Sample records for active fire hotspot

  1. Early warning of active fire hotspots through NASA FIRMS fire information system

    NASA Astrophysics Data System (ADS)

    Ilavajhala, S.; Davies, D.; Schmaltz, J. E.; Murphy, K. J.

    2014-12-01

    Forest fires and wildfires can threaten ecosystems, wildlife, property, and often, large swaths of populations. Early warning of active fire hotspots plays a crucial role in planning, managing, and mitigating the damaging effects of wildfires. The NASA Fire Information for Resource Management System (FIRMS) has been providing active fire location information to users in easy-to-use formats for the better part of last decade, with a view to improving the alerting mechanisms and response times to fight forest and wildfires. FIRMS utilizes fires flagged as hotspots by the MODIS instrument flying aboard the Aqua and Terra satellites and sends early warning of detected hotspots via email in near real-time or as daily and weekly summaries. The email alerts can also be customized to send alerts for a particular region of interest, a country, or a specific protected area or park. In addition, a web mapping component, named "Web Fire Mapper" helps query and visualize hotspots. A newer version of Web Fire Mapper is being developed to enhance the existing visualization and alerting capabilities. Plans include supporting near real-time imagery from Aqua and Terra satellites to provide a more helpful context while viewing fires. Plans are also underway to upgrade the email alerts system to provide mobile-formatted messages and short text messages (SMS). The newer version of FIRMS will also allow users to obtain geo-located image snapshots, which can be imported into local GIS software by stakeholders to help further analyses. This talk will discuss the FIRMS system, its enhancements and its role in helping map, alert, and monitor fire hotspots by providing quick data visualization, querying, and download capabilities.

  2. The relationship between particulate pollution levels in Australian cities, meteorology, and landscape fire activity detected from MODIS hotspots.

    PubMed

    Price, Owen F; Williamson, Grant J; Henderson, Sarah B; Johnston, Fay; Bowman, David M J S

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as "hotspots"), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data.

  3. Classification Model for Forest Fire Hotspot Occurrences Prediction Using ANFIS Algorithm

    NASA Astrophysics Data System (ADS)

    Wijayanto, A. K.; Sani, O.; Kartika, N. D.; Herdiyeni, Y.

    2017-01-01

    This study proposed the application of data mining technique namely Adaptive Neuro-Fuzzy inference system (ANFIS) on forest fires hotspot data to develop classification models for hotspots occurrence in Central Kalimantan. Hotspot is a point that is indicated as the location of fires. In this study, hotspot distribution is categorized as true alarm and false alarm. ANFIS is a soft computing method in which a given inputoutput data set is expressed in a fuzzy inference system (FIS). The FIS implements a nonlinear mapping from its input space to the output space. The method of this study classified hotspots as target objects by correlating spatial attributes data using three folds in ANFIS algorithm to obtain the best model. The best result obtained from the 3rd fold provided low error for training (error = 0.0093676) and also low error testing result (error = 0.0093676). Attribute of distance to road is the most determining factor that influences the probability of true and false alarm where the level of human activities in this attribute is higher. This classification model can be used to develop early warning system of forest fire.

  4. Forest and Land Fire Prevention Through the Hotspot Movement Pattern Approach

    NASA Astrophysics Data System (ADS)

    Turmudi, T.; Kardono, P.; Hartanto, P.; Ardhitasari, Y.

    2018-02-01

    Indonesia has experienced a great forest fire disaster in 2015. The losses incurred were enormous. But actually the incidence of forest and land fires occurs almost every year. Various efforts were made to cope with the fire disaster. The appearance of a hotspot becomes an early indication of the fire incident both location and time. By studying the location and time of the hotspot's appearance indicates that the hotspot has certain movement patterns from year to year. This study aims to show the pattern of movement of hotspots from year to year that can be used for the prevention of forest and land fires. The method used is time series analysis of land cover and hotspot distribution. The data used were land cover data from 2005 to 2016, hotspot data from 2005 to 2016. The location of this study is the territory of Meranti Kepulauan District. The results show that the highest hotspot is 425 hotspots occurs in the shrubs and bushes. From year to year, the pattern of hotspot movement occurs in the shrubs and bushes cover. The hotspot pattern follows the direction of unused land for cultivation and is dominated by shrubs. From these results, we need to pay more attentiont for the land with the cover of shrubs adjacent to the cultivated land.

  5. The Relationship between Particulate Pollution Levels in Australian Cities, Meteorology, and Landscape Fire Activity Detected from MODIS Hotspots

    PubMed Central

    Price, Owen F.; Williamson, Grant J.; Henderson, Sarah B.; Johnston, Fay; Bowman, David M. J. S.

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as “hotspots”), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data. PMID:23071788

  6. Synoptic-scale fire weather conditions in Alaska

    NASA Astrophysics Data System (ADS)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  7. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    PubMed

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  8. Spatial temporal clustering for hotspot using kulldorff scan statistic method (KSS): A case in Riau Province

    NASA Astrophysics Data System (ADS)

    Hudjimartsu, S. A.; Djatna, T.; Ambarwari, A.; Apriliantono

    2017-01-01

    The forest fires in Indonesia occurs frequently in the dry season. Almost all the causes of forest fires are caused by the human activity itself. The impact of forest fires is the loss of biodiversity, pollution hazard and harm the economy of surrounding communities. To prevent fires required the method, one of them with spatial temporal clustering. Spatial temporal clustering formed grouping data so that the results of these groupings can be used as initial information on fire prevention. To analyze the fires, used hotspot data as early indicator of fire spot. Hotspot data consists of spatial and temporal dimensions can be processed using the Spatial Temporal Clustering with Kulldorff Scan Statistic (KSS). The result of this research is to the effectiveness of KSS method to cluster spatial hotspot in a case within Riau Province and produces two types of clusters, most cluster and secondary cluster. This cluster can be used as an early fire warning information.

  9. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  10. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in

  11. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    NASA Astrophysics Data System (ADS)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  12. Prdm9 controls activation of mammalian recombination hotspots.

    PubMed

    Parvanov, Emil D; Petkov, Petko M; Paigen, Kenneth

    2010-02-12

    Mammalian meiotic recombination, which preferentially occurs at specialized sites called hotspots, ensures the orderly segregation of meiotic chromosomes and creates genetic variation among offspring. A locus on mouse chromosome 17, which controls activation of recombination at multiple distant hotspots, has been mapped within a 181-kilobase interval, three of whose genes can be eliminated as candidates. The remaining gene, Prdm9, codes for a zinc finger containing histone H3K4 trimethylase that is expressed in early meiosis and whose deficiency results in sterility in both sexes. Mus musculus exhibits five alleles of Prdm9; human populations exhibit two predominant alleles and multiple minor alleles. The identification of Prdm9 as a protein regulating mammalian recombination hotspots initiates molecular studies of this important biological control system.

  13. Vegetation fires and air pollution in Vietnam.

    PubMed

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hotspot activity and plume pulses recorded by geometry of spreading axes

    NASA Astrophysics Data System (ADS)

    Abelson, Meir; Agnon, Amotz

    2001-06-01

    Anomalous plan view geometry (planform) of spreading axes is shown to be a faithful indicator of hotspot influence, possibly capable of detecting pulses of hotspot discharge. A planform anomaly (PA) occurs when the orientation of second-order ridge segments is prominently oblique to the spreading direction. PA is found in the vicinity of hotspots at shallow ridges (<1.5 km), suggesting hotspot influence. In places the PA and shallow bathymetry are accompanied by geochemical anomalies, corroborating hotspot influence. This linkage is best expressed in the western Gulf of Aden, where the extent of the PA from the Afar hotspot coincides with the extent of La/Sm and Sr isotopic anomalies. Using fracture mechanics we predict PA to reflect overpressurized melt that dominates the stresses in the crust, consistent with hotspot regime. Accordingly, the temporal variations of the planform previously inferred from magnetic anomalies around the Kolbeinsey Ridge (KR), north of Iceland, record episodes of interaction with the hotspot and major pulses of the plume. This suggestion is corroborated by temporal correlation of episodes showing PA north of Iceland with plume pulses previously inferred by the V-shaped ridges around the Reykjanes Ridge (RR), south of Iceland. In contrast to the RR, the temporal correlation suggests simultaneous incidence of the plume pulses at Iceland and KR, hundreds of kilometers to the north. A deep northward branch of the Iceland plume active during pulse-periods may explain these observations.

  15. What Fraction of Global Fire Activity Can Be Forecast Using Sea Surface Temperatures?

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Randerson, J. T.; Morton, D. C.; Andela, N.; Giglio, L.

    2015-12-01

    Variations in sea surface temperatures (SSTs) can influence climate dynamics in local and remote land areas, and thus influence fire-climate interactions that govern burned area. SST information has been recently used in statistical models to create seasonal outlooks of fire season severity in South America and as the initial condition for dynamical model predictions of fire activity in Indonesia. However, the degree to which large-scale ocean-atmosphere interactions can influence burned area in other continental regions has not been systematically explored. Here we quantified the amount of global burned area that can be predicted using SSTs in 14 different oceans regions as statistical predictors. We first examined lagged correlations between GFED4s burned area and the 14 ocean climate indices (OCIs) individually. The maximum correlations from different OCIs were used to construct a global map of fire predictability. About half of the global burned area can be forecast by this approach 3 months before the peak burning month (with a Pearson's r of 0.5 or higher), with the highest levels of predictability in Central America and Equatorial Asia. Several hotspots of predictability were identified using k-means cluster analysis. Within these regions, we tested the improvements of the forecast by using two OCIs from different oceans. Our forecast models were based on near-real-time SST data and may therefore support the development of new seasonal outlooks for fire activity that can aid the sustainable management of these fire-prone ecosystems.

  16. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  17. Using a distribution and conservation status weighted hotspot approach to identify areas in need of conservation action to benefit Idaho bird species

    USGS Publications Warehouse

    Haines, Aaron M.; Leu, Matthias; Svancara, Leona K.; Wilson, Gina; Scott, J. Michael

    2010-01-01

    Identification of biodiversity hotspots (hereafter, hotspots) has become a common strategy to delineate important areas for wildlife conservation. However, the use of hotspots has not often incorporated important habitat types, ecosystem services, anthropogenic activity, or consistency in identifying important conservation areas. The purpose of this study was to identify hotspots to improve avian conservation efforts for Species of Greatest Conservation Need (SGCN) in the state of Idaho, United States. We evaluated multiple approaches to define hotspots and used a unique approach based on weighting species by their distribution size and conservation status to identify hotspot areas. All hotspot approaches identified bodies of water (Bear Lake, Grays Lake, and American Falls Reservoir) as important hotspots for Idaho avian SGCN, but we found that the weighted approach produced more congruent hotspot areas when compared to other hotspot approaches. To incorporate anthropogenic activity into hotspot analysis, we grouped species based on their sensitivity to specific human threats (i.e., urban development, agriculture, fire suppression, grazing, roads, and logging) and identified ecological sections within Idaho that may require specific conservation actions to address these human threats using the weighted approach. The Snake River Basalts and Overthrust Mountains ecological sections were important areas for potential implementation of conservation actions to conserve biodiversity. Our approach to identifying hotspots may be useful as part of a larger conservation strategy to aid land managers or local governments in applying conservation actions on the ground.

  18. Active Fire Mapping Program

    MedlinePlus

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  19. MyoD- and FoxO3-mediated hotspot interaction orchestrates super-enhancer activity during myogenic differentiation

    PubMed Central

    Peng, Xianlu L.; So, Karl K.; He, Liangqiang; Zhao, Yu; Zhou, Jiajian; Li, Yuying; Yao, Mingze; Xu, Bo; Zhang, Suyang; Yao, Hongjie; Hu, Ping

    2017-01-01

    Abstract Super-enhancers (SEs) are cis-regulatory elements enriching lineage specific key transcription factors (TFs) to form hotspots. A paucity of identification and functional dissection promoted us to investigate SEs during myoblast differentiation. ChIP-seq analysis of histone marks leads to the uncovering of SEs which remodel progressively during the course of differentiation. Further analyses of TF ChIP-seq enable the definition of SE hotspots co-bound by the master TF, MyoD and other TFs, among which we perform in-depth dissection for MyoD/FoxO3 interaction in driving the hotspots formation and SE activation. Furthermore, using Myogenin as a model locus, we elucidate the hierarchical and complex interactions among hotspots during the differentiation, demonstrating SE function is propelled by the physical and functional cooperation among hotspots. Finally, we show MyoD and FoxO3 are key in orchestrating the Myogenin hotspots interaction and activation. Altogether our results identify muscle-specific SEs and provide mechanistic insights into the functionality of SE. PMID:28575289

  20. Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)

    NASA Astrophysics Data System (ADS)

    Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat

    2018-05-01

    Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.

  1. Active fire detection using a peat fire radiance model

    NASA Astrophysics Data System (ADS)

    Kushida, K.; Honma, T.; Kaku, K.; Fukuda, M.

    2011-12-01

    The fire fractional area and radiances at 4 and 11 μm of active fires in Indonesia were estimated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Based on these fire information, a stochastic fire model was used for evaluating two fire detection algorithms of Moderate Resolution Imaging Spectroradiometer (MODIS). One is single-image stochastic fire detection, and the other is multitemporal stochastic fire detection (Kushida, 2010 - IEEE Geosci. Remote Sens. Lett.). The average fire fractional area per one 1 km2 ×1 km2 pixel was 1.7%; this value corresponds to 32% of that of Siberian and Mongolian boreal forest fires. The average radiances at 4 and 11 μm of active fires were 7.2 W/(m2.sr.μm) and 11.1 W/(m2.sr.μm); these values correspond to 47% and 91% of those of Siberian and Mongolian boreal forest fires, respectively. In order to get false alarms less than 20 points per 106 km2 area, for the Siberian and Mongolian boreal forest fires, omission errors (OE) of 50-60% and about 40% were expected for the detections by using the single and multitemporal images, respectively. For Indonesian peat fires, OE of 80-90% was expected for the detections by using the single images. For the peat-fire detections by using the multitemporal images, OE of about 40% was expected, provided that the background radiances were estimated from past multitemporal images with less than the standard deviation of 1K. The analyses indicated that it was difficult to obtain sufficient active-fire information of Indonesian peat fires from single MODIS images for the fire fighting, and that the use of the multitemporal images was important.

  2. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans

    PubMed Central

    Berg, Ingrid L.; Neumann, Rita; Lam, Kwan-Wood G.; Sarbajna, Shriparna; Odenthal-Hesse, Linda; May, Celia A.; Jeffreys, Alec J.

    2011-01-01

    PRDM9 has recently been identified as a likely trans-regulator of meiotic recombination hot spots in humans and mice1-3. The protein contains a zinc finger array that in humans can recognise a short sequence motif associated with hot spots4, with binding to this motif possibly triggering hot-spot activity via chromatin remodelling5. We now show that variation in the zinc finger array in humans has a profound effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Very subtle changes within the array can create hot-spot non-activating and enhancing alleles, and even trigger the appearance of a new hot spot. PRDM9 thus appears to be the preeminent global regulator of hot spots in humans. Variation at this locus also influences aspects of genome instability, specifically a megabase-scale rearrangement underlying two genomic disorders6 as well as minisatellite instability7, implicating PRDM9 as a risk factor for some pathological genome rearrangements. PMID:20818382

  3. Microbial hotspots and hot moments in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  4. Hydrothermal Activity Along the Central Indian Ridge: Ridges, Hotspots and Philately.

    NASA Astrophysics Data System (ADS)

    German, C. R.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Curewitz, D.; Okino, K.; Statham, P. J.; Parson, L. M.

    2001-12-01

    The global mid-ocean ridge crest extends 50-60,000km and the majority remains unexplored for hydrothermal activity. Even those areas which are reasonably familiar continue to spring surprises (e.g. the "Lost City" site found in late 2000). Within the confines of conceivable research budgets, therefore, choosing new areas for investigation and exploration demands an intelligent approach, beyond flicking through holiday brochures or identifying missing entries for the John Edmond Memorial Stamp Collection. With that caveat, the Southampton Oceanography Centre led a 10-week expedition to the Central Indian Ridge, earlier this year, based in and around Mauritius. During cruise CD127 (23 April-23 May) we conducted a systematic investigation of the ridge crest (seafloor and overlying water column) between 18 deg 16 min and 20 deg 49 min South. We chose this area to investigate the distribution of hydrothermal activity both close to, and away from, that section of the ridge crest which continues to reflect past influence of the migrating Rodrigues hot-spot. Our hypothesis was that the high incidence of hydrothermal activity we had located previously, near the Azores Triple Junction, may result from waning influence of the Azores Hot-Spot nearby and that similar effects might be found resulting from interaction of the CIR with the Rodrigues hot-spot. The primary scientific package we employed was the SOC's TOBI deep-tow sidescan vehicle, now up-graded with an extra Light Scattering Sensor string. In concert, this instrumentation allowed us to prospect for particle-laden hydrothermal plumes in the water column overlying the ridge-crest, in real-time, whilst simultaneously acquiring high-resolution sidescan images of the underlying seafloor. Using this approach, particle-rich anomalies were observed at 5 locations along ca. 300km of surveyed ridge-crest, including 4 sites all within the extended (hot-spot influenced) segment 15, which stretches from 18 deg 45 to 20 deg 14

  5. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans.

    PubMed

    Berg, Ingrid L; Neumann, Rita; Lam, Kwan-Wood G; Sarbajna, Shriparna; Odenthal-Hesse, Linda; May, Celia A; Jeffreys, Alec J

    2010-10-01

    PRDM9 has recently been identified as a likely trans regulator of meiotic recombination hot spots in humans and mice. PRDM9 contains a zinc finger array that, in humans, can recognize a short sequence motif associated with hot spots, with binding to this motif possibly triggering hot-spot activity via chromatin remodeling. We now report that human genetic variation at the PRDM9 locus has a strong effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Subtle changes within the zinc finger array can create hot-spot nonactivating or enhancing variants and can even trigger the appearance of a new hot spot, suggesting that PRDM9 is a major global regulator of hot spots in humans. Variation at the PRDM9 locus also influences aspects of genome instability-specifically, a megabase-scale rearrangement underlying two genomic disorders as well as minisatellite instability-implicating PRDM9 as a risk factor for some pathological genome rearrangements.

  6. NIMS: Hotspots on Io During G2

    NASA Image and Video Library

    1998-03-26

    The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft imaged Io at high spectral resolution at a range of 439,000 km (275,000 miles) during the G2 encounter on 7 September 1996. This image shows (on the right) Io as seen in the infrared by NIMS. The image on the left shows the same view from Voyager in 1979. This NIMS image can be compared to the NIMS images from the G1 orbit (June 1996) to monitor changes on Io. The NIMS image is at 4.9 microns, showing thermal emissions from the hotspots. The brightness of the pixels is a function of size and temperature. At least 10 hotspots have been identified and can be matched with surface features. An accurate determination of the position of the hotspot in the vicinity of Shamash Patera is pending. Hotspots are seen in the vicinity of Prometheus, Volund and Marduk, all sites of volcanic plume activity during the Galileo encounters, and also of active plumes in 1979. Temperatures and areas have been calculated for the hotspots shown. Temperatures range from 828 K (1031 F) to 210 K (- 81.4 F). The lowest temperature is significantly higher than the Io background (non-hotspot) surface temperature of about 100 K (-279 F). Hotspot areas range from 6.5 square km (2.5 sq miles) to 40,000 sq km (15,400 sq miles). The hottest hotspots have smallest areas, and the cooler hotspots have the largest areas. NIMS is continuing to observe Io to monitor volcanic activity throughout the Galileo mission. http://photojournal.jpl.nasa.gov/catalog/PIA00520

  7. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    PubMed

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.

  8. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots

    PubMed Central

    Baker, Christopher L.; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M.; Paigen, Kenneth

    2015-01-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9 +/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021

  9. Protein Determinants of Meiotic DNA Break Hotspots

    PubMed Central

    Fowler, Kyle R.; Gutiérrez-Velasco, Susana

    2013-01-01

    SUMMARY Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is an unsolved problem, although transcription factors determine some hotspots. We report the discovery that three coiled-coil proteins – Rec25, Rec27, and Mug20 – bind essentially all hotspots with unprecedented specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose a new paradigm for hotspot determination and crossover control by linear element proteins. PMID:23395004

  10. Detection of Tuberculosis Infection Hotspots Using Activity Spaces Based Spatial Approach in an Urban Tokyo, from 2003 to 2011.

    PubMed

    Izumi, Kiyohiko; Ohkado, Akihiro; Uchimura, Kazuhiro; Murase, Yoshiro; Tatsumi, Yuriko; Kayebeta, Aya; Watanabe, Yu; Ishikawa, Nobukatsu

    2015-01-01

    Identifying ongoing tuberculosis infection sites is crucial for breaking chains of transmission in tuberculosis-prevalent urban areas. Previous studies have pointed out that detection of local accumulation of tuberculosis patients based on their residential addresses may be limited by a lack of matching between residences and tuberculosis infection sites. This study aimed to identify possible tuberculosis hotspots using TB genotype clustering statuses and a concept of "activity space", a place where patients spend most of their waking hours. We further compared the spatial distribution by different residential statuses and describe urban environmental features of the detected hotspots. Culture-positive tuberculosis patients notified to Shinjuku city from 2003 to 2011 were enrolled in this case-based cross-sectional study, and their demographic and clinical information, TB genotype clustering statuses, and activity space were collected. Spatial statistics (Global Moran's I and Getis-Ord Gi* statistics) identified significant hotspots in 152 census tracts, and urban environmental features and tuberculosis patients' characteristics in these hotspots were assessed. Of the enrolled 643 culture-positive tuberculosis patients, 416 (64.2%) were general inhabitants, 42 (6.5%) were foreign-born people, and 184 were homeless people (28.6%). The percentage of overall genotype clustering was 43.7%. Genotype-clustered general inhabitants and homeless people formed significant hotspots around a major railway station, whereas the non-clustered general inhabitants formed no hotspots. This suggested the detected hotspots of activity spaces may reflect ongoing tuberculosis transmission sites and were characterized by smaller residential floor size and a higher proportion of non-working households. Activity space-based spatial analysis suggested possible TB transmission sites around the major railway station and it can assist in further comprehension of TB transmission dynamics in an

  11. ESA fire_cci product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Ramo Sanchez, Ruben; Kaiser, Johannes W.

    2017-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project has computed a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the ENVISAT-MERIS archive. The algorithm relies on MODIS active fire information as "seed". It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.25 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64 Collection 6, MCD45, GFED4, GFED4s and GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2005-2011 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  12. NIMS: hotspots on Io during G2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft imaged Io at high spectral resolution at a range of 439,000 km (275,000 miles) during the G2 encounter on 7 September 1996. This image shows (on the right) Io as seen in the infrared by NIMS. The image on the left shows the same view from Voyager in 1979. This NIMS image can be compared to the NIMS images from the G1 orbit (June 1996) to monitor changes on Io. The NIMS image is at 4.9 microns, showing thermal emissions from the hotspots. The brightness of the pixels is a function of size and temperature.

    At least 10 hotspots have been identified and can be matched with surface features. An accurate determination of the position of the hotspot in the vicinity of Shamash Patera is pending. Hotspots are seen in the vicinity of Prometheus, Volund and Marduk, all sites of volcanic plume activity during the Galileo encounters, and also of active plumes in 1979. Temperatures and areas have been calculated for the hotspots shown. Temperatures range from 828 K (1031 F) to 210 K (- 81.4 F). The lowest temperature is significantly higher than the Io background (non-hotspot) surface temperature of about 100 K (-279 F). Hotspot areas range from 6.5 square km (2.5 sq miles) to 40,000 sq km (15,400 sq miles). The hottest hotspots have smallest areas, and the cooler hotspots have the largest areas. NIMS is continuing to observe Io to monitor volcanic activity throughout the Galileo mission.

    The Galileo mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, D.C.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov.

  13. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires.

    PubMed

    Miettinen, Jukka; Shi, Chenghua; Liew, Soo Chin

    2017-10-01

    In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km 2 ) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km 2 ). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.

  14. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires

    NASA Astrophysics Data System (ADS)

    Miettinen, Jukka; Shi, Chenghua; Liew, Soo Chin

    2017-10-01

    In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km2) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km2). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.

  15. Geologic evidence of hotspot activity of Venus - Predictions for Magellan

    NASA Technical Reports Server (NTRS)

    Stofan, Ellen R.; Saunders, R. Stephen

    1990-01-01

    A number of distinctive types of geologic features have been identified on Venus that are interpreted to be related to thermal plumes including domal rises, coronae, and major composite shield volcanoes. The basic characteristics of these features as well as their distribution are documented. The three types of features have related morphologies and are interpreted to represent a continuum of features formed by mantle plumes at scales from 100s to over 1000 km. The Artemis structure, located in Aphrodite Terra, is proposed to be a large corona. If crustal spreading processes are operating on Venus, hotspot features should form chains on the surface as seen in terrestrial ocean basins. On the basis of current data on hotspot-related feature distribution on Venus, no clear evidence exists for hotspot chains. The complete distribution of hotspot features in Magellan data will be used to understand better the relationship between interior processes and surface features, as well as to provide a test for the crustal spreading hypothesis.

  16. The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots?

    PubMed

    Serrentino, Maria-Elisabetta; Borde, Valérie

    2012-07-15

    A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots. Copyright © 2012. Published by Elsevier Inc.

  17. Relation between the National Fire Danger spread component and fire activity in the Lake States.

    Treesearch

    Donald A. Haines; William A. Main; Von J. Johnson

    1970-01-01

    Relationships between the 1964 version of the spread component of the National Fire Danger Rating System and fire activity were established for Michigan, Minnesota, and Wisconsin. The measures of fire activity included the probability of a fire-day as well as a C, D, or E fire-day, number of fires per fire-day, and acres burned per fire. These measures were examined by...

  18. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    NASA Astrophysics Data System (ADS)

    Padalia, H.; Mondal, P. P.

    2014-11-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.

  19. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  20. DNA Sequence-Mediated, Evolutionarily Rapid Redistribution of Meiotic Recombination Hotspots

    PubMed Central

    Wahls, Wayne P.; Davidson, Mari K.

    2011-01-01

    Hotspots regulate the position and frequency of Spo11 (Rec12)-initiated meiotic recombination, but paradoxically they are suicidal and are somehow resurrected elsewhere in the genome. After the DNA sequence-dependent activation of hotspots was discovered in fission yeast, nearly two decades elapsed before the key realizations that (A) DNA site-dependent regulation is broadly conserved and (B) individual eukaryotes have multiple different DNA sequence motifs that activate hotspots. From our perspective, such findings provide a conceptually straightforward solution to the hotspot paradox and can explain other, seemingly complex features of meiotic recombination. We describe how a small number of single-base-pair substitutions can generate hotspots de novo and dramatically alter their distribution in the genome. This model also shows how equilibrium rate kinetics could maintain the presence of hotspots over evolutionary timescales, without strong selective pressures invoked previously, and explains why hotspots localize preferentially to intergenic regions and introns. The model is robust enough to account for all hotspots of humans and chimpanzees repositioned since their divergence from the latest common ancestor. PMID:22084420

  1. Mammalian transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes and are predicted to act as transcriptional activator hubs.

    PubMed

    Joshi, Anagha

    2014-12-30

    Transcriptional hotspots are defined as genomic regions bound by multiple factors. They have been identified recently as cell type specific enhancers regulating developmentally essential genes in many species such as worm, fly and humans. The in-depth analysis of hotspots across multiple cell types in same species still remains to be explored and can bring new biological insights. We therefore collected 108 transcription-related factor (TF) ChIP sequencing data sets in ten murine cell types and classified the peaks in each cell type in three groups according to binding occupancy as singletons (low-occupancy), combinatorials (mid-occupancy) and hotspots (high-occupancy). The peaks in the three groups clustered largely according to the occupancy, suggesting priming of genomic loci for mid occupancy irrespective of cell type. We then characterized hotspots for diverse structural functional properties. The genes neighbouring hotspots had a small overlap with hotspot genes in other cell types and were highly enriched for cell type specific function. Hotspots were enriched for sequence motifs of key TFs in that cell type and more than 90% of hotspots were occupied by pioneering factors. Though we did not find any sequence signature in the three groups, the H3K4me1 binding profile had bimodal peaks at hotspots, distinguishing hotspots from mono-modal H3K4me1 singletons. In ES cells, differentially expressed genes after perturbation of activators were enriched for hotspot genes suggesting hotspots primarily act as transcriptional activator hubs. Finally, we proposed that ES hotspots might be under control of SetDB1 and not DNMT for silencing. Transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes. In ES cells, they are predicted to act as transcriptional activator hubs and might be under SetDB1 control for silencing.

  2. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Treesearch

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  3. ESA Fire CCI product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Kaiser, Johannes

    2016-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project is currently computing a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the full ENVISAT-MERIS archive (2002 to 2012). The algorithm relies on MODIS active fire information as "seed". A first, formally validated version has been released for the period 2006 to 2008. It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.5 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64, GFED4(s), GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). Output from the ongoing processing of the full MERIS timeseries will be incorporated into the study, as far as available. The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2006-2008 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to

  4. In vitro multifaceted activities of a specific group of novel phosphatidylinositol 3-kinase inhibitors on hotspot mutant PIK3CA.

    PubMed

    Kong, Dexin; Yamori, Takao; Yamazaki, Kanami; Dan, Shingo

    2014-12-01

    As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in cancer, novel PI3K inhibitors such as ZSTK474, GDC-0941, NVP-BEZ235 and BKM-120 have been developed for cancer therapy. A high frequency of hotspot mutations known as E542K, E545K and H1047R in the PIK3CA gene, which encodes the catalytic subunit of PI3Kα, has been found in various types of human cancers. The hotspot PIK3CA mutations also lead to resistance to therapeutics targeting epidermal growth factor receptor (EGFR), further suggesting that inhibition of hotspot mutant PIK3CA be required for a PI3K inhibitor as anticancer drug candidate. To investigate the activity of the novel PI3K inhibitors on the hotspot mutant PIK3CA, we determined the inhibition against the respective recombinant mutant PI3Kαs by biochemical assay. We further examined the activity at cellular background by determining the effect on phosphorylation of Akt (Ser473), and that on the growth of cancer cells. In addition, apoptosis and autophagy in cells with or without hotspot PIK3CA mutation induced by the four inhibitors were investigated. Our results indicated that each inhibitor exhibit comparable activity on the hotspot mutant PI3Kα to that on the wild type, which was further demonstrated by the cell-based assays. No clear correlation was shown between the PIK3CA genetic status and the sensitivity for apoptosis or autophagy induction. Interestingly, among the 4 PI3K inhibitors, BKM-120 is the weakest in PI3K inhibitory potency, but induces most potent apoptosis, suggesting that BKM-120 might have a unique mode of action. Our result shows that the PI3K inhibitors exhibit potent activity on both hotspot mutant and wild type PI3Kα, suggesting they might be used to treat patients with or without PIK3CA mutation when approved.

  5. Plasma behaviour in the neighbourhood of the hot-spot during an active experiment

    NASA Astrophysics Data System (ADS)

    Sallago, Patricia

    In order to study the physical quantities that characterize a plasma, several active experiments have been done by many researcher groups around the world. These experimental papers, describing their measurements and the observed phenomena under a variety of geomagnetical conditions, bring some clues about the plasma behaviour in the neighbourhood of the hot-spot during and soon after the turn-off of ionospheric heating devices. A review of these works was faced in the frame of the application of IAR (Argentinian Radioas-tronomy Institute), La Plata, Argentine, as a site of installation for the AMISR (Advanced Modular Incoherent Scatter Radar), in a contest of research projets called by NSF (National Scientific Foundation). The present contribution gives a possible theoretical explanation, based on the generation and propagation of Alfven waves, of the plasma behaviour in the neighbourhood of the hot-spot during an active experiment and, as a consequence, for some experimental results.

  6. The unusual Samoan hotspot: A "hotspot highway" juxtaposed with a trench

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Konter, J. G.; Koppers, A. A.

    2011-12-01

    Oceanic hotspots are fed by (relatively) stationary, upwelling mantle plumes that melt beneath mobile tectonic plates. This mechanism results in the generation of a linear chain of volcanoes exhibiting a clear age progression: the islands and seamounts should be increasingly older with increasing distance from the inferred location of the mantle plume. Located in the southwest Pacific, the Cook-Austral volcanic islands and seamounts were long thought to lack a clear age progression, and it has been argued that the Cook-Austral volcanic chain is an example of a hotspot not fed by a mantle plume. However, work by Chauvel et al (1997) showed that the Cook-Austral volcanoes have been generated by three distinct, co-linear mantle plumes spaced by ~1000 km, resulting in 3 overlapping hotspot tracks. Critically, the volcanoes generated by each hotspot exhibit a clear age progression that emerges from its respective plume. Using plate motion models, the reconstructed tracks of the three Cook-Austral hotspots backtrack through the region of the Pacific plate now occupied by the Samoan hotspot between 10 and 40 Ma (Konter et al., 2008). Owing to the unusual number of hotspots (Samoa is the fourth) that have been hosted in the region, we refer to this corridor of the Pacific plate as the "hotspot highway." The Samoan hotspot is burning through and thus crosscutting the trails of the older Cook-Austral hotspots. Consistent with this hypothesis, Jackson et al. (2010) reported volcanic features from the Cook-Austral hotspots in the Samoan region, including three seamounts and one atoll with geochemical affinities to the Cook-Austral hotspot. The Pacific lithosphere was likely "preconditioned" (metasomatized) by the three Cook-Australs hotspots before the arrival of the Samoan plume into the region, yet geochemical signatures associated with the Cook-Austral hotspot pedigrees are not evident in Samoan shield lavas. However, Samoan rejuvenated lavas exhibit a clear EMI (enriched

  7. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  8. Physiological responses to fire fighting activities.

    PubMed

    Romet, T T; Frim, J

    1987-01-01

    Eight professional fire fighters participated in six fire fighting scenarios at a training facility. Data on heart rate (HR), rectal temperature (Tre), and skin temperatures at the chest and thigh were collected using a portable data acquisition system. Average HR ranged from 122 to 151 beats.min-1 during the six scenarios. Detailed analyses indicated that HR and Tre increases are related to both the physical and environmental stresses of the various activities carried out. The most demanding activity, that of building search and victim rescue, resulted in an average HR of 153 beats.min-1 and Tre rise of 1.3 degree C, while the least demanding activity, that of the crew captain who directs the fire fighting, resulted in an average HR of only 122 beats.min-1 and a Tre rise of only 0.3 degree C. This study shows that fire fighting is strenuous work for those directly entering a building and performing related duties, but that the physical demands of other activities are considerably less. The results further suggest that heat strain injuries in fire fighters could perhaps be reduced by rotating duties frequently with other crew members performing less stressful work.

  9. Fire, Climate, and Human Activity: A Combustive Combination

    NASA Astrophysics Data System (ADS)

    Kehrwald, N. M.; Battistel, D.; Argiriadis, E.; Barbante, C.; Barber, L. B.; Fortner, S. K.; Jasmann, J.; Kirchgeorg, T.; Zennaro, P.

    2017-12-01

    Ice and lake core records demonstrate that fires caused by human activity can dominate regional biomass burning records in the Common Era. These major increases in fires are often associated with extensive land use change such as an expansion in agriculture. Regions with few humans, relatively stable human populations and/or unvarying land use often have fire histories that are dominated by climate parameters such as temperature and precipitation. Here, we examine biomass burning recorded in ice cores from northern Greenland (NEEM, (77°27'N; 51°3.6'W), Alaska (Juneau Icefield, 58° 35' N; 134° 29'W) and East Antarctica (EPICA DOME C; 75°06'S; 123°21'E), along with New Zealand lake cores to investigate interactions between climate, fire and human activity. Biomarkers such as levoglucosan, and its isomers mannosan and galactosan, can only be produced by cellulose combustion and therefore are specific indicators of past fire activity archived in ice and lake cores. These fire histories add another factor to climate proxies from the same core, and provide a comparison to regional fire syntheses from charcoal records and climate models. For example, fire data from the JSBACH-Spitfire model for the past 2000 years demonstrates that a climate-only scenario would not increase biomass burning in high northern latitudes for the past 2000 years, while NEEM ice core and regional pollen records demonstrate both increased fire activity and land use change that may be ascribed to human activity. Additional biomarkers such as fecal sterols in lake sediments can determine when people were in an area, and can help establish if an increased human presence in an area corresponds with intensified fire activity. This combination of specific biomarkers, other proxy data, and model output can help determine the relative impact of humans versus climate factors on regional fire activity.

  10. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 5: Fire suppression activities

    Treesearch

    Charles W. McHugh; Paul Gleason

    2003-01-01

    The purpose of this report is to document the suppression actions taken during the Hayman Fire. The long duration of suppression activities (June 8 through July 18), and multiple incident management teams assigned to the fire, makes this a challenging task. Original records and reports produced independently by the various teams assigned to different portions of the...

  11. Spatial patterns in vegetation fires in the Indian region.

    PubMed

    Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu

    2008-12-01

    In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.

  12. Meiotic recombination hotspots - a comparative view.

    PubMed

    Choi, Kyuha; Henderson, Ian R

    2015-07-01

    During meiosis homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover. Meiotic recombination has a profound effect on patterns of genetic variation and is an important tool during crop breeding. Crossovers initiate from programmed DNA double-stranded breaks that are processed to form single-stranded DNA, which can invade a homologous chromosome. Strand invasion events mature into double Holliday junctions that can be resolved as crossovers. Extensive variation in the frequency of meiotic recombination occurs along chromosomes and is typically focused in narrow hotspots, observed both at the level of DNA breaks and final crossovers. We review methodologies to profile hotspots at different steps of the meiotic recombination pathway that have been used in different eukaryote species. We then discuss what these studies have revealed concerning specification of hotspot locations and activity and the contributions of both genetic and epigenetic factors. Understanding hotspots is important for interpreting patterns of genetic variation in populations and how eukaryotic genomes evolve. In addition, manipulation of hotspots will allow us to accelerate crop breeding, where meiotic recombination distributions can be limiting. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  13. Human population in the biodiversity hotspots.

    PubMed

    Cincotta, R P; Wisnewski, J; Engelman, R

    2000-04-27

    Biologists have identified 25 areas, called biodiversity hotspots, that are especially rich in endemic species and particularly threatened by human activities. The human population dynamics of these areas, however, are not well quantified. Here we report estimates of key demographic variables for each hotspot, and for three extensive tropical forest areas that are less immediately threatened. We estimate that in 1995 more than 1.1 billion people, nearly 20% of world population, were living within the hotspots, an area covering about 12% of Earth's terrestrial surface. We estimate that the population growth rate in the hotspots (1995-2000) is 1.8% yr(-1), substantially higher than the population growth rate of the world as a whole (1.3% yr(-1)) and above that of the developing countries (1.6% yr(-1)). These results suggest that substantial human-induced environmental changes are likely to continue in the hotspots and that demographic change remains an important factor in global biodiversity conservation. The results also underline the potential conservation significance of the continuing worldwide declines in human fertility and of policies and programs that influence human migration.

  14. Suomi NPP VIIRS active fire product status

    NASA Astrophysics Data System (ADS)

    Ellicott, E. A.; Csiszar, I. A.; Schroeder, W.; Giglio, L.; Wind, B.; Justice, C. O.

    2012-12-01

    We provide an overview of the evaluation and development of the Active Fires product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite during the first year of on-orbit data. Results from the initial evaluation of the standard SNPP Active Fires product, generated by the SNPP Interface Data Processing System (IDPS), supported the stabilization of the VIIRS Sensor Data Record (SDR) product. This activity focused in particular on the processing of the dual-gain 4 micron VIIRS M13 radiometric measurements into 750m aggregated data, which are fundamental for active fire detection. Following the VIIRS SDR product's Beta maturity status in April 2012, correlative analysis between VIIRS and near-simultaneous fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System Aqua satellite confirmed the expected relative detection rates driven primarily by sensor differences. The VIIRS Active Fires Product Development and Validation Team also developed a science code that is based on the latest MODIS Collection 6 algorithm and provides a full spatially explicit fire mask to replace the sparse array output of fire locations from a MODIS Collection 4 equivalent algorithm in the current IDPS product. The Algorithm Development Library (ADL) was used to support the planning for the transition of the science code into IDPS operations in the future. Product evaluation and user outreach was facilitated by a product website that provided end user access to fire data in user-friendly format over North America as well as examples of VIIRS-MODIS comparisons. The VIIRS fire team also developed an experimental product based on 375m VIIRS Imagery band measurements and provided high quality imagery of major fire events in US. By August 2012 the IDPS product achieved Beta maturity, with some known and documented shortfalls related to the processing of

  15. Examining the High-energy Radiation Mechanisms of Knots and Hotspots in Active Galactic Nucleus Jets

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Du, Shen-shi; Guo, Sheng-Chu; Zhang, Hai-Ming; Chen, Liang; Liang, En-Wei; Zhang, Shuang-Nan

    2018-05-01

    We compile the radio–optical–X-ray spectral energy distributions (SEDs) of 65 knots and 29 hotspots in 41 active galactic nucleus jets to examine their high-energy radiation mechanisms. Their SEDs can be fitted with the single-zone leptonic models, except for the hotspot of Pictor A and six knots of 3C 273. The X-ray emission of 1 hotspot and 22 knots is well explained as synchrotron radiation under the equipartition condition; they usually have lower X-ray and radio luminosities than the others, which may be due to a lower beaming factor. An inverse Compton (IC) process is involved for explaining the X-ray emission of the other SEDs. Without considering the equipartition condition, their X-ray emission can be attributed to the synchrotron-self-Compton process, but the derived jet powers (P jet) are not correlated with L k and most of them are larger than L k, with more than three orders of magnitude, where L k is the jet kinetic power estimated with their radio emission. Under the equipartition condition, the X-ray emission is well interpreted with the IC process for the cosmic microwave background photons (IC/CMB). In this scenario, the derived P jet of knots and hotspots are correlated with and comparable to L k. These results suggest that the IC/CMB model may be a promising interpretation of the X-ray emission. In addition, a tentative knot–hotspot sequence in the synchrotron peak-energy–peak-luminosity plane is observed, similar to the blazar sequence, which may be attributed to the different cooling mechanisms of electrons.

  16. Pipeline oil fire detection with MODIS active fire products

    NASA Astrophysics Data System (ADS)

    Ogungbuyi, M. G.; Martinez, P.; Eckardt, F. D.

    2017-12-01

    We investigate 85 129 MODIS satellite active fire events from 2007 to 2015 in the Niger Delta of Nigeria. The region is the oil base for Nigerian economy and the hub of oil exploration where oil facilities (i.e. flowlines, flow stations, trunklines, oil wells and oil fields) are domiciled, and from where crude oil and refined products are transported to different Nigerian locations through a network of pipeline systems. Pipeline and other oil facilities are consistently susceptible to oil leaks due to operational or maintenance error, and by acts of deliberate sabotage of the pipeline equipment which often result in explosions and fire outbreaks. We used ground oil spill reports obtained from the National Oil Spill Detection and Response Agency (NOSDRA) database (see www.oilspillmonitor.ng) to validate MODIS satellite data. NOSDRA database shows an estimate of 10 000 spill events from 2007 - 2015. The spill events were filtered to include largest spills by volume and events occurring only in the Niger Delta (i.e. 386 spills). By projecting both MODIS fire and spill as `input vector' layers with `Points' geometry, and the Nigerian pipeline networks as `from vector' layers with `LineString' geometry in a geographical information system, we extracted the nearest MODIS events (i.e. 2192) closed to the pipelines by 1000m distance in spatial vector analysis. The extraction process that defined the nearest distance to the pipelines is based on the global practices of the Right of Way (ROW) in pipeline management that earmarked 30m strip of land to the pipeline. The KML files of the extracted fires in a Google map validated their source origin to be from oil facilities. Land cover mapping confirmed fire anomalies. The aim of the study is to propose a near-real-time monitoring of spill events along pipeline routes using 250 m spatial resolution of MODIS active fire detection sensor when such spills are accompanied by fire events in the study location.

  17. Dynamics, Patterns and Causes of Fires in Northwestern Amazonia

    PubMed Central

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests. PMID:22523580

  18. Dynamics, patterns and causes of fires in Northwestern Amazonia.

    PubMed

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests.

  19. Lack of visible change around active hotspots on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Detail of changes around two hotspots on Jupiter's moon Io as seen by Voyager 1 in April 1979 (left) and NASA's Galileo spacecraft on September 7th, 1996 (middle and right). The right frame was created with images from the Galileo Solid State Imaging system's near-infrared (756 nm), green, and violet filters. For better comparison, the middle frame mimics Voyager colors. The calderas at the top and at the lower right of the images correspond to the locations of hotspots detected by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft during its second orbit. There are no significant morphologic changes around these hot calderas; however, the diffuse red deposits, which are simply dark in the Voyager colors, appear to be associated with recent and/or ongoing volcanic activity. The three calderas range in size from approximately 100 kilometers to approximately 150 kilometers in diameter. The caldera in the lower right of each frame is named Malik. North is to the top of all frames.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. NIMS Observation of Hotspots on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Io has been imaged by the Near Infrared Mapping Spectrometer (NIMS) on Galileo. The image on the right shows for the first time the distribution of volcanic hotspots on the surface of Io, as seen by NIMS. Three of these hotspots are new discoveries, only detectable with the NIMS instrument. This image was taken during the G1 encounter on June 29 1996. The image on the left shows the same view of Io as seen by the Voyager spacecraft in 1979. At least one dozen hotspots have been identified from this NIMS image. Most of the hotspot locations can be matched with volcanic features on the surface of Io, including the vent area of the active Prometheus plume.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  1. Automated Selection of Hotspots (ASH): enhanced automated segmentation and adaptive step finding for Ki67 hotspot detection in adrenal cortical cancer.

    PubMed

    Lu, Hao; Papathomas, Thomas G; van Zessen, David; Palli, Ivo; de Krijger, Ronald R; van der Spek, Peter J; Dinjens, Winand N M; Stubbs, Andrew P

    2014-11-25

    In prognosis and therapeutics of adrenal cortical carcinoma (ACC), the selection of the most active areas in proliferative rate (hotspots) within a slide and objective quantification of immunohistochemical Ki67 Labelling Index (LI) are of critical importance. In addition to intratumoral heterogeneity in proliferative rate i.e. levels of Ki67 expression within a given ACC, lack of uniformity and reproducibility in the method of quantification of Ki67 LI may confound an accurate assessment of Ki67 LI. We have implemented an open source toolset, Automated Selection of Hotspots (ASH), for automated hotspot detection and quantification of Ki67 LI. ASH utilizes NanoZoomer Digital Pathology Image (NDPI) splitter to convert the specific NDPI format digital slide scanned from the Hamamatsu instrument into a conventional tiff or jpeg format image for automated segmentation and adaptive step finding hotspots detection algorithm. Quantitative hotspot ranking is provided by the functionality from the open source application ImmunoRatio as part of the ASH protocol. The output is a ranked set of hotspots with concomitant quantitative values based on whole slide ranking. We have implemented an open source automated detection quantitative ranking of hotspots to support histopathologists in selecting the 'hottest' hotspot areas in adrenocortical carcinoma. To provide wider community easy access to ASH we implemented a Galaxy virtual machine (VM) of ASH which is available from http://bioinformatics.erasmusmc.nl/wiki/Automated_Selection_of_Hotspots . The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_216.

  2. A Western Pacific Hotspot?

    NASA Astrophysics Data System (ADS)

    MacPherson, C. G.; Hall, R.

    2003-04-01

    The petrology of volcanic rocks from the St. Andrew Strait and helium isotope ratios of backarc lavas from the Manus Basin have been used to propose the existence of an active hotspot beneath the eastern Bismarck Sea (Johnson et al., 1978; Macpherson et al., 1998). The past influence of this hotspot can be assessed by mapping its present location onto a plate tectonic reconstruction of the western Pacific (Macpherson and Hall, 2001). During the Middle Eocene the nascent Izu-Bonin-Mariana (IBM) arc lay above the hotspot. The volume of magma emplaced at the IBM arc at that time substantially exceeds the average magma production rate for mature island arcs. Furthermore, the ultramafic (boninitic) character of much of this magmatism requires elevated temperatures. The geochemistry of contemporaneous magmatism in the backarc resembles ocean island basalts and much of the backarc region experienced significant uplift at that time. All of these features can be explained by the influx of hot, buoyant, chemically distinct mantle beneath the IBM and its hinterland. The lithosphere lying above the hotspot during the later Eocene was subsequently subducted. During the Oligo-Miocene the hotspot was traversed by parts of the Caroline Plate where the Euripik Rise is found. This is an aseismic rise that possesses the geophysical characteristics of thickened oceanic crust formed by excess, basaltic magmatism and is the type of structure that would result from the passage of relatively young oceanic lithosphere over a mantle hotspot. Plate reconstruction for the western Pacific predicts a hotspot trail that is consistent with the Middle Eocene and Oligo-Miocene geology of the IBM and Caroline Plates, respectively (Macpherson and Hall, 2001). Parts of the trail have been disrupted by subsequent sea-floor spreading or lost through subduction but the remaining vestiges are consistent with the action of a thermal anomaly throughout much of the Cenozoic. More speculatively, buoyancy

  3. Projecting climate-driven increases in North American fire activity

    NASA Astrophysics Data System (ADS)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2013-12-01

    Climate regulates fire activity through controls on vegetation productivity (fuels), lightning ignitions, and conditions governing fire spread. In many regions of the world, human management also influences the timing, duration, and extent of fire activity. These coupled interactions between human and natural systems make fire a complex component of the Earth system. Satellite data provide valuable information on the spatial and temporal dynamics of recent fire activity, as active fires, burned area, and land cover information can be combined to separate wildfires from intentional burning for agriculture and forestry. Here, we combined satellite-derived burned area data with land cover and climate data to assess fire-climate relationships in North America between 2000-2012. We used the latest versions of the Global Fire Emissions Database (GFED) burned area product and Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate data to develop regional relationships between burned area and potential evaporation (PE), an integrated dryness metric. Logistic regression models were developed to link burned area with PE and individual climate variables during and preceding the fire season, and optimal models were selected based on Akaike Information Criterion (AIC). Overall, our model explained 85% of the variance in burned area since 2000 across North America. Fire-climate relationships from the era of satellite observations provide a blueprint for potential changes in fire activity under scenarios of climate change. We used that blueprint to evaluate potential changes in fire activity over the next 50 years based on twenty models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). All models suggest an increase of PE under low and high emissions scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively), with largest increases in projected burned area across the western US and central Canada. Overall, near

  4. Sequence requirement of the ade6-4095 meiotic recombination hotspot in Schizosaccharomyces pombe.

    PubMed

    Foulis, Steven J; Fowler, Kyle R; Steiner, Walter W

    2018-02-01

    Homologous recombination occurs at a greatly elevated frequency in meiosis compared to mitosis and is initiated by programmed double-strand DNA breaks (DSBs). DSBs do not occur at uniform frequency throughout the genome in most organisms, but occur preferentially at a limited number of sites referred to as hotspots. The location of hotspots have been determined at nucleotide-level resolution in both the budding and fission yeasts, and while several patterns have emerged regarding preferred locations for DSB hotspots, it remains unclear why particular sites experience DSBs at much higher frequency than other sites with seemingly similar properties. Short sequence motifs, which are often sites for binding of transcription factors, are known to be responsible for a number of hotspots. In this study we identified the minimum sequence required for activity of one of such motif identified in a screen of random sequences capable of producing recombination hotspots. The experimentally determined sequence, GGTCTRGACC, closely matches the previously inferred sequence. Full hotspot activity requires an effective sequence length of 9.5 bp, whereas moderate activity requires an effective sequence length of approximately 8.2 bp and shows significant association with DSB hotspots. In combination with our previous work, this result is consistent with a large number of different sequence motifs capable of producing recombination hotspots, and supports a model in which hotspots can be rapidly regenerated by mutation as they are lost through recombination.

  5. 'Hotspots' for aggression in licensed drinking venues.

    PubMed

    Graham, Kathryn; Bernards, Sharon; Osgood, D Wayne; Wells, Samantha

    2012-06-01

    In order to better understand the social context of barroom aggression, the aim was to identify common locations ('hotspots') for aggression in bars and examine the association of hotspots with aggression severity and environmental characteristics. Aggression hotspots were identified using narrative descriptions and data recorded on premises' floor plans for 1057 incidents of aggression collected in the Safer Bars evaluation. Hierarchical Linear Modelling was used to identify bar-level and night-level characteristics associated with each hotspot. The most common location for aggression was the dance floor (20.0% of incidents) or near the dance floor (11.5%), followed by near the serving bar (15.7%), at tables (13.1%), aisles, hallways and other areas of movement (6.2%), entrance (4.5%) and the pool playing area (4.1%). Hotspots were predicted mainly by bar-level characteristics, with dance floor aggression associated with crowded bars, a high proportion of female and young patrons, lots of sexual activity, a large number of patrons and staff, security staff present, better monitoring and coordination by staff, and people hanging around at closing. Incidents at tables and pool tables tended to occur in bars with the opposite characteristics. Nightly variations in patron intoxication and rowdiness were associated with aggression at tables while variations in crowding and sexual activity were associated with aggression in areas of movement. Incidents outside tended to be more severe. Each aggression location and their associated environments have somewhat different implications for staff training, premises design, policy and prevention. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  6. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula

    PubMed Central

    Castro, Daniel C.; Berridge, Kent C.

