Sample records for active gravitational mass

  1. Gravitational mass attraction measurement for drag-free references

    NASA Astrophysics Data System (ADS)

    Swank, Aaron J.

    Exciting new experiments in gravitational physics are among the proposed future space science missions around the world. Such future space science experiments include gravitational wave observatories, which require extraordinarily precise instruments for gravitational wave detection. In fact, future space-based gravitational wave observatories require the use of a drag free reference sensor, which is several orders of magnitude more precise than any drag free satellite launched to date. With the analysis methods and measurement techniques described in this work, there is one less challenge associated with achieving the high-precision drag-free satellite performance levels required by gravitational wave observatories. One disturbance critical to the drag-free performance is an acceleration from the mass attraction between the spacecraft and drag-free reference mass. A direct measurement of the gravitational mass attraction force is not easily performed. Historically for drag-free satellite design, the gravitational attraction properties were estimated by using idealized equations between a point mass and objects of regular geometric shape with homogeneous density. Stringent requirements are then placed on the density distribution and fabrication tolerances for the drag-free reference mass and satellite components in order to ensure that the allocated gravitational mass attraction disturbance budget is not exceeded due to the associated uncertainty in geometry and mass properties. Yet, the uncertainty associated with mass properties and geometry generate an unacceptable uncertainty in the mass attraction calculation, which make it difficult to meet the demanding drag-free performance requirements of future gravitational wave observatories. The density homogeneity and geometrical tolerances required to meet the overall drag-free performance can easily force the use of special materials or manufacturing processes, which are impractical or not feasible. The focus of

  2. Point mass deflectors in gravitational lenses

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.

    1988-01-01

    The observed properties of the six systems generally accepted as gravitational lenses are compared with the properties predicted for the images of point-mass and distributed mass deflectors. Taken as a statistical distribution, the characteristics of the six known systems strongly suggest the existence of a super-massive black hole as the effective deflecting mass in one or more of these systems. If the deflecting mass in a gravitational lens is a black hole, the distance to the deflecting mass can be determined directly from the difference in light travel time along the separate image paths. (No direct solution for the distance to the deflecting mass exists when the deflecting mass is a galaxy or a cluster of galaxies). Geometric parallaxes of objects at 1000 Mpc distance are of obvious importance in a wide variety of cosmological studies.

  3. Gravitational leptogenesis, reheating, and models of neutrino mass

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Long, Andrew J.; Sfakianakis, Evangelos I.

    2018-02-01

    Gravitational leptogenesis refers to a class of baryogenesis models in which the matter-antimatter asymmetry of the Universe arises through the standard model lepton-number gravitational anomaly. In these models chiral gravitational waves source a lepton asymmetry in standard model neutrinos during the inflationary epoch. We point out that gravitational leptogenesis can be successful in either the Dirac or Majorana neutrino mass scenario. In the Dirac mass scenario, gravitational leptogenesis predicts a relic abundance of sterile neutrinos that remain out of equilibrium, and the lepton asymmetry carried by the standard model sector is unchanged. In the Majorana mass scenario, the neutrinos participate in lepton-number-violating interactions that threaten to wash out the lepton asymmetry during postinflationary reheating. However, we show that a complete (exponential) washout of the lepton asymmetry is prevented if the lepton-number-violating interactions go out of equilibrium before all of the standard model Yukawa interactions come into equilibrium. The baryon and lepton asymmetries carried by right-chiral quarks and leptons are sequestered from the lepton-number violation, and the washout processes only suppress the predicted baryon asymmetry by a factor of ɛw .o .=±O (0.1 ). The sign of ɛw .o . depends on the model parameters in such a way that a future measurement of the primordial gravitational wave chirality would constrain the scale of lepton-number violation (heavy Majorana neutrino mass).

  4. A modified Friedmann equation for a system with varying gravitational mass

    NASA Astrophysics Data System (ADS)

    Gorkavyi, Nick; Vasilkov, Alexander

    2018-05-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.

  5. The interaction between active normal faulting and large scale gravitational mass movements revealed by paleoseismological techniques: A case study from central Italy

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Gori, S.; Falcucci, E.; Galadini, F.; Messina, P.

    2012-05-01

    Paleoseismological techniques have been applied to characterize the kinematic behaviour of large-scale gravitational phenomena located in proximity of the seismogenic fault responsible for the Mw 7.0, 1915 Avezzano earthquake and to identify evidence of a possible coseismic reactivation. The above mentioned techniques were applied to the surface expression of the main sliding planes of the Mt. Serrone gravitational deformation, located in the southeastern border of the Fucino basin (central Italy). The approach allows us to detect instantaneous events of deformation along the uphill-facing scarp. These events are testified by the presence of faulted deposits and colluvial wedges. The identified and chronologically-constrained episodes of rapid displacement can be probably correlated with seismic events determined by the activation of the Fucino seismogenic fault, affecting the toe of the gravitationally unstable rock mass. Indeed this fault can produce strong, short-term dynamic stresses able to trigger the release of local gravitational stress accumulated by Mt. Serrone's large-scale gravitational phenomena. The applied methodology could allow us to better understand the geometric and kinematic relationships between active tectonic structures and large-scale gravitational phenomena. It would be more important in seismically active regions, since deep-seated gravitational slope deformations can evolve into a catastrophic collapse and can strongly increase the level of earthquake-induced hazards.

  6. Determining Gravitational Attraction by Mass Property Measurements

    NASA Astrophysics Data System (ADS)

    Swank, Aaron J.; Sun, Ke-Xun; DeBra, Dan

    2006-11-01

    The acceleration generated by the gradient of the mass attraction field between the spacecraft and proof mass is one parameter critical to drag-free performance. The gravitational self-attraction properties between two distributed bodies is characterized by the mass, mass center and moment of inertia for each body. Mass property measurements can therefore be used to indirectly measure the mass attraction properties. Since the ultimate goal is to demonstrate the ability to predict the system gravitational mass attraction force and force gradients to a precision below that of the LISA requirements, the corresponding properties of mass, mass center, and moment of inertia must be precisely determined for the proof mass and satellite components. This work introduces a new method for measuring the moment of inertia using a novel five-wire torsion pendulum, which reduces errors due to translational degrees of freedom. The five-wire pendulum is integrated with optical angular sensing using diffraction grating angular magnification to provide a sensor with both a large dynamic range and high resolution.

  7. Gravitational mass of positron from LEP synchrotron losses.

    PubMed

    Kalaydzhyan, Tigran

    2016-07-27

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton's theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  8. Unbound or distant planetary mass population detected by gravitational microlensing.

    PubMed

    2011-05-19

    Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8(+1.7)(-0.8)) as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.

  9. Oil, Earth mass and gravitational force.

    PubMed

    Moustafa, Khaled

    2016-04-01

    Fossil fuels are intensively extracted from around the world faster than they are renewed. Regardless of direct and indirect effects of such extractions on climate change and biosphere, another issue relating to Earth's internal structure and Earth mass should receive at least some interest. According to the Energy Information Administration (EIA), about 34 billion barrels of oil (~4.7 trillion metric tons) and 9 billion tons of coal have been extracted in 2014 worldwide. Converting the amounts of oil and coal extracted over the last 3 decades and their respective reserves, intended to be extracted in the future, into mass values suggests that about 355 trillion tons, or ~5.86∗10(-9) (~0.0000000058)% of the Earth mass, would be 'lost'. Although this is a tiny percentage, modeling the potential loss of Earth mass may help figuring out a critical threshold of mass loss that should not be exceeded. Here, I briefly discuss whether such loss would have any potential consequences on the Earth's internal structure and on its gravitational force based on the Newton's law of gravitation that links the attraction force between planets to their respective masses and the distance that separate them. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Gravitational mass of positron from LEP synchrotron losses

    DOE PAGES

    Kalaydzhyan, Tigran

    2016-07-27

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen domore » not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). As a result, this serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.« less

  11. Gravitational mass of positron from LEP synchrotron losses

    PubMed Central

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  12. The notions of mass in gravitational and particle physics

    NASA Astrophysics Data System (ADS)

    Castellani, Gianluca

    It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at

  13. Experimental limit on the ratio of the gravitational mass to the inertial mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Fajans, Joel; Wurtele, Jonathan; Charman, Andrew; Zhmoginov, Andrey

    2012-10-01

    Physicists have long wondered if the gravitational interactions between matter and antimatter might be different from those between matter and itself. While there are many indirect indications that no such differences exist, i.e., that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. By searching for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap, we have determined that we can reject ratios of the gravitational mass to the inertial mass of antihydrogen greater than about 100 at a statistical significance level of 5%. A similar search places somewhat lower limits on a negative gravitational mass, i.e., on antigravity.

  14. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.

    PubMed

    Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S

    2017-10-10

    The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

  15. Collocation of equilibria in gravitational field of triangular body via mass redistribution

    NASA Astrophysics Data System (ADS)

    Burov, Alexander A.; Guerman, Anna D.; Nikonov, Vasily I.

    2018-05-01

    We consider a gravitating system with triangular mass distribution that can be used as approximation of gravitational field for small irregular celestial bodies. In such system, the locations of equilibrium points, that is, the points where the gravitational forces are balanced, are analyzed. The goal is to find the mass distribution which provides equilibrium in a pre-assigned location near the triangular system, and to study the stability of this equilibrium.

  16. Gravitationally confined relativistic neutrinos

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  17. Gravitational lensing by a smoothly variable surface mass density

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Wambsganss, Joachim

    1989-01-01

    The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.

  18. Mass loss due to gravitational waves with Λ > 0

    NASA Astrophysics Data System (ADS)

    Saw, Vee-Liem

    2017-07-01

    The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the ’60s. Recent findings from the observation of distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well explained by sticking a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Einstein field equations), we generalize this notion of Bondi mass-energy and thereby provide a firm theoretical description of how an isolated gravitating system loses energy as it radiates gravitational waves, in a universe that expands at an accelerated rate. This is in line with the observational front of LIGO’s first announcement in February 2016 that gravitational waves from the merger of a binary black hole system have been detected.

  19. Anomalous center of mass shift: gravitational dipole moment.

    NASA Astrophysics Data System (ADS)

    Jeong, Eue Jin

    1997-02-01

    The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.

