Science.gov

Sample records for active galactic nuclear

  1. CO Line Emission from Compact Nuclear Starburst Disks around Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Armour, J. N.; Ballantyne, D. R.

    2012-06-01

    There is substantial evidence for a connection between star formation in the nuclear region of a galaxy and growth of the central supermassive black hole. Furthermore, starburst activity in the region around an active galactic nucleus (AGN) may provide the obscuration required by the unified model of AGNs. Molecular line emission is one of the best observational avenues to detect and characterize dense, star-forming gas in galactic nuclei over a range of redshift. This paper presents predictions for the carbon monoxide (CO) line features from models of nuclear starburst disks around AGNs. These small-scale (lsim 100 pc), dense and hot starbursts have CO luminosities similar to scaled-down ultra-luminous infrared galaxies and quasar host galaxies. Nuclear starburst disks that exhibit a pc-scale starburst and could potentially act as the obscuring torus show more efficient CO excitation and higher brightness temperature ratios than those without such a compact starburst. In addition, the compact starburst models predict strong absorption when J Upper >~ 10, a unique observational signature of these objects. These findings allow for the possibility that CO spectral line energy distributions (SLEDs) could be used to determine if starburst disks are responsible for the obscuration in z <~ 1 AGNs. Directly isolating the nuclear CO line emission of such compact regions around AGNs from galactic-scale emission will require high-resolution imaging or selecting AGN host galaxies with weak galactic-scale star formation. Stacking individual CO SLEDs will also be useful in detecting the predicted high-J features.

  2. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  3. NUCLEAR RADIO JET FROM A LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN NGC 4258

    SciTech Connect

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz ({alpha} {approx} 0.3; F {sub {nu}}{proportional_to}{nu}{sup {alpha}}) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds ({Gamma} {approx}> 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  4. Nuclear Radio Jet from a Low-luminosity Active Galactic Nucleus in NGC 4258

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (α ~ 0.3; F νvpropνα) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (Γ >~ 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  5. THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Elitzur, M.; Aretxaga, I.; Roche, P. F.; Oi, N.

    2012-07-15

    We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear

  6. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  7. Uncovering the Deeply Embedded Active Galactic Nucleus Activity in the Nuclear Regions of the Interacting Galaxy Arp 299

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Roche, P. F.; Esquej, P.; González-Martín, O.; Pereira-Santaella, M.; Ramos Almeida, C.; Levenson, N. A.; Packham, C.; Asensio Ramos, A.; Mason, R. E.; Rodríguez Espinosa, J. M.; Alvarez, C.; Colina, L.; Aretxaga, I.; Díaz-Santos, T.; Perlman, E.; Telesco, C. M.

    2013-12-01

    We present mid-infrared (MIR) 8-13 μm spectroscopy of the nuclear regions of the interacting galaxy Arp 299 (IC 694+NGC 3690) obtained with CanariCam (CC) on the 10.4 m Gran Telescopio Canarias (GTC). The high angular resolution (~0.''3-0.''6) of the data allows us to probe nuclear physical scales between 60 and 120 pc, which is a factor of 10 improvement over previous MIR spectroscopic observations of this system. The GTC/CC spectroscopy displays evidence of deeply embedded active galactic nucleus (AGN) activity in both nuclei. The GTC/CC nuclear spectrum of NGC 3690/Arp 299-B1 can be explained as emission from AGN-heated dust in a clumpy torus with both a high covering factor and high extinction along the line of sight. The estimated bolometric luminosity of the AGN in NGC 3690 is 3.2 ± 0.6 × 1044 erg s-1. The nuclear GTC/CC spectrum of IC 694/Arp 299-A shows 11.3 μm polycyclic aromatic hydrocarbon emission stemming from a deeply embedded (AV ~ 24 mag) region of less than 120 pc in size. There is also a continuum-emitting dust component. If associated with the putative AGN in IC 694, we estimate that it would be approximately five times less luminous than the AGN in NGC 3690. The presence of dual AGN activity makes Arp 299 a good example to study such phenomena in the early coalescence phase of interacting galaxies.

  8. UNCOVERING THE DEEPLY EMBEDDED ACTIVE GALACTIC NUCLEUS ACTIVITY IN THE NUCLEAR REGIONS OF THE INTERACTING GALAXY Arp 299

    SciTech Connect

    Alonso-Herrero, A.; Roche, P. F.; Esquej, P.; Colina, L.; González-Martín, O.; Ramos Almeida, C.; Asensio Ramos, A.; Rodríguez Espinosa, J. M.; Alvarez, C.; Pereira-Santaella, M.; Levenson, N. A.; Packham, C.; Mason, R. E.; Aretxaga, I.; Díaz-Santos, T.; Perlman, E.; Telesco, C. M.

    2013-12-10

    We present mid-infrared (MIR) 8-13 μm spectroscopy of the nuclear regions of the interacting galaxy Arp 299 (IC 694+NGC 3690) obtained with CanariCam (CC) on the 10.4 m Gran Telescopio Canarias (GTC). The high angular resolution (∼0.''3-0.''6) of the data allows us to probe nuclear physical scales between 60 and 120 pc, which is a factor of 10 improvement over previous MIR spectroscopic observations of this system. The GTC/CC spectroscopy displays evidence of deeply embedded active galactic nucleus (AGN) activity in both nuclei. The GTC/CC nuclear spectrum of NGC 3690/Arp 299-B1 can be explained as emission from AGN-heated dust in a clumpy torus with both a high covering factor and high extinction along the line of sight. The estimated bolometric luminosity of the AGN in NGC 3690 is 3.2 ± 0.6 × 10{sup 44} erg s{sup –1}. The nuclear GTC/CC spectrum of IC 694/Arp 299-A shows 11.3 μm polycyclic aromatic hydrocarbon emission stemming from a deeply embedded (A{sub V} ∼ 24 mag) region of less than 120 pc in size. There is also a continuum-emitting dust component. If associated with the putative AGN in IC 694, we estimate that it would be approximately five times less luminous than the AGN in NGC 3690. The presence of dual AGN activity makes Arp 299 a good example to study such phenomena in the early coalescence phase of interacting galaxies.

  9. A New Perspective of the Radio Bright Zone at The Galactic Center: Feedback from Nuclear Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13‧ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam-1, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2‧ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.‧3 × 3.‧2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ˜2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized wind or

  10. MODELING THE NUCLEAR INFRARED SPECTRAL ENERGY DISTRIBUTION OF TYPE II ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Lira, Paulina; Videla, Liza; Wu, Yanling; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin

    2013-02-20

    We present results from model fitting to the spectral energy distribution (SED) of a homogeneous sample of Seyfert II galaxies drawn from the 12 {mu}m Galaxy Sample. Imaging and nuclear flux measurements are presented in an accompanying paper. Here we add Spitzer/IRS observations to further constrain the SEDs after careful subtraction of a starburst component. We use the library of CLUMPY torus models from Nenkova et al. and also test the two-phase models recently produced by Stalevski et al. We find that photometric and spectroscopic observations in the mid-IR ({lambda} {approx}> 5 {mu}m) are crucial to properly constrain the best-fit torus models. About half of our sources show clear near-IR excess of their SEDs above the best-fit models. This problem can be less severe when using the Stalevski et al. models. The nature of this emission is not clear since best-fitted blackbody temperatures are very high ({approx}1700-2500 K) and the Type II classification of our sources would correspond to a small probability to peer directly into the hottest regions of the torus. Crucially, the derived torus parameters are quite robust when using CLUMPY models, independently of whether or not the sources require an additional blackbody component. Our findings suggest that tori are characterized by N{sub 0}{approx}>5, {sigma} {approx}> 40, {tau} {approx}< 25, Angle i {approx}> 40 Degree-Sign , Y {approx}< 50, and A {sup los} {sub v} {approx} 100-300, where N{sub 0} is the number of clouds in the equatorial plane of the torus, {sigma} is the characteristic opening angle of the cloud distribution, {tau} is the opacity of a single cloud, Angle i is the line-of-sight orientation of the torus, Y is the ratio of the inner to the outer radii, and A {sup los} {sub v} is the total opacity along the line of sight. From these, we can determine typical torus sizes and masses of 0.1-5.0 pc and 10{sup 4}-10{sup 6} M {sub Sun }, respectively. We find tentative evidence that those nuclei with

  11. THE GALACTIC CENTER: NOT AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris

    2013-06-01

    We present 10 {mu}m-35 {mu}m Spitzer spectra of the interstellar medium in the Central Molecular Zone (CMZ), the central 210 pc Multiplication-Sign 60 pc of the Galactic center (GC). We present maps of the CMZ in ionic and H{sub 2} emission, covering a more extensive area than earlier spectroscopic surveys in this region. The radial velocities and intensities of ionic lines and H{sub 2} suggest that most of the H{sub 2} 0-0 S(0) emission comes from gas along the line-of-sight, as found by previous work. We compare diagnostic line ratios measured in the Spitzer Infrared Nearby Galaxies Survey to our data. Previous work shows that forbidden line ratios can distinguish star-forming galaxies from low-ionization nuclear emission-line regions (LINERs) and active galactic nuclei (AGNs). Our GC line ratios agree with star-forming galaxies and not with LINERs or AGNs.

  12. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  13. Starbursts in Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2005-05-01

    Low Luminosity Active Galactic Nuclei (LLAGN), which comprise low-ionization nuclear emission-line regions (LINERs) and transition-type objects (TOs), represent the most common type of nuclear activity. Here, we search for spectroscopic signatures of starbursts and post-starbursts in LLAGN, and investigate their relationship to the ionization mechanism in LLAGN. The method used is based on the stellar population synthesis of the circumnuclear optical continuum of these galaxies. We have found that intermediate-age populations (108-109 yr) are very common in weak-[O I] LLAGN, but that very young stars (≤107 yr) contribute very little to the central optical continuum of these objects. However, ˜ 1 Gyr ago these nuclei harboured starbursts of size ˜ 100 pc and masses 107-108 M⊙. Meanwhile, most of the strong-[O I] LLAGN have predominantly old stellar populations.

  14. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  15. HST/WFPC2 Imaging of the Circumnuclear Structure of Low-Luminosity Active Galactic Nuclei. I. Data and Nuclear Morphology

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Pérez, Enrique; Cid Fernandes, Roberto; Schmitt, Henrique

    2008-03-01

    In several studies of low-luminosity active galactic nuclei (LLAGNs), we have characterized the properties of the stellar populations in LINERs and LINER/H II transition objects (TOs). We have found a populous class of galactic nuclei which stand out because of their conspicuous 0.1-1 Gyr populations. These nuclei are called "Young-TOs" since they all have TO-like emission line ratios. To advance our knowledge of the nature of the central source in LLAGNs and its relation with stellar clusters, we carry out several imaging projects with the Hubble Space Telescope (HST) at near-UV, optical, and near-IR wavelengths. In this Paper, we present the first results obtained with observations of the central regions of 57 LLAGNs imaged with the WFPC2 through any of the V (F555W, F547M, F614W) and I (F791W, F814W) filters that are available in the HST archive. The sample contains 34% of the LINERs and 36% of the TOs in the Palomar sample. The mean spatial resolution of these images is 10 pc. With these data we have built an atlas that includes structural maps for all the galaxies, useful to identify compact nuclear sources and, additionally, to characterize the circumnuclear environment of LLAGNs, determining the frequency of dust and its morphology. The main results obtained are as follows. (1) We have not found any correlation between the presence of nuclear compact sources and emission-line type. Thus, nucleated LINERs are as frequent as nucleated TOs. (2) The nuclei of "Young-TOs" are brighter than the nuclei of "Old-TOs" and LINERs. These results confirm our previous results that Young-TOs are separated from other LLAGNs classes in terms of their central stellar population properties and brightness. (3) Circumnuclear dust is detected in 88% of the LLAGNs, being almost ubiquitous in TOs. (4) The dust morphology is complex and varied, from nuclear spiral lanes to chaotic filaments and nuclear disk-like structures. Chaotic filaments are as frequent as dust spirals; but

  16. Observational signatures of galactic winds powered by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nims, Jesse; Quataert, Eliot; Faucher-Giguère, Claude-André

    2015-03-01

    We predict the observational signatures of galaxy scale outflows powered by active galactic nuclei (AGN). Most of the emission is produced by the forward shock driven into the ambient interstellar medium (ISM) rather than by the reverse shock. AGN-powered galactic winds with energetics suggested by phenomenological feedback arguments should produce spatially extended ˜1-10 keV X-ray emission ˜ 1041-44 erg s- 1, significantly in excess of the spatially extended X-ray emission associated with normal star-forming galaxies. The presence of such emission is a direct test of whether AGN outflows significantly interact with the ISM of their host galaxy. We further show that even radio-quiet quasars should have a radio luminosity comparable to or in excess of the far-infrared-radio correlation of normal star-forming galaxies. This radio emission directly constrains the total kinetic energy flux in AGN-powered galactic winds. Radio emission from AGN wind shocks can also explain the recently highlighted correlations between radio luminosity and the kinematics of AGN narrow-line regions in radio-quiet quasars.

  17. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  18. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. I. NATURE OF THE NUCLEAR IONIZING SOURCES

    SciTech Connect

    Liu, Xin; Civano, Francesca; Shen, Yue; Green, Paul; Greene, Jenny E.; Strauss, Michael A.

    2013-01-10

    Kiloparsec-scale binary active galactic nuclei (AGNs) signal active supermassive black hole (SMBH) pairs in merging galaxies. Despite their significance, unambiguously confirmed cases remain scarce and most have been discovered serendipitously. In a previous systematic search, we optically identified four kpc-scale binary AGNs from candidates selected with double-peaked narrow emission lines at z = 0.1-0.2. Here, we present Chandra and Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging of these four systems. We critically examine and confirm the binary-AGN scenario for two of the four targets, by combining high angular resolution X-ray imaging spectroscopy with Chandra ACIS-S, better nuclear position constraints from WFC3 F105W imaging, and direct starburst estimates from WFC3 F336W imaging; for the other two targets, the existing data are still consistent with the binary-AGN scenario, but we cannot rule out the possibility of only one AGN ionizing gas in both merging galaxies. We find tentative evidence for a systematically smaller X-ray-to-[O III] luminosity ratio and/or higher Compton-thick fraction in optically selected kpc-scale binary AGNs than in single AGNs, possibly caused by a higher nuclear gas column due to mergers and/or a viewing angle bias related to the double-peak narrow-line selection. While our result lends some further support to the general approach of optically identifying kpc-scale binary AGNs, it also highlights the challenge and ambiguity of X-ray confirmation.

  19. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  20. The nuclear X-ray source in NGC 3628: A strange active galactic nucleus or the most luminous high-mass X-ray binary known?

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Heckman, Timothy M.; Fabbiano, Giuseppina

    1995-01-01

    After 12 years, during which its unabsorbed soft X-ray flux in the 0.1-2.0 keV band was almost constant at about f(sub x) approximately 10(exp -12) ergs/s/sq cm, the compact nuclear source in NGC 3628 was not detected in one of our ROSAT observations, with a limiting sensitivity of f(sub x) approximately 5 x 10(exp -14) ergs/s/sq cm. Our data can be explained in two ways. The source is either the most massive X-ray binary known so far, with a greater than and approximately equal to 75 solar mass black hole, or an unusual low-luminosity Active Galactic Nuclei (AGN). The X-ray spectrum is typical of a high-mass X-ray binary, while the luminosity of the source of L(sub x) is approximately equal to 10(exp 40) ergs/s is more similar to those of low-luminosity AGNs. If it is an AGN, variable obscuration might explain the observed light curve.

  1. Active galactic nuclei and galaxy interactions

    NASA Astrophysics Data System (ADS)

    Alonso, M. Sol; Lambas, Diego G.; Tissera, Patricia; Coldwell, Georgina

    2007-03-01

    We perform a statistical analysis of active galactic nucleus (AGN) host characteristics and nuclear activity for AGNs in pairs and without companions. Our study concerns a sample of AGNs derived from the Sloan Digital Sky Survey Data Release 4 data by Kauffmann et al. and pair galaxies obtained from the same data set by Alonso et al. An eye-ball classification of images of 1607 close pairs (rp < 25 kpc h-1,ΔV < 350 km s-1) according to the evidence of interaction through distorted morphologies and tidal features provides us with a more confident assessment of galaxy interactions from this sample. We notice that, at a given luminosity or stellar mass content, the fraction of AGNs is larger for pair galaxies exhibiting evidence for strong interaction and tidal features which also show signs of strong star formation activity. Nevertheless, this process accounts only for a ~10per cent increase of the fraction of AGNs. As in previous works, we find AGN hosts to be redder and with a larger concentration morphological index than non-AGN galaxies. This effect does not depend on whether AGN hosts are in pairs or in isolation. The OIII luminosity of AGNs with strong interaction features is found to be significantly larger than that of other AGNs, either in pairs or in isolation. Estimations of the accretion rate, L[OIII]/MBH, show that AGNs in merging pairs are actively feeding their black holes, regardless of their stellar masses. We also find that the luminosity of the companion galaxy seems to be a key parameter in the determination of the black hole activity. At a given host luminosity, both the OIII luminosity and the L[ OIII]/MBH are significantly larger in AGNs with a bright companion (Mr < -20) than otherwise.

  2. The Sins/zC-Sinf Survey of z ~ 2 Galaxy Kinematics: Evidence for Powerful Active Galactic Nucleus-Driven Nuclear Outflows in Massive Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Genzel, R.; Newman, S. F.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Burkert, A.; Buschkamp, P.; Carollo, C. M.; Cresci, G.; Daddi, E.; Davies, R.; Eisenhauer, F.; Hicks, E. K. S.; Lang, P.; Lilly, S. J.; Mainieri, V.; Mancini, C.; Naab, T.; Peng, Y.; Renzini, A.; Rosario, D.; Shapiro Griffin, K.; Shapley, A. E.; Sternberg, A.; Tacchella, S.; Vergani, D.; Wisnioski, E.; Wuyts, E.; Zamorani, G.

    2014-05-01

    We report the detection of ubiquitous powerful nuclear outflows in massive (>=1011 M ⊙) z ~ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ~ 1500 km s-1, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~60 M ⊙ yr-1 and mass loading of ~3. At larger radii, a weaker broad component is detected but with lower FWHM ~485 km s-1 and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth. Based on observations obtained at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO program IDs 074.A-0911, 075.A-0466, 076.A-0527, 078.A-0600, 082.A-0396, 183.A-0781, 088.A-0202, 091.A-0126). Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the

  3. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  4. Integral field unit spectroscopy of 10 early-type galactic nuclei - I. Principal component analysis Tomography and nuclear activity

    NASA Astrophysics Data System (ADS)

    Ricci, T. V.; Steiner, J. E.; Menezes, R. B.

    2014-05-01

    Most massive galaxies show emission lines that can be characterized as LINERs. To what extent this emission is related to AGNs or to stellar processes is still an open question. In this paper, we analysed a sample of such galaxies to study the central region in terms of nuclear and circumnuclear emission lines, as well as the stellar component properties. For this reason, we selected 10 massive (σ > 200 km s-1) nearby (d < 31 Mpc) galaxies and observed them with the IFU/GMOS (integral field unit/Gemini Multi-Object Spectrograph) spectrograph on the Gemini South Telescope. The data were analysed with principal component analysis (PCA) Tomography to assess the main properties of the objects. Two spectral regions were analysed: a yellow region (5100-5800 Å), adequate to show the properties of the stellar component, and a red region (6250-6800 Å), adequate to analyse the gaseous component. We found that all objects previously known to present emission lines have a central AGN-type emitting source. They also show gaseous and stellar kinematics typical of discs. Such discs may be co-aligned (NGC 1380 and ESO 208 G-21), in counter-rotation (IC 1459 and NGC 7097) or misaligned (IC 5181 and NGC 4546). We also found one object with a gaseous disc but no stellar disc (NGC 2663), one with a stellar disc but no gaseous disc (NGC 1404), one with neither stellar nor gaseous disc (NGC 1399) and one with probably ionization cones (NGC 3136). PCA Tomography is an efficient method for detecting both the central AGN and gaseous and stellar discs. In the two cases (NGC 1399 and NGC 1404) in which no lines were previously reported, we found no evidence of either nuclear or circumnuclear emission, using PCA Tomography only.

  5. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  6. A NIR Atlas of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Riffel, R.; Pastoriza, M. G.

    2006-06-01

    We present the most comprehensive atlas of near-infrared (NIR) mid-resolution (R=1000) spectra of active galactic nuclei (AGN) made to date in the interval 0.8-2.4 μm. The aim of this work is to provide a homogeneous database suitable to study the nuclear NIR properties of AGN in a region poorly studied spectroscopically but that keeps useful constraints to model the AGN physics. The sample is composed of 49 objects, 39 of them with z <0.05, distributed between 7 quasars, 25 Seyfert 1 (classical and narrow-line Seyfert 1) and 17 Seyfert 2 galaxies. A few LINERS and Starburst galaxies are also included for comparative purposes. The spectra are dominated by strong emission lines of H I, He I, He II, [S III] and conspicuous forbidden lines of low and high ionization species, including coronal lines. In addition, rotational/vibrational lines of H_2 are detected in most objects. Overall, the continuum of quasars and Seyfert 1s are rather similar, being essentially flat or slightly steep in the H and K bands. In J, the shape of the continuum is different from object to object, varying from that displaying a steep rise in flux towards shorter wavelengths, from 1.1 μm bluewards, to that remaining flat. In Seyfert 2s, the continuum smoothly decreases in flux with wavelength, from 1.2 μm redwards. Bluewards, the continuum flux steeply rises in some sources while in others it decreases towards shorter wavelengths, suggesting reddening. Independently of the AGN type, stellar absorption features of CO, Si I and Mg I are present in the H and K bands. They are found to be particularly strong in Seyfert 2s. Line identification and remarks on the most important characteristics observed in the sample are given.

  7. Ambartsumyan's concept of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Khachikian, E. Ye.

    2010-01-01

    As Victor Ambartsumyan, himself, noted, the concept of active galactic nuclei occupies a special place among his scientific ideas. It was proposed more than half a century ago and was recognized by the U.S. National Academy of Sciences as revolutionary, on a copernican scale. However, by no means all of its propositions were accepted at once by large parts of the astronomy community. Nevertheless, as the American astrophysicist A. R. Sandage has written, “today, not one astronomer would deny the mystery surrounding the nuclei of galaxies or that the first to recognize the rich reward held in this treasury was Viktor Ambartsumian.” The purpose of this article is to acquaint the reader with the major stages in the formation and development of the concept of active galactic nuclei and with some of the work on this topic done at the Byurakan and other astrophysical observatories throughout the world.