    2017-01-01

    Hedonic hotspots are brain sites where particular neurochemical stimulations causally amplify the hedonic impact of sensory rewards, such as “liking” for sweetness. Here, we report the mapping of two hedonic hotspots in cortex, where mu opioid or orexin stimulations enhance the hedonic impact of sucrose taste. One hedonic hotspot was found in anterior orbitofrontal cortex (OFC), and another was found in posterior insula. A suppressive hedonic coldspot was also found in the form of an intervening strip stretching from the posterior OFC through the anterior and middle insula, bracketed by the two cortical hotspots. Opioid/orexin stimulations in either cortical hotspot activated Fos throughout a distributed “hedonic circuit” involving cortical and subcortical structures. Conversely, cortical coldspot stimulation activated circuitry for “hedonic suppression.” Finally, food intake was increased by stimulations at several prefrontal cortical sites, indicating that the anatomical substrates in cortex for enhancing the motivation to eat are discriminable from those for hedonic impact. PMID:29073109

  7. Detection rates of the MODIS active fire product in the United States

    USGS Publications Warehouse

    Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.

    2008-01-01

    MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.

  8. Anthropogenic and Climatic Influence on Vegetation Fires in Peatland of Insular Southeast Asia

    NASA Astrophysics Data System (ADS)

    Liew, S.; Miettinen, J.; Salinas Cortijo, S. V.

    2011-12-01

    Fire is traditionally used as a tool in land clearing by farmers and shifting cultivators in Southeast Asia. However, the small scale clearing of land is increasingly being replaced by modern large-scale conversion of forests into plantations/agricultural land, usually also by fires. Fires get out of control in periods of extreme drought, especially during the El Nino periods, resulting in severe episodes of transboundary air pollution in the form of smoke haze. We use the MODIS active fires product (hotspots) to establish correlations between the temporal and spatial patterns of vegetation fires with climatic variables, land cover change and soil type (peat or non-peat) in the western part of Insular Southeast Asia for a decade from 2001 to 2010. Fire occurrence exhibits a negative correlation with rainfall, and is more severe overall during the El-Nino periods. However, not all regions are equally affected by El-Nino. In Southern Sumatra and Southern Borneo the correlation with El-Nino is high. However, fires in some regions such as the peatland in Riau, Jambi and Sarawak do not appear to be influenced by El-Nino. These regions are also experiencing rapid conversion of forest to large scale plantations.

  9. The Cooney Ridge Fire Experiment: An early operation to relate pre-, active, and post-fire field and remotely sensed measurements

    Treesearch

    Andrew T. Hudak; Patrick H. Freeborn; Sarah A. Lewis; Sharon M. Hood; Helen Y. Smith; Colin C. Hardy; Robert J. Kremens; Bret W. Butler; Casey Teske; Robert G. Tissell; Lloyd P. Queen; Bryce L. Nordgren; Benjamin C. Bright; Penelope Morgan; Philip J. Riggan; Lee Macholz; Leigh B. Lentile; James P. Riddering; Edward E. Mathews

    2018-01-01

    The Cooney Ridge Fire Experiment conducted by fire scientists in 2003 was a burnout operation supported by a fire suppression crew on the active Cooney Ridge wildfire incident. The fire experiment included measurements of pre-fire fuels, active fire behavior, and immediate post-fire effects. Heat flux measurements collected at multiple scales with multiple ground and...

  10. ENSO controls interannual fire activity in southeast Australia

    NASA Astrophysics Data System (ADS)

    Mariani, M.; Fletcher, M.-S.; Holz, A.; Nyman, P.

    2016-10-01

    El Niño-Southern Oscillation (ENSO) is the main mode controlling the variability in the ocean-atmosphere system in the South Pacific. While the ENSO influence on rainfall regimes in the South Pacific is well documented, its role in driving spatiotemporal trends in fire activity in this region has not been rigorously investigated. This is particularly the case for the highly flammable and densely populated southeast Australian sector, where ENSO is a major control over climatic variability. Here we conduct the first region-wide analysis of how ENSO controls fire activity in southeast Australia. We identify a significant relationship between ENSO and both fire frequency and area burnt. Critically, wavelet analyses reveal that despite substantial temporal variability in the ENSO system, ENSO exerts a persistent and significant influence on southeast Australian fire activity. Our analysis has direct application for developing robust predictive capacity for the increasingly important efforts at fire management.

  11. SequenceLDhot: detecting recombination hotspots.

    PubMed

    Fearnhead, Paul

    2006-12-15

    There is much local variation in recombination rates across the human genome--with the majority of recombination occurring in recombination hotspots--short regions of around approximately 2 kb in length that have much higher recombination rates than neighbouring regions. Knowledge of this local variation is important, e.g. in the design and analysis of association studies for disease genes. Population genetic data, such as that generated by the HapMap project, can be used to infer the location of these hotspots. We present a new, efficient and powerful method for detecting recombination hotspots from population data. We compare our method with four current methods for detecting hotspots. It is orders of magnitude quicker, and has greater power, than two related approaches. It appears to be more powerful than HotspotFisher, though less accurate at inferring the precise positions of the hotspot. It was also more powerful than LDhot in some situations: particularly for weaker hotspots (10-40 times the background rate) when SNP density is lower (< 1/kb). Program, data sets, and full details of results are available at: http://www.maths.lancs.ac.uk/~fearnhea/Hotspot.

  12. A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots.

    PubMed

    Bejon, Philip; Williams, Thomas N; Nyundo, Christopher; Hay, Simon I; Benz, David; Gething, Peter W; Otiende, Mark; Peshu, Judy; Bashraheil, Mahfudh; Greenhouse, Bryan; Bousema, Teun; Bauni, Evasius; Marsh, Kevin; Smith, David L; Borrmann, Steffen

    2014-04-24

    Malaria transmission is spatially heterogeneous. This reduces the efficacy of control strategies, but focusing control strategies on clusters or 'hotspots' of transmission may be highly effective. Among 1500 homesteads in coastal Kenya we calculated (a) the fraction of febrile children with positive malaria smears per homestead, and (b) the mean age of children with malaria per homestead. These two measures were inversely correlated, indicating that children in homesteads at higher transmission acquire immunity more rapidly. This inverse correlation increased gradually with increasing spatial scale of analysis, and hotspots of febrile malaria were identified at every scale. We found hotspots within hotspots, down to the level of an individual homestead. Febrile malaria hotspots were temporally unstable, but 4 km radius hotspots could be targeted for 1 month following 1 month periods of surveillance.DOI: http://dx.doi.org/10.7554/eLife.02130.001. Copyright © 2014, Bejon et al.

  13. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    NASA Technical Reports Server (NTRS)

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  14. Variability, trends, and drivers of regional fluctuations in Australian fire activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2017-07-01

    Throughout the world fire regimes are determined by climate, vegetation, and anthropogenic factors, and they have great spatial and temporal variability. The availability of high-quality satellite data has revolutionized fire monitoring, allowing for a more consistent and comprehensive evaluation of temporal and spatial patterns. Here we utilize a satellite based "active fire" (AF) product to statistically analyze 2001-2015 variability and trends in Australian fire activity and link this to precipitation and large-scale atmospheric structures (namely, the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)) known to have potential for predicting fire activity in different regions. It is found that Australian fire activity is decreasing (during summer (December-February)) or stable, with high temporal and spatial variability. Eastern New South Wales (NSW) has the strongest decreasing trend (to the 1% confidence level), especially during the winter (JJA) season. Other significantly decreasing areas are Victoria/NSW, Tasmania, and South-east Queensland. These decreasing fire regions are relatively highly populated, so we suggest that the declining trends are due to improved fire management, reducing the size and duration of bush fires. Almost half of all Australian AFs occur during spring (September-November). We show that there is considerable potential throughout Australia for a skillful forecast for future season fire activity based on current and previous precipitation activity, ENSO phase, and to a lesser degree, the IOD phase. This is highly variable, depending on location, e.g., the IOD phase is for more indicative of fire activity in southwest Western Australia than for Queensland.

  15. Modeling Resource Hotspots: Critical Linkages and Processes

    NASA Astrophysics Data System (ADS)

    Daher, B.; Mohtar, R.; Pistikopoulos, E.; McCarl, B. A.; Yang, Y.

    2017-12-01

    Growing demands for interconnected resources emerge in the form of hotspots of varying characteristics. The business as usual allocation model cannot address the current, let alone anticipated, complex and highly interconnected resource challenges we face. A new paradigm for resource allocation must be adopted: one that identifies cross-sectoral synergies and, that moves away from silos to recognition of the nexus and integration of it. Doing so will result in new opportunities for business growth, economic development, and improved social well-being. Solutions and interventions must be multi-faceted; opportunities should be identified with holistic trade-offs in mind. No single solution fits all: different hotspots will require distinct interventions. Hotspots have varying resource constraints, stakeholders, goals and targets. The San Antonio region represents a complex resource hotspot with promising potential: its rapidly growing population, the Eagle Ford shale play, and the major agricultural activity there makes it a hotspot with many competing demands. Stakeholders need tools to allow them to knowledgeably address impending resource challenges. This study will identify contemporary WEF nexus questions and critical system interlinkages that will inform the modeling of the tightly interconnected resource systems and stresses using the San Antonio Region as a base; it will conceptualize a WEF nexus modeling framework, and develop assessment criteria to inform integrative planning and decision making.

  16. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga.

    PubMed

    Erni, Sandy; Arseneault, Dominique; Parisien, Marc-André; Bégin, Yves

    2017-03-01

    The forest age mosaic is a fundamental attribute of the North American boreal forest. Given that fires are generally lethal to trees, the time since last fire largely determines the composition and structure of forest stands and landscapes. Although the spatiotemporal dynamics of such mosaics has long been assumed to be random under the overwhelming influence of severe fire weather, no long-term reconstruction of mosaic dynamics has been performed from direct field evidence. In this study, we use fire length as a proxy for fire extent across the fire-prone eastern Canadian taiga and systematically reconstruct the spatiotemporal variability of fire extent and fire intervals, as well as the resulting forest age along a 340-km transect for the 1840-2013 time period. Our results indicate an extremely active fire regime over the last two centuries, with an overall burn rate of 2.1% of the land area yr -1 , mainly triggered by seasonal anomalies of high temperature and severe drought. However, the rejuvenation of the age mosaic was strongly patterned in space and time due to the intrinsically lower burn rates in wetland-dominated areas and, more importantly, to the much-reduced likelihood of burning of stands up to 50 years postfire. An extremely high burn rate of ~5% yr -1 would have characterized our study region during the last century in the absence of such fuel age effect. Although recent burn rates and fire sizes are within their range of variability of the last 175 years, a particularly severe weather event allowed a 2013 fire to spread across a large fire refuge, thus shifting the abundance of mature and old forest to a historic low. These results provide reference conditions to evaluate the significance and predict the spatiotemporal dynamics and impacts of the currently strengthening fire activity in the North American boreal forest. © 2016 John Wiley & Sons Ltd.

  17. PRDM9 Drives Evolutionary Erosion of Hotspots in Mus musculus through Haplotype-Specific Initiation of Meiotic Recombination

    PubMed Central

    Baker, Christopher L.; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L.; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M.; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9 Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion. PMID:25568937

  18. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination.

    PubMed

    Baker, Christopher L; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion.

  19. A measurement concept for hot-spot BRDFs from space

    NASA Technical Reports Server (NTRS)

    Gerstl, S.A.W.

    1996-01-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  20. Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model

    NASA Astrophysics Data System (ADS)

    Zheng, Qiming; Jiang, Ruowei; Wang, Ke; Huang, Lingyan; Ye, Ziran; Gan, Muye; Ji, Biyong

    2018-03-01

    Urban nighttime light hotspot is an ideal representation of the spatial heterogeneity of human activities within a city, which is sensitive to regional urban expansion pattern. However, most of previous studies related to nighttime light imageries focused on extracting urban extent, leaving the spatial variation of radiance intensity insufficiently explored. With the help of global radiance calibrated DMSP-OLS datasets (NTLgrc), we proposed an innovative framework to explore the spatio-temporal trajectory of polycentric urban nighttime light hotspots. Firstly, NTLgrc was inter-annually calibrated to improve the consistency. Secondly, multi-resolution segmentation and region-growing SVM classification were employed to remove blooming effect and to extract potential clusters. At last, the urban hotspots were identified by a Gaussian volume model, and the resulting parameters were used to quantitatively depict hotspot features (i.e., intensity, morphology and centroid dynamics). The result shows that our framework successfully captures hotspots in polycentric urban area, whose Ra2 are over 0.9. Meanwhile, the spatio-temporal dynamics of the hotspot features intuitively reveal the impact of the regional urban growth pattern and planning strategies on human activities. Compared to previous studies, our framework is more robust and offers an effective way to describe hotspot pattern. Also, it provides a more comprehensive and spatial-explicit understanding regarding the interaction between urbanization pattern and human activities. Our findings are expected to be beneficial to governors in term of sustainable urban planning and decision making.

  1. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in

  2. Impacts of changing fire weather conditions on reconstructed trends in U.S. wildland fire activity from 1979 to 2014

    Treesearch

    Patrick H. Freeborn; W. Matt Jolly; Mark A. Cochrane

    2016-01-01

    One component of climate‐fire interactions is the relationship between weather conditions concurrent with burning (i.e., fire danger) and the magnitude of fire activity. Here daily environmental conditions are associated with daily observations of fire activity within ecoregions across the continental United States (CONUS) by aligning the latter 12 years of a 36 year...

  3. Hotspots on Io During the Ganymede 2 Encounter

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft imaged Io at high spectral resolution at a range of 439,000 km (275,000 miles) during the G2 encounter on 6 September 1996. This image shows, on the right, Io as seen by NIMS, centered on 150 W longitude. The image on the left shows the same view point from Voyager data (from the encounters in 1979 and 1980). The NIMS image can be compared to the NIMS hotspot image from the G1 orbit (June 1996) to monitor changes on Io. The most dramatic feature of the G2 image is the hotspot at Malik Patera. Preliminary analysis of the data yields a temperature of at least 1000 K (727 C) for this hotspot, an increase of more than 300 K from the G1 encounter. In the overlap area of the G1 and G2 images all the hotspots seen during the G1 encounter are also seen in the G2 image. Other hotspots were seen, including one at the Pele plume origin site. This image is at the 4 micron band to best view the Malik hotspot. Most of the other hotspots are best seen at longer wavelengths. NIMS is continuing to observe Io to monitor volcanic activity throughout the Galileo mission.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  4. Warfare in biodiversity hotspots.

    PubMed

    Hanson, Thor; Brooks, Thomas M; Da Fonseca, Gustavo A B; Hoffmann, Michael; Lamoreux, John F; Machlis, Gary; Mittermeier, Cristina G; Mittermeier, Russell A; Pilgrim, John D

    2009-06-01

    Conservation efforts are only as sustainable as the social and political context within which they take place. The weakening or collapse of sociopolitical frameworks during wartime can lead to habitat destruction and the erosion of conservation policies, but in some cases, may also confer ecological benefits through altered settlement patterns and reduced resource exploitation. Over 90% of the major armed conflicts between 1950 and 2000 occurred within countries containing biodiversity hotspots, and more than 80% took place directly within hotspot areas. Less than one-third of the 34 recognized hotspots escaped significant conflict during this period, and most suffered repeated episodes of violence. This pattern was remarkably consistent over these 5 decades. Evidence from the war-torn Eastern Afromontane hotspot suggests that biodiversity conservation is improved when international nongovernmental organizations support local protected area staff and remain engaged throughout the conflict. With biodiversity hotspots concentrated in politically volatile regions, the conservation community must maintain continuous involvement during periods of war, and biodiversity conservation should be incorporated into military, reconstruction, and humanitarian programs in the world's conflict zones. ©2009 Society for Conservation Biology.

  5. Background heatflow on hotspot planets - Io and Venus

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.; Mcnamara, Sean C.

    1988-01-01

    It is suggested that there is no simple relationship between lithospheric thickness and heatflow on planets where volcanism dominates the heatflow. This applies locally and globally, even away from regions of volcanic activity. This indicates that there is no basis for the assumption that the Io heatflow is as low as (or lower than) the hotspot component alone would suggest. A model is presented to describe the heatflow on hotspot planets. The model is applied to Io and Venus.

  6. Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory.

    PubMed

    Mather, Mara; Clewett, David; Sakaki, Michiko; Harley, Carolyn W

    2016-01-01

    Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.

  7. A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots

    PubMed Central

    Bejon, Philip; Williams, Thomas N; Nyundo, Christopher; Hay, Simon I; Benz, David; Gething, Peter W; Otiende, Mark; Peshu, Judy; Bashraheil, Mahfudh; Greenhouse, Bryan; Bousema, Teun; Bauni, Evasius; Marsh, Kevin; Smith, David L; Borrmann, Steffen

    2014-01-01

    Malaria transmission is spatially heterogeneous. This reduces the efficacy of control strategies, but focusing control strategies on clusters or ‘hotspots’ of transmission may be highly effective. Among 1500 homesteads in coastal Kenya we calculated (a) the fraction of febrile children with positive malaria smears per homestead, and (b) the mean age of children with malaria per homestead. These two measures were inversely correlated, indicating that children in homesteads at higher transmission acquire immunity more rapidly. This inverse correlation increased gradually with increasing spatial scale of analysis, and hotspots of febrile malaria were identified at every scale. We found hotspots within hotspots, down to the level of an individual homestead. Febrile malaria hotspots were temporally unstable, but 4 km radius hotspots could be targeted for 1 month following 1 month periods of surveillance. DOI: http://dx.doi.org/10.7554/eLife.02130.001 PMID:24843017

  8. Specific Modifications of Histone Tails, but Not DNA Methylation, Mirror the Temporal Variation of Mammalian Recombination Hotspots

    PubMed Central

    Zeng, Jia; Yi, Soojin V.

    2014-01-01

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called “recombination hotspot paradox”) remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy “bivalent” chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. PMID:25326136

  9. Hotspots in Hindsight

    NASA Astrophysics Data System (ADS)

    Julian, B. R.; Foulger, G. R.; Hatfield, O.; Jackson, S.; Simpson, E.; Einbeck, J.; Moore, A.

    2014-12-01

    Torsvik et al. [2006] suggest that the original locations of large igneous provinces ("LIPs") and kimberlites, and current locations of melting anomalies (hot-spots) lie preferentially above the margins of two Large Lower-Mantle Shear Velocity Provinces" (LLSVPs), at the base of the mantle, and that the correlation has a high significance level (> 99.9999%). They conclude the LLSVP margins are Plume-Generation Zones, and deep-mantle plumes cause hotspots and LIPs. This conclusion raises questions about what physical processes could be responsible, because, for example the LLSVPs are likely dense and not abnormally hot [Trampert et al., 2004]. The supposed LIP-hotspot-LLSVP correlations probably are examples of the "Hindsight Heresy" [Acton, 1959], of basing a statistical test upon the same data sample that led to the initial formulation of a hypothesis. In doing this, many competing hypotheses will have been considered and rejected, but this fact will not be taken into account in statistical assessments. Furthermore, probabilities will be computed for many subsets and combinations of the data, and the best-correlated cases will be cited, but this fact will not be taken into account either. Tests using independent hot-spot catalogs and mantle models suggest that the actual significance levels of the correlations are two or three orders of magnitude smaller than claimed. These tests also show that hot spots correlate well with presumably shallowly rooted features such as spreading plate boundaries. Consideration of the kimberlite dataset in the context of geological setting suggests that their apparent association with the LLSVP margins results from the fact that the Kaapvaal craton, the site of most of the kimberlites considered, lies in Southern Africa. These observations raise questions about the distinction between correlation and causation and underline the necessity to take geological factors into account. Fig: Left: Cumulative distributions of distances from

  10. A Western Pacific Hotspot?

    NASA Astrophysics Data System (ADS)

    MacPherson, C. G.; Hall, R.

    2002-12-01

    The petrology of volcanic rocks from the St. Andrew Strait and helium isotope ratios of backarc lavas from the Manus Basin have been used to propose the existence of an active hotspot beneath the eastern Bismarck Sea [1,2]. The possible influence of this hotspot can be assessed by mapping its present location onto a plate tectonic reconstruction of the western Pacific [3,4]. During the Middle Eocene the nascent Izu-Bonin-Mariana (IBM) arc lay above the hotspot. The volume of magma emplaced at the IBM arc at that time substantially exceeds the average magma production rate for mature island arcs. Furthermore, the ultramafic (boninitic) character of much of this magmatism requires elevated temperatures in the mantle. The geochemistry of contemporaneous magmatism in the backarc resembles melts usually found at ocean islands and much of the backarc region experienced significant uplift at that time. All of these features can be explained by the influx of hot, buoyant, chemically distinct mantle beneath the IBM and its hinterland. The plates lying above the hotspot during the later Eocene were subsequently subducted, but plate reconstruction suggests that during the Oligo-Miocene it was crossed by parts of the Caroline Plate where the Euripik Rise is found. This is an aseismic rise that possesses the geophysical characteristics of thickened oceanic crust formed by excess, basaltic magmatism and is the type of structure that would result from the passage of relatively young oceanic lithosphere over a mantle hotspot. Plate reconstruction for the western Pacific predicts a hotspot trail that is consistent with the Middle Eocene and Oligo-Miocene geology of the IBM and Caroline Plates, respectively. Parts of the trail have been disrupted by subsequent sea-floor spreading or lost through subduction but the remaining vestiges are consistent with the action of a thermal anomaly throughout much of the Cenozoic. More speculatively, the difference in buoyancy between the IBM

  11. Holocene fire activity and vegetation response in South-Eastern Iberia

    NASA Astrophysics Data System (ADS)

    Gil-Romera, Graciela; Carrión, José S.; Pausas, Juli G.; Sevilla-Callejo, Miguel; Lamb, Henry F.; Fernández, Santiago; Burjachs, Francesc

    2010-05-01

    Since fire has been recognized as an essential disturbance in Mediterranean landscapes, the study of long-term fire ecology has developed rapidly. We have reconstructed a sequence of vegetation dynamics and fire changes across south-eastern Iberia by coupling records of climate, fire, vegetation and human activities. We calculated fire activity anomalies (FAAs) in relation to 3 ka cal BP for 10-8 ka cal BP, 6 ka cal BP, 4 ka cal BP and the present. For most of the Early to the Mid-Holocene uneven, but low fire events were the main vegetation driver at high altitudes where broadleaved and coniferous trees presented a highly dynamic post-fire response. At mid-altitudes in the mainland Segura Mountains, fire activity remained relatively stable, at similar levels to recent times. We hypothesize that coastal areas, both mountains and lowlands, were more fire-prone landscapes as biomass was more likely to have accumulated than in the inland regions, triggering regular fire events. The wet and warm phase towards the Mid-Holocene (between ca 8 and 6 ka cal BP) affected the whole region and promoted the spread of mesophytic forest co-existing with Pinus, as FAAs appear strongly negative at 6 ka cal BP, with a less important role of fire. Mid and Late Holocene landscapes were shaped by an increasing aridity trend and the rise of human occupation, especially in the coastal mountains where forest disappeared from ca 2 ka cal BP. Mediterranean-type vegetation (evergreen oaks and Pinus pinaster- halepensis types) showed the fastest post-fire vegetation dynamics over time.

  12. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    PubMed Central

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-01-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone. PMID:26940995

  13. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne De; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-03-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

  14. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia.

    PubMed

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A; Niklasson, Mats

    2016-03-04

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

  15. Mantle plumes and hotspot geochemistry

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Becker, T. W.; Konter, J.

    2017-12-01

    Ever improving global seismic models, together with expanding databases of mantle derived hotspot lavas, herald advances that relate the geochemistry of hotspots with low seismic shear-wave velocity conduits (plumes) in the mantle. Early efforts linked hotspot geochemistry with deep mantle large low velocity provinces (LLVPs) [1]. More recently, Konter and Becker (2012) [2] observed that the proportion of the C mantle component (inferred from Sr-Nd-Pb isotopes) in hotspot lavas shows an inverse relationship with seismic S-wave velocity anomalies in the shallow mantle (200 km) beneath each hotspot. They proposed that these correlations should also be made based on 3He/4He. Thus, we compare 3He/4He versus seismic S-wave velocity anomalies at 200 km depth. We find that plume-fed hotspots with the highest maximum 3He/4He (i.e., which host more of the C component) have higher hotspot buoyancy fluxes and overlie regions of lower seismic S-wave velocity (interpreted to relate to hotter mantle temperatures) at 200 km depth than hotspots that have only low 3He/4He [3]. This result complements recent work that shows an inverse relationship between maximum 3He/4He and seismic S-wave velocity anomalies in the mantle beneath the western USA [4]. The relationship between 3He/4He, shallow mantle seismic S-wave velocity anomalies, and buoyancy flux is most easily explained by a model where hotter plumes are more buoyant and entrain more of a deep, dense high 3He/4He reservoir than cooler plumes that underlie low 3He/4He hotspots. If the high 3He/4He domain is denser than other mantle components, it will be entrained only by the hottest, most buoyant plumes [3]. Such a deep, dense reservoir is ideally suited to preserving early-formed Hadean domains sampled in modern plume-fed hotspots. An important question is whether, like 3He/4He, seismic S-wave velocity anomalies in the mantle are associated with distinct heavy radiogenic isotopic compositions. C signatures are related to hot

  16. Global mammal distributions, biodiversity hotspots, and conservation.

    PubMed

    Ceballos, Gerardo; Ehrlich, Paul R

    2006-12-19

    Hotspots, which have played a central role in the selection of sites for reserves, require careful rethinking. We carried out a global examination of distributions of all nonmarine mammals to determine patterns of species richness, endemism, and endangerment, and to evaluate the degree of congruence among hotspots of these three measures of diversity in mammals. We then compare congruence of hotspots in two animal groups (mammals and birds) to assess the generality of these patterns. We defined hotspots as the richest 2.5% of cells in a global equal-area grid comparable to 1 degrees latitude x 1 degrees longitude. Hotspots of species richness, "endemism," and extinction threat were noncongruent. Only 1% of cells and 16% of species were common to the three types of mammalian hotspots. Congruence increased with increases in both the geographic scope of the analysis and the percentage of cells defined as being hotspots. The within-mammal hotspot noncongruence was similar to the pattern recently found for birds. Thus, assigning global conservation priorities based on hotspots is at best a limited strategy.

  17. Specific modifications of histone tails, but not DNA methylation, mirror the temporal variation of mammalian recombination hotspots.

    PubMed

    Zeng, Jia; Yi, Soojin V

    2014-10-16

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called "recombination hotspot paradox") remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy "bivalent" chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for

  18. New Tests of the Fixed Hotspot Approximation

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Andrews, D. L.; Horner-Johnson, B. C.; Kumar, R. R.

    2005-05-01

    We present new methods for estimating uncertainties in plate reconstructions relative to the hotspots and new tests of the fixed hotspot approximation. We find no significant motion between Pacific hotspots, on the one hand, and Indo-Atlantic hotspots, on the other, for the past ~ 50 Myr, but large and significant apparent motion before 50 Ma. Whether this motion is truly due to motion between hotspots or alternatively due to flaws in the global plate motion circuit can be tested with paleomagnetic data. These tests give results consistent with the fixed hotspot approximation and indicate significant misfits when a relative plate motion circuit through Antarctica is employed for times before 50 Ma. If all of the misfit to the global plate motion circuit is due to motion between East and West Antarctica, then that motion is 800 ± 500 km near the Ross Sea Embayment and progressively less along the Trans-Antarctic Mountains toward the Weddell Sea. Further paleomagnetic tests of the fixed hotspot approximation can be made. Cenozoic and Cretaceous paleomagnetic data from the Pacific plate, along with reconstructions of the Pacific plate relative to the hotspots, can be used to estimate an apparent polar wander (APW) path of Pacific hotspots. An APW path of Indo-Atlantic hotspots can be similarly estimated (e.g. Besse & Courtillot 2002). If both paths diverge in similar ways from the north pole of the hotspot reference frame, it would indicate that the hotspots have moved in unison relative to the spin axis, which may be attributed to true polar wander. If the two paths diverge from one another, motion between Pacific hotspots and Indo-Atlantic hotspots would be indicated. The general agreement of the two paths shows that the former is more important than the latter. The data require little or no motion between groups of hotspots, but up to ~10 mm/yr of motion is allowed within uncertainties. The results disagree, in particular, with the recent extreme interpretation of

  19. Burnt area detection and hotspot analysis of wildfires in Margalla Hills National Park

    NASA Astrophysics Data System (ADS)

    Khalid, Noora; Ullah, Saleem

    2016-07-01

    Wildfires have been a growing source for the forest degradation and reduction in carbon sequestration which cause climate change and global warming. Thus, severely affect the ecosystem when not checked. Studies have revealed that land managements that do not use fire reduce the fire incidents by as much as 69 percent. This study focuses on mapping the areas burnt by forest fires owing to both natural and anthropogenic causes and identifying the fire prone areas in biodiversity spot of Islamabad, Margalla Hills National Park. The methodology employed based on using remotely sensed data with the integration of GIS techniques to estimate the area in hectares turned to ashes which ensued from forest fires during summers of 2008, 2010 and 2011 by applying Normalized Burn Ratio. Moreover hotspot analysis has also been used to pin point the locations with frequent fire incidents in the past using Global Positioning System (GPS) acquired coordinates from the fire surveys and official burned area statistics. The results revealed that wildfires destroyed some common regions in three years towards west which comprise of dense woodland comprising mainly Acacia Modesta, Dalbergia sissoo and Pinus longifolia. The calculated burnt area was 516 hectares, 122 hectares and 45 hectares for 2008, 2010 and 2011 respectively. Although a decline in burnt area has been observed owing to responsible management of authorities and development of fire pickets, still measures need to be taken to eradicate the core causes in charge of these fires and to promote reforestation. This study will allow policy makers and regulatory authorities to identify risk prone areas which will assist them in formulating a strategy to suppress fire incidents.

  20. Large-Scale Controls and Characteristics of Fire Activity in Central Chile, 2001-2015

    NASA Astrophysics Data System (ADS)

    McWethy, D. B.; Pauchard, A.; García, R.; Holz, A.; González, M.; Veblen, T. T.; Stahl, J.

    2016-12-01

    In recent decades, fire activity has increased in many ecosystems worldwide, even where fuel conditions and natural ignitions historically limited fire activity, and this increase begs questions of whether climate change, land-use change, and/or altered vegetation are responsible. Increased frequency of large fires in these settings has been attributed to drier-than-average summers and longer fire seasons as well as fuel accumulation related to ENSO events, raising concerns about the trajectory of post-fire vegetation dynamics and future fire regimes. In temperate and Mediterranean forests of central Chile, recent large fires associated with altered ecosystems, climate variability and land-use change highlight the risk and hazard of increasing fire activity yet the causes and consequences are poorly understood. To better understand characteristics of recent fire activity, key drivers of fire occurrence and the spatial probability of wildfire we examined the relationship between fire activity derived from MODIS satellite imagery and biophysical, land-cover and land-use variables. The probability of fire occurrence and annual area burned was best predicted by seasonal precipitation, annual temperature and land cover type. The likelihood of fire occurrence was greatest in Matorral shrublands, agricultural lands (including pasture lands) and Pinus and Eucalyptus plantations, highlighting the importance of vegetation type and fuel flammability as a critical control on fire activity. Our results suggest that land-use change responsible for the widespread presence of highly flammable vegetation and projections for continued warming and drying will likely combine to promote the occurrence of large fires in central Chile in the future.

  1. Litho hotspots fixing using model based algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Yu, Shirui; Mao, Zhibiao; Shafee, Marwa; Madkour, Kareem; ElManhawy, Wael; Kwan, Joe; Hu, Xinyi; Wan, Qijian; Du, Chunshan

    2017-04-01

    As technology advances, IC designs are getting more sophisticated, thus it becomes more critical and challenging to fix printability issues in the design flow. Running lithography checks before tapeout is now mandatory for designers, which creates a need for more advanced and easy-to-use techniques for fixing hotspots found after lithographic simulation without creating a new design rule checking (DRC) violation or generating a new hotspot. This paper presents a new methodology for fixing hotspots on layouts while using the same engine currently used to detect the hotspots. The fix is achieved by applying minimum movement of edges causing the hotspot, with consideration of DRC constraints. The fix is internally simulated by the lithographic simulation engine to verify that the hotspot is eliminated and that no new hotspot is generated by the new edge locations. Hotspot fix checking is enhanced by adding DRC checks to the litho-friendly design (LFD) rule file to guarantee that any fix options that violate DRC checks are removed from the output hint file. This extra checking eliminates the need to re-run both DRC and LFD checks to ensure the change successfully fixed the hotspot, which saves time and simplifies the designer's workflow. This methodology is demonstrated on industrial designs, where the fixing rate of single and dual layer hotspots is reported.

  2. Fire activity increasing as climate changes

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie; Showstack, Randy

    2013-01-01

    Analysis of images from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellites shows that more than 2.5 million hectares were burned in 2012 from January through August in the United States. The amount is less than a record 3.2 million hectares in 2011 but greater than the area burned in 12 of 15 years since satellite monitoring began, scientists reported at the AGU Fall Meeting. With satellites "we can detect fires as they're actively burning," said Louis Giglio of the University of Maryland, College Park, at a press conference on 4 December. "We can also map the cumulative area burned on the landscape after the fire's over." He noted that "2012 has been a particularly big fire year" in the United States.

  3. The Impact of Fire on Active Layer Thicknes

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Parsekian, A.; Natali, S.; Ludwig, S.; Michaelides, R. J.; Zebker, H. A.; Chen, J.

    2016-12-01

    Fire influences permafrost thermodynamics by darkening the surface to increase solar absorption and removing insulating moss and organic soil, resulting in an increase in Active Layer Thickness (ALT). The summer of 2015 was one of the worst fire years on record in Alaska with multiple fires in the Yukon-Kuskokwim (YK) Delta. To understand the impacts of fire on permafrost, we need large-scale, extensive measurements of ALT both within and outside the fire zones. In August 2016, we surveyed ALT across multiple fire zones in the YK Delta using Ground Penetrating Radar (GPR) and mechanical probing. GPR uses pulsed, radio-frequency electromagnetic waves to noninvasively image the subsurface and is an effective tool to quickly map ALT over large areas. We supplemented this ALT data with measurements of Volumetric Water Content (VWC), Organic Layer Thickness (OLT), and burn severity. We quantified the impacts of fire by statistically comparing the measurements inside and outside the fire zones and statistically regressing ALT against VWC, change in OLT, and burn severity.

  4. Concentrator hot-spot testing, phase 1

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.

  5. Bermuda and Appalachian-Labrador rises: Common non-hotspot processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, P.R.

    1991-01-01

    Other than the Corner Rise-New England seamounts and associated White Mountains, most postbreakup intraplate igneous activity and topographic uplift in the western North Atlantic and eastern North America do not readily conform to simple hotspot models. For examples, the Bermuda Rise trends normal to its predicted hotspot trace. On continental crust, Cretaceous-Eocene igneous activity is scattered along a northeast-trending belt {approximately}500-1,000 km west of and paralleling the continent-ocean boundary. Corresponding activity in the western Atlantic generated seamounts preferentially clustered in a belt {approximately}1,000 km east of the boundary. The Eocene volcanism on Bermuda is paired with coeval magmatism of themore » Shenandoah igneous province, and both magmatic belts are associated with northeast-trending topographic bulges - the Appalachian-Labrador Rise to the west and the Bermuda Rise (Eocene ) to the east. The above observations suggest the existence of paired asthenosphere upwelling, paralleling and controlled by the deep thermal contrast across the northeast-trending continental margin. Such convection geometry, apparently fixed to the North American plate rather than to hotspots, is consistent with recent convection models by B. Hager. The additional importance of plate-kinematic reorganizations (causing midplate stress enhancement) is suggested by episodic igneous activity ca. 90-100 Ma and 40-45 Ma.« less

  6. Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot

    PubMed Central

    Lambers, Hans; Ahmedi, Idriss; Berkowitz, Oliver; Dunne, Chris; Finnegan, Patrick M.; Hardy, Giles E. St J.; Jost, Ricarda; Laliberté, Etienne; Pearse, Stuart J.; Teste, François P.

    2013-01-01

    South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a major threat to plant biodiversity in this region is eutrophication due to enrichment with P. Many plant species in the south-western Australian biodiversity hotspot are extremely sensitive to P, due to a low capability to down-regulate their phosphate-uptake capacity. Species from the most P-impoverished soils are also very poor competitors at higher P availability, giving way to more competitive species when soil P concentrations are increased. Sources of increased soil P concentrations include increased fire frequency, run-off from agricultural land, and urban activities. Another P source is the P-fertilizing effect of spraying natural environments on a landscape scale with phosphite to reduce the impacts of the introduced plant pathogen Phytophthora cinnamomi, which itself is a serious threat to biodiversity. We argue that alternatives to phosphite for P. cinnamomi management are needed urgently, and propose a strategy to work towards such alternatives, based on a sound understanding of the physiological and molecular mechanisms of the action of phosphite in plants that are susceptible to P. cinnamomi. The threats we describe for the south-western Australian biodiversity hotspot are likely to be very similar for other P-impoverished environments, including the fynbos in South Africa and the cerrado in Brazil. PMID:27293594

  7. Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot.

    PubMed

    Lambers, Hans; Ahmedi, Idriss; Berkowitz, Oliver; Dunne, Chris; Finnegan, Patrick M; Hardy, Giles E St J; Jost, Ricarda; Laliberté, Etienne; Pearse, Stuart J; Teste, François P

    2013-01-01

    South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a major threat to plant biodiversity in this region is eutrophication due to enrichment with P. Many plant species in the south-western Australian biodiversity hotspot are extremely sensitive to P, due to a low capability to down-regulate their phosphate-uptake capacity. Species from the most P-impoverished soils are also very poor competitors at higher P availability, giving way to more competitive species when soil P concentrations are increased. Sources of increased soil P concentrations include increased fire frequency, run-off from agricultural land, and urban activities. Another P source is the P-fertilizing effect of spraying natural environments on a landscape scale with phosphite to reduce the impacts of the introduced plant pathogen Phytophthora cinnamomi, which itself is a serious threat to biodiversity. We argue that alternatives to phosphite for P. cinnamomi management are needed urgently, and propose a strategy to work towards such alternatives, based on a sound understanding of the physiological and molecular mechanisms of the action of phosphite in plants that are susceptible to P. cinnamomi. The threats we describe for the south-western Australian biodiversity hotspot are likely to be very similar for other P-impoverished environments, including the fynbos in South Africa and the cerrado in Brazil.

  8. Big data integration shows Australian bush-fire frequency is increasing significantly.

    PubMed

    Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath

    2016-02-01

    Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift.

  9. Big data integration shows Australian bush-fire frequency is increasing significantly

    PubMed Central

    Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath

    2016-01-01

    Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift. PMID:26998312

  10. Antipodal hotspot pairs on the earth

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Caldeira, Ken

    1992-01-01

    The results of statistical analyses performed on three published hotspot distributions suggest that significantly more hotspots occur as nearly antipodal pairs than is anticipated from a random distribution, or from their association with geoid highs and divergent plate margins. The observed number of antipodal hotspot pairs depends on the maximum allowable deviation from exact antipodality. At a maximum deviation of not greater than 700 km, 26 to 37 percent of hotspots form antipodal pairs in the published lists examined here, significantly more than would be expected from the general hotspot distribution. Two possible mechanisms that might create such a distribution include: (1) symmetry in the generation of mantle plumes, and (2) melting related to antipodal focusing of seismic energy from large-body impacts.

  11. Soil nitrogen mineralization and enzymatic activities in fire and fire surrogate treatments in California

    Treesearch

    J. R. Miesel; R. E. J. Boerner; C. N. Skinner

    2011-01-01

    Forest thinning and prescribed fire are management strategies used to reduce hazardous fuel loads and catastrophic wildfires in western mixed-conifer forests. We evaluated effects of thinning (Thin) and prescribed fire (Burn), alone and in combination (Thin+Burn), on N transformations and microbial enzyme activities relative to an untreated control (Control) at 1 and 3...

  12. Models for the hotspot distribution

    NASA Technical Reports Server (NTRS)

    Jurdy, Donna M.; Stefanick, Michael

    1990-01-01

    Published hotspot catalogs all show a hemispheric concentration beyond what can be expected by chance. Cumulative distributions about the center of concentration are described by a power law with a fractal dimension closer to 1 than 2. Random sets of the corresponding sizes do not show this effect. A simple shift of the random sets away from a point would produce distributions similar to those of hotspot sets. The possible relation of the hotspots to the locations of ridges and subduction zones is tested using large sets of randomly-generated points to estimate areas within given distances of the plate boundaries. The probability of finding the observed number of hotspots within 10 deg of the ridges is about what is expected.

  13. Spatial and Temporal Variability and Trends in 2001-2016 Global Fire Activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2018-03-01

    Fire regimes across the globe have great spatial and temporal variability, and these are influence by many factors including anthropogenic management, climate, and vegetation types. Here we utilize the satellite-based "active fire" product, from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to statistically analyze variability and trends in fire activity from the global to regional scales. We split up the regions by economic development, region/geographical land use, clusters of fire-abundant areas, or by religious/cultural influence. Weekly cycle tests are conducted to highlight and quantify part of the anthropogenic influence on fire regime across the world. We find that there is a strong statistically significant decline in 2001-2016 active fires globally linked to an increase in net primary productivity observed in northern Africa, along with global agricultural expansion and intensification, which generally reduces fire activity. There are high levels of variability, however. The large-scale regions exhibit either little change or decreasing in fire activity except for strong increasing trends in India and China, where rapid population increase is occurring, leading to agricultural intensification and increased crop residue burning. Variability in Canada has been linked to a warming global climate leading to a longer growing season and higher fuel loads. Areas with a strong weekly cycle give a good indication of where fire management is being applied most extensively, for example, the United States, where few areas retain a natural fire regime.

  14. Microbial micropatches within microbial hotspots.

    PubMed

    Dann, Lisa M; McKerral, Jody C; Smith, Renee J; Tobe, Shanan S; Paterson, James S; Seymour, Justin R; Oliver, Rod L; Mitchell, James G

    2018-01-01

    The spatial distributions of organism abundance and diversity are often heterogeneous. This includes the sub-centimetre distributions of microbes, which have 'hotspots' of high abundance, and 'coldspots' of low abundance. Previously we showed that 300 μl abundance hotspots, coldspots and background regions were distinct at all taxonomic levels. Here we build on these results by showing taxonomic micropatches within these 300 μl microscale hotspots, coldspots and background regions at the 1 μl scale. This heterogeneity among 1 μl subsamples was driven by heightened abundance of specific genera. The micropatches were most pronounced within hotspots. Micropatches were dominated by Pseudomonas, Bacteroides, Parasporobacterium and Lachnospiraceae incertae sedis, with Pseudomonas and Bacteroides being responsible for a shift in the most dominant genera in individual hotspot subsamples, representing up to 80.6% and 47.3% average abundance, respectively. The presence of these micropatches implies the ability these groups have to create, establish themselves in, or exploit heterogeneous microenvironments. These genera are often particle-associated, from which we infer that these micropatches are evidence for sub-millimetre aggregates and the aquatic polymer matrix. These findings support the emerging paradigm that the microscale distributions of planktonic microbes are numerically and taxonomically heterogeneous at scales of millimetres and less. We show that microscale microbial hotspots have internal structure within which specific local nutrient exchanges and cellular interactions might occur.

  15. Fish-derived nutrient hotspots shape coral reef benthic communities.

    PubMed

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  16. Methodology and software to detect viral integration site hot-spots

    PubMed Central

    2011-01-01

    Background Modern gene therapy methods have limited control over where a therapeutic viral vector inserts into the host genome. Vector integration can activate local gene expression, which can cause cancer if the vector inserts near an oncogene. Viral integration hot-spots or 'common insertion sites' (CIS) are scrutinized to evaluate and predict patient safety. CIS are typically defined by a minimum density of insertions (such as 2-4 within a 30-100 kb region), which unfortunately depends on the total number of observed VIS. This is problematic for comparing hot-spot distributions across data sets and patients, where the VIS numbers may vary. Results We develop two new methods for defining hot-spots that are relatively independent of data set size. Both methods operate on distributions of VIS across consecutive 1 Mb 'bins' of the genome. The first method 'z-threshold' tallies the number of VIS per bin, converts these counts to z-scores, and applies a threshold to define high density bins. The second method 'BCP' applies a Bayesian change-point model to the z-scores to define hot-spots. The novel hot-spot methods are compared with a conventional CIS method using simulated data sets and data sets from five published human studies, including the X-linked ALD (adrenoleukodystrophy), CGD (chronic granulomatous disease) and SCID-X1 (X-linked severe combined immunodeficiency) trials. The BCP analysis of the human X-linked ALD data for two patients separately (774 and 1627 VIS) and combined (2401 VIS) resulted in 5-6 hot-spots covering 0.17-0.251% of the genome and containing 5.56-7.74% of the total VIS. In comparison, the CIS analysis resulted in 12-110 hot-spots covering 0.018-0.246% of the genome and containing 5.81-22.7% of the VIS, corresponding to a greater number of hot-spots as the data set size increased. Our hot-spot methods enable one to evaluate the extent of VIS clustering, and formally compare data sets in terms of hot-spot overlap. Finally, we show that the

  17. Post-fire recovery of torpor and activity patterns of a small mammal.

    PubMed

    Stawski, Clare; Hume, Taylor; Körtner, Gerhard; Currie, Shannon E; Nowack, Julia; Geiser, Fritz

    2017-05-01

    To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities. © 2017 The Author(s).

  18. Providing accurate near real-time fire alerts for Protected Areas through NASA FIRMS: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Ilavajhala, S.; Davies, D.; Schmaltz, J. E.; Wong, M.; Murphy, K. J.

    2013-12-01

    The NASA Fire Information for Resource Management System (FIRMS) is at the forefront of providing global near real-time (NRT) MODIS thermal anomalies / hotspot location data to end-users . FIRMS serves the data via an interactive Web GIS named Web Fire Mapper, downloads of NRT active fire, archive data downloads for MODIS hotspots dating back to 1999 and a hotspot email alert system The FIRMS Email Alerts system has been successfully alerting users of fires in their area of interest in near real-time and/or via daily and weekly email summaries, with an option to receive MODIS hotspot data as a text file (CSV) attachment. Currently, there are more than 7000 email alert subscriptions from more than 100 countries. Specifically, the email alerts system is designed to generate and send an email alert for any region or area on the globe, with a special focus on providing alerts for protected areas worldwide. For many protected areas, email alerts are particularly useful for early fire detection, monitoring on going fires, as well as allocating resources to protect wildlife and natural resources of particular value. For protected areas, FIRMS uses the World Database on Protected Areas (WDPA) supplied by United Nations Environment Program - World Conservation Monitoring Centre (UNEP-WCMC). Maintaining the most up-to-date, accurate boundary geometry for the protected areas for the email alerts is a challenge as the WDPA is continuously updated due to changing boundaries, merging or delisting of certain protected areas. Because of this dynamic nature of the protected areas database, the FIRMS protected areas database is frequently out-of-date with the most current version of WDPA database. To maintain the most up-to-date boundary information for protected areas and to be in compliance with the WDPA terms and conditions, FIRMS needs to constantly update its database of protected areas. Currently, FIRMS strives to keep its database up to date by downloading the most recent

  19. Hopping hotspots: global shifts in marine biodiversity.

    PubMed

    Renema, W; Bellwood, D R; Braga, J C; Bromfield, K; Hall, R; Johnson, K G; Lunt, P; Meyer, C P; McMonagle, L B; Morley, R J; O'Dea, A; Todd, J A; Wesselingh, F P; Wilson, M E J; Pandolfi, J M

    2008-08-01

    Hotspots of high species diversity are a prominent feature of modern global biodiversity patterns. Fossil and molecular evidence is starting to reveal the history of these hotspots. There have been at least three marine biodiversity hotspots during the past 50 million years. They have moved across almost half the globe, with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns. The antiquity of the taxa in the modern Indo-Australian Archipelago hotspot emphasizes the role of pre-Pleistocene events in shaping modern diversity patterns.

  20. Canadian and Siberian Boreal Fire Activity during ARCTAS Spring and Summer Phases

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Soja, A. J.; Servranckx, R.; Lindsey, D.; Hyer, E.

    2009-12-01

    The summer phase of ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) was designed specifically around forest fire activity in the Canadian boreal forest, and located in areas of northern Canada where summer forest fires are ubiquitous. Lightning fires are most often allowed to burn naturally in these regions, and a number of large free-burning fires in northern Saskatchewan in late June/early July 2008 provided excellent targets during the summer phase of ARCTAS. Smoke generated by a large number of early spring fires in Kazakhstan and southern Siberia unexpectedly made a significant contribution to arctic haze during the Alaska-based spring phase of ARCTAS, Numerous smoke plumes were sampled during the spring phase of ARCTAS, creating interest in the origin and characteristics of the fires in the source regions of East Asia. This presentation is designed to connect aircraft and satellite smoke chemistry/transport measurements with ground-based measurements of fire activity during the spring and summer phases of ARCTAS. The Canadian Forest Fire Danger Rating System (CFFDRS) is used to determine forest fire danger conditions in regions of fire activity, and these measurements are in turn used to project fire behavior characteristics. Fuel consumption, spread rates, and frontal fire intensity are calculated using the CFFDRS. Energy release rates at ground level are related to convection/smoke column development and smoke injection heights.

  1. Transmission of infectious diseases en route to habitat hotspots.

    PubMed

    Benavides, Julio; Walsh, Peter D; Meyers, Lauren Ancel; Raymond, Michel; Caillaud, Damien

    2012-01-01

    The spread of infectious diseases in wildlife populations is influenced by patterns of between-host contacts. Habitat "hotspots"--places attracting a large numbers of individuals or social groups--can significantly alter contact patterns and, hence, disease propagation. Research on the importance of habitat hotspots in wildlife epidemiology has primarily focused on how inter-individual contacts occurring at the hotspot itself increase disease transmission. However, in territorial animals, epidemiologically important contacts may primarily occur as animals cross through territories of conspecifics en route to habitat hotspots. So far, the phenomenon has received little attention. Here, we investigate the importance of these contacts in the case where infectious individuals keep visiting the hotspots and in the case where these individuals are not able to travel to the hotspot any more. We developed a simulation epidemiological model to investigate both cases in a scenario when transmission at the hotspot does not occur. We find that (i) hotspots still exacerbate epidemics, (ii) when infectious individuals do not travel to the hotspot, the most vulnerable individuals are those residing at intermediate distances from the hotspot rather than nearby, and (iii) the epidemiological vulnerability of a population is the highest when the number of hotspots is intermediate. By altering animal movements in their vicinity, habitat hotspots can thus strongly increase the spread of infectious diseases, even when disease transmission does not occur at the hotspot itself. Interestingly, when animals only visit the nearest hotspot, creating additional artificial hotspots, rather than reducing their number, may be an efficient disease control measure.

  2. Forest fires and lightning activity during the outstanding 2003 and 2005 fire seasons

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Ramos, Alexandre; Trigo, Ricardo

    2013-04-01

    Wildfires in southern Europe cause frequent extensive economical and ecological losses and, even human casualties. Comparatively to other Mediterranean countries, Portugal is the country with more burnt area and fires per unit area in the last decade, mainly during the summer season (Pereira et al., 2011). According to the fire records available, between 1980 and 2009, wildfires have affected over 3 million hectares in Portugal (JRC, 2011), which corresponds to approximately a third of the Portuguese Continental territory. The main factors that influence fire ignition and propagation are: (1) the presence of fuel (i.e. vegetation); (2) climate and weather; (3) socioeconomic conditions that affect land use/land cover patterns, fire-prevention and fire-fighting capacity and (4) topography. Specifically, weather (e.g. wind, temperature, precipitation, humidity, and lightning occurrence) plays an important role in fire behavior, affecting both ignition and spread of wildfires. Some countries have a relatively large fraction of fires caused by lightning, e.g. northwestern USA, Canada, Russia (). In contrast, Portugal has only a small percentage of fire records caused by lightning. Although significant doubts remain for the majority of fires in the catalog since they were cataloged without a likely cause. The recent years of 2003 and 2005 were particularly outstanding for fire activity in Portugal, registering, respectively, total burned areas of 425 726 ha and 338 262 ha. However, while the 2003 was triggered by an exceptional heatwave that struck the entire western Europe, the 2005 fire season registered was coincident with one of the most severe droughts of the 20th century. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2001-2011, with the original data provided by the Autoridade Florestal Nacional (AFN, 2011); 2) lightning

  3. Management and climate contributions to satellite-derived active fire trends in the contiguous United States

    PubMed Central

    Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T

    2014-01-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001–2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001–2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Key Points Wildland, cropland, and prescribed fires had different trends and patterns Sensitivity to climate varied with fire type Intensity of air quality regulation influenced cropland burning trends PMID:26213662

  4. Management and climate contributions to satellite-derived active fire trends in the contiguous United States.

    PubMed

    Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T

    2014-04-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Wildland, cropland, and prescribed fires had different trends and patternsSensitivity to climate varied with fire typeIntensity of air quality regulation influenced cropland burning trends.

  5. Evidence of hotspot paths below Arabia and the Horn of Africa and consequences on the Red Sea opening

    NASA Astrophysics Data System (ADS)

    Vicente de Gouveia, S.; Besse, J.; Frizon de Lamotte, D.; Greff-Lefftz, M.; Lescanne, M.; Gueydan, F.; Leparmentier, F.