  20. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, James; Chesley, Steven R., E-mail: jimbaer1@earthlink.net

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51more » Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia ) should conduct a thorough search for possible gravitational couplings and account for their effects.« less

  1. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    NASA Astrophysics Data System (ADS)

    Baer, James; Chesley, Steven R.

    2017-08-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia) should conduct a thorough search for possible gravitational couplings and account for their effects.

  2. Mass and Motion: Topics at the Interface of General Relativity and Newtonian Gravitation

    NASA Astrophysics Data System (ADS)

    Weatherall, James Owen

    There is a long tradition, originating with Aristotle, of philosophers interested in the nature of unforced motion. How do bodies move in the absence of any external influence, and why? The modern answer to the "how'" half of this question is the subject of Newton's first law of motion, which states that in the absence of any external forces, a body traverses a straight line at constant velocity. Newton's first law, however, does not appear to provide an answer to the "why" half of the question. Indeed, many physicists and philosophers of physics, Einstein included, have held that this question cannot be answered until one moves to general relativity---and more, that general relativity is distinctive among spacetime theories precisely because it "explains" unforced motion, in the sense that the geodesic principle---the geometrical version of Newton's first law---can be proved as a theorem. In this dissertation, I argue that Newtonian gravitation provides an explanation of inertial motion almost identical to that of general relativity. However, the details of both cases are remarkably subtle, and considerable attention must be paid to the sense of "explain" being used. Four chapters of the dissertation are devoted to these considerations. The final chapter of the dissertation addresses a slightly different topic. In standard Newtonian gravitation, there are two distinct notions of mass: "inertial mass" and "(passive) gravitational mass". Yet it is an empirical fact that for any body, the values of these masses are always equal. Historically, many physicists have taken this fact to call for explanation. A natural place to look for an explanation of the coincidence of inertial and gravitational mass would be general relativity. In general relativity, however, there is no coherent notion of gravitational mass. This chapter shows how it is that gravitational mass arises as a distinct property of matter in the Newtonian limit of general relativity, and moreover, shows

  3. Detecting free-mass common-mode motion induced by incident gravitational waves

    NASA Astrophysics Data System (ADS)

    Tobar, Michael Edmund; Suzuki, Toshikazu; Kuroda, Kazuaki

    1999-05-01

    In this paper we show that information on both the differential and common mode free-mass response to a gravitational wave can provide important information on discriminating the direction of the gravitational wave source and between different theories of gravitation. The conventional Michelson interferometer scheme only measures the differential free-mass response. By changing the orientation of the beam splitter, it is possible to configure the detector so it is sensitive to the common-mode of the free-mass motion. The proposed interferometer is an adaptation of the Fox-Smith interferometer. A major limitation to the new scheme is its enhanced sensitivity to laser frequency fluctuations over the conventional, and we propose a method of cancelling these fluctuations. The configuration could be used in parallel to the conventional differential detection scheme with a significant sensitivity and bandwidth.

  4. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron-Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  5. Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yang, Huan

    2018-05-01

    The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have

  6. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  7. Gravitational mass of relativistic matter and antimatter

    DOE PAGES

    Kalaydzhyan, Tigran

    2015-10-13

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, m g, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits -65 < m g/m <110 not excluding the so-calledmore » antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 < m g/m < 1.04 on the gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 -4 ×10 -7 < m g/m <1 +2 ×10 -7 for an electron and positron. Lastly, we comment on a possibility of performing complementary tests at the future International Linear Collider (ILC) and Compact Linear Collider (CLIC).« less

  8. The Gravitational Origin of the Higgs Boson Mass

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2014-06-01

    The Lorentzian interpretation of the special theory of relativity explains all the relativistic effects by true deformations of rods and clocks in absolute motion against a preferred reference system, and where Lorentz invariance is a dynamic symmetry with the Galilei group the more fundamental kinematic symmetry of nature. In an exactly nonrelativistic quantum field theory the particle number operator commutes with the Hamilton operator which permits to introduce negative besides positive masses as the fundamental constituents of matter. Assuming that space is densely filled with an equal number of positive and negative locally interacting Planck mass particles, with those of equal sign repelling and those of opposite sign attracting each other, all the particles except the Planck mass particles are quasiparticles of this positive-negative-mass Planck mass plasma. Very much as the Van der Waals forces is the residual short-range electromagnetic force holding condensed matter together, and the strong nuclear force the residual short range gluon force holding together nuclear matter, it is conjectured that the Higgs field is the residual short range gravitational force holding together pre-quark matter made up from large positive and negative masses of the order ±1013 GeV. This hypothesis supports a theory by Dehnen and Frommert who have shown that the Higgs field acts like a short range gravitational field, with a strength about 32 orders of magnitude larger than one would expect in the absence of the positive-negative pre-quark mass hypothesis.

  9. Testing the uniqueness of mass models using gravitational lensing

    NASA Astrophysics Data System (ADS)

    Walls, Levi; Williams, Liliya L. R.

    2018-06-01

    The positions of images produced by the gravitational lensing of background-sources provide insight to lens-galaxy mass distributions. Simple elliptical mass density profiles do not agree well with observations of the population of known quads. It has been shown that the most promising way to reconcile this discrepancy is via perturbations away from purely elliptical mass profiles by assuming two super-imposed, somewhat misaligned mass distributions: one is dark matter (DM), the other is a stellar distribution. In this work, we investigate if mass modelling of individual lenses can reveal if the lenses have this type of complex structure, or simpler elliptical structure. In other words, we test mass model uniqueness, or how well an extended source lensed by a non-trivial mass distribution can be modeled by a simple elliptical mass profile. We used the publicly-available lensing software, Lensmodel, to generate and numerically model gravitational lenses and “observed” image positions. We then compared “observed” and modeled image positions via root mean square (RMS) of their difference. We report that, in most cases, the RMS is ≤0.05‧‧ when averaged over an extended source. Thus, we show it is possible to fit a smooth mass model to a system that contains a stellar-component with varying levels of misalignment with a DM-component, and hence mass modelling cannot differentiate between simple elliptical versus more complex lenses.

  10. On the gravitational potential and field anomalies due to thin mass layers

    NASA Technical Reports Server (NTRS)

    Ockendon, J. R.; Turcotte, D. L.

    1977-01-01

    The gravitational potential and field anomalies for thin mass layers are derived using the technique of matched asymptotic expansions. An inner solution is obtained using an expansion in powers of the thickness and it is shown that the outer solution is given by a surface distribution of mass sources and dipoles. Coefficients are evaluated by matching the inner expansion of the outer solution with the outer expansion of the inner solution. The leading term in the inner expansion for the normal gravitational field gives the Bouguer formula. The leading term in the expansion for the gravitational potential gives an expression for the perturbation to the geoid. The predictions given by this term are compared with measurements by satellite altimetry. The second-order terms in the expansion for the gravitational field are required to predict the gravity anomaly at a continental margin. The results are compared with observations.

  11. Asymptotically simple spacetimes and mass loss due to gravitational waves

    NASA Astrophysics Data System (ADS)

    Saw, Vee-Liem

    The cosmological constant Λ used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of Λ or Λ being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on Λ: null infinity ℐ is a spacelike, null, or timelike hypersurface, if Λ > 0, Λ = 0, or Λ < 0, respectively. Recent observations of distant supernovae have taught us that our universe expands at an accelerated rate, and this can be accounted for by choosing Λ > 0 in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of ℐ, is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with Λ > 0 has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.

  12. Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mediavilla, E.; Jiménez-Vicente, J.; Calderón-Infante, J.

    The idea that dark matter can be made of intermediate-mass primordial black holes (PBHs) in the 10 M {sub ⊙} ≲ M ≲ 200 M {sub ⊙} range has recently been reconsidered, particularly in the light of the detection of gravitational waves by the LIGO experiment. The existence of even a small fraction of dark matter in black holes should nevertheless result in noticeable quasar gravitational microlensing. Quasar microlensing is sensitive to any type of compact objects in the lens galaxy, to their abundance, and to their mass. We have analyzed optical and X-ray microlensing data from 24 gravitationally lensedmore » quasars to estimate the abundance of compact objects in a very wide range of masses. We conclude that the fraction of mass in black holes or any type of compact objects is negligible outside of the 0.05 M {sub ⊙} ≲ M ≲ 0.45 M {sub ⊙} mass range and that it amounts to 20% ± 5% of the total matter, in agreement with the expected masses and abundances of the stellar component. Consequently, the existence of a significant population of intermediate-mass PBHs appears to be inconsistent with current microlensing observations. Therefore, primordial massive black holes are a very unlikely source of the gravitational radiation detected by LIGO.« less

  13. Response functions of free mass gravitational wave antennas

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1985-01-01

    The work of Gursel, Linsay, Spero, Saulson, Whitcomb and Weiss (1984) on the response of a free-mass interferometric antenna is extended. Starting from first principles, the earlier work derived the response of a 2-arm gravitational wave antenna to plane polarized gravitational waves. Equivalent formulas (generalized slightly to allow for arbitrary elliptical polarization) are obtained by a simple differencing of the '3-pulse' Doppler response functions of two 1-arm antennas. A '4-pulse' response function is found, with quite complicated angular dependences for arbitrary incident polarization. The differencing method can as readily be used to write exact response functions ('3n+1 pulse') for antennas having multiple passes or more arms.

  14. Black hole mass function from gravitational wave measurements

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Cholis, Ilias; Breysse, Patrick C.; Kamionkowski, Marc

    2017-05-01

    We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parametrizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10 % accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.

  15. Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessmer, Manuel

    This paper generalizes the structure of gravitational waves from orbiting spinning binaries under leading order spin-orbit coupling, as given in the work by Koenigsdoerffer and Gopakumar [Phys. Rev. D 71, 024039 (2005)] for single-spin and equal-mass binaries, to unequal-mass binaries and arbitrary spin configurations. The orbital motion is taken to be quasicircular and the fractional mass difference is assumed to be small against one. The emitted gravitational waveforms are given in analytic form.

