and mesoscale structure of fault filler. Small variations of structural parameters of the filler may lead to a radical change of slip mode [1, 2]. This study presents results of laboratory experiments investigating regularities of shear deformation of discontinuities filled with multicomponent granular material. Qualitative correspondence between experimental results and natural phenomena is detected. The experiments were carried out in the classical "slider model" statement. A granite block slides under shear load on a granite substrate. The contact gap between rough surfaces was filled with a discrete material, which simulated the principal slip zone of a fault. The filler components were quartz sand, salt, glass beads, granite crumb, corundum, clay and pyrophyllite. An entire spectrum of possible slip modes was obtained - from stable slip to slow-slip events and to regular stick-slip with various coseismic displacements realized per one act of instability. Mixing several components in different proportions, it became possible to trace the gradual transition from stable slip to regular stick-slip, from slow-slip events to fast-slip events. Depending on specific filler component content, increasing the portion of one of the components may lead to both a linear and a non-linear change of slip event moment (a laboratory equivalent of the seismic moment). For different filler compositions durations of equal-moment events may differ by more than two orders of magnitude. The findings can be very useful for developing geomechnical models of nucleation and transformation of different slip modes observed at natural faults. The work was supported by

  15. Comparing Efficacy and Costs of Four Facial Fillers in Human Immunodeficiency Virus-Associated Lipodystrophy: A Clinical Trial.

    PubMed

    Vallejo, Alfonso; Garcia-Ruano, Angela A; Pinilla, Carmen; Castellano, Michele; Deleyto, Esther; Perez-Cano, Rosa

    2018-03-01

    The objective of this study was to evaluate and compare the safety and effectiveness of four different dermal fillers in the treatment of facial lipoatrophy secondary to human immunodeficiency virus. The authors conducted a clinical trial including 147 patients suffering from human immunodeficiency virus-induced lipoatrophy treated with Sculptra (poly-L-lactic acid), Radiesse (calcium hydroxylapatite), Aquamid (polyacrylamide), or autologous fat. Objective and subjective changes were evaluated during a 24-month follow-up. Number of sessions, total volume injected, and overall costs of treatment were also analyzed. A comparative cost-effectiveness analysis of the treatment options was performed. Objective improvement in facial lipoatrophy, assessed by the surgeon in terms of changes from baseline using the published classification of Fontdevila, was reported in 53 percent of the cases. Patient self-evaluation showed a general improvement after the use of facial fillers. Patients reported being satisfied with the treatment and with the reduced impact of lipodystrophy on their quality of life. Despite the nonsignificant differences observed in the number of sessions and volume, autologous fat showed significantly lower costs than all synthetic fillers (p < 0.05). Surgical treatment of human immunodeficiency virus-associated facial lipoatrophy using dermal fillers is a safe and effective procedure that improves the aesthetic appearance and the quality of life of patients. Permanent fillers and autologous fat achieve the most consistent results over time, with lipofilling being the most cost-effective procedure.

  16. Noninvasive Facial Rejuvenation. Part 2: Physician-Directed—Neuromodulators and Fillers

    PubMed Central

    Dickey, Ryan M.; Louis, Matthew R.; Cox, Joshua A.; Mohan, Kriti; Lee, Edward I.; Nigro, Marjory G.

    2016-01-01

    A proper knowledge of noninvasive facial rejuvenation is integral to the practice of a cosmetic surgeon. Noninvasive facial rejuvenation can be divided into patient- versus physician-directed modalities. Patient-directed facial rejuvenation combines the use of facial products such as sunscreen, moisturizers, retinoids, α-hydroxy acids, and various antioxidants to both maintain youthful skin as well as rejuvenate damaged skin. Physicians may recommend and often prescribe certain products, but patients are in control with this type of facial rejuvenation. On the other hand, physician-directed facial rejuvenation entails modalities that require direct physician involvement, such as neuromodulators, filler injections, laser resurfacing, microdermabrasion, and chemical peels. With the successful integration of each of these modalities, a complete facial regimen can be established and patient satisfaction can be maximized. This article is the second in a three-part series describing noninvasive facial rejuvenation. Here the authors discuss neuromodulators and fillers in detail, focusing on indications for use, techniques, and common side effects. PMID:27478422

  17. Blinded evaluation of the effects of hyaluronic acid filler injections on first impressions.

    PubMed

    Dayan, Steven H; Arkins, John P; Gal, Thomas J

    2010-11-01

    Facial appearance has profound influence on the first impression that is projected to others. To determine the effects that complete correction of the nasolabial folds (NLFs) with hyaluronic acid (HA) filler has on the first impression one makes. Twenty-two subjects received injections of HA filler into the NLFs. Photographs of the face in a relaxed pose were taken at baseline, optimal correction visit, and 4 weeks after optimal correction. Three hundred four blinded evaluators completed a survey rating first impression on various measures of success for each photo. In total, 5,776 first impressions were recorded, totaling 46,208 individual assessments of first impression. Our findings indicate a significant improvement in mean first impression in the categories of dating success, attractiveness, financial success, relationship success, athletic success, and overall first impression at the optimal correction visit. At 4 weeks after the optimal correction visit, significance was observed in all categories measured: social skills, academic performance, dating success, occupational success, attractiveness, financial success, relationship success, athletic success, and overall first impression. Full correction of the NLFs with HA filler significantly and positively influences the first impression an individual projects. © 2010 by the American Society for Dermatologic Surgery, Inc.

  18. PARACENTRAL ACUTE MIDDLE MACULOPATHY ASSOCIATED WITH RETINAL ARTERY OCCLUSION AFTER COSMETIC FILLER INJECTION.

    PubMed

    Sridhar, Jayanth; Shahlaee, Abtin; Shieh, Wen-Shi; Rahimy, Ehsan

    2017-01-01

    To report a single case of paracentral acute middle maculopathy in association with retinal artery occlusion in the setting of ipsilateral facial cosmetic filler injection. Case report. A 35-year-old woman presenting with sudden vision loss to finger count vision immediately after left nasal fat pad cosmetic filler injection. Dilated funduscopic examination revealed a swollen optic disc with multiple branch arterial occlusions with visible embolic material. Fluorescein angiography confirmed multiple branch arterial occlusions in addition to a focal choroidal infarction in the macula. Spectral-domain optical coherence tomography revealed middle retinal hyperreflectivity in the superotemporal macula consistent with paracentral acute middle maculopathy. En face optical coherence tomography demonstrated a superotemporal area of whitening at the level of the deep capillary plexus corresponding to the paracentral acute middle maculopathy lesion seen on spectral-domain optical coherence tomography. On twelve-month follow-up, final visual acuity was 20/100 due to optic neuropathy. Emboli from cosmetic facial filler injections may rarely result in ipsilateral arterial occlusions and now have a novel association with paracentral acute middle maculopathy likely due to deep capillary plexus feeder vessel occlusion.

  19. Use of Almond Shells and Rice Husk as Fillers of Poly(Methyl Methacrylate) (PMMA) Composites

    PubMed Central

    Sabbatini, Alessandra; Lanari, Silvia; Santulli, Carlo

    2017-01-01

    In recent years, wood fibres have often been applied as the reinforcement of thermoplastic materials, such as polypropylene, whereas their use in combination with thermosetting resin has been less widespread. This study concerns the production of PMMA-based composites by partly replacing alumina trihydrate (ATH) with wood waste fillers, namely rice husks and almond shells, which would otherwise be disposed by incineration. The amount of filler introduced was limited to 10% as regards rice husks and 10 or 15% almond shells, since indications provided by reactivity tests and viscosity measurements did not suggest the feasibility of total replacement of ATH. As a matter of fact, the introduction of these contents of wood waste filler in PMMA-based composite did not result in any significant deterioration of its mechanical properties (Charpy impact, Rockwell M hardness and flexural performance). Some reduction of these properties was only observed in the case of introduction of 15% almond shells. A further issue concerned the yellowing of the organic filler under exposure to UV light. On the other hand, a very limited amount of water was absorbed, never exceeding values around 0.6%, despite the significant porosity revealed by the filler’s microscopic evaluation. These results are particularly interesting in view of the application envisaged for these composites, i.e., wood replacement boards. PMID:28773234

  20. Investigation of the degradation-retarding effect caused by the low swelling capacity of a novel hyaluronic Acid filler developed by solid-phase crosslinking technology.

    PubMed

    Park, Sunyoung; Park, Kui Young; Yeo, In Kwon; Cho, Sung Yeon; Ah, Young Chang; Koh, Hyun Ju; Park, Won Seok; Kim, Beom Joon

    2014-06-01

    A variety of hyaluronic acid (HA) fillers demonstrate unique physical characteristics, which affect the quality of the HA filler products. The critical factors that affect the degradation of HA gels have not yet been determined. Our objective was to determine the characteristics of HA gels that affect their resistance to the degradation caused by radicals and enzymes. Three types of HA fillers for repairing deep wrinkles, Juvederm Ultra Plus (J-U), Restylane Perlane (Perlane), and Cleviel, were tested in this study. The resistance of these HA fillers to enzymatic degradation was measured by carbazole and displacement assays using hyaluronidase as the enzyme. The resistance of these fillers to radical degradation was measured by the displacement assay using H2O2. Different tests for evaluating the degradation resistance of HA gels can yield different results. The filler most susceptible to enzymatic degradation was J-U, followed by Perlane and Cleviel. The HA filler showing the highest degree of degradation caused by H2O2 treatment was Perlane, followed by J-U, and then Cleviel. Cleviel showed higher enzymatic and radical resistances than J-U and Perlane did. Furthermore, it exhibited the highest resistance to heat and the lowest swelling ratio among all the fillers that were examined. The main factor determining the degradation of HA particles is the gel swelling ratio, which is related to the particle structure of the gel. Our in vitro assays suggest that the decrease in the swelling ratio will lead to a retarding effect on the degradation of HA fillers.