    2018-04-01

    Rifts are often associated with ancient traces of hotspots, which are supposed to participate to the weakening of the lithosphere. We investigated the expected past trajectories followed by three hotspots (Afar, East-Africa and Lake-Victoria) located around the Red Sea. We used a hotspot reference frame to compute their location with respect to time, which is then compared to mantle tomography interpretations and geological features. Their tracks are frequently situated under continental crust, which is known to strongly filter plume activity. We looked for surface markers of their putative ancient existence, such as volcanism typology, doming, and heat-flow data from petroleum wells. Surface activity of the East-Africa hotspot is supported at 110 Ma, 90 Ma and 30 Ma by uplift, volcanic activity and rare gas isotopic signatures, reminiscent of a deep plume origin. The analysis of heat-flow data from petroleum wells under the Arabian plate shows a thermal anomaly that may correspond to the past impact of the Afar hotspot. According to derived hotspot trajectories, the Afar hotspot, situated (at 32 Ma) 1000 km north-east of the Ethiopian-Yemen traps, was probably too far away to be accountable for them. The trigger of the flood basalts would likely be linked to the East-Africa hotspot. The Lake-Victoria hotspot activity appears to have been more recent, attested only by Cenozoic volcanism in an uplifted area. Structural and thermal weakening of the lithosphere may have played a major role in the location of the rift systems. The Gulf of Aden is located on inherited Mesozoic extensional basins between two weak zones, the extremity of the Carlsberg Ridge and the present Afar triangle, previously impacted by the East-Africa hotspot. The Red Sea may have opened in the context of extension linked to Neo-Tethys slab-pull, along the track followed by the East Africa hotspot, suggesting an inherited thermal weakening.

  6. Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India.

    PubMed

    Manaswini, G; Sudhakar Reddy, C

    2015-10-01

    Forest fire has been identified as one of the key environmental issue for long-term conservation of biodiversity and has impact on global climate. Spatially multiple observations are necessary for monitoring of forest fires in tropics for understanding conservation efficacy and sustaining biodiversity in protected areas. The present work was carried out to estimate the spatial extent of forest burnt areas and fire frequency using Resourcesat Advanced Wide Field Sensor (AWiFS) data (2009, 2010, 2012, 2013 and 2014) in Andhra Pradesh, India. The spatio-temporal analysis shows that an area of 7514.10 km(2) (29.22% of total forest cover) has been affected by forest fires. Six major forest types are distributed in Andhra Pradesh, i.e. semi-evergreen, moist deciduous, dry deciduous, dry evergreen, thorn and mangroves. Of the total forest burnt area, dry deciduous forests account for >75%. District-wise analysis shows that Kurnool, Prakasam and Cuddapah have shown >100 km(2) of burnt area every year. The total forest burnt area estimate covering protected areas ranges between 6.9 and 22.3% during the study period. Spatial burnt area analysis for protected areas in 2014 indicates 37.2% of fire incidences in the Nagarjunasagar Srisailam Tiger Reserve followed by 20.2 % in the Sri Lankamalleswara Wildlife Sanctuary, 20.1% in the Sri Venkateswara Wildlife Sanctuary and 17.4% in the Gundla Brahmeswaram Wildlife Sanctuary. The analysis of cumulative fire occurrences from 2009 to 2014 has helped in delineation of conservation priority hotspots using a spatial grid cell approach. Conservation priority hotspots I and II are distributed in major parts of study area including protected areas of the Nagarjunasagar Srisailam Tiger Reserve and Gundla Brahmeswaram Wildlife Sanctuary. The spatial database generated will be useful in studies related to influence of fires on species adaptability, ecological damage assessment and conservation planning.

  7. A Cretaceous origin for fire adaptations in the Cape flora.

    PubMed

    He, Tianhua; Lamont, Byron B; Manning, John

    2016-10-05

    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6-8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras.

  8. Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots.

    PubMed

    Yamada, Shintaro; Okamura, Mika; Oda, Arisa; Murakami, Hiroshi; Ohta, Kunihiro; Yamada, Takatomi

    2017-06-01

    Meiotic homologous recombination, a critical event for ensuring faithful chromosome segregation and creating genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) formed at recombination hotspots. Meiotic DSB formation is likely to be influenced by other DNA-templated processes including transcription, but how DSB formation and transcription interact with each other has not been understood well. In this study, we used fission yeast to investigate a possible interplay of these two events. A group of hotspots in fission yeast are associated with sequences similar to the cyclic AMP response element and activated by the ATF/CREB family transcription factor dimer Atf1-Pcr1. We first focused on one of those hotspots, ade6-3049 , and Atf1. Our results showed that multiple transcripts, shorter than the ade6 full-length messenger RNA, emanate from a region surrounding the ade6-3049 hotspot. Interestingly, we found that the previously known recombination-activation region of Atf1 is also a transactivation domain, whose deletion affected DSB formation and short transcript production at ade6-3049 These results point to a possibility that the two events may be related to each other at ade6-3049 In fact, comparison of published maps of meiotic transcripts and hotspots suggested that hotspots are very often located close to meiotically transcribed regions. These observations therefore propose that meiotic DSB formation in fission yeast may be connected to transcription of surrounding regions. Copyright © 2017 by the Genetics Society of America.

  9. Hot-spot qualification testing of concentrator modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.

  10. Transmission of Infectious Diseases En Route to Habitat Hotspots

    PubMed Central

    Benavides, Julio; Walsh, Peter D.; Meyers, Lauren Ancel; Raymond, Michel; Caillaud, Damien

    2012-01-01

    Background The spread of infectious diseases in wildlife populations is influenced by patterns of between-host contacts. Habitat “hotspots” - places attracting a large numbers of individuals or social groups - can significantly alter contact patterns and, hence, disease propagation. Research on the importance of habitat hotspots in wildlife epidemiology has primarily focused on how inter-individual contacts occurring at the hotspot itself increase disease transmission. However, in territorial animals, epidemiologically important contacts may primarily occur as animals cross through territories of conspecifics en route to habitat hotspots. So far, the phenomenon has received little attention. Here, we investigate the importance of these contacts in the case where infectious individuals keep visiting the hotspots and in the case where these individuals are not able to travel to the hotspot any more. Methodology and Principal Findings We developed a simulation epidemiological model to investigate both cases in a scenario when transmission at the hotspot does not occur. We find that (i) hotspots still exacerbate epidemics, (ii) when infectious individuals do not travel to the hotspot, the most vulnerable individuals are those residing at intermediate distances from the hotspot rather than nearby, and (iii) the epidemiological vulnerability of a population is the highest when the number of hotspots is intermediate. Conclusions and Significance By altering animal movements in their vicinity, habitat hotspots can thus strongly increase the spread of infectious diseases, even when disease transmission does not occur at the hotspot itself. Interestingly, when animals only visit the nearest hotspot, creating additional artificial hotspots, rather than reducing their number, may be an efficient disease control measure. PMID:22363606

  11. 29 years of surprises from hotspots: A personal perspective

    NASA Astrophysics Data System (ADS)

    Students Of Eao, .; Okal, E. A.

    2003-12-01

    I arrived at Caltech on 26 August 1974, to begin my graduate studies at the Seismo Lab, then under the Directorship of Don L. Anderson. These were the days, among other topics, of Don's famous multilingual footnote on the "definition..., antecedents..., supporters and detractors" of the concept of "plume" [GSA Bull., 86, p. 1593, 1975], and even though I was not to set foot on a hotspot island until my first trip to Tahiti in December 1977 (those stopovers at Keflavik on the 199-dollar Loftleidir runs did not really count), I quickly acquired a mild form of Don's contagious fascination for the activity and structure of hotspots. As a tribute to Don, I have chosen to recap here a few surprising results obtained, with the help of my students, past and present, over several decades of work on the seismological sources and structures in the neighborhood of hotspot islands.

  12. A new website with real-time dissemination of information on fire activity and meteorological fire danger in Portugal

    NASA Astrophysics Data System (ADS)

    DaCamara, Carlos; Trigo, Ricardo; Nunes, Sílvia; Pinto, Miguel; Oliveira, Tiago; Almeida, Rui

    2017-04-01

    In Portugal, like in Mediterranean Europe, fire activity is a natural phenomenon linking climate, humans and vegetation and is therefore conditioned by natural and anthropogenic factors. Natural factors include topography, vegetation cover and prevailing weather conditions whereas anthropogenic factors encompass land management practices and fire prevention policies. Land management practices, in particular the inadequate use of fire, is a crucial anthropogenic factor that accounts for about 90% of fire ignitions. Fire prevention policies require adequate and timely information about wildfire potential assessment, which is usually based on fire danger rating systems that provide indices to be used on an operational and tactical basis in decision support systems. We present a new website designed to provide the user community with relevant real-time information on fire activity and meteorological fire danger that will allow adopting the adequate measures to mitigate fire damage. The fire danger product consists of forecasts of fire danger over Portugal based on a statistical procedure that combines information about fire history derived from the Fire Radiative Power product disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF) with daily meteorological forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The aim of the website is fourfold; 1) to concentrate all information available (databases and maps) relevant to fire management in a unique platform so that access by end users becomes easier, faster and friendlier; 2) to supervise the access of users to the different products available; 3) to control and assist the access to the platform and obtain feedbacks from users for further improvements; 4) to outreach the operational community and foster the use of better information that increase efficiency in risk management. The website is sponsored by The Navigator Company, a leading force in the global pulp

  13. A Global Classification of Contemporary Fire Regimes

    NASA Astrophysics Data System (ADS)

    Norman, S. P.; Kumar, J.; Hargrove, W. W.; Hoffman, F. M.

    2014-12-01

    Fire regimes provide a sensitive indicator of changes in climate and human use as the concept includes fire extent, season, frequency, and intensity. Fires that occur outside the distribution of one or more aspects of a fire regime may affect ecosystem resilience. However, global scale data related to these varied aspects of fire regimes are highly inconsistent due to incomplete or inconsistent reporting. In this study, we derive a globally applicable approach to characterizing similar fire regimes using long geophysical time series, namely MODIS hotspots since 2000. K-means non-hierarchical clustering was used to generate empirically based groups that minimized within-cluster variability. Satellite-based fire detections are known to have shortcomings, including under-detection from obscuring smoke, clouds or dense canopy cover and rapid spread rates, as often occurs with flashy fuels or during extreme weather. Such regions are free from preconceptions, and the empirical, data-mining approach used on this relatively uniform data source allows the region structures to emerge from the data themselves. Comparing such an empirical classification to expectations from climate, phenology, land use or development-based models can help us interpret the similarities and differences among places and how they provide different indicators of changes of concern. Classifications can help identify where large infrequent mega-fires are likely to occur ahead of time such as in the boreal forest and portions of the Interior US West, and where fire reports are incomplete such as in less industrial countries.

  14. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    PubMed

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  15. GIS Fuzzy Expert System for the assessment of ecosystems vulnerability to fire in managing Mediterranean natural protected areas.

    PubMed

    Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene

    2016-03-01

    A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    PubMed

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  17. Evaluating Temporal Consistency in Marine Biodiversity Hotspots

    PubMed Central

    Barner, Allison K.; Benkwitt, Cassandra E.; Boersma, Kate S.; Cerny-Chipman, Elizabeth B.; Ingeman, Kurt E.; Kindinger, Tye L.; Lindsley, Amy J.; Nelson, Jake; Reimer, Jessica N.; Rowe, Jennifer C.; Shen, Chenchen; Thompson, Kevin A.; Heppell, Selina S.

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon’s diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  18. Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles.

    PubMed

    Fei, Z; Foley, J J; Gannett, W; Liu, M K; Dai, S; Ni, G X; Zettl, A; Fogler, M M; Wiederrecht, G P; Gray, S K; Basov, D N

    2016-12-14

    We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.

  19. Trends and drivers of fire activity vary across California aridland ecosystems

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Abatzoglou, John T.

    2017-01-01

    Fire activity has increased in western US aridland ecosystems due to increased human-caused ignitions and the expansion of flammable exotic grasses. Because many desert plants are not adapted to fire, increased fire activity may have long-lasting ecological impacts on native vegetation and the wildlife that depend on it. Given the heterogeneity across aridland ecosystems, it is important to understand how trends and drivers of fire vary, so management can be customized accordingly. We examined historical trends and quantified the relative importance of and interactions among multiple drivers of fire patterns across five aridland ecoregions in southeastern California from 1970 to 2010. Fire frequency increased across all ecoregions for the first couple decades, and declined or plateaued since the 1990s; but area burned continued to increase in some regions. The relative importance of anthropogenic and biophysical drivers varied across ecoregions, with both direct and indirect influences on fire. Anthropogenic variables were equally important as biophysical variables, but some contributed indirectly, presumably via their influence on annual grass distribution and abundance. Grass burned disproportionately more than other cover types, suggesting that addressing exotics may be the key to fire management and conservation in much of the area.

  20. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    PubMed Central

    Zijdewind, Inge; Thomas, Christine K

    2012-01-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n = 19 units) or irregular intervals (CV > 0.15, n = 14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5–15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (∼20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs. Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated afterhyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise. PMID:22310313

  1. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    PubMed

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  2. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.

    PubMed

    Ward, Carl C; Kleinman, Jordan I; Nomura, Daniel K

    2017-06-16

    Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probes to map reactive, functional, and ligandable hotspots in complex proteomes, which has enabled inhibitor discovery against various therapeutic protein targets. Here, we report an alkyne-functionalized N-hydroxysuccinimide-ester (NHS-ester) as a versatile reactivity-based probe for mapping the reactivity of a wide range of nucleophilic ligandable hotspots, including lysines, serines, threonines, and tyrosines, encompassing active sites, allosteric sites, post-translational modification sites, protein interaction sites, and previously uncharacterized potential binding sites. Surprisingly, we also show that fragment-based NHS-ester ligands can be made to confer selectivity for specific lysine hotspots on specific targets including Dpyd, Aldh2, and Gstt1. We thus put forth NHS-esters as promising reactivity-based probes and chemical scaffolds for covalent ligand discovery.

  3. Fire Effects on Microbial Enzyme Activities in Larch Forests of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Alexander, H. D.; Bulygina, E. B.; Mann, P. J.; Natali, S.

    2012-12-01

    Arctic forest ecosystems are warming at an accelerated rate relative to lower latitudes, with global implications for C cycling within these regions. As climate continues to warm and dry, wildfire frequency and severity are predicted to increase, creating a positive feedback to climate warming. Increased fire activity will also influence the microenvironment experienced by soil microbes in disturbed soils. Because soil microbes regulate carbon (C) and nitrogen (N) cycling between terrestrial ecosystems and the atmosphere, it is important to understand microbial response to fires, particularly in the understudied larch forests in the Siberian Arctic. In this project, we created experimental burn plots in a mature larch forest in the Kolyma River watershed of Northeastern Siberia. Plots were burned at several treatments: control (no burn), low, moderate, and severe. After, 1 and 8 d post-fire, we measured soil organic layer depth, soil organic matter (SOM) content, soil moisture, and CO2 flux from the plots. Additionally, we leached soils and measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and chromophoric dissolved organic matter (CDOM). Furthermore, we measured extracellular activity of four enzymes involved in soil C and nutrient cycling (leucine aminopeptidase (LAP), β-glucosidase, phosphatase, and phenol oxidase). One day post-fire, LAP activity was similarly low in all treatments, but by 8 d post-fire, LAP activity was lower in burned plots compared to control plots, likely due to increased nitrogen content with increasing burn severity. Phosphatase activity decreased with burn severity 1 d post-fire, but after 8 d, moderate and severe burn plots exhibited increased phosphatase activity. Coupled with trends in LAP activity, this suggests a switch in nutrient limitation from N to phosphorus that is more pronounced with burn severity. β-glucosidase activity similarly decreased with burn

  4. Revisiting Hotspots and Mantle Plumes: Some Phenomenology

    NASA Astrophysics Data System (ADS)

    King, S. D.; White-Gaynor, A. L.

    2012-12-01

    Sleep (1990) used gravity, topography and heat flow from 37 hotspots to ``constrain the mechanism for swell uplift and to obtain fluxes and excess temperatures of mantle plumes,'' complementing a previous analysis by Davies (1988). We repeat that analysis for the same 37 hotspots using gravity from EGM2008 and topography from ETOPO1 (Amante and Eakins, 2009). EGM2008 is complete to spherical harmonic degree and order 2159, or roughly 20 km spatial resolution (Pavlis et al., 2012). The vertical accuracy of ETOPO1 is on the order of 10 meters. With these new models we hope to improve the uplift and subsidence rates along all 37 hotspot tracks--one of the major limitations the previous work. For example, of the 37 hotspots considered Sleep ranked only 7 with good reliability while 14 were fair and 16 were poor. With this new information we can compare and contrast hotspots with various other groupings of hotspots based on tomographic images of mantle structure (Montelli et al, 2003), primary versus secondary hotspots (Courtillot et al., 2003) or relationship to cratonic boundaries (King, 2008). One encounters some puzzles when attempting to reconcile buoyancy fluxes with other groupings of hotspots and/or observations. For example, Coutillot et al.'s seven primary hotspots include: Afar, Easter, Hawaii, Iceland, Louisville, Réunion, and Tristan. Sleep (1990) categorized the reliability of the buoyancy flux calculated by from Afar, Hawaii, Iceland, and Réunion as good, while Tristan and Easter were fair and Louisville was poor. The calculated buoyancy fluxes from Macdonald and Marqueses (both listed as fair) are twice as large as those from Iceland, Tristan, and Réunion. While we recognize that these observations cannot uniquely constrain the origin of these anomalies, better observations should help test various hypotheses.

  5. Identifying species threat hotspots from global supply chains.

    PubMed

    Moran, Daniel; Kanemoto, Keiichiro

    2017-01-04

    Identifying hotspots of species threat has been a successful approach for setting conservation priorities. One important challenge in conservation is that, in many hotspots, export industries continue to drive overexploitation. Conservation measures must consider not just the point of impact, but also the consumer demand that ultimately drives resource use. To understand which species threat hotspots are driven by which consumers, we have developed a new approach to link a set of biodiversity footprint accounts to the hotspots of threatened species on the IUCN Red List of Threatened Species. The result is a map connecting consumption to spatially explicit hotspots driven by production on a global scale. Locating biodiversity threat hotspots driven by consumption of goods and services can help to connect conservationists, consumers, companies and governments in order to better target conservation actions.

  6. Microbial micropatches within microbial hotspots

    PubMed Central

    Smith, Renee J.; Tobe, Shanan S.; Paterson, James S.; Seymour, Justin R.; Oliver, Rod L.; Mitchell, James G.

    2018-01-01

    The spatial distributions of organism abundance and diversity are often heterogeneous. This includes the sub-centimetre distributions of microbes, which have ‘hotspots’ of high abundance, and ‘coldspots’ of low abundance. Previously we showed that 300 μl abundance hotspots, coldspots and background regions were distinct at all taxonomic levels. Here we build on these results by showing taxonomic micropatches within these 300 μl microscale hotspots, coldspots and background regions at the 1 μl scale. This heterogeneity among 1 μl subsamples was driven by heightened abundance of specific genera. The micropatches were most pronounced within hotspots. Micropatches were dominated by Pseudomonas, Bacteroides, Parasporobacterium and Lachnospiraceae incertae sedis, with Pseudomonas and Bacteroides being responsible for a shift in the most dominant genera in individual hotspot subsamples, representing up to 80.6% and 47.3% average abundance, respectively. The presence of these micropatches implies the ability these groups have to create, establish themselves in, or exploit heterogeneous microenvironments. These genera are often particle-associated, from which we infer that these micropatches are evidence for sub-millimetre aggregates and the aquatic polymer matrix. These findings support the emerging paradigm that the microscale distributions of planktonic microbes are numerically and taxonomically heterogeneous at scales of millimetres and less. We show that microscale microbial hotspots have internal structure within which specific local nutrient exchanges and cellular interactions might occur. PMID:29787564

  7. Simulating wildfire spread behavior between two NASA Active Fire data timeframes

    NASA Astrophysics Data System (ADS)

    Adhikari, B.; Hodza, P.; Xu, C.; Minckley, T. A.

    2017-12-01

    Although NASA's Active Fire dataset is considered valuable in mapping the spatial distribution and extent of wildfires across the world, the data is only available at approximately 12-hour time intervals, creating uncertainties and risks associated with fire spread and behavior between the two Visible Infrared Imaging Radiometer Satellite (VIIRS) data collection timeframes. Our study seeks to close the information gap for the United States by using the latest Active Fire data collected for instance around 0130 hours as an ignition source and critical inputs to a wildfire model by uniquely incorporating forecasted and real-time weather conditions for predicting fire perimeter at the next 12 hour reporting time (i.e. around 1330 hours). The model ingests highly dynamic variables such as fuel moisture, temperature, relative humidity, wind among others, and prompts a Monte Carlo simulation exercise that uses a varying range of possible values for evaluating all possible wildfire behaviors. The Monte Carlo simulation implemented in this model provides a measure of the relative wildfire risk levels at various locations based on the number of times those sites are intersected by simulated fire perimeters. Model calibration is achieved using data at next reporting time (i.e. after 12 hours) to enhance the predictive quality at further time steps. While initial results indicate that the calibrated model can predict the overall geometry and direction of wildland fire spread, the model seems to over-predict the sizes of most fire perimeters possibly due to unaccounted fire suppression activities. Nonetheless, the results of this study show great promise in aiding wildland fire tracking, fighting and risk management.

  8. Building a global hotspot ecology with Triana data

    NASA Astrophysics Data System (ADS)

    Gerstl, Siegfried A. W.

    1999-12-01

    Triana is an Earth remote sensing satellite to be located at the distant Langrange Point L-1, the gravity-neutral point between the Earth and the Sun. It will provide continuous fill disk images of the entire sunlit side of the Earth with 8 km pixel resolution. The primary remote sensing instrument on Triana is a calibrated multispectral imager with 10 spectral channels in the UV, VIS, and NIR between 317 and 870 nm (reflected solar radiation). Due to its unique location at the Lagrange L-1 point, in the direct line-of-sight between Earth and Sun, Triana will view the Earth always in and near the solar retro-reflection direction which is also known as the hotspot direction. The canopy hotspot effect has rich information content for vegetation characterization, especially indications of canopy structure and vegetation health and stress situations. Primary vegetation-related data are the hotspot angular width W, and a hotspot factor C that quantifies the magnitude of the hotspot effect. Both quantities are related to the structural parameters of canopy height, foliage size, shape, and leaf area index (LAI). The continuous observations by Triana will allow us to establish time-series of these ecological parameters for all land biomes by longitude, latitude, and wavelength, that form the basis data set for a new global hotspot land vegetation ecology. The hotspot factor C will allow the determination of the enhanced radiant flux reflected from the Earth into space due to the hotspot effect. The hotspot flux enhancement due to the vegetation hotspot effect is estimated to account for about 1% of the entire Earth radiative energy balance.

  9. Mitigation of Hot-Spots in Photovoltaic Systems Using Distributed Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olalla, Carlos; Hasan, Md. Nazmul; Deline, Chris

    In the presence of partial shading and other mismatch factors, bypass diodes may not offer complete elimination of excessive power dissipation due to cell reverse biasing, commonly referred to as hot-spotting in photovoltaic (PV) systems. As a result, PV systems may experience higher failure rates and accelerated ageing. In this paper, a cell-level simulation model is used to assess occurrence of hot-spotting events in a representative residential rooftop system scenario featuring a moderate shading environment. The approach is further used to examine how well distributed power electronics converters mitigate the effects of partial shading and other sources of mismatch bymore » preventing activation of bypass diodes and thereby reducing the chances of heavy power dissipation and hot-spotting in mismatched cells. The simulation results confirm that the occurrence of heavy power dissipation is reduced in all distributed power electronics architectures, and that submodule-level converters offer nearly 100% mitigation of hot-spotting. In addition, the paper further elaborates on the possibility of hot-spot-induced permanent damage, predicting a lifetime energy loss above 15%. In conclusion, this energy loss is fully recoverable with submodule-level power converters that mitigate hot-spotting and prevent the damage.« less

  10. Mitigation of Hot-Spots in Photovoltaic Systems Using Distributed Power Electronics

    DOE PAGES

    Olalla, Carlos; Hasan, Md. Nazmul; Deline, Chris; ...

    2018-03-23

    In the presence of partial shading and other mismatch factors, bypass diodes may not offer complete elimination of excessive power dissipation due to cell reverse biasing, commonly referred to as hot-spotting in photovoltaic (PV) systems. As a result, PV systems may experience higher failure rates and accelerated ageing. In this paper, a cell-level simulation model is used to assess occurrence of hot-spotting events in a representative residential rooftop system scenario featuring a moderate shading environment. The approach is further used to examine how well distributed power electronics converters mitigate the effects of partial shading and other sources of mismatch bymore » preventing activation of bypass diodes and thereby reducing the chances of heavy power dissipation and hot-spotting in mismatched cells. The simulation results confirm that the occurrence of heavy power dissipation is reduced in all distributed power electronics architectures, and that submodule-level converters offer nearly 100% mitigation of hot-spotting. In addition, the paper further elaborates on the possibility of hot-spot-induced permanent damage, predicting a lifetime energy loss above 15%. In conclusion, this energy loss is fully recoverable with submodule-level power converters that mitigate hot-spotting and prevent the damage.« less

  11. Secondary Hotspots in the South Pacific as a Result of Mantle Plumelets and Lithospheric Extension?

    NASA Astrophysics Data System (ADS)

    Koppers, A.; Staudigel, H.; Wijbrans, J.; Pringle, M.

    2003-12-01

    By far the largest number of secondary hotspots (cf. Courtillet et al., 2003) can be found in the "South Pacific Thermal and Isotopic Anomaly" (SOPITA) or "Superswell" region. Its Cretaceous counterpart is preserved in a large range of seamounts and guyots found in the "West Pacific Seamount Province" (WPSP). The seamounts in these regions display very distinct and long-lived isotopic signatures (Staudigel et al., 1991; Koppers et al., 2003) that can be used to combine source region chemistry and seamount geochronology to map out mantle melting anomalies over geological time. These mappings may resolve many important questions regarding the stationary character, continuity and longevity of the melting anomalies in the South Pacific mantle - and its secondary hotspots. Of all secondary hotspots that are currently active in the SOPITA we could identify only two hotspots that appear to be long-lived and that have Cretaceous counterparts in the WPSP. Plate reconstructions show that the "HIMU-type" Southern Wake seamounts may have originated from the Mangaia-Rurutu "hotline" in the Cook-Austral Islands, whereas the "EMI-type" Magellan seamounts may have originated from the Rarotonga hotspot. All other hotspots in the SOPITA and WPSP are short-lived (or intermittently active) as evidenced by the presence of numerous seamount trail "segments" representing no more than 10-40 Myr of volcanism. Our observations violate one or more assumptions of the classical Wilson-Morgan hotspot hypothesis: (1) none of the South Pacific hotspots are continuously active, (2) most are short-lived, (3) some show evidence of hotspot motion, and (4) most of them have poor linear age progressions, if any at all. On top of this we have evidence for volcanism along "hotlines" and the "superposition" of hotspots. The simple and elegant "hotspot" model, therefore, seems insufficient to explain the age distribution and source region characteristics of intra-plate volcanoes in the South Pacific. This

  12. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    PubMed

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mid-ocean ridge jumps associated with hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Ito, Garrett; Behn, Mark D.

    2008-02-01

    Hotspot-ridge interaction produces a wide range of phenomena including excess crustal thickness, geochemical anomalies, off-axis volcanic ridges and ridge relocations or jumps. Ridges are recorded to have jumped toward many hotspots including, Iceland, Discovery, Galápagos, Kerguelen and Tristan de Cuhna. The causes of ridge jumps likely involve a number of interacting processes related to hotspots. One such process is reheating of the lithosphere as magma penetrates it to feed near-axis volcanism. We study this effect by using the hybrid, finite-element code, FLAC, to simulate two-dimensional (2-D, cross-section) viscous mantle flow, elasto-plastic deformation of the lithosphere and heat transport in a ridge setting near an off-axis hotspot. Heating due to magma transport through the lithosphere is implemented within a hotspot region of fixed width. To determine the conditions necessary to initiate a ridge jump, we vary four parameters: hotspot magmatic heating rate, spreading rate, seafloor age at the location of the hotspot and ridge migration rate. Our results indicate that the hotspot magmatic heating rate required to initiate a ridge jump increases non-linearly with increasing spreading rate and seafloor age. Models predict that magmatic heating, itself, is most likely to cause jumps at slow spreading rates such as at the Mid-Atlantic Ridge on Iceland. In contrast, despite the higher magma flux at the Galápagos hotspot, magmatic heating alone is probably insufficient to induce a ridge jump at the present-day due to the intermediate ridge spreading rate of the Galápagos Spreading Center. The time required to achieve a ridge jump, for fixed or migrating ridges, is found to be on the order of 10 5-10 6 years. Simulations that incorporate ridge migration predict that after a ridge jump occurs the hotspot and ridge migrate together for time periods that increase with magma flux. Model results also suggest a mechanism for ridge reorganizations not related to

  14. Hotspots and Superswell Beneath Africa Inferred From Surface Wave Anisotropic Tomography.

    NASA Astrophysics Data System (ADS)

    Sebai, A.; Stutzmann, E.; Montagner, J.

    2003-12-01

    In order to study the interaction at depth between hotspots and lithosphere we present a new anisotropic S-wave tomographic model of Africa which is derived from Rayleigh and Love wave phase velocity measurements. The strongest negative anomaly corresponds to the Afar plume which is presently the most active area of Africa. This slow anomaly, visible down to the deepest inverted depth (400km), is associated with azimuthal anisotropy that is weak right beneath the Afar and whose direction at further distances is diverging around the plume. This is consistent with active upwelling beneath the Afar. The smaller hotspots of Tibesti, Darfur, Hoggar and Mt Cameroon have appeared in regions that had been weakened by Late Jurassic-Early Cretaceous (145 Ma) rifting of West and Central Africa. They are associated with slow velocities down to about 200km. The smaller amplitude of these anomalies with respect to the Afar area and their limited depth extent may indicate that these hotspots have their origin in the uppermost boundary layer between asthenosphere and lithosphere. Nevertheless, there may be a complex relationship at depths shallower than 150km between these hotspots and the Afar. The superswell, located in the southern part of Africa is characterized by a broad area of positive velocity anomaly visible down to 300km depth. The base of Kalahari craton ( ˜ 280 km) is evidently characterized by an increase of azimuthal anisotropy. The direction of azimuthal axis is roughly North-South that rotates at the longitude of the Eastern rift to move around the Afar. This may suggest a feeding of Victoria and Afar hotspots from the deep South African superplume.

  15. Multi `omics reveals role of phenotypic plasticity in governing biogeochemical hotspots within the groundwater-surface water (hyporheic) mixing zone

    NASA Astrophysics Data System (ADS)

    Graham, E.; Tfaily, M. M.; Crump, A.; Arntzen, E.; Romero, E. B.; Goldman, A. E.; Resch, T.; Kennedy, D.; Nelson, W. C.; Stegen, J.

    2017-12-01

    Subsurface groundwater-surface water mixing zones (hyporheic zones) contain spatially heterogeneous hotspots of enhanced biogeochemical activity that contribute disproportionately to river corridor function. We have a poor understanding of the processes governing hotspots, but recent advances have enabled greater mechanistic understanding. We employ a suite of ultra-high resolution measurements to investigate the mechanisms underlying biogeochemical cycles in hyporheic zone hotspots. We use Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), metagenomic shotgun sequencing, and mass spectrometry of metaproteomes to characterize metabolite structure and metabolic transformations, microbiome structure and functional potential, and expressed microbiome functions in hyporheic sediments from the Columbia River in central Washington State. Surprisingly, microbiome structure and function in biogeochemical hotspots were indistinguishable from low-activity sediments. Metabolites were uncorrelated to protein expression but strongly related to aerobic respiration. Hotspot metabolites were distinguished by high molecular weight compounds and protein-, lignin-, and lipid-like molecules. Although the most common metabolic transformations were similar between hotspots and low-activity samples, hotspots contained a greater proportion of rare pathways, which in turn were correlated to metabolism. Our results contradicted our expectations that hotspots would be characterized by a unique microbiome with distinct physiology. Instead, our results indicate that microbial phenotypic plasticity underlies elevated hyporheic zone function, whereby the activity of rare pathways is stimulated by substrate availability. We therefore hypothesize that microbiome plasticity couples meso- (e.g., local root distribution) and macro-scale (e.g., landscape vegetation) resource heterogeneity to ecosystem-scale function. This indicates a need to mechanistically understand and

  16. Chapter 14: Effects of fire suppression and postfire management activities on plant invasions

    Treesearch

    Matthew L. Brooks

    2008-01-01

    This chapter explains how various fire suppression and postfire management activities can increase or decrease the potential for plant invasions following fire. A conceptual model is used to summarize the basic processes associated with plant invasions and show how specific fire management activities can be designed to minimize the potential for invasion. The...

  17. Contribution from motor unit firing adaptations and muscle co-activation during fatigue.

    PubMed

    Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C

    2018-03-14

    The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.

  18. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change.

    PubMed

    Krawchuk, Meg A; Cumming, Steve G

    2011-01-01

    Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested

  19. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination

    PubMed Central

    Han, Li; Masani, Shahnaz; Yu, Kefei

    2011-01-01

    Ig class-switch recombination (CSR) is directed by the long and repetitive switch regions and requires activation-induced cytidine deaminase (AID). One of the conserved switch-region sequence motifs (AGCT) is a preferred site for AID-mediated DNA-cytosine deamination. By using somatic gene targeting and recombinase-mediated cassette exchange, we established a cell line-based CSR assay that allows manipulation of switch sequences at the endogenous locus. We show that AGCT is only one of a family of four WGCW motifs in the switch region that can facilitate CSR. We go on to show that it is the overlap of AID hotspots at WGCW sites on the top and bottom strands that is critical. This finding leads to a much clearer model for the difference between CSR and somatic hypermutation. PMID:21709240

  20. Invasive fishes generate biogeochemical hotspots in a nutrient-limited system.

    PubMed

    Capps, Krista A; Flecker, Alexander S

    2013-01-01

    Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems.

  1. Invasive Fishes Generate Biogeochemical Hotspots in a Nutrient-Limited System

    PubMed Central

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems. PMID:23342083

  2. Dynamic malaria hotspots in an open cohort in western Kenya.

    PubMed

    Platt, Alyssa; Obala, Andrew A; MacIntyre, Charlie; Otsyula, Barasa; Meara, Wendy Prudhomme O'

    2018-01-12

    Malaria hotspots, defined as areas where transmission intensity exceeds the average level, become more pronounced as transmission declines. Targeting hotspots may accelerate reductions in transmission and could be pivotal for malaria elimination. Determinants of hotspot location, particularly of their movement, are poorly understood. We used spatial statistical methods to identify foci of incidence of self-reported malaria in a large census population of 64,000 people, in 8,290 compounds over a 2.5-year study period. Regression models examine stability of hotspots and identify static and dynamic correlates with their location. Hotspot location changed over short time-periods, rarely recurring in the same area. Hotspots identified in spring versus fall season differed in their stability. Households located in a hotspot in the fall were more likely to be located in a hotspot the following fall (RR = 1.77, 95% CI: 1.66-1.89), but the opposite was true for compounds in spring hotspots (RR = 0.15, 95% CI: 0.08-0.28). Location within a hotspot was related to environmental and static household characteristics such as distance to roads or rivers. Human migration into a household was correlated with risk of hotspot membership, but the direction of the association differed based on the origin of the migration event.

  3. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  4. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs.

    PubMed

    Santin, Joseph M; Hartzler, Lynn K

    2015-06-15

    Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment. Copyright © 2015 the American Physiological Society.

  5. Imbalance aware lithography hotspot detection: a deep learning approach

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei

    2017-07-01

    With the advancement of very large scale integrated circuits (VLSI) technology nodes, lithographic hotspots become a serious problem that affects manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with the extreme scaling of transistor feature size and layout patterns growing in complexity, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. We present a deep convolutional neural network (CNN) that targets representative feature learning in lithography hotspot detection. We carefully analyze the impact and effectiveness of different CNN hyperparameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always in the minority in VLSI mask design, the training dataset is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from a high number of false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply hotspot upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.

  6. Modelling Hotspots for Invasive Alien Plants in India

    PubMed Central

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species. PMID:26230513

  7. Modelling Hotspots for Invasive Alien Plants in India.

    PubMed

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species.

  8. Solar activity as a possible cause of large forest fires--a case study: analysis of the Portuguese forest fires.

    PubMed

    Gomes, J F P; Radovanovic, M

    2008-05-01

    Fires of large dimension destroy forests, harvests and housing objects. Apart from that combustion products and burned surfaces become large ecological problems. Very often fires emerge simultaneously on different locations of a region so a question could be asked if they always have been a consequence of negligence, pyromania, high temperatures or maybe there has been some other cause. This paper is an attempt of establishing the possible connection between forest fires that numerous satellites registered and activities happening on the Sun immediately before fires ignite. Fires emerged on relatively large areas from Portugal and Spain on August 2005, as well as on other regions of Europe. The cases that have been analyzed show that, in every concrete situation, an emission of strong electromagnetic and thermal corpuscular energy from highly energetic regions that were in geo-effective position had preceded the fires. Such emissions have, usually, very high energy and high speeds of particles and come from coronary holes that also have been either in the very structure or in the immediate closeness of the geo-effective position. It should also be noted that the solar wind directed towards the Earth becomes weaker with deeper penetration towards the topographic surface. However, the results presented in this paper suggest that, there is a strong causality relationship between solar activity and the ignition of these forest fires taking place in South-western Europe.

  9. Hotspot Motion, Before and After the Hawaiian-Emperor Bend

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Bono, R. K.

    2014-12-01

    Hawaiian hotspot motion of >40 mm/yr is best documented by paleomagnetic investigations of basalt cores recovered by ocean drilling of the Emperor seamounts during ODP Leg 197 (Tarduno et al., 2003). These data indicate that the trend of the Emperor Seamounts dominantly records motion of the hotspot in the mantle, further suggesting that the great Hawaiian-Emperor bend (HEB) reflects mainly a change in hotspot motion. Data used for Pacific "absolute plate motion models" for times before the age of the HEB are also internally inconsistent with a fixed hotspot assumption; at present the best way to estimate Pacific absolute plate motion prior to the HEB bend is through use of predictions derived from plate circuits (e.g. Doubrovine and Tarduno, 2008). These analyses predict much less motion for the hotspot responsible for the Louisville Seamount chain, as has been observed by paleomagnetic analyses of cores recovered by IODP Expedition 330 (Koppers et al., 2012). Together, the ocean drilling data sets favor hotspot-specific processes to explain high drift rates, such as the model whereby the Hawaiian mantle plume was captured by a ridge in the Late Cretaceous, and subsequent changes in sub-Pacific mantle flow resulted in the trend of the Emperor Seamounts (Tarduno et al., 2009). However, the question of whether there is a smaller signal of motion between groups of hotspots remains. Plate circuit analyses yield a small discrepancy between predicted and actual hotspot locations for times between ca. 47 Ma and 10 Ma that could be a signal of continued southward migration of the Hawaiian hotspot. Alternatively, this could reflect the motion of the group of Indo-Atlantic hotspots relative to Hawaii. New paleomagnetic data from Midway Atoll (ca. 27 Ma) suggests little difference with the present-day latitude of the plume, indicating that the rate of motion of either the Hawaiian hotspot, or the Indo-Atlantic hotspot group, was about 15 mm/yr between 47 and 27 Ma. This

  10. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    PubMed

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  11. Improving Nocturnal Fire Detection with the VIIRS Day-Night Band

    NASA Technical Reports Server (NTRS)

    Polivka, Thomas N.; Wang, Jun; Ellison, Luke T.; Hyer, Edward J.; Ichoku, Charles M.

    2016-01-01

    Building on existing techniques for satellite remote sensing of fires, this paper takes advantage of the day-night band (DNB) aboard the Visible Infrared Imaging Radiometer Suite (VIIRS) to develop the Firelight Detection Algorithm (FILDA), which characterizes fire pixels based on both visible-light and infrared (IR) signatures at night. By adjusting fire pixel selection criteria to include visible-light signatures, FILDA allows for significantly improved detection of pixels with smaller and/or cooler subpixel hotspots than the operational Interface Data Processing System (IDPS) algorithm. VIIRS scenes with near-coincident Advanced Spaceborne Thermal Emission and Reflection (ASTER) overpasses are examined after applying the operational VIIRS fire product algorithm and including a modified "candidate fire pixel selection" approach from FILDA that lowers the 4-µm brightness temperature (BT) threshold but includes a minimum DNB radiance. FILDA is shown to be effective in detecting gas flares and characterizing fire lines during large forest fires (such as the Rim Fire in California and High Park fire in Colorado). Compared with the operational VIIRS fire algorithm for the study period, FILDA shows a large increase (up to 90%) in the number of detected fire pixels that can be verified with the finer resolution ASTER data (90 m). Part (30%) of this increase is likely due to a combined use of DNB and lower 4-µm BT thresholds for fire detection in FILDA. Although further studies are needed, quantitative use of the DNB to improve fire detection could lead to reduced response times to wildfires and better estimate of fire characteristics (smoldering and flaming) at night.

  12. Leg 197 synthesis: Southward motion and geochemical variability of the Hawaiian hotspot

    USGS Publications Warehouse

    Duncan, Robert A.; Tarduno, John A.; Scholl, David W.; Duncan, Robert A.; Tarduno, John A.; Davies, Thomas A.; Scholl, David W.

    2006-01-01

    The bend in the Hawaiian-Emperor volcanic chain is an often-cited example of a change in plate motion with respect to a stationary hotspot. Growing evidence, however, suggests that the bend might instead record variable drift of the Hawaiian hotspot within a convecting mantle. Paleomagnetic and radiometric age data from samples recovered during Ocean Drilling Program (ODP) Leg 197 define an age-progressive paleolatitude history, indicating that the Emperor Seamounts volcanic trend was formed principally by rapid (4–5 cm/yr) southward motion of the Hawaiian hotspot during Late Cretaceous to early Tertiary time (81–47 Ma). Paleointensity data derived from Leg 197 suggest an inverse relationship between field strength and reversal frequency, consistent with an active lower mantle that controls the efficiency of the geodynamo. Petrochemical data and observations of volcanic products (lava flows and volcaniclastic sediments) from Detroit, Nintoku, and Koko Seamounts provide records of the evolution of these volcanic systems for comparison with recent activity in the Hawaiian Islands. We find that the Emperor Seamounts formed from similar mantle sources for melting (plume components and lithosphere) and in much the same stages of volcanic activity and time span as the Hawaiian volcanoes. Changes in major and trace element and Sr isotopic compositions of shield lavas along the lineament can be related to variations in thickness of the lithosphere overlying the hotspot that control the depth and extent of partial melting. Other geochemical tracers, such as He, Pb, and Hf isotopic compositions, indicate persistent contributions to melting from the plume throughout the volcanic chain.

  13. Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe

    NASA Astrophysics Data System (ADS)

    Pascual, López-López; Luigi, Maiorano; Alessandra, Falcucci; Emilio, Barba; Luigi, Boitani

    2011-09-01

    The Mediterranean basin, and the Iberian Peninsula in particular, represent an outstanding "hotspot" of biological diversity with a long history of integration between natural ecosystems and human activities. Using deductive distribution models, and considering both Spain and Portugal, we downscaled traditional range maps for terrestrial vertebrates (amphibians, breeding birds, mammals and reptiles) to the finest possible resolution with the data at hand, and we identified hotspots based on three criteria: i) species richness; ii) vulnerability, and iii) endemism. We also provided a first evaluation of the conservation status of biodiversity hotspots based on these three criteria considering both existing and proposed protected areas (i.e., Natura 2000). For the identification of hotspots, we used a method based on the cumulative distribution functions of species richness values. We found no clear surrogacy among the different types of hotspots in the Iberian Peninsula. The most important hotspots (considering all criteria) are located in the western and southwestern portions of the study area, in the Mediterranean biogeographical region. Existing protected areas are not specifically concentrated in areas of high species richness, with only 5.2% of the hotspots of total richness being currently protected. The Natura 2000 network can potentially constitute an important baseline for protecting vertebrate diversity in the Iberian Peninsula although further improvements are needed. We suggest taking a step forward in conservation planning in the Mediterranean basin, explicitly considering the history of the region as well as its present environmental context. This would allow moving from traditional reserve networks (conservation focused on "patterns") to considerations about the "processes" that generated present biodiversity.

  14. An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Quigley, K. W.; Roberts, D. A.; Miller, D.

    2017-12-01

    Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those

  15. Evolutionary hotspots in the Mojave Desert

    USGS Publications Warehouse

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  16. Dendritic Glutamate Receptor mRNAs Show Contingent Local Hotspot-Dependent Translational Dynamics

    PubMed Central

    Kim, Tae Kyung; Sul, Jai-Yoon; Helmfors, Henrik; Langel, Ulo; Kim, Junhyong; Eberwine, James

    2014-01-01

    SUMMARY Protein synthesis in neuronal dendrites underlies long-term memory formation in the brain. Local translation of reporter mRNAs has demonstrated translation in dendrites at focal points called translational hotspots. Various reports have shown that hundreds to thousands of mRNAs are localized to dendrites, yet the dynamics of translation of multiple dendritic mRNAs has remained elusive. Here, we show that the protein translational activities of two dendritically localized mRNAs are spatiotemporally complex but constrained by the translational hotspots in which they are colocalized. Cotransfection of glutamate receptor 2 (GluR2) and GluR4 mRNAs (engineered to encode different fluorescent proteins) into rat hippocampal neurons demonstrates a heterogeneous distribution of translational hotspots for the two mRNAs along dendrites. Stimulation with s-3,5-dihydroxy-phenylglycine modifies the translational dynamics of both of these RNAs in a complex saturable manner. These results suggest that the translational hotspot is a primary structural regulator of the simultaneous yet differential translation of multiple mRNAs in the neuronal dendrite. PMID:24075992

  17. FireBird - a small satellite fire monitoring mission: Status and first results

    NASA Astrophysics Data System (ADS)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  18. Stratigraphic record of the Yellowstone hotspot track, Neogene Sixmile Creek Formation grabens, southwest Montana

    NASA Astrophysics Data System (ADS)

    Sears, James W.; Hendrix, Marc S.; Thomas, Robert C.; Fritz, William J.

    2009-11-01

    The Sixmile Creek Formation fills deep grabens in southwest Montana and preserves a stratigraphic record of the evolution of the Yellowstone hotspot track from ~ 17 Ma to ~ 2 Ma. The Ruby, Beaverhead, Big Hole, Deer Lodge, Medicine Lodge-Grasshopper, Three Forks, Canyon Ferry, Jefferson, Melrose, Wise River, and Paradise grabens were active during outbreak of the hotspot. They appear to be parts of a radial system of extensional structures that may have formed on a broad dome that was centered on the hotspot outbreak area in southwest Idaho and southeast Oregon. Early in the evolution of the grabens, massive debris flows surged down Paleogene paleovalleys from uplifted and tilted horst blocks and accumulated in the grabens. The grabens captured runoff from the hotspot dome with thick deposits of river gravel that appear to have been derived, in part, from east-central Idaho. As the hotspot track propagated along the eastern Snake River Plain, silicic ash fell into the graben drainage basins and was reworked into thick fluvial beds along graben axes. The grabens were cross-cut by northwest-trending late Neogene grabens that propagated on the flanks of silicic volcanic centers along the hotspot track. The late Neogene grabens diverted the Middle Miocene drainage patterns in southwest Montana.

  19. Bayesian Inference of Shared Recombination Hotspots Between Humans and Chimpanzees

    PubMed Central

    Wang, Ying; Rannala, Bruce

    2014-01-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies. PMID:25261696

  20. Bayesian inference of shared recombination hotspots between humans and chimpanzees.

    PubMed

    Wang, Ying; Rannala, Bruce

    2014-12-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies. Copyright © 2014 by the Genetics Society of America.

  1. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    PubMed Central

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472

  2. Imbalance aware lithography hotspot detection: a deep learning approach

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei

    2017-03-01

    With the advancement of VLSI technology nodes, light diffraction caused lithographic hotspots have become a serious problem affecting manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with extreme scaling of transistor feature size and more and more complicated layout patterns, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. In this paper, we present a deep convolutional neural network (CNN) targeting representative feature learning in lithography hotspot detection. We carefully analyze impact and effectiveness of different CNN hyper-parameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always minorities in VLSI mask design, the training data set is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from high false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply minority upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves highly comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.

  3. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.

    PubMed

    Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie

    2012-06-21

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.

  4. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots

    PubMed Central

    2012-01-01

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots. PMID:22759569

  5. An Evaluation of the Fixed Hotspot Hypothesis for the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Kroenke, L. W.

    2008-12-01

    Using geometry and ages from 12 Pacific seamount chains, we recently constructed two new Pacific absolute plate motion models that extend our self-consistent and high-resolution models back to 145 Ma. The WK08-A model maps the full uncertainty in the age progressions into uncertainties in rotation opening angles, yielding a relatively smooth plate motion model. The WK08-G model relaxes the mapping of age uncertainties in order to better isolate secondary geometry changes seen along many co-registered chains. Both models have been used to assess the viability of the fixed hotspot hypothesis in the Pacific. In constructing these models, we found that only a small group of age samples had to be discarded on the grounds that they were discordant with the dominant trends. We were able to connect plate motions for pre- and post-Emperor age intervals by including the Ratak-Gilbert-Ellice, Liliuokalani and Musicians trails in our analysis. However, as no active hotspot locations exist for the older chains their inclusion adds additional model parameters. Both age and geometry misfits increase with age, reflecting the observed increase in age uncertainties and the broader and less distinct nature of the older trails. Paleomagnetic observations from the Emperor seamount chain have been interpreted to suggest that these seamounts must have formed at latitudes significantly more northerly than the present location of the Hawaii hotspot, implying a drifting mantle plume. At the same time, new estimates of the age of the Hawaii- Emperor bend places bend formation at a time of global plate reorganization. We will present a complete analysis of inter-chain distances between coeval radiometric samples from Pacific chains and compare these distances to the inter-hotspot distances at the present time. Significant departures from the current hotspot separations would be direct and unequivocal evidence of motion between the Pacific hotspot reference frame and the spin axis and as such

  6. Human presence diminishes the importance of climate in driving fire activity across the United States

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Pfaff, Anne Hopkins; Ferschweiler, Ken

    2017-01-01

    Growing human and ecological costs due to increasing wildfire are an urgent concern in policy and management, particularly given projections of worsening fire conditions under climate change. Thus, understanding the relationship between climatic variation and fire activity is a critically important scientific question. Different factors limit fire behavior in different places and times, but most fire-climate analyses are conducted across broad spatial extents that mask geographical variation. This could result in overly broad or inappropriate management and policy decisions that neglect to account for regionally specific or other important factors driving fire activity. We developed statistical models relating seasonal temperature and precipitation variables to historical annual fire activity for 37 different regions across the continental United States and asked whether and how fire-climate relationships vary geographically, and why climate is more important in some regions than in others. Climatic variation played a significant role in explaining annual fire activity in some regions, but the relative importance of seasonal temperature or precipitation, in addition to the overall importance of climate, varied substantially depending on geographical context. Human presence was the primary reason that climate explained less fire activity in some regions than in others. That is, where human presence was more prominent, climate was less important. This means that humans may not only influence fire regimes but their presence can actually override, or swamp out, the effect of climate. Thus, geographical context as well as human influence should be considered alongside climate in national wildfire policy and management.

  7. Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Reid, Jeffrey S.; Prins, Elaine M.; Hoffman, Jay P.; Schmidt, Christopher C.; Miettinen, Jukka I.; Giglio, Louis

    2013-03-01

    Biomass burning patterns over the Maritime Continent of Southeast Asia are examined using a new active fire detection product based on application of the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) to data from the imagers on the MTSAT geostationary satellites operated by the Japanese space agency JAXA. Data from MTSAT-1R and MTSAT-2 covering 34 months from September 2008 to July 2011 are examined for a study region consisting of Indonesia, Malaysia, and nearby environs. The spatial and temporal distributions of fires detected in the MTSAT WF_ABBA product are described and compared with active fire observations from MODIS MOD14 data. Land cover distributions for the two instruments are examined using a new 250 m land cover product from the National University of Singapore. The two products show broadly similar patterns of fire activity, land cover distribution of fires, and pixel fire radiative power (FRP). However, the MTSAT WF_ABBA data differ from MOD14 in important ways. Relative to MODIS, the MTSAT WF_ABBA product has lower overall detection efficiency, but more fires detected due to more frequent looks, a greater relative fraction of fires in forest and a lower relative fraction of fires in open areas, and significantly higher single-pixel retrieved FRP. The differences in land cover distribution and FRP between the MTSAT and MODIS products are shown to be qualitatively consistent with expectations based on pixel size and diurnal sampling. The MTSAT WF_ABBA data are used to calculate coverage-corrected diurnal cycles of fire for different regions within the study area. These diurnal cycles are preliminary but demonstrate that the fraction of diurnal fire activity sampled by the two MODIS sensors varies significantly by region and vegetation type. Based on the results from comparison of the two fire products, a series of steps is outlined to account for some of the systematic biases in each of these satellite products in order to produce a

  8. Prescribed fire effects on activity and movement of cattle in mesic sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    Prescribed fire has long been used worldwide for livestock and wildlife management. The efficacy of prescribed fire for manipulating grazing animal distribution and diet quality has been well studied in many ecosystems but prescribed-fire effects on activity budgets and movement path characteristic...