  16. Gravitational astrophysics

    NASA Astrophysics Data System (ADS)

    Hendry, Martin; Woan, Graham

    2007-02-01

    Like the surface of a busy swimming pool, spacetime is awash with waves generated by the local and distant motions of mass and, in principle, much of this activity can be reconstructed by analysing the waveforms. However, instrumentation with a reasonable chance of directly detecting these gravitational waves has only become available within the past year, with the LIGO detectors now running at design sensitivity. Here we review the burgeoning field of observational gravitational astrophysics: using gravitational wave detectors as telescopes to help answer a wide range of astrophysical questions from neutron-star physics to cosmology. The next generation of ground-based telescopes should be able to make extensive gravitational observations of some of the more energetic events in our local universe. Looking only slightly further ahead, the space-based LISA observatory will reveal the gravitational universe in phenomenal detail, supplying high-quality data on perhaps thousands of sources, and tackling some of the most fascinating questions in contemporary astronomy.

  17. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  18. Gravitational lensing of active galactic nuclei.

    PubMed

    Hewitt, J N

    1995-12-05

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes.

  19. Dynamic Stability and Gravitational Balancing of Multiple Extended Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2008-01-01

    Feasibility of a non-invasive compensation scheme was analyzed for precise positioning of a massive extended body in free fall using gravitational forces influenced by surrounding source masses in close proximity. The N-body problem of classical mechanics is a paradigm used to gain insight into the physics of the equivalent N-body problem subject to control forces. The analysis addressed how a number of control masses move around the proof mass so that the proof mass position can be accurately and remotely compensated when exogenous disturbances are acting on it, while its sensitivity to gravitational waves remains unaffected. Past methods to correct the dynamics of the proof mass have considered active electrostatic or capacitive methods, but the possibility of stray capacitances on the surfaces of the proof mass have prompted the investigation of other alternatives, such as the method presented in this paper. While more rigorous analyses of the problem should be carried out, the data show that, by means of a combined feedback and feed-forward control approach, the control masses succeeded in driving the proof mass along the specified trajectory, which implies that the proof mass can, in principle, be balanced via gravitational forces only while external perturbations are acting on it. This concept involves the dynamic stability of a group of massive objects interacting gravitationally under active control, and can apply to drag-free control of spacecraft during missions, to successor gravitational wave space borne sensors, or to any application requiring flying objects to be precisely controlled in position and attitude relative to another body via gravitational interactions only.

  20. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5(sigma). The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4(+0.7/-0.9) x 10(exp -22). The inferred source-frame initial black hole masses are 14.2(+8.3/-3.7 Stellar Mass and 7.5(+2.3/-2.3) Stellar Mass, and the final black hole mass is 20.8(+6.1/-1.7) Stellar Mass. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440(+180/-190) Mpc corresponding to a redshift of 0.090(+.030/-0.04). All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  1. Gravitational waves from extreme mass ratio inspirals around bumpy black holes

    NASA Astrophysics Data System (ADS)

    Moore, Christopher J.; Chua, Alvin J. K.; Gair, Jonathan R.

    2017-10-01

    The space based interferometer LISA will be capable of detecting the gravitational waves emitted by stellar mass black holes or neutron stars slowly inspiralling into the supermassive black holes found in the centre of most galaxies. The gravitational wave signal from such an extreme mass ratio inspiral (EMRI) event will provide a unique opportunity to test whether the spacetime metric around the central black hole is well described by the Kerr solution. In this paper a variant of the well studied ‘analytic kludge’ model for EMRIs around Kerr black holes is extended to a family of parametrically deformed bumpy black holes which preserve the basic symmetries of the Kerr metric. The new EMRI model is then used to quantify the constraints that LISA observations of EMRIs may be able to place on the deviations, or bumps, on the Kerr metric.

  2. Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.

    2012-01-01

    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.

  3. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Bustillo, J. Calderón; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Recchia, S.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-05-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50≤f0/Hz≤2000 and decay timescale 0.0001≲τ/s≲0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50≤M/M⊙≤450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100≤M/M⊙≤150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9×10-8 Mpc-3 yr-1. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, ℓ=m =2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

  4. Search for gravitational waves from intermediate mass binary black holes

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-05-01

    We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450M⊙ and with the component mass ratios between 1∶1 and 4∶1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88M⊙, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level.

  5. Saturn Ring Mass and Zonal Gravitational Harmonics Estimate at the End of the Cassini "Grand Finale"

    NASA Astrophysics Data System (ADS)

    Brozovic, M.; Jacobson, R. A.; Roth, D. C.

    2015-12-01

    "Solstice" mission is the 7-year extension of the Cassini-Huygens spacecraft exploration of the Saturn system that will culminate with the "Grand Finale". Beginning in mid-2017, the spacecraft is scheduled to execute 22 orbits that have their periapses between the innermost D-ring and the upper layers of Saturn's atmosphere. These orbits will be perturbed by the gravitational field of Saturn as well as by the rings. We present an analysis of simulated "Grand Finale" radiometric data, and we investigate their sensitivity to the ring mass and higher zonal gravitational harmonics of the planet. We model the data quantity with respect to the available coverage of the tracking stations on Earth, and we account for the times when the spacecraft is occulted either by Saturn or the rings. We also use different data weights to simulate changes in the data quality. The dynamical model of the spacecraft motion includes both gravitational and non-gravitational forces, such as the daily momentum management due to Reaction Wheel Assembly and radioisotope thermo-electric generator accelerations. We solve the equations of motion and use a weighted-least squares fit to obtain spacecraft's state vector, mass(es) of the ring or the individual rings, zonal harmonics, and non-gravitational accelerations. We also investigate some a-priori values of the A- and B-ring masses from Tiscareno et al. (2007) and Hedman et al. (2015) analyses. The preliminary results suggest that the "Grand Finale" orbits should remain sensitive to the ring mass even for GMring<2 km3/s2 and that they will also provide high accuracy estimates of the zonal harmonics J8, J10, and J12.

  6. Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in LIGO-Virgo Data from 2005-2010

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackburn, Lindy L.; Camp, J. B.; Gehrels, N.; Graff, P. B.

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 less than or equal to italic f0/Hz less than or equal to 2000 and decay timescale 0.0001 approximately less than t/s approximately less than 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 less than or equal to M/solar mass less than or equal to 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 less than or equal to M/solar mass 150, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of 6:9 x 10(exp 8) Mpc(exp -3)yr(exp -1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

  7. Neutron star mass-radius relation with gravitational field shielding by a scalar field

    NASA Astrophysics Data System (ADS)

    Zhang, Bo-Jun; Zhang, Tian-Xi; Guggilla, Padmaja; Dokhanian, Mostafa

    2013-05-01

    The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass. To explain these measurements, the theory of gravitational field shielding by a scalar field is applied. This theory was recently developed in accordance with the five-dimensional (5D) fully covariant Kaluza-Klein (KK) theory that has successfully unified Einstein's general relativity and Maxwell's electromagnetic theory. It is shown that a massive, compact neutron star can generate a strong scalar field, which can significantly shield or reduce its gravitational field, thus making it more massive and more compact. The mass-radius relation developed under this type of modified gravity can be consistent with these recent measurements of neutron stars. In addition, the effect of gravitational field shielding helps explain why the supernova explosions of some very massive stars (e.g., 40 Msolar as measured recently) actually formed neutron stars rather than black holes as expected. The EoS models, ruled out by measurements of small radius and/or large mass neutron stars according to the theory of general relativity, can still work well in terms of the 5D fully covariant KK theory with a scalar field.

  8. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, Quinn E.; Kaplinghat, Manoj; Li, Nan

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopesmore » of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.« less

  9. Apparent Disk-mass Reduction and Planetisimal Formation in Gravitationally Unstable Disks in Class 0/I Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Y.; Okuzumi, S.; Kataoka, A.

    2017-04-01

    We investigate the dust structure of gravitationally unstable disks undergoing mass accretion from the envelope, envisioning its application to Class 0/I young stellar objects (YSOs). We find that the dust disk quickly settles into a steady state and that, compared to a disk with interstellar medium (ISM) dust-to-gas mass ratio and micron-sized dust, the dust mass in the steady state decreases by a factor of 1/2 to 1/3, and the dust thermal emission decreases by a factor of 1/3 to 1/5. The latter decrease is caused by dust depletion and opacity decrease owing to dust growth. Our results suggest that the masses of gravitationally unstable disks in Class 0/I YSOs are underestimated by a factor of 1/3 to 1/5 when calculated from the dust thermal emission assuming an ISM dust-to-gas mass ratio and micron-sized dust opacity, and that a larger fraction of disks in Class 0/I YSOs is gravitationally unstable than was previously believed. We also investigate the orbital radius {r}{{P}} within which planetesimals form via coagulation of porous dust aggregates and show that {r}{{P}} becomes ˜20 au for a gravitationally unstable disk around a solar mass star. Because {r}{{P}} increases as the gas surface density increases and a gravitationally unstable disk has maximum gas surface density, {r}{{P}}˜ 20 {au} is the theoretical maximum radius for planetesimal formation. We suggest that planetesimal formation in the Class 0/I phase is preferable to that in the Class II phase because a large amount of dust is supplied by envelope-to-disk accretion.

  10. Study of parametric instability in gravitational wave detectors with silicon test masses

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhao, Chunnong; Ju, Li; Blair, David

    2017-03-01

    Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors, leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector, the LIGO Voyager blue design, with cooled silicon test masses of size 45 cm in diameter and 55 cm in thickness. It is shown that there would be about two unstable modes per test mass at an arm cavity power of 3 MW, with the highest parametric gain of  ∼76. While this is less than the predicted number of unstable modes for Advanced LIGO (∼40 modes with max gain of  ∼32 at the designed operating power of 830 kW), the importance of developing suitable instability suppression schemes is emphasized.

  11. Computing Gravitational Fields of Finite-Sized Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2005-01-01

    A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.

  12. A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies

    NASA Technical Reports Server (NTRS)

    Wambsganss, Joachim; Paczynski, Bohdan

    1992-01-01

    We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.

  13. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; VIRGO Collaboration

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  14. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  15. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Alpha Collaboration; Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-04-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5% worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  16. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    PubMed Central

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime. PMID:23653197

  17. Description and first application of a new technique to measure the gravitational mass of antihydrogen.

    PubMed

    Charman, A E; Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Cesar, C L; Charlton, M; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  18. Becoming angular momentum density flow through nonlinear mass transfer into a gravitating spheroidal body

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2009-04-01

    A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This

  19. How Spherical Is a Cube (Gravitationally)?

    NASA Astrophysics Data System (ADS)

    Sanny, Jeff; Smith, David

    2015-02-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center.1,2 By integrating over ring elements of a spherical shell, we show that the gravitational force on a point mass outside the shell is the same as that of a particle with the same mass as the shell at its center. This derivation works for objects with spherical symmetry while depending on the fact that the gravitational force between two point masses varies inversely as the square of their separation.3 If these conditions are not met, then the problem becomes more difficult. In this paper, we remove the condition of spherical symmetry and examine the gravitational force between two uniform cubes.