  1. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  2. Process Simulation of Gas Metal Arc Welding Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Paul E.

    2005-09-06

    ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less

  3. Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction

    PubMed Central

    Thomas, Nebu George; Sanil, George P.; Rajmohan, Gopimohan; Prabhakaran, Jayachandran V.; Panda, Amulya K.

    2011-01-01

    Background: The preservation or reduction of alveolar ridge resorption following tooth extraction is important in patients especially for those intended for implants at a later stage. One way to achieve this is by using membranes, graft materials, and biodegradable space fillers to prevent alveolar bone resorption and promote regeneration. A major attraction for using biodegradable and biocompatible polymers as space fillers for ridge preservation is their safety profile in comparison to xenograft materials like lyophilized bone and collagen. Materials and Methods: Biocompatible polylactide space fillers were fabricated by fusing porous polylactide particles. The sponges were loaded with drugs by placing them in the respective solutions. Pseudomonas aeruginosa was isolated from a chronic periodontitis patient and in vitro anti-microbial evaluation was done with the drug loaded sponges. Results: Chlorhexidine loaded space filler showed significant anti microbial effect against multiple drug resistant Pseudomonas aeruginosa isolated from a patient with chronic periodontitis. Conclusion: The results of this study indicate that biodegradable drug releasing polylactide space fillers has the potential to be used for ridge preservation following tooth extraction. Release of drugs in the socket may prove useful in preventing development of alveolar osteitis post extraction which can interfere with normal healing of the socket. Synthetic biodegradable polymers also exhibit a controlled degradation rate to achieve complete resorption within the intended time. PMID:22028514

  4. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  5. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity

    PubMed Central

    Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.

    2014-01-01

    Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790

  6. Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Shishkin, A.; Hussainova, I.; Kozlov, V.; Lisnanskis, M.; Leroy, P.; Lehmhus, D.

    2018-05-01

    Syntactic foams (SFs) and metal matrix syntactic foams (MMSFs) represent an advanced type of metal matrix composites (MMCs) based on hollow microspheres as particulate reinforcement. In general, SF and MMSFs allow tailoring of properties through choice of matrix, reinforcement, and volume fraction of the latter. A further handle for property adjustment is surface modification of the reinforcing particles. The present study introduces cenospheres for use as filler material in SF and MMSFs and as lightweight filler with electromagnetic interference shielding properties in civil engineering, which have been surface coated by means of physical vapor deposition, namely vibration-assisted sputter coating using a magnetron sputtering system. Altogether four types of such cenosphere-based composite powders (CPs) with an original particle size range of 50-125 µm (average particle size d50 75 µm) were studied. Surface films deposited on these were composed of Cu, stainless steel, Ti, and Ti-TiN double layers. For Cu coatings, the deposited metal film thickness was shown to be dependent on the sputtering energy. Scanning electron microscope backscattering images revealed nonporous films uniform in thickness directly after sputtering. Film thickness varied between 0.15 µm and 2.5 µm, depending on coating material and sputtering parameters. From these materials, samples were produced without addition of metal powders, exhibiting metal contents as low as 8-10 wt.% based on the coating alone. Obtained samples had an apparent density of 1.1-1.9 g/cm3 and compressive strengths ranging from 22 MPa to 135 MPa.

  7. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    DOEpatents

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  8. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    PubMed

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.

  9. Correction of hyperopia by intrastromal cutting and biocompatible filler injection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Freidank, Sebastian; Vogel, Alfred; Anderson, Richard R.; Birngruber, Reginald; Linz, Norbert

    2017-02-01

    For ametropic eyes, LASIK is a common surgical procedure to correct the refractive error. However, the correction of hyperopia is more difficult than that of myopia because the increase of the central corneal curvature by excimer ablation is only possible by intrastromal tissue removal within a ring-like zone in the corneal periphery. For high hyperopia, the ring-shaped indentation leads to problems with the stability and reproducibility of the correction due to epithelial regrowth. Recently, it was shown that the correction of hyperopia can be achieved by implanting intracorneal inlays into a laser-dissected intrastromal pocket. In this paper we demonstrate the feasibility of a new approach in which a transparent, and biocompatible liquid filler material is injected into a laser-dissected corneal pocket, and the refractive change is monitored via OCT. This technique allows for a precise and adjustable change of the corneal curvature. Precise cutting of the intrastromal pocket was achieved by focusing UV laser picosecond pulses from a microchip laser system into the cornea. After laser dissection, the transparent filler material was injected into the pocket. The increase of the refractive power by filler injection was evaluated by taking OCT images from the cornea. With this novel technique, it is possible to precisely correct hyperopia of up to 10 diopters. An astigmatism correction is also possible by using ellipsoidal intrastromal pockets.

  10. The partial replacement of palm kernel shell by carbon black and halloysite nanotubes as fillers in natural rubber composites

    NASA Astrophysics Data System (ADS)

    Daud, Shuhairiah; Ismail, Hanafi; Bakar, Azhar Abu

    2017-07-01

    The effect of partial replacement of palm kernel shell powder by carbon black (CB) and halloysite nanotube (HNT) on the tensile properties, rubber-filler interaction, thermal properties and morphological studies of natural rubber (NR) composites were investigated. Four different compositions of NR/PKS/CB and NR/PKS/HNT composites i.e 20/0, 15/5, 10/10,5/15 and 0/20 parts per hundred rubber (phr) were prepared on a two roll mill. The results showed that the tensile strength and modulus at 100% elongation (M100) and 300% elongation (M300) were higher for NR/PKS/CB compared to NR/PKS/HNT composites. NR/PKS/CB composites had the lowest elongation at break (Eb). The effect of commercial fillers in NR/PKS composites on tensile properties was confirmed by the rubber-filler interaction and scanning electron microscopy (SEM) study. The thermal stability of PKS filled NR composites with partially replaced by commercial fillers also determined by Thermo gravimetric Analysis (TGA).

  11. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W.

    2015-06-01

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  12. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    PubMed

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  13. Human histology and persistence of various injectable filler substances for soft tissue augmentation.

    PubMed

    Lemperle, Gottfried; Morhenn, Vera; Charrier, Ulrich

    2003-01-01

    An increasing number of soft tissue filler substances have been introduced to the beauty market outside the U.S. which lack experimental and clinical data in support of their claim. Ten commercially available filler substances were examined for biocompatibility and durability: 0.1 cc of each substance was injected deep intradermally into the volar forearm of one of the authors and observed for clinical reaction and permanence. At 1, 3, 6, and 9 months the test sites were excised, histologically examined, and graded according to foreign body reactions classification. Collagen (Zyplast) was phagocytosed at 6 months and hyaluronic acid (Restylane) at 9 months. PMMA microspheres (Artecoll) had encapsulated with connective tissue, macrophages, and sporadic giant cells. Silicone oil (PMS 350) was clinically inconspicuous but dissipated into the tissue, causing a chronic foreign body reaction. Polylactic acid microspheres (New-Fill) induced a mild inflammatory response and had disappeared clinically at 4 months. Dextran microspheres (Reviderm intra) induced a pronounced foreign body reaction and had disappeared at 6 months. Polymethylacrylate particles (Dermalive) induced the lowest cellular reaction but had disappeared clinically at 6 months. Polyacrylamide (Aquamid) was well tolerated and remained palpable to a lessening degree over the entire testing period. Histologically, it dissipated more slowly and was kept in place through fine fibrous capsules. Polyvinylhydroxide microspheres suspended in acrylamide (Evolution) were well tolerated, slowly diminishing over 9 months. Calcium hydroxylapatite microspheres (Radiance FN) induced almost no foreign body reaction but were absorbed by the skin at 12 months. Host defense mechanisms react differently to the various filler materials, but all substances-resorbable or nonresorbable-appeared to be clinically and histologically safe, although all exhibit undesirable side effects. Since the mechanism of late inflammation or

  14. Basic principles of creating a new generation of high- temperature brazing filler alloys

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  15. Relationship between toxic metals exposure via cigarette smoking and rheumatoid arthritis.