  9. Hotspots and the conservation of evolutionary history

    PubMed Central

    Sechrest, Wes; Brooks, Thomas M.; da Fonseca, Gustavo A. B.; Konstant, William R.; Mittermeier, Russell A.; Purvis, Andy; Rylands, Anthony B.; Gittleman, John L.

    2002-01-01

    Species diversity is unevenly distributed across the globe, with terrestrial diversity concentrated in a few restricted biodiversity hotspots. These areas are associated with high losses of primary vegetation and increased human population density, resulting in growing numbers of threatened species. We show that conservation of these hotspots is critical because they harbor even greater amounts of evolutionary history than expected by species numbers alone. We used supertrees for carnivores and primates to estimate that nearly 70% of the total amount of evolutionary history represented in these groups is found in 25 biodiversity hotspots. PMID:11854502

  10. Discovery of hotspots on Io using disk-resolved infrared imaging

    NASA Technical Reports Server (NTRS)

    Spencer, J. R.; Shure, M. A.; Ressler, M. E.; Sinton, W. M.; Goguen, J. D.

    1990-01-01

    First results are presented using two new techniques for ground-based observation of Io's hotspots. An IR array camera was used to obtain direct IR images of Io with resolution better than 0.5 arcsec, so that more than one hotspot is seen on Io in Jupiter eclipse. The camera was also used to make the first observations of the Jupiter occultation of the hotspots. These new techniques have revealed and located at least three hotspots and will now permit routine ground-based monitoring of the locations, temperatures, and sizes of multiple hotspots on Io.

  11. What makes labour and birth traumatic? A survey of intrapartum 'hotspots'.

    PubMed

    Harris, Rachel; Ayers, Susan

    2012-01-01

    Evidence suggests between 1% and 6% of women develop post-traumatic stress disorder (PTSD) after childbirth. 'Hotspots' are moments of extreme distress during traumatising events that are implicated in symptoms of PTSD. This cross-sectional internet survey of hotspots examined (1) the content of intrapartum hotspots and (2) whether particular events, cognitions or emotions during hotspots are related to PTSD. Women (N = 675) who experienced a difficult or traumatic birth completed a questionnaire composed of a validated measure of PTSD, questions concerning the existence of hotspots, and a newly developed measure of emotions and cognitions during hotspots. The majority of women (67.4%) reported at least one hotspot during birth and 52.9% had re-experiencing symptoms of these hotspots. Women were more likely to have PTSD if hotspots involved fear and lack of control (odds ratio (OR) 1.30, 95% CI 1.17-1.43) or intrapartum dissociation (OR 1.12, 95% CI 1.05-1.19). Risk of PTSD was higher if hotspots concerned interpersonal difficulties (OR 4.34, 95% CI 2.15-8.77) or obstetric complications (OR 3.35, 95% CI 1.64-6.87) compared to complications with the baby.

  12. Allocating Fire Mitigation Funds on the Basis of the Predicted Probabilities of Forest Wildfire

    Treesearch

    Ronald E. McRoberts; Greg C. Liknes; Mark D. Nelson; Krista M. Gebert; R. James Barbour; Susan L. Odell; Steven C. Yaddof

    2005-01-01

    A logistic regression model was used with map-based information to predict the probability of forest fire for forested areas of the United States. Model parameters were estimated using a digital layer depicting the locations of wildfires and satellite imagery depicting thermal hotspots. The area of the United States in the upper 50th percentile with respect to...

  13. Phenotypic plasticity of post-fire activity and thermal biology of a free-ranging small mammal.

    PubMed

    Stawski, Clare; Körtner, Gerhard; Nowack, Julia; Geiser, Fritz

    2016-05-15

    Ecosystems can change rapidly and sometimes irreversibly due to a number of anthropogenic and natural factors, such as deforestation and fire. How individual animals exposed to such changes respond behaviourally and physiologically is poorly understood. We quantified the phenotypic plasticity of activity patterns and torpor use - a highly efficient energy conservation mechanism - in brown antechinus (Antechinus stuartii), a small Australian marsupial mammal. We compared groups in densely vegetated forest areas (pre-fire and control) with a group in a burned, open habitat (post-fire). Activity and torpor patterns differed among groups and sexes. Females in the post-fire group spent significantly less time active than the other groups, both during the day and night. However, in males only daytime activity declined in the post-fire group, although overall activity was also reduced on cold days in males for all groups. The reduction in total or diurnal activity in the post-fire group was made energetically possible by a ~3.4-fold and ~2.2-fold increase in the proportion of time females and males, respectively, used torpor in comparison to that in the pre-fire and control groups. Overall, likely due to reproductive needs, torpor was more pronounced in females than in males, but low ambient temperatures increased torpor bout duration in both sexes. Importantly, for both male and female antechinus and likely other small mammals, predator avoidance and energy conservation - achieved by reduced activity and increased torpor use - appear to be vital for post-fire survival where ground cover and refuges have been obliterated. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Overlooked mountain rock pools in deserts are critical local hotspots of biodiversity.

    PubMed

    Vale, Cândida Gomes; Pimm, Stuart L; Brito, José Carlos

    2015-01-01

    The world is undergoing exceptional biodiversity loss. Most conservation efforts target biodiversity hotspots at large scales. Such approach overlooks small-sized local hotspots, which may be rich in endemic and highly threatened species. We explore the importance of mountain rock pools (gueltas) as local biodiversity hotspots in the Sahara-Sahel. Specifically, we considered how many vertebrates (total and endemics) use gueltas, what factors predict species richness, and which gueltas are of most priority for conservation. We expected to provide management recommendations, improve local biodiversity conservation, and simultaneously contribute with a framework for future enhancement of local communities' economy. The identification of local hotspots of biodiversity is important for revaluating global conservation priorities. We quantified the number of vertebrate species from each taxonomic group and endemics present in 69 gueltas in Mauritania, then compared these with species present in a surrounding area and recorded in the country. We evaluated the predictors of species number's present in each guelta through a multiple regression model. We ranked gueltas by their priority for conservation taking into account the percentage of endemics and threats to each guelta. Within a mere aggregate extent of 43 ha, gueltas hold about 32% and 78% of the total taxa analysed and endemics of Mauritania, respectively. The number of species present in each guelta increased with the primary productivity and area of gueltas and occurrence of permanent water. Droughts and human activities threaten gueltas, while 64% of them are currently unprotected. Gueltas are crucial for local biodiversity conservation and human activities. They require urgent management plans in Mauritania's mountains. They could provide refugia under climate change being important for long-term conservation of Sahara-Sahel biodiversity. Given their disproportional importance in relation to their size, they are

  15. Overlooked Mountain Rock Pools in Deserts Are Critical Local Hotspots of Biodiversity

    PubMed Central

    Vale, Cândida Gomes; Pimm, Stuart L.; Brito, José Carlos

    2015-01-01

    Background The world is undergoing exceptional biodiversity loss. Most conservation efforts target biodiversity hotspots at large scales. Such approach overlooks small-sized local hotspots, which may be rich in endemic and highly threatened species. We explore the importance of mountain rock pools (gueltas) as local biodiversity hotspots in the Sahara-Sahel. Specifically, we considered how many vertebrates (total and endemics) use gueltas, what factors predict species richness, and which gueltas are of most priority for conservation. We expected to provide management recommendations, improve local biodiversity conservation, and simultaneously contribute with a framework for future enhancement of local communities’ economy. The identification of local hotspots of biodiversity is important for revaluating global conservation priorities. Methodology/Principal Findings We quantified the number of vertebrate species from each taxonomic group and endemics present in 69 gueltas in Mauritania, then compared these with species present in a surrounding area and recorded in the country. We evaluated the predictors of species number’s present in each guelta through a multiple regression model. We ranked gueltas by their priority for conservation taking into account the percentage of endemics and threats to each guelta. Within a mere aggregate extent of 43 ha, gueltas hold about 32% and 78% of the total taxa analysed and endemics of Mauritania, respectively. The number of species present in each guelta increased with the primary productivity and area of gueltas and occurrence of permanent water. Droughts and human activities threaten gueltas, while 64% of them are currently unprotected. Conclusion/Significance Gueltas are crucial for local biodiversity conservation and human activities. They require urgent management plans in Mauritania’s mountains. They could provide refugia under climate change being important for long-term conservation of Sahara-Sahel biodiversity

  16. Characterization and Prediction of Protein Phosphorylation Hotspots in Arabidopsis thaliana.

    PubMed

    Christian, Jan-Ole; Braginets, Rostyslav; Schulze, Waltraud X; Walther, Dirk

    2012-01-01

    The regulation of protein function by modulating the surface charge status via sequence-locally enriched phosphorylation sites (P-sites) in so called phosphorylation "hotspots" has gained increased attention in recent years. We set out to identify P-hotspots in the model plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites within peptide-covered regions along Arabidopsis protein sequences as available from the PhosPhAt database. Confirming earlier reports (Schweiger and Linial, 2010), we found that, indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites to their respected closest next P-site differ significantly from those for tyrosine P-sites. The ability to predict P-hotspots by applying available computational P-site prediction programs that focus on identifying single P-sites was observed to be severely compromised by the inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter, for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino acid compositional preferences rather than sequence position-specific motifs and uses support vector machines as the underlying classification engine. HotSPotter correctly identified experimentally determined phosphorylation hotspots in A. thaliana with high accuracy. Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are involved predominantly in signaling processes confirming the surmised modulating role of hotspots in signaling and interaction events. Our study provides new bioinformatics means to identify phosphorylation hotspots and lays the basis for further investigating novel candidate P-hotspots. All phosphorylation hotspot annotations and predictions have been made available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de.

  17. Airborne wildfire intelligence system: a decision support tool for wildland fire managers in Alberta

    NASA Astrophysics Data System (ADS)

    Campbell, Doug; Born, Wally G.; Beck, Judi; Bereska, Bill; Frederick, Kurt; Hua, Sun

    2002-03-01

    The Airborne Wildfire Intelligence System (AWIS) defines the state-of-the-art in remotely sensed wildfire intelligence. AWIS is a commercial, automated, intelligence service, delivering GIS integrated fire intelligence, classified interpretive and analysis layers, and higher level decision support products for wildfires in near real time via the Internet. The AWIS effort illustrates flexible and dynamic cooperation between industry and government to combine technology with field knowledge and experience into an effective, optimized end-user tool. In Alberta the Forest Protection Division of the department of Sustainable Resource Development uses AWIS for several applications: holdover and wildfire hotspot detection, fire front and burned area perimeter mapping, strategic and tactical support through 3D visualization, research into the effects of fire and its severity and to document burn patterns across the landscape. A discussion of all of the scientific themes behind the AWIS is outside the scope of this paper, however, the science of sub-element detection will be reviewed. An independent study has been conducted by the Forest Engineering Research Institute of Canada (FERIC) to investigate the capability of a variety of thermal infrared remote sensing systems to detect small and subtle hotspots in an effort to identify the strengths and weaknesses thereof. As a result of this work, method suitability guidelines have been established to match appropriate infrared technology with a given wildfire management objective.

  18. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo.

    PubMed

    Powers, Natalie R; Parvanov, Emil D; Baker, Christopher L; Walker, Michael; Petkov, Petko M; Paigen, Kenneth

    2016-06-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  19. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo

    PubMed Central

    Powers, Natalie R.; Parvanov, Emil D.; Baker, Christopher L.; Walker, Michael; Petkov, Petko M.; Paigen, Kenneth

    2016-01-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  20. Upper mantle structure of shear-waves velocities and stratification of anisotropy in the Afar Hotspot region

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Montagner, J.-P.; Cara, M.; Stutzmann, E.; Debayle, E.; Lépine, J.-C.; Lévêque, J.-J.; Beucler, E.; Sebai, A.; Roult, G.; Ayele, A.; Sholan, J. M.

    2008-12-01

    The Afar area is one of the biggest continental hotspots active since about 30 Ma. It may be the surface expression of a mantle "plume" related to the African Superswell. Central Africa is also characterized by extensive intraplate volcanism. Around the same time (30 Ma), volcanic activity re-started in several regions of the African plate and hotspots such as Darfur, Tibesti, Hoggar and Mount Cameroon, characterized by a significant though modest volcanic production. The interactions of mantle upwelling with asthenosphere, lithosphere and crust remain unclear and seismic anisotropy might help in investigating these complex interactions. We used data from the global seismological permanent FDSN networks (GEOSCOPE, IRIS, MedNet, GEO- FON, etc.), from the temporary PASSCAL experiments in Tanzania and Saudi Arabia and a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. A classical two-step tomographic inversion from surface waves performed in the Horn of Africa with selected Rayleigh wave and Love wave seismograms leads to a 3D-model of both S V velocities and azimuthal anisotropy, as well as radial SH/ SV anisotropy, with a lateral resolution of 500 km. The region is characterized by low shear-wave velocities beneath the Afar Hotspot, the Red Sea, the Gulf of Aden and East of the Tanzania Craton to 400 km depth. High velocities are present in the Eastern Arabia and the Tanzania Craton. The results of this study enable us to rule out a possible feeding of the Central Africa hotspots from the "Afar plume" above 150-200 km. The azimuthal anisotropy displays a complex pattern near the Afar Hotspot. Radial anisotropy, although poorly resolved laterally, exhibits S H slower than S V waves down to about 150 km depth, and a reverse pattern below. Both azimuthal and radial anisotropies show a stratification of anisotropy at depth, corresponding to different physical processes. These results suggest that the Afar hotspot has a different and

  1. Thermally-Driven Mantle Plumes Reconcile Hot-spot Observations

    NASA Astrophysics Data System (ADS)

    Davies, D.; Davies, J.

    2008-12-01

    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth.

  2. Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    NASA Astrophysics Data System (ADS)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquín; Gutiérrez, José M.; San Miguel-Ayanz, Jesús; Camia, Andrea; Keeley, Jon E.; Moreno, José M.

    2015-11-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire-weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire

  3. Exploratory spatial data analysis of global MODIS active fire data

    NASA Astrophysics Data System (ADS)

    Oom, D.; Pereira, J. M. C.

    2013-04-01

    We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.

  4. A hotspot model for leaf canopies

    NASA Technical Reports Server (NTRS)

    Jupp, David L. B.; Strahler, Alan H.

    1991-01-01

    The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.

  5. Geodynamics Of The Yellowstone Hotspot From S Eismic And Gps Imaging: Progress Report

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Humphreys, E.; Dueker, K.; Tackley, P.; Waite, G.; Schutt, D.; Hernland, J.

    An integrated study of the Yellowstone hotspot and it's interaction with the continental lithosphere is focused on understanding the evolution and effects of plume interaction with the continental lithosphere. Our basic goal is to develop a unified dynamic model of the Yellowstone hotspot and to resolve the question of whether there it has a deep mantle plume source. The 800-km-track of the 16Myr. Yellowstone-Snake River Plain (YSRP) volcanic system extends NE across the western U.S. with associated active seismicity and faulting. We will discuss the initial results of seismic tomography experiments: 1) an 80-instrument, NW-SE trending 500 km x 400 km broadband and high frequency array centered over Yellowstone planned to resolve structural geometry and composition of a presumed mantle plume and to record presumed plume-penetrating rays to ~600 km depth; and 2) an array of ~350 seismic stations of regional seismic networks focusing on the magmatically modified crust using local earthquake and controlled sources. Crustal deformation was assessed by 160-station campaign GPS surveys (1987-2000) complimented by a 15-station permanent GPS network planned to resolve the velocity vectors around the hotspot needed for kinematic and dynamic modeling. Initial tomographic results reveal a low-velocity, upper-crustal body beneath Yellowstone, interpreted to be the source of its active silicic volcanism; conversely, a high-velocity mid crustal body extends along the cooled hotspot track is interpreted to an Fe-rich residuum of the rhyolitic-basaltic volcanism. Teleseismic images within the Yellowstone swell that, combined with isostatic considerations, suggests that convective overturn has left partially molten mantle beneath the hotspot track to depths of about 180 km, and depleted residuum beneath the swell adjacent to the hotspot track. Also the fast axis of mantle anisotropy is oriented in the direction of plate transport; this differs from the anisotropy away from the

  6. Arago Seamount: The missing hotspot found in the Austral Islands

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Le Suavé, Raymond; Audin, Laurence; Clouard, Valérie; Dosso, Laure; Yves Gillot, Pierre; Janney, Philip; Jordahl, Kelsey; Maamaatuaiahutapu, Keitapu

    2002-11-01

    The Austral archipelago, on the western side of the South Pacific superswell, is composed of several volcanic chains, corresponding to distinct events from 35 Ma to the present, and lies on oceanic crust created between 60 and 85 Ma. In 1982, Turner and Jarrard proposed that the two distinct volcanic stages found on Rurutu Island and dated as 12 Ma and 1 Ma could be due to two different hotspots, but no evidence of any recent aerial or submarine volcanic source has ever been found. In July 1999, expedition ZEPOLYF2 aboard the R/V L'Atalante conducted a geophysical survey of the northern part of the Austral volcanic archipelago. Thirty seamounts were mapped for the first time, including a very shallow one (<27 m below sea level), located at lat 23°26.4‧S, long 150°43.8‧W, ˜120 km southeast of Rurutu. A nepheline-rich scoriaceous basalt sample from pillow lavas dredged on the newly mapped seamount's western flank gave a K-Ar age of 230 ± 0.004 ka obtained on pure selected nepheline. We propose that this seamount, already called Arago Seamount after a French Navy ship that discovered its summit in 1993, is the missing hotspot in the Cook-Austral history. This interpretation adds a new hotspot to the already complicated geologic history of this region. We suggest that several hotspots have been active simultaneously on a region of the seafloor that does not exceed 2000 km in diameter and that each of them had a short lifetime (<20 m.y.). These short-lived and closely spaced hotspots cannot be the result of discrete deep-mantle plumes and are likely due to more local upwelling in the upper mantle strongly influenced by weaknesses in the lithosphere.

  7. Where are the lightning hotspots on Earth?

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.

    2015-12-01

    The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM

  8. Geodiversity Hotspots: A Proposed Conceptual and Methodological Framework for Defining Geoconservation Priorities

    NASA Astrophysics Data System (ADS)

    Bétard, François

    2016-04-01

    For two decades, geoconservation has been driven by the need to conserve geodiversity considering its values or most valuable elements (i.e. geoheritage) facing the internal or external threats to it, mainly associated with human activities causing damages or irreversible destruction of sites. One main difficulty arises in how geoconservation priorities can objectively be identified at larger scales (e.g., state or region levels). Inspired by experiences in biological conservation, I propose a new conceptual and methodological framework for the identification of geoconservation priorities by theorizing and applying the concept of "geodiversity hotspot". Drawing an obvious parallel with the "biodiversity hotspot" concept first introduced in 1988 by the British ecologist Norman Myers, geodiversity hotspots are here defined as geographic areas that harbour very high levels of geodiversity while being threatened by human activities. From a methodological viewpoint, a basic analytical procedure is proposed to map geodiversity hotspots at a national or regional scale, that can be used as a tool to support decision-making and land-use planning. The method is based on the numerical processing and mapping of two indices: geodiversity index and degree of potential threat. The geodiversity index is calculated using a GIS environment as the sum of four sub-indexes representing the main components of geodiversity, i.e. geological diversity (rocks, minerals, fossils), geomorphodiversity (topography and landforms), pedodiversity (soils and palaeosoils) and hydrodiversity (rivers, lakes, springs…). The degree of potential threat is a graduated scale inversely proportional to the level of protection, from high degree of potential threat in areas without any protection status to low degree of potential threat in areas with high protection level (e.g., national parks, nature reserves). The mapping and delineation of geodiversity hotspots can automatically be obtained from a

  9. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture.

    PubMed

    Parks, Sean A; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios.

  10. Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture

    PubMed Central

    Parks, Sean A.; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z.

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios. PMID:24941290

  11. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations

    PubMed Central

    Lin, Shih-Chieh; Nicolelis, Miguel A. L.

    2011-01-01

    The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation. PMID:21865435

  12. Upper-mantle origin of the Yellowstone hotspot

    USGS Publications Warehouse

    Christiansen, R.L.; Foulger, G.R.; Evans, J.R.

    2002-01-01

    Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ???200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.

  13. Flood risk assessment of land pollution hotspots

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Arrighi, Chiara; Iannelli, Renato

    2017-04-01

    Among the risks caused by extreme events, the potential spread of pollutants stored in land hotspots due to floods is an aspect that has been rarely examined with a risk-based approach. In this contribution, an attempt to estimate pollution risks related to flood events of land pollution hotspots was carried out. Flood risk has been defined as the combination of river flood hazard, hotspots exposure and vulnerability to contamination of the area, i.e. the expected severity of the environmental impacts. The assessment was performed on a geographical basis, using geo-referenced open data, available from databases of land management institutions, authorities and agencies. The list of land pollution hotspots included landfills and other waste handling facilities (e.g., temporary storage, treatment and recycling sites), municipal wastewater treatment plants, liquid waste treatment facilities and contaminated sites. The assessment was carried out by combining geo-referenced data of pollution hotspots with flood hazard maps. We derived maps of land pollution risk based on geographical and geological properties and source characteristics available from environmental authorities. These included information about soil particle size, soil hydraulic conductivity, terrain slope, type of stored pollutants, the type of facility, capacity, size of the area, land use, etc. The analysis was carried out at catchment scale. The case study of the Arno river basin in Tuscany (central Italy) is presented.

  14. Towards biodiversity hotspots effective for conserving mammals with small geographic ranges

    NASA Astrophysics Data System (ADS)

    Carrara, Rodolfo; San Blas, Germán; Agrain, Federico; Roig-Juñent, Sergio

    2017-01-01

    The main goal of using global biodiversity hotspots for conservation purposes is to protect taxa with small geographic ranges because these are highly vulnerable to extinction. However, the extent to what different hotspots types are effective for meeting this goal remains controversial because hotspots have been previously defined as either the richest or most threatened and richest sites in terms of total, endemic or threatened species. In this regard, the use of species richness to set conservation priorities is widely discussed because strategies focused on this diversity measure tend to miss many of the taxa with small geographic ranges. Here we use data on global terrestrial mammal distributions to show that, hotspots of total species, endemism and threat defined in terms of species richness are effective in including 27%, 29% and 11% respectively, of the taxa with small geographic ranges. Whilst, the same hotspot types defined in terms of a simple diversity index, which is a function of species richness and range-size rarity, include 68%, 44% and 90% respectively, of these taxa. In addition, we demonstrate that index hotspot types are highly efficient because they conserve 79% of mammal species (21% more species than richness hotspot types), with 59% of species shared by three hotspot types (31% more than richness hotspot types). These results suggest that selection of different diversity measures to define hotspots may strongly affect the achievement of conservation goals.

  15. Methamphetamine Regulation of Firing Activity of Dopamine Neurons

    PubMed Central

    Lin, Min; Sambo, Danielle

    2016-01-01

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of

  16. Characteristics of suicide hotspots on the Belgian railway network.

    PubMed

    Debbaut, Kevin; Krysinska, Karolina; Andriessen, Karl

    2014-01-01

    In 2004, railway suicide accounted for 5.3% of all suicides in Belgium. In 2008, Infrabel (Manager of the Belgian Railway Infrastructure) introduced a railway suicide prevention programme, including identification of suicide hotspots, i.e., areas of the railway network with an elevated incidence of suicide. The study presents an analysis of 43 suicide hotspots based on Infrabel data collected during field visits and semi-structured interviews conducted in mental health facilities in the vicinity of the hotspots. Three major characteristics of the hotspots were accessibility, anonymity, and vicinity of a mental health institution. The interviews identified several risk and protective factors for railway suicide, including the training of staff, introduction of a suicide prevention policy, and the role of the media. In conclusion, a comprehensive railway suicide prevention programme should continuously safeguard and monitor hotspots, and should be embedded in a comprehensive suicide prevention programme in the community.

  17. Learning neural connectivity from firing activity: efficient algorithms with provable guarantees on topology.

    PubMed

    Karbasi, Amin; Salavati, Amir Hesam; Vetterli, Martin

    2018-04-01

    The connectivity of a neuronal network has a major effect on its functionality and role. It is generally believed that the complex network structure of the brain provides a physiological basis for information processing. Therefore, identifying the network's topology has received a lot of attentions in neuroscience and has been the center of many research initiatives such as Human Connectome Project. Nevertheless, direct and invasive approaches that slice and observe the neural tissue have proven to be time consuming, complex and costly. As a result, the inverse methods that utilize firing activity of neurons in order to identify the (functional) connections have gained momentum recently, especially in light of rapid advances in recording technologies; It will soon be possible to simultaneously monitor the activities of tens of thousands of neurons in real time. While there are a number of excellent approaches that aim to identify the functional connections from firing activities, the scalability of the proposed techniques plays a major challenge in applying them on large-scale datasets of recorded firing activities. In exceptional cases where scalability has not been an issue, the theoretical performance guarantees are usually limited to a specific family of neurons or the type of firing activities. In this paper, we formulate the neural network reconstruction as an instance of a graph learning problem, where we observe the behavior of nodes/neurons (i.e., firing activities) and aim to find the links/connections. We develop a scalable learning mechanism and derive the conditions under which the estimated graph for a network of Leaky Integrate and Fire (LIf) neurons matches the true underlying synaptic connections. We then validate the performance of the algorithm using artificially generated data (for benchmarking) and real data recorded from multiple hippocampal areas in rats.

  18. Evaluation of a wearable physiological status monitor during simulated fire fighting activities.

    PubMed

    Smith, Denise L; Haller, Jeannie M; Dolezal, Brett A; Cooper, Christopher B; Fehling, Patricia C

    2014-01-01

    A physiological status monitor (PSM) has been embedded in a fire-resistant shirt. The purpose of this research study was to examine the ability of the PSM-shirt to accurately detect heart rate (HR) and respiratory rate (RR) when worn under structural fire fighting personal protective equipment (PPE) during the performance of various activities relevant to fire fighting. Eleven healthy, college-aged men completed three activities (walking, searching/crawling, and ascending/descending stairs) that are routinely performed during fire fighting operations while wearing the PSM-shirt under structural fire fighting PPE. Heart rate and RR recorded by the PSM-shirt were compared to criterion values measured concurrently with an ECG and portable metabolic measurement system, respectively. For all activities combined (overall) and for each activity, small differences were found between the PSM-shirt and ECG (mean difference [95% CI]: overall: -0.4 beats/min [-0.8, -0.1]; treadmill: -0.4 beats/min [-0.7, -0.1]; search: -1.7 beats/min [-3.1, -.04]; stairs: 0.4 beats/min [0.04, 0.7]). Standard error of the estimate was 3.5 beats/min for all tasks combined and 1.9, 5.9, and 1.9 beats/min for the treadmill walk, search, and stair ascent/descent, respectively. Correlations between the PSM-shirt and criterion heart rates were high (r = 0.95 to r = 0.99). The mean difference between RR recorded by the PSM-shirt and criterion overall was 1.1 breaths/min (95% CI: -1.9 to -0.4). The standard error of the estimate for RR ranged from 4.2 breaths/min (treadmill) to 8.2 breaths/min (search), with an overall value of 6.2 breaths/min. These findings suggest that the PSM-shirt provides valid measures of HR and useful approximations of RR when worn during fire fighting duties.

  19. Use of local statistics to reveal hidden information of pollution hotspots in urban soil geochemistry

    NASA Astrophysics Data System (ADS)

    Zhang, Chaosheng

    2017-04-01

    The identification of pollution hotspots is an important approach for a better understanding of spatial distribution patterns and the exploration for their influencing factors in environmental studies. One of the most often asked questions in an environmental investigation is: Where are the pollution hotspots? This presentation explains one of the popularly used methodologies called local index of spatial association (LISA) and its applications in urban geochemical studies in Galway, Ireland and London of the UK. The LISA is a useful tool for identifying pollution hotspots and classifying them into spatial clusters and spatial outliers. The results were affected by the definition of weight function, data transformation and existence of extreme values, and it is suggested that all these influencing factors should be considered until reasonable and reliable results are obtained. This method has been applied to identify Pb pollution in Galway, polluted areas in bonfires sites, elevated P and REE concentrations in London. Hotspots in identified in urban soils are related to locations of high road density, traditional festival bonfires, industries and other human activities. The results of hotspots analysis provide useful information for the management of urban soils.

  20. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Overlapping hotspots in CDRs are critical sites for V region diversification.

    PubMed

    Wei, Lirong; Chahwan, Richard; Wang, Shanzhi; Wang, Xiaohua; Pham, Phuong T; Goodman, Myron F; Bergman, Aviv; Scharff, Matthew D; MacCarthy, Thomas

    2015-02-17

    Activation-induced deaminase (AID) mediates the somatic hypermutation (SHM) of Ig variable (V) regions that is required for the affinity maturation of the antibody response. An intensive analysis of a published database of somatic hypermutations that arose in the IGHV3-23*01 human V region expressed in vivo by human memory B cells revealed that the focus of mutations in complementary determining region (CDR)1 and CDR2 coincided with a combination of overlapping AGCT hotspots, the absence of AID cold spots, and an abundance of polymerase eta hotspots. If the overlapping hotspots in the CDR1 or CDR2 did not undergo mutation, the frequency of mutations throughout the V region was reduced. To model this result, we examined the mutation of the human IGHV3-23*01 biochemically and in the endogenous heavy chain locus of Ramos B cells. Deep sequencing revealed that IGHV3-23*01 in Ramos cells accumulates AID-induced mutations primarily in the AGCT in CDR2, which was also the most frequent site of mutation in vivo. Replacing the overlapping hotspots in CDR1 and CDR2 with neutral or cold motifs resulted in a reduction in mutations within the modified motifs and, to some degree, throughout the V region. In addition, some of the overlapping hotspots in the CDRs were at sites in which replacement mutations could change the structure of the CDR loops. Our analysis suggests that the local sequence environment of the V region, and especially of the CDR1 and CDR2, is highly evolved to recruit mutations to key residues in the CDRs of the IgV region.

  2. Bounds on geologically current rates of motion of groups of hotspots.

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zhang, T.

    2017-12-01

    It is widely believed that groups of hotspots in different regions of the world are in relative motion at rates of 10 to 30 mm a-1 or more. Here we present a new method for analyzing geologically current motion between groups of hotspots beneath different plates. In an inversion of 56 globally distributed, equally weighted trends of hotspot tracks, the dispersion is dominated by differences in trend between different plates rather than differences within plates. Nonetheless the rate of hotspot motion perpendicular to the direction of absolute plate motion, vperp, differs significantly from zero for only three of ten plates and then by merely 0.3 to 1.4 mm a-1. The global mean upper bound on |vperp| is 3.2 ±2.7 mm a-1. Therefore, groups of hotspots move slowly and can be used to define a global reference frame for plate motions. Further implications for uncertainties in hotspot trends and current plate motion relative to hotspots will be discussed.

  3. The consequences of sequence erosion in the evolution of recombination hotspots.

    PubMed

    Tiemann-Boege, Irene; Schwarz, Theresa; Striedner, Yasmin; Heissl, Angelika

    2017-12-19

    Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans -acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.

  4. The consequences of sequence erosion in the evolution of recombination hotspots

    PubMed Central

    Schwarz, Theresa; Heissl, Angelika

    2017-01-01

    Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans-acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro. Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109225

  5. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean.

    PubMed

    Baltar, Federico; Arístegui, Javier; Gasol, Josep M; Lekunberri, Itziar; Herndl, Gerhard J

    2010-08-01

    To investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000 m depth. In the upper epipelagic layer (0-200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200-1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic 'hotspots' of prokaryotic activity (in the epi- and mesopelagic realms).

  6. Investigating Avian Influenza Infection Hotspots in Old-World Shorebirds

    PubMed Central

    Gaidet, Nicolas; Ould El Mamy, Ahmed B.; Cappelle, Julien; Caron, Alexandre; Cumming, Graeme S.; Grosbois, Vladimir; Gil, Patricia; Hammoumi, Saliha; de Almeida, Renata Servan; Fereidouni, Sasan R.; Cattoli, Giovanni; Abolnik, Celia; Mundava, Josphine; Fofana, Bouba; Ndlovu, Mduduzi; Diawara, Yelli; Hurtado, Renata; Newman, Scott H.; Dodman, Tim; Balança, Gilles

    2012-01-01

    Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May). This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered. PMID:23029383

  7. Quantile-based permutation thresholds for quantitative trait loci hotspots.

    PubMed

    Neto, Elias Chaibub; Keller, Mark P; Broman, Andrew F; Attie, Alan D; Jansen, Ritsert C; Broman, Karl W; Yandell, Brian S

    2012-08-01

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.

  8. Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest

    USGS Publications Warehouse

    Barrett, Kirsten; Loboda, Tatiana; McGuire, A. David; Genet, Hélène; Hoy, Elizabeth; Kasischke, Eric

    2016-01-01

    Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we employ some of these new data to analyze variations in fire activity by developing three explanatory models to examine the occurrence of (1) seasonal periods of elevated fire activity using the number of MODIS active fire detections data set (MCD14DL) within an 11-day moving window, (2) unburned patches within a burned area using the Monitoring Trends in Burn Severity fire severity product, and (3) short-to-moderate interval (<60 yr) fires using areas of burned area overlap in the Alaska Large Fire Database. Explanatory variables for these three models included dynamic variables that can change over the course of the fire season, such as weather and burn date, as well as static variables that remain constant over a fire season, such as topography, drainage, vegetation cover, and fire history. We found that seasonal periods of high fire activity are associated with both seasonal timing and aggregated weather conditions, as well as the landscape composition of areas that are burning. Important static inputs to the model of seasonal fire activity indicate that when fire weather conditions are suitable, areas that typically resist fire (e.g., deciduous stands) may become more vulnerable to burning and therefore less effective as fire breaks. The occurrence of short-to-moderate interval fires appears to be primarily driven by weather conditions, as these were the only relevant explanatory variables in the model. The unique importance of weather in explaining short-to-moderate interval fires implies that fire return intervals (FRIs) will be sensitive to projected climate changes in the region. Unburned patches occur most often in younger stands, which may be related to a greater deciduous fraction

  9. Hot-spot durability testing of amorphous cells and modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, Charles; Jetter, Elizabeth

    1985-01-01

    This paper discusses the results of a study to determine the hot-spot susceptibility of amorphous-silicon (a-Si) cells and modules, and to provide guidelines for reducing that susceptibility. Amorphous-Si cells are shown to have hot-spot susceptibility levels similar to crystalline-silicon (C-Si) cells. This premise leads to the fact that the same general guidelines must apply to protecting a-Si cells from hot-spot stressing that apply to C-Si cells. Recommendations are made on ways of reducing a-Si module hot-spot susceptibility including the traditional method of using bypass diodes and a new method unique to thin-film cells, limiting the string current by limiting cell area.

  10. Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize.

    PubMed

    He, Yan; Wang, Minghui; Dukowic-Schulze, Stefanie; Zhou, Adele; Tiang, Choon-Lin; Shilo, Shay; Sidhu, Gaganpreet K; Eichten, Steven; Bradbury, Peter; Springer, Nathan M; Buckler, Edward S; Levy, Avraham A; Sun, Qi; Pillardy, Jaroslaw; Kianian, Penny M A; Kianian, Shahryar F; Chen, Changbin; Pawlowski, Wojciech P

    2017-11-14

    Meiotic recombination is the most important source of genetic variation in higher eukaryotes. It is initiated by formation of double-strand breaks (DSBs) in chromosomal DNA in early meiotic prophase. The DSBs are subsequently repaired, resulting in crossovers (COs) and noncrossovers (NCOs). Recombination events are not distributed evenly along chromosomes but cluster at recombination hotspots. How specific sites become hotspots is poorly understood. Studies in yeast and mammals linked initiation of meiotic recombination to active chromatin features present upstream from genes, such as absence of nucleosomes and presence of trimethylation of lysine 4 in histone H3 (H3K4me3). Core recombination components are conserved among eukaryotes, but it is unclear whether this conservation results in universal characteristics of recombination landscapes shared by a wide range of species. To address this question, we mapped meiotic DSBs in maize, a higher eukaryote with a large genome that is rich in repetitive DNA. We found DSBs in maize to be frequent in all chromosome regions, including sites lacking COs, such as centromeres and pericentromeric regions. Furthermore, most DSBs are formed in repetitive DNA, predominantly Gypsy retrotransposons, and only one-quarter of DSB hotspots are near genes. Genic and nongenic hotspots differ in several characteristics, and only genic DSBs contribute to crossover formation. Maize hotspots overlap regions of low nucleosome occupancy but show only limited association with H3K4me3 sites. Overall, maize DSB hotspots exhibit distribution patterns and characteristics not reported previously in other species. Understanding recombination patterns in maize will shed light on mechanisms affecting dynamics of the plant genome.

  11. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    PubMed

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  12. Postfire response and genetic diversity in Erica coccinea: connecting population dynamics and diversification in a biodiversity hotspot.

    PubMed

    Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2010-12-01

    Understanding the processes of biological diversification is a central topic in evolutionary biology. The South African Cape fynbos, one of the major plant biodiversity hotspots out of the tropics, has prompted several hypotheses about the causes of generation and maintenance of biodiversity. Fire has been traditionally invoked as a key element to explain high levels of biodiversity in highly speciose fynbos taxa, such as the genus Erica. In this study, we have implemented a microevolutionary approach to elucidate how plant-response to fire may contribute to explain high levels of diversification in Erica. By using microsatellite markers, we investigated the genetic background of seeder (fire-sensitive) and resprouter (fire-resistant) populations of the fynbos species Erica coccinea. We found higher within-population genetic diversity and higher among-population differentiation in seeder populations and interpreted these higher levels of genetic diversification as a consequence of the comparatively shorter generation times and faster population turnover in the seeder form of this species. Considering that genetic divergence among populations may be seen as the initial step to speciation, the parallelism between these results and the pattern of biodiversity at the genus level offers stimulating insights into understanding causes of speciation of the genus Erica in the Cape fynbos. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  13. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    NASA Astrophysics Data System (ADS)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  14. CKD hotspots around the world: where, why and what the lessons are. A CKJ review series.

    PubMed

    Martín-Cleary, Catalina; Ortiz, Alberto

    2014-12-01

    Chronic kidney disease (CKD) is one of the three causes of death that has had the highest increase in the last 20 years. The increasing CKD burden occurs in the context of lack of access of most of the world population to adequate healthcare and an incomplete understanding of the pathogenesis of CKD. However, CKD is not homogeneously distributed. CKD hotspots are defined as countries, region, communities or ethnicities with higher than average incidence of CKD. Analysis of CKD hotspots has the potential to provide valuable insights into the pathogenesis of kidney disease and to improve the life expectancy of the affected communities. Examples include ethnicities such as African Americans in the USA or Aboriginals in Australia, regions such as certain Balkan valleys or Central America and even groups of people sharing common activities or interests such as young women trying to lose weight in Belgium. The study of these CKD hotspots has identified underlying genetic factors, such as ApoL1 gene variants, environmental toxins, such as aristolochic acid and socioeconomic factors leading to nutritional deprivation and inflammation/infection. The CKD hotspots series of CKJ reviews will explore the epidemiology and causes in CKD hotspots, beginning with Australian Aboriginals in this issue. An online map of CKD hotspots around the world will feature the reviewed hotspots, highlighting known or suspected causes as well as ongoing projects to unravel the cause and providing a directory of public health officials, physicians and basic scientists involved in these efforts. Since the high prevalence of CKD in a particular region or population may only be known to local physicians, we encourage readers to propose further CKD hotspots to be reviewed.

  15. Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics

    USGS Publications Warehouse

    List, J.H.; Farris, A.S.; Sullivan, C.

    2006-01-01

    Coastal erosion hotspots are defined as sections of coast that exhibit significantly higher rates of erosion than adjacent areas. This paper describes the spatial and temporal characteristics of a recently identified type of coastal erosion hotspot, which forms in response to storms on uninterrupted sandy coasts largely free from human intervention. These are referred to here as reversing storm hotspots because the erosion is reversed by accretion of a similar magnitude to the storm-induced erosion. The accretion occurs within a few days or weeks of fair weather after the storm. Reversing storm hotspots observed here, on two US east coast beaches, have a longshore length averaging 3.86 km, a cross-shore excursion (magnitude of erosion or accretion) averaging 15.4 m, and a time scale of days to weeks associated with individual storm events. These spatial and temporal scales clearly distinguish reversing storm hotspots from previously described forms of longshore variability in erosion, including those attributed to several types of shoreline undulations and hotspots associated with long-term shoreline change. 

  16. Fire! Fire Prevention and Safety: A Teacher's Handbook.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Educational Planning and Support.

    In this curriculum guide, guidelines for teaching children about fire safety and related topics and activities representing an interdisciplinary approach to fire safety are outlined. Major fire hazards and methods of dealing with them are described. Possible sites for field trips and films relating to fire are listed. The rules of the New York…

  17. Plate tectonics and hotspots: the third dimension.

    PubMed

    Anderson, D L; Tanimoto, T; Zhang, Y S

    1992-06-19

    High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.

  18. Near real-time estimation of burned area using VIIRS 375 m active fire product

    NASA Astrophysics Data System (ADS)

    Oliva, P.; Schroeder, W.

    2016-12-01

    Every year, more than 300 million hectares of land burn globally, causing significant ecological and economic consequences, and associated climatological effects as a result of fire emissions. In recent decades, burned area estimates generated from satellite data have provided systematic global information for ecological analysis of fire impacts, climate and carbon cycle models, and fire regimes studies, among many others. However, there is still need of near real-time burned area estimations in order to assess the impacts of fire and estimate smoke and emissions. The enhanced characteristics of the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m channels on board the Suomi National Polar-orbiting Partnesship (S-NPP) make possible the use of near real-time active fire detection data for burned area estimation. In this study, consecutive VIIRS 375 m active fire detections were aggregated to produce the VIIRS 375 m burned area (BA) estimation over ten ecologically diverse study areas. The accuracy of the BA estimations was assessed by comparison with Landsat-8 supervised burned area classification. The performance of the VIIRS 375 m BA estimates was dependent on the ecosystem characteristics and fire behavior. Higher accuracy was observed in forested areas characterized by large long-duration fires, while grasslands, savannas and agricultural areas showed the highest omission and commission errors. Complementing those analyses, we performed the burned area estimation of the largest fires in Oregon and Washington states during 2015 and the Fort McMurray fire in Canada 2016. The results showed good agreement with NIROPs airborne fire perimeters proving that the VIIRS 375 m BA estimations can be used for near real-time assessments of fire effects.

  19. Dynamics of Reactive Microbial Hotspots in Concentration Gradient.

    NASA Astrophysics Data System (ADS)

    Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.

    2017-12-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  20. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Wang, Yifeng

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  1. The potential of shifting recombination hotspots to increase genetic gain in livestock breeding.

    PubMed

    Gonen, Serap; Battagin, Mara; Johnston, Susan E; Gorjanc, Gregor; Hickey, John M

    2017-07-04

    This study uses simulation to explore and quantify the potential effect of shifting recombination hotspots on genetic gain in livestock breeding programs. We simulated three scenarios that differed in the locations of quantitative trait nucleotides (QTN) and recombination hotspots in the genome. In scenario 1, QTN were randomly distributed along the chromosomes and recombination was restricted to occur within specific genomic regions (i.e. recombination hotspots). In the other two scenarios, both QTN and recombination hotspots were located in specific regions, but differed in whether the QTN occurred outside of (scenario 2) or inside (scenario 3) recombination hotspots. We split each chromosome into 250, 500 or 1000 regions per chromosome of which 10% were recombination hotspots and/or contained QTN. The breeding program was run for 21 generations of selection, after which recombination hotspot regions were kept the same or were shifted to adjacent regions for a further 80 generations of selection. We evaluated the effect of shifting recombination hotspots on genetic gain, genetic variance and genic variance. Our results show that shifting recombination hotspots reduced the decline of genetic and genic variance by releasing standing allelic variation in the form of new allele combinations. This in turn resulted in larger increases in genetic gain. However, the benefit of shifting recombination hotspots for increased genetic gain was only observed when QTN were initially outside recombination hotspots. If QTN were initially inside recombination hotspots then shifting them decreased genetic gain. Shifting recombination hotspots to regions of the genome where recombination had not occurred for 21 generations of selection (i.e. recombination deserts) released more of the standing allelic variation available in each generation and thus increased genetic gain. However, whether and how much increase in genetic gain was achieved by shifting recombination hotspots depended

  2. Sampling effects on the identification of roadkill hotspots: Implications for survey design.

    PubMed

    Santos, Sara M; Marques, J Tiago; Lourenço, André; Medinas, Denis; Barbosa, A Márcia; Beja, Pedro; Mira, António

    2015-10-01

    Although locating wildlife roadkill hotspots is essential to mitigate road impacts, the influence of study design on hotspot identification remains uncertain. We evaluated how sampling frequency affects the accuracy of hotspot identification, using a dataset of vertebrate roadkills (n = 4427) recorded over a year of daily surveys along 37 km of roads. "True" hotspots were identified using this baseline dataset, as the 500-m segments where the number of road-killed vertebrates exceeded the upper 95% confidence limit of the mean, assuming a Poisson distribution of road-kills per segment. "Estimated" hotspots were identified likewise, using datasets representing progressively lower sampling frequencies, which were produced by extracting data from the baseline dataset at appropriate time intervals (1-30 days). Overall, 24.3% of segments were "true" hotspots, concentrating 40.4% of roadkills. For different groups, "true" hotspots accounted from 6.8% (bats) to 29.7% (small birds) of road segments, concentrating from <40% (frogs and toads, snakes) to >60% (lizards, lagomorphs, carnivores) of roadkills. Spatial congruence between "true" and "estimated" hotspots declined rapidly with increasing time interval between surveys, due primarily to increasing false negatives (i.e., missing "true" hotspots). There were also false positives (i.e., wrong "estimated" hotspots), particularly at low sampling frequencies. Spatial accuracy decay with increasing time interval between surveys was higher for smaller-bodied (amphibians, reptiles, small birds, small mammals) than for larger-bodied species (birds of prey, hedgehogs, lagomorphs, carnivores). Results suggest that widely used surveys at weekly or longer intervals may produce poor estimates of roadkill hotspots, particularly for small-bodied species. Surveying daily or at two-day intervals may be required to achieve high accuracy in hotspot identification for multiple species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    PubMed

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  4. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    PubMed

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.

  5. Dynamically supported geoid highs over hotspots: Observation and theory

    NASA Technical Reports Server (NTRS)

    Richards, M. A.; Hager, B. H.; Sleep, N. H.

    1986-01-01

    Hotspots are associated with long wavelength geoid highs, an association that is even stronger when the geoid highs associated with subduction zones are removed. These associations are quantified by expanding the hotspot distribution in spherical harmonics and calculating correlation coefficients as a function of harmonic degree. The hotspot distribution spectrum is essentially white, with peaks at degrees 2 and 6. It is correlated positively with the slab residual geoid for degrees 2 to 6, with low seismic velocity in the lower mantle at degree 2, and with low seismic velocity in the upper mantle at degree 6. A variety of fluid mechanical models were tested for hotspots, including lithospheric delamination and hot plumes, by calculating their predicted dynamic geoid responses and comparing them to the observations. These models include the effects of temperature dependent rheology. The preferred hotspot model, based on observations of the geoid and seismic tomography, has plumes preferentially occurring in regions of large scale background temperature highs in a mantle with substantial viscosity increase with depth, although other models are possible.

  6. Dynamically supported geoid highs over hotspots - Observation and theory

    NASA Technical Reports Server (NTRS)

    Richards, Mark A.; Hager, Bradford H.; Sleep, Norman H.

    1988-01-01

    Hotspots are associated with long wavelength geoid highs, an association that is even stronger when the geoid highs associated with subduction zones are removed. These associations are quantified by expanding the hotspot distribution in spherical harmonics and calculating correlation coefficients as a function of harmonic degree. The hotspot distribution spectrum is essentially white, with peaks at degrees 2 and 6. It is correlated positively with the slab residual geoid for degrees 2 to 6, with low seismic velocity in the lower mantle at degree 2, and with low seismic velocity in the upper mantle at degree 6. A variety of fluid mechanical models were tested for hotspots, including lithospheric delamination and hot plumes, by calculating their predicted dynamic geoid responses and comparing them to the observations. These models include the effects of temperature dependent rheology. The preferred hotspot model, based on observations of the geoid and seismic tomography, has plumes preferentially occurring in regions of large scale background temperature highs in a mantle with substantial viscosity increase with depth, although other models are possible.

  7. Advanced in-production hotspot prediction and monitoring with micro-topography

    NASA Astrophysics Data System (ADS)

    Fanton, P.; Hasan, T.; Lakcher, A.; Le-Gratiet, B.; Prentice, C.; Simiz, J.-G.; La Greca, R.; Depre, L.; Hunsche, S.

    2017-03-01

    At 28nm technology node and below, hot spot prediction and process window control across production wafers have become increasingly critical to prevent hotspots from becoming yield-limiting defects. We previously established proof of concept for a systematic approach to identify the most critical pattern locations, i.e. hotspots, in a reticle layout by computational lithography and combining process window characteristics of these patterns with across-wafer process variation data to predict where hotspots may become yield impacting defects [1,2]. The current paper establishes the impact of micro-topography on a 28nm metal layer, and its correlation with hotspot best focus variations across a production chip layout. Detailed topography measurements are obtained from an offline tool, and pattern-dependent best focus (BF) shifts are determined from litho simulations that include mask-3D effects. We also establish hotspot metrology and defect verification by SEM image contour extraction and contour analysis. This enables detection of catastrophic defects as well as quantitative characterization of pattern variability, i.e. local and global CD uniformity, across a wafer to establish hotspot defect and variability maps. Finally, we combine defect prediction and verification capabilities for process monitoring by on-product, guided hotspot metrology, i.e. with sampling locations being determined from the defect prediction model and achieved prediction accuracy (capture rate) around 75%

  8. Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000-2005 in the tropics

    NASA Astrophysics Data System (ADS)

    Roman-Cuesta, Rosa Maria; Rufino, Mariana C.; Herold, Martin; Butterbach-Bahl, Klaus; Rosenstock, Todd S.; Herrero, Mario; Ogle, Stephen; Li, Changsheng; Poulter, Benjamin; Verchot, Louis; Martius, Christopher; Stuiver, John; de Bruin, Sytze

    2016-07-01

    According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41-72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ˜ 10-12 Pg CO2e yr-1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000-2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5-12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr-1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of

  9. Geospatial characterization of deforestation, fragmentation and forest fires in Telangana state, India: conservation perspective.

    PubMed

    Sudhakar Reddy, C; Vazeed Pasha, S; Jha, C S; Dadhwal, V K

    2015-07-01

    Conservation of biodiversity has been put to the highest priority throughout the world. The process of identifying threatened ecosystems will search for different drivers related to biodiversity loss. The present study aimed to generate spatial information on deforestation and ecological degradation indicators of fragmentation and forest fires using systematic conceptual approach in Telangana state, India. Identification of ecosystems facing increasing vulnerability can help to safeguard the extinctions of species and useful for conservation planning. The technological advancement of satellite remote sensing and Geographical Information System has increased greatly in assessment and monitoring of ecosystem-level changes. The areas of threat were identified by creating grid cells (5 × 5 km) in Geographical Information System (GIS). Deforestation was assessed using multi-source data of 1930, 1960, 1975, 1985, 1995, 2005 and 2013. The forest cover of 40,746 km(2), 29,299 km(2), 18,652 km(2), 18,368 km(2), 18,006 km(2), 17,556 km(2) and 17,520 km(2) was estimated during 1930, 1960, 1975, 1985, 1995, 2005 and 2013, respectively. Historical evaluation of deforestation revealed that major changes had occurred in forests of Telangana and identified 1095 extinct, 397 critically endangered, 523 endangered and 311 vulnerable ecosystem grid cells. The fragmentation analysis has identified 307 ecosystem grid cells under critically endangered status. Forest burnt area information was extracted using AWiFS data of 2005 to 2014. Spatial analysis indicates total fire-affected forest in Telangana as 58.9% in a decadal period. Conservation status has been recorded depending upon values of threat for each grid, which forms the basis for conservation priority hotspots. Of existing forest, 2.1% grids had severe ecosystem collapse and had been included under the category of conservation priority hotspot-I, followed by 27.2% in conservation priority hotspot-II and 51.5% in conservation

  10. Evidence for active hotspots on Venus from analysis of Magellan gravity data

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.

    1994-01-01

    The 500-Myr average crater retention age for Venus has raised questions about the present-day level of tectonic activity. In this study we examine the relationship between the gravity and topography of four large volcanic swells, Beta, Atla, Bell, and Western Eistla Regiones, for clues about their stage evolution. The Magellan line-of-sight gravity data are inverted using a point mass model of the anomalous mass to solve for the local vertical gravity field. Spectral admittance calculated from both the local gravity inversions and a spherical harmonic model is compared to three models of compensation: local compensation, a 'flexural' model with local and regional compensation of surface and subsurface loads, and a 'hotspot' model of compensation that includes top loading by volcanoes and subsurface loading due to a deep, low density mass anomaly. The coherence is also calculated in each region, but yields an elastic thickness estimate only at Bell Regio. In all models, the long wavelengths are compensated locally. Our results may indicate a relatively old, possibly inactive plume.

  11. Reconstructing hotspot-induced dynamic topography through palaeogeomorphology

    NASA Astrophysics Data System (ADS)

    Whitchurch, A. L.; Gupta, S.; Barfod, D.