  20. Skyhook gravitational-wave detector

    NASA Astrophysics Data System (ADS)

    Braginskii, V. B.; Thorne, K. S.

    1985-08-01

    A new and more sensitive type of earth-orbiting gravitational wave detector, called a 'skyhook', which would operate in the 10-100 mHz band, is proposed. The skyhook would consist of two masses, one on each end of a long thin cable with a spring at its center. As it orbits the earth, the cable wold be stretched radially by the earth's tidal gravitational field. Gravitational waves would pull the masses apart and push them together in an oscillatory fashion. Their motion would be transmitted to the spring by the cable, and a sensor would monitor the spring's resulting motion.

  1. Does the Momentum Flux Generated by Gravitational Contraction Drive Asymptotic Giant Branch Mass Loss?

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    1997-12-01

    Gravitational contraction always generates a radially directed momentum flow. A particularly simple example occurs in the electron-degenerate cores of asymptotic giant branch (AGB) stars, which contract steadily under the addition of helium ashes from shell hydrogen burning. The resulting momentum flux is quantified here. And since the cores of AGB stars lack efficient momentum-cancellation mechanisms, they can maintain equilibrium by exporting their excess momentum flux to the stellar envelope, which disposes of much of it in a low velocity wind. Gravitational contraction easily accounts for the momentum flux in the solar wind, as well as the flux required to lift mass into the dust formation zone of every AGB star, whereon radiation pressure continues its ejection as a low-velocity wind. This mechanism explains the dependence of the AGB mass-loss rate on core mass; its generalization to objects with angular momentum and/or strong magnetic fields suggests a novel explanation as to why most planetary nebulae and proto-planetary nebulae exhibit axial symmetry. Quasi-static contraction is inherently biased to the generation of the maximum possible momentum flux. Its formalism is, therefore, readily adapted to providing an upper limit to the momentum flux needed to sustain mass loss when this begins from a semicontinuous rather than an impulsive process.

  2. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    NASA Astrophysics Data System (ADS)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On

  3. Skeletal mass change as a function of gravitational loading

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.; Rahlmann, D. F.

    1985-01-01

    The hypothesis that increased loading on an animal by chronic centrifugation results in an increase in skeletal mass was tested, using metabolically mature hamsters, rats, guinea pigs, Dutch rabbits and New Zealand rabbits representing a body mass range from 0.15 to 3.8 kg. Groups of 12 male animals of each species were subjeted to 2.0 g for 6 weeks on a 2.74 radius centrifuge with one degree of freedom. Subsequently, six of the animals were killed to measure whole body composition, while the rest comprised the control group, recovering for four weeks at 1.0 g prior to composition analysis. Results show a significant increase in bone mineral mass at 2.0 g. These centrifuge experiment results were then compared with the results of the USSR Cosmos Biosatellite experiment, whereby five rats experienced osteoporosis after 18.5 days of weightlessness. The opposing nature of effects that occurred at 0 g and 2.0 g is indicated schematically of particular interest is the fact that the bone mineral mass of the Cosmos 1129 flight rats was 17 pct less than that of the 1.0 g controls; whereas the bone mineral mass of the centrifuge rats was 18 pct greater than that of their 1.0 g controls. It is concluded that the bone mineral mass of the rat is directly proportional to gravitational loading over the range of 0 g to 2.0 g.

  4. Gravitational self-force meets the post-Newtonian approximation in extreme-mass ratio inspiral of binary black holes

    NASA Astrophysics Data System (ADS)

    Detweiler, Steven

    2010-02-01

    Post-Newtonian analysis, numerical relativity and, now, perturbation-based gravitational self-force analysis are all being used to describe various aspects of black hole binary systems. Recent comparisons between self-force analysis, with m1m2, and post-Newtonian analysis, with v/c 1 show excellent agreement in their common domain of validity. This lends credence to the two very different regularization procedures which are invoked in these approximations. When self-force analysis is able to create gravitational waveforms from extreme mass-ratio inspiral, then unprecedented cross cultural comparisons of these three distinct approaches to understanding gravitational waves will reveal the strengths and weaknesses of each. )

  5. Gravitational radiation from rotating gravitational collapse

    NASA Technical Reports Server (NTRS)

    Stark, Richard F.

    1989-01-01

    The efficiency of gravitational wave emission from axisymmetric rotating collapse to a black hole was found to be very low: Delta E/Mc sq. less than 7 x 10(exp -4). The main waveform shape is well defined and nearly independent of the details of the collapse. Such a signature will allow pattern recognition techniques to be used when searching experimental data. These results (which can be scaled in mass) were obtained using a fully general relativistic computer code that evolves rotating axisymmetric configurations and directly computes their gravitational radiation emission.

  6. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    PubMed

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-23

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  7. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-01

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  8. Evaluation of gravitational gradients generated by Earth's crustal structures

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Tenzer, Robert; Eshagh, Mehdi; Bagherbandi, Mohammad

    2013-02-01

    Spectral formulas for the evaluation of gravitational gradients generated by upper Earth's mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth's topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth's model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth's inner structure.

  9. Convergence Studies of Mass Transport in Disks with Gravitational Instabilities. II. The Radiative Cooling Case

    NASA Astrophysics Data System (ADS)

    Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C.; Michael, Scott; McConnell, Caitlin R.

    2013-05-01

    We conduct a convergence study of a protoplanetary disk subject to gravitational instabilities (GIs) at a time of approximate balance between heating produced by the GIs and radiative cooling governed by realistic dust opacities. We examine cooling times, characterize GI-driven spiral waves and their resultant gravitational torques, and evaluate how accurately mass transport can be represented by an α-disk formulation. Four simulations, identical except for azimuthal resolution, are conducted with a grid-based three-dimensional hydrodynamics code. There are two regions in which behaviors differ as resolution increases. The inner region, which contains 75% of the disk mass and is optically thick, has long cooling times and is well converged in terms of various measures of structure and mass transport for the three highest resolutions. The longest cooling times coincide with radii where the Toomre Q has its minimum value. Torques are dominated in this region by two- and three-armed spirals. The effective α arising from gravitational stresses is typically a few × 10-3 and is only roughly consistent with local balance of heating and cooling when time-averaged over many dynamic times and a wide range of radii. On the other hand, the outer disk region, which is mostly optically thin, has relatively short cooling times and does not show convergence as resolution increases. Treatment of unstable disks with optical depths near unity with realistic radiative transport is a difficult numerical problem requiring further study. We discuss possible implications of our results for numerical convergence of fragmentation criteria in disk simulations.

  10. Gravitational microlensing by low-mass objects in the globular cluster M22.

    PubMed

    Sahu, K C; Casertano, S; Livio, M; Gilliland, R L; Panagia, N; Albrow, M D; Potter, M

    2001-06-28

    Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13(+0.03)(-0.02) solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.

  11. Event Rates of Gravitational Waves from merging Intermediate mass Black Holes: based on a Runaway Path to a SMBH

    NASA Astrophysics Data System (ADS)

    Shinkai, Hisaaki

    2018-01-01

    Based on a dynamical formation model of a supermassive black hole (SMBH), we estimate the expected observational profile of gravitational wave at ground-based detectors, such as KAGRA or advanced LIGO/VIRGO. Noting that the second generation of detectors have enough sensitivity from 10 Hz and up, we are able to detect the ring-down gravitational wave of a BH with the mass M < 2 × 103M⊙. This enables us to check the sequence of BH mergers to SMBHs via intermediate-mass BHs. We estimate the number density of galaxies from the halo formation model and estimate the number of BH mergers from the giant molecular cloud model assuming hierarchical growth of merged cores. At the designed KAGRA (and/or advanced LIGO/VIRGO), we find that the BH merger of its total mass M ˜ 60M⊙ is at the peak of the expected mass distribution. With its signal-to-noise ratio ρ = 10(30), we estimate the event rate R ˜ 200(20) per year in the most optimistic case, and we also find that BH mergers in the range M < 150M⊙ are R > 1 per year for ρ = 10. Thus, if we observe a BH with more than 100M⊙ in future gravitational-wave observations, our model naturally explains its source.

  12. Gravitational instabilities in a protosolar-like disc - II. Continuum emission and mass estimates

    NASA Astrophysics Data System (ADS)

    Evans, M. G.; Ilee, J. D.; Hartquist, T. W.; Caselli, P.; Szűcs, L.; Purser, S. J. D.; Boley, A. C.; Durisen, R. H.; Rawlings, J. M. C.

    2017-09-01

    Gravitational instabilities (GIs) are most likely a fundamental process during the early stages of protoplanetary disc formation. Recently, there have been detections of spiral features in young, embedded objects that appear consistent with GI-driven structure. It is crucial to perform hydrodynamic and radiative transfer simulations of gravitationally unstable discs in order to assess the validity of GIs in such objects, and constrain optimal targets for future observations. We utilize the radiative transfer code lime (Line modelling Engine) to produce continuum emission maps of a 0.17 M⊙ self-gravitating protosolar-like disc. We note the limitations of using lime as is and explore methods to improve upon the default gridding. We use casa to produce synthetic observations of 270 continuum emission maps generated across different frequencies, inclinations and dust opacities. We find that the spiral structure of our protosolar-like disc model is distinguishable across the majority of our parameter space after 1 h of observation, and is especially prominent at 230 GHz due to the favourable combination of angular resolution and sensitivity. Disc mass derived from the observations is sensitive to the assumed dust opacities and temperatures, and therefore can be underestimated by a factor of at least 30 at 850 GHz and 2.5 at 90 GHz. As a result, this effect could retrospectively validate GIs in discs previously thought not massive enough to be gravitationally unstable, which could have a significant impact on the understanding of the formation and evolution of protoplanetary discs.