    PubMed

    Afridi, Hassan Imran; Kazi, Tasneem Gul; Talpur, Farah Naz; Naher, Sumsun; Brabazon, Dermot

    2014-01-01

    The incidence of Rheumatoid Arthritis (RA) has increased among people who smoke tobacco. In the present study, the association between toxic metals exposure via cigarette smoking and rheumatoid arthritis incidence in the population living in Dublin, Ireland, is investigated. The different brands of cigarettes (filler tobacco, filter and ash) consumed by the population studied were analysed for Cd, Ni, and Pb. The concentrations of toxic elements in biological samples and different components of cigarettes were measured by inductively coupled plasma atomic emission spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked using certified reference materials. The filler tobacco of different branded cigarettes contain Cd, Ni, and Pb concentrations in the ranges of 1.73-2.02, 0.715-1.52, and 0.378-1.16 μg/cigarette, respectively. The results of this study showed that the mean values of cadmium nickel, and lead were significantly higher in scalp hair and blood samples of rheumatoid arthritis patients when related to healthy controls, while the difference was significant in the case of smoker patients (p < 0.001). The levels of all three toxic metals were 2- to 3-fold higher in scalp hair and blood samples of non arthritis smoker subjects as compared to nonsmoker controls. The high exposure of toxic metals as a result of cigarette smoking may be synergistic with risk factors associated with rheumatoid arthritis.

  16. Chinese deaf adolescents' free recall of taxonomic, slot-filler, and thematic categories.

    PubMed

    Li, Degao; Zhang, Jijia

    2009-08-01

    Four experiments were conducted to show that deaf adolescents tended to process information in different ways from hearing adolescents. Memorizing items sequentially shown on computer screens under the control of their articulators' movements, deaf adolescents tended to treat items that cohered as taxonomic, thematic, or slot-filler categories as isolated pieces of information. Having to perceive information by means of sign language, however, their achievements were not worse than those of hearing adolescents anymore, no matter whether the stimuli were presented as words or pictures. They could not only utilize categories relations to help memorize categories exemplars but were relatively better aware of slot-filler or thematic than taxonomic relations as well, suggesting that they had a relatively delayed development of taxonomic category representations in comparison with hearing adolescents.

  17. Novel hyaluronic acid dermal filler: dermal gel extra physical properties and clinical outcomes.

    PubMed

    Monheit, Gary D; Baumann, Leslie S; Gold, Michael H; Goldberg, David J; Goldman, Mitchel P; Narins, Rhoda S; Bachtell, Nathan; Garcia, Emily; Kablik, Jeffrey; Gershkovich, Julia; Burkholder, David

    2010-11-01

    Dermal gel extra (DGE) is a new, tightly cross-linked hyaluronic acid (HA)-based dermal filler containing lidocaine engineered to resist gel deformation and degradation. To develop a firmer gel product (DGE) and compare the efficacy and safety of DGE with nonanimal stabilized HA (NASHA) for correction of nasolabial folds (NLFs). DGE physical properties were characterized, and 140 subjects with moderate to deep NLFs were treated with DGE and NASHA in a randomized, multicenter, split-face design study. Efficacy, pain, and satisfaction were measured using appropriate standard instruments. Adverse events were monitored throughout the study. DGE has a higher modulus and a higher gel:fluid ratio than other HA fillers. Similar optimal correction was observed with DGE and NASHA through 36 weeks (9 months). Study subjects required less volume (p<.001) and fewer touch-ups (p=.005) and reported less injection pain (p<.001) with DGE treatment. Most adverse events were mild to moderate skin reactions. DGE is a firm HA gel that required significantly less volume and fewer touch-ups to provide equivalent efficacy to NASHA for NLF correction; both dermal gels were well tolerated. DGE will provide a comfortable and cost-effective dermal filler option for clinicians and patients. © 2010 by the American Society for Dermatologic Surgery, Inc.

  18. Variable Thermal-Force Bending of a Three-Layer Bar with a Compressible Filler

    NASA Astrophysics Data System (ADS)

    Starovoitov, E. I.; Leonenko, D. V.

    2017-11-01

    Deformation of a three-layer elastoplastic bar with a compressible filler in a temperature field is considered. To describe the kinematics of a pack asymmetric across its thickness, the hypothesis of broken line is accepted, according to which the Bernoulli hypothesis is true in thin bearing layers, and the Timoshenko hypothesis is valid for a filler compressible across the its thickness, with a linear approximation of displacements across the layer thickness. The work of filler in the tangential direction is taken into account. The physical stress-strain relations correspond to the theory of small elastoplastic deformations. Temperature variations are calculated from a formula obtained by averaging the thermophysical properties of layer materials across the bar thickness. Using the variational method, a system of differential equilibrium equations is derived. On the boundary, the kinematic conditions of simply supported ends of the bar are assumed. The solution of the boundary problem is reduced to the search for four functions, namely, deflections and longitudinal displacements of median surfaces of the bearing layers. An analytical solution is derived by the method of elastic solutions with the use of the Moskvitin theorem on variable loadings. Its numerical analysis is performed for the cases of continuous and local loads.

  19. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  20. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes.

    PubMed

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents.

  1. Mechanical, thermal, and moisture properties of plastics with bean as filler

    USDA-ARS?s Scientific Manuscript database

    Experiments on polymers using beans as fillers are reported herein. We are looking for desirable mechanical, thermal and moisture properties at economical costs. Poly(lactic acid) (PLA) is studied as the polymeric matrix because it is available and biodegradable. Although the physical properties are...

  2. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  3. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  4. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  5. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  6. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  7. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    PubMed

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  8. Stability Enhancement of Polymeric Sensing Films Using Fillers

    NASA Technical Reports Server (NTRS)

    Lin, Brian; Shevade, Abhijit; Ryan, Margaret Amy; Kisor, Adam; Yen, Shiao-Pin; Manatt, Kenneth; Homer, Margie; Fleurial, Jean-Pierre

    2006-01-01

    Experiments have shown the stability enhancement of polymeric sensing films on mixing the polymer with colloidal filler particles (submicron-sized) of carbon black, silver, titanium dioxide, and fumed silicon dioxide. The polymer films are candidates for potential use as sensing media in micro/nano chemical sensor devices. The need for stability enhancement of polymer sensing films arises because such films have been found to exhibit unpredictable changes in sensing activity over time, which could result in a possible failure of the sensor device. The changes in the physical properties of a polymer sensing film caused by the sorption of a target molecule can be measured by any of several established transduction techniques: electrochemical, optical, calorimetric, or piezoelectric, for example. The transduction technique used in the current polymer stability experiments is based on piezoelectric principles using a quartz-crystal microbalance (QCM). The surface of the QCM is coated with the polymer, and the mass uptake by the polymer film causes a change in the oscillating frequency of the quartz crystal. The polymer used for the current study is ethyl cellulose. The polymer/ polymer composite solutions were prepared in 1,3 dioxolane solvent. The filler concentration was fixed at 10 weight percent for the composites. The polymer or polymer composite solutions were cast on the quartz crystal having a fundamental frequency of about 6 MHz. The coated crystal was subjected to a multistage drying process to remove all measurable traces of the solvent. In each experiment, the frequency of oscillation was measured while the QCM was exposed to clean, dry, flowing air for about 30 minutes, then to air containing a known concentration of isopropanol for about 30 minutes, then again to clean dry air for about 30 minutes, and so forth. This cycle of measurements for varying isopropanol concentrations was repeated at intervals for several months. The figure depicts some of the

  9. Properties of styrene-maleic anhydride copolymers containing wood-based fillers

    Treesearch

    John Simonsen; Rodney Jacobson; Roger Rowell

    1998-01-01

    Recycled newsprint (ONP) and dry process aspen fiber were combined with styrene maleic anhydride (SMA) copolymers containing either 7 or 14 percent maleic anhydride. The fiber-filled SMA composites were equivalent or superior to unfilled SMA in strength, stiffness, and notched Izod impact strength. ONP performed surprisingly well as a filler. Unnotched Izod impact...

  10. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  11. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  12. Effects of heavy metal Cd pollution on microbial activities in soil.

    PubMed

    Shi, Weilin; Ma, Xiying

    2017-12-23

    Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  13. A clinical study on the usefulness of autologous plasma filler in the treatment of nasolabial fold wrinkles.

    PubMed

    Choi, Young-Jun; Kim, Han-Saem; Min, Joon Hong; Nam, Jae-Hui; Lee, Ga-Young; Kim, Won-Serk

    2017-06-01

    Recently, the efficacy of autologous plasma filler for the reduction of facial wrinkles has been demonstrated. The aim of our study is to validate the efficacy and safety of autologous plasma filler in treating nasolabial fold wrinkles. Twenty Korean patients with moderate-to-severe nasolabial fold wrinkles were enrolled. The patients were treated with one session of autologous plasma filler. The wrinkle improvement effects were evaluated at 1-week, 4-week, 8-week, and 12-week after the treatment. Three assessment methods were applied. First, two independent dermatologists assessed cosmetic results using a 5-point wrinkle assessment scale. Second, global aesthetic improvement score was used for assessment of the final cosmetic results. Third, patient satisfaction was surveyed. Also, the adverse effects associated to treatment were observed. Mean age of the patients was 44.5 years. The average 5-point wrinkle assessment scale score was significantly improved at 1, 4, 8, and 12 weeks after treatment, comparing to before treatment (p < 0.01). The patients' average global aesthetic improvement score also indicated better cosmetic outcomes. The clinical improvement with sufficient patients' satisfaction and no significant adverse events demonstrated that novel autologous plasma filler could be considered as efficient and safety treatment option for nasolabial fold wrinkles.