    2009-12-01

    The interaction of a buoyant mantle plume head with the overlying lithosphere is thought to generate significant, kilometre-scale topographic doming of the crust. Consequently, continental mantle plumes should have an observable response in river drainage systems and should potentially drive large-scale erosional denudation. The key to understanding the complex landscape evolution associated with the life cycle of a mantle plume is therefore locked within the sedimentary record of basins neighbouring such uplifts. The Yellowstone region, western USA, provides the perfect natural laboratory in which to test the above hypothesis. The Yellowstone hotspot initiated at the Oregon-Nevada border ca. 16 Ma. It is associated with a hotspot track, marked by time-transgressive volcanic centres which line the Snake River Plain, generated through migration of the North American plate across this stationary mantle plume. Today the hotspot is located beneath Yellowstone National Park and is thought to generate crustal-scale doming. We investigate the Mio-Pliocene Sixmile Creek Formation within the Ruby Basin, a rift basin located on the northern shoulder of the hotspot track between ~16-6 Ma. Through the temporal reconstruction of sedimentary architecture, grain size, palaeoslope and palaeocurrent trends, we show that hotspot-related crustal doming acted to uplift the headwaters of a fluvial system supplying the basin, driving exhumation that was associated with distinct fluvial reconfiguration. Evolution of the axial river system is evidenced by the transition from isolated, single-storey ribbon channels to amalgamated, multi-storey, braided fluvial deposition. This subsequently drove a pulse of coarse-grained gravel progradation through the basin. Detailed grain size analysis and calculation of fluvial palaeoslopes indicates a distinct coarsening of the axial river sediment and an increase in depositional slope from ~0.47 m/km to ~1.90 m/km between ~12-6 Ma. Our results help to

  12. Defining the role of fire in alleviating seed dormancy in a rare Mediterranean endemic subshrub

    PubMed Central

    Paniw, Maria; Ojeda, Fernando; Turner, Shane R; Dixon, Kingsley W; Merritt, David J

    2017-01-01

    Abstract Fire is a topical issue in the management of many ecosystems globally that face a drying climate. Understanding the role of fire in such ecosystems is critical to inform appropriate management practices, particularly in the case of rare and ecologically specialized species. The Mediterranean heathlands are highly fire-prone and occur in a biodiversity hotspot increasingly threatened by human activities, and determining the reproductive thresholds of at-risk heathland species is critical to ensuring the success of future conservation initiatives. This study examined the germination biology of the threatened carnivorous subshrub Drosophyllum lusitanicum, with specific focus on the role of fire-related cues (heat and smoke) in combination with seasonal temperatures and moisture conditions to determine how these factors regulate seed dormancy and germination. We found that D. lusitanicum produces water-permeable, physiologically dormant seeds with a fully developed, capitate embryo that when fresh (~1 month old) and without treatment germinate to 20–40 % within 4–8 weeks. Seeds possess a restricted thermal window (15–20 °C) for germination and a neutral photoblastic response. Seed dormancy was overcome through precision nicking of the seed coat (>90 % germination) or by short exposure to dry heat (80 or 100 °C) for 5–30 min (60–100 % germination). We propose seedling emergence from the soil seed bank may be cued by the passage of fire, or by soil disturbance from the movement and browsing of animals. Long-term population viability is likely to be contingent upon appropriate management of the persistent soil seed bank, as well as the adequate management of key ecological disturbances such as fire. Drosophyllum lusitanicum faces an increasingly bleak future in the absence of conservation and management initiatives aimed at reducing habitat fragmentation in heathlands and aligning fire management and livestock practices with biodiversity outcomes

  13. Defining the role of fire in alleviating seed dormancy in a rare Mediterranean endemic subshrub.

    PubMed

    Cross, Adam T; Paniw, Maria; Ojeda, Fernando; Turner, Shane R; Dixon, Kingsley W; Merritt, David J

    2017-09-01

    Fire is a topical issue in the management of many ecosystems globally that face a drying climate. Understanding the role of fire in such ecosystems is critical to inform appropriate management practices, particularly in the case of rare and ecologically specialized species. The Mediterranean heathlands are highly fire-prone and occur in a biodiversity hotspot increasingly threatened by human activities, and determining the reproductive thresholds of at-risk heathland species is critical to ensuring the success of future conservation initiatives. This study examined the germination biology of the threatened carnivorous subshrub Drosophyllum lusitanicum , with specific focus on the role of fire-related cues (heat and smoke) in combination with seasonal temperatures and moisture conditions to determine how these factors regulate seed dormancy and germination. We found that D. lusitanicum produces water-permeable, physiologically dormant seeds with a fully developed, capitate embryo that when fresh (~1 month old) and without treatment germinate to 20-40 % within 4-8 weeks. Seeds possess a restricted thermal window (15-20 °C) for germination and a neutral photoblastic response. Seed dormancy was overcome through precision nicking of the seed coat (>90 % germination) or by short exposure to dry heat (80 or 100 °C) for 5-30 min (60-100 % germination). We propose seedling emergence from the soil seed bank may be cued by the passage of fire, or by soil disturbance from the movement and browsing of animals. Long-term population viability is likely to be contingent upon appropriate management of the persistent soil seed bank, as well as the adequate management of key ecological disturbances such as fire. Drosophyllum lusitanicum faces an increasingly bleak future in the absence of conservation and management initiatives aimed at reducing habitat fragmentation in heathlands and aligning fire management and livestock practices with biodiversity outcomes.

  14. Population Demographic History Can Cause the Appearance of Recombination Hotspots

    PubMed Central

    Johnston, Henry R.; Cutler, David J.

    2012-01-01

    Although the prevailing view among geneticists suggests that recombination hotspots exist ubiquitously across the human genome, there is only limited experimental evidence from a few genomic regions to support the generality of this claim. A small number of true recombination hotspots are well supported experimentally, but the vast majority of hotspots have been identified on the basis of population genetic inferences from the patterns of linkage disequilibrium (LD) seen in the human population. These inferences are made assuming a particular model of human history, and one of the assumptions of that model is that the effective population size of humans has remained constant throughout our history. Our results show that relaxation of the constant population size assumption can create LD and variation patterns that are qualitatively and quantitatively similar to human populations without any need to invoke localized hotspots of recombination. In other words, apparent recombination hotspots could be an artifact of variable population size over time. Several lines of evidence suggest that the vast majority of hotspots identified on the basis of LD information are unlikely to have elevated recombination rates. PMID:22560089

  15. Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis.

    PubMed

    Liu, Kai; Bai, Yaocai; Zhang, Lei; Yang, Zhongbo; Fan, Qikui; Zheng, Haoquan; Yin, Yadong; Gao, Chuanbo

    2016-06-08

    Colloidal plasmonic metal nanoparticles have enabled surface-enhanced Raman scattering (SERS) for a variety of analytical applications. While great efforts have been made to create hotspots for amplifying Raman signals, it remains a great challenge to ensure their high density and accessibility for improved sensitivity of the analysis. Here we report a dealloying process for the fabrication of porous Au-Ag alloy nanoparticles containing abundant inherent hotspots, which were encased in ultrathin hollow silica shells so that the need of conventional organic capping ligands for stabilization is eliminated, producing colloidal plasmonic nanoparticles with clean surface and thus high accessibility of the hotspots. As a result, these novel nanostructures show excellent SERS activity with an enhancement factor of ∼1.3 × 10(7) on a single particle basis (off-resonant condition), promising high applicability in many SERS-based analytical and biomedical applications.

  16. Hydrothermal Plume Activity at Teahitia Seamount: Re-Awakening of the Society Islands Hot-Spot?

    NASA Astrophysics Data System (ADS)

    German, C. R.; Xu, G.; Yeo, I. A.; Walker, S. L.; Moffett, J.; Cutter, G. A.; Devey, C. W.; Hyvernaud, O.; Reymond, D.; Resing, J. A.

    2016-12-01

    We report results from a combined mapping and CTD-rosette investigation of the summit of Teahitia Seamount, Society Islands hot-spot, that indicates that high temperature venting may have been present by late 2013 at a site that only hosted low-temperature vents ( 30°C) when previously visited by submersible, 25 years earlier. In 2013, a non-buoyant hydrothermal plume containing high concentrations (>100nmol/L) of both dissolved and total dissolvable Fe was observed at an apparent rise-height of 110-140m above a seafloor source at 1500-1530m water depth, implying a heat-flux for the underlying venting of 13-35MW. From a comparison to the past evolution of venting at Loihi seamount (Hawaii), coupled with an examination of recent seismicity detected by the Polynesian Seismic Network, we hypothesize that venting at Teahitia may have undergone perturbation only recently and that this, in turn, may be linked to a re-awakening of the Society Islands hotspot.

  17. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case

    NASA Astrophysics Data System (ADS)

    Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.

    2016-03-01

    Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in

  18. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    PubMed

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  19. Studying interregional wildland fire engine assignments for large fire suppression

    Treesearch

    Erin J. Belval; Yu Wei; David E. Calkin; Crystal S. Stonesifer; Matthew P. Thompson; John R. Tipton

    2017-01-01

    One crucial component of large fire response in the United States (US) is the sharing of wildland firefighting resources between regions: resources from regions experiencing low fire activity supplement resources in regions experiencing high fire activity. An important step towards improving the efficiency of resource sharing and related policies is to develop a better...

  20. An Overview of Recent Geostationary Fire Monitoring Activities and Applications in the Western Hemisphere

    NASA Astrophysics Data System (ADS)

    McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.

    2002-05-01

    Over the past twenty years the international scientific research and environmental monitoring communities have recognized the vital role environmental satellites can play in detecting and monitoring active fires both regionally and around the globe for hazards applications and to better understand the extent and impact of biomass burning on the global environment. Both groups have stressed the importance of utilizing operational satellites to produce routine fire products and to ensure long-term stable records of fire activity for applications such as land-use/land cover change analyses and global climate change research. The current NOAA GOES system provides the unique opportunity to detect fires throughout the Western Hemisphere every half-hour from a series of nearly identical satellites for a period of 15+ years. This presentation will provide an overview of the GOES biomass burning monitoring program at UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) with an emphasis on recent applications of the new GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA). For the past 8 years, CIMSS has utilized the GOES-8 imager to monitor biomass burning trends in South America. Since September 2000, CIMSS has been producing half-hourly fire products in real-time for most of the Western Hemisphere. The WF_ABBA half-hourly fire product is providing new insights into diurnal, spatial, seasonal and interannual fire dynamics in North, Central, and South America. In North America these products are utilized to detect and monitor wildfires in northerly and remote locations. In South America the diurnal GOES fire product is being used as an indicator of land-use and land-cover change and carbon dynamics along the borders between Brazil, Peru, and Bolivia. The Navy is assimilating the Wildfire ABBA fire product into the Navy Aerosol Analysis and Prediction System (NAAPS) to analyze and predict aerosol loading and transport as part of the NASA

  1. Climatic and ecological controls on variability of fire activity in the tropics and subtropics derived from satellite data

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Gobron, N.; Dolman, H. J.

    2006-12-01

    El Nino-Southern Oscillation-linked variations in biomass burning emissions substantially contribute to interannual variability in the growth rate of many trace gases, yet ecological and climatic controls on fire activity are not well known. We used satellite-derived datasets of biomass burning, precipitation rates, and net primary production (NPP) in the tropics and subtropics during 1998 through 2005 to investigate the factors that regulate interannual variability in fire emissions. In many xeric regions that have low levels of NPP, we found a positive relationship between precipitation, NPP, and fire activity, implying that fire in these regions is limited to years when precipitation allows for the build-up of sufficient biomass or fuel loads to allow fire spread. This was most evident in regions where mean annual precipitation was below approximately 600 mm / year, including xeric regions of Africa and Northern Australia. In contrast, in areas of the tropics undergoing active deforestation, including, Indonesia, Central America, and parts of South America we found a significant negative correlation between precipitation and fire activity during the dry season. This implies that human use of fire in these regions in the deforestation process is at least partly limited by periods when high moisture levels limit ignition and fire activity.

  2. The Red Queen Model of Recombination Hotspots Evolution in the Light of Archaic and Modern Human Genomes

    PubMed Central

    Lesecque, Yann; Glémin, Sylvain; Lartillot, Nicolas; Mouchiroud, Dominique; Duret, Laurent

    2014-01-01

    Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan) to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC), which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution. PMID:25393762

  3. The red queen model of recombination hotspots evolution in the light of archaic and modern human genomes.

    PubMed

    Lesecque, Yann; Glémin, Sylvain; Lartillot, Nicolas; Mouchiroud, Dominique; Duret, Laurent

    2014-11-01

    Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan) to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC), which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution.

  4. The proximity of hotspots to convergent and divergent plate boundaries

    NASA Technical Reports Server (NTRS)

    Weinstein, Stuart A.; Olson, Peter L.

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots are preferentially excluded from regions near convergent plate boundaries. The probability of this exclusion occurring by chance alone is 0.1 or less for three out of the four distributions examined. We interpret this behavior as being a consequence of the effects of large scale convective circulation on ascending mantle plumes. Mantle thermal plumes, the most probable source of hotspots, arise from instabilities in a basal thermal boundary layer. Plumes are suppressed from regions beneath convergent boundaries by descending flow and are entrained into the upwelling flow beneath spreading centers. Plate-scale convective circulation driven by subduction may also advect mantle thermal plumes toward spreading centers.

  5. A fuzzy pattern matching method based on graph kernel for lithography hotspot detection

    NASA Astrophysics Data System (ADS)

    Nitta, Izumi; Kanazawa, Yuzi; Ishida, Tsutomu; Banno, Koji

    2017-03-01

    In advanced technology nodes, lithography hotspot detection has become one of the most significant issues in design for manufacturability. Recently, machine learning based lithography hotspot detection has been widely investigated, but it has trade-off between detection accuracy and false alarm. To apply machine learning based technique to the physical verification phase, designers require minimizing undetected hotspots to avoid yield degradation. They also need a ranking of similar known patterns with a detected hotspot to prioritize layout pattern to be corrected. To achieve high detection accuracy and to prioritize detected hotspots, we propose a novel lithography hotspot detection method using Delaunay triangulation and graph kernel based machine learning. Delaunay triangulation extracts features of hotspot patterns where polygons locate irregularly and closely one another, and graph kernel expresses inner structure of graphs. Additionally, our method provides similarity between two patterns and creates a list of similar training patterns with a detected hotspot. Experiments results on ICCAD 2012 benchmarks show that our method achieves high accuracy with allowable range of false alarm. We also show the ranking of the similar known patterns with a detected hotspot.

  6. Forest fires in Pennsylvania.

    Treesearch

    Donald A. Haines; William A. Main; Eugene F. McNamara

    1978-01-01

    Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.

  7. Human and climate impacts on Holocene fire activity recorded in polar and mountain ice cores

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie; Zennaro, Piero; Kirchgeorg, Torben; Li, Quanlian; Wang, Ninglian; Power, Mitchell; Zangrando, Roberta; Gabrielli, Paolo; Thompson, Lonnie; Gambaro, Andrea; Barbante, Carlo

    2014-05-01

    Fire is one of the major influences of biogeochemical change on local to hemispheric scales through emitting greenhouse gases, altering atmospheric chemistry, and changing primary productivity. Levoglucosan (1,6-anhydro-β-D-glucopyranose) is a specific molecular that can only be produced by cellulose burning at temperatures > 300°C, comprises a major component of smoke plumes, and can be transported across > 1000 km distances. Levoglucosan is deposited on and archived in glaciers over glacial interglacial cycles resulting in pyrochemical evidence for exploring interactions between fire, climate and human activity. Ice core records provide records of past biomass burning from regions of the world with limited paleofire data including polar and low-latitude, high-altitude regions. Here, we present Holocene fire activity records from the NEEM, Greenland (77° 27'N; 51° 3'W; 2454 masl), EPICA Dome C, Antarctica (75° 06'S; 123° 21'E; 3233 masl), Kilimanjaro, Tanzania (3° 05'S, 21.2° E, 5893 masl) and the Muztagh, China (87.17° E; 36.35° N; 5780 masl ice cores. The NEEM ice core reflects boreal fire activity from both North American and Eurasian sources. Temperature is the dominant control of NEEM levoglucosan flux over decadal to millennial time scales, while droughts influence fire activity over sub-decadal timescales. Our results demonstrate the prominence of Siberian fire sources during intense multiannual droughts. Unlike the NEEM core, which incorporates the largest land masses in the world as potential fire sources, EPICA Dome C is located far from any possible fire source. However, EPICA Dome C levoglucosan concentrations are consistently above detection limits and demonstrate a substantial 1000-fold increase in fire activity beginning approximately 800 years ago. This significant and sustained increase coincides with Maori arrival and dispersal in New Zealand augmented by later European arrival in Australia. The EPICA Dome C levoglucosan profile is

  8. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 4: Relation of roads to burn severity

    Treesearch

    Charles W. McHugh; Mark A. Finney

    2003-01-01

    Effects of roads on fire behavior intensity and severity can be studied directly or indirectly. A direct study of road effects would include uses by fire suppression, burnout operations, and delay of fire progress at the roadside. Interpretations after the fire burns are easily confounded by the unknown nature of suppression activities and fire arrival time, and fire...

  9. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    NASA Technical Reports Server (NTRS)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  10. Are hotspots always hotspots? The relationship between diversity, resource and ecosystem functions in the Arctic.

    PubMed

    Link, Heike; Piepenburg, Dieter; Archambault, Philippe

    2013-01-01

    The diversity-ecosystem function relationship is an important topic in ecology but has not received much attention in Arctic environments, and has rarely been tested for its stability in time. We studied the temporal variability of benthic ecosystem functioning at hotspots (sites with high benthic boundary fluxes) and coldspots (sites with lower fluxes) across two years in the Canadian Arctic. Benthic remineralisation function was measured as fluxes of oxygen, silicic acid, phosphate, nitrate and nitrite at the sediment-water interface. In addition we determined sediment pigment concentration and taxonomic and functional macrobenthic diversity. To separate temporal from spatial variability, we sampled the same nine sites from the Mackenzie Shelf to Baffin Bay during the same season (summer or fall) in 2008 and 2009. We observed that temporal variability of benthic remineralisation function at hotspots is higher than at coldspots and that taxonomic and functional macrobenthic diversity did not change significantly between years. Temporal variability of food availability (i.e., sediment surface pigment concentration) seemed higher at coldspot than at hotspot areas. Sediment chlorophyll a (Chl a) concentration, taxonomic richness, total abundance, water depth and abundance of the largest gallery-burrowing polychaete Lumbrineristetraura together explained 42% of the total variation in fluxes. Food supply proxies (i.e., sediment Chl a and depth) split hot- from coldspot stations and explained variation on the axis of temporal variability, and macrofaunal community parameters explained variation mostly along the axis separating eastern from western sites with hot- or coldspot regimes. We conclude that variability in benthic remineralisation function, food supply and diversity will react to climate change on different time scales, and that their interactive effects may hide the detection of progressive change, particularly at hotspots. Time-series of benthic functions and

  11. Mantle Convection beneath the Aegir Ridge, a Shadow in the Iceland Hotspot

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Ito, G.; Breivik, A. J.; Hanan, B. B.; Mjelde, R.; Sayit, K.; Vogt, P. R.

    2012-12-01

    The Iceland Hotspot has produced extensive volcanism spanning much of the ocean basin between Greenland and Norway, forming one of the world's largest igneous provinces. However, an apparent igneous "shadow" in hotspot activity is located at the fossil Aegir Ridge, which formed anomalously thin crust, despite this ridge being near the Iceland hotspot when it was active. The Aegir Ridge accommodated seafloor spreading northeast of present-day Iceland from the time of continental breakup at ~55 Ma until ~25 Ma, at which point spreading shifted west to the Kolbeinsey Ridge. To address the cause of the anomalously thin crust produced by the Aegir Ridge, we use three-dimensional numerical models to simulate the interaction between a mantle plume beneath the Iceland hotspot, rifting continental lithosphere, and the time-evolving North Atlantic ridge system. Two end-member hypotheses were investigated: (1) Material emanating from the Iceland mantle plume was blocked from reaching the Aegir Ridge by the thick lithosphere of the Jan Mayen Microcontinent as the Kolbeinsey Ridge began rifting it from Greenland at ~30 Ma, just east of the plume center; (2) Plume material was not blocked and did reach the Aegir Ridge, but had already experienced partial melting closer to the hotspot. This material was then unable to produce melt volumes at the Aegir Ridge comparable to those of pristine mantle. To test these hypotheses, we vary the volume flux and viscosity of the plume, and identify which conditions do and do not lead to the Aegir Ridge forming anomalously thin crust. Results show that the combination of plume material being drawn into the lithospheric channels beneath the Reykjanes Ridge and Kolbeinsey Ridge after their respective openings, and the impedance of plume flow by the Jan Mayen Microcontinent (hypothesis 1), can deprive the Aegir Ridge of plume influence. This leads to low crustal thicknesses that are comparable to those observed. We have yet to produce a model

  12. Effects of Demographic History on the Detection of Recombination Hotspots from Linkage Disequilibrium.

    PubMed

    Dapper, Amy L; Payseur, Bret A

    2018-02-01

    In some species, meiotic recombination is concentrated in small genomic regions. These "recombination hotspots" leave signatures in fine-scale patterns of linkage disequilibrium, raising the prospect that the genomic landscape of hotspots can be characterized from sequence variation. This approach has led to the inference that hotspots evolve rapidly in some species, but are conserved in others. Historic demographic events, such as population bottlenecks, are known to affect patterns of linkage disequilibrium across the genome, violating population genetic assumptions of this approach. Although such events are prevalent, demographic history is generally ignored when making inferences about the evolution of recombination hotspots. To determine the effect of demography on the detection of recombination hotspots, we use the coalescent to simulate haplotypes with a known recombination landscape. We measure the ability of popular linkage disequilibrium-based programs to detect hotspots across a range of demographic histories, including population bottlenecks, hidden population structure, population expansions, and population contractions. We find that demographic events have the potential to greatly reduce the power and increase the false positive rate of hotspot discovery. Neither the power nor the false positive rate of hotspot detection can be predicted without also knowing the demographic history of the sample. Our results suggest that ignoring demographic history likely overestimates the power to detect hotspots and therefore underestimates the degree of hotspot sharing between species. We suggest strategies for incorporating demographic history into population genetic inferences about recombination hotspots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Where's the Fire?

    ERIC Educational Resources Information Center

    Needham, Dorothy

    1977-01-01

    National Fire Protection Week is a perfect time for launching a fire safety learning center. The activities described here are intended to help children recognize fire hazards in their homes, play areas and public buildings; learn how to act intelligently in fire emergencies; be able to share their knowledge of fire safety with others and…

  14. Climate and human intervention effects on future fire activity and consequences for air pollution across the 21st century

    NASA Astrophysics Data System (ADS)

    Val Martin, M.; Pierce, J. R.; Heald, C. L.; Li, F.; Lawrence, D. M.; Wiedinmyer, C.; Tilmes, S.; Vitt, F.

    2016-12-01

    Emissions of aerosols and gases from fires have been shown to adversely affect air quality across the world. Fire activity is strongly related to climate and anthropogenic activities. Current fire projections for the 21st century seem very uncertain, ranging from increasing to declining depending on the climate, land cover change and population growth scenarios used. Here we present an analysis of the changes in future wildfire activity and consequences on air quality, with focus on PM2.5 and surface O3 over regions vulnerable to fire. We use the global Community Earth System Model (CESM) with a process-based fire model to simulate emissions from agriculture, peatland, deforestation and landscape fires for present-day and throughout the current century. We consider two future Representative Concentration Pathways climate scenarios combined with population density changes predicted from Shared Socio-economic Pathways to project climate and demographic effects on fire activity and further consequences for future air quality.

  15. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    PubMed

    Mann, Michael L; Batllori, Enric; Moritz, Max A; Waller, Eric K; Berck, Peter; Flint, Alan L; Flint, Lorraine E; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.

  16. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California

    PubMed Central

    Batllori, Enric; Moritz, Max A.; Waller, Eric K.; Berck, Peter; Flint, Alan L.; Flint, Lorraine E.; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597

  17. Forest fires caused by lightning activity in Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Ramos, Alexandre M.; Benali, Akli; Trigo, Ricardo M.

    2017-04-01

    and Atmosphere (IPMA). The main objective of this work was to evaluate and quantify the relations between the wildfires' occurrence and the lightning activity. In particularly we were able to verify if wildfires which were identified as "ignited by lightning" by comparing its location to the lightning discharges location database. Furthermore we have also investigated possible fire ignition by lightning discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets. - Bastos A., Gouveia C.M., Trigo R.M., Running S.W., 2014. Biogeosciences, 11, 3421-3435. - Pereira M.G., B.D. Malamud R.M. Trigo, P.I. Alves, 2011. Nat. Hazards Earth Syst. Sci., 11, 3343-3358. - Gouveia C., Trigo R.M., DaCamara C.C., 2009. Nat. Hazards Earth Syst. Sci., 9, 185-195 - Gouveia C.M., Bistinas I., Liberato M.L.R., Bastos A., Koutsiasd N., Trigo R., 2016. Agricultural and Forest Meteorology, 218-219, 135-145. Acknowledgements Research performed was supported by FAPESP/FCT Project Brazilian Fire-Land-Atmosphere System (BrFLAS) (1389/2014 and 2015/01389-4). Ana Russo thanks FCT for granted support (SFRH/BPD/99757/2014). A. M. Ramos was also supported by a FCT postdoctoral grant (FCT/DFRH/ SFRH/BPD/84328/2012).

  18. Effects of Demographic History on the Detection of Recombination Hotspots from Linkage Disequilibrium

    PubMed Central

    Dapper, Amy L; Payseur, Bret A

    2018-01-01

    Abstract In some species, meiotic recombination is concentrated in small genomic regions. These “recombination hotspots” leave signatures in fine-scale patterns of linkage disequilibrium, raising the prospect that the genomic landscape of hotspots can be characterized from sequence variation. This approach has led to the inference that hotspots evolve rapidly in some species, but are conserved in others. Historic demographic events, such as population bottlenecks, are known to affect patterns of linkage disequilibrium across the genome, violating population genetic assumptions of this approach. Although such events are prevalent, demographic history is generally ignored when making inferences about the evolution of recombination hotspots. To determine the effect of demography on the detection of recombination hotspots, we use the coalescent to simulate haplotypes with a known recombination landscape. We measure the ability of popular linkage disequilibrium-based programs to detect hotspots across a range of demographic histories, including population bottlenecks, hidden population structure, population expansions, and population contractions. We find that demographic events have the potential to greatly reduce the power and increase the false positive rate of hotspot discovery. Neither the power nor the false positive rate of hotspot detection can be predicted without also knowing the demographic history of the sample. Our results suggest that ignoring demographic history likely overestimates the power to detect hotspots and therefore underestimates the degree of hotspot sharing between species. We suggest strategies for incorporating demographic history into population genetic inferences about recombination hotspots. PMID:29045724

  19. Distribution, congruence, and hotspots of higher plants in China

    PubMed Central

    Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining

    2016-01-01

    Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China’s Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region’s specific conditions. PMID:26750244

  20. Distribution, congruence, and hotspots of higher plants in China.

    PubMed

    Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining

    2016-01-11

    Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China's Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region's specific conditions.

  1. Spatial analysis to identify hotspots of prevalence of schizophrenia.

    PubMed

    Moreno, Berta; García-Alonso, Carlos R; Negrín Hernández, Miguel A; Torres-González, Francisco; Salvador-Carulla, Luis

    2008-10-01

    The geographical distribution of mental health disorders is useful information for epidemiological research and health services planning. To determine the existence of geographical hotspots with a high prevalence of schizophrenia in a mental health area in Spain. The study included 774 patients with schizophrenia who were users of the community mental health care service in the area of South Granada. Spatial analysis (Kernel estimation) and Bayesian relative risks were used to locate potential hotspots. Availability and accessibility were both rated in each zone and spatial algebra was applied to identify hotspots in a particular zone. The age-corrected prevalence rate of schizophrenia was 2.86 per 1,000 population in the South Granada area. Bayesian analysis showed a relative risk varying from 0.43 to 2.33. The area analysed had a non-uniform spatial distribution of schizophrenia, with one main hotspot (zone S2). This zone had poor accessibility to and availability of mental health services. A municipality-based variation exists in the prevalence of schizophrenia and related disorders in the study area. Spatial analysis techniques are useful tools to analyse the heterogeneous distribution of a variable and to explain genetic/environmental factors in hotspots related with a lack of easy availability of and accessibility to adequate health care services.

  2. A Method for Improving Hotspot Directional Signatures in BRDF Models Used for MODIS

    NASA Technical Reports Server (NTRS)

    Jiao, Ziti; Schaaf, Crystal B.; Dong, Yadong; Roman, Miguel; Hill, Michael J.; Chen, Jing M.; Wang, Zhuosen; Zhang, Hu; Saenz, Edward; Poudyal, Rajesh; hide

    2016-01-01

    The semi-empirical, kernel-driven, linear RossThick-LiSparseReciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model is used to generate the routine MODIS BRDFAlbedo product due to its global applicability and the underlying physics. A challenge of this model in regard to surface reflectance anisotropy effects comes from its underestimation of the directional reflectance signatures near the Sun illumination direction; also known as the hotspot effect. In this study, a method has been developed for improving the ability of the RTLSR model to simulate the magnitude and width of the hotspot effect. The method corrects the volumetric scattering component of the RTLSR model using an exponential approximation of a physical hotspot kernel, which recreates the hotspot magnitude and width using two free parameters (C(sub 1) and C(sub 2), respectively). The approach allows one to reconstruct, with reasonable accuracy, the hotspot effect by adjusting or using the prior values of these two hotspot variables. Our results demonstrate that: (1) significant improvements in capturing hotspot effect can be made to this method by using the inverted hotspot parameters; (2) the reciprocal nature allow this method to be more adaptive for simulating the hotspot height and width with high accuracy, especially in cases where hotspot signatures are available; and (3) while the new approach is consistent with the heritage RTLSR model inversion used to estimate intrinsic narrowband and broadband albedos, it presents some differences for vegetation clumping index (CI) retrievals. With the hotspot-related model parameters determined a priori, this method offers improved performance for various ecological remote sensing applications; including the estimation of canopy structure parameters.

  3. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products.

    PubMed

    Grossman, Elizabeth A; Ward, Carl C; Spradlin, Jessica N; Bateman, Leslie A; Huffman, Tucker R; Miyamoto, David K; Kleinman, Jordan I; Nomura, Daniel K

    2017-11-16

    Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hotspot relaxation dynamics in a current-carrying superconductor

    NASA Astrophysics Data System (ADS)

    Marsili, F.; Stevens, M. J.; Kozorezov, A.; Verma, V. B.; Lambert, Colin; Stern, J. A.; Horansky, R. D.; Dyer, S.; Duff, S.; Pappas, D. P.; Lita, A. E.; Shaw, M. D.; Mirin, R. P.; Nam, S. W.

    2016-03-01

    We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors.

  5. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation

  6. The Manihiki Plateau—a key to missing hotspot tracks?

    NASA Astrophysics Data System (ADS)

    Pietsch, R.; Uenzelmann-Neben, G.

    2016-08-01

    A Neogene magmatic reactivation of the Manihiki Plateau, a large igneous province (LIP) in the central Pacific, is studied using seismic reflection data. Igneous diapirs have been identified exclusively within a narrow WNW-ESE striking corridor in the southern High Plateau (HP), which is parallel to the Neogene Pacific Plate motion and overlaps with an extrapolation of the Society Islands Hotspot (SIH) path. The igneous diapirs are characterized by a narrow width (>5 km), penetration of the Neogene sediments, and they become progressively younger towards the East (23-10 Ma). The magmatic source appears to be of small lateral extent, which leads to the conclusion that the diapirs represent Neogene hotspot volcanism within a LIP, and thus may be an older, previously unknown extension of the SIH track (>4.5 Ma). Comparing hotspot volcanism within oceanic and continental lithosphere, we further conclude that hotspot volcanism within LIP crust has similarities to tectonically faulted continental crust.

  7. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  8. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    PubMed

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year

  9. Detecting Recombination Hotspots from Patterns of Linkage Disequilibrium.

    PubMed

    Wall, Jeffrey D; Stevison, Laurie S

    2016-08-09

    With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots, LDhot, has been used in a handful of species to further our understanding of the basic biology of recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is unknown. In this study, we run extensive simulations to compare the effectiveness of three different implementations of LDhot. We find large differences in the power and false positive rates of these different approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to more accurate estimation of hotspot locations). We also compared our LDhot simulation results with comparable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots. Surprisingly, we found that the latter computationally intensive approach had substantially lower power over the parameter values considered in our simulations. Copyright © 2016 Wall and Stevison.

  10. Monitoring of pipeline oil spill fire events using Geographical Information System and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ogungbuyi, M. G.; Eckardt, F. D.; Martinez, P.

    2016-12-01

    Nigeria, the largest producer of crude oil in Africa occupies sixth position in the world. Despite such huge oil revenue potentials, its pipeline network system is consistently susceptible to leaks causing oil spills. We investigate ground based spill events which are caused by operational error, equipment failure and most importantly by deliberate attacks along the major pipeline transport system. Sometimes, these spills are accompanied with fire explosion caused by accidental discharge, natural or illegal refineries in the creeds, etc. MODIS satellites fires data corresponding to the times and spill events (i.e. ground based data) of the Area of Interest (AOI) show significant correlation. The open source Quantum Geographical Information System (QGIS) was used to validate the dataset and the spatiotemporal analyses of the oil spill fires were expressed. We demonstrate that through QGIS and Google Earth (using the time sliders), we can identify and monitor oil spills when they are attended with fire events along the pipeline transport system accordingly. This is shown through the spatiotemporal images of the fires. Evidence of such fire cases resulting from bunt vegetation as different from industrial and domestic fire is also presented. Detecting oil spill fires in the study location may not require an enormous terabyte of image processing: we can however rely on a near-real-time (NRT) MODIS data that is readily available twice daily to detect oil spill fire as early warning signal for those hotspots areas where cases of oil seepage is significant in Nigeria.

  11. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data

  12. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction

    PubMed Central

    Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip

    2017-01-01

    Abstract Background Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. Methods We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Results Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Conclusion Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. PMID:28973672

  13. French Polynesia Hotspot Swells Explained By Dynamic Topography

    NASA Astrophysics Data System (ADS)

    Adam, C.; Yoshida, M.; Isse, T.; Suetsugu, D.; Shiobara, H.; Sugioka, H.; Kanazawa, T.; Fukao, Y.; Barruol, G.

    2007-12-01

    , this new information may be quite important in understanding the archipelago origin. Another interesting result is that Arago, which is supposed to be an active hotspot along the Cook-Austral chain is situated on a bathymetric low which is well recovered by the dynamic model. Since this region is associated with downwelling flows, this makes us question its hotspot origin.

  14. Spatio-temporal hotspots of satellite-tracked arctic foxes reveal a large detection range in a mammalian predator.

    PubMed

    Lai, Sandra; Bêty, Joël; Berteaux, Dominique

    2015-01-01

    The scale at which animals perceive their environment is a strong fitness determinant, yet few empirical estimates of animal detection ranges exist, especially in mammalian predators. Using daily Argos satellite tracking of 26 adult arctic foxes (Vulpes lagopus) during a single winter in the High Canadian Arctic, we investigated the detection range of arctic foxes by detecting hotspots of fox activity on the sea ice. While maintaining territories in the tundra, these solitary foragers occasionally used the sea ice where they sometimes formed spatio-temporal hotspots, likely scavenging on marine mammal carcasses. We detected 35 movements by 13 individuals forming five hotspots. Foxes often traveled more than 10 km, and up to 40 km, to reach hotspots, which lasted one-two weeks and could gather up to 12 individuals. The likelihood of a fox joining a hotspot was neither influenced by its distance from the hotspot nor by the distance of its home range to the coast. Observed traveling distances may indicate a high detection range in arctic foxes, and our results suggest their ability to detect food sources on the sea ice from their terrestrial home range. While revealing a wide knowledge gap regarding resource detection abilities in mammalian predators, our study provides estimates of detection range useful for interpreting and modeling animal movements. It also allows a better understanding of foraging behavior and navigation capacity in terrestrial predators.

  15. Stratospheric gravity waves at southern hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan

    2017-04-01

    Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify

  16. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture

    Treesearch

    Sean A. Parks; Marc-Andre Parisien; Carol Miller; Solomon Z. Dobrowski

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients....

  17. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire

    PubMed Central

    Simon, Marcelo F.; Grether, Rosaura; de Queiroz, Luciano P.; Skema, Cynthia; Pennington, R. Toby; Hughes, Colin E.

    2009-01-01

    The relative importance of local ecological and larger-scale historical processes in causing differences in species richness across the globe remains keenly debated. To gain insight into these questions, we investigated the assembly of plant diversity in the Cerrado in South America, the world's most species-rich tropical savanna. Time-calibrated phylogenies suggest that Cerrado lineages started to diversify less than 10 Mya, with most lineages diversifying at 4 Mya or less, coinciding with the rise to dominance of flammable C4 grasses and expansion of the savanna biome worldwide. These plant phylogenies show that Cerrado lineages are strongly associated with adaptations to fire and have sister groups in largely fire-free nearby wet forest, seasonally dry forest, subtropical grassland, or wetland vegetation. These findings imply that the Cerrado formed in situ via recent and frequent adaptive shifts to resist fire, rather than via dispersal of lineages already adapted to fire. The location of the Cerrado surrounded by a diverse array of species-rich biomes, and the apparently modest adaptive barrier posed by fire, are likely to have contributed to its striking species richness. These findings add to growing evidence that the origins and historical assembly of species-rich biomes have been idiosyncratic, driven in large part by unique features of regional- and continental-scale geohistory and that different historical processes can lead to similar levels of modern species richness. PMID:19918050

  18. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots.

    PubMed

    Neubauer, Thomas A; Harzhauser, Mathias; Georgopoulou, Elisavet; Kroh, Andreas; Mandic, Oleg

    2015-09-15

    Continental aquatic species richness hotspots are unevenly distributed across the planet. In present-day Europe, only two centers of biodiversity exist (Lake Ohrid on the Balkans and the Caspian Sea). During the Neogene, a wide variety of hotspots developed in a series of long-lived lakes. The mechanisms underlying the presence of richness hotspots in different geological periods have not been properly examined thus far. Based on Miocene to Recent gastropod distributions, we show that the existence and evolution of such hotspots in inland-water systems are tightly linked to the geodynamic history of the European continent. Both past and present hotspots are related to the formation and persistence of long-lived lake systems in geological basins or to isolation of existing inland basins and embayments from the marine realm. The faunal evolution within hotspots highly depends on warm climates and surface area. During the Quaternary icehouse climate and extensive glaciations, limnic biodiversity sustained a severe decline across the continent and most former hotspots disappeared. The Recent gastropod distribution is mainly a geologically young pattern formed after the Last Glacial Maximum (19 ky) and subsequent formation of postglacial lakes. The major hotspots today are related to long-lived lakes in preglacially formed, permanently subsiding geological basins.

  19. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots

    PubMed Central

    Neubauer, Thomas A.; Harzhauser, Mathias; Georgopoulou, Elisavet; Kroh, Andreas; Mandic, Oleg

    2015-01-01

    Continental aquatic species richness hotspots are unevenly distributed across the planet. In present-day Europe, only two centers of biodiversity exist (Lake Ohrid on the Balkans and the Caspian Sea). During the Neogene, a wide variety of hotspots developed in a series of long-lived lakes. The mechanisms underlying the presence of richness hotspots in different geological periods have not been properly examined thus far. Based on Miocene to Recent gastropod distributions, we show that the existence and evolution of such hotspots in inland-water systems are tightly linked to the geodynamic history of the European continent. Both past and present hotspots are related to the formation and persistence of long-lived lake systems in geological basins or to isolation of existing inland basins and embayments from the marine realm. The faunal evolution within hotspots highly depends on warm climates and surface area. During the Quaternary icehouse climate and extensive glaciations, limnic biodiversity sustained a severe decline across the continent and most former hotspots disappeared. The Recent gastropod distribution is mainly a geologically young pattern formed after the Last Glacial Maximum (19 ky) and subsequent formation of postglacial lakes. The major hotspots today are related to long-lived lakes in preglacially formed, permanently subsiding geological basins. PMID:26305934

  20. Effects of perturbations and radial profiles on ignition of inertial confinement fusion hotspots

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Chittenden, J. P.

    2014-06-01

    Perturbations of inertial confinement fusion hotspots from spherical symmetry cause an increase in the implosion velocity required for ignition, as investigated analytically by [R. Kishony and D. Shvarts, Phys. Plasmas 8, 4925 (2001)] and in numerical studies by many authors. In this paper, we analyse the mechanisms behind this effect by comparing fully 3D fluid simulations of National Ignition Facility targets to a novel analytic model of the thermal energy balance of the hotspot. The analytic model takes into account the radial variation of the state variables within the hotspot and provides an accurate relationship between the hotspot's 0D parameters (ρc, Tc, R , uR, and q) and its heating and cooling rates. The dominant effect of perturbations appears to be an increase in the inflow velocity at the hotspot's surface due to transverse flow of material between perturbation structures, causing premature thermalisation of kinetic energy before the hotspot is fully compressed. In hotspots with a broad perturbation spectrum, thermalisation of energy is inhibited by nonradial motion introduced by mode-mode interaction, reducing the yield further.

  1. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE.

    PubMed

    Taylor, Alan H; Trouet, Valerie; Skinner, Carl N; Stephens, Scott

    2016-11-29

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.

  2. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    PubMed

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  3. Microbial Nitrogen Cycle Hotspots in the Plant-Bed/Ditch System of a Constructed Wetland with N2O Mitigation.

    PubMed

    Wang, Shanyun; Wang, Weidong; Liu, Lu; Zhuang, Linjie; Zhao, Siyan; Su, Yu; Li, Yixiao; Wang, Mengzi; Wang, Cheng; Xu, Liya; Zhu, Guibing

    2018-05-24

    Artificial microbial nitrogen (N) cycle hotspots in the plant-bed/ditch system were developed and investigated based on intact core and slurry assays measurement using isotopic tracing technology, quantitative PCR and high-throughput sequencing. By increasing hydraulic retention time and periodically fluctuating water level in heterogeneous riparian zones, hotspots of anammox, nitrification, denitrification, ammonium (NH 4 + ) oxidation, nitrite (NO 2 - ) oxidation, nitrate (NO 3 - ) reduction and DNRA were all stimulated at the interface sediments, with the abundance and activity being about 1-3 orders of magnitude higher than those in nonhotspots. Isotopic pairing experiments revealed that in microbial hotspots, nitrite sources were higher than the sinks, and both NH 4 + oxidation (55.8%) and NO 3 - reduction (44.2%) provided nitrite for anammox, which accounted for 43.0% of N-loss and 44.4% of NH 4 + removal in riparian zones but did not involve nitrous oxide (N 2 O) emission risks. High-throughput analysis identified that bacterial quorum sensing mediated this anammox hotspot with B.fulgida dominating the anammox community, but it was B. anammoxidans and Jettenia sp. that contributed more to anammox activity. In the nonhotspot zones, the NO 2 - source (NO 3 - reduction dominated) was lower than the sink, limiting the effects on anammox. The in situ N 2 O flux measurement showed that the microbial hotspot had a 27.1% reduced N 2 O emission flux compared with the nonhotspot zones.

  4. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction.

    PubMed

    Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip

    2017-11-27

    Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  5. Effectively identifying regulatory hotspots while capturing expression heterogeneity in gene expression studies

    PubMed Central

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping is a tool that can systematically identify genetic variation affecting gene expression. eQTL mapping studies have shown that certain genomic locations, referred to as regulatory hotspots, may affect the expression levels of many genes. Recently, studies have shown that various confounding factors may induce spurious regulatory hotspots. Here, we introduce a novel statistical method that effectively eliminates spurious hotspots while retaining genuine hotspots. Applied to simulated and real datasets, we validate that our method achieves greater sensitivity while retaining low false discovery rates compared to previous methods. PMID:24708878

  6. Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation.

    PubMed

    Martínez-Bellver, Sergio; Cervera-Ferri, Ana; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Luque-Garcia, Aina; Luque-Martinez, Aina; Blasco-Serra, Arantxa; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Teruel-Martí, Vicent

    2015-04-01

    This paper describes the existence of theta-coupled neuronal activity in the nucleus incertus (NI). Theta rhythm is relevant for cognitive processes such as spatial navigation and memory processing, and can be recorded in a number of structures related to the hippocampal activation including the NI. Strong evidence supports the role of this tegmental nucleus in neural circuits integrating behavioural activation with the hippocampal theta rhythm. Theta oscillations have been recorded in the local field potential of the NI, highly coupled to the hippocampal waves, although no rhythmical activity has been reported in neurons of this nucleus. The present work analyses the neuronal activity in the NI in conditions leading to sustained hippocampal theta in the urethane-anaesthetised rat, in order to test whether such activation elicits a differential firing pattern. Wavelet analysis has been used to better define the neuronal activity already described in the nucleus, i.e., non-rhythmical neurons firing at theta frequency (type I neurons) and fast-firing rhythmical neurons (type II). However, the most remarkable finding was that sustained stimulation activated regular-theta neurons (type III), which were almost silent in baseline conditions and have not previously been reported. Thus, we describe the electrophysiological properties of type III neurons, focusing on their coupling to the hippocampal theta. Their spike rate, regularity and phase locking to the oscillations increased at the beginning of the stimulation, suggesting a role in the activation or reset of the oscillation. Further research is needed to address the specific contribution of these neurons to the entire circuit. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Fire protection for launch facilities using machine vision fire detection

    NASA Astrophysics Data System (ADS)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  8. Fire protection for launch facilities using machine vision fire detection

    NASA Technical Reports Server (NTRS)

    Schwartz, Douglas B.

    1993-01-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  9. General Practice Clinical Data Help Identify Dementia Hotspots: A Novel Geospatial Analysis Approach.

    PubMed

    Bagheri, Nasser; Wangdi, Kinley; Cherbuin, Nicolas; Anstey, Kaarin J

    2018-01-01

    We have a poor understanding of whether dementia clusters geographically, how this occurs, and how dementia may relate to socio-demographic factors. To shed light on these important questions, this study aimed to compute a dementia risk score for individuals to assess spatial variation of dementia risk, identify significant clusters (hotspots), and explore their association with socioeconomic status. We used clinical records from 16 general practices (468 Statistical Area level 1 s, N = 14,746) from the city of west Adelaide, Australia for the duration of 1 January 2012 to 31 December 2014. Dementia risk was estimated using The Australian National University-Alzheimer's Disease Risk Index. Hotspot analyses were applied to examine potential clusters in dementia risk at small area level. Significant hotspots were observed in eastern and southern areas while coldspots were observed in the western area within the study perimeter. Additionally, significant hotspots were observed in low socio-economic communities. We found dementia risk scores increased with age, sex (female), high cholesterol, no physical activity, living alone (widow, divorced, separated, or never married), and co-morbidities such as diabetes and depression. Similarly, smoking was associated with a lower dementia risk score. The identification of dementia risk clusters may provide insight into possible geographical variations in risk factors for dementia and quantify these risks at the community level. As such, this research may enable policy makers to tailor early prevention strategies to the correct individuals within their precise locations.

  10. Heterogeneous firing responses predict diverse couplings to presynaptic activity in mice layer V pyramidal neurons

    PubMed Central

    2017-01-01

    In this study, we present a theoretical framework combining experimental characterizations and analytical calculus to capture the firing rate input-output properties of single neurons in the fluctuation-driven regime. Our framework consists of a two-step procedure to treat independently how the dendritic input translates into somatic fluctuation variables, and how the latter determine action potential firing. We use this framework to investigate the functional impact of the heterogeneity in firing responses found experimentally in young mice layer V pyramidal cells. We first design and calibrate in vitro a simplified morphological model of layer V pyramidal neurons with a dendritic tree following Rall's branching rule. Then, we propose an analytical derivation for the membrane potential fluctuations at the soma as a function of the properties of the synaptic input in dendrites. This mathematical description allows us to easily emulate various forms of synaptic input: either balanced, unbalanced, synchronized, purely proximal or purely distal synaptic activity. We find that those different forms of dendritic input activity lead to various impact on the somatic membrane potential fluctuations properties, thus raising the possibility that individual neurons will differentially couple to specific forms of activity as a result of their different firing response. We indeed found such a heterogeneous coupling between synaptic input and firing response for all types of presynaptic activity. This heterogeneity can be explained by different levels of cellular excitability in the case of the balanced, unbalanced, synchronized and purely distal activity. A notable exception appears for proximal dendritic inputs: increasing the input level can either promote firing response in some cells, or suppress it in some other cells whatever their individual excitability. This behavior can be explained by different sensitivities to the speed of the fluctuations, which was previously

  11. Imaging the Iceland Hotspot Track Beneath Greenland with Seismic Noise Correlations

    NASA Astrophysics Data System (ADS)

    Mordret, A.

    2017-12-01

    During the past 65 million years, the Greenland craton drifted over the Iceland hotspot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hotspot track. I image the Greenland lithosphere down to 300 km depth with seismic noise tomography. The hotspot track is observed as a linear high-velocity anomaly in the middle crust associated with magmatic intrusions. In the upper mantle, the remnant thermal signature of the hotspot manifests as low velocity and low viscosity bodies. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and prediction of Greenland heat flow, which in turn will enable more precise estimations of the Greenland ice-sheet mass balance.

  12. The hot-spot environment of SW Sex in a low state

    NASA Astrophysics Data System (ADS)

    Groot, Paul J.; Rutten, René G. M.; van Paradijs, Jan

    2000-04-01

    Based on observations obtained with the 2.5m Isaac Newton Telescope we show that the characteristics of the SW Sex stars can be explained by the dominance of a `hot-spot' like feature in the accretion disk. In SW Sex this `hot-spot' region is located at a distance of 0.5 RL 1 from the white-dwarf and is best visible at phase ϕ=0.95. The location of the hot-spot as deduced from spectral eclipse mapping coincides with the formation site of the main emission lines. We deduce that this hot-spot region is formed by a shock, which we speculate to be the consequence of a high mass-transfer rate and a long spin-period of the non-magnetic white dwarf.

  13. Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex.

    PubMed

    Shiroishi, T; Hanzawa, N; Sagai, T; Ishiura, M; Gojobori, T; Steinmetz, M; Moriwaki, K

    1990-01-01

    The wm7 haplotype of the major histocompatibility complex (MHC), derived from the Japanese wild mouse Mus musculus molossinus, enhances recombination specific to female meiosis in the K/A beta interval of the MHC. We have mapped crossover points of fifteen independent recombinants from genetic crosses of the wm7 and laboratory haplotypes. Most of them were confined to a short segment of approximately 1 kilobase (kb) of DNA between the A beta 3 and A beta 2 genes, indicating the presence of a female-specific recombinational hotspot. Its location overlaps with a sex-independent hotspot previously identified in the Mus musculus castaneus CAS3 haplotype. We have cloned and sequenced DNA fragments surrounding the hotspot from the wm7 haplotype and the corresponding regions from the hotspot-negative B10.A and C57BL/10 strains. There is no significant difference between the sequences of these three strains, or between these and the published sequences of the CAS3 and C57BL/6 strains. However, a comparison of this A beta 3/A beta 2 hotspot with a previously characterized hotspot in the E beta gene revealed that they have a very similar molecular organization. Each hotspot consists of two elements, the consensus sequence of the mouse middle repetitive MT family and the tetrameric repeated sequences, which are separated by 1 kb of DNA.

  14. Bottlenecks in Geospatial Data-Driven Decision-Making for Natural Disaster Management: A Case Study of Forest Fire Prevention and Control in Guatemala's Maya Biosphere Reserve

    NASA Astrophysics Data System (ADS)

    Berenter, J. S.; Mueller, J. M.; Morrison, I.

    2016-12-01

    Annual forest fires are a source of great economic and environmental cost in the Maya Biosphere Reserve (MBR), a region of high ecological and historical value in Guatemala's department of Petén. Scarce institutional resources, limited local response capacity, and difficult terrain place a premium on the use of Earth observation data for forest fire management in the MBR, but also present significant institutional barriers to optimizing the value of this data. Drawing upon key informant interviews and a contingent valuation survey of national and local actors conducted during a three-year performance evaluation of the USAID/NASA Regional Visualization and Monitoring System (SERVIR), this paper traces the flow of SERVIR data from acquisition to decision in order to assess the institutional and contextual factors affecting the value of Earth observation data for forest fire management in the MBR. Findings indicate that the use of satellite data for forest fire management in the MBR is widespread and multi-dimensional: historical assessments of land use and land cover, fire scarring, and climate data help central-level fire management agencies identify and regulate fire-sensitive areas; regular monitoring and dissemination of climate data enables coordination between agricultural burning activities and fire early warning systems; and daily satellite detection of thermal anomalies in land surface temperature permits first responders to monitor and react to "hotspot" activity. Findings also suggest, however, that while the decentralized operations of Petén's fire management systems foster the use of Earth observation data, systemic bottlenecks, including budgetary constraints, inadequate data infrastructure and interpretation capacity, and obstacles to regulatory enforcement, impede the flow of information and use of technology and thus impact the value of that data, particularly in remote and under-resourced areas of the MBR. A geographic expansion and fortification

  15. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    NASA Astrophysics Data System (ADS)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  16. Super-resolution chemical imaging with dynamic placement of plasmonic hotspots

    NASA Astrophysics Data System (ADS)

    Olson, Aeli P.; Ertsgaard, Christopher T.; McKoskey, Rachel M.; Rich, Isabel S.; Lindquist, Nathan C.