  13. Does space-time torsion determine the minimum mass of gravitating particles?

    NASA Astrophysics Data System (ADS)

    Böhmer, Christian G.; Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2018-03-01

    We derive upper and lower limits for the mass-radius ratio of spin-fluid spheres in Einstein-Cartan theory, with matter satisfying a linear barotropic equation of state, and in the presence of a cosmological constant. Adopting a spherically symmetric interior geometry, we obtain the generalized continuity and Tolman-Oppenheimer-Volkoff equations for a Weyssenhoff spin fluid in hydrostatic equilibrium, expressed in terms of the effective mass, density and pressure, all of which contain additional contributions from the spin. The generalized Buchdahl inequality, which remains valid at any point in the interior, is obtained, and general theoretical limits for the maximum and minimum mass-radius ratios are derived. As an application of our results we obtain gravitational red shift bounds for compact spin-fluid objects, which may (in principle) be used for observational tests of Einstein-Cartan theory in an astrophysical context. We also briefly consider applications of the torsion-induced minimum mass to the spin-generalized strong gravity model for baryons/mesons, and show that the existence of quantum spin imposes a lower bound for spinning particles, which almost exactly reproduces the electron mass.

  14. Does space-time torsion determine the minimum mass of gravitating particles?

    PubMed

    Böhmer, Christian G; Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J

    2018-01-01

    We derive upper and lower limits for the mass-radius ratio of spin-fluid spheres in Einstein-Cartan theory, with matter satisfying a linear barotropic equation of state, and in the presence of a cosmological constant. Adopting a spherically symmetric interior geometry, we obtain the generalized continuity and Tolman-Oppenheimer-Volkoff equations for a Weyssenhoff spin fluid in hydrostatic equilibrium, expressed in terms of the effective mass, density and pressure, all of which contain additional contributions from the spin. The generalized Buchdahl inequality, which remains valid at any point in the interior, is obtained, and general theoretical limits for the maximum and minimum mass-radius ratios are derived. As an application of our results we obtain gravitational red shift bounds for compact spin-fluid objects, which may (in principle) be used for observational tests of Einstein-Cartan theory in an astrophysical context. We also briefly consider applications of the torsion-induced minimum mass to the spin-generalized strong gravity model for baryons/mesons, and show that the existence of quantum spin imposes a lower bound for spinning particles, which almost exactly reproduces the electron mass.

  15. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    PubMed

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  16. Gravitational Lensing in Astronomy

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    1998-11-01

    In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered: For example, giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, and weak gravitational lensing. At present, literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, the physics of quasars, dark matter in galaxy halos, and galaxy structure. Looking at these successes in the recent past we predict an even more luminous future for gravitational lensing.

  17. Gravitational wave asteroseismology with protoneutron stars

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Takiwaki, Tomoya

    2016-08-01

    We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.

  18. Mass-energy and momentum extraction by gravitational wave emission in the merger of two colliding black holes: The non-head-on case

    NASA Astrophysics Data System (ADS)

    Aranha, R. F.; Soares, I. Damião; Tonini, E. V.

    2012-01-01

    We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net

  19. Cardiovascular Adjustments to Gravitational Stress

    NASA Technical Reports Server (NTRS)

    Blomqvist, C. Gunnar; Stone, H. Lowell

    1991-01-01

    The effects of gravity on the cardiovascular system must be taken into account whenever a hemodynamic assessment is made. All intravascular pressure have a gravity-dependent hydrostatic component. The interaction between the gravitational field, the position of the body, and the functional characteristics of the blood vessels determines the distribution of intravascular volume. In turn this distribution largely determines cardiac pump function. Multiple control mechanisms are activated to preserve optimal tissue perfusion when the magnitude of the gravitational field or its direction relative to the body changes. Humans are particularly sensitive to such changes because of the combination of their normally erect posture and the large body mass and blood volume below the level of the heart. Current aerospace technology also exposes human subjects to extreme variations in the gravitational forces that range from zero during space travel to as much an nine-times normal during operation of high-performance military aircraft. This chapter therefore emphasizes human physiology.

  20. How Spherical Is a Cube (Gravitationally)?

    ERIC Educational Resources Information Center

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  1. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  2. The Origin of Gravitation

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng Ming

    2012-10-01

    In the natural world, people have discovered four kinds of forces: electromagnetic force, gravitation, weak force, and strong force. Although the gravitation has been discovered more than three hundred years, its mechanism of origin is unclear until today. While investigating the origin of gravitation, I do some experiments discover the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I do some experiments discover the light interference fringes are produced by the gravitation: my discovery demonstrate light is a particle, but is not a wave-particle duality. Furthermore, applications of this discovery to other moving particles show a similar effect. In a word: the micro particle moving produce gravitation and electromagnetic force. Then I do quantity experiment get a general formula: Reveal the essence of gravitational mass and the essence of electric charge; reveal the origin of gravitation and the essence of matter wave. Along this way, I unify the gravitation and electromagnetic force. Namely I find a natural law that from atomic world to star world play in moving track. See website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  3. Gravitational lensing of supernovae by dark matter candidates of mass M greater than about 0.001 solar masses

    NASA Technical Reports Server (NTRS)

    Wagoner, Robert V.; Linder, Eric V.

    1987-01-01

    A review is presented concerning the gravitational lensing of supernovae by intervening condensed objects, including dark matter candidates such as dim stars and black holes. the expansion of the supernova beam within the lens produces characteristic time-dependent amplification and polarization which depend upon the mass of the lens. The effects of the shearing of the beam due to surrounding masses are considered, although the study of these effects is confined to isolated masses whose size is much less than that of the supernova (about 10 to the 15th cm). Equations for the effects of lensing and graphs comparing these effects in different classes of supernovae are compared. It is found that candidates for lensing would be those supernovae at least as bright as their parent galaxy, or above the range of luminosities expected for their spectral class.

  4. LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG)

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.

    2016-12-01

    The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a = cS / GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M ≲ 10M⊙.

  5. Mass shedding and partition of the a/m ratio between core and envelope in gravitational collapse

    NASA Astrophysics Data System (ADS)

    de Felice, F.; Yu, Y.

    1986-06-01

    The authors show that, even taking into account redistribution of angular momentum, the ratio (a/m) (a/m = cJ/GM2, where J and M are the total angular momentum and gravitational mass) of a collapsing and rotating body varies slowly with the mass, when mass shedding takes place. Thus formation of an extended structure outside a collapsing body, like rings, discs or diffuse matter, is not in general a guarantee that the ratio (a/m) of the inner object is decreased appreciably from its initial value.

  6. Gravitational Lensing in Astronomy.

    PubMed

    Wambsganss, Joachim

    1998-01-01

    Deflection of light by gravity was predicted by General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically. Among them were: the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility of determining Hubble's constant with lensing. It is only relatively recently, (after the discovery of the first doubly imaged quasar in 1979), that gravitational lensing has became an observational science. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered: For example, giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, and weak gravitational lensing. At present, literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, the physics of quasars, dark matter in galaxy halos, and galaxy structure. Looking at these successes in the recent past we predict an even more luminous future for gravitational lensing. Supplementary material is available for this article at 10.12942/lrr-1998-12.

  7. Cooling the center-of-mass motion of a diamond nanocrystal in a magneto-gravitational trap

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng

    A magneto-gravitational trap for micro/nanometer sized diamagnetic particles, such as diamond nanocrystals, is tested and characterized. After exploring various other systems, such as a suspended graphene beam and an optical trap, this magneto-gravitational nanomechanical trapping system for diamond with nitrogen-vacancy (NV) centers presents unique advantages for experiments in fundamental quantum mechanics. Those include, for example, the generation of large quantum superposition states and tests of quantum gravity. Features are demonstrated for this system, such as stable and passive levitation from atmospheric pressure to high vacuum, low resonant frequencies and damping rates, and cooling of the center-of-mass motions to below 1 K. The construction of the trap, vacuum system, optics, and motion detection electronics are described in detail.

  8. Observation of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Gonzalez, Gabriela

    2016-06-01

    On September 14 2015, the two LIGO gravitational wave detectors in Hanford, Washington and Livingston, Louisiana registered a nearly simultaneous signal with time-frequency properties consistent with gravitational-wave emission by the merger of two massive compact objects. Further analysis of the signals by the LIGO Scientific Collaboration and Virgo Collaboration revealed that the gravitational waves detected by LIGO came from the merger of a binary black hole (BBH) system approximately 420 Mpc distant (z=0.09) with constituent masses of 36 and 29 M_sun. I will describe the details of the observation, the status of ground-based interferometric detectors, and prospects for future observations in the new era of gravitational wave astronomy.

  9. Testing local Lorentz invariance with gravitational waves

    DOE PAGES

    Kostelecký, V. Alan; Mewes, Matthew

    2016-04-20

    The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation. (C) 2016 The Authors. Published by Elsevier B.V.

  10. Modeling Gravitational Radiation Waveforms from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.

    2006-01-01

    Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.

  11. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Blair, David G.

    2005-10-01

    Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.

  12. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  13. Gravitational Waves From The Hierarchical Buildup Of Intermediate Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Micic, Miroslav; Sigurdsson, S.; Holley-Bockelmann, K.; Abel, T.

    2006-12-01

    Using high-resolution N-body simulations in LambdaCDM universe, we have constructed dark matter structure's merger tree that traces evolution of dark matter halos, their subhalos and massive black holes (MBH) formed from Population III stars. Such early black holes, formed at redshifts z > 10, could be the seed black holes for the many SMBH found in galaxies in the local universe. Mergers of MBH may be a prime signal for long wavelength gravitaional wave detectors. We study trajectories of MBH, formation of MBH binaries and calculate gravitational strain amplitude as a function of redshift. We also explore the implications of kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more then an order of magnitude. We quantify the role of kicks on black hole merger rates. Our results also apply to black holes ejected by the gravitational slingshot mechanism.

  14. G30.79 FIR 10: a gravitationally bound infalling high-mass star-forming clump

    NASA Astrophysics Data System (ADS)

    Cortes, P. C.; Parra, R.; Cortes, J. R.; Hardy, E.