  8. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  9. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  10. The fuelling of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Begelman, Mitchell C.; Frank, Julian

    1990-01-01

    Accretion mechanisms for powering the central engines of active galactic nuclei (AGN) and possible sources of fuel are reviewed. It is a argued that the interstellar matter in the main body of the host galaxy is channeled toward the center, and the problem of angular momentum transport is addressed. Thin accretion disks are not a viable means of delivering fuel to luminous AGN on scales much larger than a parsec because of the long inflow time and effects of self-gravity. There are also serious obstacles to maintaining and regulating geometrically thick, hot accretion flows. The role of nonaxisymmetric perturbations of the gravitational potential on galactic scales and their triggers is emphasized. A unified model is outlined for fueling AGN, in which the inflow on large scales is driven by gravitational torques, and on small scales forms a mildly self-gravitating disk of clouds with inflow driven by magnetic torques or cloud-cloud collisions.

  11. THE INNER GALACTIC BULGE: EVIDENCE FOR A NUCLEAR BAR?

    SciTech Connect

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-15

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| {<=} 4 Degree-Sign . Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge-long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  12. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, ~10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, ~25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  13. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  14. Stellar Transits in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  15. Reverberation mapping of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    1993-01-01

    The broad emission lines in the spectra of active galactic nuclei respond to variations in the luminosity of the central continuum source with a delay due to light-travel time effects within the emission-line region. It is therefore possible through the process of 'reverberation mapping' to determine the geometry and kinematics of the emission-line region by careful monitoring of the continuum variations and the resulting emission-line response. In this review, I will discuss progress in application of the reverberation mapping technique. I will describe the underlying assumptions and limitations of the method, discuss how the results obtained to date are changing our understanding of active nuclei, and outline several new questions that might be addressed through further reverberation mapping programs.

  16. Elliptical accretion disks in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Eracleous, Michael; Livio, Mario; Halpern, Jules P.; Storchi-Bergmann, Thaisa

    1995-01-01

    We present a calculation of the profiles of emission lines originating in a relativistic, eccentric disk, and show examples of the resulting model profiles. Our calculations are motivated by the fact that in about one-quarter of the double-peaked emission lines observed in radio-loud active galactic nuclei (and in the mildly active nucleus of NGC 1097), the red peak is stronger than the blue peak, which is contrary to the prediction of relativistic, circular disk models. Using the eccentric disk model we fit some of the observed profiles that cannot be fitted with a circular disk model. We propose two possible scenarios for the formation of an eccentric disk in an active galactic nucleus: (a) tidal perturbation of the disk around a supermassive black hole by a smaller binary companion, and (b) formation of an elliptical disk from the debris resulting from the tidal disruption of a star by the central black hole. In the former case we show that the eccentricity can be long-lived because of the presence of the binary companion. In the latter case, although the inner parts of the disk may circularize quickly, we estimate that the outer parts will maintain their eccentricity for times much longer than the local viscous time. We suggest that it may be possible to detect profile variability on much shorter timescales than those ranging from a decade to several centuries by comparing the evolution of the line profile with detailed model predictions. We argue that line-profile variability may also be the most promising discriminant among competing models for the origin of asymmetric, double-peaked emission lines.

  17. DUST EMISSION FROM UNOBSCURED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Thompson, G. D.; Levenson, N. A.; Uddin, S. A.; Sirocky, M. M.

    2009-05-20

    We use mid-infrared (MIR) spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher luminosity quasar counterparts. Silicate dust reprocessing dominates the MIR spectra, and we generally measure the 10 and 18 {mu}m spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring 'torus' of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies' bolometric luminosity attributable to stars decreases with AGN luminosity.

  18. Dust Emission from Unobscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Thompson, G. D.; Levenson, N. A.; Uddin, S. A.; Sirocky, M. M.

    2009-05-01

    We use mid-infrared (MIR) spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher luminosity quasar counterparts. Silicate dust reprocessing dominates the MIR spectra, and we generally measure the 10 and 18 μm spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring "torus" of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies' bolometric luminosity attributable to stars decreases with AGN luminosity.

  19. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  20. Multiwavelength Monitoring of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2001-01-01

    By intensive monitoring of AGN variability over a large range in wavelength, we can probe the structure and physics of active galactic nuclei on microarcsecond angular scales. For example, multi-wavelength variability data allow us (a) to establish causal relationships between variations in different wavebands, and thus determine which physical processes are primary and which spectral changes are induced by variations at other wavelengths, and (b) through reverberation mapping of the UV/optical emission lines, to determine the structure and kinematics of the line-emitting region, and thus accurately determine the central masses in AGNs. Multiwavelength monitoring is resource-intensive, and is difficult to implement with general-purpose facilities. As a result, virtually all programs undertaken to date have been either sparsely sampled, or short in duration, or both. The potentially high return on this type of investigation, however, argues for dedicated facilities for multiwavelength monitoring programs.

  1. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  2. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  3. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  4. Galaxy interactions and the stimulation of nuclear activity

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1990-01-01

    The author discusses the idea that interactions between galaxies can lead to enhanced galactic activity. He discusses whether, apart from the observational evidence, there is a strong theoretical or heuristic motivation for investigating galaxy interactions as stimulators of nuclear activity in galaxies. Galactic interactions as mechanisms for triggering nuclear starbursts are covered.

  5. Multi-phase Nature of a Radiation-driven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi; Schartmann, Marc; Meijerink, Rowin

    2016-09-01

    The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small (2× {10}6{M}ȯ ) black hole using three-dimensional (3D) radiation–hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray-dominated region in the “radiation-driven fountain” with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick “torus” around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick (h/r≳ 1) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase (>1000 K) as well as in a cold (\\lt 100 {{K}}), dense (\\gt {10}3 {{cm}}-3) phase. The velocity dispersion of H2 in the vertical direction is comparable to the rotational velocity, which is consistent with near-infrared observations of nearby Seyfert galaxies. Using 3D radiation transfer calculations for the dust emission, we find polar emission in the mid-infrared band (12 μm), which is associated with bipolar outflows, as suggested in recent interferometric observations of nearby AGNs. If the viewing angle for the nucleus is larger than 75°, the spectral energy distribution is consistent with that of the Circinus galaxy. The multi-phase interstellar medium observed in optical/infrared and X-ray observations is also discussed.

  6. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1996-01-01

    The investigation of stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole is presented. Stochastic acceleration has been successfully applied to the problem of ion and electron energization in solar flares, and is capable of accounting for a wide range of both neutral and charged particle emissions. It is also a component in diffusive shock acceleration, since pitch-angle scattering (which is necessary for multiple shock crossings) is accompanied by diffusion in momentum space, which in turn yields a net systematic energy gain; however, stochastic energization will dominate the first-order shock process only in certain parameter regimes. Although stochastic acceleration has been applied to particle energization in the lobes of radio galaxies, its application to the central regions of AGNs (active galactic nuclei) has only recently been considered, but not in detail. We proposed to systematically investigate the plasma processes responsible for stochastic particle acceleration in black hole magnetospheres along with the energy-loss processes which impede particle energization. To this end, we calculated acceleration rates and escape time scales for protons and electrons resonating with Alfven waves, and for electrons resonating with whistlers. We also considered the "hot" topic of gamma-ray line emission from the Orion complex. We proposed that the observed gamma-ray lines are produced by energetic ions that are stochastically accelerated by cascading Alfven waves in the accretion plasma near a black hole. Related research papers that were published in journals are listed.

  7. TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY

    SciTech Connect

    De Diego, Jose A.

    2010-03-15

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using {chi}{sup 2} tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and {chi}{sup 2} prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  8. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  9. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  10. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  11. Reevaluating Active Galactic Nuclei in Rich Clusters

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Flores, R.; Quintana, H.

    1999-06-01

    We have selected 42 candidate Active Galactic Nuclei in 19 Rich Abell Clusters. The candidates were selected using the criteria of Dressler, Thompson & Shectman (1985; DTS) in their analysis of the statistics of 22 AGN in 14 rich cluster fields, which are based on the equivalent width of [OII]3727Å, H β, and [OIII]5007Å emission. These AGN are then separated from HII galaxies in the manner developed by Veilleux & Osterbrock (1987; VO) using the additional information provided by Hα and [NII]6583Å or Hα and [SII]6716 + 6731Å emission, in order to test the reliability of the selection criteria used by DTS. Our sample is very comparable to that of DTS before we discriminate AGN from HII galaxies, and would lead to similar conclusions. However, we find that their method inevitably mixes HII galaxies with AGN. Over the years many authors have attempted to quantify the relative fraction of cluster to field AGN since the study of DTS (Hill & Oegerle 1993; Biviano et al. 1997) and have reached similar conclusions, but using criteria similar to that of DTS to select AGN (or using the [OIII]5007Å/H β flux ratio test that also mixes HII galaxies with AGN).

  12. Quasi periodic oscillations in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alston, W.; Fabian, A.; Markevičiutė, J.; Parker, M.; Middleton, M.; Kara, E.

    2016-05-01

    Quasi-periodic oscillations (QPOs) are coherent peaks of variability power observed in the X-ray power spectra (PSDs) of stellar mass X-ray binaries (XRBs). A scale invariance of the accretion process implies they should be present in the active galactic nuclei. The first robust detection was a ∼ 1 h periodicity in the Seyfert galaxy RE J1034+396 from a ∼ 90 ks XMM-Newton observation; however, subsequent observations failed to detect the QPO in the 0.3-10.0 keV band. In this talk we present the recent detection of the ∼ 1 h periodicity in the 1.0-4.0 keV band of 4 further low-flux/spectrally-harder observations of RE J1034+396 (see Alston et al. 2014). We also present recent work on the discovery of a QPO in the Seyfert galaxy, MS 2254.9-3712, which again is only detected in energy bands associated with the primary power-law continuum emission (Alston et al. 2015). We conclude these features are most likely analogous to the high-frequency QPOs observed in XRBs. In both sources, we also see evidence for X-ray reverberation at the QPO frequency, where soft X-ray bands and Iron Kα emission lag the primary X-ray continuum. These time delays may provide another diagnostic for understanding the underlying QPO mechanism observed in accreting black holes.

  13. Reverberation Mapping Campaign of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban

    In this dissertation, I present results of black hole mass (M BH) measurements of four active galactic nuclei (AGN). AGN activity plays a key part in galaxy formation and evolution as evidenced by relationships like MBH-sigmastar. Accurate measurements of MBH is thus required to better understand these relationships. Luminosity of AGNs is also related to the radius of the broad line region (BLR). I have used reverberation mapping (RM) to obtain measurements of the radius of BLR and MBH of four AGNs. Reverberation data were collected over a period of 180-day span in 2012. None of these objects have been reverberation mapped before. We have also placed our objects on the Radius-Luminosity relationship and three out of four fall on the relationship. The fourth object lies above the Radius-Luminosity relationship and is a minor outlier. Two of these objects are Radio-Loud, which have orientation information available. This has increased the sample of radio-loud AGNs, which have RM from 5 to 7. We have increased the overall sample size of AGNs that have mass measurements from 62 to 66. We obtain masses for these following objects 3C 382 (MBH)= 30.1 -8.7+12.61 x 107 M O, PG2209+184 (MBH)=14.53-8.7 +5.79 x 107 MO, MARK 1040 (MBH)= 30.1-8.7+12.61 x 107 MO and 1ES0206+52(MBH)= 517.3-280+214 x 107 M O.

  14. What is the Nature of Accretion in Active Galactic Nuclei?

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1998-01-01

    The purpose of this grant was to support theoretical research on the nature of accretion in active galactic nuclei. In the brief time of the award, four papers that appeared in refereed journals were written, as well as two invited reviews in conference proceedings. These papers significantly advanced our understanding of the structure of the most important parts of bright accretion disks around accreting black holes, such as active galactic nuclei.

  15. Research on the Nature of Accretion in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.

    1999-01-01

    he purpose of this grant was to support theoretical research on the nature of accretion in active galactic nuclei. In the brief time of the award (one year), four papers that appeared in refereed journals were written, as well as two invited reviews in conference proceedings These papers significantly advanced our understanding of the structure of the most important parts of bright accretion disks around accreting black holes, such as active galactic nuclei.

  16. The softest Einstein AGN (active galactic nuclei)

    SciTech Connect

    Cordova, F.A.; Kartje, J.; Mason, K.O.; Mittaz, J.P.D.; Chicago Univ., IL; University Coll., London . Mullard Space Science Lab.)

    1989-01-01

    We have undertaken a coarse spectral study to find the softest sources detected with the Imaging Proportional Counter (IPC) on the Einstein Observatory. Of the nearly 7700 IPC sources, 226 have color ratios that make them candidate ultrasoft'' sources; of these, 83 have small enough errors that we can say with confidence that they have a spectral component similar to those of the white dwarfs Sirius and HZ 43, nearby stars such as {alpha} Cen and Procyon, and typical polar'' cataclysmic variables. By means of catalog searches and ground-based optical and radio observations we have thus far identified 96 of the 226 candidate soft sources; 37 of them are active galactic nuclei (AGN). In the more selective subset of 83 sources, 47 have been identified, 12 of them with AGN. The list of 47 identifications is given in Cordova et al. For one QSO in our sample, E0132.8--411, we are able to fit the pulse-height data to a power-law model and obtain a best fit for the energy spectral index of 2. 2{sub {minus}0.4}{sup +0.6}. For the remainder of the AGN in the higher confidence sample we are able to infer on the basis of their x-ray colors that they have a similar spectral component. Two-thirds of the AGN are detected below 0.5 keV only, while the remainder evidence a flatter spectral component in addition to the ultra-soft component. 14 refs., 5 figs.

  17. The effects of the local environment on active galactic nuclei

    SciTech Connect

    Manzer, L. H.; De Robertis, M. M. E-mail: mmdr@yorku.ca

    2014-06-20

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  18. Stellar populations in Active Galactic Nuclei III

    NASA Astrophysics Data System (ADS)

    Boisson, C.; Joly, M.; Pelat, D.; Ward, M. J.

    2004-12-01

    In this paper we apply the stellar population synthesis method previously described in Boisson et al. (\\cite{Boisson2000}) to five more AGN. The analysis of these new data strengthen our previous conclusions: i) homogeneity of the stellar population within a class of nuclear activity regardless of the morphological type of the host galaxy; ii) populations within the nuclear regions of LINERs and Seyfert 2s are different: LINERs have a very old metal-rich population while in the Seyfert 2s a contribution of a weak burst of star formation is observed together with the old high metallicity component; iii) in the circum-nuclar region (200 pc ≤D≤1 kpc) of all the active galaxies in our sample, except for NGC 2992, we detect an old burst of star formation (0.2-1 Gyr),which is contrary to what is observed in normal galaxies. We note that the broad OIλ8446 Å emission line detected in the spectrum of the nucleus of NGC 2992 confirms its classification as a Seyfert 1. Based on observations collected at the New Technology Telescope of the European Southern Observatory, La Silla, Chile.

  19. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    SciTech Connect

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P.; Newman, S. F.; Burkert, A.; Carollo, C. M.; Lilly, S. J.; Cresci, G.; Daddi, E.; Mainieri, V.; Mancini, C.; and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  20. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bartos, Imre

    2016-06-01

    Galactic nuclei are expected to harbor the densest population of stellar-mass black holes, accounting for as much as ∼ 2% of the mass of the nuclear stellar cluster. A significant fraction (∼ 30%) of these black holes can reside in binaries. We discuss the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. Binary black holes can migrate into and then rapidly merge within the disk. The binaries also accrete a significant amount of gas from the disk, potentially leading to detectable X-ray or gamma-ray emission.

  1. Environment and properties of obscured and unobscured active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Taormina, M.; Bornancini, C.

    We analyze the properties of obscured and unobscured active galactic nuclei selected using mid-infrared colors in the redshift range 1 < z < 3. We find that obscured objects are located in a denser local galaxy environment compared to the unobscured sample.

  2. Galactic Center gamma-ray ''excess'' from an active past of the Galactic Centre?

    SciTech Connect

    Petrović, Jovana; Serpico, Pasquale Dario; Zaharijaš, Gabrijela E-mail: serpico@lapth.cnrs.fr

    2014-10-01

    Several groups have recently claimed evidence for an unaccounted gamma-ray excess over the diffuse backgrounds at few GeV in the Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ∼ 10{sup 52}÷10{sup 53} erg roughly O(10{sup 6}) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for—together with detailed diffuse foregrounds and unaccounted ''steady state'' astrophysical sources—before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches (together with the energy budget) what is indirectly inferred by other evidences suggesting a very active Galactic Center in the past, for instance related to intense star formation and accretion phenomena.

  3. Galactic Center gamma-ray ``excess'' from an active past of the Galactic Centre?

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Dario Serpico, Pasquale; Zaharijaš, Gabrijela

    2014-10-01

    Several groups have recently claimed evidence for an unaccounted gamma-ray excess over the diffuse backgrounds at few GeV in the Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ~ 1052÷1053 erg roughly Script O(106) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for—together with detailed diffuse foregrounds and unaccounted ``steady state'' astrophysical sources—before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches (together with the energy budget) what is indirectly inferred by other evidences suggesting a very active Galactic Center in the past, for instance related to intense star formation and accretion phenomena.

  4. Constraints on Galactic Center Activity: A Search for Enhanced Galactic Center Lithium and Boron

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.; Turner, B. E.; Hobbs, L. M.

    1998-12-01

    The abundances of lithium and boron provide important information about big bang nucleosynthesis, Galactic chemical evolution, stellar evolution, and cosmic-ray spallation reactions. We conducted the first search for the ground-state hyperfine-structure transitions of Li I (2S1/2; F = 2-1 803 MHz) and B I (2P1/2; F = 2-1 732 MHz). We used the 43 m NRAO radio telescope to search for enhanced Galactic center (GC) Li and B expected from models of Galactic activity. We did not detect Li I or B I and obtained upper limits of N(Li I) < 1.9 × 1016 cm-2, (Li/H) < 3.9 × 10-8, N(B I) < 2.2 × 1018 cm-2, and (B/H) < 9.2 × 10-6 for the dense 20 km s-1 Sgr A molecular cloud where our largest sources of uncertainties are Li I/Li, B I/B, and N(H). Our observations imply (Li/H)GC < 22 (Li/H)disk, (Li/H)GC < 39 (Li/H)disk-spallation, (B/H)GC < 1.2 × 104 (B/H)disk, (B/H)GC < 1.5 × 104 (B/H)disk-spallation. For a simple model combining mass loss from AGB stars (only for Li), spallation reactions, and SN ν-nucleosynthesis, we estimate (Li/H)GC = 1.3 × 10-8 (13 times enhancement) and (B/H)GC = 7.4 × 10-9 (10 times enhancement). If Li is primarily produced via spallation reactions from a cosmic-ray proton flux φp(t) with the same energy and trapping as in the disk, then [\\smallint φp(t)dt]GC < 13[\\smallint φp(t)dt]disk. Comparing our results to AGN models, we conclude that the GC has not had an extended period of AGN activity containing a large cosmic-ray flux (LCR <= 1044 ergs s-1 for 108 yr), a large low-energy cosmic-ray flux (less than 100 times the disk flux), or a large γ-ray flux (Lγ < 1042 ergs s-1 for 109 yr). Furthermore, since any Galactic deuterium production will significantly enhance the abundances of Li and B, our results imply that there are no sources of D in the GC or Galaxy. Therefore, all the Galactic D originated from the infall of primordial matter with the current D/H reduced by astration and mixing.

  5. The X-ray spectroscopy of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1985-01-01

    The scientific goals of X-ray spectroscopy of active galactic nuclei are discussed. The underlying energy source, the regions responsible for the optical emission lines, the different types of active galaxies, and cosmology are considered. The requirements for an X-ray mission of broad band width, large collecting area, modest spatial resolution and good spectral resolution are outlined. It is concluded that the ESA XMM mission meets these requirements.

  6. UNDERSTANDING DUAL ACTIVE GALACTIC NUCLEUS ACTIVATION IN THE NEARBY UNIVERSE

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Vasudevan, Ranjan; Trippe, Margaret; Treister, Ezequiel

    2012-02-20

    We study the fraction of dual active galactic nuclei (AGNs) in a sample of 167 nearby (z < 0.05), moderate-luminosity, ultra-hard X-ray-selected AGNs from the all-sky Swift Burst Alert Telescope (BAT) survey. Combining new Chandra and Gemini observations together with optical and X-ray observations, we find that the dual AGN frequency at scales <100 kpc is {approx}10% (16/167). Of the 16 dual AGNs, only 3 (19%) were detected using X-ray spectroscopy and were not detected using emission line diagnostics. Close dual AGNs (<30 kpc) tend to be more common among the most X-ray luminous systems. In dual AGNs, the X-ray luminosity of both AGNs increases strongly with decreasing galaxy separation, suggesting that the merging event is key in powering both AGNs. Fifty percent of the AGNs with a very close companion (<15 kpc) are dual AGNs. We also find that dual AGNs are more likely to occur in major mergers and tend to avoid absorption line galaxies with elliptical morphologies. Finally, we find that SDSS Seyferts are much less likely than BAT AGNs (0.25% versus 7.8%) to be found in dual AGNs at scales <30 kpc because of a smaller number of companion galaxies, fiber collision limits, a tendency for AGNs at small separations to be detected only in X-rays, and a higher fraction of dual AGN companions with increasing AGN luminosity.

  7. Dense Clouds near the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Tsuruta, S

    1993-01-01

    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model."

  8. Black holes in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Valtonen, M. J.; Mikkola, S.; Merritt, D.; Gopakumar, A.; Lehto, H. J.; Hyvönen, T.; Rampadarath, H.; Saunders, R.; Basta, M.; Hudec, R.