    2015-08-01

    We demonstrate dynamic placement of plasmonic "hotspots" for super-resolution chemical imaging via Surface Enhanced Raman Spectroscopy (SERS). A silver nanohole array surface was coated with biological samples and illuminated with a laser. Due to the large plasmonic field enhancements, blinking behavior of the SERS hotspots was observed and processed using a Stochastic Optical Reconstruction Microscopy (STORM) algorithm enabling localization to within 10 nm. However, illumination of the sample with a single static laser beam (i.e., a slightly defocused Gaussian beam) only produced SERS hotspots in fixed locations on the surface, leaving noticeable gaps in any final image. But, by using a spatial light modulator (SLM), the illumination profile of the beam could be altered, shifting any hotspots across the nanohole array surface in sub-wavelength steps. Therefore, by properly structuring an illuminating light field with the SLM, we show the possibility of positioning plasmonic hotspots over a metallic nanohole surface on-the-fly. Using this and our SERS-STORM imaging technique, we show potential for high-resolution chemical imaging without the noticeable gaps that were present with static laser illumination. Interestingly, even illuminating the surface with randomly shifting SLM phase profiles was sufficient to completely fill in a wide field of view for super-resolution SERS imaging of a single strand of 100-nm thick collagen protein fibrils. Images were then compared to those obtained with a scanning electron microscope (SEM). Additionally, we explored alternative methods of phase shifting other than holographic illumination through the SLM to create localization of hotspots necessary for SERS-STORM imaging.

  17. Dynamics of reactive microbial hotspots in concentration gradients

    NASA Astrophysics Data System (ADS)

    Hubert, Antoine; Farasin, Julien; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2017-04-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as a quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. To quantify bacterial activity we use Fluorescein Diacetate (FDA) hydrolysis by bacterial enzymes which transforms FDA into Fluorescein, whose local concentration is measured optically. We thus measure bacterial activity locally from the time derivative of the measured fluorescence. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  18. Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor

    2016-04-01

    Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces

  19. Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Krause, S.

    2015-12-01

    Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results

  20. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.

    PubMed

    Lin, J K; Pawelzik, K; Ernst, U; Sejnowski, T J

    1998-08-01

    We investigate the spatial and temporal aspects of firing patterns in a network of integrate-and-fire neurons arranged in a one-dimensional ring topology. The coupling is stochastic and shaped like a Mexican hat with local excitation and lateral inhibition. With perfect precision in the couplings, the attractors of activity in the network occur at every position in the ring. Inhomogeneities in the coupling break the translational invariance of localized attractors and lead to synchronization within highly active as well as weakly active clusters. The interspike interval variability is high, consistent with recent observations of spike time distributions in visual cortex. The robustness of our results is demonstrated with more realistic simulations on a network of McGregor neurons which model conductance changes and after-hyperpolarization potassium currents.

  1. Applications of Near Real-Time Image and Fire Products from MODIS

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Ilavajhala, S.; Teague, M.; Ye, G.; Masuoka, E.; Davies, D.; Murphy, K. J.; Michael, K.

    2010-12-01

    NASA’s MODIS Rapid Response Project (http://rapidfire.sci.gsfc.nasa.gov/) has been providing MODIS fire detections and imagery in near real-time since 2001. The Rapid Response system is part of the Land and Atmospheres Near-real time Capability for EOS (LANCE-MODIS) system. Current capabilities include providing MODIS imagery in true color and false color band combinations, a vegetation index, and temperature - in both uncorrected swath format and geographically corrected subset regions. The geographically-corrected subsets images cover the world's land areas and adjoining waters, as well as the entire Arctic and Antarctic. These data are available within a few hours of data acquisition. The images are accessed by large number of user communities to obtain a rapid, 250 meter-resolution overview of ground conditions for fire management, crop and famine monitoring and forecasting, disaster response (fires, oil spills, floods, storms), dust and aerosol monitoring, aviation (tracking volcanic ash), monitoring sea ice conditions, environmental monitoring, and more. In addition, the scientific community uses imagery to locate phenomena of interest prior to ordering and processing data and to support the day-to-day planning of field campaigns. The MODIS Rapid Response project has also been providing a near real-time data feed on fire locations and MODIS imagery subsets to the Fire Information for Resource Management System (FIRMS) project (http://maps.geog.umd.edu/firms). FIRMS provides timely availability of fire location information, which is essential in preventing and fighting large forest/wild fires. Products are available through a WebGIS for visualizing MODIS hotspots and MCD45 Burned Area images, an email alerting tool to deliver fire data on daily/weekly/near real-time basis, active data downloads in formats such as shape, KML, CSV, WMS, etc., along with MODIS imagery subsets. FIRMS’ user base covers more than 100 countries and territories. A recent user

  2. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Wang, Yifeng

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2more » when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.« less

  3. An algorithm to detect fire activity using Meteosat: fine tuning and quality assesment

    NASA Astrophysics Data System (ADS)

    Amraoui, M.; DaCamara, C. C.; Ermida, S. L.

    2012-04-01

    Hot spot detection by means of sensors on-board geostationary satellites allows studying wildfire activity at hourly and even sub-hourly intervals, an advantage that cannot be met by polar orbiters. Since 1997, the Satellite Application Facility for Land Surface Analysis has been running an operational procedure that allows detecting active fires based on information from Meteosat-8/SEVIRI. This is the so-called Fire Detection and Monitoring (FD&M) product and the procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 μm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRAAQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood. Generally speaking, the observed fire incidence compares well against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. However, values of probability of detection (POD) tend to be quite low, a result that may be partially expected by the finer resolution of MODIS. The aim of the present study is to make a systematic assessment of the impacts on POD and False Alarm Ratio (FAR) of the several parameters that are set in the algorithms. Such parameters range from the threshold values of brightness temperature in the IR3.9 and 10.8 channels that are used to select potential fire pixels up to the extent of the background grid and thresholds used to statistically characterize the radiometric departures of a potential pixel from the respective background. The impact of different criteria to identify pixels contaminated by clouds, smoke and sun glint is also evaluated. Finally, the advantages that may be brought to the algorithm by adding

  4. Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic-continental climatic gradient in northern Poland

    NASA Astrophysics Data System (ADS)

    Marcisz, Katarzyna; Gałka, Mariusz; Pietrala, Patryk; Miotk-Szpiganowicz, Grażyna; Obremska, Milena; Tobolski, Kazimierz; Lamentowicz, Mariusz

    2017-12-01

    Fire is a critical component of many ecosystems and, as predicted by various climate models, fire activity may increase significantly in the following years due to climate change. Therefore, knowledge about the past fire activity of various ecosystems is highly important for future nature conservation purposes. We present results of high-resolution investigation of fire activity and hydrological changes in northern Poland. We analyzed microscopic charcoal from three Sphagnum-dominated peatlands located on the south of Baltic, on the oceanic-continental (west-east) climatic gradient, and reconstructed the history of fire in the last 5700 years. We hypothesize that air circulation patterns are highly important for local fire activity, and that fire activity is more intensive in peatlands influenced by continental air masses. We have found out that forest fires have been occurring regularly since the past millennia and were linked to climatic conditions. We show that fire activity (related to climate and fuel availability) was significantly higher in sites dominated by continental climate (northeastern Poland) than in the site located under oceanic conditions (northwestern Poland)-microscopic charcoal influx was 13.3 times higher in the eastern study site of the gradient, compared to the western study site. Recorded fire activity patterns were different between the sites in a long timescale. Moreover, most of the recorded charcoal peaks occurred during high water tables. Rising human pressure has caused droughts and water table instability, and substantial increase in fire activity in the last 400 years.

  5. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    PubMed Central

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  6. Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite

    PubMed Central

    Kim, Hojeong; Heckman, C. J.

    2014-01-01

    Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interaction between PIC neuromodulation and PIC location dependence, we used a two-compartment model that was biologically realistic in that it retains directional and frequency-dependent electrical coupling between the soma and the dendrites, as seen in multi-compartment models based on full anatomical reconstructions of motoneurons. Our two-compartment approach allowed us to systematically vary the coupling parameters between the soma and the dendrite to accurately reproduce the effect of location of the dendritic PIC on the generation of nonlinear (hysteretic) motoneuron firing patterns. Our results show that as a single parameter value for PIC activation was either increased or decreased by 20% from its default value, the solution space of the coupling parameter values for nonlinear firing outputs was drastically reduced by approximately 80%. As a result, the model tended to fire only in a linear mode at the majority of dendritic PIC sites. The same results were obtained when all parameters for the PIC activation simultaneously changed only by approximately ±10%. Our results suggest the democratization effect of neuromodulation: the neuromodulation by the brainstem systems may play a role in switching the motoneurons with PICs at different dendritic locations to a similar mode of firing by reducing the effect of the dendritic location of PICs on the firing behavior. PMID:25309410

  7. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual

  8. Characterizing local biological hotspots in the Gulf of Maine using remote sensing data

    NASA Astrophysics Data System (ADS)

    Ribera, Marta M.

    Researchers increasingly advocate the use of ecosystem-based management (EBM) for managing complex marine ecosystems. This approach requires managers to focus on processes and cross-scale interactions, rather than individual components. However, they often lack appropriate tools and data sources to pursue this change in management approach. One method that has been proposed to understand the ecological complexity inherent in marine ecosystems is the study of biological hotspots. Biological hotspots are locations where organisms from different trophic levels aggregate to feed on abundant supplies, and they are considered a first step toward understanding the processes driving spatial and temporal heterogeneity in marine systems. Biological hotspots are supported by phytoplankton aggregations, which are characterized by high spatial and temporal variability. As a result, methods developed to locate biological hotspots in relatively stable terrestrial systems are not well suited for more dynamic marine ecosystems. The main objective of this thesis is thus to identify and characterize local-scale biological hotspots in the western side of the Gulf of Maine. The first chapter describes a new methodological framework with the steps needed to locate these types of hotspots in marine ecosystems using remote sensing datasets. Then, in the second chapter these hotspots are characterized using a novel metric that uses time series information and spatial statistics to account for both the temporal variability and spatial structure of these marine aggregations. This metric redefines biological hotspots as areas with a high probability of exhibiting positive anomalies of productivity compared to the expected regional seasonal pattern. Finally, the third chapter compares the resulting biological hotspots to fishery-dependent abundance indices of surface and benthic predators to determine the effect of the location and magnitude of phytoplankton aggregations on the rest of the

  9. Wafer hotspot prevention using etch aware OPC correction

    NASA Astrophysics Data System (ADS)

    Hamouda, Ayman; Power, Dave; Salama, Mohamed; Chen, Ao

    2016-03-01

    As technology development advances into deep-sub-wavelength nodes, multiple patterning is becoming more essential to achieve the technology shrink requirements. Recently, Optical Proximity Correction (OPC) technology has proposed simultaneous correction of multiple mask-patterns to enable multiple patterning awareness during OPC correction. This is essential to prevent inter-layer hot-spots during the final pattern transfer. In state-of-art literature, multi-layer awareness is achieved using simultaneous resist-contour simulations to predict and correct for hot-spots during mask generation. However, this approach assumes a uniform etch shrink response for all patterns independent of their proximity, which isn't sufficient for the full prevention of inter-exposure hot-spot, for example different color space violations post etch or via coverage/enclosure post etch. In this paper, we explain the need to include the etch component during multiple patterning OPC. We also introduce a novel approach for Etch-aware simultaneous Multiple-patterning OPC, where we calibrate and verify a lumped model that includes the combined resist and etch responses. Adding this extra simulation condition during OPC is suitable for full chip processing from a computation intensity point of view. Also, using this model during OPC to predict and correct inter-exposures hot-spots is similar to previously proposed multiple-patterning OPC, yet our proposed approach more accurately corrects post-etch defects too.

  10. Circum-Mediterranean fire activity and climate changes during the mid Holocene environmental transition (8500-2500 cal yr BP)

    NASA Astrophysics Data System (ADS)

    Vannière, Boris; Power, Mitch J.; Roberts, Neil; Tinner, Willy; Carrión, José; Magny, Michel; Bartlein, Patrick

    2010-05-01

    In this contribution I will present a synthesis of mid- to late-Holocene fire activity from the Mediterranean basin and explore the linkages among fire, climate variability and seasonality, and people through several climatic and ecological transitions. Regional fire histories were created from 36 radiocarbon-dated sedimentary charcoal records, available from the Global Charcoal Database. During the mid-Holocene "Thermal Maximum", charcoal records from the northern Mediterranean suggest the region was more fire prone while records from the southern Mediterranean indicate a decrease in fire activity associated with wetter-than-present summers. A North-South partition at 40-43°N is apparent in the central and western Mediterranean. In the context of orbitally-induced summer insolation decrease, South Mediterranean wet conditions could be linked to the Afro-Asian summer monsoon which weakened after ca. 8000-6000 cal yr BP. Relatively abrupt changes in fire regime observed at ca. 5500-5000 cal yr BP may be associated to a threshold in this weakening influence of the orbitally-driven Afro-Asian monsoon strength. Charcoal records of past fire activity appear sensitive to both orbitally-forced climate changes and shorter lived excursions which may be related to cold events apparent in the North Atlantic record of ice-rafted debris. These results contradict former notions of gradual aridification of the entire region due to climatic forcing and/or human activities. In contrast, they suggest: 1) Teleconnections between the Mediterranean area and other climatic regions, in particular the North Atlantic and the low-latitude monsoon areas, influenced past fire regimes; 2) Gradual forcing, such as changes in orbital parameters, may have triggered more abrupt shifts in fire regime, either directly or indirectly through these teleconnections.

  11. Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000-2011

    NASA Astrophysics Data System (ADS)

    Jay, J.; Pritchard, M. E.; Mares, P. J.; Mnich, M. E.; Welch, M. D.; Melkonian, A. K.; Aguilera, F.; Naranjo, J.; Sunagua, M.; Clavero, J. E.

    2011-12-01

    We examine 153 volcanoes and geothermal areas in the central, southern, and austral Andes for temperature anomalies between 2000-2011 from two different spacebourne sensors: 1) those automatically detected by the MODVOLC algorithm (Wright et al., 2004) from MODIS and 2) manually identified hotspots in nighttime images from ASTER. Based on previous work, we expected to find 8 thermal anomalies (volcanoes: Ubinas, Villarrica, Copahue, Láscar, Llaima, Chaitén, Puyehue-Cordón Caulle, Chiliques). We document 31 volcanic areas with pixel integrated temperatures of 4 to more than 100 K above background in at least two images, and another 29 areas that have questionable hotspots with either smaller anomalies or a hotspot in only one image. Most of the thermal anomalies are related to known activity (lava and pyroclastic flows, growing lava domes, fumaroles, and lakes) while others are of unknown origin or reflect activity at volcanoes that were not thought to be active. A handful of volcanoes exhibit temporal variations in the magnitude and location of their temperature anomaly that can be related to both documented and undocumented pulses of activity. Our survey reveals that low amplitude volcanic hotspots detectable from space are more common than expected (based on lower resolution data) and that these features could be more widely used to monitor changes in the activity of remote volcanoes. We find that the shape, size, magnitude, and location on the volcano of the thermal anomaly vary significantly from volcano to volcano, and these variations should be considered when developing algorithms for hotspot identification and detection. We compare our thermal results to satellite InSAR measurements of volcanic deformation and find that there is no simple relationship between deformation and thermal anomalies - while 31 volcanoes have continuous hotspots, at least 17 volcanoes in the same area have exhibited deformation, and these lists do not completely overlap. In

  12. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-05-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In this study, 16 simulations are conducted using WRF-Fire to examine the sensitivity of resolving VDLS to spatial resolution and atmosphere-fire coupling within the WRF-Fire model framework. The horizontal grid spacing is varied between 25 and 90 m, and the two-way atmosphere-fire coupling is either enabled or disabled. At high spatial resolution, the atmosphere-fire coupling increases the peak uphill and lateral spread rate by a factor of up to 2.7 and 9.5. The enhancement of the uphill and lateral spread rate diminishes at coarser spatial resolution, and VDLS is not modelled for a horizontal grid spacing of 90 m. The laterally spreading fire fronts become the dominant contributors of the extreme pyro-convection. The resolved fire-induced vortices responsible for driving the lateral spread in the coupled simulations have non-zero vorticity along each unit vector direction, and develop due to an interaction between the background winds and vertical return circulations generated at the flank of the fire front as part of the pyro-convective updraft. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to reproduce VDLS within the current WRF-Fire model framework.

  13. Tracing global supply chains to air pollution hotspots

    NASA Astrophysics Data System (ADS)

    Moran, Daniel; Kanemoto, Keiichiro

    2016-09-01

    While high-income countries have made significant strides since the 1970s in improving air quality, air pollution continues to rise in many developing countries and the world as a whole. A significant share of the pollution burden in developing countries can be attributed to production for export to consumers in high-income nations. However, it remains a challenge to quantify individual actors’ share of responsibility for pollution, and to involve parties other than primary emitters in cleanup efforts. Here we present a new spatially explicit modeling approach to link SO2, NO x , and PM10 severe emissions hotspots to final consumers via global supply chains. These maps show developed countries reducing their emissions domestically but driving new pollution hotspots in developing countries. This is also the first time a spatially explicit footprint inventory has been established. Linking consumers and supply chains to emissions hotspots creates opportunities for other parties to participate alongside primary emitters and local regulators in pollution abatement efforts.

  14. Modulation of an ultraviolet mutational hotspot in a shuttle vector Xeroderma cells.

    PubMed Central

    Seetharam, S; Seidman, M M

    1991-01-01

    Ultraviolet mutagenesis of the shuttle vector plasmid pZ189 in Xeroderma Pigmentosum cells yields a mutational pattern marked by hotspots at photoproduct sites on both strands of the supF marker gene. In order to test the influence of strand orientation on the appearance of hotspots the mutagenesis study was repeated on a vector with the supF gene in the inverted orientation. We recovered a pattern the same as that in the earlier work and conclude that the nature of the DNA polymerase involved in the replication of specific strands is not a primary determinant of hotspot occurrence in this system. One of the hotspots lies in an 8 base palindrome while the corresponding site on the other strand was not a hotspot. These results were obtained with calcium phosphate transfection of the UV treated vector. When DEAE dextran was used as a transfection agent both sites in the palindrome were hotspots. In a mixing experiment the calcium phosphate pattern was recovered. Our data suggest that the sequence determinants of mutational probability at these two sites lie outside the 8 bases of the palindrome and that mutagenesis at one, but not the other, site is sensitive to perturbation of cellular calcium levels. PMID:2027767

  15. Ground-based measurements of column-averaged carbon dioxide molar mixing ratios in a peatland fire-prone area of Central Kalimantan, Indonesia.

    PubMed

    Iriana, Windy; Tonokura, Kenichi; Inoue, Gen; Kawasaki, Masahiro; Kozan, Osamu; Fujimoto, Kazuki; Ohashi, Masafumi; Morino, Isamu; Someya, Yu; Imasu, Ryuichi; Rahman, Muhammad Arif; Gunawan, Dodo

    2018-05-31

    Tropical peatlands in Indonesia have been disturbed over decades and are a source of carbon dioxide (CO 2 ) into the atmosphere by peat respiration and peatland fire. With a portable solar spectrometer, we have performed measurements of column-averaged CO 2 dry-air molar mixing ratios, XCO 2 , in Palangka Raya, Indonesia, and quantify the emission dynamics of the peatland with use of the data for weather, fire hotspot, ground water table, local airport operation visibility and weather radar images. Total emission of CO 2 from surface and underground peat fires as well as from peatland ecosystem is evaluated by day-to-day variability of XCO 2 . We found that the peatland fire and the net ecosystem CO 2 exchange contributed with the same order of magnitude to the CO 2 emission during the non-El Niño Southern Oscillation year of July 2014-August 2015.

  16. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    PubMed

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  17. Effects of Lightning and Other Meteorological Factors on Fire Activity in the North American Boreal Forest: Implications for Fire Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.

    2010-01-01

    The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum

  18. Neighborhood organization activities: evacuation drills, clusters, and fire safety awareness

    Treesearch

    Dick White

    1995-01-01

    Emergency preparedness activities of one Berkeley-Oakland Hills neighborhood at the wildland/urban interface include establishing clusters that reduce fire hazards and fuel loads, setting aside emergency supplies, and identifying evacuation routes; taking emergency preparedness courses from the Offices of Emergency Services of Berkeley and Oakland (the CERT and CORE...

  19. The history, hotspots, and trends of electrocardiogram.

    PubMed

    Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua

    2015-07-01

    The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern.

  20. Chemical fields during Southeast Nexus (SENEX) field experiment and design of verification metrics for efficacy of capturing wild fire emissions

    NASA Astrophysics Data System (ADS)

    Lee, P.

    2016-12-01

    Wildfires are commonplace in North America. Air pollution resulted from wildfires pose a significant risk for human health and crop damage. The pollutants alter the vertical distribution of many atmospheric constituents including O3 and many fine particulate (PM) species. Compared to anthropogenic emissions of air pollutants, emissions from wildfires are largely uncontrolled and unpredictable. Therefore, quantitatively describing wildfire emissions and their contributions to air pollution remains a substantial challenge for atmospheric modeler and air quality forecasters. In this study, we investigated the modification and redistribution of atmospheric composition within the Conterminous U.S (CONUS) by wild fire plumes originated within and outside of the CONUS. We used the National Air Quality Forecasting Capability (NAQFC) to conduct the investigation. NAQFC uses dynamic lateral chemical boundary conditions derived from the National Weather Service experimental global aerosol tracer model accounting for intrusion of fire-associated aerosol species. Within CONUS, the NAQFC derives both gaseous and aerosol wildfire associated species from the National Environmental Satellite, Data, and Information Service (NESDIS) hazard mapping system (HMS) hot-spot detection, and US Forestry Service Blue-sky protocol for quantifying fire characteristics, and the US EPA Sparse Matrix Object Kernel Emission (SMOKE) calculation for plume rise. Attributions of both of these wildfire influences inherently reflect the aged plumes intruded into the CONUS through the model boundaries as well as the fresher emissions from sources within the CONUS. Both emission sources contribute significantly to the vertical structure modification of the atmosphere. We conducted case studies within the fire active seasons to demonstrate some possible impacts on the vertical structures of O3 and PM species by the wildfire activities.

  1. Teaching About Fire Safety.

    ERIC Educational Resources Information Center

    Brady, Holly; Arnold, Anne Jurmu

    1982-01-01

    This unit on fire safety teaches students how to act in or during a fire and presents fire prevention measures that students can implement at home. Two reproducible masters concerning fire safety and prevention are presented along with class activities, student reading resources, and organizations and companies that offer classroom materials about…

  2. Discovery and Distribution of Black Smokers on the Western Galapagos Spreading Center: Implications for Spatial and Temporal Controls on High Temperature Venting at Ridge/Hotspot Intersections

    NASA Astrophysics Data System (ADS)

    Haymon, R. M.; Anderson, P. G.; Baker, E. T.; Resing, J. A.; White, S. M.; MacDonald, K. C.

    2006-12-01

    Though nearly one-fifth of the mid-ocean ridge (MOR) lies on or near hotspots, it has been debated whether hotspots increase or decrease MOR hydrothermal flux, or affect vent biota. Despite hotspot enhancement of melt supply, high-temperature vent plumes are enigmatically sparse along two previously-surveyed ridge- hotspot intersections [Reykjanes Ridge (RR), Southeast Indian Ridge (SEIR)]. This has been attributed to crustal thickening by excess volcanism. During the 2005-06 GalAPAGoS expedition, we conducted nested sonar, plume, and camera surveys along a 540 km-long portion of the Galapagos Spreading Center (GSC) where the ridge intersects the Galapagos hotspot at lon. 94.5 -89.5 deg. W. Although MOR hydrothermal springs were first found along the eastern GSC crest in 1977 near lon. 86 deg. W, the GalAPAGoS smokers are the first active high-temperature vents to be found anywhere along the Cocos-Nazca plate boundary. Active and/or recently-inactive smokers were located beneath plumes at 5 sites on the seafloor between lon. 91 deg. W and 94.5 deg. W (see Anderson et al., this session) during near-bottom, real-time fiber-optic Medea camera surveys. Smokers occur along eruptive seafloor fissures atop axial volcanic ridges near the middles of ridge segments, mainly in areas underlain by relatively shallow, continuous axial magma chamber (AMC) seismic reflectors. These findings (1) support magmatic, rather than tectonic, control of GSC smoker distribution; (2) demonstrate that thick crust at MOR-hotspot intersections does not prevent high-temperature hydrothermal vents from forming; and, (3) appear to be inconsistent with models suggesting that enhanced hydrothermal cooling causes abrupt deepening of the AMC and transition from non-rifted to rifted GSC morphology near lon. 92.7 deg. W. The widely-spaced smoker sites located on different GSC segments exhibit remarkably similar characteristics and seafloor settings. Most sites are mature or extinct, and are on lava

  3. Remote sensing information for fire management and fire effects assessment

    NASA Astrophysics Data System (ADS)

    Chuvieco, Emilio; Kasischke, Eric S.

    2007-03-01

    Over the past decade, much research has been carried out on the utilization of advanced geospatial technologies (remote sensing and geographic information systems) in the fire science and fire management disciplines. Recent advances in these technologies were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) fire implementation team. Here we summarize the framework and the key findings of papers submitted from this meeting and presented in this special section. These papers focus on the latest advances for near real-time monitoring of active fires, prediction of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and postfire assessment of the impacts from fires.

  4. How plume-ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track

    NASA Astrophysics Data System (ADS)

    Bredow, Eva; Steinberger, Bernhard; Gassmöller, Rene; Dannberg, Juliane

    2017-08-01

    The Réunion mantle plume has shaped a large area of the Earth's surface over the past 65 million years: from the Deccan Traps in India along the hotspot track comprising the island chains of the Laccadives, Maldives, and Chagos Bank on the Indian plate and the Mascarene Plateau on the African plate up to the currently active volcanism at La Réunion Island. This study addresses the question how the Réunion plume, especially in interaction with the Central Indian Ridge, created the complex crustal thickness pattern of the hotspot track. For this purpose, the mantle convection code ASPECT was used to design three-dimensional numerical models, which consider the specific location of the plume underneath moving plates and surrounded by large-scale mantle flow. The results show the crustal thickness pattern produced by the plume, which altogether agrees well with topographic maps. Especially two features are consistently reproduced by the models: the distinctive gap in the hotspot track between the Maldives and Chagos is created by the combination of the ridge geometry and plume-ridge interaction; and the Rodrigues Ridge, a narrow crustal structure which connects the hotspot track and the Central Indian Ridge, appears as the surface expression of a long-distance sublithospheric flow channel. This study therefore provides further insight how small-scale surface features are generated by the complex interplay between mantle and lithospheric processes.

  5. RESEARCH NOTE: Slow-ridge/hotspot interactions from global gravity, seismic tomography and 87Sr/86Sr isotope data

    NASA Astrophysics Data System (ADS)

    Goslin, Jean; Thirot, Jean-Louis; Noël, Olivier; Francheteau, Jean

    1998-11-01

    Among the mantle hotspots present under oceanic areas, a large number are located on-or close to-active oceanic ridges. This is especially true in the slow-spreading Atlantic and Indian oceans. The recent availability of worldwide gravity grids and the increasing coverage of geochemical data sets along active spreading centres allow a fruitful comparison of these data with global geoid and seismic tomography models, and allow one to study interactions between mantle plumes and active slow-spreading ridges. The observed correlations allow us to draw preliminary conclusions on the general links between surficial processes, which shape the detailed morphology of the ridge axes, and deeper processes, active in the upper mantle below the ridge axial domains as a whole. The interactions are first studied at the scale of the Atlantic (the Mid-Atlantic Ridge from Iceland to Bouvet Island) from the correlation between the zero-age free-air gravity anomaly, which reflects the zero-age depth of the ridge axis, and Sr isotopic ratios of ridge axis basalts. The study is then extended to a more global scale (the slow ridges from Iceland to the Gulf of Aden) by including geoid and upper-mantle tomography models. The interactions appear complex, ranging from the effect of large and very productive plumes, almost totally overprinting the long-wavelength segmentation pattern of the ridge, to that of weaker hotspots, barely marking some of the observables in the ridge axial domain. Intermediate cases are observed, in which hotspots of medium activity (or whose activity has gradually decreased) located at some distance from the ridge axis produce geophysical or geochemical signals whose variation along the axis can be correlated with the geometry of the plume head in the upper mantle. Such observations tend to preclude the use of a single hotspot/ridge interaction model and stress the need for additional observations in various plume/ridge configurations.

  6. The Joint Fire Science Program Fire Exchange Network: Facilitating Knowledge Exchange About Wildland Fire Science Across the U.S.

    NASA Astrophysics Data System (ADS)

    York, A.; Blocksome, C.; Cheng, T.; Creighton, J.; Edwards, G.; Frederick, S.; Giardina, C. P.; Goebel, P. C.; Gucker, C.; Kobziar, L.; Lane, E.; Leis, S.; Long, A.; Maier, C.; Marschall, J.; McGowan-Stinski, J.; Mohr, H.; MontBlanc, E.; Pellant, M.; Pickett, E.; Seesholtz, D.; Skowronski, N.; Stambaugh, M. C.; Stephens, S.; Thode, A.; Trainor, S. F.; Waldrop, T.; Wolfson, B.; Wright, V.; Zedler, P.

    2014-12-01

    The Joint Fire Science Program's (JFSP) Fire Exchange Network is actively working to accelerate the awareness, understanding, and adoption of wildland fire science information by federal, tribal, state, local, and private stakeholders within ecologically similar regions. Our network of 15 regional exchanges provides timely, accurate, and regionally relevant science-based information to assist with fire management challenges. Regional activities, through which we engage fire and resource managers, scientists, and private landowners, include online newsletters and announcements, social media, regionally focused web-based clearinghouses of relevant science, field trips and demonstration sites, workshops and conferences, webinars and online training, and syntheses and fact sheets. Exchanges also help investigators design research that is relevant to regional management needs and assist with technology transfer to management audiences. This poster provides an introduction to and map of the regional exchanges.

  7. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-09-01

    Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere-fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to model VLS with WRF-Fire.

  8. Organization and roles of nucleosomes at mouse meiotic recombination hotspots

    PubMed Central

    Getun, Irina V.; Wu, Zhen K.; Bois, Philippe R.J.

    2012-01-01

    Meiotic double strand breaks (DSBs) occur at discrete regions in the genome coined hotspots. Precisely what directs site selection of these DSBs is hotly debated and in particular it is unclear which chromatin features, and regulatory factors are necessary for a genomic region to initiate and resolve DSBs as a crossover (CO) event. In human and mouse, one layer of hotspot selection control is a recognition sequence element present at these sites that is bound by the Prdm9 zinc-finger protein. Furthermore, an overall open chromatin structure is thought to be required to allow access of the recombination machinery, and this is often dictated by the packaging of DNA around nucleosomes. We recently defined the nucleosome occupancy maps of four mouse recombination hotspots throughout meiosis. These analyses revealed no obvious dynamic changes in nucleosome occupancy, suggesting an intrinsic nature of recombinogenic sites, yet they also revealed that nucleosomes define zones of exclusion for CO resolution. Here, we discuss new evidence implicating nucleosome occupancy in recombinogenic repair and its potential roles in controlling chromatin structure at mouse meiotic hotspots. PMID:22572955

  9. Reserve networks based on richness hotspots and representation vary with scale.

    PubMed

    Shriner, Susan A; Wilson, Kenneth R; Flather, Curtis H

    2006-10-01

    While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap Analysis Programs (GAP) to produce 1-km2, 100-kmn2, 625-km2, 2500-km2, and 10,000-km2 grid cell resolution distribution maps. We used these distribution maps to generate species richness and hotspot (95th quantile) maps for each taxon in each state. Species composition information at each grain size was used to develop two types of representation networks using the reserve selection software MARXAN. Reserve selection analyses were restricted to Arizona birds due to considerable computation requirements. We used MARXAN to create best reserve networks based on the minimum area required to represent each species at least once and equal area networks based on irreplaceability values. We also measured the median area of each species' distribution included in hotspot (mammals and birds of Arizona and New Mexico) and irreplaceability (Arizona birds) networks across all species. Mean area overlap between richness hotspot reserves identified at the five grain sizes was 29% (grand mean for four within-taxon/state comparisons), mean overlap for irreplaceability reserve networks was 32%, and mean overlap for best reserve networks was 53%. Hotspots for mammals and birds showed low overlap with a mean of 30%. Comparison of hotspots and irreplaceability networks showed very low overlap with a mean of 13%. For hotspots, median species distribution area protected within reserves declined monotonically from a high of 11% for 1-km2 networks down to 6% for 10,000-km2 networks. Irreplaceability networks showed a similar, but more variable, pattern of decline. This work clearly shows that map resolution has a profound

  10. Hot-spot mix in ignition-scale inertial confinement fusion targets.

    PubMed

    Regan, S P; Epstein, R; Hammel, B A; Suter, L J; Scott, H A; Barrios, M A; Bradley, D K; Callahan, D A; Cerjan, C; Collins, G W; Dixit, S N; Döppner, T; Edwards, M J; Farley, D R; Fournier, K B; Glenn, S; Glenzer, S H; Golovkin, I E; Haan, S W; Hamza, A; Hicks, D G; Izumi, N; Jones, O S; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Ma, T; MacFarlane, J J; MacKinnon, A J; Mancini, R C; McCrory, R L; Meezan, N B; Meyerhofer, D D; Nikroo, A; Park, H-S; Ralph, J; Remington, B A; Sangster, T C; Smalyuk, V A; Springer, P T; Town, R P J

    2013-07-26

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50)  ng and 4000(-2970,+17 160)  ng are observed.

  11. Hot-spot mix in ignition-scale inertial confinement fusion targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Epstein, R.; Hammel, B. A.

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. As a result, low neutron yields and hot-spot mix mass between 34(–13,+50) ng and 4000(–2970,+17 160) ng are observed.

  12. Hot-spot mix in ignition-scale inertial confinement fusion targets

    DOE PAGES

    Regan, S. P.; Epstein, R.; Hammel, B. A.; ...

    2013-07-22

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. As a result, low neutron yields and hot-spot mix mass between 34(–13,+50) ng and 4000(–2970,+17 160) ng are observed.

  13. Tropospheric ozone enhancement during post-harvest crop-residue fires at two downwind sites of the Indo-Gangetic Plain.

    PubMed

    Kumari, Sonal; Verma, Nidhi; Lakhani, Anita; Tiwari, Suresh; Kandikonda, Maharaj Kumari

    2018-05-01

    In the present study, surface ozone (O 3 ), nitrogen oxides (NO x ), and carbon monoxide (CO) levels were measured at two sites downwind of fire active region in the Indo-Gangetic Plain (IGP): Agra (27.16° N, 78.08° E) and Delhi (28.37° N, 77.12° E) to study the impact of post-harvest crop-residue fires. The study period was classified into two groups: Pre-harvest period and Post-harvest period. During the post-harvest period, an enhancement of 17.3 and 31.7 ppb in hourly averaged O 3 mixing ratios was observed at Agra and Delhi, respectively, under similar meteorological conditions. The rate of change of O 3 was also higher in the post-harvest period by 56.2% in Agra and 39.5% in Delhi. Relatively higher O 3 episodic days were observed in the post-harvest period. Fire hotspots detected by Moderate Resolution Imaging Spectroradiometer (MODIS) along with backward air-mass trajectory analysis suggested that the enhanced O 3 and CO levels at the study sites during the post-harvest period could be attributed to crop-residue burning over the North-West IGP (NW-IGP). Satellite observations of surface CO mixing ratios and tropospheric formaldehyde (HCHO) column also showed higher levels during the post-harvest period. Graphical abstract.

  14. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila.

    PubMed

    Guo, Fang; Cerullo, Isadora; Chen, Xiao; Rosbash, Michael

    2014-06-17

    Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY.

  15. Testing the Efficacy of Global Biodiversity Hotspots for Insect Conservation: The Case of South African Katydids.

    PubMed

    Bazelet, Corinna S; Thompson, Aileen C; Naskrecki, Piotr

    2016-01-01

    The use of endemism and vascular plants only for biodiversity hotspot delineation has long been contested. Few studies have focused on the efficacy of global biodiversity hotspots for the conservation of insects, an important, abundant, and often ignored component of biodiversity. We aimed to test five alternative diversity measures for hotspot delineation and examine the efficacy of biodiversity hotspots for conserving a non-typical target organism, South African katydids. Using a 1° fishnet grid, we delineated katydid hotspots in two ways: (1) count-based: grid cells in the top 10% of total, endemic, threatened and/or sensitive species richness; vs. (2) score-based: grid cells with a mean value in the top 10% on a scoring system which scored each species on the basis of its IUCN Red List threat status, distribution, mobility and trophic level. We then compared katydid hotspots with each other and with recognized biodiversity hotspots. Grid cells within biodiversity hotspots had significantly higher count-based and score-based diversity than non-hotspot grid cells. There was a significant association between the three types of hotspots. Of the count-based measures, endemic species richness was the best surrogate for the others. However, the score-based measure out-performed all count-based diversity measures. Species richness was the least successful surrogate of all. The strong performance of the score-based method for hotspot prediction emphasizes the importance of including species' natural history information for conservation decision-making, and is easily adaptable to other organisms. Furthermore, these results add empirical support for the efficacy of biodiversity hotspots in conserving non-target organisms.

  16. Testing the Efficacy of Global Biodiversity Hotspots for Insect Conservation: The Case of South African Katydids

    PubMed Central

    Bazelet, Corinna S.; Thompson, Aileen C.; Naskrecki, Piotr

    2016-01-01

    The use of endemism and vascular plants only for biodiversity hotspot delineation has long been contested. Few studies have focused on the efficacy of global biodiversity hotspots for the conservation of insects, an important, abundant, and often ignored component of biodiversity. We aimed to test five alternative diversity measures for hotspot delineation and examine the efficacy of biodiversity hotspots for conserving a non-typical target organism, South African katydids. Using a 1° fishnet grid, we delineated katydid hotspots in two ways: (1) count-based: grid cells in the top 10% of total, endemic, threatened and/or sensitive species richness; vs. (2) score-based: grid cells with a mean value in the top 10% on a scoring system which scored each species on the basis of its IUCN Red List threat status, distribution, mobility and trophic level. We then compared katydid hotspots with each other and with recognized biodiversity hotspots. Grid cells within biodiversity hotspots had significantly higher count-based and score-based diversity than non-hotspot grid cells. There was a significant association between the three types of hotspots. Of the count-based measures, endemic species richness was the best surrogate for the others. However, the score-based measure out-performed all count-based diversity measures. Species richness was the least successful surrogate of all. The strong performance of the score-based method for hotspot prediction emphasizes the importance of including species’ natural history information for conservation decision-making, and is easily adaptable to other organisms. Furthermore, these results add empirical support for the efficacy of biodiversity hotspots in conserving non-target organisms. PMID:27631131

  17. The silent mass extinction of insect herbivores in biodiversity hotspots.

    PubMed

    Fonseca, Carlos Roberto

    2009-12-01

    Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species-host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant-feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971-1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3-10.6 monophages per plant species. I calculated that 213,830-547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.

  18. Fire as Technology

    ERIC Educational Resources Information Center

    Rudolph, Robert N.

    2011-01-01

    In this article, the author describes a project that deals with fire production as an aspect of technology. The project challenges students to be survivors in a five-day classroom activity. Students research various materials and methods to produce fire without the use of matches or other modern combustion devices, then must create "fire" to keep…

  19. Forest fires in Missouri.

    Treesearch

    Donald A. Haines; William A. Main; John S. Crosby

    1973-01-01

    Describes factors that contribute to forest fires on two of the State of Missouri's Protection Districts and the Clark National Forest. Includes an analysis of fire cause, annual distribution, weather, and activity by day of week; also discusses multiple-fire day.

  20. Spatio-temporal evolution of forest fires in Portugal

    NASA Astrophysics Data System (ADS)

    Tonini, Marj; Pereira, Mário G.; Parente, Joana

    2017-04-01

    southern areas spread hot-spot are spatially randomly distributed and temporally more concentrated in the frame 2000 - 2004. To conclude, this study let us to identify a multitude of clustering space-time features of forest fires in Portugal, which can be useful for a better planning of educational activities and prevention campaigns as well as for a better allocation of monitoring systems and firefighting. References: Tonini M., Pereira M. G., Parente J. (2016) - Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps. Natural Hazard, doi:10.1007/s11069-016-2637-x Lu B., Harris P., Charlton M., Brunsdon C. (2014) - The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Information Science, Vol. 17: 85-101 Rowlingson B., Diggle P., Bivand M.R. (2012) - Splancs: spatial point pattern analysis code in S-Plus. Computers and Geosciences, Vol. 19: 627-655 Acknowledgements: This work was supported by: (i) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; (ii) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire.

  1. Do Periodic Plate Reorganisations Control Late-stage Volcanism across a Broad Galápagos Hotspot?

    NASA Astrophysics Data System (ADS)

    O'Connor, J. M.; Hoernle, K.; Wijbrans, J. R.; Werner, R.; Hauff, S. F.; Stoffers, P.

    2010-12-01

    Much of the Galápagos Volcanic Province (GVP), consisting of the Cocos, Carnegie, Coiba and Malpelo aseismic ridges and related seamount provinces, remains poorly understood due to a lack of direct age and geochemical data. In recent years reconnaissance dredge/grab sampling of these submerged regions of the GVP provides some new insights that can be re-evaluated in the context of the three new cruises to the region in 2010. The distribution of 40Ar/39Ar basement ages [1-3] suggest that volcanism migrated time-progressively across GVP in broad regions of long-lived, possible concurrent, hotspot volcanism. Development of the GVP via such broad zones of overlapping volcanism leads to multiple phases of volcanism post-dating the onset of hotspot volcanism, similar to rejuvenescent volcanism that occurs million years after the main shield-building phase of mid-plate oceanic volcano, most notably along the Hawaiian-Emperor Seamount Chain. Evidence for rejuvenescent volcanism across the GVP provides an opportunity to evaluate this poorly understood process in a very different physical setting compared to the Hawaiian-Emperor Chain (mid-plate versus on/near spreading axis). Widespread episodes of coeval GVP volcanism show that the Galápagos hotspot influences broad regions of the lithosphere implying relative motion between the Cocos and Nazca plates and a broad Galápagos hotspot. The complex spreading history of the Cocos-Nazca spreading centre likely controlled the relative distribution of GVP volcanism between the Cocos and Nazca plates while creating lithosphere of variable age/thickness across the region [3]. But recent age and geochemical studies of other hotspot systems show that lithosphere influenced in the past by hotspot activity is more likely to generate late-stage volcanism in response to changing patterns of stress in the lithosphere. Late stage volcanism across a broad Galápagos hotspot might therefore reflect periodic reorganisations of the Gal

  2. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    NASA Astrophysics Data System (ADS)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  3. Hotspot Mutations in KIT Receptor Differentially Modulate Its Allosterically Coupled Conformational Dynamics: Impact on Activation and Drug Sensitivity

    PubMed Central

    Chauvot de Beauchêne, Isaure; Allain, Ariane; Panel, Nicolas; Laine, Elodie; Trouvé, Alain; Dubreuil, Patrice; Tchertanov, Luba

    2014-01-01

    Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. PMID:25079768

  4. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    PubMed

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. A simple scaling model for smooth vs. rough bathymetry along hotspot tracks

    NASA Astrophysics Data System (ADS)

    Orellana Rovirosa, F.; Richards, M. A.

    2016-12-01

    Oceanic hotspot tracks exhibit a remarkable variety of morphologies, both in terms of volcanic seamounts/ocean islands, as well as broader bathymetric swells. A conspicuous feature is that although most hotspot tracks are characterized by "rough" topography, due mainly to volcanic construction, a number are much "smoother," and likely dominated more by the thermal/dynamic swell and crustal intrusion. Examples of relatively smooth tracks include the Nazca Ridge , Carnegie/Cocos/Galápagos, Walvis Ridge, Rio Grande Rise, Iceland, and Kerguelen and much of the Ninety-east Ridge; contrasting with rough and discontinuous seamount chains such Easter/Sala y Gomez, Tristan-Gough, Louisville, Emperor, and much of the Hawaiian ridge. Previous studies have pointed out the role of age, lithospheric thickness, and the plume strength; on the style of the associated bathymetry. Here, we take a systematic approach that emphasizes remarkable along-track changes from smooth to rough topography, e.g., the rough Sala y Gomez and smooth Nazca Ridge portions of the Easter Island hotspot track. Considering the primary controls to be hotspot swell volume flux Qs, the plate-hotspot relative speed v, and the lithospheric elastic thickness D, we suggest that such transitions are controlled by the dimensionless parameter R = sqrt(Qs / v) / D, which is roughly a measure of the heat available from the plume to the heat necessary to thermally attenuate the overlying lithosphere. For very thin (young) lithosphere, such as at the Galápagos platform, igneous intrusion into the hot, weak lithosphere and lower crust may dominate the topographic expression of the hotspot, whereas older lithosphere will support large volcanoes built from magmas passing through more intact lithosphere. Using data from observational studies on mantle-plume buoyancy fluxes, gravity, bathymetry, and tectonic reconstructions, we show that R is a good predictor of bathymetric style: for R<2 hotspot tracks are rough, and for

  6. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Sunada; Gonthier, Keith A.

    2016-07-01

    Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.

  7. Hotspots in trauma memories and their relationship to successful trauma-focused psychotherapy: a pilot study.

    PubMed

    Nijdam, Mirjam J; Baas, Melanie A M; Olff, Miranda; Gersons, Berthold P R

    2013-02-01

    Imaginal exposure is an essential element of trauma-focused psychotherapies for posttraumatic stress disorder (PTSD). Exposure should in particular focus on the "hotspots," the parts of trauma memories that cause high levels of emotional distress which are often reexperienced. Our aim was to investigate whether differences in the focus on hotspots differentiate between successful and unsuccessful trauma-focused psychotherapies. As part of a randomized trial, 45 PTSD patients completed brief eclectic psychotherapy for PTSD. We retrospectively assessed audio recordings of therapy sessions of 20 patients. Frequency of hotspots and the associated emotions, cognitions, and characteristics were compared for the most successful (n = 10) versus the least successful (n = 10) treatments. The mean number of unique hotspots per patient was 3.20, and this number did not differ between successful and unsuccessful treatments. In successful treatments, however, hotspots were more frequently addressed (r = .48), and they were accompanied by more characteristics of hotspots (r = .39), such as an audible change in affect, indicating medium- to large-sized effects. Repeatedly focusing on hotspots and looking for associated characteristics of hotspots may help clinicians to enhance the efficacy of imaginal exposure for patients who would otherwise show insufficient response to treatment. Copyright © 2013 International Society for Traumatic Stress Studies.

  8. Fires in Southern Georgia

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Several large fires were burning in southern Georgia on April 29, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite passed overhead and captured this image. Places where MODIS detected actively burning fires are outlined in red. The Roundabout Fire sprang up on April 27, according to the U.S. Southern Area Coordination Center, and was about 3,500 acres as of April 30. That fire was threatening homes in the community of Kirkland. Meanwhile, south of Waycross, two large blazes were burning next to each other in the northern part of Okefenokee Swamp. The Sweat Farm Road Fire threatened the town of Waycross in previous weeks, but at the end of April, activity had moved to the southeastern perimeter. The fire had affected more than 50,000 acres of timber (including pine tree plantations) and swamps. Scores of residences scattered throughout the rural area are threatened. The Big Turnaround Complex is burning to the east. The 26,000-acre fire was extremely active over the weekend, with flame lengths more than 60 feet (just over 18 meters) in places. The two blazes appeared to overlap in fire perimeter maps available from the U.S. Geospatial Multi-Agency Coordination Team. According to the Southern Area Coordination Center morning report on April 30, the Sweat Farm Road Fire 'will be a long term fire. Containment and control will depend on significant rainfall, due to the inaccessible swamp terrain.' No expected containment date was available for the Big Turnaround Complex Fire, either. Describing that fire, the report stated, 'Heavy fuel loading, high fire danger, and difficulty of access continue to hamper suppression efforts.' The large image provided above has a spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response Team provides twice-daily images of the region in additional resolutions. They also provide a version of the image that shows smoke plumes stretching out across the Atlantic Ocean.

  9. Soils under fire: soils research and the Joint Fire Science Program.

    Treesearch

    Heather E. Erickson; Rachel White

    2008-01-01

    Soils are fundamental to a healthy and functioning ecosystem. Therefore, forest land managers can greatly benefit from a more thorough understanding of the ecological impacts of fire and fuel management activities on the vital services soils provide. We present a summary of new research on fire effects and soils made possible through the Joint Fire Science Program and...

  10. Causes of plant diversification in the Cape biodiversity hotspot of South Africa.

    PubMed

    Schnitzler, Jan; Barraclough, Timothy G; Boatwright, James S; Goldblatt, Peter; Manning, John C; Powell, Martyn P; Rebelo, Tony; Savolainen, Vincent

    2011-05-01

    The Cape region of South Africa is one of the most remarkable hotspots of biodiversity with a flora comprising more than 9000 plant species, almost 70% of which are endemic, within an area of only ± 90,000 km2. Much of the diversity is due to an exceptionally large contribution of just a few clades that radiated substantially within this region, but little is known about the causes of these radiations. Here, we present a comprehensive analysis of plant diversification, using near complete species-level phylogenies of four major Cape clades (more than 470 species): the genus Protea, a tribe of legumes (Podalyrieae) and two speciose genera within the iris family (Babiana and Moraea), representing three of the seven largest plant families in this biodiversity hotspot. Combining these molecular phylogenetic data with ecological and biogeographical information, we tested key hypotheses that have been proposed to explain the radiation of the Cape flora. Our results show that the radiations started throughout the Oligocene and Miocene and that net diversification rates have remained constant through time at globally moderate rates. Furthermore, using sister-species comparisons to assess the impact of different factors on speciation, we identified soil type shifts as the most important cause of speciation in Babiana, Moraea, and Protea, whereas shifts in fire-survival strategy is the most important factor for Podalyrieae. Contrary to previous findings in other groups, such as orchids, pollination syndromes show a high degree of phylogenetic conservatism, including groups with a large number of specialized pollination syndromes like Moraea. We conclude that the combination of complex environmental conditions together with relative climatic stability promoted high speciation and/or low extinction rates as the most likely scenario leading to present-day patterns of hyperdiversity in the Cape.

  11. Operating room fire prevention: creating an electrosurgical unit fire safety device.

    PubMed

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-08-01

    To reduce the incidence of surgical fires. Operating room fires represent a potentially life-threatening hazard and are triggered by the electrosurgical unit (ESU) pencil. Carbon dioxide is a fire suppressant and is a routinely used medical gas. We hypothesize that a shroud of protective carbon dioxide covering the tip of the ESU pencil displaces oxygen, thereby preventing fire ignition. Using 3-dimensional modeling techniques, a polymer sleeve was created and attached to an ESU pencil. This sleeve was connected to a carbon dioxide source and directed the gas through multiple precisely angled ports, generating a cone of fire-suppressive carbon dioxide surrounding the active pencil tip. This device was evaluated in a flammability test chamber containing 21%, 50%, and 100% oxygen with sustained ESU activation. The sleeve was tested with and without carbon dioxide (control) until a fuel was ignited or 30 seconds elapsed. Time to ignition was measured by high-speed videography. Fires were ignited with each control trial (15/15 trials). The control group median ± SD ignition time in 21% oxygen was 3.0 ± 2.4 seconds, in 50% oxygen was 0.1 ± 1.8 seconds, and in 100% oxygen was 0.03 ± 0.1 seconds. No fire was observed when the fire safety device was used in all concentrations of oxygen (0/15 trials; P < 0.0001). The exact 95% confidence interval for absolute risk reduction of fire ignition was 76% to 100%. A sleeve creating a cone of protective carbon dioxide gas enshrouding the sparks from an ESU pencil effectively prevents fire in a high-flammability model. Clinical application of this device may reduce the incidence of operating room fires.

  12. Determinants of fire activity during the last 3500 yr at a wildland-urban interface, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Davis, Emma L.; Courtney Mustaphi, Colin J.; Gall, Amber; Pisaric, Michael F. J.; Vermaire, Jesse C.; Moser, Katrina A.

    2016-11-01

    Long-term records of wildfires and their controlling factors are important sources of information for informing land management practices. Here, dendrochronology and lake sediment analyses are used to develop a 3500-yr fire and vegetation history for a montane forest in Jasper National Park, Alberta, Canada. The tree-ring record (AD 1771-2012) indicates that this region historically experienced a mixed-severity fire regime, and that effective fire suppression excluded widespread fire events from the study area during the 20th century. A sediment core collected from Little Trefoil Lake, located near the Jasper townsite, is analyzed for subfossil pollen and macroscopic charcoal (>150 μm). When comparing the tree-ring record to the 3500-yr record of sediment-derived fire events, only high-severity fires are represented in the charcoal record. Comparisons between the charcoal record and historical climate and pollen data indicate that climate and vegetation composition have been important controls on the fire regime for most of the last 3500 yr. Although fire frequency is presently within the historical range of variability, the fire return interval of the last 150 yr is longer than expected given modern climate and vegetation conditions, indicating that humans have become the main control on fire activity around Little Trefoil Lake.