    2010-09-01

    Context. The process of high-mass star formation is still shrouded in controversy. Models are still tentative and current observations are just beginning to probe the densest inner regions of giant molecular clouds. Aims: The study of high-mass star formation requires the observation and analysis of high-density gas. This can be achieved by the detection of emission from higher rotational transitions of molecules in the sub-millimeter. Here, we studied the high-mass clump G30.79 FIR 10 by observing molecular emission in the 345 GHz band. The goal is to understand the gravitational state of this clump, considering turbulence and magnetic fields, and to study the kinematics of dense gas. Methods: We approached this region by mapping the spatial distribution of HCO+(J = 4 →) 3, H13CO+ (J = 4 → 3), CS(J = 7 → 6), 12CO(J = 3 → 2), and 13CO(J = 3 → 2) molecular emission by using the ASTE telescope and by observing the 12C18O(J = 3 → 2), HCN(J = 4 → 3), and H13CN(J = 4 → 3) molecular transitions with the APEX telescope. Results: Infalling motions were detected and modeled toward this source. A mean infall velocity of 0.5 km s-1 with an infall mass rate of 5 × 10-3 M⊙ yr-1 was obtained. Also, a previously estimated value for the magnetic field strength in the plane of the sky was refined to be 855 μG which we used to calculate a mass-to-magnetic flux ratio, λ = 1.9, or super-critical. The virial mass from turbulent motions was also calculated finding Mvir = 563 M⊙, which gives a ratio of Msubmm/Mvir = 5.9. Both values strongly suggest that this clump must be in a state of gravitational collapse. Additionally, we estimated the HCO+ abundance, obtaining X(HCO+) = 2.4 × 10-10.

  15. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  16. Environmental Effects for Gravitational-wave Astrophysics

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-05-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.

  17. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approx. 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters, through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  18. Gravitational forces and moments on spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, T. R.; Likins, P. W.

    1975-01-01

    The solution of problems of attitude dynamics of spacecraft and the influence of gravitational forces and moments is examined. Arguments are presented based on Newton's law of gravitation, and employing the methods of Newtonian (vectorial) mechanics, with minimal recourse to the classical concepts of potential theory. The necessary ideas were developed and relationships were established to permit the representation of gravitational forces and moments exerted on bodies in space by other bodies, both in terms involving the mass distribution properties of the bodies, and in terms of vector operations on those scalar functions classically described as gravitational potential functions.

  19. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  20. New template family for the detection of gravitational waves from comparable-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Porter, Edward K.

    2007-11-01

    In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various resummation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on reexpressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion. The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all post-Newtonian orders and provide excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the last stable orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.

  1. GLINT. Gravitational-wave laser INterferometry triangle

    NASA Astrophysics Data System (ADS)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 < z < 30(˜ 0.1 - 0.3× 109 years after the big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  2. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.

    PubMed

    Vegetti, S; Lagattuta, D J; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E

    2012-01-18

    The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.

  3. Gravitational lensing by clusters of galaxies - Constraining the mass distribution

    NASA Technical Reports Server (NTRS)

    Miralda-Escude, Jordi

    1991-01-01

    The possibility of placing constraints on the mass distribution of a cluster of galaxies by analyzing the cluster's gravitational lensing effect on the images of more distant galaxies is investigated theoretically in the limit of weak distortion. The steps in the proposed analysis are examined in detail, and it is concluded that detectable distortion can be produced by clusters with line-of-sight velocity dispersions of over 500 km/sec. Hence it should be possible to determine (1) the cluster center position (with accuracy equal to the mean separation of the background galaxies), (2) the cluster-potential quadrupole moment (to within about 20 percent of the total potential if velocity dispersion is 1000 km/sec), and (3) the power law for the outer-cluster density profile (if enough background galaxies in the surrounding region are observed).

  4. A Nature of Gravitation and the Problem of the Laboratory Gravitational Waves Generation

    NASA Astrophysics Data System (ADS)

    Kanibolotsky, Valentyn

    2010-01-01

    This work sheds light on nature of gravitation and vacuum structure to offer new possibilities for the laboratory HFGWs generation, since neither Einstein's GR nor any another theory of gravity not make answer on this question. Well-known hypothesis about non-materiality of gravitation field unambiguously leads to representation that the elemental particles (EPs) are gravitational stabilized substance. By their nature EPs would constitute microscopic black holes with extreme curved space-time into their bulk and in the vicinity. Since EPs birth take place at interaction of photons with polarized vacuum, this latter represents medium consisting from massless gravitational skeletons of known EPs. So the particle can be not born without its antiparticle and vacuum is gravitationally neutral, particle and antiparticle skeleton, must possess gravitation and antigravitation, correspondingly. GWs would be represented oscillations of the EPs gravitational and antigravitational skeletons around the common centre and in consequence they would be transverse. The high penetrating ability of GWs is a result that neither vacuum, in which HFGWs are propagated, nor HFGWs, does not have mass (energy). In the concept frameworks a new RTG, which must be confirmed these representations, is developed. However, already the fact by itself the laboratory generation of GWs is the direct proof of correctness of these representations.

  5. The Growth of Stellar Mass Black Hole Binaries Trapped in the Accretion Disks of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K. S.; Taam, Ronald E.

    2018-06-01

    Among the four black hole (BH) binary merger events detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), six progenitor BHs have masses greater than 20 M ⊙. The existence of such massive BHs suggests that extreme metal-poor stars are the progenitors. An alternative possibility, that a pair of stellar mass BHs each with mass ∼7 M ⊙ increases to >20 M ⊙ via accretion from a disk surrounding a supermassive BH (SMBH) in an active galactic nucleus (AGN), is considered. The growth of mass of the binary and the transfer of orbital angular momentum to the disk accelerates the merger. Based on the recent numerical work of Tang et al., it is found that, in the disk of a low-mass AGN with mass ∼106 M ⊙ and Eddington ratio >0.01, the mass of an individual BH in the binary can grow to >20 M ⊙ before coalescence, provided that accretion takes place at a rate more than 10 times the Eddington value. This mechanism predicts a new class of gravitational wave (GW) sources involving the merger of two extreme Kerr black holes associated with AGNs and a possible electromagnetic wave counterpart.

  6. Search for Low-Mass Exoplanets by Gravitational Microlensing at High Magnification

    NASA Astrophysics Data System (ADS)

    Abe, F.; Bennett, D. P.; Bond, I. A.; Eguchi, S.; Furuta, Y.; Hearnshaw, J. B.; Kamiya, K.; Kilmartin, P. M.; Kurata, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Noda, S.; Okajima, K.; Rakich, A.; Rattenbury, N. J.; Sako, T.; Sekiguchi, T.; Sullivan, D. J.; Sumi, T.; Tristram, P. J.; Yanagisawa, T.; Yock, P. C. M.; Gal-Yam, A.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Udalski, A.; Szewczyk, O.; Żebruń, K.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, L.

    2004-08-01

    Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

  7. Search for low-mass exoplanets by gravitational microlensing at high magnification.

    PubMed

    Abe, F; Bennett, D P; Bond, I A; Eguchi, S; Furuta, Y; Hearnshaw, J B; Kamiya, K; Kilmartin, P M; Kurata, Y; Masuda, K; Matsubara, Y; Muraki, Y; Noda, S; Okajima, K; Rakich, A; Rattenbury, N J; Sako, T; Sekiguchi, T; Sullivan, D J; Sumi, T; Tristram, P J; Yanagisawa, T; Yock, P C M; Gal-Yam, A; Lipkin, Y; Maoz, D; Ofek, E O; Udalski, A; Szewczyk, O; Zebrun, K; Soszynski, I; Szymanski, M K; Kubiak, M; Pietrzynski, G; Wyrzykowski, L

    2004-08-27

    Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

  8. New probe of dark-matter properties: gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike.

    PubMed

    Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph

    2013-05-31

    An intermediate-mass black hole (IMBH) may have a dark-matter (DM) minihalo around it and develop a spiky structure within less than a parsec from the IMBH. When a stellar mass object is captured by the minihalo, it eventually infalls into such an IMBH due to gravitational wave backreaction which in turn could be observed directly by future space-borne gravitational wave experiments such as eLISA and NGO. In this Letter, we show that the gravitational wave (GW) detectability strongly depends on the radial profile of the DM distribution. So if the GW is detected, the power index, that is, the DM density distribution, would be determined very accurately. The DM density distribution obtained would make it clear how the IMBH has evolved from a seed black hole and whether the IMBH has experienced major mergers in the past. Unlike the γ-ray observations of DM annihilation, GW is just sensitive to the radial profile of the DM distribution and even to noninteracting DM. Hence, the effect we demonstrate here can be used as a new and powerful probe into DM properties.

  9. Gravitational field of a concentrated mass in Jordan—Brans—Dicke theory

    NASA Astrophysics Data System (ADS)

    Arutyunyan, G. G.; Papoyan, V. V.

    1994-04-01

    The problem of determining the gravitational field of a static, spherically symmetric, self-gravitating object is formulated. The small number of physically applicable exact solutions of the equations in Jordan—Brans—Dicke theory is augmented with new exact solutions describing the external gravitational field of the given body. Once a solution has been found, it can be rewritten in modified curvature, homogeneous, and other coordinates by appropriate gauging. In a special case the solution coincides with the well-known Schwarzschild solution.

  10. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  11. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approximately 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  12. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years) as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves) these signals carry direct information about their sources - such as masses) spins) luminosity distances) and orbital parameters - through dense) obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers) highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  13. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  14. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in time-domain astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multimessenger astronomy across the gravitational wave spectrum.

  15. Contribution of zonal harmonics to gravitational moment

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1991-01-01

    It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.

  16. Contribution of zonal harmonics to gravitational moment

    NASA Astrophysics Data System (ADS)

    Roithmayr, Carlos M.

    1991-02-01

    It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.

  17. Feasibility analysis of gravitational experiments in space

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.

    1977-01-01

    Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.

  18. Testing the gravitational instability hypothesis?

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  19. Influence of a weak gravitational wave on a bound system of two point-masses. [of binary stars

    NASA Technical Reports Server (NTRS)

    Turner, M. S.

    1979-01-01

    The problem of a weak gravitational wave impinging upon a nonrelativistic bound system of two point masses is considered. The geodesic equation for each mass is expanded in terms of two small parameters, v/c and dimensionless wave amplitude, in a manner similar to the post-Newtonian expansion; the geodesic equations are resolved into orbital and center-of-mass equations of motion. The effect of the wave on the orbit is determined by using Lagrange's planetary equations to calculate the time evolution of the orbital elements. The gauge properties of the solutions and, in particular, the gauge invariance of the secular effects are discussed.