    2010-01-01

    Supermassive black holes are common in centers of galaxies. Among the active galaxies, quasars are the most extreme, and their black hole masses range as high as to 6ṡ1010M⊙. Binary black holes are of special interest but so far OJ287 is the only confirmed case with known orbital elements. In OJ287, the binary nature is confirmed by periodic radiation pulses. The period is twelve years with two pulses per period. The last four pulses have been correctly predicted with the accuracy of few weeks, the latest in 2007 with the accuracy of one day. This accuracy is high enough that one may test the higher order terms in the Post Newtonian approximation to General Relativity. The precession rate per period is 39°.1 ± 0°.1, by far the largest rate in any known binary, and the (1.83 ± 0.01)ṡ1010M⊙ primary is among the dozen biggest black holes known. We will discuss the various Post Newtonian terms and their effect on the orbit solution. The over 100 year data base of optical variations in OJ287 puts limits on these terms and thus tests the ability of Einstein's General Relativity to describe, for the first time, dynamic binary black hole spacetime in the strong field regime. The quadrupole-moment contributions to the equations of motion allows us to constrain the ‘no-hair’ parameter to be 1.0 ± 0.3 which supports the black hole no-hair theorem within the achievable precision.

  9. Induced starburst and nuclear activity: Faith, facts, and theory

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  10. IFU spectroscopy of 10 early-type galactic nuclei - II. Nuclear emission line properties

    NASA Astrophysics Data System (ADS)

    Ricci, T. V.; Steiner, J. E.; Menezes, R. B.

    2014-05-01

    Although it is well known that massive galaxies have central black holes, most of them accreting at low Eddington ratios, many important questions still remain open. Among them are the nature of the ionizing source, the characteristics and frequencies of the broad-line region and of the dusty torus. We report observations of 10 early-type galactic nuclei, observed with the Gemini Multi Object Spectrograph in integral field unit mode, installed on the Gemini South telescope, analysed with standard techniques for spectral treatment and compared with results obtained with principal component analysis Tomography (Paper I). We performed spectral synthesis of each spaxel of the data cubes and subtracted the stellar component from the original cube, leaving a data cube with emission lines only. The emission lines were decomposed in multi-Gaussian components. We show here that, for eight galaxies previously known to have emission lines, the narrow-line region can be decomposed in two components with distinct line widths. In addition to this, broad Hα emission was detected in six galaxies. The two galaxies not previously known to have emission lines show weak Hα+[N II] lines. All 10 galaxies may be classified as low-ionization nuclear emission regions in diagnostic diagrams and seven of them have bona fide active galactic nuclei with luminosities between 1040 and 1043 erg s-1. Eddington ratios are always <10-3.

  11. Active galactic nucleus feedback in clusters of galaxies.

    PubMed

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  12. High-energy neutrinos from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectrum and high-energy neutrino background flux from photomeson production in active galactic nuclei (AGN) is calculated using the recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing high-energy particles. Collectively, AGN produce the dominant isotropic neutrino background between 10,000 and 10 to the 10th GeV, detectable with current instruments. AGN neutrinos should produce a sphere of stellar disruption which may explain the 'broad-line region' seen in AGN.

  13. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  14. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  15. GIANT GAMMA-RAY BUBBLES FROM FERMI-LAT: ACTIVE GALACTIC NUCLEUS ACTIVITY OR BIPOLAR GALACTIC WIND?

    SciTech Connect

    Su Meng; Slatyer, Tracy R.; Finkbeiner, Douglas P.

    2010-12-01

    Data from the Fermi-LAT reveal two large gamma-ray bubbles, extending 50{sup 0} above and below the Galactic center (GC), with a width of about 40{sup 0} in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE {approx} E {sup -2}) than the inverse Compton emission from electrons in the Galactic disk, or the gamma rays produced by the decay of pions from proton-interstellar medium collisions. There is no significant spatial variation in the spectrum or gamma-ray intensity within the bubbles, or between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; the edges of the bubbles also line up with features in the ROSAT X-ray maps at 1.5-2 keV. We argue that these Galactic gamma-ray bubbles were most likely created by some large episode of energy injection in the GC, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last {approx}10 Myr. Dark matter annihilation/decay seems unlikely to generate all the features of the bubbles and the associated signals in WMAP and ROSAT; the bubbles must be understood in order to use measurements of the diffuse gamma-ray emission in the inner Galaxy as a probe of dark matter physics. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

  16. What obscures low-X-ray-scattering active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Hönig, S. F.; Gandhi, P.; Asmus, D.; Mushotzky, R. F.; Antonucci, R.; Ueda, Y.; Ichikawa, K.

    2014-02-01

    X-ray surveys have revealed a new class of active galactic nuclei (AGN) with a very low observed fraction of scattered soft X-rays, fscat <0.5 per cent. Based on X-ray modelling, these `X-ray new-type', or low observed X-ray-scattering (hereafter, `low-scattering') sources have been interpreted as deeply buried AGN with a high covering factor of gas. In this paper, we address the questions whether the host galaxies of low-scattering AGN may contribute to the observed X-ray properties, and whether we can find any direct evidence for high covering factors from the infrared (IR) emission. We find that X-ray low-scattering AGN are preferentially hosted by highly inclined galaxies or merger systems as compared to other Seyfert galaxies, increasing the likelihood that the line of sight towards the AGN intersects with high columns of host-galactic gas and dust. Moreover, while a detailed analysis of the IR emission of low-scattering AGN ESO 103-G35 remains inconclusive, we do not find any indication of systematically higher dust covering factors in a sample of low-scattering AGN based on their IR emission. For ESO 103-G35, we constrained the temperature, mass and location of the IR emitting dust which is consistent with expectations for the dusty torus. However, a deep silicate absorption feature probably from much cooler dust suggests an additional screen absorber on larger scales within the host galaxy. Taking these findings together, we propose that the low fscat observed in low-scattering AGN is not necessarily the result of circumnuclear dust but could originate from interference of host-galactic gas with a column density of the order of 1022 cm-2 with the line of sight. We discuss implications of this hypothesis for X-ray models, high-ionization emission lines and observed star formation activity in these objects.

  17. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  18. Optical evidence for the unification of active galactic nuclei and quasi-stellar objects.

    PubMed Central

    Miller, J S

    1995-01-01

    There is a variety of optical evidence for some unification of different types of active galactic nuclei and quasi-stellar objects (QSOs). The case is very strong for the unification of at least some Seyfert galaxies, where polarization data show that the type assigned to the Seyfert galaxy must depend on viewing direction. It has been proposed that Fanaroff-Riley type 2 (FR2) radio galaxies are quasars seen in a direction from which the quasar is obscured, and there is some limited direct evidence for this picture. The broad absorption line QSOs may be normal QSOs seen from a special direction. Some of the sources observed to have high luminosities in the far infrared could be obscured QSOs and active nuclei. Mergers and interactions are likely to play an important role in nuclear activity, and active galaxies and QSOs could change their apparent types through these encounters followed by subsequent evolution. PMID:11607611

  19. Neutrinos in IceCube from active galactic nuclei

    SciTech Connect

    Kalashev, O.; Semikoz, D.; Tkachev, I.

    2015-03-15

    Recently, the IceCube collaboration reported first evidence for the astrophysical neutrinos. Observation corresponds to the total astrophysical neutrino flux of the order of 3 × 10{sup −8} GeV cm{sup −2} s{sup −1} sr{sup −1} in a PeV energy range [1]. Active galactic nuclei (AGN) are natural candidate sources for such neutrinos. To model the neutrino creation in AGNs, we study photopion production processes on the radiation field of the Shakura-Sunyaev accretion discs in the black hole vicinity. We show that this model can explain the detected neutrino flux and at the same time avoids the existing constraints from the gamma-ray and cosmic-ray observations.

  20. KEPLER OBSERVATIONS OF RAPID OPTICAL VARIABILITY IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W.

    2011-12-10

    Over three quarters in 2010-2011, Kepler monitored optical emission from four active galactic nuclei (AGNs) with {approx}30 minute sampling, >90% duty cycle, and {approx}<0.1% repeatability. These data determined the AGN optical fluctuation power spectral density (PSD) functions over a wide range in temporal frequency. Fits to these PSDs yielded power-law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGNs exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first-order magnetorotational instability theoretical calculations of accretion disk fluctuations.

  1. Photometric Monitoring of the Active Galactic Nucleus in NGC 7469

    NASA Astrophysics Data System (ADS)

    Roberts, Caroline A.; Bentz, M. C.; Stare Collaboration

    2014-01-01

    Reverberation mapping is a technique by which black hole masses in active galactic nuclei (AGN) are determined. The method determines an average radius for the broad line region by measuring the time delay between continuum and emission signatures in an object’s spectrum. Coupled with the broad line region cloud velocity values taken from Doppler emission line broadening and a correction for the angle at which the AGN is viewed, the black hole mass can be constrained. As part of a reverberation mapping campaign targeting NGC 7469, optical B and V photometry was obtained over the span of a 6-month period during the second half of 2011 using 14 different telescopes in the former bandwidth and 15 in the latter. Differential photometry was performed with IRAF and the light curves were compared with those obtained using the image subtraction program ISIS.

  2. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S. E-mail: ckochanek@astronomy.ohio-state.edu

    2009-08-10

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of {approx}5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  3. Pair Plasmas in the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Tsuruta, S.; Tritz, B. G.

    1993-01-01

    As the most promising model for the X-ray emission from a class of Active Galactic Nuclei (AGNs) represented by radio-quiet quasars and Seyfert nuclei, here we introduce the non-thermal pair cascade model, where soft photons are Comptonized by non-thermal electron-positron pair plasmas produced by (gamma)-rays. After summarizing the simplest model of this kind, the "homogeneous spherical cascade model", our most recent work on the "surface cascade model" is presented, where a geometrical effect is introduced. Many characteristics of this model are qualitatively similar to the homogeneous cascade model. However, an important difference is that (gamma)-ray depletion is much more efficient in the surface cascade, and consequently this model naturally satisfies the severe observational constraint imposed by the (gamma)-ray background radiation.

  4. Time Delay Evolution of Five Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kovačević, A.; Popović, L. Č.; Shapovalova, A. I.; Ilić, D.; Burenkov, A. N.; Chavushyan, V. H.

    2015-12-01

    Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and observed AGN light curves, we apply Gaussian kernel-based estimator to capture variation of local patterns of their time evolving delays. The largest variations of time delays of all objects occur in the period when continuum or emission lines luminosity is the highest. However, Gaussian kernel-based method shows instability in the case of NGC 5548, 3C 390.3, E1821 + 643 and NGC 4051 possibly due to numerical discrepancies between damped random walk (DRW) time scale of light curves and sliding time windows of the method. The temporal variations of time lags of Arp 102B can correspond to the real nature of the time lag evolution.

  5. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Watson, D.; Denney, K. D.; Vestergaard, M.; Davis, T. M.

    2011-10-20

    Accurate distances to celestial objects are key to establishing the age and energy density of the universe and the nature of dark energy. A distance measure using active galactic nuclei (AGNs) has been sought for more than 40 years, as they are extremely luminous and can be observed at very large distances. We report here the discovery of an accurate luminosity distance measure using AGNs. We use the tight relationship between the luminosity of an AGN and the radius of its broad-line region established via reverberation mapping to determine the luminosity distances to a sample of 38 AGNs. All reliable distance measures up to now have been limited to moderate redshift-AGNs will, for the first time, allow distances to be estimated to z {approx} 4, where variations of dark energy and alternate gravity theories can be probed.

  6. X-ray emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1985-01-01

    It is often held that the X-ray emission from active galactic nuclei (AGN) arises from a region close to the central energy source. Thus X-ray observations may provide the best constraints on the central engine. In particular, the shape of the X-ray continuum gives information about the mechanism for photon generation, X-ray time variability data can constrain the size and mass of the continuum source, and X-ray occultation data give constraints on the relative sizes of the continuum source and the intervening absorbing material (often assumed to be the broad line clouds). In addition, since a fair fraction of the total energy of an AGN is emitted at X-ray wavelengths, direct measurement of the amount and spectral form of this radiation is important for modeling of the optically emitting clouds.

  7. Unwrapping the X-ray spectra of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  8. OBSERVABILITY OF DUAL ACTIVE GALACTIC NUCLEI IN MERGING GALAXIES

    SciTech Connect

    Van Wassenhove, Sandor; Volonteri, Marta; Bellovary, Jillian; Mayer, Lucio; Callegari, Simone; Dotti, Massimo

    2012-03-20

    Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are not only the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) that is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGNs are scant, being just a few percent of all AGNs. In this Letter, we investigate the triggering of AGN activity in merging galaxies via a suite of high-resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling, and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, focusing on AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGNs are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.

  9. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  10. Compact radio cores in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Maini, A.; Prandoni, I.; Norris, R. P.; Giovannini, G.; Spitler, L. R.

    2016-04-01

    Context. The mechanism of radio emission in radio-quiet (RQ) active galactic nuclei (AGNs) is still debated and might arise from the central AGN, from star formation activity in the host, or from either of these sources. A direct detection of compact and bright radio cores embedded in sources that are classified as RQ can unambiguously determine whether a central AGN significantly contributes to the radio emission. Aims: We search for compact, high-surface-brightness radio cores in RQ AGNs that are caused unambiguously by AGN activity. Methods: We used the Australian Long Baseline Array to search for compact radio cores in four RQ AGNs located in the Extended Chandra Deep Field South (ECDFS). We also targeted four radio-loud (RL) AGNs as a control sample. Results: We detected compact and bright radio cores in two AGNs that are classified as RQ and in one that is classified as RL. Two RL AGNs were not imaged because the quality of the observations was too poor. Conclusions: We report on a first direct evidence of radio cores in RQ AGNs at cosmological redshifts. Our detections show that some of the sources that are classified as RQ contain an active AGN that can contribute significantly (~50% or more) to the total radio emission.

  11. Ongoing Space Nuclear Activities

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2007-01-01

    Most ongoing US activities related to space nuclear power and propulsion are sponsored by NASA. NASA-spons0red space nuclear work is currently focused on evaluating potential fission surface power (FSP) systems and on radioisotope power systems (RPS). In addition, significant efforts related to nuclear thermal propulsion (NTP) systems have been completed and will provide a starting point for potential future NTP work.

  12. Multi-band Emission of Active Galactic Nuclei: the Relationship of Stellar and Gravitational-Accretion Activity

    NASA Astrophysics Data System (ADS)

    Feltre, Anna

    2013-07-01

    One of the remaining open issues in the context of the analysis of active galactic nuclei is the evidence that nuclear gravitational accretion is often accompanied by a concurrent starburst activity. What is, in this picture, the role played by the obscuring dust around the nucleus and what does the state of the art models have to say? Can the infrared data provided by Spitzer and Herschel help us in extensively investigate both phenomena and, if so, how and with what limitations? Does the presence of an active nucleus have an impact in the mid- and far-infrared properties of galaxies? Which are the effects of simultaneous nuclear gravitational accretion and starburst activities in these same galaxies? This Thesis presents our contribution to the efforts of answering these questions. I report on results coming from a comparative study of various approaches adopted while modelling active galactic nuclei, focusing mostly on the much-debated issue about the morphology of the dust distribution in the toroidal structure surrounding their nuclear centre. We largely illustrate that properties of dust in active galactic nuclei as measured by matching observations (be it broad band infrared photometry or infrared spectra) with models strongly depend on the choice of the dust distribution. Further, I describe a spectral energy distribution fitting tool appositely developed to derive simultaneously the physical properties of active nuclei and coexisting starbursts. The procedure was developed to make the best use of Spitzer and Herschel mid- and far-infrared observations. Such data play a crucial role in this context, providing much stronger constraints on the models with respect to the previous observing facilities. The tool has been applied to a large sample of extragalactic sources representing the Herschel/Multi-tiered Extragalactic Survey population with mid-infrared spectra from Spitzer and with a plethora of multi-wavelength data (SDSS, Spitzer and Herschel/SPIRE). The

  13. DUAL ACTIVE GALACTIC NUCLEI: DEPROJECTING THE BINARY CORES

    SciTech Connect

    Wang, X.-W.; Zhou, H.-Y.

    2012-10-01

    Dual active galactic nuclei (AGNs) as a population in a special phase during the evolution of merging galaxies have been found largely from candidates selected from the Sloan Digital Sky Survey (SDSS). In this paper, we develop a simple model of dual AGNs, which are composed of two optically thin spheres emitting narrow lines and co-rotating governed by gravity between them. In order to show how profiles are sensitive to the orientation angles of the orbiting plane and phase angles, we make detailed calculations of profiles for a large space of the two angles. The dual AGNs observationally appear as ones with double-peaked profiles of emission lines, but there are still quite large ranges of orientation and phase angles where they appear only with a single-peaked profile. This implies a large fraction of dual AGN candidate missed by selecting AGNs with double-peaked profiles. We show that the highly sensitive dependence of profiles on orientation and phase angles makes them robust to deproject dual AGN systems. Deprojection by the present model has potential implications for discussion of the triggering mechanism of black hole activity in light of the deprojected distance. We apply the present model to two dual AGN, SDSS J095207.6+255257 and J171544.05+600835.7, for deprojection of the binary cores.

  14. DISCOVERY OF FOUR kpc-SCALE BINARY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu Xin; Greene, Jenny E.; Strauss, Michael A.; Shen Yue

    2010-05-20

    We report the discovery of four kpc-scale binary active galactic nuclei (AGNs). These objects were originally selected from the Sloan Digital Sky Survey based on double-peaked [O III] {lambda}{lambda}4959, 5007 emission lines in their fiber spectra. The double peaks could result from pairing active supermassive black holes (SMBHs) in a galaxy merger or could be due to bulk motions of narrow-line region gas around a single SMBH. Deep near-infrared (NIR) images and optical slit spectra obtained from the Magellan 6.5 m and the Apache Point Observatory 3.5 m telescopes strongly support the binary SMBH scenario for the four objects. In each system, the NIR images reveal tidal features and double stellar components with a projected separation of several kpc, while optical slit spectra show two Seyfert 2 nuclei spatially coincident with the stellar components, with line-of-sight velocity offsets of a few hundred km s{sup -1}. These objects were drawn from a sample of only 43 objects, demonstrating the efficiency of this technique to find kpc-scale binary AGNs.

  15. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sikora, Marek; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  16. Active galactic nuclei at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Dermer, Charles Dennison; Giebels, Berrie

    2016-06-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV γ rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of γ-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called "blazars". The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with γ-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of a few FSRQs and several BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of γ-ray-emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Soft γ-ray emission has been detected from a few nearby Seyfert galaxies, though it is not clear whether those γ rays originate from the nucleus. Blazars and their misaligned counterparts make up most of the ≳100 MeV extragalactic γ-ray background (EGB), and are suspected of being the sources of ultra-high energy cosmic rays. The future "Cherenkov Telescope Array", in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on the ground, will write the next chapter

  17. ENSEMBLE VARIABILITY OF NEAR-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kouzuma, S.; Yamaoka, H. E-mail: yamaoka@phys.kyushu-u.ac.jp

    2012-03-01

    We present the properties of the ensemble variability V for nearly 5000 near-infrared active galactic nuclei (AGNs) selected from the catalog of Quasars and Active Galactic Nuclei (13th Edition) and the SDSS-DR7 quasar catalog. From three near-infrared point source catalogs, namely, Two Micron All Sky Survey (2MASS), Deep Near Infrared Survey (DENIS), and UKIDSS/LAS catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by cross-identification between catalogs. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided into subsets according to whether near-infrared light originates by optical emission or by near-infrared emission in the rest frame; and we examine the correlations of the ensemble variability with the rest-frame wavelength, redshift, luminosity, and rest-frame time lag. In addition, we also examine the correlations of variability amplitude with optical variability, radio intensity, and radio-to-optical flux ratio. The rest-frame optical variability of our samples shows negative correlations with luminosity and positive correlations with rest-frame time lag (i.e., the structure function, SF), and this result is consistent with previous analyses. However, no well-known negative correlation exists between the rest-frame wavelength and optical variability. This inconsistency might be due to a biased sampling of high-redshift AGNs. Near-infrared variability in the rest frame is anticorrelated with the rest-frame wavelength, which is consistent with previous suggestions. However, correlations of near-infrared variability with luminosity and rest-frame time lag are the opposite of these correlations of the optical variability; that is, the near-infrared variability is positively correlated with luminosity but negatively correlated with the rest-frame time lag. Because these trends are qualitatively consistent with the properties of radio-loud quasars reported

  18. ON THE 10 mum SILICATE FEATURE IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark E-mail: moshe@pa.uky.ed

    2009-12-20

    The 10 mum silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 mum silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r {sup -1.5} and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual approx60-80. The source bolometric luminosity is approx3 x 10{sup 12} L{sub sun}. Our modeling suggests that approx<35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 mum emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 mum silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed

  19. Diffuse γ-ray emission from misaligned active galactic nuclei

    SciTech Connect

    Di Mauro, M.; Donato, F.; Calore, F.; Ajello, M.; Latronico, L.

    2014-01-10

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  20. MOMENTUM DRIVING: WHICH PHYSICAL PROCESSES DOMINATE ACTIVE GALACTIC NUCLEUS FEEDBACK?

    SciTech Connect

    Ostriker, Jeremiah P.; Choi, Ena; Novak, Gregory S.; Ciotti, Luca; Proga, Daniel

    2010-10-10

    The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be summarized by the dimensionless parameter {eta}= M-dot{sub outf}/ M-dot{sub acc}=2{epsilon}{sub w}c{sup 2}/v{sub w}{sup 2} where {epsilon}{sub w} ({identical_to} E-dot{sub w}/(M-dot{sub acc}c{sup 2})) is the efficiency with which accreted matter is turned into wind energy in the disk surrounding the central SMBH. The outflowing mass and momentum are proportional to {eta}, and many prior treatments have essentially assumed that {eta} = 0. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to a hundred-fold increase in the mass of the SMBH to over 10{sup 10} M{sub sun}. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies that lead to the most observationally acceptable results are relatively low with {epsilon}{sub w} {approx}< 10{sup -4}.

  1. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  2. Variability in Active Galactic Nuclei from Propagating Turbulent Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-01

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is -1.8 to -2.3, while for the bulk velocity produced variations this range is -2.1 to -2.9 these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  3. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  4. Radiation-pressure-supported obscuring tori around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pier, Edward A.; Krolik, Julian H.