  13. The influence of lightning activity and anthropogenic factors on large-scale characteristics of natural fires

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.

    2017-01-01

    A module for simulating of natural fires (NFs) in the climate model of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), is extended with respect to the influence of lightning activity and population density on the ignition frequency and fire suppression. The IAP RAS CM is used to perform numerical experiments in accordance with the conditions of the project that intercompares climate models, CMIP5 (Coupled Models Intercomparison Project, phase 5). The frequency of lightning flashes was assigned in accordance with the LIS/OTD satellite data. In the calculations performed, anthropogenic ignitions play an important role in NF occurrences, except for regions at subpolar latitudes and, to a lesser degree, tropical and subtropical regions. Taking into account the dependence of fire frequency on lightning activity and population density intensifies the influence of characteristics of natural fires on the climate changes in tropics and subtropics as compared to the version of the IAP RAS CM that does not take the influence of ignition sources on the large-scale characteristics of NFs into consideration.

  14. Finding trans-regulatory genes and protein complexes modulating meiotic recombination hotspots of human, mouse and yeast.

    PubMed

    Wu, Min; Kwoh, Chee-Keong; Li, Xiaoli; Zheng, Jie

    2014-09-11

    The regulatory mechanism of recombination is one of the most fundamental problems in genomics, with wide applications in genome wide association studies (GWAS), birth-defect diseases, molecular evolution, cancer research, etc. Recombination events cluster into short genomic regions called "recombination hotspots". Recently, a zinc finger protein PRDM9 was reported to regulate recombination hotspots in human and mouse genomes. In addition, a 13-mer motif contained in the binding sites of PRDM9 is found to be enriched in human hotspots. However, this 13-mer motif only covers a fraction of hotspots, indicating that PRDM9 is not the only regulator of recombination hotspots. Therefore, the challenge of discovering other regulators of recombination hotspots becomes significant. Furthermore, recombination is a complex process. Hence, multiple proteins acting as machinery, rather than individual proteins, are more likely to carry out this process in a precise and stable manner. Therefore, the extension of the prediction of individual trans-regulators to protein complexes is also highly desired. In this paper, we introduce a pipeline to identify genes and protein complexes associated with recombination hotspots. First, we prioritize proteins associated with hotspots based on their preference of binding to hotspots and coldspots. Second, using the above identified genes as seeds, we apply the Random Walk with Restart algorithm (RWR) to propagate their influences to other proteins in protein-protein interaction (PPI) networks. Hence, many proteins without DNA-binding information will also be assigned a score to implicate their roles in recombination hotspots. Third, we construct sub-PPI networks induced by top genes ranked by RWR for various species (e.g., yeast, human and mouse) and detect protein complexes in those sub-PPI networks. The GO term analysis show that our prioritizing methods and the RWR algorithm are capable of identifying novel genes associated with

  15. Quantifying Fire's Impacts on Total and Pyrogenic Carbon Stocks in Mixed-Conifer Forests: Results from Pre- and Post-Fire Measurements in Active Wildfire Incidents

    NASA Astrophysics Data System (ADS)

    Miesel, J. R.; Reiner, A. L.; Ewell, C. M.; Sanderman, J.; Maestrini, B.; Adkins, J.

    2016-12-01

    Widespread US fire suppression policy has contributed to an accumulation of vegetation in many western forests relative to historic conditions, and these changes can exacerbate wildfire severity and carbon (C) emissions. Serious concern exists about positive feedbacks between wildfire emissions and global climate; however, fires not only release C from terrestrial to atmospheric pools, they also create "black" or pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on aboveground and belowground total C and PyC stocks in California mixed-conifer forests. We worked with incident management teams to access five active wildfires to establish and measure plots within days before and after fire. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, biomass C, and PyC, and we collected pre- and post-fire forest floor and 0-5 cm mineral soil samples to measure belowground C and PyC stocks. Our preliminary results show that fire had minimal impact on the number of trees per hectare, whereas C losses from the tree layer occurred via consumption of foliage, and PyC gain occurred in tree bark. Fire released 54% to 100% of surface fuel C. In the forest floor layer, we observed 33 to 100% C loss, whereas changes in PyC stocks ranged from 100% loss to 186% gain relative to pre-fire samples. In general, fire had minimal to no impact on 0-5 cm mineral soil C. We will present relationships between total C, PyC and post-fire C and N dynamics in one of the five wildfire sites. Our data are unique because they represent nearly immediate pre- and post-fire measurements in major wildfires in a widespread western U.S. forest type. This research advances understanding of the role of fire on forest C fluxes and C sequestration potential as PyC.

  16. Probing Hotspot Conditions in Spherically Shock Compressed Matter

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin; Nilsen, J.; Kritcher, A. L.; Swift, D.; Rygg, J. R.; Collins, G. W.; Divol, L.; Falcone, R. W.; Gaffney, J.; Glenzer, S. H.; Hatarik, R.; Hawreliak, J.; Khan, S.; Kraus, D.; Landen, O. L.; Masters, N.; Nagel, S. R.; Pardini, T.; Zimmerman, G.; Doeppner, T.

    2015-11-01

    We present results of an approach to experimentally determine the conditions in the center of a CD2 sphere that has been compressed to petapascal pressures by spherically converging shocks. By measuring the hotspot size using penumbral imaging, hotspot temperature using two-color spectroscopy, the neutron yield from DD nuclear reactions and the x-ray burn width, we infer average hotspot densities of 43 g/cm3 at 1.6 keV temperature. These conditions correspond to pressures of 4.4 petapascal (44 Gbar) in an ideal gas and 3.5 petapascal from independently performed rad.-hydro. simulations. The experimentally determined neutron yield, temperature and density constrain the EOS in a regime that exceeds previously reported pressures obtained in carbon EOS measurements by three orders of magnitude. The results show a path for constraining the EOS of matter at conditions that have been inaccessible with state-of-the-art experimental EOS techniques. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD Grant 13-ERD-073

  17. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots.

    PubMed

    de Bruyn, Mark; Rüber, Lukas; Nylinder, Stephan; Stelbrink, Björn; Lovejoy, Nathan R; Lavoué, Sébastien; Tan, Heok Hui; Nugroho, Estu; Wowor, Daisy; Ng, Peter K L; Siti Azizah, M N; Von Rintelen, Thomas; Hall, Robert; Carvalho, Gary R

    2013-05-01

    Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.

  18. Environmental and Microbial Features Affecting Denitrification and Anammox Hotspots in an Estuarine Ecosystem

    NASA Astrophysics Data System (ADS)

    Lisa, J.; Song, B.; Lefcheck, J. S.; Tobias, C. R.

    2016-02-01

    Biogeochemical hotspots are characterized as a few sites that exhibit extremely high reaction rates relative to surrounding area, and often account for a high percentage of the overall reaction rates in an ecosystem. Criteria for quantitatively identifying these sites have not been well established. Further, the underlying mechanisms of hotspots have been described in terms of environmental conditions, with little attention paid to the microbial community. The objectives of this study were to establish quantitative criteria to identify denitrification and anammox hotspots, and determine the underlying microbial and environmental factors responsible for elevated N2 production. We used 15N isotope pairing incubation experiments to measure denitrification and anammox rates in the New River Estuary, NC. Quantitative PCR assays of nitrous oxide reductase (nosZ Clades I and II) and hydrazine oxidoreductase (hzo) genes were conducted to estimate denitrifier and anammox abundance. Structural Equation Modeling (SEM) was used to elucidate complex causal relationships between environmental and biological variables. Denitrification hotspots, quantitatively defined as statistical outliers, accounted for 35.6% total denitrification while comprising only 7.3% of the sites. Anammox hotspots,10.6% of the sites, accounted for 60.9% of total anammox. SEM revealed increased sediment organics at lower salinities supported higher functional gene abundance, which in turn resulted in higher N2 production. Surprisingly, denitrification rates were significantly and positively correlated with nosZ Clade II gene abundance, after accounting for the non-significant contributions of the naturally more abundant nosZ Clade I, and other environmental covariates. This is the first time that a quantitative definition of biogeochemical hotspots was put forth and used to determine the importance of anammox and denitrification hotspots in estuarine nitrogen removal capacity. Despite the low area

  19. Hotspot detection using space-time scan statistics on children under five years of age in Depok

    NASA Astrophysics Data System (ADS)

    Verdiana, Miranti; Widyaningsih, Yekti

    2017-03-01

    Some problems that affect the health level in Depok is the high malnutrition rates from year to year and the more spread infectious and non-communicable diseases in some areas. Children under five years old is a vulnerable part of population to get the malnutrition and diseases. Based on this reason, it is important to observe the location and time, where and when, malnutrition in Depok happened in high intensity. To obtain the location and time of the hotspots of malnutrition and diseases that attack children under five years old, space-time scan statistics method can be used. Space-time scan statistic is a hotspot detection method, where the area and time of information and time are taken into account simultaneously in detecting the hotspots. This method detects a hotspot with a cylindrical scanning window: the cylindrical pedestal describes the area, and the height of cylinder describe the time. Cylinders formed is a hotspot candidate that may occur, which require testing of hypotheses, whether a cylinder can be summed up as a hotspot. Hotspot detection in this study carried out by forming a combination of several variables. Some combination of variables provides hotspot detection results that tend to be the same, so as to form groups (clusters). In the case of infant health level in Depok city, Beji health care center region in 2011-2012 is a hotspot. According to the combination of the variables used in the detection of hotspots, Beji health care center is most frequently as a hotspot. Hopefully the local government can take the right policy to improve the health level of children under five in the city of Depok.

  20. Life cycle of soil sggregates: from root residue to microbial and physical hotspots

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Or, D.

    2017-12-01

    Soil aggregation is a physical state of soil in which clumps of primary soil particles are held together by biological and/or chemical cementing agents. Aggregations plays important role in storage and movement of water and essential gases, nutrient cycling, and ultimately supporting microbial and plant life. It is also one of the most dynamic and sensitive soil qualities, which readily responds to disturbances such as cultivation, fire, drought, flooding, and changes in vegetation. Soil aggregation that is primarily controlled by organic matter generally exhibits hierarchical organization of soil constituents into stable units that range in size from a few microns to centimeters. However, this conceptual model of soil aggregation as the key unifying mechanism remains poorly quantified and is rarely included in predictive soil models. Here we provide a biophysical framework for quantitative and predictive modeling of soil aggregation and its attendant soil characteristics. The framework treats aggregates as hotspots of biological, chemical and physical processes centered around roots and root residue. We keep track of the life cycle of an individual aggregate from it genesis in the rhizosphere, fueled by rhizodeposition and mediated by vigorous microbial activity, until its disappearance when the root-derived resources are depleted. The framework synthesizes current understanding of microbial life in porous media; water holding and soil binding capacity of biopolymers; and environmental controls on soil organic matter dynamics. The framework paves a way for integration of processes that are presently modeled as disparate or poorly coupled processes, including storage and protection of carbon, microbial activity, greenhouse gas fluxes, movement and storage of water, resistance of soils against erosion.

  1. Investigating dominant characteristics of fires across the Amazon during 2005-2014 through satellite data synthesis of combustion signatures

    NASA Astrophysics Data System (ADS)

    Tang, W.; Arellano, A. F.

    2017-01-01

    Estimates of fire emissions remain uncertain due to limited constraints on the variations in fire characteristics. Here we demonstrate the utility of space-based observations of smoke constituents in addressing this limitation. We introduce a satellite-derived smoke index (SI) as an indicator of the dominant phase of large-scale fires. This index is calculated as the ratio of the geometric mean of observed fractional enhancements (due to fire) in carbon monoxide and aerosol optical depth to that of nitrogen dioxide. We assess the usefulness of this index on fires in the Amazon. We analyze the seasonal, regional, and interannual joint distribution of SI and fire radiative power (FRP) in relation to fire hotspots, land cover, Drought Severity Index, and deforestation rate estimates. We also compare this index with an analogous quantity derived from field data or emission inventories. Our results show that SI changes from low (more flaming) to high (more smoldering) during the course of a fire season, which is consistent with the changes in observed maximum FRPs from high to low. We also find that flaming combustion is more dominant in areas where deforestation fires dominate, while smoldering combustion has a larger influence during drought years when understory fires are more likely enhanced. Lastly, we find that the spatiotemporal variation in SI is inconsistent with current emission inventories. Although we recognize some limitations of this approach, our results point to the utility of SI as a proxy for overall combustion efficiency in the parameterization of fire emission models.

  2. The history, hotspots, and trends of electrocardiogram

    PubMed Central

    Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua

    2015-01-01

    The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern. PMID:26345622

  3. The making of a productivity hotspot in the coastal ocean.

    PubMed

    Wingfield, Dana K; Peckham, S Hoyt; Foley, David G; Palacios, Daniel M; Lavaniegos, Bertha E; Durazo, Reginaldo; Nichols, Wallace J; Croll, Donald A; Bograd, Steven J

    2011-01-01

    Highly productive hotspots in the ocean often occur where complex physical forcing mechanisms lead to aggregation of primary and secondary producers. Understanding how hotspots persist, however, requires combining knowledge of the spatio-temporal linkages between geomorphology, physical forcing, and biological responses with the physiological requirements and movement of top predators. Here we integrate remotely sensed oceanography, ship surveys, and satellite telemetry to show how local geomorphology interacts with physical forcing to create a region with locally enhanced upwelling and an adjacent upwelling shadow that promotes retentive circulation, enhanced year-round primary production, and prey aggregation. These conditions provide an area within the upwelling shadow where physiologically optimal water temperatures can be found adjacent to a region of enhanced prey availability, resulting in a foraging hotspot for loggerhead sea turtles (Caretta caretta) off the Baja California peninsula, Mexico. We have identified the set of conditions that lead to a persistent top predator hotspot, which increases our understanding of how highly migratory species exploit productive regions of the ocean. These results will aid in the development of spatially and environmentally explicit management strategies for marine species of conservation concern.

  4. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    PubMed

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  5. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    PubMed Central

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  6. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    PubMed

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes

  7. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests

    Treesearch

    Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...

  8. Correlates of injecting in an HIV incidence hotspot among substance users in Tijuana, Mexico.

    PubMed

    Kori, Nana; Roth, Alexis M; Lozada, Remedios; Vera, Alicia; Brouwer, Kimberly C

    2014-05-01

    Substance use and HIV are growing problems in the Mexico-U.S. border city of Tijuana, a sex tourism destination situated on a northbound drug trafficking route. In a previous longitudinal study of injection drug users (IDUs), we found that >90% of incident HIV cases occurred within an 'HIV incidence hotspot,' consisting of 2.5-blocks. This study examines behavioral, social, and environmental correlates associated with injecting in this HIV hotspot. From 4/06 to 6/07, IDUs aged ≥18 years were recruited using respondent-driven sampling. Participants underwent antibody testing for HIV and syphilis and interviewer-administered surveys eliciting information on demographics, drug use, sexual behaviors, and socio-environmental influences. Participants were defined as injecting in the hotspot if they most frequently injected within a 3 standard deviational ellipse of the cohort's incident HIV cases. Logistic regression was used to identify individual and structural factors associated with the HIV 'hotspot'. Of 1031 IDUs, the median age was 36 years; 85% were male; HIV prevalence was 4%. As bivariate analysis indicated different correlates for males and females, models were stratified by sex. Factors independently associated with injecting in the HIV hotspot for male IDUs included homelessness (AOR 1.72; 95%CI 1.14-2.6), greater intra-urban mobility (AOR 3.26; 95%CI 1.67-6.38), deportation (AOR 1.58; 95%CI 1.18-2.12), active syphilis (AOR 3.03; 95%CI 1.63-5.62), needle sharing (AOR 0.57; 95%CI 0.42-0.78), various police interactions, perceived HIV infection risk (AOR 1.52; 95%CI 1.13-2.03), and health insurance status (AOR 0.53; 95%CI 0.33-0.87). For female IDUs, significant factors included sex work (AOR 8.2; 95%CI 2.2-30.59), lifetime syphilis exposure (AOR 2.73; 95%CI 1.08-6.93), injecting inside (AOR 5.26; 95%CI 1.54-17.92), arrests for sterile syringe possession (AOR 4.87; 95%I 1.56-15.15), prior HIV testing (AOR 2.45; 95%CI 1.04-5.81), and health insurance status

  9. Threats from Climate Change to Terrestrial Vertebrate Hotspots in Europe

    PubMed Central

    Maiorano, Luigi; Amori, Giovanni; Capula, Massimo; Falcucci, Alessandra; Masi, Monica; Montemaggiori, Alessandro; Pottier, Julien; Psomas, Achilleas; Rondinini, Carlo; Russo, Danilo; Zimmermann, Niklaus E.

    2013-01-01

    We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21st century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran’s I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation. PMID:24066162

  10. Threats from climate change to terrestrial vertebrate hotspots in Europe.

    PubMed

    Maiorano, Luigi; Amori, Giovanni; Capula, Massimo; Falcucci, Alessandra; Masi, Monica; Montemaggiori, Alessandro; Pottier, Julien; Psomas, Achilleas; Rondinini, Carlo; Russo, Danilo; Zimmermann, Niklaus E; Boitani, Luigi; Guisan, Antoine

    2013-01-01

    We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21(st) century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran's I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation.

  11. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model

    NASA Technical Reports Server (NTRS)

    Gripp, Alice E.; Gordon, Richard G.

    1990-01-01

    The NUVEL-1 model of current global relative plate velocities is presently incorporated into HS2-NUVEL1, a global model for plate velocities relative to hotspots; the results thus obtained are compared with those of the AM1-2 model of hotspot-relative plate velocities. While there are places in which plate velocities relative to the hotspots differ between HS2-NUVEL1 and AM1-2 by tens of degrees in direction and 15 mm/yr in speed, the hotspot Euler vectors differ with 95 percent confidence only for the Arabian and Indian plates. Plates attached to subducting slabs move faster relative to the hotspots than do plates without slabs.

  12. Biscuit Fire, OR

    NASA Image and Video Library

    2002-08-22

    In southwest Oregon, the Biscuit Fire continues to grow. This image, acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite on August 14, 2002, shows the pillars of smoke arising from the fires. Active fire areas are in red. More than 6,000 fire personnel are assigned to the Biscuit Fire alone, which was 390,276 acres as of Thursday morning, August 15, and only 26 percent contained. Among the resources threatened are thousands of homes, three nationally designated wild and scenic rivers, and habitat for several categories of plants and animals at risk of extinction. Firefighters currently have no estimate as to when the fire might be contained. http://photojournal.jpl.nasa.gov/catalog/PIA03856

  13. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil.

    PubMed

    Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta

    2018-04-01

    Forest fires are a regular occurrence in the Mediterranean basin. High severity fires and post-fire management can affect biological, chemical and physical properties of soil, including the composition and abundance of soil microbial communities. Salvage logging is a post-fire management strategy, which involves the removal of burnt wood from land after a fire. The main objective of this work was to evaluate the impact of post-fire salvage logging and microaggregation on soil microbial communities, specifically on the abundance of nitrogen cyclers and, thus, the potential of the soil for microbial nitrogen cycling. The abundance of nitrogen cyclers was assessed by quantification of microbial nitrogen cycling genes in soil DNA, including nifH (involved in nitrogen fixation), nirS/K and nosZ (involved in denitrification), amoA-B and amoA-Arch (involved in bacterial and archaeal nitrification, respectively). It was demonstrated that salvage logging reduced bacterial load post-fire when compared to tree retention control and resulted in significant changes to the abundance of functional bacteria involved in nitrogen cycling. Microbial gene pools involved in various stages of the nitrogen cycle were larger in control soil than in soil subjected to post-fire salvage logging and were significantly correlated with organic matter, available phosphorous, nitrogen and aggregate stability. The microaggregate fraction of the soil, which has been associated with greater organic carbon, was shown to be a hotspot for nitrogen cyclers particularly under salvage logging. The impact of post-fire management strategies on soil microbial communities needs to be considered in relation to maintaining ecosystem productivity, resilience and potential impact on climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    NASA Technical Reports Server (NTRS)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  15. Enhancing fire science exchange: The Northern Rockies Fire Science Network [poster

    Treesearch

    Vita Wright

    2011-01-01

    The Joint Fire Science Program is developing a national network of knowledge exchange consortia comprised of interested management and science stakeholders working together to tailor and actively demonstrate existing fire science information to benefit management.

  16. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic

    NASA Astrophysics Data System (ADS)

    Grebmeier, Jacqueline M.; Bluhm, Bodil A.; Cooper, Lee W.; Danielson, Seth L.; Arrigo, Kevin R.; Blanchard, Arny L.; Clarke, Janet T.; Day, Robert H.; Frey, Karen E.; Gradinger, Rolf R.; Kędra, Monika; Konar, Brenda; Kuletz, Kathy J.; Lee, Sang H.; Lovvorn, James R.; Norcross, Brenda L.; Okkonen, Stephen R.

    2015-08-01

    The northern Bering and Chukchi Seas are areas in the Pacific Arctic characterized by high northward advection of Pacific Ocean water, with seasonal variability in sea ice cover, water mass characteristics, and benthic processes. In this review, we evaluate the biological and environmental factors that support communities of benthic prey on the continental shelves, with a focus on four macrofaunal biomass "hotspots." For the purpose of this study, we define hotspots as macrofaunal benthic communities with high biomass that support a corresponding ecological guild of benthivorous seabird and marine mammal populations. These four benthic hotspots are regions within the influence of the St. Lawrence Island Polynya (SLIP), the Chirikov Basin between St. Lawrence Island and Bering Strait (Chirikov), north of Bering Strait in the southeast Chukchi Sea (SECS), and in the northeast Chukchi Sea (NECS). Detailed benthic macrofaunal sampling indicates that these hotspot regions have been persistent over four decades of sampling due to annual reoccurrence of seasonally consistent, moderate-to-high water column production with significant export of carbon to the underlying sediments. We also evaluate the usage of the four benthic hotspot regions by benthic prey consumers to illuminate predator-prey connectivity. In the SLIP hotspot, spectacled eiders and walruses are important winter consumers of infaunal bivalves and polychaetes, along with epibenthic gastropods and crabs. In the Chirikov hotspot, gray whales have historically been the largest summer consumers of benthic macrofauna, primarily feeding on ampeliscid amphipods in the summer, but they are also foraging further northward in the SECS and NECS hotspots. Areas of concentrated walrus foraging occur in the SLIP hotspot in winter and early spring, the NECS hotspot in summer, and the SECS hotspot in fall. Bottom up forcing by hydrography and food supply to the benthos influences persistence and composition of benthic prey

  17. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    PubMed

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of

  18. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms

    PubMed Central

    2014-01-01

    Background As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Results Recently, an algorithm called “LDsplit” has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. Conclusions LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that

  19. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila

    PubMed Central

    Guo, Fang; Cerullo, Isadora; Chen, Xiao; Rosbash, Michael

    2014-01-01

    Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY. DOI: http://dx.doi.org/10.7554/eLife.02780.001 PMID:24939987

  20. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    NASA Astrophysics Data System (ADS)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the

  1. Thermal Structure of Jupiter's Infrared Hotspots and Plumes in the Northern Equatorial Region

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Orton, Glenn S.; Rogers, John H.; Greathouse, Thomas K.; Momary, Thomas W.; Giles, Rohini Sara; Melin, Henrik; Sinclair, James; Irwin, Patrick Gerard Joseph; Vedovato, Marco

    2016-10-01

    The most prominent features of Jupiter's northern equatorial region are the visibly dark, 5-µm-bright 'hotspots' that move rapidly eastward on the southern edge of the North Equatorial Belt (NEB, Allison 1990, doi:10.1016/0019-1035(90)90069-L). We combine high-resolution thermal-infrared (5-20 µm) imaging from VLT/VISIR and IRTF/SpeX with spatially resolved spectroscopy from IRTF/TEXES to examine the thermal and chemical conditions in the equatorial region during the 2015-2016 apparition. The high spatial resolution permits the first detailed cross-comparison of thermal and visible-albedo conditions within the hotspots. We find that: (i) cloud-clearing within the hotspots creates 8.6-µm bright patches that are broader and more diffuse than their 5-µm counterparts; (ii) cloudy, cool cells ("plumes") in the northern Equatorial Zone are ammonia-rich and dark in the 5- and 8-12 µm range; (iii) the hotspots sometimes demonstrate a westward tilt with altitude in the 0.1-0.8 bar region (Fletcher et al., 2016, doi:10.1016/j.icarus.2016.06.008); and (iv) blue-grey streaks on the southeastern edges of these ammonia-rich cells are also cloud free and bright at 5-12 µm. This regular longitudinal pattern of cloudy cells and cloud-free hotspots is consistent with condensation of NH3-rich air as it ascends in cells, and subsidence of dry, volatile-depleted air in the hotspots. The westward tilt of the NEB hotspots with height that was detected in 2014 (but not in 2016) supports the equatorial Rossby-wave hypothesis for the NEB pattern. This equatorial wave is distinct from those in the upper troposphere during the 2015-16 NEB expansion event (Orton et al., DPS/EPSC 2016). The cells and hotspots observed in the thermal-IR are the same type as those detected at near-IR wavelengths by Galileo/NIMS (Baines et al. 2002, doi:10.1006/icar.2002.6901) and in the radio, probing the deep atmosphere (de Pater et al., 2016, doi:10.1126/science.aaf2210), suggesting a coherent structure

  2. Fire history and human activity in last 2000 years reconstructed from varved lake sediments (N Poland)

    NASA Astrophysics Data System (ADS)

    Slowinski, M. M.; Pienczewska, A.; Obremska, M.; Ott, F.; Dietze, E.; Feurdean, A.; Theuerkauf, M.; Brauer, A.

    2016-12-01

    Humans in the last two thousand years affect profound changes to ecosystem structure and function sometimes causing fire regimes. The aim of the study was to reconstruct fire history and human activity in the Tuchola Pinewoods (Northern Poland) during the last 2000 years. The robust chronology of the sediment record is based on varve counting, AMS 14C dating, 137Cs activity concentration measurements and tephrochronology (Askja AD 1875). Pollen and microscopic charcoal data were obtained from varved lake sediments at a resolution of consistently 5 years and 10 years. Data from Czechowskie lake suggest next to climate change that increased human activity was one of the main factors that influenced fire frequency (e.g. 50-450 AD and 900-1200 AD). This is particularly evident between 1776-1905 AD, when intensified forest management led to a transformation from mixed to pine dominated forests (fire-prone vegetation). Using high-resolution pollen and charcoal data we aim to identify the most probable causes of changes during the last 2000 years. Finally, we discuss the observed fire frequency and vegetation change in relation to climate changes and the socio-economic development of the area. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis - ICLEA- of the Helmholtz Association and National Science Centre, Poland (grant No. 2011/01/B/ST10/07367 and 2015/17/B/ST10/03430).

  3. Current Global Absolute Plate Velocities Inferred from the Trends of Hotspot Tracks: Implications for Motion between Groups of Hotspots and Comparison and Combination with Absolute Velocities Inferred from the Orientation of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2016-12-01

    Hotspot tracks are widely used to estimate the absolute velocities of plates, i.e., relative to the lower mantle. Knowledge of current motion between hotspots is important for both plate kinematics and mantle dynamics and informs the discussion on the origin of the Hawaiian-Emperor Bend. Following Morgan & Morgan (2007), we focus only on the trends of young hotspot tracks and omit volcanic propagation rates. The dispersion of the trends can be partitioned into between-plate and within-plate dispersion. Applying the method of Gripp & Gordon (2002) to the hotspot trend data set of Morgan & Morgan (2007) constrained to the MORVEL relative plate angular velocities (DeMets et al., 2010) results in a standard deviation of the 56 hotspot trends of 22°. The largest angular misfits tend to occur on the slowest moving plates. Alternatively, estimation of best-fitting poles to hotspot tracks on the nine individual plates, results in a standard deviation of trends of only 13°, a statistically significant reduction from the introduction of 15 additional adjustable parameters. If all of the between-plate misfit is due to motion of groups of hotspots (beneath different plates), nominal velocities relative to the mean hotspot reference frame range from 1 to 4 mm/yr with the lower bounds ranging from 1 to 3 mm/yr and the greatest upper bound being 8 mm/yr. These are consistent with bounds on motion between Pacific and Indo-Atlantic hotspots over the past ≈50 Ma, which range from zero (lower bound) to 8 to 13 mm/yr (upper bounds) (Koivisto et al., 2014). We also determine HS4-MORVEL, a new global set of plate angular velocities relative to the hotspots constrained to consistency with the MORVEL relative plate angular velocities, using a two-tier analysis similar to that used by Zheng et al. (2014) to estimate the SKS-MORVEL global set of absolute plate velocities fit to the orientation of seismic anisotropy. We find that the 95% confidence limits of HS4-MORVEL and SKS

  4. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.

    PubMed

    Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the

  5. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  6. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime.

    PubMed

    Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M

    2014-08-01

    Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional

  7. A Coastal Risk Assessment Framework Tool to Identify Hotspots at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Van Dongeren, A.; Viavattene, C.; Jimenez, J. A.; Ferreira, O.; Bolle, A.; Owen, D.; Priest, S.

    2016-02-01

    Extreme events in combination with an increasing population on the coast, future sea level rise and the deterioration of coastal defences can lead to catastrophic consequences for coastal communities and their activities. The Resilience-Increasing Strategies for Coasts - toolkit (RISC-KIT) FP7 EU project is producing a set of EU-coherent open-source and open-access tools in support of coastal managers and decision-makers. This paper presents one of these tools, the Coastal Risk Assessment Framework (CRAF) which assesses coastal risk at a regional scale to identify potential impact hotspots for more detailed assessment. Applying a suite of complex models at a full and detailed regional scale remains difficult and may not be efficient, therefore a 2-phase approach is adopted. CRAF Phase 1 is a screening process based on a coastal-index approach delimiting several hotspots in alongshore length by assessing the potential exposure for every kilometre along the coast. CRAF Phase 2 uses a suite of more complex modelling process (including X-beach 1D, inundation model, impact assessment and Multi-Criteria Analysis approach) to analyse and compare the risks between the aforementioned identified hotspots. Results of its application are compared on 3 European Case Studies, the Flemish highly protected low-lying coastal plain with important urbanization and harbors, a Portuguese coastal lagoon protected by a multi-inlet barrier system, the highly urbanized Catalonian coast with touristic activities at threat. The flexibility of the tool allows tailoring the comparative analysis to these different contexts and to adapt to the quality of resources and data available. Key lessons will be presented.

  8. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwest Oregon, the Biscuit Fire continues to grow. This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image from August 14, 2002, shows the burn scar associated with the enormous blaze. The visualization uses ASTER's 30-meter-resolution, short-wave infrared bands to minimize smoke contamination and enhance the burn scar, which appears purple amid green vegetation. Actively burning areas of the fire appear very light purple. More than 6,000 fire personnel are assigned to the Biscuit Fire, which was 390, 276 acres as of Friday morning, August 15, and only 26 percent contained. Among the resources threatened are thousands of homes, three nationally designated wild and scenic rivers, and habitat for several categories of plants and animals at risk of extinction. Firefighters currently have no estimate as to when the fire might be contained. Credit: This image was acquired on an expedited basis as part of NASA Wildfire Response Team activities. Image courtesy Mike Abrams, Simon Hook, and the ASTER team at EROS Data Center DAAC.

  9. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.

    PubMed

    Yan, Xiunan; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Xiaoyun; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2017-05-02

    Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.

  10. A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots.

    PubMed

    Turner, P A; Griffis, T J; Mulla, D J; Baker, J M; Venterea, R T

    2016-12-01

    Anthropogenic emissions of nitrous oxide (N 2 O), a trace gas with severe environmental costs, are greatest from agricultural soils amended with nitrogen (N) fertilizer. However, accurate N 2 O emission estimates at fine spatial scales are made difficult by their high variability, which represents a critical challenge for the management of N 2 O emissions. Here, static chamber measurements (n=60) and soil samples (n=129) were collected at approximately weekly intervals (n=6) for 42-d immediately following the application of N in a southern Minnesota cornfield (15.6-ha), typical of the systems prevalent throughout the U.S. Corn Belt. These data were integrated into a geostatistical model that resolved N 2 O emissions at a high spatial resolution (1-m). Field-scale N 2 O emissions exhibited a high degree of spatial variability, and were partitioned into three classes of emission strength: hotspots, intermediate, and coldspots. Rates of emission from hotspots were 2-fold greater than non-hotspot locations. Consequently, 36% of the field-scale emissions could be attributed to hotspots, despite representing only 21% of the total field area. Variations in elevation caused hotspots to develop in predictable locations, which were prone to nutrient and moisture accumulation caused by terrain focusing. Because these features are relatively static, our data and analyses indicate that targeted management of hotspots could efficiently reduce field-scale emissions by as much 17%, a significant benefit considering the deleterious effects of atmospheric N 2 O. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Beyond blow-up in excitatory integrate and fire neuronal networks: Refractory period and spontaneous activity.

    PubMed

    Cáceres, María J; Perthame, Benoît

    2014-06-07

    The Network Noisy Leaky Integrate and Fire equation is among the simplest model allowing for a self-consistent description of neural networks and gives a rule to determine the probability to find a neuron at the potential v. However, its mathematical structure is still poorly understood and, concerning its solutions, very few results are available. In the midst of them, a recent result shows blow-up in finite time for fully excitatory networks. The intuitive explanation is that each firing neuron induces a discharge of the others; thus increases the activity and consequently the discharge rate of the full network. In order to better understand the details of the phenomena and show that the equation is more complex and fruitful than expected, we analyze further the model. We extend the finite time blow-up result to the case when neurons, after firing, enter a refractory state for a given period of time. We also show that spontaneous activity may occur when, additionally, randomness is included on the firing potential VF in regimes where blow-up occurs for a fixed value of VF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Distribution of recombination hotspots in the human genome--a comparison of computer simulations with real data.

    PubMed

    Mackiewicz, Dorota; de Oliveira, Paulo Murilo Castro; Moss de Oliveira, Suzana; Cebrat, Stanisław

    2013-01-01

    Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar.

  14. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix.

    PubMed

    Liu, Honglin; Yang, Zhilin; Meng, Lingyan; Sun, Yudie; Wang, Jie; Yang, Liangbao; Liu, Jinhuai; Tian, Zhongqun

    2014-04-09

    The "fixed" or "flexible" design of plasmonic hotspots is a frontier area of research in the field of surface-enhanced Raman scattering (SERS). Most reported SERS hotspots have been shown to exist in zero-dimensional point-like, one-dimensional linear, or two-dimensional planar geometries. Here, we demonstrate a novel three-dimensional (3D) hotspot matrix that can hold hotspots between every two adjacent particles in 3D space, simply achieved by evaporating a droplet of citrate-Ag sols on a fluorosilylated silicon wafer. In situ synchrotron-radiation small-angle X-ray scattering (SR-SAXS), combined with dark-field microscopy and in situ micro-UV, was employed to explore the evolution of the 3D geometry and plasmonic properties of Ag nanoparticles in a single droplet. In such a droplet, there is a distinct 3D geometry with minimal polydispersity of particle size and maximal uniformity of interparticle distance, significantly different from the dry state. According to theoretical simulations, the liquid adhesive force promotes a closely packed assembly of particles, and the interparticle distance is not fixed but can be balanced in a small range by the interplay of the van der Waals attraction and electrostatic repulsion experienced by a particle. The "trapping well" for immobilizing particles in 3D space can result in a large number of hotspots in a 3D geometry. Both theoretical and experimental results demonstrate that the 3D hotspots are predictable and time-ordered in the absence of any sample manipulation. Use of the matrix not only produces giant Raman enhancement at least 2 orders of magnitude larger than that of dried substrates, but also provides the structural basis for trapping molecules. Even a single molecule of resonant dye can generate a large SERS signal. With a portable Raman spectrometer, the detection capability is also greatly improved for various analytes with different natures, including pesticides and drugs. This 3D hotspot matrix overcomes the

  15. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management

    PubMed Central

    Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the

  16. Statistical self-similarity of hotspot seamount volumes modeled as self-similar criticality

    USGS Publications Warehouse

    Tebbens, S.F.; Burroughs, S.M.; Barton, C.C.; Naar, D.F.

    2001-01-01

    The processes responsible for hotspot seamount formation are complex, yet the cumulative frequency-volume distribution of hotspot seamounts in the Easter Island/Salas y Gomez Chain (ESC) is found to be well-described by an upper-truncated power law. We develop a model for hotspot seamount formation where uniform energy input produces events initiated on a self-similar distribution of critical cells. We call this model Self-Similar Criticality (SSC). By allowing the spatial distribution of magma migration to be self-similar, the SSC model recreates the observed ESC seamount volume distribution. The SSC model may have broad applicability to other natural systems.

  17. Fire in southern forest landscapes

    Treesearch

    John A. Stanturf; Dale D. Wade; Thomas A. Waldrop; Deborah K. Kennard; Gary L. Achtemeier

    2002-01-01

    Other than land clearing for urban development (Wear and others 1998), no disturbance is more common in southern forests than fire. The pervasive role of fire predates human activity in the South (Komarek 1964, 1974), and humans magnified that role. Repeating patterns of fire behavior lead to recognizable fire regimes, with temporal and spatial dimensions....

  18. Lagrangian Hotspots of In-Use NOX Emissions from Transit Buses.

    PubMed

    Kotz, Andrew J; Kittelson, David B; Northrop, William F

    2016-06-07

    In-use, spatiotemporal NOX emissions were measured from a conventional powertrain transit bus and a series electric hybrid bus over gradients of route kinetic intensity and ambient temperature. This paper introduces a new method for identifying NOX emissions hotspots along a bus route using high fidelity Lagrangian vehicle data to explore spatial interactions that may influence emissions production. Our study shows that the studied transit buses emit higher than regulated emissions because on-route operation does not accurately represent the range of engine operation tested according to regulatory standards. Using the Lagrangian hotspot detection, we demonstrate that NOX hotspots occurred at bus stops, during cold starts, on inclines, and for accelerations. On the selected routes, bus stops resulted in 3.3 times the route averaged emissions factor in grams/km without significant dependence on bus type or climate. The buses also emitted 2.3 times the route averaged NOX emissions factor at the beginning of each route due to cold selective catalytic reduction aftertreatment temperature. The Lagrangian hotspot detection technique demonstrated here could be employed in future connected vehicles empowered by advances in computational power, data storage capability, and improved sensor technology to optimize emissions as a function of spatial location.

  19. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    PubMed

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  20. Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis

    PubMed Central

    2018-01-01

    Food production in China results in large losses of nitrogen (N) and phosphorus (P) to the environment. Our objective is to identify hotspots for N and P losses to the environment from food production in China at the county scale. To do this, we used the NUFER (Nutrient flows in Food chains, Environment and Resources use) model. Between 1990 and 2012, the hotspot area expanded by a factor of 3 for N, and 24 for P. In 2012 most hotspots were found in the North China Plain. Hotspots covered less than 10% of the Chinese land area, but contributed by more than half to N and P losses to the environment. Direct discharge of animal manure to rivers was an important cause of N and P losses. Food production was found to be more intensive in hotspots than in other counties. Synthetic fertilizer use and animal numbers in hotspots were a factor of 4–5 higher than in other counties in 2012. Also the number of people working in food production and the incomes of farmers are higher in hotspots than in other counties. This study concludes with suggestions for region-specific pollution control technologies for food production in China. PMID:29671326

  1. Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis.

    PubMed

    Wang, Mengru; Ma, Lin; Strokal, Maryna; Ma, Wenqi; Liu, Xuejun; Kroeze, Carolien

    2018-04-27

    Food production in China results in large losses of nitrogen (N) and phosphorus (P) to the environment. Our objective is to identify hotspots for N and P losses to the environment from food production in China at the county scale. To do this, we used the NUFER (Nutrient flows in Food chains, Environment and Resources use) model. Between 1990 and 2012, the hotspot area expanded by a factor of 3 for N, and 24 for P. In 2012 most hotspots were found in the North China Plain. Hotspots covered less than 10% of the Chinese land area, but contributed by more than half to N and P losses to the environment. Direct discharge of animal manure to rivers was an important cause of N and P losses. Food production was found to be more intensive in hotspots than in other counties. Synthetic fertilizer use and animal numbers in hotspots were a factor of 4-5 higher than in other counties in 2012. Also the number of people working in food production and the incomes of farmers are higher in hotspots than in other counties. This study concludes with suggestions for region-specific pollution control technologies for food production in China.

  2. Hotspot-Centric De Novo Design of Protein Binders

    PubMed Central

    Fleishman, Sarel J.; Corn, Jacob E.; Strauch, Eva-Maria; Whitehead, Timothy A.; Karanicolas, John; Baker, David

    2014-01-01

    Protein–protein interactions play critical roles in biology, and computational design of interactions could be useful in a range of applications. We describe in detail a general approach to de novo design of protein interactions based on computed, energetically optimized interaction hotspots, which was recently used to produce high-affinity binders of influenza hemagglutinin. We present several alternative approaches to identify and build the key hotspot interactions within both core secondary structural elements and variable loop regions and evaluate the method's performance in natural-interface recapitulation. We show that the method generates binding surfaces that are more conformationally restricted than previous design methods, reducing opportunities for off-target interactions. PMID:21945116

  3. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information.

    PubMed

    Sumbalova, Lenka; Stourac, Jan; Martinek, Tomas; Bednar, David; Damborsky, Jiri

    2018-05-23

    HotSpot Wizard is a web server used for the automated identification of hotspots in semi-rational protein design to give improved protein stability, catalytic activity, substrate specificity and enantioselectivity. Since there are three orders of magnitude fewer protein structures than sequences in bioinformatic databases, the major limitation to the usability of previous versions was the requirement for the protein structure to be a compulsory input for the calculation. HotSpot Wizard 3.0 now accepts the protein sequence as input data. The protein structure for the query sequence is obtained either from eight repositories of homology models or is modeled using Modeller and I-Tasser. The quality of the models is then evaluated using three quality assessment tools-WHAT_CHECK, PROCHECK and MolProbity. During follow-up analyses, the system automatically warns the users whenever they attempt to redesign poorly predicted parts of their homology models. The second main limitation of HotSpot Wizard's predictions is that it identifies suitable positions for mutagenesis, but does not provide any reliable advice on particular substitutions. A new module for the estimation of thermodynamic stabilities using the Rosetta and FoldX suites has been introduced which prevents destabilizing mutations among pre-selected variants entering experimental testing. HotSpot Wizard is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.

  4. Hydraulic redistribution affects modeled carbon cycling via soil microbial activity and suppressed fire.

    PubMed

    Fu, Congsheng; Wang, Guiling; Bible, Kenneth; Goulden, Michael L; Saleska, Scott R; Scott, Russell L; Cardon, Zoe G

    2018-04-13

    Hydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world-wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe-controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system-scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO 2 (or reduce annual CO 2 release to the atmosphere). Moreover, engagement of CLM4.5's ground-truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO 2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems. © 2018 John Wiley & Sons Ltd.

  5. NASA Fire Protection Coordinators' Conference

    NASA Technical Reports Server (NTRS)

    Clark, Theodore

    2001-01-01

    Fire prevention activities at NASA's Stennis Space Center are reviewed in this viewgraph presentation. The Fire Prevention Office of the Fire Department at NASA Stennis conducts inspections and issues small appliance permits, while the Operations Section responds to emergencies.

  6. Forecasting hotspots in East Kutai, Kutai Kartanegara, and West Kutai as early warning information

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Goejantoro, R.; Rizki, N. A.

    2018-04-01

    The aims of this research are to model hotspots and forecast hotspot 2017 in East Kutai, Kutai Kartanegara and West Kutai. The methods which used in this research were Holt exponential smoothing, Holt’s additive dump trend method, Holt-Winters’ additive method, additive decomposition method, multiplicative decomposition method, Loess decomposition method and Box-Jenkins method. For smoothing techniques, additive decomposition is better than Holt’s exponential smoothing. The hotspots model using Box-Jenkins method were Autoregressive Moving Average ARIMA(1,1,0), ARIMA(0,2,1), and ARIMA(0,1,0). Comparing the results from all methods which were used in this research, and based on Root of Mean Squared Error (RMSE), show that Loess decomposition method is the best times series model, because it has the least RMSE. Thus the Loess decomposition model used to forecast the number of hotspot. The forecasting result indicatethat hotspots pattern tend to increase at the end of 2017 in Kutai Kartanegara and West Kutai, but stationary in East Kutai.

  7. Rough versus smooth topography along oceanic hotspot tracks: Observations and scaling analysis

    NASA Astrophysics Data System (ADS)

    Orellana-Rovirosa, Felipe; Richards, Mark

    2017-05-01

    Some hotspot tracks are topographically smooth and broad (Nazca, Carnegie/Cocos/Galápagos, Walvis, Iceland), while others are rough and discontinuous (Easter/Sala y Gomez, Tristan-Gough, Louisville, St. Helena, Hawaiian-Emperor). Smooth topography occurs when the lithospheric age at emplacement is young, favoring intrusive magmatism, whereas rough topography is due to isolated volcanic edifices constructed on older/thicker lithosphere. The main controls on the balance of intrusive versus extrusive magmatism are expected to be the hotspot swell volume flux Qs, plate hotspot relative speed v, and lithospheric elastic thickness Te, which can be combined as a dimensionless parameter R = (Qs/v)1/2/Te, which represents the ratio of plume heat to the lithospheric heat capacity. Observational constraints show that, except for the Ninetyeast Ridge, R is a good predictor of topographic character: for R < 1.5 hotspot tracks are topographically rough and dominated by volcanic edifices, whereas for R > 3 they are smooth and dominated by intrusion.

  8. Activity-driven changes in the mechanical properties of fire ant aggregations

    NASA Astrophysics Data System (ADS)

    Tennenbaum, Michael; Fernandez-Nieves, Alberto

    2017-11-01

    Fire ant aggregations are active materials composed of individual constituents that are able to transform internal energy into work. We find using rheology and direct visualization that the aggregation undergoes activity cycles that affect the mechanical properties of the system. When the activity is high, the aggregation approximately equally stores and dissipates energy, it is more homogeneous, and exerts a high outward force. When the activity is low, the aggregation is predominantly elastic, it is more heterogeneous, and it exerts a small outward force. We rationalize our results using a simple kinetic model where the number of active ants within the aggregation is the essential quantity.

  9. Eliminating "Hotspots" in Digital Image Processing

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  10. Detection and characterization of small hot fires: Comparing FireBird, BIRD, S-NPP VIIRS and MODIS capacities over gas flares

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Schroeder, Wilfrid; Lorenz, Eckehard; Kaiser, Johannes; Caseiro, Alexandre

    2016-04-01

    According to recent research, black carbon has the second strongest effect on the earth climate system after carbon dioxide. In high Northern latitudes, industrial gas flares are an important source of black carbon, especially in winter. This fact is particularly relevant for the relatively fast observed climate change in the Arctic since deposition of black carbon changes the albedo of snow and ice, thus leading to a positive feedback cycle. Here we explore gas flare detection and Fire Radiative Power (FRP) retrievals of the German FireBird TET-1 and BIRD Hotspot Recognition Systems (HSRS), the VIIRS sensor on board of the S-NPP satellite, and the MODIS sensor using temporally close to near coincident data acquisitions. Comparison is based on level 2 products developed for fire detection for the different sensors; in the case of S-NPP VIIRS we use two products: the new VIIRS 750m algorithm based on MODIS collection 6, and the 350 m algorithm based on the VIIRS mid-infrared I (Imaging) band, which offers high resolution, but no FRP retrievals. Results indicate that the highest resolution FireBird sensors offer the best detection capacities, though the level two product shows false alarms, followed by the VIIRS 350 m and 750 m algorithms. MODIS has the lowest detection rate. Preliminary results of FRP retrievals show that FireBird and VIIRS algorithms have a good agreement. Given the fact that most gas flaring is at the detection limit for medium to coarse resolution space borne sensors - and hence measurement errors may be high - our results indicates that a quantitative evaluation of gas flaring using these sensors is feasible. Results shall be used to develop a gas flare detection algorithm for Sentinel-3, and a similar methodology will be employed to validate the capacity of Sentinel 3 to detect and characterize small high temperature sources such as gas flares.

  11. Fire and smoke retardants

    NASA Astrophysics Data System (ADS)

    Drews, M. J.

    Despite a reduction in Federal regulatory activity, research concerned with flame retardancy and smoke suppression in the private sector appears to be increasing. This trend seem related to the increased utilization of plastics for end uses which traditionally have employed metal or wood products. As a result, new markets have appeared for thermally stable and fire resistance thermoplastic materials, and this in turn has spurred research and development activity. In addition, public awareness of the dangers associated with fire has increased as a result of several highly publicized hotel and restaurant fires within the past two years. The consumers recognition of flammability characteristics as important materials property considerations has increased. The current status of fire and smoke retardant chemistry and research are summarized.

  12. Global Plate Motions Relative to the Hotspots since 48 Ma B.P. from Simultaneous Inversion of Hotspot Tracks in the Pacific, Indian, and Atlantic Oceans Constrained to Consistency with Known Relative Plate Motions

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Koivisto, E. A. L.

    2016-12-01

    A fundamental problem of global tectonics and paleomagnetism is determining what part of apparent polar wander is due to plate motion and what part is due to true polar wander. One approach for separating these is available if global hotspots can be used as a reference frame approximately fixed with respect to the deep mantle. Some other workers have used a hotspot reference based only on tracks in the Atlantic and Indian Oceans, and some have used reference frames with moving hotspots and many adjustable parameters. In sharp contrast to the assumptions made in these other works, our recent results demonstrate that there is no significant motion between the Pacific and Indo-Atlantic hotspots since 48 Ma B.P. (lower bound of zero and upper bound of 8-13 mm/yr [Koivisto et al., 2014]). Corrected methodologies combined with cumulative improvements in the age progression along the hotspot tracks, the geomagnetic reversal time scale, and relative plate reconstructions lead to significantly lower rates of motion between hotspots than found in prior studies. Building on our prior results, here we present a globally self-consistent estimate of plate motions relative to the hotspots for the past 48 million years from inversions to fit simultaneously the tracks of the Hawaiian, Louisville, Tristan da Cunha, Réunion, and Iceland hotspots constrained to consistency with known relative plate motions. Each finite rotation is estimated for an age corresponding to a key magnetic anomaly used in plate reconstructions. The new set of plate reconstructions presented here provides a firm basis for estimating absolute plate motions for the past 48 million years and, in particular, can be used to separate paleomagnetically determined apparent polar wander into the part due to plate motion and the part due to true polar wander. Implications for true polar wander since the age of the Hawaiian-Emperor Bend will be discussed.

  13. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease.

    PubMed

    Torres, Matthew P; Dewhurst, Henry; Sundararaman, Niveda

    2016-11-01

    Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data - capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (∼6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable

  14. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease*

    PubMed Central

    Dewhurst, Henry; Sundararaman, Niveda

    2016-01-01

    Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data - capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (∼6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable

  15. Seasonal forecasting of fire over Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Spessa, A. C.; Field, R. D.; Pappenberger, F.; Langner, A.; Englhart, S.; Weber, U.; Stockdale, T.; Siegert, F.; Kaiser, J. W.; Moore, J.

    2015-03-01

    Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire). The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.

  16. Forest fires in the insular Caribbean

    Treesearch

    A.M.J. Robbins; C.M. Eckelmann; M. Quinones

    2008-01-01

    This paper presents a summary of the forest fire reports in the insular Caribbean derived from both management reports and an analysis of publicly available Moderate Resolution Imaging Spectrodiometer (MODIS) satellite active fire products from the region. A vast difference between the amount of fires reported by land managers and fire points in the MODIS Fire...

  17. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions.

    PubMed

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R

    2016-03-18

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover 'functional 3D hotspots', regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 - known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Talking Fire Alarms Calm Kids.

    ERIC Educational Resources Information Center

    Executive Educator, 1984

    1984-01-01

    The new microprocessor-based fire alarm systems can help to control smoke movement throughout school buildings by opening vents and doors, identify the burning section, activate voice alarms, provide firefighters with telephone systems during the fire, and release fire-preventing gas. (KS)

  19. Evaluating Post-Fire Forest Resilience Using GIS and Multi-Criteria Analysis: An Example from Cape Sounion National Park, Greece

    NASA Astrophysics Data System (ADS)

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

  20. Evaluating post-fire forest resilience using GIS and multi-criteria analysis: an example from Cape Sounion National Park, Greece.

    PubMed

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

  1. Socio-ecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, CA, 1600-2015 CE

    NASA Astrophysics Data System (ADS)

    Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.

    2016-12-01

    In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio

  2. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  3. Research in fire prevention.

    PubMed

    Pearce, N

    1985-10-01

    This paper describes in broad terms, the fire testing programme we carried out on whole bed assemblies in 1984. It should be clear that the tests were carried out in a thoroughly rigorous scientific manner. As always there is more to be done. The immediate task of finding the so called 'safe' bed assembly is proceeding with the search this year for safer pillows. Softer barrier foams are now being produced and it may be that the NHS could use full depth foam mattresses rather than a barrier foam wrap. On the engineering side I have explained the false alarm problem, and I have reviewed some of the research we are doing to see that new technology is used to give us better systems in future. Life safety sprinkler systems give the possibility of truly active fire protection in patient areas. They will enhance fire safety but at the moment no trade-offs can be offered in other areas of fire protection--either active or passive. My final point is that although I have considered the Department's fire research by looking separately at specific projects, the fire safety of a hospital must always be considered as a total package. To be effective, individual components of fire safety must not be considered in isolation but as part of the overall fire safety system.