  20. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  1. Electromagnetic-gravitational energy systems

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1981-01-01

    Two methods are considered to 'tap' the earth's rotational energy. This ancient 'collapsed gravitational energy' exceeds the earth-lunar binding energy. One involves an orbiting 'electromagnetic-gravitational' coupling system whereby the earth's rotation, with its nonuniform mass distribution, first uses gravity to add orbital energy to a satellite, similar to a planetary 'flyby'. The second stage involves enhanced satellite 'drag' as current-carrying coils withdraw the added orbital energy as they pass through the earth's nonuniform magnetic field. A second more direct method couples the earth's rotational motion using conducting wires moving through the noncorotating part (ionospheric current systems) of the geomagnetic field. These methods, although not immediately feasible, are considerably more efficient than using pure gravitational coupling to earth-moon tides.

  2. VIGOR: Virtual Interaction with Gravitational Waves to Observe Relativity

    NASA Astrophysics Data System (ADS)

    Kitagawa, Midori; Kesden, Michael; Tranm, Ngoc; Venlayudam, Thulasi Sivampillai; Urquhart, Mary; Malina, Roger

    2017-05-01

    In 2015, a century after Albert Einstein published his theory of general relativity, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves from binary black holes fully consistent with this theory. Our goal for VIGOR (Virtual-reality Interaction with Gravitational waves to Observe Relativity) is to communicate this revolutionary discovery to the public by visualizing the gravitational waves emitted by binary black holes. VIGOR has been developed using the Unity game engine and VR headsets (Oculus Rift DK2 and Samsung Gear VR). Wearing a VR headset, VIGOR users control an avatar to "fly" around binary black holes, experiment on the black holes by manipulating their total mass, mass ratio, and orbital separation, and witness how gravitational waves emitted by the black holes stretch and squeeze the avatar. We evaluated our prototype of VIGOR with high school students in 2016 and are further improving VIGOR based on our findings.

  3. On the photo-gravitational restricted four-body problem with variable mass

    NASA Astrophysics Data System (ADS)

    Mittal, Amit; Agarwal, Rajiv; Suraj, Md Sanam; Arora, Monika

    2018-05-01

    This paper deals with the photo-gravitational restricted four-body problem (PR4BP) with variable mass. Following the procedure given by Gascheau (C. R. 16:393-394, 1843) and Routh (Proc. Lond. Math. Soc. 6:86-97, 1875), the conditions of linear stability of Lagrange triangle solution in the PR4BP are determined. The three radiating primaries having masses m1, m2 and m3 in an equilateral triangle with m2=m3 will be stable as long as they satisfy the linear stability condition of the Lagrangian triangle solution. We have derived the equations of motion of the mentioned problem and observed that there exist eight libration points for a fixed value of parameters γ (m at time t/m at initial time, 0<γ≤1 ), α (the proportionality constant in Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), 0≤α≤2.2), the mass parameter μ=0.005 and radiation parameters qi, (0< qi≤1, i=1, 2, 3). All the libration points are non-collinear if q2≠ q3. It has been observed that the collinear and out-of-plane libration points also exist for q2=q3. In all the cases, each libration point is found to be unstable. Further, zero velocity curves (ZVCs) and Newton-Raphson basins of attraction are also discussed.

  4. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  5. Damping of gravitational waves by matter

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Patil, Subodh P.; Pethick, C. J.

    2017-10-01

    We develop a unified description, via the Boltzmann equation, of damping of gravitational waves by matter, incorporating collisions. We identify two physically distinct damping mechanisms—collisional and Landau damping. We first consider damping in flat spacetime, and then generalize the results to allow for cosmological expansion. In the first regime, maximal collisional damping of a gravitational wave, independent of the details of the collisions in the matter is, as we show, significant only when its wavelength is comparable to the size of the horizon. Thus damping by intergalactic or interstellar matter for all but primordial gravitational radiation can be neglected. Although collisions in matter lead to a shear viscosity, they also act to erase anisotropic stresses, thus suppressing the damping of gravitational waves. Damping of primordial gravitational waves remains possible. We generalize Weinberg's calculation of gravitational wave damping, now including collisions and particles of finite mass, and interpret the collisionless limit in terms of Landau damping. While Landau damping of gravitational waves cannot occur in flat spacetime, the expansion of the universe allows such damping by spreading the frequency of a gravitational wave of given wave vector.

  6. A GRAVITATIONAL REDSHIFT DETERMINATION OF THE MEAN MASS OF WHITE DWARFS: DBA AND DB STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falcon, Ross E.; Winget, D. E.; Montgomery, M. H.

    2012-10-01

    We measure apparent velocities (v{sub app}) of absorption lines for 36 white dwarfs (WDs) with helium-dominated atmospheres-16 DBAs and 20 DBs-using optical spectra taken for the European Southern Observatory SN Ia progenitor survey. We find a difference of 6.9 {+-} 6.9 km s{sup -1} in the average apparent velocity of the H{alpha} lines versus that of the He I 5876 A lines for our DBAs. This is a measure of the blueshift of this He line due to pressure effects. By using this as a correction, we extend the gravitational redshift method employed by Falcon et al. to use themore » apparent velocity of the He I 5876 A line and conduct the first gravitational redshift investigation of a group of WDs without visible hydrogen lines. We use biweight estimators to find an average apparent velocity, (v{sub app}){sub BI}, (and hence average gravitational redshift, (v{sub g}){sub BI}) for our WDs; from that we derive an average mass, (M){sub BI}. For the DBAs, we find (v{sub app}){sub BI} = 40.8 {+-} 4.7 km s{sup -1} and derive (M){sub BI} = 0.71{sup +0.04}{sub -0.05} M{sub Sun }. Though different from (v{sub app}) of DAs (32.57 km s{sup -1}) at the 91% confidence level and suggestive of a larger DBA mean mass than that for normal DAs derived using the same method (0.647{sup +0.013}{sub -0.014} M{sub Sun }; Falcon et al.), we do not claim this as a stringent detection. Rather, we emphasize that the difference between (v{sub app}){sub BI} of the DBAs and (v{sub app}) of normal DAs is no larger than 9.2 km s{sup -1}, at the 95% confidence level; this corresponds to roughly 0.10 M{sub Sun }. For the DBs, we find (v {sup He}{sub app}){sub BI} = 42.9 {+-} 8.49 km s{sup -1} after applying the blueshift correction and determine (M){sub BI} = 0.74{sup +0.08}{sub -0.09} M{sub Sun }. The difference between (v{sup He}{sub app}){sub BI} of the DBs and (v{sub app}) of DAs is {<=}11.5 km s{sup -1} ({approx}0.12 M{sub Sun }), at the 95% confidence level. The gravitational redshift method

  7. Gravitational waves from primordial black hole mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi, E-mail: martti.raidal@cern.ch, E-mail: ville.vaskonen@kbfi.ee, E-mail: hardi.veermae@cern.ch

    We study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution. Under the hypothesis that the gravitational wave events observed by LIGO were caused by PBH mergers, we show that it is possible to satisfy all present constraints on the PBH abundance, and find the viable parameter range for the lognormal PBH mass function. The non-observation of a gravitational wave background allows us to derive constraints on the fraction of dark matter in PBHs, which are stronger than any other currentmore » constraint in the PBH mass range 0.5−30 M {sub ⊙}. We show that the predicted gravitational wave background can be observed by the coming runs of LIGO, and its non-observation would indicate that the observed events are not of primordial origin. As the PBH mergers convert matter into radiation, they may have interesting cosmological implications, for example in the context of relieving the tension between high and low redshift measurements of the Hubble constant. However, we find that these effects are suppressed as, after recombination, no more that 1% of dark matter can be converted into gravitational waves.« less

  8. Probabilities for gravitational lensing by point masses in a locally inhomogeneous universe

    NASA Technical Reports Server (NTRS)

    Isaacson, Jeffrey A.; Canizares, Claude R.

    1989-01-01

    Probability functions for gravitational lensing by point masses that incorporate Poisson statistics and flux conservation are formulated in the Dyer-Roeder construction. Optical depths to lensing for distant sources are calculated using both the method of Press and Gunn (1973) which counts lenses in an otherwise empty cone, and the method of Ehlers and Schneider (1986) which projects lensing cross sections onto the source sphere. These are then used as parameters of the probability density for lensing in the case of a critical (q0 = 1/2) Friedmann universe. A comparison of the probability functions indicates that the effects of angle-averaging can be well approximated by adjusting the average magnification along a random line of sight so as to conserve flux.

  9. Quasi-local gravitational angular momentum and centre of mass from generalised Witten equations

    NASA Astrophysics Data System (ADS)

    Wieland, Wolfgang

    2017-03-01

    Witten's proof for the positivity of the ADM mass gives a definition of energy in terms of three-surface spinors. In this paper, we give a generalisation for the remaining six Poincaré charges at spacelike infinity, which are the angular momentum and centre of mass. The construction improves on certain three-surface spinor equations introduced by Shaw. We solve these equations asymptotically obtaining the ten Poincaré charges as integrals over the Nester-Witten two-form. We point out that the defining differential equations can be extended to three-surfaces of arbitrary signature and we study them on the entire boundary of a compact four-dimensional region of spacetime. The resulting quasi-local expressions for energy and angular momentum are integrals over a two-dimensional cross-section of the boundary. For any two consecutive such cross-sections, conservation laws are derived that determine the influx (outflow) of matter and gravitational radiation.

  10. Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef

    2016-04-01

    Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer

  11. Quasi-local energy in presence of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung

    2016-07-01

    We discuss our recent work [P.-N. Chen, M.-T. Wang and S.-T. Yau, Quasi-local mass in the gravitational perturbations of black holes, to appear.] in which gravitational radiation was studied by evaluating the Wang-Yau quasi-local mass of surfaces of fixed size at the infinity of both axial and polar perturbations of the Schwarzschild spacetime, à la Chandrasekhar. [S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford Classic Texts in the Physical Sciences (Oxford University Press, New York, 1998).