    1992-01-01

    Radiation pressure acting on dust grains can support the vertical thickness of the obscuring tori believed to exist in active galactic nuclei. Using the results of 2D radiation transfer calculations, we evaluate the radiation force acting on these tori. We find that on the inner edge of the torus the radiation force is about 350 l(E) times the gravitational force of the nucleus, where l(E) is the Eddington ratio. Beyond a few torus heights from the inner edge, the radiation force is negligible with respect to gravity. However, between these two extremes lies a region of considerable size where the ratio of radiation force to gravity is nearly constant and can be of order unity for l(E) about 0.1. If the distribution of material within the torus is sufficiently lumpy, there is a significant time-varying component to the radiation force. This drives the random motions of the constituent clouds, thickening the torus at lower values of l(E).

  5. Implosive accretion and outbursts of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Romanova, M. M.; Newman, W. I.

    1994-01-01

    A model and simulation code have been developed for time-dependent axisymmetric disk accretion onto a compact object including for the first time the influence of an ordered magnetic field. The accretion rate and radiative luminosity of the disk are naturally coupled to the rate of outflow of energy and angular momentum in magnetically driven (+/- z) winds. The magnetic field of the wind is treated in a phenomenological way suggested by self-consistent wind solutions. The radial accretion speed u(r, t) of the disk matter is shown to be the sum of the usual viscous contribution and a magnetic contribution proportional to r(exp 3/2)(B(sub p exp 2))/sigma, where B(sub p)(r,t) is the poloidal field threading the disk and sigma(r,t) is the disk's surface mass density. An enhancement or variation in B(sub p) at a large radial distance leads to the formation of a soliton-like structure in the disk density, temperature, and B-field which propagates implosively inward. The implosion gives a burst in the power output in winds or jets and a simultaneous burst in the disk radiation. The model is pertinent to the formation of discrete fast-moving components in jets observed by very long baseline interferometry. These components appear to originate at times of optical outbursts of the active galactic nucleus.

  6. Accretion disks and periodic outbursts of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Shields, G. A.

    1986-01-01

    The local thermal stability of accretion disks around supermassive black holes in active galactic nuclei is examined. Such disks are unstable at radii where the surface temperature is several thousand degrees. Supermassive disks therefore should undergo limit-cycle outbursts similar to those believed to occur in dwarf novae. Operating on a time scale of about 10,000 to 10 million yr and at radii of about 10 to the 15th to 10 to the 16th cm, this mechanism will result in alternating periods of higher and lower accretion rate onto the black hole and, consequently, higher and lower luminosity. Quasi-periodic outbursts on this time scale may be recorded in the structure of extended radio sources, a possible example being 4C 29.47. For accretion rates greater than 0.1 solar masses/yr, the situation is complicated by instabilities caused by self-gravitation and by the dominance of radiation pressure and electron scattering opacity.

  7. Microvariabilty in Active Galactic Nuclei at Centimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Atwood, James W.; Pannuti, T. G.

    2007-12-01

    Active Galactic Nuclei (AGNs) are some of the most distant objects known in the universe. Quasars, Blazars, and Seyfert galaxies are all categorized as AGNs. One of the interesting characteristics of AGNs is that they vary in brightness over a variety of time scales, ranging from long term (years or decades), to intraday (days or weeks), to extremely short (hours or minutes). Using the Morehead State University 21m Space Tracking Antenna we can measure short term variations (microvariability) of the radio frequency radiation of these distant objects. By monitoring variability we may be able to determine if this observed phenomenon originates from the internal processes of these objects or due to the intervening medium, and to provide insight into the nature and process associated with the AGN central engines. Initial observations of a set of target AGNs have been undertaken. Additional observations of these target objects will be made at 1.4, 2.4, and 12GHz to measure microvariability and to produce data points for broadband SEDs of these AGNs. Few observations have been made in the 12GHz region for these objects. These data sets will be correlated with simultaneous optical (Bell observatory) and The Gamma Ray Large Area Space Telescope (GLAST) observations to produce broad band, multiwavelength observations of a selected target set of AGNs. An additional goal of this project is to become a node in the NASA GLAST network.

  8. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysis revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.

  9. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  10. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  11. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    SciTech Connect

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  12. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  13. On the efficient acceleration of clouds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel

    2016-07-01

    In the broad line region of active galactic nuclei (AGN), acceleration occurs naturally when a cloud condenses out of the hot confining medium due to the increase in line opacity as the cloud cools. However, acceleration by radiation pressure is not very efficient when the flux is time-independent, unless the flow is 1D. Here, we explore how acceleration is affected by a time-varying flux, as AGN are known to be highly variable. If the period of flux oscillations is longer than the thermal time-scale, we expect the gas to cool during the low flux state, and therefore line opacity should quickly increase. The cloud will receive a small kick due to the increased radiation force. We perform hydrodynamical simulations using ATHENA to confirm this effect and quantify its importance. We find that despite the flow becoming turbulent in 2D due to hydrodynamic instabilities, a 20 per cent modulation of the flux leads to a net increase in acceleration - by more than a factor of 2 - in both 1D and 2D. We show that this acceleration is sufficient to produce the observed line widths, although we only consider optically thin clouds. We discuss the implications of our results for photoionization modelling and reverberation mapping.

  14. Effects of Active galactic nuclei feedback in galaxy population

    NASA Astrophysics Data System (ADS)

    Lagos, C.; Cora, S.; Padilla, N.

    We analyze the effects of feedback from Active Galactic Nuclei (AGN) on the formation and evolution of galaxies, which is assumed to quench cooling flows in massive halos. With this aim we use an hybrid model that combines a cosmological Lambda CDM simulation with a semi-analytic model of galaxy formation. We consider the semi-analytic model described by Cora (2006) (SAMC06) which has been improved by including AGNs, which are associated with the presence of supermassive black holes (BHs). Modellization of BH includes gas accretion during merger-driven starbursts and black hole mergers (Malbon et al., 2006), accretion during starbursts triggered by disk instabilities (Bower et al. 2006), and accretion of cooling gas from quasi-hydrostatically cooling haloes (Croton et al. 2006); Eddington limit is applied in all accretion processes. It is assumed that feedback from AGNs operates in the later case. We show that this new model can simultaneously explain: (i) the bright-end of the galaxy luminosity function (LF); (ii) the observed older population of stars in massive galaxies, thus reproducing the stellar mass function (SMF); (iii) a star formation rate (SFR) seemingly showing an anti-hierarchical galaxy growth. The success of our model is mainly due to the ability of AGN feedback to suppress further cooling and SF in the most massive structures.

  15. Fermi Observations of TeV-Selected Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Di Bernardo, G.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Foschini, L.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schalk, T. L.; Sellerholm, A.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.

  16. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  17. Diffuse γ-Ray Emission from Misaligned Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Di Mauro, M.; Calore, F.; Donato, F.; Ajello, M.; Latronico, L.

    2014-01-01

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  18. Highlights from the VERITAS Active Galactic Nuclei Observing Program

    NASA Astrophysics Data System (ADS)

    Fortson, Lucy; VERITAS Collaboration

    2016-01-01

    The VERITAS Observatory, located at the Fred Lawrence Whipple Observatory near Tucson, Arizona is one of the world's most sensitive detectors of very-high-energy (VHE; E>100GeV) gamma rays. With an array of four 12-m telescopes, VERITAS detects the Cherenkov light emitted from air showers initiated by astrophysical gamma rays. A sequence of upgrades completed in 2012 aimed at lowering the energy threshold resulted in the instrument being sensitive to gamma rays between 85 GeV and 30 TeV. Fully operational since 2007, VERITAS has so far detected 54 VHE gamma-ray objects in eight different source classes. The active galactic nuclei (AGN) class comprises the majority of these detections, with 34 sources that include several radio galaxies but are predominantly blazars (AGN with relativistic jets pointing towards Earth). The scientific importance of VHE detections of AGN includes studying the details of emission mechanisms in blazars and elucidating whether they are sources of ultra-high-energy cosmic rays and astrophysical neutrinos. Additionally VHE gamma-ray observations can be used to gain cosmological insights such as placing limits on the intergalactic magnetic field (IGMF) and the extragalactic background light (EBL), which comprises all the diffuse starlight in the universe. This presentation will summarize the VERITAS AGN observing program and highlight a few recent results.

  19. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  20. Active Galactic Nuclei:. Sources for Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Becker, J. K.; Caramete, L.; Gergely, L.; Mariş, I. C.; Meli, A.; de Souza, V.; Stanev, T.

    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.

  1. Obscuration-dependent Evolution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Georgakakis, Antonis; Nandra, Kirpal; Brightman, Murray; Menzel, Marie-Luise; Liu, Zhu; Hsu, Li-Ting; Salvato, Mara; Rangel, Cyprian; Aird, James; Merloni, Andrea; Ross, Nicholas

    2015-04-01

    We aim to constrain the evolution of active galactic nuclei (AGNs) as a function of obscuration using an X-ray-selected sample of ~2000 AGNs from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS, and XMM-XXL fields. The spectra of individual X-ray sources are analyzed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method that allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift, and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness, and the limited sample size. We find that obscured AGNs with N H > 1022 cm-2 account for {77}+4-5% of the number density and luminosity density of the accretion supermassive black hole population with L X > 1043 erg s-1, averaged over cosmic time. Compton-thick AGNs account for approximately half the number and luminosity density of the obscured population, and {38}+8-7% of the total. We also find evidence that the evolution is obscuration dependent, with the strongest evolution around N H ≈ 1023 cm-2. We highlight this by measuring the obscured fraction in Compton-thin AGNs, which increases toward z ~ 3, where it is 25% higher than the local value. In contrast, the fraction of Compton-thick AGNs is consistent with being constant at ≈35%, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is, to first order, a side effect of anti-hierarchical growth.

  2. On the Evolution of High-redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Kim, Minsun

    2016-09-01

    We build a simple physical model to study the high-redshift active galactic nucleus (AGN) evolution within the co-evolution framework of central black holes (BHs) and their host galaxies. The correlation between the circular velocity of a dark halo V c and the velocity dispersion of a galaxy σ is used to link the dark matter halo mass and BH mass. The dark matter halo mass function is converted to the BH mass function for any given redshift. The high-redshift optical AGN luminosity functions (LFs) are constructed. At z∼ 4, the flattening feature is not shown at the faint end of the optical AGN LF. This is consistent with observational results. If the optical AGN LF at z∼ 6 can be reproduced in the case in which central BHs have the Eddington-limited accretion, it is possible for the AGN lifetime to have a small value of 2× {10}5 {{years}}. The X-ray AGN LFs and X-ray AGN number counts are also calculated at 2.0\\lt z\\lt 5.0 and z\\gt 3, respectively, using the same parameters adopted in the calculation for the optical AGN LF at z∼ 4. It is estimated that about 30 AGNs per {{{\\deg }}}2 at z\\gt 6 can be detected with a flux limit of 3× {10}-17 {erg} {{cm}}-2 {{{s}}}-1 in the 0.5–2 keV band. Additionally, the cosmic reionization is also investigated. The ultraviolet photons emitted from the high-redshift AGNs mainly contribute to the cosmic reionization, and the central BHs of the high-redshift AGNs have a mass range of {10}6{--}{10}8{M}ȯ . We also discuss some uncertainties in both the AGN LFs and AGN number counts originating from the {M}{{BH}}{--}σ relation, Eddington ratio, AGN lifetime, and X-ray attenuation in our model.

  3. The dust covering factor in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Stalevski, Marko; Ricci, Claudio; Ueda, Yoshihiro; Lira, Paulina; Fritz, Jacopo; Baes, Maarten

    2016-05-01

    The primary source of emission of active galactic nuclei (AGNs), the accretion disc, is surrounded by an optically and geometrically thick dusty structure (`the so-called dusty torus'). The infrared radiation emitted by the dust is nothing but a reprocessed fraction of the accretion disc emission, so the ratio of the torus to the AGN luminosity (Ltorus/LAGN) should corresponds to the fraction of the sky obscured by dust, i.e. the covering factor. We undertook a critical investigation of the Ltorus/LAGN as the dust covering factor proxy. Using state-of-the-art 3D Monte Carlo radiative transfer code, we calculated a grid of spectral energy distributions (SEDs) emitted by the clumpy two-phase dusty structure. With this grid of SEDs, we studied the relation between Ltorus/LAGN and the dust covering factor for different parameters of the torus. We found that in the case of type 1 AGNs the torus anisotropy makes Ltorus/LAGN underestimate low covering factors and overestimate high covering factors. In type 2 AGNs Ltorus/LAGN always underestimates covering factors. Our results provide a novel easy-to-use method to account for anisotropy and obtain correct covering factors. Using two samples from the literature, we demonstrated the importance of our result for inferring the obscured AGN fraction. We found that after the anisotropy is properly accounted for, the dust covering factors show very weak dependence on LAGN, with values in the range of ≈0.6-0.7. Our results also suggest a higher fraction of obscured AGNs at high luminosities than those found by X-ray surveys, in part owing to the presence of a Compton-thick AGN population predicted by population synthesis models.

  4. Chemistry in the Molecular Disks of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Harada, Nanase; Herbst, Eric

    2010-06-01

    Active galactic nuclei (AGNs) are the centers of galaxies with supermassive blackholes whose accretion of mass causes very high luminosities of L˜1044-46erg s-1. An accretion disk has a molecular component that extends to hundreds of pc from the central AGN core. The question of how much central illumination affects the disk and how much star formation is present near the core have been astrophysical interests. Rotational lines from these disks at a sub-kpc scale have been observed for molecules such as CO, HCO+, HCN, and HNC. When ALMA becomes fully operational, it will be able to resolve these disks at much higher resolution than currently. Molecular observations at higher resolution may give some hints on the physics in the molecular disk. We modeled the chemical composition of a molecular disk in an AGN on a scale of tens of pc. To do this, we extended our standard gas-phase OSU network to include important processes at much higher temperatures, approaching 1000 K. We used the density model of Thompson et al., and determined the temperature by the blackbody approximation from the luminosity of the AGN core. The ionization by X-rays from the AGN core, by cosmic-rays from the AGN core, supernovae and stellar winds, and by UV-photons from OB stars are considered. We will briefly mention the effects from other factors that may change the molecular abundances such as shock waves and inhomogeneity of the density of the disk. T. Thompson, E. Quataert, and N. Murray, Astrophysical J. 630, 167 (2005)

  5. THE EVOLUTION OF ACTIVE GALACTIC NUCLEI AND THEIR SPINS

    SciTech Connect

    Volonteri, M.; Lasota, J.-P.; Sikora, M.; Merloni, A.

    2013-10-01

    Massive black holes (MBHs), in contrast to stellar mass black holes, are expected to substantially change their properties over their lifetime. MBH masses increase by several orders of magnitude over a Hubble time, as illustrated by Sołtan's argument. MBH spins also must evolve through the series of accretion and mergers events that increase the masses of MBHs. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and active galactic nuclei (AGNs), whose properties can be more easily estimated observationally. Despite the simplicity of the model, it does a good job capturing the global evolution of the MBH population from z ∼ 6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the increased incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z = 0, the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8 and is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins and spins increasing at larger masses and redshifts. We also find that at z > 1 MBH spins are on average the highest in high luminosity AGNs, while at lower redshifts these differences disappear.

  6. Statistics of Active Galactic Nuclei in Rich Clusters Revisited

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Flores, R. A.; Quintana, H.

    1998-07-01

    Using the spectrophotometry of a large sample of galaxies in 19 Abell clusters, we have selected 42 candidate active galactic nuclei (AGNs) using the criteria used by Dressler and coworkers in their analysis of the statistics of 22 AGNs in 14 rich cluster fields, which are based on the equivalent width of [O II] 3727 Å, Hβ, and [O III] 5007 Å emission. We have then discriminated AGNs from H II region-like galaxies (hereafter H II galaxies) in the manner developed by Veilleux & Osterbrock using the additional information provided by Hα and [N II] 6583 Å or Hα and [S II] 6716 + 6731 Å emission, in order to test the reliability of the selection criteria used by Dressler and coworkers. We find that before we discriminate AGNs from H II galaxies, our sample is very similar to that of Dressler and coworkers and it leads to similar conclusions. However, we find that their method inevitably mixes H II galaxies with AGNs, even for the most luminous objects in our sample. We estimate a contamination of at least 38% at a formal 90% confidence level. Since the study of Dressler and coworkers, other authors have attempted to quantify the relative fraction of cluster-to-field AGNs and have reached similar conclusions, but they have used criteria similar to Dressler and coworkers to select AGNs (or have used the [O III] 5007 Å/Hβ flux ratio test that also mixes H II galaxies with AGNs). Our sample of true AGNs remains too small to reach statistically meaningful conclusions, therefore a new study with a more time-consuming method that includes the other lines will be required to quantify the true relative fraction of cluster-to-field AGNs.

  7. Ultrafast outflows in radio-loud active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  8. THE CONNECTION BETWEEN 3.3 {mu}m POLYCYCLIC AROMATIC HYDROCARBON EMISSION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Woo, Jong-Hak; Park, Dawoo; Kim, Ji Hoon; Imanishi, Masatoshi

    2012-02-15

    We investigate the connection between starburst and active galactic nucleus (AGN) activity by comparing 3.3 {mu}m polycyclic aromatic hydrocarbon (PAH) emission with AGN properties. Utilizing the slitless spectroscopic capability of the AKARI space telescope, we observe a moderate-luminosity Type I AGN at z {approx} 0.4 to measure global starburst activity. The 3.3 {mu}m PAH emissions are detected for 7 out of 26 target galaxies. We find no strong correlation between the 3.3 {mu}m PAH emission and AGN luminosity in the limited range of the observed AGN luminosity, suggesting that global star formation may not be closely related to AGN activity. Combining our measurements with previous 3.3 {mu}m measurements of low-redshift Type I AGNs in the literature, we investigate the connection between nuclear starburst and AGN activity. In contrast to global star formation, the 3.3 {mu}m PAH luminosity measured from the central part of galaxies correlates with AGN luminosity, implying that starburst activity and AGN activity are directly connected in the nuclear region.

  9. Probing the central regions of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne Maria

    Active Galactic Nuclei (AGN) are one of the key players in the Universe. Their energy output can strongly affect the growth of their host galaxy and can promote or suppress star formation on galactic scales. Most of the processes that determine the power of an AGN as well as the form in which that power is released take place in the immediate surroundings of its supermassive black hole, a region that is still not entirely understood. A comprehension of these inner regions is, however, crucial to any ultimate understanding of the AGN's vast influence. This dissertation explores these close-in environments of the black hole using two approaches: X-ray spectroscopy and variability studies. We begin by summarizing our current understanding of why AGN play such a significant role in galaxy formation. This is followed by a discussion of why X-ray spectroscopy is one of the best means to investigate them. We point out that, in particular, the X-ray reflection spectrum is interesting as it can directly probe parameters such as the black hole spin or the inclination of the accretion disk. Since the reflection spectrum is a broad band component, that usually only contributes a fraction of the total observed X-ray flux, the entire X-ray spectrum requires careful modeling. To perform such modeling and gain access to the parameters of the reflection spectrum, we first select a target in which the spectral decomposition is simplified by the absence of absorption - the Seyfert 1 galaxy Fairall 9. We apply a multi-epoch fitting method that uses more than one spectrum at a time to get the best possible results on the parameters of the reflection spectrum that are invariant on human timescales. This technique enables us to tightly constrain the reflection parameters and leads us to conclude that Fairall 9 most likely possesses a composite soft X-ray excess, consisting of blurred reflection and a separate component such as Comptonization. The reflection spectrum also provides a way

  10. Modeling Hot Gas Flow in the Low-luminosity Active Galactic Nucleus of NGC 3115

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.; Wong, Ka-Wah; Irwin, Jimmy A.; Reynolds, Christopher S.

    2014-02-01

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with χ2/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 × 109 M ⊙. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r st <~ 1'', so that most of the gas, including the gas at a Bondi radius rB = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 × 10-3 M ⊙ yr-1. We find a shallow density profile nvpropr -β with β ≈ 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r <~ 1'', and (4) the outflow at r >~ 1''. The gas temperature is close to the virial temperature Tv at any radius.

  11. Activity in galactic nuclei of cluster and field galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Hwang, H. S.; Park, C.; Elbaz, D.; Choi, Y.-Y.

    2012-02-01

    Aims: We study the environmental effects on the activity in galactic nuclei by comparing galaxies in clusters and in the field. Methods: Using a spectroscopic sample of galaxies in Abell clusters from the Sloan Digital Sky Survey Data Release 7, we investigate the dependence of nuclear activity on the physical parameters of clusters as well as the nearest neighbor galaxy. We also compare galaxy properties between active galactic nuclei (AGNs) hosts and non-AGN galaxies. Results: We find that the AGN fraction of early-type galaxies starts to decrease around one virial radius of clusters (r200,cl) as decreasing clustercentric radius, while that of late types starts to decrease close to the cluster center (R ~ 0.1-0.5r200,cl). The AGN fractions of early-type cluster galaxies, on average, are found to be lower than those of early-type field galaxies by a factor ~3. However, the mean AGN fractions of late-type cluster galaxies are similar to those of late-type field galaxies. The AGN fraction of early-type brightest cluster galaxies lies between those of other early-type, cluster and field galaxies with similar luminosities. In the field, the AGN fraction is strongly dependent on the morphology of and the distance to the nearest neighbor galaxy. We find an anti-correlation between the AGN fraction and the velocity dispersion of clusters for all subsamples divided by morphology and luminosity of host galaxies. The AGN power indicated by L [OIII] /MBH is found to depend strongly on the mass of host galaxies rather than the clustercentric radius. The difference in physical parameters such as luminosity, (u - r) colors, star formation rates, and (g - i) color gradients between AGN hosts and non-AGN galaxies is seen for both early and late types at all clustercentric radii, while the difference in structure parameters between the two is significant only for late types. Conclusions: These results support the idea that the activity in galactic nuclei is triggered through

  12. Steps Toward Unveiling the True Population of Active Galactic Nuclei: Photometric Characterization of Active Galactic Nuclei in COSMOS

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Impey, Christopher D.; Trump, Jonathan R.; Salvato, Mara

    2013-04-01

    Using a physically motivated, model-based active galactic nucleus (AGN) characterization technique, we fit a large sample of X-ray-selected AGNs with known spectroscopic redshifts from the Cosmic Evolution Survey field. We identify accretion disks in the spectral energy distributions of broad- and narrow-line AGNs, and infer the presence or absence of host galaxy light in the SEDs. Based on infrared and UV excess AGN selection techniques, our method involves fitting a given SED with a model consisting of three components: infrared power-law emission, optical-UV accretion disk emission, and host galaxy emission. Each component can be varied in relative contribution, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this technique, both broad- and narrow-line AGNs fall within well-defined and plausible bounds on the physical parameters of the model, allowing trends with luminosity and redshift to be determined. In particular, based on our sample of spectroscopically confirmed AGNs, we find that approximately 95% of the broad-line AGNs and 50% of the narrow-line AGNs in our sample show evidence of an accretion disk, with maximum disk temperatures ranging from 1 to 10 eV. Because this fitting technique relies only on photometry, we hope to apply it in future work to the characterization and eventually the selection of fainter AGNs than are accessible in wide-field spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects without prior redshift or X-ray data. With the abundant availability of photometric data from large surveys, the ultimate goal is to use this technique to create large samples that will complement and complete AGN catalogs selected by X-ray emission alone.