  14. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration

    PubMed Central

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J.; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H.; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M.; Kohn, Joachim; Hacker, Michael C.

    2017-01-01

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR. PMID:28531139

  15. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration.

    PubMed

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M; Kohn, Joachim; Hacker, Michael C

    2017-05-21

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.

  16. Development of a high temperature ceramic-to-metal seal for Air Force Weapons Laboratory Laser

    NASA Astrophysics Data System (ADS)

    Honnell, R. E.; Stoddard, S. D.

    1987-03-01

    Procedures were developed for fabricating vacuum tight metal-to-ceramic ring seals between Inconel 625 and MgO-3 wt % Y2O3 tubes metallized with a calcia-alumina-silica glass (CaO-29 wt % Al2O3-35 wt % SiO2) containing 50 vol % molybdenum filler. Palniro No. 1 (Au-25 wt % Pd-25 wt % Ni) was found to be the most reliable braze for joining Inconel to metallized MgO-3 wt % Y2O3 bodies. The reliabilities of the processing procedures and the material systems were demonstrated. A prototype electrical feedthrough was fabricated for 1173 K operation in air or vacuum.

  17. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    PubMed

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  18. Automotive Body Fillers; Auto Body Repair and Refinishing 2: 9035.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course provides students with the general information, technical knowledge, basic skills, attitudes, and values required for job entry level as an auto body repair helper. Course content includes goals, specific objectives, orientation, filling with body solder, and plastic filler. A post-test sample is appended. (NH)

  19. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers.

    PubMed

    Ikemura, Kunio; Tay, Franklin R; Endo, Takeshi; Pashley, David H

    2008-05-01

    This paper reviews our recent studies on fluoride-releasing adhesives and the related studies in this field based on information from original research papers, reviews, and patent literatures. A revolutionary PRG (pre-reacted glass ionomer) filler technology--where fillers were prepared by the acid-base reaction of a fluoroaluminosilicate glass with polyalkenoic acid in water, was newly developed, and a new category as "Giomer" was introduced into the market. On fluoride release capability, SIMS examination revealed in vitro fluoride ion uptake by dentin substrate from the PRG fillers in dental adhesive. On bonding durability, it was found that the improved durability of resin-dentin bonds might be achieved not only via the strengthened dentin due to fluoride ion uptake from the PRG-Ca fillers, but also due to retention of relatively insoluble 4-AETCa formed around remnant apatite crystallites within the hybrid layer in 4-AET-containing self-etching adhesives. On ultramorphological study of the resin-dentin interface, TEM images of the PRG-Ca fillers revealed that the dehydrated hydrogel was barely distinguishable from normal glass fillers, if not for the concurrent presence of remnant, incompletely reacted glass cores. In conclusion, it was expected that uptake of fluoride ions with cariostatic effect from PRG-Ca fillers would endow dentin substrates with the benefit of secondary caries prevention, together with an effective and durable adhesion to dentin.

  20. Yeast enolase: mechanism of activation by metal ions.

    PubMed

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  1. Infectious complications of Bio-Alcamid filler used for HIV-related facial lipoatrophy.

    PubMed

    Nadarajah, Jeya T; Collins, Micaela; Raboud, Janet; Su, DeSheng; Rao, Kavya; Loutfy, Mona R; Walmsley, Sharon

    2012-12-01

    Human immunodeficiency virus (HIV)-related facial lipoatrophy is a devastating adverse effect of antiretroviral therapy. At this time, the most viable treatment option is cosmetic surgery with synthetic fillers. Bio-Alcamid has many advantages over other fillers, and has become widely used. The objective of this study was to determine the incidence rate of infectious complications associated with Bio-Alcamid facial filler in patients with HIV-related facial lipoatrophy (FLA). This retrospective study identified patients who had received treatment with Bio-Alcamid, and reviewed their long-term outcomes. Two hundred sixty-seven patients with Bio-Alcamid were reviewed. Infectious complications were documented in 56 (19%) patients. The incidence rate of infection was 0.07 per patient-year of follow-up. Among patients with infections, the median time from first Bio-Alcamid treatment to infection was 32 months (interquartile range, 21-42). We did not find an association between the development of infection and the level of immune suppression by HIV. Surgical drainage in addition to antibiotics was required for the majority of patients. Potential risk factors for infection include severity of FLA and a preceding history of facial manipulation, including Bio-Alcamid touch-up treatments, cosmetic surgery, facial trauma, and dental work. Bio-Alcamid treatment of HIV-related FLA was associated with a high rate of infectious complications, often presenting years after treatment. Antibiotic prophylaxis should be considered in patients with Bio-Alcamid prior to dental work or facial manipulation.

  2. Free radical scavenging properties of mannitol and its role as a constituent of hyaluronic acid fillers: a literature review.

    PubMed

    André, P; Villain, F

    2017-08-01

    Mannitol has both hydrating and antioxidant properties that make it an ideal excipient for use with hyaluronic acid (HA) fillers. This review examines the role of reactive oxygen species in the ageing process and their effects on both endogenous HA and HA products developed for aesthetic use. Evidence is presented to show that the free radical scavenging properties of mannitol provide it with a two-fold mechanism of action when combined with HA fillers: reducing the inflammation and swelling associated with the injection procedure itself, and preventing the degradation of the injected HA by free radicals. Mannitol also has a long- and well-established safety profile in both the food and pharmaceutical industry. Having established the rationale for using mannitol in combination with an HA filler, the products using this strategy are then reviewed. The addition of mannitol to HA fillers is a viable and safe option for improving both short- and long-term HA aesthetic effects. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Investigation of dissimilar metal welds by energy-resolved neutron imaging

    DOE PAGES

    Tremsin, Anton S.; Ganguly, Supriyo; Meco, Sonia M.; ...

    2016-06-09

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participatingmore » alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. As a result, a highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.« less

  4. Investigation of dissimilar metal welds by energy-resolved neutron imaging.

    PubMed

    Tremsin, Anton S; Ganguly, Supriyo; Meco, Sonia M; Pardal, Goncalo R; Shinohara, Takenao; Feller, W Bruce

    2016-08-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al-steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.

  5. Investigation of dissimilar metal welds by energy-resolved neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, Anton S.; Ganguly, Supriyo; Meco, Sonia M.

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participatingmore » alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. As a result, a highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.« less

  6. Investigation of dissimilar metal welds by energy-resolved neutron imaging

    PubMed Central

    Tremsin, Anton S.; Ganguly, Supriyo; Meco, Sonia M.; Pardal, Goncalo R.; Shinohara, Takenao; Feller, W. Bruce

    2016-01-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption. PMID:27504075

  7. A concept for improved fire-safety through coated fillers

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1977-01-01

    A possible method is examined for obtaining a high value of thermal conductivity before ignition and a low value after ignition in standard composite materials. The idea is to coat fiberglass, alumina trihydrate, and similar fillers with specially selected chemicals prior to using polymer resins. The amount of the coat constitutes typically less than 5% of the material's total weight. The experimental results obtained are consistent with the basic concept.

  8. Arcjet Tests of Different Gap-Filler Options for the Orion PICA Heatshield

    NASA Technical Reports Server (NTRS)

    Skokova, Kristina; Ellerby, Donald; Blosser, Max; Venkatapathy, Ethiraj; Bouslog, Stan; Reuther, James

    2009-01-01

    PICA (Phenolic Infiltrated Carbon Ablator) is one of the candidate thermal protection materials for the Orion vehicle. Because PICA is fabricated in blocks, gaps exist between the blocks, similar to the individual ceramic tiles of the Shuttle thermal protection system. The results of this work focus on arcjet test results of different gap-filler options for PICA, performed as part of the Orion TPS Advanced Development Project. The arcjet tests were performed at NASA Ames Research Center on stagnation models 4 inches in diameter at conditions representative of Orion flight conditions for both Lunar and Low Earth Orbit return. Performance of gap-filler options was evaluated based on the extent of backface temperature change, as compared to PICA without gaps, and on the extent of flow penetration into the gap, evident from the gap opening and widening.

  9. What Are Your Patients Reading Online About Soft-tissue Fillers? An Analysis of Internet Information

    PubMed Central

    Al Youha, Sarah A.; Bull, Courtney E.; Butler, Michael B.; Williams, Jason G.