  4. Seven hundred years of human-driven and climate-influenced fire activity in a British Columbia coastal temperate rainforest

    PubMed Central

    Gavin, Daniel G.; Starzomski, Brian M.

    2016-01-01

    While wildland fire is globally most common at the savannah-grassland ecotone, there is little evidence of fire in coastal temperate rainforests. We reconstructed fire activity with a ca 700-year fire history derived from fire scars and stand establishment from 30 sites in a very wet (up to 4000 mm annual precipitation) temperate rainforest in coastal British Columbia, Canada. Drought and warmer temperatures in the year prior were positively associated with fire events though there was little coherence of climate indices on the years of fires. At the decadal scale, fires were more likely to occur after positive El Niño-Southern Oscillation and Pacific Decadal Oscillation phases and exhibited 30-year periods of synchrony with the negative phase of the Arctic Oscillation. Fire frequency was significantly inversely correlated with the distance from former Indigenous habitation sites and fires ceased following cultural disorganization caused by disease and other European impacts in the late nineteenth century. Indigenous people were likely to have been the primary ignition source in this and many coastal temperate rainforest settings. These data are directly relevant to contemporary forest management and discredit the myth of coastal temperate rainforests as pristine landscapes. PMID:27853581

  5. Urogenital schistosomiasis transmission on Unguja Island, Zanzibar: characterisation of persistent hot-spots.

    PubMed

    Pennance, Tom; Person, Bobbie; Muhsin, Mtumweni Ali; Khamis, Alipo Naim; Muhsin, Juma; Khamis, Iddi Simba; Mohammed, Khalfan Abdallah; Kabole, Fatma; Rollinson, David; Knopp, Stefanie

    2016-12-16

    Elimination of urogenital schistosomiasis transmission is a priority for the Zanzibar Ministry of Health. Preventative chemotherapy together with additional control interventions have successfully alleviated much of the disease burden. However, a persistently high Schistosoma haematobium prevalence is found in certain areas. Our aim was to characterise and evaluate these persistent "hot-spots" of transmission and reinfection in comparison with low-prevalence areas, to support the intervention planning for schistosomiasis elimination in Zanzibar. Prevalences of S. haematobium were annually determined by a single urine filtration in schoolchildren from 45 administrative areas (shehias) in Unguja in 2012, 2013 and 2014. Coverage data for biannual treatment with praziquantel were available from ministerial databases and internal surveys. Among the 45 shehias, five hot-spot (≥ 15 % prevalence) and two low-prevalence (≤ 5 %) shehias were identified and surveyed in mid-2014. Human-water contact sites (HWCSs) and the presence of S. haematobium-infected and uninfected Bulinus globosus, as well as safe water sources (SWSs) and their reliability in terms of water availability were determined and mapped. We found no major difference in the treatment coverage between persistent hot-spot and low-prevalence shehias. On average, there were considerably more HWCSs containing B. globosus in hot-spot than in low-prevalence shehias (n = 8 vs n = 2) and also more HWCSs containing infected B. globosus (n = 2 vs n = 0). There was no striking difference in the average abundance of SWSs in hot-spot and low-prevalence shehias (n = 45 vs n = 38) and also no difference when considering SWSs with a constant water supply (average: 62 % vs 62 %). The average number of taps with a constant water supply, however, was lower in hot-spot shehias (n = 7 vs n = 14). Average distances from schools to the nearest HWCS were considerably shorter in hot-spot shehias

  6. Activity-Dependent Changes in the Firing Properties of Neocortical Fast-Spiking Interneurons in the Absence of Large Changes in Gene Expression

    PubMed Central

    Miller, Mark N.; Okaty, Benjamin W.; Kato, Saori; Nelson, Sacha B.

    2010-01-01

    The diverse cell types that comprise neocortical circuits each have characteristic integrative and firing properties that are specialized to perform specific functions within the network. Parvalbumin-positive fast-spiking (FS) interneurons are a particularly specialized cortical cell-type that controls the dynamics of ongoing activity and prevents runaway excitation by virtue of remarkably high firing rates, a feature that is permitted by narrow action potentials and the absence of spike-frequency adaptation. Although several neuronal intrinsic membrane properties undergo activity-dependent plasticity, the role of network activity in shaping and maintaining specialized, cell-type-specific firing properties is unknown. We tested whether the specialized firing properties of mature FS interneurons are sensitive to activity perturbations by inactivating a portion of motor cortex in vivo for 48 hours and measuring resulting plasticity of FS intrinsic and firing properties with whole-cell recording in acute slices. Many of the characteristic properties of FS interneurons, including non-adapting high-frequency spiking and narrow action potentials, were profoundly affected by activity deprivation both at an age just after maturation of FS firing properties and also a week after their maturation. Using microarray screening, we determined that although normal maturation of FS electrophysiological specializations is accompanied by large-scale transcriptional changes, the effects of deprivation on the same specializations involve more modest transcriptional changes, and may instead be primarily mediated by post-transcriptional mechanisms. PMID:21154910

  7. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Fuel age and fire spread: Natural conditions versus opportunities for fire suppression

    USGS Publications Warehouse

    Halsey, Richard W.; Keeley, Jon E.; Wilson, Kit

    2009-01-01

    Wildfires are driven and restrained by an interplay of variables that can lead to many potential outcomes. As every wildland firefighter learns in basic training, the ability of a fire to spread is determined by three basic variables: fuel type and condition, weather, and topography. Fire suppression obviously plays a significant role in determining fire spread as well, so firefighter activity becomes an additional variable.

  9. Global warming and extinctions of endemic species from biodiversity hotspots.

    PubMed

    Malcolm, Jay R; Liu, Canran; Neilson, Ronald P; Hansen, Lara; Hannah, Lee

    2006-04-01

    Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-CO2 climates, calculated changes in habitat areas and associated extinctions of endemic plant and vertebrate species in biodiversity hotspots. Because of numerous uncertainties in this approach, we undertook a sensitivity analysis of multiple factors that included (1) two global vegetation models, (2) different numbers of biome classes in our biome classification schemes, (3) different assumptions about whether species distributions were biome specific or not, and (4) different migration capabilities. Extinctions were calculated using both species-area and endemic-area relationships. In addition, average required migration rates were calculated for each hotspot assuming a doubled-CO2 climate in 100 years. Projected percent extinctions ranged from <1 to 43% of the endemic biota (average 11.6%), with biome specificity having the greatest influence on the estimates, followed by the global vegetation model and then by migration and biome classification assumptions. Bootstrap comparisons indicated that effects on hotpots as a group were not significantly different from effects on random same-biome collections of grid cells with respect to biome change or migration rates; in some scenarios, however, botspots exhibited relatively high biome change and low migration rates. Especially vulnerable hotspots were the Cape Floristic Region, Caribbean, Indo-Burma, Mediterranean Basin, Southwest Australia, and Tropical Andes, where plant extinctions per hotspot sometimes exceeded 2000 species. Under the assumption that projected habitat changes were attained in 100 years, estimated global-warming-induced rates of species extinctions in tropical hotspots in some cases exceeded those due to deforestation, supporting

  10. Catastrophic Fires in Russian Forests

    NASA Astrophysics Data System (ADS)

    Sukhinin, A. I.; McRae, D. J.; Stocks, B. J.; Conard, S. G.; Hao, W.; Soja, A. J.; Cahoon, D.

    2010-12-01

    We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001, 2010), and Irkutsk, Chita, Amur regions, Buryat, Agin national districts (2003, 2007-08). We define a catastrophic fire as a single high-severity fire that covers more than 10,000 ha and results in total consumption of the litter and humus layers and in high tree mortality, or the simultaneous occurrence of several high-severity fires in a given region with a total area exceeding 10,000 km2. Fires on this scale can cause substantial economic, social and environmental effects, with regional to global impacts. We hypothesize that there is a positive feedback between anticyclone growth and energy release from wildfires burning over large areas. Usually the first blocking anticyclone appears in June in Russia, bringing with it dry weather that increases fire hazard. The anticyclonic pattern has maximum activity in the end of July and disappears around the middle of August. When high fire activity occurs, the anticyclone may strengthen and develop a blocking character that prevents cyclonic patterns from moving into anticyclone-dominated areas, where the fire danger index may be more than six times the average maximum. The likelihood of uncontrolled fire situations developing increases greatly when the fire number and burned area exceed critical values as a function of conditions that favor high intensity fires. In such situations fire suppression by regional forest protection services becomes impossible and federal resources are required. If the appearance of a blocking anticyclone is forecast, active fire prevention and suppression of small fires (most of which appear to be human caused) is critical

  11. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China.

    PubMed

    Cai, Wenbo; Gibbs, David; Zhang, Lang; Ferrier, Graham; Cai, Yongli

    2017-04-15

    Rapid urbanization has altered many ecosystems, causing a decline in many ecosystem services, generating serious ecological crisis. To cope with these challenges, we presented a comprehensive framework comprising five core steps for identifying and managing hotspots of critical ecosystem services in a rapid urbanizing region. This framework was applied in the case study of the Yangtze River Delta (YRD) Region. The study showed that there was large spatial heterogeneity in the hotspots of ecosystem services in the region, hotspots of supporting services and regulating services aggregately distributing in the southwest mountainous areas while hotspots of provisioning services mainly in the northeast plain, and hotspots of cultural services widespread in the waterbodies and southwest mountainous areas. The regionalization of the critical ecosystem services was made through the hotspot analysis. This study provided valuable information for environmental planning and management in a rapid urbanizing region and helped improve China's ecological redlines policy at regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Drilling confirms hot-spot origins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-02-01

    Eleven holes were drilled at 4 sites in the Emperor Seamount chain in order to test the hot-spot hypothesis of the origin of the Hawaiian and Emperor chains and several important corollaries. Basalt was penetrated at 3 sites, and the paleontological ages of the lowest sediments above basalt are consistent with a linear geochron connecting the ages of Meiji Seamount to the north, and Koko and Yuryaku seamounts to the south. The chemical composition of the upper 4 basalt flow units cored at Ojin Seamount indicates that they are typical Hawaiites. A sample of tholeiite was recovered from the bottommore » of the hole. The lava flows from Ojin, Nintoku, and Suiko have natural remanent magnetization that is relatively stable to alternating field demagnetization, as expected of oceanic-island basalts. Many of the basalts at all 3 sites have highly vesicular and oxidized flow tops and bottoms. Observations indicate that the flows were erupted subaerially, and that Ojin, Nintoku, and Suiko volcanoes once stood well above sea level. In a general way, the hot-spot origin of the Emperor Seamount chain was confirmed. (JGB)« less

  13. Fire Incident Reporting Manual

    DTIC Science & Technology

    1984-02-01

    Purpose 1-1 B. Scope 1-1 C. Procedures 1-1 D. Exclusions 1-3 E . Preparation 1-3 F. Information Requirements 1-4 CHAPTER 2 - INSTRUCTIONS FOR PREPARING DoD...Structure and Fire Data 2-16 4. Section D - Fire Protection Facilities (In Structures Only) 2-28 5. Section E - Losses 2-30 6. Section F - Times (24...Activities Program," February 21, 1976 ( e ) National Fire Protection Association (NFPA) Standard 901, "Uniform Coding for Fire Protection," 1976 (f) NFPA

  14. Climate change hotspots in the CMIP5 global climate model ensemble.

    PubMed

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  15. Are hotspots of evolutionary potential adequately protected in southern California?

    USGS Publications Warehouse

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  16. The analysis method of the DRAM cell pattern hotspot

    NASA Astrophysics Data System (ADS)

    Lee, Kyusun; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Hong, Aeran; Kim, Yonghyeon; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung

    2015-03-01

    It is increasingly difficult to determine degree of completion of the patterning and the distribution at the DRAM Cell Patterns. When we research DRAM Device Cell Pattern, there are three big problems currently, it is as follows. First, due to etch loading, it is difficult to predict the potential defect. Second, due to under layer topology, it is impossible to demonstrate the influence of the hotspot. Finally, it is extremely difficult to predict final ACI pattern by the photo simulation, because current patterning process is double patterning technology which means photo pattern is completely different from final etch pattern. Therefore, if the hotspot occurs in wafer, it is very difficult to find it. CD-SEM is the most common pattern measurement tool in semiconductor fabrication site. CD-SEM is used to accurately measure small region of wafer pattern primarily. Therefore, there is no possibility of finding places where unpredictable defect occurs. Even though, "Current Defect detector" can measure a wide area, every chip has same pattern issue, the detector cannot detect critical hotspots. Because defect detecting algorithm of bright field machine is based on image processing, if same problems occur on compared and comparing chip, the machine cannot identify it. Moreover this instrument is not distinguished the difference of distribution about 1nm~3nm. So, "Defect detector" is difficult to handle the data for potential weak point far lower than target CD. In order to solve those problems, another method is needed. In this paper, we introduce the analysis method of the DRAM Cell Pattern Hotspot.

  17. Paleomagnetic Tests of Global Plate Reconstructions with Fixed and Moving Hotspots

    NASA Astrophysics Data System (ADS)

    Andrews, D. L.; Gordon, R. G.; Horner-Johnson, B. C.

    2004-12-01

    Three distinct approaches have been used in prior work to estimate the motion of the Pacific basin plates relative to the surrounding continents. The first approach is to use the global plate motion circuit through Antarctica (e.g., the Pacific plate to the Antarctic plate to the African plate to the North American plate). An update to this approach is to incorporate the modest mid-Tertiary motion between East and West Antarctica estimated by Cande et al. (2000). A recently proposed second approach is to take an alternative circuit for the early Tertiary of the Pacific plate to the Australian plate to the East Antarctic plate to the African plate to the North American plate (Steinberger et al. 2004). The third approach is to assume that the hotspots in the Pacific Ocean are fixed relative to those in the Atlantic and Indian Oceans (e.g., Engebretson et al., 1986), which we recently showed indicates motion between East and West Antarctica of 800 ± 500 km near the Ross Sea Embayment. The first approach (global plate motion circuit through Antarctica) indicates very rapid motion between Pacific and Indo-Atlantic hotspots during the early Tertiary (e.g., Raymond et al. 2000). The second approach (global plate motion circuit through Australia) indicates slower, but still substantial, motion between Pacific and Indo-Atlantic hotspots (Steinberger et al. 2004). Because each of the three approaches predicts distinctly different motion between the Pacific plate and the continental plates, they can be tested with paleomagnetic data. The results of such tests indicate that the first approach leads to systematic and significant misfits between Pacific and non-Pacific early Tertiary and Late Cretaceous paleomagnetic poles. The second approach leads to slightly smaller misfits. In contrast, the circuit based on fixed hotspots brings the Pacific and non-Pacific paleomagnetic poles into consistency. Thus the paleomagnetic data decisively favor fixed hotspots over the alternative

  18. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands.

    PubMed

    Mayor, Ángeles G; Goirán, Silvana B; Vallejo, V Ramón; Bautista, Susana

    2016-12-15

    Fire-prone Mediterranean shrublands may be seriously threatened by land degradation due to progressive opening of the vegetation cover driven by increasing drought and fire recurrence. However, information about the consequences of this opening process for critical ecosystem functions is scant. In this work, we studied the influence of vegetation amount, type, and spatial pattern in the variation of extracellular soil enzyme activity (acid phosphatase, β-glucosidase, and urease) in fire-prone shrublands in eastern Spain. Soil was sampled in vegetation-patch and open-interpatch microsites in 15 shrubland sites affected by large wildfires in 1991. On average, the activities of the three enzymes were 1.5 (β-glucosidase and urease) to 1.7 (acid phosphatase) times higher in soils under vegetation patches than in adjacent interpatches. In addition, phosphatase activity for both microsites significantly decreased with the fragmentation of the vegetation. This result was attributed to a lower influence of roots -the main source of acid phosphatase- in the bigger interpatches of the sites with lower patch cover, and to feedbacks between vegetation pattern, redistribution of resources, and soil quality during post-fire vegetation dynamics. Phosphatase activity was also 1.2 times higher in patches of resprouter plants than in patches of non-resprouters, probably due to the faster post-fire recovery and older age of resprouter patches in these fire-prone ecosystems. The influence on the studied enzymes of topographic and climatic factors acting at the landscape scale was insignificant. According to our results, variations in the cover, pattern, and composition of vegetation patches may have profound impacts on soil enzyme activity and associated nutrient cycling processes in fire-prone Mediterranean shrublands, particularly in those related to phosphorus. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis.

    PubMed

    Chen, Hao; Yang, Peng; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2015-01-01

    Meiotic recombination hotspots play important roles in various aspects of genomics, but the underlying mechanisms for regulating the locations and strengths of recombination hotspots are not yet fully revealed. Most existing algorithms for estimating recombination rates from sequence polymorphism data can only output average recombination rates of a population, although there is evidence for the heterogeneity in recombination rates among individuals. For genome-wide association studies (GWAS) of recombination hotspots, an efficient algorithm that estimates the individualized strengths of recombination hotspots is highly desirable. In this work, we propose a novel graph mining algorithm named ARG-walker, based on random walks on ancestral recombination graphs (ARG), to estimate individual-specific recombination hotspot strengths. Extensive simulations demonstrate that ARG-walker is able to distinguish the hot allele of a recombination hotspot from the cold allele. Integrated with output of ARG-walker, we performed GWAS on the phased haplotype data of the 22 autosome chromosomes of the HapMap Asian population samples of Chinese and Japanese (JPT+CHB). Significant cis-regulatory signals have been detected, which is corroborated by the enrichment of the well-known 13-mer motif CCNCCNTNNCCNC of PRDM9 protein. Moreover, two new DNA motifs have been identified in the flanking regions of the significantly associated SNPs (single nucleotide polymorphisms), which are likely to be new cis-regulatory elements of meiotic recombination hotspots of the human genome. Our results on both simulated and real data suggest that ARG-walker is a promising new method for estimating the individual recombination variations. In the future, it could be used to uncover the mechanisms of recombination regulation and human diseases related with recombination hotspots.

  20. Distribution of Recombination Hotspots in the Human Genome – A Comparison of Computer Simulations with Real Data

    PubMed Central

    Mackiewicz, Dorota; de Oliveira, Paulo Murilo Castro; Moss de Oliveira, Suzana; Cebrat, Stanisław

    2013-01-01

    Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar. PMID:23776462

  1. Cortical firing and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Olcese, Umberto; Lazimy, Yaniv M; Faraguna, Ugo; Esser, Steve K; Williams, Justin C; Cirelli, Chiara; Tononi, Giulio

    2009-09-24

    The need to sleep grows with the duration of wakefulness and dissipates with time spent asleep, a process called sleep homeostasis. What are the consequences of staying awake on brain cells, and why is sleep needed? Surprisingly, we do not know whether the firing of cortical neurons is affected by how long an animal has been awake or asleep. Here, we found that after sustained wakefulness cortical neurons fire at higher frequencies in all behavioral states. During early NREM sleep after sustained wakefulness, periods of population activity (ON) are short, frequent, and associated with synchronous firing, while periods of neuronal silence are long and frequent. After sustained sleep, firing rates and synchrony decrease, while the duration of ON periods increases. Changes in firing patterns in NREM sleep correlate with changes in slow-wave activity, a marker of sleep homeostasis. Thus, the systematic increase of firing during wakefulness is counterbalanced by staying asleep.

  2. Human influence on California fire regimes.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  3. Human influence on California fire regimes

    USGS Publications Warehouse

    Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.

    2007-01-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  4. Modeling fire occurrence as a function of landscape

    NASA Astrophysics Data System (ADS)

    Loboda, T. V.; Carroll, M.; DiMiceli, C.

    2011-12-01

    Wildland fire is a prominent component of ecosystem functioning worldwide. Nearly all ecosystems experience the impact of naturally occurring or anthropogenically driven fire. Here, we present a spatially explicit and regionally parameterized Fire Occurrence Model (FOM) aimed at developing fire occurrence estimates at landscape and regional scales. The model provides spatially explicit scenarios of fire occurrence based on the available records from fire management agencies, satellite observations, and auxiliary geospatial data sets. Fire occurrence is modeled as a function of the risk of ignition, potential fire behavior, and fire weather using internal regression tree-driven algorithms and empirically established, regionally derived relationships between fire occurrence, fire behavior, and fire weather. The FOM presents a flexible modeling structure with a set of internal globally available default geospatial independent and dependent variables. However, the flexible modeling environment adapts to ingest a variable number, resolution, and content of inputs provided by the user to supplement or replace the default parameters to improve the model's predictive capability. A Southern California FOM instance (SC FOM) was developed using satellite assessments of fire activity from a suite of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, Monitoring Trends in Burn Severity fire perimeters, and auxiliary geospatial information including land use and ownership, utilities, transportation routes, and the Remote Automated Weather Station data records. The model was parameterized based on satellite data acquired between 2001 and 2009 and fire management fire perimeters available prior to 2009. SC FOM predictive capabilities were assessed using observed fire occurrence available from the MODIS active fire product during 2010. The results show that SC FOM provides a realistic estimate of fire occurrence at the landscape level: the fraction of

  5. Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images.

    PubMed

    Kather, Jakob Nikolas; Marx, Alexander; Reyes-Aldasoro, Constantino Carlos; Schad, Lothar R; Zöllner, Frank Gerrit; Weis, Cleo-Aron

    2015-08-07

    Blood vessels in solid tumors are not randomly distributed, but are clustered in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots correlates with patient survival and is widely used both in diagnostic routine and in clinical trials. Still, these hotspots are usually subjectively defined. There is no unbiased, continuous and explicit representation of tumor vessel distribution in histological whole slide images. This shortcoming distorts angiogenesis measurements and may account for ambiguous results in the literature. In the present study, we describe and evaluate a new method that eliminates this bias and makes angiogenesis quantification more objective and more efficient. Our approach involves automatic slide scanning, automatic image analysis and spatial statistical analysis. By comparing a continuous MVD function of the actual sample to random point patterns, we introduce an objective criterion for hotspot detection: An angiogenic hotspot is defined as a clustering of blood vessels that is very unlikely to occur randomly. We evaluate the proposed method in N=11 images of human colorectal carcinoma samples and compare the results to a blinded human observer. For the first time, we demonstrate the existence of statistically significant hotspots in tumor images and provide a tool to accurately detect these hotspots.

  6. Exacerbation of demyelinating syndrome after exposure to wireless modem with public hotspot.

    PubMed

    Johansson, Olle; Redmayne, Mary

    2016-01-01

    In August 2003, 48-year-old JS of Colorado, USA, a fitness therapist and sports nutritionist, contracted neuroinvasive West Nile virus which left her with disabilities due to spinal axonal damage.In August 2014, she suddenly developed symptoms very much like her acute West Nile infection 11 years ago, including focal seizures, ataxia, vertigo and headaches. Her blood count looked normal so there was no obvious infection. What struck her as odd was that when she left her apartment for any length of time, the symptoms stopped. She found out that a new type of wireless modem, enabled for both personal use and functioning as a public hotspot designed to reach up to 100 m, had been installed in the flat under hers.Her neighbor replaced the modem with a router without the hotspot feature. After that, the seizures stopped immediately, and the other symptoms faded gradually, after which she was fine and again could sleep well. Later, when another activated hotspot was installed in an adjacent flat, JS once again noticed symptoms.A possible association between electrohypersensitivity, myelin integrity and exposure to low-intensity radiofrequency electromagnetic fields (RF-EMF) typical in the modern world has recently been proposed. Since the West Nile virus attacks both the nerve cells and the glial ones, one explanation to the above observed case effects is that the initial virus attack and the wireless modem's RF-EMF affect the nervous system through the very same, or similar, avenues, and maybe both via the oligodendrocytes.

  7. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep

    PubMed Central

    Rodriguez, Alexander V.; Funk, Chadd M.; Vyazovskiy, Vladyslav V.; Nir, Yuval; Tononi, Giulio

    2016-01-01

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal “fatigue”: high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. SIGNIFICANCE STATEMENT A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the “fatigue” accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced

  8. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    PubMed

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire

  9. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  10. Precipitation-fire linkages in Indonesia (1997-2015)

    NASA Astrophysics Data System (ADS)

    Fanin, Thierry; van der Werf, Guido R.

    2017-09-01

    Over the past decades, fires have burned annually in Indonesia, yet the strength of the fire season is for a large part modulated by the El Niño Southern Oscillation (ENSO). The two most recent very strong El Niño years were 2015 and 1997. Both years involved high incidences of fire in Indonesia. At present, there is no consistent satellite data stream spanning the full 19-year record, thereby complicating a comparison between these two fire seasons. We have investigated how various fire and precipitation datasets can be merged to better compare the fire dynamics in 1997 and 2015 as well as in intermediary years. We combined nighttime active fire detections from the Along Track Scanning Radiometer (ATSR) World Fire Atlas (WFA) available from 1997 until 2012 and the nighttime subset of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor from 2001 until now. For the overlapping period, MODIS detected about 4 times more fires than ATSR, but this ratio varied spatially. Although the reasons behind this spatial variability remain unclear, the coefficient of determination for the overlapping period was high (R2 = 0. 97, based on monthly data) and allowed for a consistent time series. We then constructed a rainfall time series based on the Global Precipitation Climatology Project (GPCP, 1997-2015) and the Tropical Rainfall Measurement Mission Project (TRMM, 1998-2015). Relations between antecedent rainfall and fire activity were not uniform in Indonesia. In southern Sumatra and Kalimantan, we found that 120 days of rainfall accumulation had the highest coefficient of determination with annual fire intensity. In northern Sumatra, this period was only 30 days. Thresholds of 200 and 305 mm average rainfall accumulation before each active fire were identified to generate a high-incidence fire year in southern Sumatra and southern Kalimantan, respectively. The number of active fires detected in 1997 was 2.2 times higher than in 2015. Assuming the ratio between

  11. Extinct mid-ocean ridges and insights on the influence of hotspots at divergent plate boundaries

    NASA Astrophysics Data System (ADS)

    MacLeod, Sarah; Dietmar Müller, R.; Williams, Simon; Matthews, Kara

    2016-04-01

    We review all global examples of confirmed or suspected extinct mid-ocean ridges that are preserved in present-day ocean basins. Data on their spreading rate prior to extinction, time of cessation, length of activity, bathymetric and gravity signature are analysed. This analysis identifies some differences between subgroups of extinct ridges, including microplate spreading ridges, back-arc basin ridges and large-scale mid-ocean ridges. Crustal structure of extinct ridges is evaluated using gravity inversion to seek to resolve a long-standing debate on whether the final stages of spreading leads to development of thinned or thickened crust. Most of the ridges we assess have thinner crust at their axes than their flanks, yet a small number are found to have a single segment that is overprinted by an anomalous feature such as a seamount or volcanic ridge. A more complex cessation mechanism is necessary in these cases. The location of spreading centres at their time of cessation relative to hotspots was also evaluated using a global plate reconstruction. This review provides strong evidence for the long-term interaction of spreading centres with hotspots and plate boundaries have been frequently modified within the radius of a hotspot zone of influence.

  12. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains... pump connected to a fixed piping system. This pump must be capable of delivering an effective stream of...

  13. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains... pump connected to a fixed piping system. This pump must be capable of delivering an effective stream of...

  14. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains... pump connected to a fixed piping system. This pump must be capable of delivering an effective stream of...

  15. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains... pump connected to a fixed piping system. This pump must be capable of delivering an effective stream of...

  16. The Number of Overlapping AID Hotspots in Germline IGHV Genes Is Inversely Correlated with Mutation Frequency in Chronic Lymphocytic Leukemia.

    PubMed

    Yuan, Chaohui; Chu, Charles C; Yan, Xiao-Jie; Bagnara, Davide; Chiorazzi, Nicholas; MacCarthy, Thomas

    2017-01-01

    The targeting of mutations by Activation-Induced Deaminase (AID) is a key step in generating antibody diversity at the Immunoglobulin (Ig) loci but is also implicated in B-cell malignancies such as chronic lymphocytic leukemia (CLL). AID has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) hotspots. WGCW sites, which contain an overlapping WRC hotspot on both DNA strands, mutate at much higher frequency than single hotspots. Human Ig heavy chain (IGHV) genes differ in terms of WGCW numbers, ranging from 4 for IGHV3-48*03 to as many as 12 in IGHV1-69*01. An absence of V-region mutations in CLL patients ("IGHV unmutated", or U-CLL) is associated with a poorer prognosis compared to "IGHV mutated" (M-CLL) patients. The reasons for this difference are still unclear, but it has been noted that particular IGHV genes associate with U-CLL vs M-CLL. For example, patients with IGHV1-69 clones tend to be U-CLL with a poor prognosis, whereas patients with IGHV3-30 tend to be M-CLL and have a better prognosis. Another distinctive feature of CLL is that ~30% of (mostly poor prognosis) patients can be classified into "stereotyped" subsets, each defined by HCDR3 similarity, suggesting selection, possibly for a self-antigen. We analyzed >1000 IGHV genes from CLL patients and found a highly significant statistical relationship between the number of WGCW hotspots in the germline V-region and the observed mutation frequency in patients. However, paradoxically, this correlation was inverse, with V-regions with more WGCW hotspots being less likely to be mutated, i.e., more likely to be U-CLL. The number of WGCW hotspots in particular, are more strongly correlated with mutation frequency than either non-overlapping (WRC) hotspots or more general models of mutability derived from somatic hypermutation data. Furthermore, this correlation is not observed in sequences from the B cell repertoires of normal individuals and those with autoimmune diseases.

  17. The Number of Overlapping AID Hotspots in Germline IGHV Genes Is Inversely Correlated with Mutation Frequency in Chronic Lymphocytic Leukemia

    PubMed Central

    Yuan, Chaohui; Chu, Charles C.; Yan, Xiao-Jie; Bagnara, Davide; Chiorazzi, Nicholas

    2017-01-01

    The targeting of mutations by Activation-Induced Deaminase (AID) is a key step in generating antibody diversity at the Immunoglobulin (Ig) loci but is also implicated in B-cell malignancies such as chronic lymphocytic leukemia (CLL). AID has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) hotspots. WGCW sites, which contain an overlapping WRC hotspot on both DNA strands, mutate at much higher frequency than single hotspots. Human Ig heavy chain (IGHV) genes differ in terms of WGCW numbers, ranging from 4 for IGHV3-48*03 to as many as 12 in IGHV1-69*01. An absence of V-region mutations in CLL patients (“IGHV unmutated”, or U-CLL) is associated with a poorer prognosis compared to “IGHV mutated” (M-CLL) patients. The reasons for this difference are still unclear, but it has been noted that particular IGHV genes associate with U-CLL vs M-CLL. For example, patients with IGHV1-69 clones tend to be U-CLL with a poor prognosis, whereas patients with IGHV3-30 tend to be M-CLL and have a better prognosis. Another distinctive feature of CLL is that ~30% of (mostly poor prognosis) patients can be classified into “stereotyped” subsets, each defined by HCDR3 similarity, suggesting selection, possibly for a self-antigen. We analyzed >1000 IGHV genes from CLL patients and found a highly significant statistical relationship between the number of WGCW hotspots in the germline V-region and the observed mutation frequency in patients. However, paradoxically, this correlation was inverse, with V-regions with more WGCW hotspots being less likely to be mutated, i.e., more likely to be U-CLL. The number of WGCW hotspots in particular, are more strongly correlated with mutation frequency than either non-overlapping (WRC) hotspots or more general models of mutability derived from somatic hypermutation data. Furthermore, this correlation is not observed in sequences from the B cell repertoires of normal individuals and those with autoimmune diseases. PMID

  18. Comparison of Interglacial fire dynamics in Southern Africa

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Daniau, Anne-Laure

    2016-04-01

    Responses of fire activity to a change in climate are still uncertain and biases exist by integrating this non-linear process into global modeling of the Earth system. Warming and regional drying can force fire activity in two opposite directions: an increase in fire in fuel supported ecosystems or a fire reduction in fuel-limited ecosystems. Therefore, climate variables alone can not be used to estimate the fire risk because vegetation variability is an important determinant of fire dynamics and responds itself to change in climate. Southern Africa (south of 20°S) paleofire history reconstruction obtained from the analysis of microcharcoal preserved in a deep-sea core located off Namibia reveals changes of fire activity on orbital timescales in the precession band. In particular, increase in fire is observed during glacial periods, and reduction of fire during interglacials such as the Eemian and the Holocene. The Holocene was characterized by even lower level of fire activity than Eemian. Those results suggest the alternance of grass-fueled fires during glacials driven by increase in moisture and the development of limited fueled ecosystems during interglacials characterized by dryness. Those results question the simulated increase in the fire risk probability projected for this region under a warming and drying climate obtained by Pechony and Schindell (2010). To explore the validity of the hypotheses we conducted a data-model comparison for both interglacials from 126.000 to 115.000 BP for the Eemian and from 8.000 to 2.000 BP for the Holocene. Data out of a transient, global modeling study with a Vegetation-Fire model of full complexity (JSBACH) is used, driven by a Climate model of intermediate complexity (CLIMBER). Climate data like precipitation and temperature as well as vegetation data like soil moisture, productivity (NPP) on plant functional type level are used to explain trends in fire activity. The comparison of trends in fire activity during the

  19. Application of GIS to predict malaria hotspots based on Anopheles arabiensis habitat suitability in Southern Africa

    NASA Astrophysics Data System (ADS)

    Gwitira, Isaiah; Murwira, Amon; Zengeya, Fadzai M.; Shekede, Munyaradzi Davis

    2018-02-01

    Malaria remains a major public health problem and a principal cause of morbidity and mortality in most developing countries. Although malaria still presents health problems, significant successes have been recorded in reducing deaths resulting from the disease. As malaria transmission continues to decline, control interventions will increasingly depend on the ability to define high-risk areas known as malaria hotspots. Therefore, there is urgent need to use geospatial tools such as geographic information system to detect spatial patterns of malaria and delineate disease hot spots for better planning and management. Thus, accurate mapping and prediction of seasonality of malaria hotspots is an important step towards developing strategies for effective malaria control. In this study, we modelled seasonal malaria hotspots as a function of habitat suitability of Anopheles arabiensis (A. Arabiensis) as a first step towards predicting likely seasonal malaria hotspots that could provide guidance in targeted malaria control. We used Geographical information system (GIS) and spatial statistic methods to identify seasonal hotspots of malaria cases at the country level. In order to achieve this, we first determined the spatial distribution of seasonal malaria hotspots using the Getis Ord Gi* statistic based on confirmed positive malaria cases recorded at health facilities in Zimbabwe over four years (1996-1999). We then used MAXENT technique to model habitat suitability of A. arabiensis from presence data collected from 1990 to 2002 based on bioclimatic variables and altitude. Finally, we used autologistic regression to test the extent to which malaria hotspots can be predicted using A. arabiensis habitat suitability. Our results show that A. arabiensis habitat suitability consistently and significantly (p < 0.05) predicts malaria hotspots from 1996 to 1999. Overall, our results show that malaria hotspots can be predicted using A. arabiensis habitat suitability, suggesting

  20. An analysis of controls on fire activity in boreal Canada: comparing models built with different temporal resolutions

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Meg A. Krawchuk; John M. Little; Mike D. Flannigan; Lynn M. Gowman; Max A. Moritz

    2014-01-01

    Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of...

  1. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial

    PubMed Central

    2013-01-01

    Background Malaria transmission is highly heterogeneous in most settings, resulting in the formation of recognizable malaria hotspots. Targeting these hotspots might represent a highly efficacious way of controlling or eliminating malaria if the hotspots fuel malaria transmission to the wider community. Methods/design Hotspots of malaria will be determined based on spatial patterns in age-adjusted prevalence and density of antibodies against malaria antigens apical membrane antigen-1 and merozoite surface protein-1. The community effect of interventions targeted at these hotspots will be determined. The intervention will comprise larviciding, focal screening and treatment of the human population, distribution of long-lasting insecticide-treated nets and indoor residual spraying. The impact of the intervention will be determined inside and up to 500 m outside the targeted hotspots by PCR-based parasite prevalence in cross-sectional surveys, malaria morbidity by passive case detection in selected facilities and entomological monitoring of larval and adult Anopheles populations. Discussion This study aims to provide direct evidence for a community effect of hotspot-targeted interventions. The trial is powered to detect large effects on malaria transmission in the context of ongoing malaria interventions. Follow-up studies will be needed to determine the effect of individual components of the interventions and the cost-effectiveness of a hotspot-targeted approach, where savings made by reducing the number of compounds that need to receive interventions should outweigh the costs of hotspot-detection. Trial registration NCT01575613. The protocol was registered online on 20 March 2012; the first community was randomized on 26 March 2012. PMID:23374910

  2. Mapping Potential Amplification and Transmission Hotspots for MERS-CoV, Kenya.

    PubMed

    Gikonyo, Stephen; Kimani, Tabitha; Matere, Joseph; Kimutai, Joshua; Kiambi, Stella G; Bitek, Austine O; Juma Ngeiywa, K J Z; Makonnen, Yilma J; Tripodi, Astrid; Morzaria, Subhash; Lubroth, Juan; Rugalema, Gabriel; Fasina, Folorunso Oludayo

    2018-03-16

    Dromedary camels have been implicated consistently as the source of Middle East respiratory syndrome coronavirus (MERS-CoV) human infections and attention to prevent and control it has focused on camels. To understanding the epidemiological role of camels in the transmission of MERS-CoV, we utilized an iterative empirical process in Geographic Information System (GIS) to identify and qualify potential hotspots for maintenance and circulation of MERS-CoV, and produced risk-based surveillance sites in Kenya. Data on camel population and distribution were used to develop camel density map, while camel farming system was defined using multi-factorial criteria including the agro-ecological zones (AEZs), production and marketing practices. Primary and secondary MERS-CoV seroprevalence data from specific sites were analyzed, and location-based prevalence matching with camel densities was conducted. High-risk convergence points (migration zones, trade routes, camel markets, slaughter slabs) were profiled and frequent cross-border camel movement mapped. Results showed that high camel-dense areas and interaction (markets and migration zones) were potential hotspot for transmission and spread. Cross-border contacts occurred with in-migrated herds at hotspot locations. AEZ differential did not influence risk distribution and plausible risk factors for spatial MERS-CoV hotspots were camel densities, previous cases of MERS-CoV, high seroprevalence and points of camel convergences. Although Kenyan camels are predisposed to MERS-CoV, no shedding is documented to date. These potential hotspots, determined using anthropogenic, system and trade characterizations should guide selection of sampling/surveillance sites, high-risk locations, critical areas for interventions and policy development in Kenya, as well as instigate further virological examination of camels.

  3. Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Bono, R. K.

    2017-12-01

    Paleomagnetic study of volcanic rocks remains the gold standard on which to assess hotspot motion, true polar wander and plate motion recorded by oceanic plates. There is remarkable consistency between paleomagnetic results from basaltic lavas recovered by ocean drilling of the Emperor seamounts, and independent predictions of plate circuits. Both reveal greater than 40 mm/yr of southward hotspot motion; thus the dominant reason for the distinct bend morphology the Hawaiian-Emperor track is hotspot motion rather than plate motion. These findings provide the motivation for moving beyond hotspot fixity to understand mantle processes responsible for the observed motions. Global analyses as well as comparisons between the Hawaiian-Emperor and Louisville tracks indicate only a minor (if any) role for true polar wander. Two viable, non-mutually exclusive processes to explain the observed Hawaiian plume motion are: i. plume-ridge and ii plume-LLSVP interaction. Here we further explore these issues by paleomagnetic analyses of basalts from the Cenozoic Hawaiian chain and Late Cretaceous basalts of the southernmost Pacific Plate. The latter yield paleolatitudes consistent with those from the northern Pacific, indicating that long-standing non-dipole fields cannot have been large enough to affect conclusions on hotspot drift. Data from the former suggest some relative motions between the LLSVPs on tens-of-millions of year time scales, which probably record the continual reshaping of these provinces by plume motion in the lower mantle.

  4. Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots.

    PubMed

    Zhitao, Niu; Shuying, Zhu; Jiajia, Pan; Ludan, Li; Jing, Sun; Xiaoyu, Ding

    2017-05-18

    Dendrobium is one of the largest genera in Orchidaceae, comprising about 800-1500 species mainly distributed in tropical Asia, Australasia, and Australia. There are 74 species and two varieties of this genus in China. Because of their ornamental and commercial value, Dendrobium orchids have been studied at low taxonomic levels. However, structural changes and effective mutational hotspots of Dendrobium plastomes have rarely been documented. Here, 30 Dendrobium plastomes were compared, comprising 25 newly sequenced in this study and five previously published. Except for their differences in NDH genes, these plastomes shared identical gene content and order. Comparative analyses revealed that the variation in size of Dendroubium plastomes was associated with dramatically changed length of InDels. Furthermore, ten loci were identified as the top-ten mutational hotspots, whose sequence variability was almost unchanged with more than 10 plastomes sampled, suggesting that they may be powerful markers for Dendrobium species. In addition, primer pairs of 47 polymorphic microsatellites were developed. After assessing the mean BS values of all combinations derived from the top-ten hotspots, we recommend that the combination of five hotspots-trnT-trnL, rpl32-trnL, clpP-psbB, trnL intron, and rps16-trnQ-should be used in the phylogenetic and identification studies of Dendrobium.

  5. Rational identification of aggregation hotspots based on secondary structure and amino acid hydrophobicity.

    PubMed

    Matsui, Daisuke; Nakano, Shogo; Dadashipour, Mohammad; Asano, Yasuhisa

    2017-08-25

    Insolubility of proteins expressed in the Escherichia coli expression system hinders the progress of both basic and applied research. Insoluble proteins contain residues that decrease their solubility (aggregation hotspots). Mutating these hotspots to optimal amino acids is expected to improve protein solubility. To date, however, the identification of these hotspots has proven difficult. In this study, using a combination of approaches involving directed evolution and primary sequence analysis, we found two rules to help inductively identify hotspots: the α-helix rule, which focuses on the hydrophobicity of amino acids in the α-helix structure, and the hydropathy contradiction rule, which focuses on the difference in hydrophobicity relative to the corresponding amino acid in the consensus protein. By properly applying these two rules, we succeeded in improving the probability that expressed proteins would be soluble. Our methods should facilitate research on various insoluble proteins that were previously difficult to study due to their low solubility.

  6. Fires in Myanmar (2007)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In Southeast Asia, fires are common and widespread throughout the dry season, which roughly spans the northern hemisphere winter months. People set fires to clear crop stubble and brush and to prepare grazing land for a new flush of growth when the rainy season arrives. These intentional fires are too frequently accompanied by accidental fires that invade nearby forests and woodlands. The combination of fires produces a thick haze that alternately lingers and disperses, depending on the weather. This image from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite shows fire activity on March 19, 2007, across eastern India, Myanmar, Thailand, Laos, and China. Places where MODIS detected actively burning fires are marked in red on the image. The darker green areas are generally more wooded areas or forests, while the paler green and tan areas are agricultural land. Smoke pools over low-lying areas of the hilly terrain in gray pockets. The green tops of rolling hills in Thailand emerge from a cloud of low-lying smoke. According to news reports from Thailand, the smoke blanket created air quality conditions that were considered unhealthy for all groups, and it prompted the Thai Air Force to undertake cloud-seeding attempts in an effort to cleanse the skies with rain. Commercial air traffic was halted due to poor visibility.

  7. Fire Effects on Greenhouse Gas Emissions from Wetlands in the Yukon-Kuskokwim Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Peter, D. L.; Bristol, E. M.; Mann, P. J.; Schade, J. D.; Natali, S.; Holmes, R. M.

    2017-12-01

    Climate change in increasing both fire frequency and fire intensity, especially in Arctic regions. Fire often leads to increased soil temperature, which increases the likelihood of permafrost thaw. Permafrost soils in northern latitudes store large amounts of carbon, and thawing of this permafrost will alter carbon cycling processes, which may substantially impact ecosystem processes in aquatic ecosystems. One potential consequence of altered aquatic ecosystem processes is changes in carbon emissions resulting from altered carbon inputs from thawing permafrost. Aquatic ecosystems are known to be hotspots of greenhouse gas emissions, so changes in greenhouse gas fluxes from them may have important impacts on global climate. In this work, we focused on CO2 and CH4 fluxes from peat plateau ponds, fens and bogs in the Yukon-Kuskokwim (YK) Delta in southwest Alaska. The YK Delta experienced unprecedented fires in summer 2015, presenting an opportunity to assess the impacts of fire on greenhouse gas fluxes from aquatic ecosystems. We sampled upland ponds, channel fens, bogs, and lowland ponds in sites that had burned in 2015 as well as from similar sites where there have been no recorded fires in the past 75 years. We found little difference in gas flux between aquatic sites in burned and unburned sites, with the exception of channel fens, which showed substantially higher fluxes of both CH4 and CO2 in burned sites. This is in contrast to similar measurements taken in summer 2016, when burned ponds showed consistently higher GHG fluxes, suggesting these increases were not sustained in sites other than channel fens. These results, if general, indicate the possibility that the response of aquatic ecosystems to fire may lead to positive feedbacks on climate change.

  8. The effects of nicotine exposure and PFC transection on the time-frequency distribution of VTA DA neurons' firing activities.

    PubMed

    Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin; Akay, Metin

    2011-05-01

    We investigated the influence of nicotine exposure and prefrontal cortex (PFC) transections on ventral tegmental areas (VTA) dopamine (DA) neurons' firing activities using a time-frequency method based on the continuous wavelet transform (CWT). Extracellular single-unit neural activity was recorded from DA neurons in the VTA area of rats. One group had their PFC inputs to the VTA intact, while the other group had the inputs to VTA bilaterally transected immediate caudal to the PFC. We hypothesized that the systemic nicotine exposure will significantly change the energy distribution in the recorded neural activity. Additionally, we investigated whether the loss of inputs to the VTA caused by the PFC transection resulted in the cancellation of the nicotine' effect on the neurons' firing patterns. The time-frequency representations of VTA DA neurons firing activity were estimated from the reconstructed firing rate histogram. The energy contents were estimated from three frequency bands, which are known to encompass the significant modes of operation of DA neurons. Our results show that systemic nicotine exposure disrupts the energy distribution in PFC-intact rats. Particularly, there is a significant increase in energy contents of the 1-1.5 Hz frequency band. This corresponds to an observed increase in the firing rate of VTA DA neurons following nicotine exposure. Additionally, our results from PFC-transected rats show that there is no change in the energy distribution of the recordings after systemic nicotine exposure. These results indicate that the PFC plays an important role in affecting the activities of VTA DA neurons and that the CWT is a useful method for monitoring the changes in neural activity patterns in both time and frequency domains.

  9. Modelling Middle Infrared Thermal Imagery from Observed or Simulated Active Fire

    NASA Astrophysics Data System (ADS)

    Paugam, R.; Gastellu-Etchegorry, J. P.; Mell, W.; Johnston, J.; Filippi, J. B.

    2016-12-01

    The Fire Radiative Power (FRP) is used in the atmospheric and fire communities to estimate fire emission. For example, the current version of the emission inventory GFAS is using FRP observation from the MODIS sensors to derive daily global distribution of fire emissions. Although the FRP product is widely accepted, most of its theoretical justifications are still based on small scale burns. When up-scaling to large fires effects of view angle, canopy cover, or smoke absorption are still unknown. To cover those questions, we are building a system based on the DART radiative transfer model to simulate the middle infrared radiance emitted by a propagating fire front and propagating in the surrounding scene made of ambient vegetation and plume aerosols. The current version of the system was applied to fire ranging from a 1m2 to 7ha. The 3D fire scene used as input in DART is made of the flame, the vegetation (burnt and unburnt), and the plume. It can be either set up from [i] 3D physical based model scene (ie WFDS, mainly applicable for small scale burn), [ii] coupled 2D fire spread - atmospheric models outputs (eg ForeFire-MesoNH) or [iii] derived from thermal imageries observations (here plume effects are not considered). In the last two cases, as the complexity of physical processes occurring in the flame (in particular soot formation and emission) is not to solved, the flames structures are parameterized with (a) temperature and soot concentration based on empirical derived profiles and (b) 3D triangular shape hull interpolated at the fire front location. Once the 3D fire scene is set up, DART is then used to render thermal imageries in the middle infrared. Using data collected from burns conducted at different scale, the modelled thermal imageries are compared against observations, and effects of view angle are discussed.

  10. Thermoelastic stress in oceanic lithosphere due to hotspot reheating

    NASA Technical Reports Server (NTRS)

    Zhu, Anning; Wiens, Douglas A.

    1991-01-01

    The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.

  11. Cool echidnas survive the fire.

    PubMed

    Nowack, Julia; Cooper, Christine Elizabeth; Geiser, Fritz

    2016-04-13

    Fires have occurred throughout history, including those associated with the meteoroid impact at the Cretaceous-Palaeogene (K-Pg) boundary that eliminated many vertebrate species. To evaluate the recent hypothesis that the survival of the K-Pg fires by ancestral mammals was dependent on their ability to use energy-conserving torpor, we studied body temperature fluctuations and activity of an egg-laying mammal, the echidna (Tachyglossus aculeatus), often considered to be a 'living fossil', before, during and after a prescribed burn. All but one study animal survived the fire in the prescribed burn area and echidnas remained inactive during the day(s) following the fire and substantially reduced body temperature during bouts of torpor. For weeks after the fire, all individuals remained in their original territories and compensated for changes in their habitat with a decrease in mean body temperature and activity. Our data suggest that heterothermy enables mammals to outlast the conditions during and after a fire by reducing energy expenditure, permitting periods of extended inactivity. Therefore, torpor facilitates survival in a fire-scorched landscape and consequently may have been of functional significance for mammalian survival at the K-Pg boundary. © 2016 The Author(s).

  12. Developing models to predict the number of fire hotspots from an accumulated fuel dryness index by vegetation type and region in Mexico

    Treesearch

    D. Vega-Nieva; J. Briseño-Reyes; M. Nava-Miranda; E. Calleros-Flores; P. López-Serrano; J. Corral-Rivas; E. Montiel-Antuna; M. Cruz-López; M. Cuahutle; R. Ressl; E. Alvarado-Celestino; A. González-Cabán; E. Jiménez; J. Álvarez-González; A. Ruiz-González; R. Burgan; H. Preisler

    2018-01-01

    Understanding the linkage between accumulated fuel dryness and temporal fire occurrence risk is key for improving decision-making in forest fire management, especially under growing conditions of vegetation stress associated with climate change. This study addresses the development of models to predict the number of 10-day observed Moderate-Resolution Imaging...

  13. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity.

    PubMed

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-08-01

    To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to 'classical' hotspots based on species richness (SR) only. Global. SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale.

  14. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity

    PubMed Central

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-01-01

    Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global

  15. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle.

    PubMed

    Spencer, Nick J; Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Hu, Hongzhen; Brookes, Simon J; Wattchow, David A; Dinning, Phil G; Keating, Damien J; Sorensen, Julian

    2018-05-28

    The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behaviour of the intestine. It is well established the large intestine requires ENS activity to drive propulsive motor behaviours. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high resolution neuronal imaging with electrophysiology from neighbouring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine (referred to as colonic migrating motor complexes, CMMCs) consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the central nervous system. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs. SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long

  16. Fire-climate interactions in the American West since 1400 CE

    NASA Astrophysics Data System (ADS)

    Trouet, Valerie; Taylor, Alan H.; Wahl, Eugene R.; Skinner, Carl N.; Stephens, Scott L.

    2010-02-01

    Despite a strong anthropogenic fingerprint on 20th Century wildland fire activity in the American West, climate remains a main driver. A better understanding of the spatio-temporal variability in fire-climate interactions is therefore crucial for fire management. Here, we present annually resolved, tree-ring based fire records for four regions in the American West that extend back to 1400 CE. In all regions, years with high fire activity were characterized by widespread yet regionally distinct summer droughts. Overall fire activity was high in late Medieval times, when much of the American West was affected by mega-droughts. A distinct decline in fire activity in the late 16th Century corresponds with anomalously low temperatures during the Little Ice Age and a decline in Native American fire use. The high spatiotemporal resolution of our fire record discloses a time-frequency dependent climatic influence on wildfire regimes in the American West that needs to be accounted for in fire models.

  17. FireWorks educational program and its effectiveness

    Treesearch

    Jane Kapler Smith; Nancy E. McMurray

    2004-01-01

    FireWorks is an educational program that provides interactive, hands-on activities for studying fire behavior, fire ecology, and human influences on three fire-dependent forest types-ponderosa pine (Pinus ponderosa), interior lodgepolepine (P. contorta var.latifolia), and whitebark pine (P. albicaulis)....

  18. Detecting fluorescence hot-spots using mosaic maps generated from multimodal endoscope imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Soper, Timothy D.; Seibel, Eric J.

    2013-03-01

    Fluorescence labeled biomarkers can be detected during endoscopy to guide early cancer biopsies, such as high-grade dysplasia in Barrett's Esophagus. To enhance intraoperative visualization of the fluorescence hot-spots, a mosaicking technique was developed to create full anatomical maps of the lower esophagus and associated fluorescent hot-spots. The resultant mosaic map contains overlaid reflectance and fluorescence images. It can be used to assist biopsy and document findings. The mosaicking algorithm uses reflectance images to calculate image registration between successive frames, and apply this registration to simultaneously acquired fluorescence images. During this mosaicking process, the fluorescence signal is enhanced through multi-frame averaging. Preliminary results showed that the technique promises to enhance the detectability of the hot-spots due to enhanced fluorescence signal.

  19. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management

    Treesearch

    Christopher D. O' Connor; David E. Calkin; Matthew P. Thompson

    2017-01-01

    During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions,...

  20. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, John S

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.