  13. STEPS TOWARD UNVEILING THE TRUE POPULATION OF ACTIVE GALACTIC NUCLEI: PHOTOMETRIC CHARACTERIZATION OF ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Schneider, Evan E.; Impey, Christopher D.; Trump, Jonathan R.

    2013-04-01

    Using a physically motivated, model-based active galactic nucleus (AGN) characterization technique, we fit a large sample of X-ray-selected AGNs with known spectroscopic redshifts from the Cosmic Evolution Survey field. We identify accretion disks in the spectral energy distributions of broad- and narrow-line AGNs, and infer the presence or absence of host galaxy light in the SEDs. Based on infrared and UV excess AGN selection techniques, our method involves fitting a given SED with a model consisting of three components: infrared power-law emission, optical-UV accretion disk emission, and host galaxy emission. Each component can be varied in relative contribution, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this technique, both broad- and narrow-line AGNs fall within well-defined and plausible bounds on the physical parameters of the model, allowing trends with luminosity and redshift to be determined. In particular, based on our sample of spectroscopically confirmed AGNs, we find that approximately 95% of the broad-line AGNs and 50% of the narrow-line AGNs in our sample show evidence of an accretion disk, with maximum disk temperatures ranging from 1 to 10 eV. Because this fitting technique relies only on photometry, we hope to apply it in future work to the characterization and eventually the selection of fainter AGNs than are accessible in wide-field spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects without prior redshift or X-ray data. With the abundant availability of photometric data from large surveys, the ultimate goal is to use this technique to create large samples that will complement and complete AGN catalogs selected by X-ray emission alone.

  14. The angular clustering of WISE-selected active galactic nuclei: Different halos for obscured and unobscured active galactic nuclei

    SciTech Connect

    Donoso, E.; Yan, Lin; Stern, D.; Assef, R. J.

    2014-07-01

    We calculate the angular correlation function for a sample of ∼170,000 active galactic nuclei (AGNs) extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 – W2 > 0.8) and 4.6 μm flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGNs and to have a mean redshift of (z) = 1.1. In total, the angular clustering of WISE AGNs is roughly similar to that of optical AGNs. We cross-match these objects with the photometric Sloan Digital Sky Survey catalog and distinguish obscured sources with r – W2 > 6 from bluer, unobscured AGNs. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGNs are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find that obscured sources at (z) ∼ 0.9 have a bias of b = 2.9 ± 0.6 and are hosted in dark matter halos with a typical mass of log (M/M {sub ☉} h {sup –1}) ∼ 13.5. In contrast, unobscured AGNs at (z) ∼ 1.1 have a bias of b = 1.6 ± 0.6 and inhabit halos of log (M/M {sub ☉} h {sup –1}) ∼ 12.4. These findings suggest that obscured AGNs inhabit denser environments than unobscured AGNs, and they are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.

  15. BAR EFFECTS ON CENTRAL STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Oh, Seulhee; Oh, Kyuseok; Yi, Sukyoung K.

    2012-01-01

    Galactic bars are often suspected to be channels of gas inflow to the galactic center and to trigger central star formation and active galactic nucleus (AGN) activity. However, the current status on this issue based on empirical studies is unsettling, especially regarding AGNs. We investigate this question based on the Sloan Digital Sky Survey Data Release 7. From the nearby (0.01 < z < 0.05) bright (M{sub r} < -19) database, we have constructed a sample of 6658 relatively face-on late-type galaxies through visual inspection. We found 36% of them to have a bar. Bars are found to be more common in galaxies with earlier morphology. This makes sample selection critical. Parameter-based selections would miss a large fraction of barred galaxies of early morphology. Bar effects on star formation or AGNs are difficult to understand properly because multiple factors (bar frequency, stellar mass, black hole mass, gas contents, etc.) seem to contribute to them in intricate manners. In the hope of breaking these degeneracies, we inspect bar effects for fixed galaxy properties. Bar effects on central star formation seem higher in redder galaxies. Bar effects on AGNs on the other hand are higher in bluer and less massive galaxies. These effects seem more pronounced with increasing bar length. We discuss possible implications in terms of gas contents, bar strength, bar evolution, fueling timescale, and the dynamical role of supermassive black hole.

  16. Hidden Active Galactic Nuclei in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Fabbiano, Giuseppina; Civano, Francesca; Pellegrini, Silvia; Elvis, Martin; Kim, Dong-Woo

    2016-06-01

    We present a stacking analysis of the complete sample of early-type galaxies (ETGs) in the Chandra COSMOS (C-COSMOS) survey, to explore the nature of the X-ray luminosity in the redshift and stellar luminosity ranges 0\\lt z\\lt 1.5 and {10}9\\lt {L}K/{L}ȯ \\lt {10}13. Using established scaling relations, we subtract the contribution of X-ray binary populations to estimate the combined emission of hot ISM and active galactic nuclei (AGNs). To discriminate between the relative importance of these two components, we (1) compare our results with the relation observed in the local universe {L}X,{gas}\\propto {L}K4.5 for hot gaseous halos emission in ETGs, and (2) evaluate the spectral signature of each stacked bin. We find two regimes where the non-stellar X-ray emission is hard, consistent with AGN emission. First, there is evidence of hard, absorbed X-ray emission in stacked bins including relatively high z (∼1.2) ETGs with average high X-ray luminosity ({L}X {- {LMXB}}≳ 6× {10}42 {{erg}} {{{s}}}-1). These luminosities are consistent with the presence of highly absorbed “hidden” AGNs in these ETGs, which are not visible in their optical–IR spectra and spectral energy distributions. Second, confirming the early indication from our C-COSMOS study of X-ray detected ETGs, we find significantly enhanced X-ray luminosity in lower stellar mass ETGs ({L}K≲ {10}11{L}ȯ ), relative to the local {L}X,{gas}\\propto {L}K4.5 relation. The stacked spectra of these ETGs also suggest X-ray emission harder than expected from gaseous hot halos. This emission is consistent with inefficient accretion {10}-5-{10}-4{\\dot{M}}{Edd} onto {M}{BH}∼ {10}6-{10}8 {M}ȯ .

  17. Compton thick active galactic nuclei in Chandra surveys

    NASA Astrophysics Data System (ADS)

    Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian

    2014-09-01

    We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the Chandra Deep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model

  18. Line-driven disk winds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Proga, D.; Stone, J. M.; Kallman, T. R.

    2001-01-01

    We present the results of axisymmetric time-dependent hydrodynamic calculations of line-driven winds from accretion disks in active galactic nuclei (AGN). We assume the disk is flat, Keplerian, geometrically thin, and optically thick, radiating according to the α-disk prescription. The central engine of the AGN is a source of both ionizing X-rays and wind-driving ultraviolet (UV) photons. To calculate the radiation force, we take into account radiation from the disk and the central engine. The gas temperature and ionization state in the wind are calculated self-consistently from the photoionization and heating rate of the central engine. We find that a disk accreting onto a 10 8 M ⊙ yr -1 black hole at the rate of 1.8 M ⊙ yr -1 can launch a wind at ˜ 10 16 cm from the central engine. The X-rays from the central object are significantly attenuated by the disk atmosphere so they cannot prevent the local disk radiation from pushing matter away from the disk. However in the supersonic portion of the flow high above the disk, the X-rays can overionize the gas and decrease the wind terminal velocity. For a reasonable X-ray opacity, e.g., κ X = 40 g -1 cm 2, the disk wind can be accelerated by the central UV radiation to velocities of up to 15000 km s -1 at a distance of ˜ 10 17 cm from the central engine. The covering factor of the disk wind is ˜ 0.2. The wind is unsteady and consists of an opaque, slow vertical flow near the disk that is bounded on the polar side by a high-velocity, stream. A typical column density through the fast stream is a few 10 23 cm -2 so the stream is optically thin to the UV radiation. This low column density is precisely why gas can be accelerated to high velocities. The fast stream contributes nearly 100% to the total wind mass loss rate of 0.5 M ⊙ yr -1.

  19. APPLICATION OF THE DISK EVAPORATION MODEL TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, B. F.

    2009-12-10

    The disk corona evaporation model extensively developed for the interpretation of observational features of black hole X-ray binaries (BHXRBs) is applied to active galactic nuclei (AGNs). Since the evaporation of gas in the disk can lead to its truncation for accretion rates less than a maximal evaporation rate, the model can naturally account for the soft spectrum in high-luminosity AGNs and the hard spectrum in low-luminosity AGNs. The existence of two different luminosity levels describing transitions from the soft to hard state and from the hard to soft state in BHXRBs, when applied to AGNs, suggests that AGNs can be in either spectral state within a range of luminosities. For example, at a viscosity parameter, alpha, equal to 0.3, the Eddington ratio from the hard-to-soft transition and from the soft-to-hard transition occurs at 0.027 and 0.005, respectively. The differing Eddington ratios result from the importance of Compton cooling in the latter transition, in which the cooling associated with soft photons emitted by the optically thick inner disk in the soft spectral state inhibits evaporation. When the Eddington ratio of the AGN lies below the critical value corresponding to its evolutionary state, the disk is truncated. With decreasing Eddington ratios, the inner edge of the disk increases to greater distances from the black hole with a concomitant increase in the inner radius of the broad-line region, R {sub BLR}. The absence of an optically thick inner disk at low luminosities (L) gives rise to region in the R {sub BLR}-L plane for which the relation R {sub BLR} propor to L {sup 1/2} inferred at high luminosities is excluded. As a result, a lower limit to the accretion rate is predicted for the observability of broad emission lines, if the broad-line region is associated with an optically thick accretion disk. Thus, true Seyfert 2 galaxies may exist at very low accretion rates/luminosities. The differences between BHXRBs and AGNs in the framework of

  20. HST/COS OBSERVATIONS OF GALACTIC HIGH-VELOCITY CLOUDS: FOUR ACTIVE GALACTIC NUCLEUS SIGHT LINES THROUGH COMPLEX C

    SciTech Connect

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles; Penton, Steven V.; Lockman, Felix J.; Arav, Nahum E-mail: matthew.stevans@colorado.edu E-mail: steven.penton@colorado.edu E-mail: arav@vt.edu

    2011-10-01

    We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COS medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.

  1. On the Scatter in the Radius-Luminosity Relationship for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C.

    2015-03-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ~40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ~0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ~0.13 dex.

  2. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    SciTech Connect

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; David, L. P.; Giacintucci, S.; Trevisan, M.; Ponman, T. J.; Raychaudhury, S.; Mamon, G. A.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  3. Deep Chandra Observations of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds

    NASA Astrophysics Data System (ADS)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; Giacintucci, S.; Trevisan, M.; David, L. P.; Ponman, T. J.; Mamon, G. A.; Raychaudhury, S.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  4. The host galaxies of active galactic nuclei with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 < z < 1.0) radio-loud active galactic nuclei (AGN) with powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  5. Spitzer and JCMT Observations of the Active Galactic Nucleus in the Sombrero Galaxy (NGC 4594)

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Buckalew, Brent A.; Dale, Daniel A.; Draine, Bruce T.; Joseph, Robert D.; Kennicutt, Robert C., Jr.; Sheth, Kartik; Smith, John-David T.; Walter, Fabian; Calzetti, Daniela; Cannon, John M.; Engelbracht, Charles W.; Gordon, Karl D.; Helou, George; Hollenbach, David; Murphy, Eric J.; Roussel, Hélène

    2006-07-01

    We present Spitzer 3.6-160 μm images, Spitzer mid-infrared spectra, and JCMT SCUBA 850 μm images of the Sombrero Galaxy (NGC 4594), an Sa galaxy with a 109 Msolar low-luminosity active galactic nucleus (AGN). The brightest infrared sources in the galaxy are the nucleus and the dust ring. The spectral energy distribution of the AGN demonstrates that, while the environment around the AGN is a prominent source of mid-infrared emission, it is a relatively weak source of far-infrared emission, as had been inferred for AGNs in previous research. The weak nuclear 160 μm emission and the negligible polycyclic aromatic hydrocarbon emission from the nucleus also implies that the nucleus is a site of only weak star formation activity and the nucleus contains relatively little cool interstellar gas needed to fuel such activity. We propose that this galaxy may be representative of a subset of low-ionization nuclear emission region galaxies that are in a quiescent AGN phase because of the lack of gas needed to fuel circumnuclear star formation and Seyfert-like AGN activity. Surprisingly, the AGN is the predominant source of 850 μm emission. We examine the possible emission mechanisms that could give rise to the 850 μm emission and find that neither thermal dust emission, CO line emission, bremsstrahlung emission, nor the synchrotron emission observed at radio wavelengths can adequately explain the measured 850 μm flux density by themselves. The remaining possibilities for the source of the 850 μm emission include a combination of known emission mechanisms, synchrotron emission that is self-absorbed at wavelengths longer than 850 μm, or unidentified spectral lines in the 850 μm band.

  6. The stellar populations of low-luminosity active galactic nuclei - III. Spatially resolved spectral properties

    NASA Astrophysics Data System (ADS)

    Cid Fernandes, R.; González Delgado, R. M.; Storchi-Bergmann, T.; Martins, L. Pires; Schmitt, H.

    2005-01-01

    In a recently completed survey of the stellar population properties of low-ionization nuclear emission-line regions (LINERs) and LINER/HII transition objects (TOs), we have identified a numerous class of galactic nuclei which stand out because of their conspicuous 108-9 yr populations, traced by high-order Balmer absorption lines and other stellar indices. These objects are called `young-TOs', because they all have TO-like emission-line ratios. In this paper we extend this previous work, which concentrated on the nuclear properties, by investigating the radial variations of spectral properties in low-luminosity active galactic nuclei (LLAGNs). Our analysis is based on high signal-to-noise ratio (S/N) long-slit spectra in the 3500-5500 Å interval for a sample of 47 galaxies. The data probe distances of typically up to 850 pc from the nucleus with a resolution of ~100 pc (~1 arcsec) and S/N ~ 30. Stellar population gradients are mapped by the radial profiles of absorption-line equivalent widths and continuum colours along the slit. These variations are further analysed by means of a decomposition of each spectrum in terms of template galaxies representative of very young (<=107 yr), intermediate age (108-9 yr) and old (1010 yr) stellar populations. This study reveals that young-TOs also differ from old-TOs and old-LINERs in terms of the spatial distributions of their stellar populations and dust. Specifically, our main findings are as follows. (i) Significant stellar population gradients are found almost exclusively in young-TOs. (ii) The intermediate age population of young-TOs, although heavily concentrated in the nucleus, reaches distances of up to a few hundred pc from the nucleus. Nevertheless, the half width at half-maximum of its brightness profile is more typically 100 pc or less. (iii) Objects with predominantly old stellar populations present spatially homogeneous spectra, be they LINERs or TOs. (iv) Young-TOs have much more dust in their central regions

  7. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Astrophysics Data System (ADS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  8. Solar modulation and nuclear fragmentation effects in galactic cosmic ray transport through shielding

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, C. F.; Wilson, J. W.; Shinn, J. L.; Badhwar, G.

    1994-01-01

    Crews of manned interplanetary missions may accumulate significant radiation exposures from the Galactic Cosmic Ray (GCR) environment in space. Estimates of how these dose levels are affected by the assumed temporal and spatial variations in the composition of the GCR environment, and by the effects of the spacecraft and body self-shielding on the transported fields are presented. In this work, the physical processes through which shielding alters the transported radiation fields are described. We then present estimates of the effects on model calculations of (1) nuclear fragmentation model uncertainties, (2) solar modulation, (3) variations between solar cycles, and (4) proposed changes to the quality factors which relate dose equivalent to absorbed dose.

  9. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  10. DISCOVERY OF THE RECOMBINING PLASMA IN THE SOUTH OF THE GALACTIC CENTER: A RELIC OF THE PAST GALACTIC CENTER ACTIVITY?

    SciTech Connect

    Nakashima, S.; Nobukawa, M.; Uchida, H.; Tanaka, T.; Tsuru, T. G.; Koyama, K.; Murakami, H.; Uchiyama, H.

    2013-08-10

    We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter {sup G}C South{sup )} has an angular size of {approx}42' Multiplication-Sign 16' centered at (l, b) {approx} (0. Degree-Sign 0, - 1. Degree-Sign 4) and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at {approx}2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density Multiplication-Sign elapsed time) of 5.3 Multiplication-Sign 10{sup 11} s cm{sup -3}. The absorption column density of GC South is consistent with that toward the GC region. Thus, GC South is likely to be located in the GC region ({approx}8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be {approx}97 pc Multiplication-Sign 37 pc, 0.16 cm{sup -3}, and 1.6 Multiplication-Sign 10{sup 51} erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.

  11. Modeling Hot Gas Flow in the Low-Luminosity Active Galactic Nucleus of NGC3115

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.; Wong, K.; Irwin, J.; Reynolds, C. S.

    2014-01-01

    Based on the dynamical estimates of the black hole (BH) mass, NGC3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1Ms Chandra X-ray visionary project observations of the NGC3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this work we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy by the stars and supernova explosions. We incorporate electron heat conduction, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. We reach reduced χi^2=1 fitting simulated X-ray emission to the spatially and spectrally resolved observed X-ray data. Radial modeling favors a low BH mass <1.3*10^{9}Msun. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r_ s 1arcsec, so that most of gas, including the gas at a Bondi radius r_B=2-4arcsec, outflows from the region. We put an upper limit on the accretion rate at 2*10^{-3}Msun/yr. We find a shallow density profile r^{-β} with β 1 over a large dynamic range. This density profile is determined in the feeding region 0.5-10arcsec as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r<1arcsec, and (4) the outflow at r>1arcsec. Conduction makes the density profile shallow only very close to the BH at r<0.1arcsec. The gas temperature is close to the virial temperature T_v at any radius. The temperature profile is shallow outside of the Bondi radius because the enclosed stellar mass is proportional to radius M_en r, which leads to flat virial temperature profile.

  12. Modeling hot gas flow in the low-luminosity active galactic nucleus of NGC 3115

    SciTech Connect

    Shcherbakov, Roman V.; Reynolds, Christopher S.; Wong, Ka-Wah; Irwin, Jimmy A.

    2014-02-20

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with χ{sup 2}/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 × 10{sup 9} M {sub ☉}. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r {sub st} ≲ 1'', so that most of the gas, including the gas at a Bondi radius r{sub B} = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 × 10{sup –3} M {sub ☉} yr{sup –1}. We find a shallow density profile n∝r {sup –β} with β ≈ 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ≲ 1'', and (4) the outflow at r ≳ 1''. The gas temperature is close to the virial temperature T{sub v} at any radius.

  13. A MULTI-WAVELENGTH ANALYSIS OF NGC 4178: A BULGELESS GALAXY WITH AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Secrest, N. J.; Satyapal, S.; Gliozzi, M.; Moran, S. M.; Cheung, C. C.; Giroletti, M.; Bergmann, M. P.; Seth, A. C.

    2013-11-10

    We present Gemini longslit optical spectroscopy and Very Large Array radio observations of the nuclear region of NGC 4178, a late-type bulgeless disk galaxy recently confirmed to host an active galactic nucleus (AGN) through infrared and X-ray observations. Our observations reveal that the dynamical center of the galaxy is coincident with the location of the Chandra X-ray point source discovered in a previous work, providing further support for the presence of an AGN. While the X-ray and IR observations provide robust evidence for an AGN, the optical spectrum shows no evidence for the AGN, underscoring the need for the penetrative power of mid-IR and X-ray observations in finding buried or weak AGNs in this class of galaxy. Finally, the upper limit to the radio flux, together with our previous X-ray and IR results, is consistent with the scenario in which NGC 4178 harbors a deeply buried AGN accreting at a high rate.

  14. The hunt for red active galactic nuclei: a new infrared diagnostic

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Rodighiero, Giulia

    2014-10-01

    We introduce a new infrared diagnostic to separate galaxies on the basis of their dominant infrared emission: stellar or nuclear. The main novelty with respect to existing diagnostics is the use of a broad band encompassing at the same time the 9.7-μm silicate absorption feature and one of the adjacent broad polycyclic aromatic hydrocarbon (PAH) features. This provides a robust estimate of the near- to mid-infrared continuum slope and enables a clear distinction among different classes of galaxies up to a redshift z ˜ 2.5. The diagnostic can be applied to a wealth of archival data from the ISO, Spitzer and Akari surveys, as well as future James Webb Space Telescope surveys. Based on data in the Great Observatories Origins Deep Survey (GOODS), Lockman Hole and North Ecliptic Pole fields, we find that approximately 70 per cent of active galactic nuclei (AGNs) detected with X-ray and optical spectroscopy dominate the total mid-infrared emission. Finally, we estimate that AGNs contribute less than 30 per cent of the mid-infrared extragalactic integrated emission.

  15. Centrifugally driven MHD-winds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Camenzind, M.

    1986-02-01

    When the prime mover in quasars is a supermassive magnetized and rapidly rotating object, the centrifugal instability can drive strong MHD-winds away from the equatorial region and extract angular momentum and rotational energy from the central object. The author shows that the necessary magnetic fields are produced, when this central object has been formed from the central part of a galactic disc. The position of the light cylinder for these objects requires a relativistic description for the corresponding MHD-winds. The author discusses the relevant equations for any stationary and axisymmetric spacetime and derives explicitly the position of the Alfvén point in the flow. He finds that centrifugally driven winds from supermassive objects carry a Poynting flux comparable with the kinetic energy flux. In addition, the magnetic field structure in the open wind zone requires the existence of a global current topology, which might explain the necessary magnetic collimation for escaping jet material. As a result, centrifugally driven winds from rapidly rotating supermassive objects carry the energy necessary to power the non-thermal emission of BLR AGNs and the material required to fuel the broad emission line clouds and the thermal jets.