    2016-01-01

    Background: Soft-tissue fillers are increasingly being used for noninvasive facial rejuvenation. They generally offer minimal downtime and reliable results. However, significant complications are reported and patients need to be aware of these as part of informed consent. The Internet serves as a vital resource to inform patients of the risks and benefits of this procedure. Methods: Three independent reviewers performed a structured analysis of 65 Websites providing information on soft-tissue fillers. Validated instruments were used to analyze each site across multiple domains, including readability, accessibility, reliability, usability, quality, and accuracy. Associations between the endpoints and Website characteristics were assessed using linear regression and proportional odds modeling. Results: The majority of Websites were physician private practice sites (36.9%) and authored by board-certified plastic surgeons or dermatologists (35.4%) or nonphysicians (27.7%). Sites had a mean Flesch-Kincaid grade level of 11.9 ± 2.6, which is well above the recommended average of 6 to 7 grade level. Physician private practice sites had the lowest scores across all domains with a notable lack of information on complications. Conversely, Websites of professional societies focused in plastic surgery and dermatology, as well as academic centers scored highest overall. Conclusions: As the use of soft-tissue fillers is rising, patients should be guided toward appropriate sources of information such as Websites sponsored by professional societies. Medical professionals should be aware that patients may be accessing poor information online and strive to improve the overall quality of information available on soft-tissue fillers. PMID:27536503

  10. Well-Defined Metal-O6 in Metal-Catecholates as a Novel Active Site for Oxygen Electroreduction.

    PubMed

    Liu, Xuan-He; Hu, Wei-Li; Jiang, Wen-Jie; Yang, Ya-Wen; Niu, Shuai; Sun, Bing; Wu, Jing; Hu, Jin-Song

    2017-08-30

    Metal-nitrogen coordination sites, M-N x (M = Fe, Co, Ni, etc.), have shown great potential to replace platinum group materials as electrocatalysts for oxygen reduction reaction (ORR). However, the real active site in M-N x is still vague to date due to their complicated structure and composition. It is therefore highly desirable but challenging to develop ORR catalysts with novel and clear active sites, which could meet the needs of comprehensive understanding of structure-function relationships and explore new cost-effective and efficient ORR electrocatalysts. Herein, well-defined M-O 6 coordination in metal-catecholates (M-CATs, M = Ni or Co) is discovered to be catalytically active for ORR via a four-electron-dominated pathway. In view of no pyrolysis involved and unambiguous crystalline structure of M-CATs, the M-O 6 octahedral coordination site with distinct structure is determined as a new type of active site for ORR. These findings extend the scope of metal-nonmetal coordination as an active site for ORR and pave a way for bottom-up design of novel electrocatalysts containing M-O 6 coordination.

  11. Treatment of wet blue with fillers produced from quebracho-modified gelatin

    USDA-ARS?s Scientific Manuscript database

    Gelatin modified with quebracho to produce high molecular weight, high viscosity products was investigated as a filler in leather processing. The uptake of quebracho/gelatin product by the wet blue was on the average about 55% of the 10% gelatin/quebracho product offered; the reaction appeared to be...

  12. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.

    PubMed

    Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J

    2017-11-08

    A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using

  13. Characterization Tests for Mineral Fillers Related to Performance of Asphalt Paving Mixtures

    DOT National Transportation Integrated Search

    1988-01-01

    Various studies have shown that the properties of mineral filler, especially the material passing 0.075 mm (No. 200) sieve (generally called P200 material), have a significant effect on the performance of asphalt paving mixtures in terms of permanent...

  14. Nanostructures and nanosecond dynamics at the polymer/filler interface

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Barkley, Deborah; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Taniguchi, Takashi

    We report in-situ nanostructures and nanosecond dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in polymer solutions (from dilute to concentrated solutions). The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene (a good solvent) to label the BPL for ``contrast-matching'' small-angle neutron scattering (SANS) and neutron spin echo (NSE) techniques. The SANS results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. In addition, the NSE results show that the dynamics of the swollen bound chains in the polymer solutions can be explained by the collective dynamics, the so-called ``breathing mode''. Intriguingly, it was also indicative that the collective dynamics is independent of the polymer concentrations and is much faster than that predicted from the solution viscosity. We will discuss the mechanism at the bound polymer-free polymer interface at the nanometer scale. T.K. acknowledges the financial support from NSF Grant (CMMI-1332499).

  15. Oil removal from runoff with natural sorbing filter fillers.

    PubMed

    Mažeikienė, Aušra; Vaiškūnaitė, Rasa; Vaišis, Vaidotas

    2014-08-01

    The aim of this paper was to investigate the ability of Lithuanian sheep wool waste and reeds (Phragmites australis) to absorb oil from runoff when it flows through filters filled with these materials. The third material that was analysed, the synthetic sorbent Fibroil, was chosen for comparing the results. The laboratory experiments were performed in several stages, with the following being filtrated: tap water with a diesel admixture, road runoff contaminated with oils, and also suspended solids. The significance of this work is due to the high runoff filtering rate (∼10 m/h) and high oil concentrations in the runoff (50-230 mg/L) used in the experiment. In these cases the use of sorbents is limited. Wool waste and reed (Phragmites australis) fillers are quite efficient (98-99%) in oil removal from runoff at a 10 m/h filtering rate. However, wool fillers clog up quickly. Reeds of the genus Phragmites australis are a natural source for the production of oil sorbents. The results obtained in this experimental work can be used in the design of equipment for the treatment of oil-contaminated runoff from gas stations as well as sullage from roads and tunnels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  17. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    PubMed

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  18. Structure and performance of polymer-derived bulk ceramics determined by method of filler incorporation

    NASA Astrophysics Data System (ADS)

    Konegger, T.; Schneider, P.; Bauer, V.; Amsüss, A.; Liersch, A.

    2013-12-01

    The effect of four distinct methods of incorporating fillers into a preceramic polymer matrix was investigated with respect to the structural and mechanical properties of the resulting materials. Investigations were conducted with a polysiloxane/Al2O3/ZrO2 model system used as a precursor for mullite/ZrO2 composites. A quantitative evaluation of the uniformity of filler distribution was obtained by employing a novel image analysis. While solvent-free mixing led to a heterogeneous distribution of constituents resulting in limited mechanical property values, a strong improvement of material homogeneity and properties was obtained by using solvent-assisted methods. The results demonstrate the importance of the processing route on final characteristics of polymer-derived ceramics.

  19. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2015-01-01

    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  20. Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane.

    PubMed

    Knebel, Alexander; Friebe, Sebastian; Bigall, Nadja Carola; Benzaqui, Marvin; Serre, Christian; Caro, Jürgen

    2016-03-23

    MIL-96(Al) layers were prepared as supported metal-organic frameworks membrane via reactive seeding using the α-alumina support as the Al source for the formation of the MIL-96(Al) seeds. Depending on the solvent mixture employed during seed formation, two different crystal morphologies, with different orientation of the transport-active channels, have been formed. This crystal orientation and habit is predefined by the seed crystals and is kept in the subsequent growth of the seeds to continuous layers. In the gas separation of an equimolar H2/CO2 mixture, the hydrogen permeability of the two supported MIL-96(Al) layers was found to be highly dependent on the crystal morphology and the accompanied channel orientation in the layer. In addition to the neat supported MIL-96(Al) membrane layers, mixed-matrix membranes (MMMs, 10 wt % filler loading) as a composite of MIL-96(Al) particles as filler in a continuous Matrimid polymer phase have been prepared. Five particle sizes of MIL-96(Al) between 3.2 μm and 55 nm were synthesized. In the preparation of the MIL-96(Al)/Matrimid MMM (10 wt % filler loading), the following preparation problems have been identified: The bigger micrometer-sized MIL-96(Al) crystals show a trend toward sedimentation during casting of the MMM, whereas for nanoparticles aggregation and recrystallization to micrometer-sized MIL-96(Al) crystals has been observed. Because of these preparation problems for MMM, the neat supported MIL-96(Al) layers show a relatively high H2/CO2 selectivity (≈9) and a hydrogen permeance approximately 2 magnitudes higher than that of the best MMM.

  1. Study on mechanical and physical properties of composite materials with recycled PET as fillers for paving block application

    NASA Astrophysics Data System (ADS)

    Wicaksono, Sigit Tri; Ardhyananta, Hosta; Rasyida, Amaliya

    2018-04-01

    Base on Sidoarjo's goverment data, there was more than 4000 metric ton perday of waste that has been accumulated during 2016. More than 10 percent from overall waste is plastics. In accordance with the Indonesia government regulation, "Indonesia clean from waste" by 2020 through 3R (Reduce, Reuse and Recycle) program, we have been focusing research on how to reduce the accumulation of the plastics waste in Sidoarjo by processing it become a new product. In this research, we have made the plastic waste of PET bottle as additional fillers or agregates of composite material for construction application as a paving block. The composition of PET plastic used as fillers is vary from 0, 10, 20, 30, 40 and 50% from total volume of agregates. The ratio of cement binder to sands agregate is 1:3. The specimens were characterized its mechanical and physical properties by using flexural testing, compressive testing, density and water absorbance measurement. The results show that the mechanical (flexural and compressive) properties of composite materials is increased significantly by increasing PET fillers up to 20%, however it was decreased when PET content more than 20%. But, both the density and water absobance of specimens are decreased by increasing of PET fillers.

  2. Porous poly(L-lactic acid) sheet prepared by stretching with starch particles as filler for tissue engineering.

    PubMed

    Ju, Dandan; Han, Lijing; Li, Zonglin; Chen, Yunjing; Wang, Qingjiang; Bian, Junjia; Dong, Lisong

    2016-05-20

    Porous poly(L-lactic acid) (PLLA) sheets were prepared by uniaxial stretching PLLA sheets containing starch filler. Here, the starch filler content, stretching ratio, stretching rate and stretching temperature are important factors to influence the structure of the porous PLLA sheets, therefore, they have been investigated in detail. The pore size distribution and tortuosity were characterized by Mercury Intrusion Porosimetry. The results revealed that the porosity and pore size enlarged with the increase of the starch filler content and stretching ratio, while shrank with the rise of stretching temperature. On the other hand, the pore structure almost had no changes with the stretching rate ranging between 5 and 40 mm/min. In order to test and verify that the porous PLLA sheet was suitable for the tissue engineering, the starch particles were removed by selective enzymatic degradation and its in vitro biocompatibility to osteoblast-like MC3T3-E1 cells was investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Evaluation on the feasibility of using bamboo fillers in plastic gear manufacturing via the Taguchi optimization method

    NASA Astrophysics Data System (ADS)

    Mehat, N. M.; Kamaruddin, S.

    2017-10-01

    An increase in demand for industrial gears has instigated the escalating uses of plastic-matrix composites, particularly carbon or glass fibre reinforced plastics as gear material to enhance the properties and limitation in plastic gears. However, the production of large quantity of these synthetic fibres reinforced composites has posed serious threat to ecosystem. Therefore, this work is conducted to study the applicability and practical ability of using bamboo fillers particularly in plastic gear manufacturing as opposed to synthetic fibres via the Taguchi optimization method. The results showed that no failure mechanism such as gear tooth root cracking and severe tooth wear were observed in gear tested made of 5-30 wt% of bamboo fillers in comparing with the unfilled PP gear. These results indicated that bamboo can be practically and economically used as an alternative filler in plastic material reinforcement as well as in minimizing the cost of raw material in general.

  4. Antistripping additives in lieu of mineral fillers in asphaltic concrete mixtures : final report.

    DOT National Transportation Integrated Search

    1975-04-01

    The major objective of the study was to determine the feasibility of specifying antistripping additives in lieu of mineral fillers in asphaltic concrete mixtures using Marshall Test and visual observation of stripping characteristics as criteria. : T...

  5. Preventing the Complications Associated with the Use of Dermal Fillers in Facial Aesthetic Procedures: An Expert Group Consensus Report.

    PubMed

    Urdiales-Gálvez, Fernando; Delgado, Nuria Escoda; Figueiredo, Vitor; Lajo-Plaza, José V; Mira, Mar; Ortíz-Martí, Francisco; Del Rio-Reyes, Rosa; Romero-Álvarez, Nazaret; Del Cueto, Sofía Ruiz; Segurado, María A; Rebenaque, Cristina Villanueva

    2017-06-01

    The use of dermal fillers in minimally invasive facial aesthetic procedures has become increasingly popular of late, yet as the indications and the number of procedures performed increase, the number of complications is also likely to increase. Paying special attention to specific patient characteristics and to the technique used can do much to avoid these complications. Indeed, a well-trained physician can also minimize the impact of such problems when they do occur. A multidisciplinary group of experts in aesthetic treatments reviewed the main factors associated with the complications that arise when using dermal fillers. A search of English, French and Spanish language articles in PubMed was performed using the terms "complications" OR "soft filler complications" OR "injectable complications" AND "dermal fillers". An initial document was drafted that reflected the complications identified and recommendations as to how they should be handled. This document was then reviewed and modified by the expert panel, until a final text was agreed upon and validated. The panel addressed consensus recommendations about the preparation, the procedure and the post-procedural care. The panel considered it crucial to obtain an accurate medical history to prevent potential complications. An additional clinical assessment, including standardized photography, is also crucial to evaluate the outcomes and prevent potential complications. Furthermore, the state of the operating theatre, the patient's health status and the preparation of the skin are critical to prevent superficial soft tissue infections. Finally, selecting the appropriate technique, based on the physician's experience, as well as the characteristics of the patient and filler, helps to ensure successful outcomes and limits the complications. This consensus document provides key elements to help clinicians who are starting to use dermal fillers to employ standard procedures and to understand how best to prevent

  6. Strain-dependent activation energy of shear transformation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Falk, Michael; Li, Jinfu; Kong, Lingti

    2017-04-01

    Shear transformation (ST) plays a decisive role in determining the mechanical behavior of metallic glasses, which is believed to be a stress-assisted thermally activated process. Understanding the dependence in its activation energy on the stress imposed on the material is of central importance to model the deformation process of metallic glasses and other amorphous solids. Here a theoretical model is proposed to predict the variation of the minimum energy path (MEP) associated with a particular ST event upon further deformation. Verification based on atomistic simulations and calculations are also conducted. The proposed model reproduces the MEP and activation energy of an ST event under different imposed macroscopic strains based on a known MEP at a reference strain. Moreover, an analytical approach is proposed based on the atomistic calculations, which works well when the stress varies linearity along the MEP. These findings provide necessary background for understanding the activation processes and, in turn, the mechanical behavior of metallic glasses.

  7. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  8. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    PubMed

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  9. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    USDA-ARS?s Scientific Manuscript database

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  10. Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering

    PubMed Central

    Gu, Zhen; Jamal, Syed; Detamore, Michael S.

    2013-01-01

    Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275

  11. Effect of combination ultrasonic and ball milling techniques of commercial fillers dispersion on mechanical properties of natural rubber (NR) latex films

    NASA Astrophysics Data System (ADS)

    Hamran, Noramirah; Rashid, Azura A.

    2017-07-01

    Commercial fillers such as silica and carbon black generally impart the reinforcing effects in dry rubber compound, but have an adverse effect on Natural rubber (NR) latex compounds. The addition of commercial fillers in NR latex has reduced the mechanical properties of NR latex films due to the destabilization effect in the NR latex compounds which govern by the dispersion quality, particle size and also the pH of the dispersion itself. The ball milling process is the conventional meth od of preparation of dispersions and ultrasonic has successfully used in preparation of nano fillers such as carbon nanotube (CNT). In this study the combination between the conventional methods; ball milling together the ultrasonic method were used to prepare the silica and carbon black dispersions. The different duration of ball milling (24, 48 and 72 hours) was compared with the ultrasonic method (30, 60, 90 and 120 minutes). The combination of ball milling and ultrasonic from the optimum individual technique was used to investigate the reduction of particle size of the fillers. The particle size analyzer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) test were carried out to investigate the obtained particle size and the tensile and tear test were carried out to investigate the mechanical properties of the NR latex films. The reduction of filler particle size is expected to impart the properties of NR latex films.

  12. Method for controlling brazing

    DOEpatents

    Hosking, F Michael [Albuquerque, NM; Hall, Aaron C [Albuquerque, NM; Givler, Richard C [Albuquerque, NM; Walker, Charles A [Albuquerque, NM

    2006-08-01

    A method for making a braze joint across a discontinuity in a work piece using alternating current. A filler metal is pre-placed at a location sufficiently close to the discontinuity such that, when an alternating current is applied across a work piece to heat the work piece and melt the filler metal, the filler metal is drawn into the discontinuity. The alternating current is maintained for a set residence time, generally less than 10 seconds and more particularly less than 3 seconds. The alternating current is then altered, generally by reducing the current and/or voltage such that the filler metal can solidify to form a braze joint of desired quality and thickness.

  13. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  14. What are the necessary practice competencies for two providers: dermal fillers and botulinum toxin type A injections?

    PubMed

    Spear, Marcia

    2010-01-01

    There has been a steady increase in the number of individuals who undergo dermal fillers and botulinum toxin Type A injections. The majority of these procedures are performed by nurse providers. The purpose of this study was to collect national data on the current practice among nursing providers within the American Society of Plastic Surgical Nurses (ASPSN). The goal was to utilize the national data and develop a document of the necessary competencies to guide the practice of providers of dermal fillers and botulinum toxin Type A injections. A survey tool was developed and validated for content by expert nursing providers among the membership of the ASPSN and disseminated via e-mail to the membership of the ASPSN. In addition, data from investigator training, mentoring, and evidence from a review of the literature were also incorporated into the competency document utilizing the Competency Outcomes and Performance Assessment (COPA) model. Common core issues became apparent that included contraindications for the use of botulinum toxin Type A and dermal fillers, postprocedure complications as well as strategies in terms of managing complications. The data also revealed that there is no common method providers are taught to assess the aesthetic patient and a lack of a collaborative relationship in current practice. Overwhelmingly, the respondents supported the need for defined practice competencies. A competency document to guide the practice of providers of dermal fillers and botulinum toxin Type A has been developed for completion of this DNP project.