  16. X-Ray Properties Expected from Active Galactic Nucleus Feedback in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Ciotti, Luca; Ostriker, Jeremiah P.

    2012-01-01

    Detailed hydrodynamic simulations of active galactic nucleus feedback have been performed including the effects of radiative and mechanical momentum and energy input on the interstellar medium (ISM) of typical elliptical galaxies. We focus on the observational properties of the models in the soft and hard X-ray bands: nuclear X-ray luminosity; global X-ray luminosity and temperature of the hot ISM; and temperature and X-ray brightness profiles before, during, and after outbursts. After ~10 Gyr, the bolometric nuclear emission L BH is very sub-Eddington (l = L BH/L Edd ~ 10-4), and within the range observed, though larger than typical values. Outbursts last for ≈107 yr, and the duty cycle of nuclear activity is a few × (10-3 to 10-2), over the last 6 Gyr. The ISM thermal luminosity L X oscillates in phase with the nuclear luminosity, with broader peaks. This behavior helps statistically reproduce the observed large L X variation. The average gas temperature is within the observed range, in the upper half of those observed. In quiescence, the temperature profile has a negative gradient; thanks to past outbursts, the brightness profile lacks the steep shape of cooling flow models. After outbursts, disturbances are predicted in the temperature and brightness profiles (analyzed by unsharp masking). Most significantly, during major accretion episodes, a hot bubble of shocked gas is inflated at the galaxy center (within ≈100 pc) the bubble would be conical in shape in real galaxies and would be radio-loud. Its detection in X-rays is within current capabilities, though it would likely remain unresolved. The ISM resumes its smooth appearance on a timescale of ≈200 Myr the duty cycle of perturbations in the ISM is of the order of 5%-10%. While showing general agreement between the models and real galaxies, this analysis indicates that additional physical input may still be required including moving to two-dimensional or three-dimensional simulations, input of

  17. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  18. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lena, Davide

    Super-massive black holes (SBHs) have long been identified as the engines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two observational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravitational waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individually consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which minimizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and compact outflows along the axis of the AGN "radiation cone". However, in the case of NGC

  19. Spectral Energy Distribution Models for Low-Luminosity Active Galactic Nuclei in LINERs

    NASA Technical Reports Server (NTRS)

    Nemmen, Rodrigo S.; Storchi-Bergmann, Thaisa; Eracleous, Michael

    2012-01-01

    Low-luminosity active galactic nuclei (LLAGNs) represent the bulk of the AGN population in the present-day universe and they trace the low-level accreting supermassive black holes. In order to probe the accretion and jet physical properties in LLAGNs as a class, we model the broadband radio to X-rays spectral energy distributions (SEDs) of 21 LLAGNs in low-ionization nuclear emission-line regions (LINERs) with a coupled accretion-jet model. The accretion flow is modeled as an inner ADAF outside of which there is a truncated standard thin disk. We find that the radio emission is severely underpredicted by ADAF models and is explained by the relativistic jet. The origin of the X-ray radiation in most sources can be explained by three distinct scenarios: the X-rays can be dominated by emission from the ADAF, or the jet, or the X-rays can arise from a jet-ADAF combination in which both components contribute to the emission with similar importance. For 3 objects both the jet and ADAF fit equally well the X-ray spectrum and can be the dominant source of X-rays whereas for 11 LLAGNs a jet-dominated model accounts better than the ADAF-dominated model for the data. The individual and average SED models that we computed can be useful for different studies of the nuclear emission of LLAGNs. From the model fits, we estimate important parameters of the central engine powering LLAGNs in LINERs, such as the mass accretion rate and the mass-loss rate in the jet and the jet power - relevant for studies of the kinetic feedback from jets.

  20. Evidence of Parsec-scale Jets in Low-luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Prieto, M. A.

    2014-05-01

    The nuclear radio emission of low-luminosity active galactic nuclei (LLAGNs) is often associated with unresolved cores. In this paper we show that most LLAGNs present extended jet radio emission when observed with sufficient angular resolution and sensitivity. They are thus able to power, at least, parsec-scale radio jets. To increase the detection rate of jets in LLAGNs, we analyze subarcsecond resolution data of three low-ionization nuclear emission regions. This yields the detection of extended jet-like radio structures in NGC 1097 and NGC 2911 and the first resolved parsec-scale jet of NGC 4594 (Sombrero). The three sources belong to a sample of nearby LLAGNs for which high-spatial-resolution spectral energy distribution of their core emission is available. This allows us to study their accretion rate and jet power (Q jet) without drawing on (most) of the ad hoc assumptions usually considered in large statistical surveys. We find that those LLAGNs with large-scale radio jets (>100 pc) have Q jet > 1042 erg s-1, while the lowest Q jet correspond to those LLAGNs with parsec-scale (<=100 pc) jets. The Q jet is at least as large as the radiated bolometric luminosity for all LLAGN, in agreement with previous statistical studies. Our detection of parsec-scale jets in individual objects further shows that the kinematic jet contribution is equally important in large- or parsec-scale objects. We also find that the Eddington-scaled accretion rate is still highly sub-Eddingtonian (<10-4) when adding the Q jet to the total emitted luminosity (radiated plus kinetic). This indicates that LLAGNs are not only inefficient radiators but that they also accrete inefficiently or are very efficient advectors.

  1. Evidence of parsec-scale jets in low-luminosity active galactic nuclei

    SciTech Connect

    Mezcua, M.; Prieto, M. A.

    2014-05-20

    The nuclear radio emission of low-luminosity active galactic nuclei (LLAGNs) is often associated with unresolved cores. In this paper we show that most LLAGNs present extended jet radio emission when observed with sufficient angular resolution and sensitivity. They are thus able to power, at least, parsec-scale radio jets. To increase the detection rate of jets in LLAGNs, we analyze subarcsecond resolution data of three low-ionization nuclear emission regions. This yields the detection of extended jet-like radio structures in NGC 1097 and NGC 2911 and the first resolved parsec-scale jet of NGC 4594 (Sombrero). The three sources belong to a sample of nearby LLAGNs for which high-spatial-resolution spectral energy distribution of their core emission is available. This allows us to study their accretion rate and jet power (Q {sub jet}) without drawing on (most) of the ad hoc assumptions usually considered in large statistical surveys. We find that those LLAGNs with large-scale radio jets (>100 pc) have Q {sub jet} > 10{sup 42} erg s{sup –1}, while the lowest Q {sub jet} correspond to those LLAGNs with parsec-scale (≤100 pc) jets. The Q {sub jet} is at least as large as the radiated bolometric luminosity for all LLAGN, in agreement with previous statistical studies. Our detection of parsec-scale jets in individual objects further shows that the kinematic jet contribution is equally important in large- or parsec-scale objects. We also find that the Eddington-scaled accretion rate is still highly sub-Eddingtonian (<10{sup –4}) when adding the Q {sub jet} to the total emitted luminosity (radiated plus kinetic). This indicates that LLAGNs are not only inefficient radiators but that they also accrete inefficiently or are very efficient advectors.

  2. The optical emission lines of type 1 X-ray bright Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    La Mura, G.; Berton, M.; Ciroi, S.; Cracco, V.; Di Mille, F.; Rafanelli, P.

    2014-10-01

    A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r⩽0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ⩾ 2000 km s-1) and narrow line (1000 km s-1 ⩽FWHMHβ ⩽ 2000 km s-1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.

  3. THE MERGER HISTORY, ACTIVE GALACTIC NUCLEUS, AND DWARF GALAXIES OF HICKSON COMPACT GROUP 59

    SciTech Connect

    Konstantopoulos, I. S.; Charlton, J. C.; Brandt, W. N.; Eracleous, M.; Gronwall, C.; Gallagher, S. C.; Fedotov, K.; Hill, A. R.; Durrell, P. R.; Tzanavaris, P.; Hornschemeier, A. E.; Zabludoff, A. I.; Maier, M. L.; Johnson, K. E.; Walker, L. M.; Maybhate, A.; English, J.; Mulchaey, J. S.

    2012-01-20

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (Hubble Space Telescope), infrared (Spitzer), and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 Multiplication-Sign 10{sup 13} M{sub Sun }), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other are two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic H II regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at {approx}1 Gyr to examine recent interactions. We detect a likely low-luminosity active galactic nucleus in HCG 59A by its {approx}10{sup 40} erg s{sup -1} X-ray emission; the active nucleus rather than star formation can account for the UV+IR spectral energy distribution. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  4. EXTENDED X-RAY EMISSION IN THE H I CAVITY OF NGC 4151: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK?

    SciTech Connect

    Wang Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2010-08-20

    We present the Chandra discovery of soft diffuse X-ray emission in NGC 4151 (L{sub 0.5-2 keV} {approx} 10{sup 39} erg s{sup -1}), extending {approx}2 kpc from the active nucleus and filling in the cavity of the H I material. The best fit to the X-ray spectrum requires either a kT {approx} 0.25 keV thermal plasma or a photoionized component. In the thermal scenario, hot gas heated by the nuclear outflow would be confined by the thermal pressure of the H I gas and the dynamic pressure of inflowing neutral material in the galactic disk. In the case of photoionization, the nucleus must have experienced an Eddington limit outburst. For both scenarios, the active galactic nucleus (AGN)-host interaction in NGC 4151 must have occurred relatively recently (some 10{sup 4} yr ago). This very short timescale to the last episode of high activity phase may imply such outbursts occupy {approx_gt}1% of AGN lifetime.

  5. Probing active galactic nuclei with H2O megamasers.

    PubMed Central

    Moran, J; Greenhill, L; Herrnstein, J; Diamond, P; Miyoshi, M; Nakai, N; Inque, M

    1995-01-01

    We describe the characteristics of the rapidly rotating molecular disk in the nucleus of the mildly active galaxy NGC4258. The morphology and kinematics of the disk are delineated by the point-like watervapor emission sources at 1.35-cm wavelength. High angular resolution [200 microas where as is arcsec, corresponding to 0.006 parsec (pc) at 6.4 million pc] and high spectral resolution (0.2 km.s-1 or nu/Deltanu = 1.4 x 10(6)) with the Very-Long-Baseline Array allow precise definition of the disk. The disk is very thin, but slightly warped, and is viewed nearly edge-on. The masers show that the disk is in nearly perfect Keplerian rotation within the observable range of radii of 0.13-0.26 pc. The approximately random deviations from the Keplerian rotation curve among the high-velocity masers are approximately 3.5 km.s-1 (rms). These deviations may be due to the masers lying off the midline by about +/-4 degrees or variations in the inclination of the disk by +/-4 degrees. Lack of systematic deviations indicates that the disk has a mass of <4 x 10(6) solar mass (M[symbol: see text]). The gravitational binding mass is 3.5 x 10(7) M[symbol: see text], which must lie within the inner radius of the disk and requires that the mass density be >4 x 10(9) M[symbol: see text].pc-3. If the central mass were in the form of a star cluster with a density distribution such as a Plummer model, then the central mass density would be 4 x 10(12) M[symbol: see text].pc-3. The lifetime of such a cluster would be short with respect to the age of the galaxy [Maoz, E. (1995) Astrophys. J. Lett. 447, L91-L94]. Therefore, the central mass may be a black hole. The disk as traced by the systemic velocity features is unresolved in the vertical direction, indicating that its scale height is <0.0003 pc (hence the ratio of thickness to radius, H/R, is <0.0025). For a disk in hydrostatic equilibrium the quadrature sum of the sound speed and Alfven velocity is <2.5 km.s-1, so that the temperature of

  6. Bars within bars - A mechanism for fuelling active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Frank, Juhan; Begelman, Mitchell C.

    1989-01-01

    A mechanism, applicable to AGN and nuclear starburst galaxies in which there is accretion onto a supermassive black hole (SBH), is proposed which brings in gas from large to small scales by successive dynamical instabilities. On the large scale, a stellar bar sweeps the interstellar medium into a gaseous disk a few hundred pc in radius. Under certain conditions, this disk can become unstable again, allowing material to flow inwards until turbulent viscous processes control angular-momentum transport. This flow pattern may feed viscosity-driven accretion flows around an SBH or lead to the formation of an SBH if none was present initially.

  7. MILLIMETER RADIO CONTINUUM EMISSIONS AS THE ACTIVITY OF SUPERMASSIVE BLACK HOLES IN NEARBY EARLY-TYPE GALAXIES AND LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Doi, Akihiro; Nakanishi, Kouichiro; Nagai, Hiroshi; Kohno, Kotaro; Kameno, Seiji

    2011-11-15

    We conducted millimeter continuum observations for samples of nearby early-type galaxies (21 sources) and nearby low-luminosity active galactic nuclei (LLAGNs; 16 sources) at 100 GHz ({lambda}3 mm) using the Nobeyama Millimeter Array (NMA). In addition, we performed quasi-simultaneous observations at 150 GHz ({lambda}2 mm) and 100 GHz for five LLAGNs. Compact nuclear emissions showing flat or inverted spectra at centimeter-to-millimeter wavelengths were found in many LLAGNs and several early-type galaxies. Moreover, significant flux variability was detected in three LLAGNs. These radio properties are similar to Sgr A*. The observed radio luminosities are consistent with the fundamental plane of black hole activity that was suggested on the basis of samples with black hole masses ranging from 10 to 10{sup 10} M{sub Sun }. This implies nuclear jets powered by radiatively inefficient accretion flows onto black holes.

  8. How Space Radiation Risk from Galactic Cosmic Rays at the International Space Station Relates to Nuclear Cross Sections

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Adams, J. H., Jr.

    2005-01-01

    Space radiation risk to astronauts is a major obstacle for long term human space explorations. Space radiation transport codes have thus been developed to evaluate radiation effects at the International Space Station (ISS) and in missions to the Moon or Mars. We study how nuclear fragmentation processes in such radiation transport affect predictions on the radiation risk from galactic cosmic rays. Taking into account effects of the geomagnetic field on the cosmic ray spectra, we investigate the effects of fragmentation cross sections at different energies on the radiation risk (represented by dose-equivalent) from galactic cosmic rays behind typical spacecraft materials. These results tell us how the radiation risk at the ISS is related to nuclear cross sections at different energies, and consequently how to most efficiently reduce the physical uncertainty in our predictions on the radiation risk at the ISS.

  9. Star-formation in nuclear clusters and the origin of the Galactic center apparent core distribution

    NASA Astrophysics Data System (ADS)

    Aharon, Danor; Perets, Hagai B.

    2016-02-01

    Nuclear stellar clusters (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: build-up of NSCs and Continuous in-situ star-formation. Here we study the effects of star formation on the build-up of NSCs and its implications for their long term evolution and their resulting structure. We show that continuous star-formation can lead to the build-up of an NSC with properties similar to those of the Milky-way NSC. We also find that the general structure of the old stellar population in the NSC with in-situ star-formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger stellar population does not yet achieve a steady state. In particular, formed/evolved NSCs with in-situ star-formation contain differential age-segregated stellar populations which are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure towards the NSC outskirts, while showing a core-like distribution inwards; with younger populations having larger core sizes.

  10. Effects of Nuclear Cross Sections at Different Energies on Space Radiation Exposure from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Li, Zi-Wei; Adams, James H., Jr.

    2007-01-01

    Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.

  11. SPATIALLY RESOLVED SPECTROSCOPY OF SDSS J0952+2552: A CONFIRMED DUAL ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    McGurk, R. C.; Max, C. E.; Rosario, D. J.; Shields, G. A.; Smith, K. L.; Wright, S. A. E-mail: max@ucolick.org E-mail: shieldsga@mail.utexas.edu E-mail: saw@astro.berkeley.edu

    2011-09-01

    Most massive galaxies contain supermassive black holes (SMBHs) in their cores. When galaxies merge, gas is driven to nuclear regions and can accrete onto the central black hole. Thus, one expects to see dual active galactic nuclei (AGNs) in a fraction of galaxy mergers. Candidates for galaxies containing dual AGNs have been identified by the presence of double-peaked narrow [O III] emission lines and by high spatial resolution images of close galaxy pairs. Spatially resolved spectroscopy is needed to confirm these galaxy pairs as systems with spatially separated double SMBHs. With the Keck 2 Laser Guide Star Adaptive Optics system and the OH Suppressing InfraRed Imaging Spectrograph near-infrared integral field spectrograph, we obtained spatially resolved spectra for SDSS J09527.62+255257.2, a radio-quiet quasar shown by previous imaging to consist of a galaxy and its close (1.''0) companion. We find that the main galaxy is a Type 1 AGN with both broad and narrow AGN emission lines in its spectrum, while the companion galaxy is a Type 2 AGN with narrow emission lines only. The two AGNs are separated by 4.8 kpc, and their redshifts correspond to those of the double peaks of the [O III] emission line seen in the Sloan Digital Sky Survey spectrum. Line diagnostics indicate that both components of the double emission lines are due to AGN photoionization. These results confirm that J0952+2552 contains two spatially separated AGNs. As one of the few confirmed dual AGNs at an intermediate separation of <10 kpc, this system offers a unique opportunity to study galaxy mergers and their effect on black hole growth.

  12. Spatially Resolved Spectra of the "Teacup" Active Galactic Nucleus: Tracing the History of a Dying Quasar

    NASA Astrophysics Data System (ADS)

    Gagne, J. P.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Fischer, T. C.; Bennert, V. N.; Schawinski, K.

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a "handle"-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  13. Obscuring Fraction of Active Galactic Nuclei: Implications from Radiation-driven Fountain Models

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi

    2015-10-01

    Active galactic nuclei (AGNs) are believed to be obscured by an optical thick “torus” that covers a large fraction of solid angles for the nuclei. However, the physical origin of the tori and the differences in the tori among AGNs are not clear. In a previous paper based on three-dimensional radiation-hydorodynamic calculations, we proposed a physics-based mechanism for the obscuration, called “radiation-driven fountains,” in which the circulation of the gas driven by central radiation naturally forms a thick disk that partially obscures the nuclear emission. Here, we expand this mechanism and conduct a series of simulations to explore how obscuration depends on the properties of AGNs. We found that the obscuring fraction fobs for a given column density toward the AGNs changes depending on both the AGN luminosity and the black hole mass. In particular, fobs for NH ≥ 1022 cm-2 increases from ˜0.2 to ˜0.6 as a function of the X-ray luminosity LX in the LX = 1042-44 erg s-1 range, but fobs becomes small (˜0.4) above a luminosity (˜1045 erg s-1). The behaviors of fobs can be understood by a simple analytic model and provide insight into the redshift evolution of the obscuration. The simulations also show that for a given LAGN, fobs is always smaller (˜0.2-0.3) for a larger column density (NH ≥ 1023 cm-2). We also found cases that more than 70% of the solid angles can be covered by the fountain flows.

  14. Determining the Covering Factor of Compton-thick Active Galactic Nuclei with NuSTAR

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Baloković, M.; Stern, D.; Arévalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fuerst, F.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S.; Puccetti, S.; Rivers, E.; Vasudevan, R.; Walton, D. J.; Zhang, W. W.

    2015-05-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (NH > 1.5 × 1024 cm-2) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (>10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman & Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with NH measured from 1024 to 1026 cm-2, and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, fc, is a strongly decreasing function of the intrinsic 2-10 keV luminosity, LX, where fc = (-0.41 ± 0.13)log10(LX/erg s-1)+18.31 ± 5.33, across more than two orders of magnitude in LX (1041.5-1044 erg s-1). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with LX > 1042.5 erg s-1.

  15. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    SciTech Connect

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Bennert, V. N.; Schawinski, K.

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  16. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  17. The Near-infrared Coronal Line Spectrum of 54 nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Prieto, M. A.; Portilla, J. G.; Tejeiro, J. M.

    2011-12-01

    The relationship between the emission of coronal lines (CLs) and nuclear activity in 36 Type 1 and 18 Type 2 active galactic nuclei (AGNs) is analyzed, for the first time, based on near-infrared (0.8-2.4 μm) spectra. The eight CLs studied, of Si, S, Fe, Al, and Ca elements and corresponding to ionization potentials (IPs) in the range 125-450 eV, are detected (3σ) in 67% (36 AGNs) of the sample. Our analysis shows that the four most frequent CLs [Si VI] 1.963 μm, [S VIII] 0.9913 μm, [S IX] 1.252 μm, and [Si X] 1.430 μm display a narrow range in luminosity, with most lines located in the interval log L 39-40 erg s-1. We found that the non-detection is largely associated with either loss of spatial resolution or increasing object distance: CLs are essentially nuclear and easily lose contrast in the continuum stellar light for nearby sources or get diluted by the strong AGN continuum as the redshift increases. Yet, there are AGNs where the lack of coronal emission, i.e., lines with IP >= 100 eV, may be genuine. The absence of these lines reflects a non-standard AGN ionizing continuum, namely, a very hard spectrum lacking photons below a few Kev. The analysis of the line profiles points out a trend of increasing FWHM with increasing IPs up to energies around 300 eV, where a maximum in the FWHM is reached. For higher IP lines, the FWHM remains nearly constant or decreases with increasing IPs. We ascribe this effect to an increasing density environment as we approach the innermost regions of these AGNs, where densities above the critical density of the CLs with IPs larger than 300 eV are reached. This sets a strict range limit for the density in the boundary region between the narrow and the broad region of 108-109 cm-3. A relationship between the luminosity of the CLs and that of the soft and hard X-ray emission and the soft X-ray photon index is observed: the coronal emission becomes stronger with both increasing X-ray emission (soft and hard) and steeper X

  18. Masses of Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2003-01-01

    We present a progress report on a project whose goal is to improve both the precision and accuracy of reverberation-based black-hole masses. Reverberation masses appear to be accurate to a factor of about three, and the black-hole mass/bulge velocity dispersion (M-sigma) relationship appears to be the same in active and quiescent galaxies.