  15. Hyaluron Filler Containing Lidocaine on a CPM Basis for Lip Augmentation: Reports from Practical Experience.

    PubMed

    Fischer, Tanja C; Sattler, Gerhard; Gauglitz, Gerd G

    2016-06-01

    Lip augmentation with hyaluronic acid fillers is established. As monophasic polydensified hyaluronic acid products with variable density, CPM-HAL1 (Belotero Balance Lidocaine, Merz Aesthetics, Raleigh, NC) and CPM-HAL2 (Belotero Intense Lidocaine, Merz Aesthetics, Raleigh, NC) are qualified for beautification and particularly natural-looking rejuvenation, respectively. The aim of this article was to assess the handling and outcome of lip augmentation using the lidocaine-containing hyaluronic acid fillers, CPM-HAL1 and CPM-HAL2. Data were documented from patients who received lip augmentation by means of beautification and/or rejuvenation using CPM-HAL1 and/or CPM-HAL2. Observation period was 4 months, with assessment of natural outcome, evenness, distribution, fluidity, handling, malleability, tolerability, as well as patient satisfaction and pain. A total of 146 patients from 21 German centers participated. Physicians rated natural outcome and evenness as good or very good for more than 95% of patients. Distribution, fluidity, handling, and malleability were assessed for both fillers as good or very good in more than 91% of patients. At every evaluation point, more than 93% of patients were very or very much satisfied with the product. A total of 125 patients (85.6%) experienced transient injection-related side effects. Pain intensity during the procedure was mild (2.72 ± 1.72 on the 0-10 pain assessment scale) and abated markedly within 30 minutes (0.42 ± 0.57). Lip augmentation with hyaluronic acid fillers produced a long-term cosmetic result. Due to the lidocaine content, procedural pain was low and transient. Accordingly, a high degree of patient satisfaction was achieved that was maintained throughout the observation period. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Experimental research on thermal conductive fillers for CCD module in space borne optical remote sensor

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Han, Xue-bing; Yang, Dong-shang; Gui, Li-jia; Zhao, Xiao-xiang; Si, Fu-qi

    2016-03-01

    A space-borne differential optical absorption spectrometer is a high precision aerospace optical remote sensor. It obtains the hyper-spectral,high spatial resolution radiation information by using the spectrometer with CCD(Charge Coupled Device)array detectors. Since a few CCDs are used as the key detector, the performance of the entire instrument is greatly affected by working condition of CCDs. The temperature of CCD modules has a great impact on the instrument measurement accuracy. It requires strict temperature control. The selection of the thermal conductive filler sticking CCD to the radiator is important in the CCD thermal design. Besides,due tothe complex and compact structure, it needs to take into account the anti-pollution of the optical system. Therefore, it puts forward high requirements on the selection of the conductive filler. In this paper, according to the structure characteristics of the CCD modules and the distribution of heat consumption, the thermal analysis tool I-DEAS/TMG is utilized to compute and simulate the temperature level of the CCD modules, while filling in thermal grease and thermal pad respectively. The temperature distribution of CCD heat dissipation in typical operating conditions is obtained. In addition, the heat balance test was carried out under the condition of two kinds of thermal conductive fillers. The thermal control of CCD was tested under various conditions, and the results were compared with the results of thermal analysis. The results show that there are some differences in thermal performance between the two kinds of thermal conductive fillers. Although they both can meet the thermal performance requirements of the instrument, either would be chosen taking account of other conditions and requirements such as anti-pollution and insulation. The content and results of this paper will be a good reference for the thermal design of the CCD in the aerospace optical payload.

  17. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  18. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer.

    PubMed

    Kazi, T G; Jalbani, N; Arain, M B; Jamali, M K; Afridi, H I; Sarfraz, R A; Shah, A Q

    2009-04-15

    It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy.

  19. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    PubMed Central

    Liu, Liming; Liu, Fei; Zhu, Meili

    2014-01-01

    Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA) welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated. PMID:28788508

  20. Effect of filler content on the properties of expanded- graphite-based composite bipolar plates for application in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Masand, Aakash; Borah, Munu; Pathak, Abhishek K.; Dhakate, Sanjay R.

    2017-09-01

    Minimization of the weight and volume of a hydrogen-based PEM fuel cell stack is an essential area of research for the development and commercialization of PEMFCs for various applications. Graphite-based composite bipolar plates have significant advantages over conventional metallic bipolar plates due to their corrosion resistivity and low cost. On the other hand, expanded graphite is seen to be a potential candidate for facilitating the required electrical, thermal and mechanical properties of bipolar plates with a low density. Therefore, in the present study, the focus is on minimization of the high loading of graphite and optimizes its composition to meet the target properties of bipolar plates as per the USDOE target. Three types of expanded graphite (EG)-phenolic-resin-based composite bipolar plates were developed by partially replacing the expanded graphite content with natural graphite (NG) and carbon black as an additional filler. The three types of composite plate with the reinforcing constituent ratio EG:NG:R (25:25:50) give a bending strength of 49 MPa, a modulus of ~6 GPa, electrical conductivity  >100 S cm-1, a shore hardness of 55 and a bulk density of 1.55 g/cc. The 50 wt% loading of resin is sufficient to wet the 50 wt% filler content in the composite plate. This study gives an insight into using hybrid reinforcements in order to achieve the desired properties of bipolar plates.

  1. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities.

    PubMed

    Bahl, Deepa; Athar, Fareeda; Soares, Milena Botelho Pereira; de Sá, Matheus Santos; Moreira, Diogo Rodrigo Magalhães; Srivastava, Rajendra Mohan; Leite, Ana Cristina Lima; Azam, Amir

    2010-09-15

    A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure-activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 microM) and antiamoebic (NT2Pd, IC50 of 0.6 microM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells. Copyright (c) 2010. Published by Elsevier Ltd.

  2. Hull Fiber From DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Pandey, Pankaj

    The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.

  3. Correction of Age-Related Midface Volume Loss With Low-Volume Hyaluronic Acid Filler.

    PubMed

    Wilson, Monique Vanaman; Fabi, Sabrina Guillen; Greene, Ryan

    2017-03-01

    The pivotal approval trial for a smooth, highly cohesive, viscous, 20-mg/mL hyaluronic acid filler demonstrated sustained aesthetic improvement, with a mean injection volume of 6.65 mL. In daily practice, however, it is not often practical or necessary to use large injection volumes to achieve the desired cosmetic outcome. To assess the efficacy, longevity, and patient satisfaction associated with correction of age-related midface volume loss using the low volumes of hyaluronic acid filler more commonly used in day-to-day practice. A 2-center, retrospective cohort study examined medical records of 61 healthy patients who underwent treatment for facial volume loss with hyaluronic acid filler from November 1, 2013, through April 31, 2014. Follow-up visits were conducted at 1, 3, 6, and 12 months after the procedure. Data were pooled from a private facial plastic surgery practice in Weston, Florida, and a private cosmetic dermatology practice in San Diego, California. Patients were treated with hyaluronic acid filler according to the investigator's usual practices. The main outcome measure was patient-graded Global Aesthetic Improvement Scale scores at 1, 3, 6, and 12 months after treatment. Scores range from 1 to 5; 1 indicates very much improved and 5, worse. A total of 61 consecutive, healthy adult patients (mean [SD] age, 57.4 [12.8] years) with mild to severe facial volume loss were enrolled in the study. A total of 46 patients (75%) were white, 3 (5%) were black/African American, 9 (15%) were Hispanic/Latino, 1 (2%) was Asian/Pacific Islander, and 2 (3%) were other. Three patients (5%) were male, and 58 (95%) were female. Mean initial treatment volume was 1.6 mL. At follow-up, 29 patients (48%) elected to have a touch-up treatment; mean total touch-up volume was 1.4 mL. The patient-graded Global Aesthetic Improvement Scale scores at 1, 3, 6, and 12 months after treatment demonstrated that 73% (41 of 56) to 89% (24 of 27) of the study patients reported being very

  4. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    PubMed Central

    Vignali, Valeria; Mazzotta, Francesco; Sangiorgi, Cesare; Simone, Andrea; Lantieri, Claudio; Dondi, Giulio

    2016-01-01

    In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene) polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures. PMID:28773965

  5. Further Theoretical Insight into the Mechanical Properties of Polycaprolactone Loaded with Organic–Inorganic Hybrid Fillers

    PubMed Central

    Maietta, Saverio; Russo, Teresa; De Santis, Roberto; Ronca, Dante; Riccardi, Filomena; Martorelli, Massimo; Gloria, Antonio

    2018-01-01

    Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic–inorganic fillers (PCL/TiO2 and PCL/ZrO2) to find a correlation between the results from the small punch test and Young’s modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO2 = 88 wt %) and Zr2 (PCL = 12, ZrO2 = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol–gel-synthesized organic–inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young’s modulus of the materials were newly correlated. The obtained values of Young’s modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young’s modulus, starting from the small punch test data. PMID:29466299

  6. Further Theoretical Insight into the Mechanical Properties of Polycaprolactone Loaded with Organic-Inorganic Hybrid Fillers.

    PubMed

    Maietta, Saverio; Russo, Teresa; Santis, Roberto De; Ronca, Dante; Riccardi, Filomena; Catauro, Michelina; Martorelli, Massimo; Gloria, Antonio

    2018-02-21

    Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO₂ and PCL/ZrO₂) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO₂ = 88 wt %) and Zr2 (PCL = 12, ZrO₂ = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.

  7. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  8. [Lidocaine-containing hyaluronic acid filler on a CPM® basis for lip augmentation : Experience from clinical practice].