  19. Reverberation Mapping of the Dusty Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Richmond, Michael; Batcheldor, Daniel; Buchanan, Catherine; Capetti, Alessandro; Moshe, Elitzur; Gallimore, Jack; Horne, Keith; Kishimoto, Makoto; Marconi, Alessandro; Mason, Rachel; Maiolino, Robert; Netzer, Hagai; Packham, Christopher; Perez, Enrique; Peterson, Brad; Tadhunter, Clive; Robinson, Andrew; Stirpe, Giovanna; Storchi-Bergmann, Thaisa

    2012-12-01

    Our current understanding of the size and structure of AGN tori is weak, despite their central role in AGN unification models and their importance for studies of supermassive black hole demographics. We propose to use the warm phase of Spitzer to determine the sizes of circum-nuclear dust tori in AGN. To accomplish this we will extend an existing Spitzer monitoring campaign, coordinated with ground-based observations, to measure the 'light echo' as the dust emission responds to variations in the AGN optical/UV continuum. We have selected a sample of 12 bright type 1 nuclei in close proximity to the Spitzer Continuous Viewing Zone which can be observed for at least 70% of the 365 day cycle. We will observe each AGN every 30 days for the whole of Cycle 9, roughly doubling our existing baseline of one year, permitting us to identify optical-IR time lags of many months. We will continue our current ground based monitoring program using a variety of telescopes to determine the AGN light-curves in the optical. These observations will sample the torus more faithfully than previous measurements made in the K-band. Such high fidelity, continuously sampled IR light curves covering ~years cannot be obtained from the ground, and are needed because the expected reverberation timescales are hundreds of days. We will apply well developed techniques to determine the reverberation lag and therefore obtain the characteristic size of the torus in this sample which spans a range of black hole mass and Eddington ratio. Our team contains many leading experts in reverberation mapping of AGN and in the observational study and theoretical modeling of the physics of the dusty torus. We are requesting a total of 14 hours in the cycle to perform our observations. These observations will provide a stringent observational test of current models for the obscuring torus in AGN. The required measurements - long timescales, continuous monitoring in the near-infrared - are possible only with the

  20. Near Infrared Spectroscopy of Active Galactic Nuclei Using FSpec

    NASA Astrophysics Data System (ADS)

    Frechem, Joshua; Pessev, Peter

    2015-01-01

    Using data from the 2.3 meter Bok telescope on Kitt Peak and the FRANKENSpec spectrograph, we aim to investigate the circumnuclear region of over twenty active galaxies in the J, H, and K passbands in order to obtain high signal to noise spectra with reasonable investment of observing time. The sample is selected to cover a wide range of AGN types of activity in luminous nearby galaxies. The primary goal of this project was to sort and process the 9,000+ spectra, including dark subtraction, flat fielding, and creation of and application of bad pixel masks. The 2-D spectra were processed to a 1-D spectra and wavelength calibrated to reveal the exact wavelength of each peak in the spectra. Using standard stars is of utmost importance so the atmospheric lines can be corrected for and the data can be used for precise analysis. With the reduced and calibrated spectra, we measure the Paschen α, β, and γ Hydrogen lines, the Brackett γ Hydrogen line and the FeII line in the near infrared emitted from the circumnuclear regions of the galaxies. These data unveil details of what the environment is like in the area surrounding the supermassive black holes that are found in the heart of each of these galaxies.

  1. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  2. Stability of narrow emission line clouds in active galactic nuclei

    SciTech Connect

    Mathews, W.G.; Veilleux, S.

    1989-01-01

    The effects of the lateral flow and Rayleigh-Taylor instabilities on clouds in the narrow-line region of active galaxies are considered using cloud densities and velocities based on observations. A simplified model for the lateral flow instability governed only by overpressures is discussed. The associated radiative acceleration is considered, and parameters describing the narrow-line region and the central nonstellar continuum are presented. It is shown that many otherwise acceptable narrow-line clouds are unstable to lateral flows, particularly if their column depths are small. It is argued that the most likely narrow-line clouds have column densities of about 10 to the 23rd/sq cm and that these clouds are accelerated by winds in the intercloud medium. Arguments are made against models in which narrow-line clouds move inward. 22 references.

  3. Astrophysical bags - A new paradigm for active galactic nuclei?

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1992-01-01

    Active galaxies are believed to consist of a compact nucleus, the standard model for which is a massive black hole or a cluster of black holes. A different paradigm is considered here, deriving from quark confinement theory in QCD. It is an 'astrophysical bag', modelled after the 'hadron bags' of particle physics which have already been studied in astrophysics as quark stars. Another interpretation of the cosmological constant in general relativity, and possibly a new quasar redshift formula, are introduced. As a highly-energetic object, this model may resolve the baryonic matter problem for fuelling AGN accretion processes which black hole paradigms cannot account for. Here, baryons, cosmic rays, and neutrinos are free.

  4. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  5. Phenomenology of Broad Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.

    Broad emission lines hold fundamental clues about the kinematics and structure of the central regions in AGN. In this article we review the most robust line profile properties and correlations emerging from the best data available. We identify fundamental differences between the profiles of radio-quiet and radio-loud sources as well as differences between the high- and low-ionization lines, especially in the radio-quiet majority of AGN. An Eigenvector 1 correlation space involving FWHM Hβ, W(FeIIopt)/W(Hβ), and the soft X-ray spectral index provides optimal discrimination between all principal AGN types (from narrow-line Seyfert 1 to radio galaxies). Both optical and radio continuum luminosities appear to be uncorrelated with the E1 parameters. We identify two populations of radio-quiet AGN: Population A sources (with FWHM(Hβ) <~ 4000 km s-1, generally strong FeII emission and a soft X-ray excess) show almost no parameter space overlap with radio-loud sources. Population B shows optical properties largely indistinguishable from radio-loud sources, including usually weak FeII emission, FWHM(Hβ) >~ 4000 km s-1 and lack of a soft X-ray excess. There is growing evidence that a fundamental parameter underlying Eigenvector 1 may be the luminosity-to-mass ratio of the active nucleus (L/M), with source orientation playing a concomitant role.

  6. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    SciTech Connect

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R. E-mail: pastoriza@ufrgs.b

    2010-12-10

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at {lambda} = 23 {mu}m and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T {approx} 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 {mu}m) and the forbidden emission lines of [Si II] 34.8 {mu}m, [Ar II] 6.9 {mu}m, [S III] 18.7 and 33.4 {mu}m were detected in all the starbursts and in {approx}80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 {mu}m, 11.3 {mu}m, and 12.7 {mu}m, we find that they are present in {approx}80% of the Seyfert 1, while only half of this type of activity show the 6.2 {mu}m and 8.6 {mu}m PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 {mu}m/7.7 {mu}m x 11.3 {mu}m/7.7 {mu}m) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules ({>=}180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 {mu}m) and the neutral PAH bands (8.6 {mu}m and 11.3 {mu}m) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 {mu}m and 11.3 {mu}m bands is nearly constant with the increase of [Ne III]15.5 {mu}m/[Ne II] 12.8 {mu}m, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 {mu}m) or neutral (11.3 {mu}m) bands, may be destroyed

  7. From Starburst to Quiescence: Testing Active Galactic Nucleus feedback in Rapidly Quenching Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S.; Wild, Vivienne; Hayward, Christopher C.

    2014-09-01

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M ⊙) = 10.3-10.7, and identifies "transiting" post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ~0.3% of galaxies are starbursts, ~0.1% are QPSBs, and ~0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (gsim 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of >~ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as "dust-obscured galaxies" (DOGs), with a near-UV-to-mid-IR flux ratio of >~ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst phase.

  8. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    SciTech Connect

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S.; Wild, Vivienne; Hayward, Christopher C.

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post

  9. Teaching Activities on Horizontal Nuclear Proliferation.

    ERIC Educational Resources Information Center

    Zola, John

    1990-01-01

    Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)

  10. A Mid-infrared Census of Star Formation Activity in Bolocam Galactic Plane Survey Sources

    NASA Astrophysics Data System (ADS)

    Dunham, Miranda K.; Robitaille, Thomas P.; Evans, Neal J., II; Schlingman, Wayne M.; Cyganowski, Claudia J.; Urquhart, James

    2011-04-01

    We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3712 of 8358) of the BGPS sources contain at least one mid-IR source, including 2457 of 5067 (49%) within the area where all surveys overlap (10° < ell < 65°). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects and Red MSX Sources make up the highest probability group, while the lowest probability group is comprised of "starless" BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the "starless" BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H2 column density also increase with probability of star formation activity.

  11. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  12. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    SciTech Connect

    Lyu, Jianwei; Hao, Lei; Li, Aigen

    2014-09-01

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, the optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.

  13. A ∼ 3.8 hr PERIODICITY FROM AN ULTRASOFT ACTIVE GALACTIC NUCLEUS CANDIDATE

    SciTech Connect

    Lin, Dacheng; Irwin, Jimmy A.; Godet, Olivier; Webb, Natalie A.; Barret, Didier

    2013-10-10

    Very few galactic nuclei are found to show significant X-ray quasi-periodic oscillations (QPOs). After carefully modeling the noise continuum, we find that the ∼3.8 hr QPO in the ultrasoft active galactic nucleus candidate 2XMM J123103.2+110648 was significantly detected (∼5σ) in two XMM-Newton observations in 2005, but not in the one in 2003. The QPO root mean square (rms) is very high and increases from ∼25% in 0.2-0.5 keV to ∼50% in 1-2 keV. The QPO probably corresponds to the low-frequency type in Galactic black hole X-ray binaries, considering its large rms and the probably low mass (∼10{sup 5} M {sub ☉}) of the black hole in the nucleus. We also fit the soft X-ray spectra from the three XMM-Newton observations and find that they can be described with either pure thermal disk emission or optically thick low-temperature Comptonization. We see no clear X-ray emission from the two Swift observations in 2013, indicating lower source fluxes than those in XMM-Newton observations.

  14. Related investigations on the physics of high energy emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Margon, Bruce

    1991-01-01

    The Final Technical Report on a number of related investigations on the physics of high energy emission from active galactic nuclei, such as Seyfert galaxies and quasi-stellar objects is presented. The chief conclusions of the work are briefly described, and citations to the papers supported by this grant and published in the refereed scientific literature are provided. Areas of research included: 'warm' galaxies observed in x rays; x ray/infrared correlations in galaxies; the contribution of active galaxies to the cosmic x ray background radiation; and an unusual x ray emitting starburst galaxy.

  15. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lyu, Yang; Liu, Xin

    2016-08-01

    One percent of redshift z ˜ 0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]λ5007 emission-line luminosity L[O III]. We combine the sample of Liu et al. (2010a) at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  16. Nuclear γ-ray line emission induced by energetic ions in solar flares and by galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Kiener, J.; Tatischeff, V.; Benhabiles-Mezhoud, H.; de Séréville, N.; Belhout, A.

    2012-05-01

    The γ-ray spectra ol the strongest solar flares often show a broad and complex structure in the 0.1-10 MeV region sitting on a bremsstrahlung continuum. This structure is composed of several outstanding narrow lines and of thousands of unresolved narrow and broad lines forming a quasi-continuum. The major part of this emission is due to prompt deexcitation lines following nuclear interactions of accelerated light and heavy ions with the atomic nuclei composing the solar atmosphere. A similar emission is expected from interactions of galactic cosmic rays with the interstellar gas and dust. Experimental nuclear reaction studies coupled with extensive calculations have been done in the last one and a half decade at Orsay for the modelisation of this γ-ray emission. After a description of the nuclear reaction studies the analysis of one solar flare spectrum and predictions for the emission from the inner Galaxy will be presented.

  17. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W.

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  18. The Subarcsecond Mid-infrared View of Local Active Galactic Nuclei. III. Polar Dust Emission

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.

    2016-05-01

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amount of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs. Based on European Southern Observatory (ESO) observing programmes 60.A-9242, 074.A-9016, 075.B-0182, 075.B-0621, 075.B-0631, 075.B-0727, 075.B-0791, 075.B-0844, 076.B-0194, 076.B-0468, 076.B-0599, 076.B-0621, 076.B-0656, 076.B-0696, 076.B-0743, 077.B-0060, 077.B-0135, 077.B-0137, 077.B-0728, 078.B-0020, 078.B-0173, 078.B-0255, 078.B-0303, 080.B-0240, 080.B-0860, 081.B-0182, 082.B-0299, 083.B-0239, 083.B-0452, 083.B-0536, 083.B-0592, 084.B-0366, 084.B-0606, 084.B-0974, 085.B-0251, 085.B-0639, 086.B-0242, 086.B-0257, 086

  19. Determining the Covering Factor of Compton-Thick Active Galactic Nuclei with NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, M.; Balokovic, M.; Stern, D.; Arevalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Zhang, W. W.

    2015-01-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N(sub H) greater than 1.5 x 10(exp 24) cm(exp -2)) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (greater than 10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N(sub H) measured from 10(exp 24) to 10(exp 26) cm(exp -2), and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f(sub c), is a strongly decreasing function of the intrinsic 2-10 keV luminosity, L(sub X), where f(sub c) = (-0.41 +/- 0.13)log(sub 10)(L(sub X)/erg s(exp -1))+18.31 +/- 5.33, across more than two orders of magnitude in L(sub X) (10(exp 41.5) - 10(exp 44) erg s(exp -1)). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with L(sub X) greater than 10(exp 42.5) erg s(exp -1).

  20. The quenching of star formation in accretion-driven clumpy turbulent tori of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Davies, R. I.

    2013-08-01

    Galactic gas-gas collisions involving a turbulent multiphase interstellar medium (ISM) share common ISM properties: dense extraplanar gas visible in CO, large linewidths (≳50 km s-1), strong mid-infrared H2 line emission, low star formation activity, and strong radio continuum emission. Gas-gas collisions can occur in the form of ram pressure stripping caused by the rapid motion of a spiral galaxy within the intracluster medium, galaxy head-on collisions, compression of the intragroup gas and/or galaxy ISM by an intruder galaxy which flies through the galaxy group at a high velocity, or external gas accretion on an existing gas torus in a galactic center. We suggest that the common theme of all these gas-gas interactions is adiabatic compression of the ISM leading to an increase of the turbulent velocity dispersion of the gas. The turbulent gas clouds are then overpressured and star formation is quenched. Within this scenario we developed a model for turbulent clumpy gas disks where the energy to drive turbulence is supplied by external infall or the gain of potential energy by radial gas accretion within the disk. The cloud size is determined by the size of a continuous (C-type) shock propagating in dense molecular clouds with a low ionization fraction at a given velocity dispersion. We give expressions for the expected volume and area filling factors, mass, density, column density, and velocity dispersion of the clouds. The latter is based on scaling relations of intermittent turbulence whose open parameters are estimated for the circumnuclear disk in the Galactic center. The properties of the model gas clouds (~0.1 pc, ~100 M⊙, Δv ≳ 6 km s-1) and the external mass accretion rate necessary for the quenching of the star formation rate due to adiabatic compression (Ṁ ~ 1-10 M⊙ yr-1) are consistent with those derived from high-resolution H2 2.12 μm line observations. Based on these findings, a scenario for the evolution of gas tori in galactic centers is

  1. On the origin of power-law X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Schlosman, I.; Shaham, J.; Shaviv, G.

    1984-01-01

    In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.

  2. THE PREVALENCE OF NARROW OPTICAL Fe II EMISSION LINES IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Dong Xiaobo; Wang Jianguo; Wang Tinggui; Wang Huiyuan; Zhou Hongyan; Ho, Luis C.; Fan Xiaohui

    2010-10-01

    From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate-statistically for the first time-that narrow optical Fe II emission lines, both permitted and forbidden, are prevalent in type 1 AGNs. Remarkably, these optical lines are completely absent in type 2 AGNs, across a wide luminosity range, from Seyfert 2 galaxies to type 2 quasars. We suggest that the narrow Fe II-emitting gas is confined to a disk-like geometry in the innermost regions of the narrow-line region on physical scales smaller than the obscuring torus.

  3. An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.

  4. Disk-Corona Model of Active Galactic Nuclei with Nonthermal Pairs

    NASA Technical Reports Server (NTRS)

    Tsuruta, Sachiko; Kellen, Michael

    1995-01-01

    As a promising model for the X-ray emission from radio-quiet quasars and Seyfert 1 nuclei, we present a nonthermal disk-corona model, where soft photons from a disk are Comptonized by the nonthermal electron-positron pairs in a coronal region above the disk. Various characteristics of our model are qualitatively similar to the homogeneous, spherical, nonthermal pair models previously studied, but the important difference is that in our disk-corona model gamma-ray depletion is far more efficient, and, moreover, the gamma-ray annihilation line is much less prominent. Consequently, this model naturally satisfies the observed constraints on active galactic nuclei.

  5. CCD Observing and Dynamical Time Series Analysis of Active Galactic Nuclei.

    NASA Astrophysics Data System (ADS)

    Nair, Achotham Damodaran

    1995-01-01

    The properties, working and operations procedure of the Charge Coupled Device (CCD) at the 30" telescope at Rosemary Hill Observatory (RHO) are discussed together with the details of data reduction. Several nonlinear techniques of time series analysis, based on the behavior of the nearest neighbors, have been used to analyze the time series of the quasar 3C 345. A technique using Artificial Neural Networks based on prediction of the time series is used to study the dynamical properties of 3C 345. Finally, a heuristic model for variability of Active Galactic Nuclei is discussed.

  6. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  7. THE NEAR-INFRARED CORONAL LINE SPECTRUM OF 54 NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Rodriguez-Ardila, A.

    2011-12-20

    The relationship between the emission of coronal lines (CLs) and nuclear activity in 36 Type 1 and 18 Type 2 active galactic nuclei (AGNs) is analyzed, for the first time, based on near-infrared (0.8-2.4 {mu}m) spectra. The eight CLs studied, of Si, S, Fe, Al, and Ca elements and corresponding to ionization potentials (IPs) in the range 125-450 eV, are detected (3{sigma}) in 67% (36 AGNs) of the sample. Our analysis shows that the four most frequent CLs [Si VI] 1.963 {mu}m, [S VIII] 0.9913 {mu}m, [S IX] 1.252 {mu}m, and [Si X] 1.430 {mu}m display a narrow range in luminosity, with most lines located in the interval log L 39-40 erg s{sup -1}. We found that the non-detection is largely associated with either loss of spatial resolution or increasing object distance: CLs are essentially nuclear and easily lose contrast in the continuum stellar light for nearby sources or get diluted by the strong AGN continuum as the redshift increases. Yet, there are AGNs where the lack of coronal emission, i.e., lines with IP {>=} 100 eV, may be genuine. The absence of these lines reflects a non-standard AGN ionizing continuum, namely, a very hard spectrum lacking photons below a few Kev. The analysis of the line profiles points out a trend of increasing FWHM with increasing IPs up to energies around 300 eV, where a maximum in the FWHM is reached. For higher IP lines, the FWHM remains nearly constant or decreases with increasing IPs. We ascribe this effect to an increasing density environment as we approach the innermost regions of these AGNs, where densities above the critical density of the CLs with IPs larger than 300 eV are reached. This sets a strict range limit for the density in the boundary region between the narrow and the broad region of 10{sup 8}-10{sup 9} cm{sup -3}. A relationship between the luminosity of the CLs and that of the soft and hard X-ray emission and the soft X-ray photon index is observed: the coronal emission becomes stronger with both increasing X

  8. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    SciTech Connect

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  9. A Census of Broad-line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  10. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  11. Ensemble spectral variability study of Active Galactic Nuclei from the XMM-Newton serendipitous source catalogue

    NASA Astrophysics Data System (ADS)

    Serafinelli, R.; Vagnetti, F.; Middei, R.

    2016-02-01

    The variability of the X-Ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis [1], who found that slope variations are well correlated with flux variations, and that the spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X- Ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter β, defined by Trevese and Vagnetti [2] as the ratio between the change in spectral slope and the corresponding logarithmic flux variation. We find that the spectral variability of quasars has a softer when brighter behaviour, similarly to local AGNs.

  12. Interpreting Broad Double-Peaked Emission Lines in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Halpern, Jules; Chen, Kaiyou

    1999-01-01

    The principal objectives of this project were to probe the inner regions of active galactic nuclei and to test general relativity in the strong-field limit. The approach takes advantage of broad atomic line emission observed from material deep in the potential well of an active galactic nucleus which contains key information as to the physics of the system. Line profiles in a wide range of wavebands from optical to X-ray have provided compelling evidence of the existence of a relativistic accretion disk around a supermassive black hole in a number of galaxies. The simplest model posits a geometrically thin disk in Keplerian orbit, with general relativistic effects in evidence. This model is the point of departure for the proposed work. We developed a high-performance numerical code to calculate photon trajectories in a Schwarzschild or Kerr metric and implemented it on parallel supercomputers. This code includes a general purpose ray tracer that calculates line profiles, light curves, and other observable quantities for a wide variety of emitter configurations. The versatility comes from the fact that the ray tracing algorithm does not depend on any symmetries regarding emitter locations. The speed comes from parallel implementation which enables us to sample hitherto unattainable volumes of disk model parameter space. During the period 1 March 1997 through 28 February 1998, two papers, supported in whole or in part by this grant, were published in refereed journals. They are reproduced in their entirety in the next two sections of this report.

  13. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    SciTech Connect

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  14. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  15. PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1

    SciTech Connect

    Diaz Tello, J.; Donzelli, C.; Padilla, N.; Fujishiro, N.; Yoshikawa, T.; Hanami, H.; Hatsukade, B.

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  16. MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Stern, Daniel; Assef, Roberto J.; Eisenhardt, Peter; Benford, Dominic J.; Blain, Andrew; Cutri, Roc; Griffith, Roger L.; Jarrett, T. H.; Masci, Frank; Tsai, Chao-Wei; Yan, Lin; Dey, Arjun; Lake, Sean; Petty, Sara; Wright, E. L.; Stanford, S. A.; Harrison, Fiona; Madsen, Kristin

    2012-07-01

    The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 - W2 {>=} 0.8 (i.e., [3.4]-[4.6] {>=}0.8, Vega), which identifies 61.9 {+-} 5.4 active galactic nucleus (AGN) candidates per deg{sup 2} to a depth of W2 {approx} 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 {mu}Jy at 4.6 {mu}m, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.

  17. Origin and properties of dual and offset active galactic nuclei in a cosmological simulation at z=2

    NASA Astrophysics Data System (ADS)

    Steinborn, Lisa K.; Dolag, Klaus; Comerford, Julia M.; Hirschmann, Michaela; Remus, Rhea-Silvia; Teklu, Adelheid F.

    2016-05-01

    In the last few years, it became possible to observationally resolve galaxies with two distinct nuclei in their centre. For separations smaller than 10 kpc, dual and offset active galactic nuclei (AGN) are distinguished: in dual AGN, both nuclei are active, whereas in offset AGN only one nucleus is active. To study the origin of such AGN pairs, we employ a cosmological, hydrodynamic simulation with a large volume of (182 Mpc)3 from the set of Magneticum Pathfinder Simulations. The simulation self-consistently produces 35 resolved black hole (BH) pairs at redshift z = 2, with a comoving distance smaller than 10 kpc. 14 of them are offset AGN and nine are dual AGN, resulting in a fraction of (1.2 ± 0.3) per cent AGN pairs with respect to the total number of AGN. In this paper, we discuss fundamental differences between the BH and galaxy properties of dual AGN, offset AGN and inactive BH pairs and investigate their different triggering mechanisms. We find that in dual AGN the BHs have similar masses and the corresponding BH from the less massive progenitor galaxy always accretes with a higher Eddington ratio. In contrast, in offset AGN the active BH is typically more massive than its non-active counterpart. Furthermore, dual AGN in general accrete more gas from the intergalactic medium than offset AGN and non-active BH pairs. This highlights that merger events, particularly minor mergers, do not necessarily lead to strong gas inflows and thus, do not always drive strong nuclear activity.

  18. THE FIRST HARD X-RAY POWER SPECTRAL DENSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Shimizu, T. Taro; Mushotzky, Richard F.

    2013-06-10

    We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of {approx} - 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

  19. Ion-heated thermal Comptonization models and x-ray spectral correlations in active galactic nuclei

    SciTech Connect

    Dermer, C.D.

    1989-11-01

    Recent Ginga observations of the Seyfert 1 galaxies NGC 4051 and MCG 6-30-15 show a positive correlation between the 2-10 keV luminosity and photon spectral index {alpha}. Similar behavior has also been reported in Exosat and Einstein observations of other active galactic nuclei, and is suggested in hard x-ray low-state data of the galactic black-hole candidate Cygnus X-1. A two-temperature thermal Comptonization model with internal soft-photon production provides a simple explanation for this correlation. The electron temperature, determined by a balance between ion heating and radiative cooling, decreases in response to an enhancement of the soft photon flux, resulting in a softening of the spectrum and an increase in the soft x-ray luminosity. The bulk of the soft photons are produced through pion production in collisions between the hot ions. Pivoting of the spectrum at photon energies {var epsilon} > 50 keV is a consequence of variations in the ion temperature. An important test of the model would be time correlations between soft and hard x-ray bands. 17 refs., 9 figs., 1 tab.

  20. Active galactic nuclei, neutrinos, and interacting cosmic rays in NGC 253 and NGC 1068

    SciTech Connect

    Yoast-Hull, Tova M.; Zweibel, Ellen G.; Gallagher III, J. S.; Everett, John E.

    2014-01-10

    The galaxies M82, NGC 253, NGC 1068, and NGC 4945 have been detected in γ-rays by Fermi. Previously, we developed and tested a model for cosmic-ray interactions in the starburst galaxy M82. Now, we aim to explore the differences between starburst and active galactic nucleus (AGN) environments by applying our self-consistent model to the starburst galaxy NGC 253 and the Seyfert galaxy NGC 1068. Assuming a constant cosmic-ray acceleration efficiency by supernova remnants with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations, predict the radio and γ-ray spectra, and compare with published measurements. We find that our models easily fit the observed γ-ray spectrum for NGC 253 while constraining the cosmic-ray source spectral index and acceleration efficiency. However, we encountered difficultly modeling the observed radio data and constraining the speed of the galactic wind and the magnetic field strength, unless the gas mass is less than currently preferred values. Additionally, our starburst model consistently underestimates the observed γ-ray flux and overestimates the radio flux for NGC 1068; these issues would be resolved if the AGN is the primary source of γ-rays. We discuss the implications of these results and make predictions for the neutrino fluxes for both galaxies.

  1. New active galactic nuclei among the INTEGRAL and SWIFT X-ray sources

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Mescheryakov, A. V.; Revnivtsev, M. G.; Sazonov, S. Yu.; Bikmaev, I. F.; Pavlinsky, M. N.; Sunyaev, R. A.

    2008-06-01

    We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17-60 keV) luminosity and the [O III] 5007 line luminosity, log L x/ L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ˜20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.

  2. Gamma-ray blazars and active galactic nuclei seen by the Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Lott, B.; Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.

    2015-03-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25 using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes, |b| > 10 (with 28 duplicate associations, thus corresponding to 1563 gamma-ray sources among 2192 sources in the 3FGL catalog), a 71% increase over the second catalog based on 2 years of data. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., intermediate- and high-synchrotron-peaked FSRQs) have now been significantly detected.

  3. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    SciTech Connect

    Collaboration, The Pierre auger

    2007-12-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  4. Analysis of nearly simultaneous X-ray and optical observations of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Webb, James Raymond

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 active galactic nuclei (AGN) were reduced and analyzed. Seventy-two X-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectral observations, significant hydrogen column densities above the galactic value were required for nine of the eleven sources which were observed more than once by EINSTEIN. Correlations between the X-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the X-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the X-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the X-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  5. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    SciTech Connect

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise E-mail: schinner@mpia.de E-mail: burillo@oan.es

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s{sup –1}) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  6. Consequences of hot gas in the broad line region of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Mushotzky, R.

    1985-01-01

    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.

  7. Galactic cosmic ray flux in the mid of 1700 from 44Ti activity of Agen meteorite

    NASA Astrophysics Data System (ADS)

    Taricco, Carla; Sinha, Neeharika; Bhandari, Narendra; Colombetti, Paolo; Mancuso, Salvatore; Rubinetti, Sara; Barghini, Dario

    2016-04-01

    Cosmogenic isotopes produced by galactic cosmic rays (GCR) in meteorites offer the opportunity to reveal the heliospheric magnetic field modulation in the interplanetary space between heliocentric distances of 1 and 3 AU. We present the gamma-activity measurement of Agen meteorite, a H5 chondrite that fell on September 5, 1814 in Aquitaine, France. Its 44Ti activity reflects GCR flux integrated since the mid of 1700 to the time of fall and confirms the decreasing trend of GCR flux that we previously suggested on the basis of measurements of other meteorites which fell in the last 250 years as well as the centennial modulation of GCR due to the Gleissberg solar cycle This result was obtained thanks to the high-efficiency and selective configuration of the gamma-ray spectrometer (HPGe+NaI) operating at the underground Laboratory of Monte dei Cappuccini (OATo, INAF) in Torino, Italy.

  8. The Study of Active Galactic Nuclei and Galaxy Structure Using SDSS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Roig, Benjamin

    Two distinct projects involving spectroscopic data from the Sloan Digital Sky Survey are presented. Data from both the Legacy (SDSS-II) and BOSS (SDSS-III) surveys are used to study stellar populations and active galactic nuclei in old, red galaxies. In the first project, we infer stellar metallicity and abundance ratio gradients for a sample of red galaxies in the Sloan Digital Sky Survey (SDSS) Main galaxy sample. Because this sample does not have multiple spectra at various radii in a single galaxy, we measure these gradients statistically. This method is possible because for a fixed aperture size and a varying redshift range, the aperture will cover different physical sizes on each galaxy dependent on redshift. We stack galaxy spectra in relatively narrow redshift bins and calculate several absorption line indices in projected annuli by differencing spectra in neighboring redshift bins. After determining the line indices, we use stellar population modeling from the EZ_Ages software to calculate ages, metallicities, and abundance ratios within each annulus. Our data covers the central regions of these galaxies, out to slightly higher than 1 Re. We find detectable gradients in metallicity and relatively shallow gradients in abundance ratios, similar to results found for direct measurements of individual galaxies. We compare this data to previous observations and find general agreement, and then briefly to several theoretical studies simulating galaxy evolution models to see what the metallicity gradients and abundance ratios imply about the evolutionary track of these red galaxies. This project also involves developing a code framework to verify this method, with potential more generally applicable future uses. For the second project, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS). We find a potentially new observational class of AGN, one with strong and broad MgII 2799A line emission, but very weak emission in

  9. The subarcsecond mid-infrared view of local active galactic nuclei - I. The N- and Q-band imaging atlas

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.; Smette, A.; Duschl, W. J.

    2014-04-01

    We present the first subarcsecond-resolution mid-infrared (MIR) atlas of local active galactic nuclei (AGN). Our atlas contains 253 AGN with a median redshift of z = 0.016, and includes all publicly available MIR imaging performed to date with ground-based 8-m class telescopes, a total of 895 independent measurements. Of these, more than 60 per cent are published here for the first time. We detect extended nuclear emission in at least 21 per cent of the objects, while another 19 per cent appear clearly point-like, and the remaining objects cannot be constrained. Where present, elongated nuclear emission aligns with the ionization cones in Seyferts. Subarcsecond resolution allows us to isolate the AGN emission on scales of a few tens of parsecs and to obtain nuclear photometry in multiple filters for the objects. Median spectral energy distributions (SEDs) for the different optical AGN types are constructed and individual MIR 12 and 18 μm continuum luminosities are computed. These range over more than six orders of magnitude. In comparison to the arcsecond-scale MIR emission as probed by Spitzer, the continuum emission is much lower on subarcsecond scales in many cases. The silicate feature strength is similar on both scales and generally appears in emission (absorption) in type I (II) AGN. However, the polycyclic aromatic hydrocarbon emission appears weaker or absent on subarcsecond scales. The differences of the MIR SEDs on both scales are particularly large for AGN/starburst composites and close-by (and weak) AGN. The nucleus dominates over the total emission of the galaxy only at luminosities ≳1044 erg s-1. The AGN MIR atlas is well suited not only for detailed investigation of individual sources but also for statistical studies of AGN unification.

  10. Symbiotic starburst-black hole active galactic nuclei - I. Isothermal hydrodynamics of the mass-loaded interstellar medium

    NASA Astrophysics Data System (ADS)

    Williams, R. J. R.; Baker, A. C.; Perry, Judith J.

    1999-12-01

    based on this observation which, in future papers, we will relate to empirical classifications. The interplay between the nucleus and the wider galaxy depends critically on the exchange of radiative and mechanical energy. The outbound mechanical energy transfer is governed by the nuclear stellar cluster. Active galactic nuclei will only be understood once the symbiotic relationships between the black hole, the stellar cluster and the galaxy are considered. It is impossible to treat correctly any isolated component. Our conceptually simple and self-consistent symbiotic model explains the observed complexity of active galaxies without ad hoc measures.

  11. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Geballe, T. R.; Mason, R. E.; Oka, T.

    2015-10-01

    Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 μm have revealed a weak absorption feature due to two lines of the molecular ion {{{H}}}3+. The observed wavelength of the feature corresponds to a velocity of -70 km s-1 relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H{}3+ along with the previously known broad hydrocarbon absorption at 3.4μm are probably formed in diffuse gas that is in close proximity to the continuum source, i.e., within a few tens of parsecs of the central engine. Based on that conclusion and the measured H{}3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the active galactic nucleus of ˜1 M⊙ yr-1.

  12. The cosmological evolution and luminosity function of X-ray selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Avni, Y.; Giommi, P.; Griffiths, R. E.; Liebert, J.; Stocke, J.; Danziger, J.

    1983-01-01

    The cosmological evolution and the X-ray luminosity function of X-ray selected active galactic nuclei (AGNs) are derived and discussed. The sample used consists of 31 AGNs extracted from a fully identified sample of X-ray sources from the Einstein Observatory Medium Sensitivity Survey and is therefore exclusively defined by its X-ray properties. The distribution in space is found to be strongly nonuniform. The amount of cosmological evolution required by the X-ray data is derived in the framework of pure luminosity evolution and is found to be smaller than the amount determined from optically selected samples. The X-ray luminosity function is derived. It can be satisfactorily represented by a single power law only over a limited range of absolute luminosities. Evidence that the luminosity function flattens at low luminosity or steepens at high luminosity, or both, is presented and discussed.

  13. A new approach to the variability characterization of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Middei, R.; Vagnetti, F.; Antonucci, M.; Serafinelli, R.

    2016-02-01

    The normalized excess variance is a popular method used by many authors to estimate the variability of active galactic nuclei (AGNs), especially in the X-ray band. We show that this estimator is affected by the cosmological time dilation, so that it should be appropriately corrected when applied to AGN samples distributed in wide redshift intervals. We propose a formula to modify this estimator, based on the use of the structure function. To verify the presence of the cosmological effect and the reliability of the proposed correction, we use data extracted from the XMM-Newton Serendipitous Source Catalogue, data release 5 (XMMSSC-DR5), and cross-matched with the Sloan Digital Sky Survey quasar catalogue, of data release 7 and 12.

  14. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  15. Search for correlations between HiRes stereo events and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    High Resolution Fly'S Eye Collaboration; Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Amman, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Benzvi, S. Y.; Bergman, D. R.; Blake, S. A.; Boyer, J. H.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, N.; Schnetzer, S. R.; Scott, L. M.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, X.; High Resolution Fly's Eye Collaboration

    2008-11-01

    We have searched for correlations between the pointing directions of ultrahigh energy cosmic rays observed by the High Resolution Fly's Eye experiment and active galactic nuclei (AGN) visible from its northern hemisphere location. No correlations, other than random correlations, have been found. We report our results using search parameters prescribed by the Pierre Auger collaboration. Using these parameters, the Auger collaboration concludes that a positive correlation exists for sources visible to their southern hemisphere location. We also describe results using two methods for determining the chance probability of correlations: one in which a hypothesis is formed from scanning one half of the data and tested on the second half, and another which involves a scan over the entire data set. The most significant correlation found occurred with a chance probability of 24%.

  16. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  17. Relativistic particles and gamma-rays in quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.; Kazanas, D.

    1983-01-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via Pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  18. Relativistic particles and gamma-ray in quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.; Kazanas, D.

    1982-01-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  19. Time-dependent behavior of active galactic nuclei with pair production

    NASA Technical Reports Server (NTRS)

    Li, H.; Dermer, C. D.

    1994-01-01

    We study the properties of coupled partial differential equations describing the time-dependent behavior of the photon and electron occupation numbers for conditions likely to be found near active galactic nuclei (AGN). The processes governing electron acceleration are modeled by a stochastic accelerator, and we include acceleration by Alfvenic and whistler turbulence. The acceleration of electrons is limited by Compton and synchrotron losses, and the number density of electrons depends on pair production and annihilation processes. We also treat particle escape from the system. We examine the steady, (possibly) oscillatory, and unstable solutions that arise for various choices of parameters. We examine instabilities related to pair production and trapping and consider the formation of pair jets.

  20. Evolution of self-gravitating accretion disks in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Begelman, Mitchell C.

    1989-01-01

    The evolution of self-gravitating gaseous disks in active galactic nuclei on scales of about 10-1000 pc is investigated. Star formation is a plausible outcome of the Jeans instability operating in a disk which violates the criterion for local stability. Even a low efficiency of star formation would deplete the gaseous disk on a short time scale and create a flat stellar system. These systems can evolve (sphericalize) secularly by means of stellar encounters but this process appears to be too slow to be important. Such flattened stellar systems may be common in the circumnuclear regions of disk galaxies. Conventional viscosities are inefficient in building anew the accretion process even in a cosmological time. Strongly self-gravitating disks are unstable to global nonaxisymmetric modes, which can induce radial inflow of gas in a short dynamical time. The latter effect is studied in a separate paper.

  1. THE EFFECTS OF X-RAY FEEDBACK FROM ACTIVE GALACTIC NUCLEI ON HOST GALAXY EVOLUTION

    SciTech Connect

    Hambrick, D. Clay; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2011-09-01

    Hydrodynamic simulations of galaxies with active galactic nuclei (AGNs) have typically employed feedback that is purely local, i.e., an injection of energy to the immediate neighborhood of the black hole (BH). We perform GADGET-2 simulations of massive elliptical galaxies with an additional feedback component: an observationally calibrated X-ray radiation field which emanates from the BH and heats gas out to large radii from the galaxy center. We find that including the heating and radiation pressure associated with this X-ray flux in our simulations enhances the effects which are commonly reported from AGN feedback. This new feedback model is twice as effective as traditional feedback at suppressing star formation, produces three times less star formation in the last 6 Gyr, and modestly lowers the final BH mass (30%). It is also significantly more effective than an X-ray background in reducing the number of satellite galaxies.

  2. X-ray spectroscopy of AGN with the AXAF 'Microcalorimeter'. [Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    A novel technique for X-ray spectroscopy has been configured as part of the definition payload of the AXAF Observatory. It is basically a calorimeter which, operating at 0.1 K, senses the total conversion of single photoelectrically absorbed X-rays via the differential temperature rise of the absorber. The technique promises to achieve less than 10 eV FWHM with near-unit efficiency simultaneously over the entire AXAF bandpass. This combination of high resolution and high efficiency allows for the possibility of investigating thermal, fluorescent and absorption X-ray line features in many types of X-ray source, including a large sample of active galactic nuclei.

  3. RELATIVISTIC BROADENING OF IRON EMISSION LINES IN A SAMPLE OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Brenneman, Laura W.; Reynolds, Christopher S.

    2009-09-10

    We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC-pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K{alpha} feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.

  4. On the X-Ray Low- and High-Velocity Outflows in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Tombesi, F.

    2012-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v approx. 100-1000 km/s, and on comparable but less stringent grounds the ultrafast outflows, v approx. 0.03-0.3c. If comparable with the escape velocity of the system, the first is naturally located at distances of the dusty torus, '" I pc, and the second at subparsec scales, approx.0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the centre of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  5. RADIO-LOUD ACTIVE GALACTIC NUCLEUS: IS THERE A LINK BETWEEN LUMINOSITY AND CLUSTER ENVIRONMENT?

    SciTech Connect

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Jarvis, M.; Kraft, R. P.; Evans, D. A.

    2013-06-20

    We present here the first results from the Chandra ERA (Environments of Radio-loud AGN) Large Project, characterizing the cluster environments of a sample of 26 radio-loud active galactic nuclei (AGNs) at z {approx} 0.5 that covers three decades of radio luminosity. This is the first systematic X-ray environmental study at a single epoch, and has allowed us to examine the relationship between radio luminosity and cluster environment without the problems of Malmquist bias. We have found a weak correlation between radio luminosity and host cluster X-ray luminosity, as well as tentative evidence that this correlation is driven by the subpopulation of low-excitation radio galaxies, with high-excitation radio galaxies showing no significant correlation. The considerable scatter in the environments may be indicative of complex relationships not currently included in feedback models.

  6. The largest mid-infrared atlas of active galactic nuclei at sub-arcsecond spatial scales

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Gandhi, Poshak; Honig, Sebastian F.; Smette, Alain

    2012-12-01

    We present the largest mid-infrared atlas of active galactic nuclei at sub-arcsecond spatial scales containing 249 objects. It comprises all ground-based HR MIR observations performed to date. This catalog includes a large number of new observations. The photometry in multiple filters allows for characterizing the properties of the dust emission for most objects. Because of its size and characteristics, this sample is very well-suited for AGN unification studies. In particular, we discuss the enlarged MIR-X-ray correlation which extends over six orders of magnitude in luminosity and potentially probes different physical mechanisms. Finally, tests for intrinsic differences between the AGN types are presented and we discuss dependencies of MIR-X-ray properties with respect to fundamental AGN parameters such as accretion rate and the column density and covering factor of obscuring material.

  7. Photon damping in cosmic-ray acceleration in active galactic nuclei

    SciTech Connect

    Colgate, S.A.

    1983-04-07

    The usual assumption of the acceleration of ultra high energy cosmic rays, greater than or equal to 10/sup 18/ eV in quasars, Seyfert galaxies and other active galactic nuclei is challenged on the basis of the photon interactions with the accelerated nucleons. This is similar to the effect of the black body radiation on particles > 10/sup 20/ eV for times of the age of the universe except that the photon spectrum is harder and the energy density greater by approx. = 10/sup 15/. Hence, a single traversal, radial or circumferential, of radiation whose energy density is no greater than the emitted flux will damp an ultra high energy. Hence, it is unlikely that any reasonable configuration of acceleration can void disastrous photon energy loss. A different site for ultra high energy cosmic ray acceleration must be found.

  8. Innermost structure and near-infrared radiation of dusty clumpy tori in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Toshihiro

    2012-12-01

    The dusty clumpy torus surrounds the central black hole (BH) and the accretion disk in active galactic nuclei, and governs the growth of super-massive BHs via gas fueling towards the central engine. Near-infrared (NIR) monitoring observations have revealed that the torus inner radius is determined by the dust sublimation process. However, the observed radii are systematically smaller than the theoretical predictions by a factor of three. We take into account the anisotropic illumination by the central accretion disk to the torus, and calculate the innermost structure of the torus and the NIR time variability. We then show that the anisotropy naturally solves the systematic discrepancy and that the viewing angle is the primary source to produce an object-to-object scatter of the NIR time delay. Dynamics of clumps at the innermost region of the torus will be unveiled via future high- resolution X-ray spectroscopy (e.g., Astro-H)

  9. A polarimetric method for measuring black hole masses in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Silant'ev, N. A.; Natsvlishvili, T. M.; Buliga, S. D.

    2015-11-01

    The structure of the broad emission line region (BLR) in active galactic nuclei (AGN) remains unclear. We test in this paper a flattened configuration model for BLR. The virial theorem, by taking into account the disc shape of BLR, allows us to get a direct connection between the mass of a supermassive black hole (SMBH) and the inclination angle of the accretion flow. The inclination angle itself is derived from the spectropolarimetric data on broad emission lines using the theory for the generation of polarized radiation developed by Sobolev and Chandrasekhar. As the result, the new estimates of SMBH masses in AGN with measured polarization of BLR are presented. It is crucial that the polarimetric data allow also to determine the value of the virial coefficient that is essential for determining SMBH masses.

  10. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

    SciTech Connect

    Wagner, Robert

    2008-12-24

    Since 2004, the MAGIC {gamma}-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M 87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV {gamma}-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been carried out. Here we report selected highlights from recent MAGIC observations of extragalactic TeV {gamma}-ray sources, emphasizing the new physics insights MAGIC was able to contribute.