    PubMed

    Fischer, T; Sattler, G; Gauglitz, G

    2016-06-01

    Lip augmentation with hyaluronic acid fillers is an established procedure. As monophasic polydensified hyaluronic acid products with variable density CPM-HAL1 (Belotero® Balance Lidocaine) and CPM-HAL2 (Belotero® Intense Lidocaine) are qualified for beautification and particularly natural-looking rejuvenation, respectively. Assessment of handling and outcome of lip augmentation using the lidocaine-containing hyaluronic acid fillers CPM-HAL1 and CPM-HAL2. Data from patients who received lip augmentation by means of bautification and/or rejuvenation using CPM-HAL1 and/or CPM-HAL2 were documented. Observation period was 4 months, with assessment of natural outcome, evenness, handling, fluidity, distribution, malleability, tolerability, as well as patient satisfaction and pain. In total, 146 patients from 21 German centres participated. Physicians rated natural outcome and evenness as good or very good for > 95 % of patients. Handling, fluidity, distribution and malleability were assessed for both fillers as good or very good in > 91 % of patients. At every evaluation point, more than 93 % of patients were very or very much satisfied with the product. A total of 125 patients (85.6 %) experienced transient injection-related side effects. Pain intensity during the procedure was mild (2.72 ± 1.72 on the 0-10 pain assessment scale) and abated markedly within 30 min (0.42 ± 0.57). Lip augmentation with hyaluronic acid fillers produced a long-term cosmetic result. Due to the lidocaine content, procedural pain was low and transient. Accordingly, a high degree of patient satisfaction was achieved that was maintained throughout the observation period.

  9. Polymethylmethacrylate dermal fillers: evaluation of the systemic toxicity in rats.

    PubMed

    Medeiros, C C G; Borghetti, R L; Nicoletti, N; da Silva, V D; Cherubini, K; Salum, F G; de Figueiredo, M A Z

    2014-01-01

    This study evaluated local and systemic reactions after an intravascular injection of polymethylmethacrylate (PMMA) at two concentrations in a murine model. Thirty rats were divided equally into three groups: 2% PMMA, 30% PMMA, and a control group (normal saline only injection). The filler was injected into the ranine vein. The rats were sedated at 7 and 90 days and a clinical evaluation performed. After euthanasia, the right lung, liver, and right kidney were removed, weighed, and microscopically analyzed. The submandibular lymph nodes and tongue were removed and examined microscopically. Serum was subjected to liver and kidney function tests. No groups showed clinical alterations. Microspheres were not observed at any distant organ. Two samples from the 2% PMMA group showed a local inflammatory response at day 7 and another two samples from the 30% PMMA group at day 90. The group injected with 30% PMMA presented higher levels of alanine aminotransferase (P = 0.047) after 90 days when compared with the other groups. The data obtained in this study demonstrate that intravascular injections of PMMA fillers show potential health risks such as chronic inflammation at the implantation site. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. The Effects of Biopolymers Composite Based Waste Cooking Oil and Titanium Dioxide Fillers as Superhydrophobic Coatings.

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Rus, A. Z. M.

    2017-08-01

    This project presents the effect of biopolymer composite surface coating on TiO2 fillers by analysing the static water contact angle, SEM micrographs, porosity, density and refractive index of biopolymer doped with different loading of TiO2. The different ratio loading of 0.5, 1.0, 1.5, 2.0 and 2.5 (wt/wt%) TiO2 can be used to improve the material properties in practical use for outdoor application especially to enhance the stability of surface coating. It is found that the smooth surfaces with a low ratio loading of TiO2 fillers on biopolymer composite surface coating increases the static water contact angle up to 162.29°. It is interpreted with respect to nano- features existing on the surface of the water repellent creates a thin superhydrphobic layer. The relationship between porosity and density is indirectly proportional where the higher the loading of TiO2 filler produce the lower porosity up to 0.86% of the surface coating. The movement from shorter to longer of wavelength was observed before and after exposure indicates that there are optimization of absorption of UV-B radiation as the amount of delocalisation.

  11. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  12. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of coal filler on the properties of soy protein plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.H.; Zhou, A.N.; Hu, M.B.

    2006-11-15

    The influence of ultrafine coal filler (UFC) content on tensile properties, water absorption, and biodegradability of soy protein plastics were investigated. The addition of UFC in the soy protein plastics, with different content of glycerol as a plasticizer, was at different ratio varying from 10:0 to 6:4. Blend sheets of the soy protein composites were prepared by the compression molding processing. The results show that, with 23.08 wt % glycerol, the tensile strength and elongation at break for the soy protein sheet with coal filler (range from 5 to 30 parts) can be enhanced as compared with nonfilled soy proteinmore » plastics. Water resistance of the soy protein plastics improves with the increase in UFC content. The derivative thermogravimetry (DTG) curves indicate a double-stage degradation process for defatted soy flour (SPF), while three-stage degradation process for soy plastics and the soy protein composites. FT-IR, XPS, and SEM were applied to study the interfacial interaction between coal macromolecules and soy protein molecules in UFC filled soy protein plastics. The results demonstrated that there is strong interfacial interaction in the soy protein plastics caused by the compression molding processing.« less

  14. An assessment of polyurethane foam passive samplers for atmospheric metals compared with active samplers.

    PubMed

    Li, Qilu; Yang, Kong; Li, Jun; Zeng, Xiangying; Yu, Zhiqiang; Zhang, Gan

    2018-05-01

    In this study, we conducted an assessment of polyurethane foam (PUF) passive sampling for metals combining active sampling. Remarkably, we found that the metals collected in the passive samples differed greatly from those collected in active samples. By composition, Cu and Ni accounted for significantly higher proportions in passive samples than in active samples, leading to significantly higher uptake rates of Cu and Ni. In assessing seasonal variation, metals in passive samples had higher concentrations in summer (excluding Heshan), which differed greatly from the pattern of active samples (winter > summer), indicating that the uptake rates of most metals were higher in summer than in winter. Overall, due to the stable passive uptake rates, we considered that PUF passive samplers can be applied to collect atmospheric metals. Additionally, we created a snapshot of the metal pollution in the Pearl River Delta using principal component analysis of PUF samples and their source apportionment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces.

    PubMed

    Profeta, A C; Mannocci, F; Foxton, R; Watson, T F; Feitosa, V P; De Carlo, B; Mongiorgi, R; Valdré, G; Sauro, S

    2013-07-01

    This study aimed at evaluating the therapeutic bioactive effects on the bond strength of three experimental bonding agents containing modified Portland cement-based micro-fillers applied to acid-etched dentin and submitted to aging in simulated body fluid solution (SBS). Confocal laser (CLSM) and scanning electron microscopy (SEM) were also performed. A type-I ordinary Portland cement was tailored using different compounds such as sodium-calcium-aluminum-magnesium silicate hydroxide (HOPC), aluminum-magnesium-carbonate hydroxide hydrates (HCPMM) and titanium oxide (HPCTO) to create three bioactive micro-fillers. A resin blend mainly constituted by Bis-GMA, PMDM and HEMA was used as control (RES-Ctr) or mixed with each micro-filler to create three experimental bonding agents: (i) Res-HOPC, (ii) Res-HCPMM and (iii) Res-HPCTO. The bonding agents were applied onto 37% H3PO4-etched dentin and light-cured for 30s. After build-ups, they were prepared for micro-tensile bond strength (μTBS) and tested after 24h or 6 months of SBS storage. SEM analysis was performed after de-bonding, while CLSM was used to evaluate the ultra-morphology/nanoleakage and the mineral deposition at the resin-dentin interface. High μTBS values were achieved in all groups after 24h. Only Res-HOPC and Res-HCPMM showed stable μTBS after SBS storage (6 months). All the resin-dentin interfaces created using the bonding agents containing the bioactive micro-fillers tested in this study showed an evident reduction of nanoleakage and mineral deposition after SBS storage. Resin bonding systems containing specifically tailored Portland cement micro-fillers may promote a therapeutic mineral deposition within the hybrid layer and increase the durability of the resin-dentin bond. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Directionally solidified article with weld repair

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2003-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  17. Weld repair of directionally solidified articles

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2002-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  18. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  19. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  20. The Effect of Mo Particles Addition in Ag-Cu-Ti Filler Alloy on Ti(C,N)-Based Cermet/45 Steel-Brazed Joints

    NASA Astrophysics Data System (ADS)

    He, Hu; Du, Xueming; Huang, Xiaokai; Xu, Weijian; Yao, Zhenhua

    2018-05-01

    Reliable brazing of Ti(C,N)-based cermet and 45 steel was successfully achieved by using the Mo-particle-reinforced Ag-Cu-Ti composite filler. The effects of Mo content on the interfacial microstructure and mechanical properties of Ti(C,N)-based cermet/45 steel joints were analyzed. The results showed that the joint microstructure was primarily composed of Ni3Ti+Cu3Ti2, Ag(s,s)+Cu(s.s), CuTi+Mo, Ti-based solid solution, and FeTi+Fe2Ti. With the increase in Mo content in filler, the thickness of the Ni3Ti+Cu3Ti2 layer adjacent to the Ti(C,N)-based cermet decreases, while more blocky Ti-Cu intermetallic were observed in the brazing seam. The shear strength of the joint could be significantly improved by adding suitable amounts of Mo into the Ag-Cu-Ti filler, and the peak value of 263 MPa was achieved when the alloys were brazed with Ag-Cu-Ti+8wt.%Mo composite filler at 920 °C for 20 min.