  12. Gravitational Conundrum? Dynamical Mass Segregation versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Zheng, Yong; Deng, Licai; Hu, Yi; Kouwenhoven, M. B. N.; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the >~ 2σ level of significance (>3σ if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M ⊙) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems—with relatively low binding energies compared to the kinetic energy of their stellar members—in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  13. Testing the validity of the phenomenological gravitational waveform models for nonspinning binary black hole searches at low masses

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2015-11-01

    The phenomenological gravitational waveform models, which we refer to as PhenomA, PhenomB, and PhenomC, generate full inspiral, merger, and ringdown (IMR) waveforms of coalescing binary back holes (BBHs). These models are defined in the Fourier domain, thus can be used for fast matched filtering in the gravitational wave search. PhenomA has been developed for nonspinning BBH waveforms, while PhenomB and PhenomC were designed to model the waveforms of BBH systems with nonprecessing (aligned) spins, but can also be used for nonspinning systems. In this work, we study the validity of the phenomenological models for nonspinning BBH searches at low masses, {m}{1,2}≥slant 4{M}⊙ and {m}1+{m}2\\equiv M≤slant 30{M}⊙ , with Advanced LIGO. As our complete signal waveform model, we adopt EOBNRv2, which is a time-domain IMR waveform model. To investigate the search efficiency of the phenomenological template models, we calculate fitting factors (FFs) by exploring overlap surfaces. We find that only PhenomC is valid to obtain FFs better than 0.97 in the mass range of M\\lt 15{M}⊙ . Above 15{M}⊙ , PhenomA is most efficient in symmetric mass region, PhenomB is most efficient in highly asymmetric mass region, and PhenomC is most efficient in the intermediate region. Specifically, we propose an effective phenomenological template family that can be constructed by employing the phenomenological models in four subregions individually. We find that FFs of the effective templates are better than 0.97 in our entire mass region and mostly greater than 0.99.

  14. Gravitational Waves and Intermediate-mass Black Hole Retention in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Ginsburg, Idan; Kocsis, Bence

    2018-04-01

    The recent discovery of gravitational waves (GWs) has opened new horizons for physics. Current and upcoming missions, such as LIGO, VIRGO, KAGRA, and LISA, promise to shed light on black holes of every size from stellar mass (SBH) sizes up to supermassive black holes. The intermediate-mass black hole (IMBH) family has not been detected beyond any reasonable doubt. Recent analyses suggest observational evidence for the presence of IMBHs in the centers of two Galactic globular clusters (GCs). In this paper, we investigate the possibility that GCs were born with a central IMBH, which undergoes repeated merger events with SBHs in the cluster core. By means of a semi-analytical method, we follow the evolution of the primordial cluster population in the galactic potential and the mergers of the binary IMBH-SBH systems. Our models predict ≈1000 IMBHs within 1 kpc from the galactic center and show that the IMBH-SBH merger rate density changes from { \\mathcal R }≈ 1000 Gpc‑3 yr‑1 beyond z ≈ 2 to { \\mathcal R }≈ 1{--}10 Gpc‑3 yr‑1 at z ≈ 0. The rates at low redshifts may be significantly higher if young massive star clusters host IMBHs. The merger rates are dominated by IMBHs with masses between 103 and 104 M ⊙. Currently, there are no LIGO/VIRGO upper limits for GW sources in this mass range, but our results show that at design sensitivity, these instruments will detect IMBH-SBH mergers in the coming years. LISA and the Einstein Telescope will be best suited to detect these events. The inspirals of IMBH-SBH systems may also generate an unresolved GW background.

  15. The binary Feige 24 - The mass, radius, and gravitational redshift of the DA white dwarf

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Shipman, Harry L.; Thorstensen, John R.; Thejll, Peter

    1991-01-01

    Observations are reported which refine the binary ephemeris of the Feige 24 system, which contains a peculiar hot DA white dwarf and an M dwarf with an atmosphere illuminated by extreme ultraviolet radiation from the white dwarf. With the new ephemeris and a set of IUE high-dispersion spectra, showing phase-dependent redshifted C IV, N V, and Si IV resonance lines, the orbital velocity, and hence the mass (0.54 + or - 0.20 solar masses), and the gravitational redshift of the white dwarf (14.1 + or - 5.2 km/s) are determined independently. It is shown that the measured Einstein redshift is consistent with an estimated radius for the white dwarf obtained from a model atmosphere solid angle and a parallax measurement. This radius is twice the Hamada-Salpeter radius for the given mass and offers a prospect to investigate the presence of a massive hydrogen envelope in that white dwarf star.

  16. Gravitational Instabilities in a Protosolar-like Disc

    NASA Astrophysics Data System (ADS)

    Evans, Mark Graham

    2018-02-01

    This thesis presents a study of protoplanetary discs around young, low mass protostars. Such discs are believed to be massive enough to develop gravitational instabilities, which subsequently form spiral structures. The dynamical and chemical evolutions of a protosolar-like, gravitationally unstable disc are explored and the spiral structure in the disc is found to shock-heat material. This affects the chemical composition via enhanced desorption rates and endothermic reaction rates and through global mixing of the disc. As a result, the gravitational instability in the model disc leads to transient and permanent changes in the disc chemistry, and also provides a chemically-rich midplane in contrast to simulations of more evolved discs. Secondly, radiative transfer calculations are performed for the dust continuum, and model-tailored grid construction is found to improve the accuracy of the resultant flux images. Continuum observations of the model disc are synthesised and the spiral structure (driven by the gravitational instability) is shown to be readily detectable with ALMA across a range of frequencies, disc inclinations and dust opacities. The derivation of disc mass from the observed flux densities is explored but the method commonly utilised is found to be unreliable and underestimate the disc mass. Therefore, it is concluded that gravitational instabilities could be retrospectively validated in discs previously thought not massive enough to be self-gravitating. Finally, radiative transfer calculations are performed for molecular line transitions. Methods for improving the accuracy of line flux images are explored and the validity of assuming local thermodynamic equilibrium is assessed. Observations of the line fluxes are synthesised without noise and the spiral structure is found to be traced to an extent by all transitions considered, which is not necessarily congruent with the underlying distribution of the molecular species. The disc is seen in

  17. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. I. The Case of Pure Self-gravity

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2015-12-01

    The role of gravitational instability-driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feedback can explain galaxy properties, remains an open question. To address it, we present high-resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation, but no form of star formation feedback. After an initial transient, our galaxies reach a state of fully nonlinear gravitational instability. In this state, gravity drives turbulence and radial inflow. Despite the lack of feedback, the gas in our galaxy models shows substantial turbulent velocity dispersions, indicating that gravitational instability alone may be able to power the velocity dispersions observed in nearby disk galaxies on 100 pc scales. Moreover, the rate of mass transport produced by this turbulence approaches ˜ 1 {M}⊙ yr-1 for Milky Way-like conditions, sufficient to fully fuel star formation in the inner disks of galaxies. In a companion paper, we add feedback to our models, and use the comparison between the two cases to understand which galaxy properties depend sensitively on feedback and which can be understood as the product of gravity alone. All of the code, initial conditions, and simulation data for our model are publicly available.

  18. Gravitational Wave Detection in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2017-05-01

    A long time ago in a galaxy far, far away, two black holes, one of mass 36 solar masses and the other of mass 29 solar masses, were dancing their death waltz, leading to their coalescence and the emission of gravitational waves carrying away with them three solar masses of energy. More precisely, it happened 1.3 billion years ago at a distance of 410 Mpc. When the waves were emitted, the most complex life forms on Earth were eukaryotes. As the gravitational waves propagated toward Earth, it changed much. Five hundred million years after the waves were emitted, or 800 million years ago, the first multicellular life forms emerged on Earth. Earth saw the Cambrian explosion 500 million years ago. Sixty-six million years ago the Cretaceous-Paleogene extinction event caused the disappearance of the dinosaurs. The first modern humans appeared 250,000 years ago.

  19. Gravitational stresses in long symmetric ridges and valleys in anisotropic rock

    USGS Publications Warehouse

    Pan, E.; Amadei, B.; Savage, W.Z.

    1994-01-01

    The effect of topography and rock mass anisotropy on gravitational stresses in long isolated symmetric ridges and valleys is modeled using an analytical method proposed earlier by the first two authors. The rock mass deforms under a condition of plane strain. A parametric study is presented on the effect of (1) topography, (2) orientation of anisotropy and (3) degree of anisotropy on the magnitude and distribution of gravitational stresses in transversely isotropic rock masses with planes of anisotropy striking parallel to the ridge or valley axis. It is found that compressive stresses develop near ridge crests and that tensile stresses develop in valley bottoms and valley walls. The magnitude of the gravitational stresses is of the order of the characteristics stress ??{variant}g??b?? where ??{variant} is the rock density, g is the gravitational acceleration and ??b?? is the height of the ridge or depth of the valley. ?? 1994.

  20. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  1. Gravitational lens recovery with GLASS: measuring the mass profile and shape of a lens

    NASA Astrophysics Data System (ADS)

    Coles, Jonathan P.; Read, Justin I.; Saha, Prasenjit

    2014-12-01

    We use a new non-parametric gravitational modelling tool - GLASS - to determine what quality of data (strong lensing, stellar kinematics, and/or stellar masses) are required to measure the circularly averaged mass profile of a lens and its shape. GLASS uses an underconstrained adaptive grid of mass pixels to model the lens, searching through thousands of models to marginalize over model uncertainties. Our key findings are as follows: (i) for pure lens data, multiple sources with wide redshift separation give the strongest constraints as this breaks the well-known mass-sheet or steepness degeneracy; (ii) a single quad with time delays also performs well, giving a good recovery of both the mass profile and its shape; (iii) stellar masses - for lenses where the stars dominate the central potential - can also break the steepness degeneracy, giving a recovery for doubles almost as good as having a quad with time-delay data, or multiple source redshifts; (iv) stellar kinematics provide a robust measure of the mass at the half-light radius of the stars r1/2 that can also break the steepness degeneracy if the Einstein radius rE ≠ r1/2; and (v) if rE ˜ r1/2, then stellar kinematic data can be used to probe the stellar velocity anisotropy β - an interesting quantity in its own right. Where information on the mass distribution from lensing and/or other probes becomes redundant, this opens up the possibility of using strong lensing to constrain cosmological models.

  2. Gravitational lensing by an ensemble of isothermal galaxies

    NASA Technical Reports Server (NTRS)

    Katz, Neal; Paczynski, Bohdan

    1987-01-01

    Calculation of 28,000 models of gravitational lensing of a distant quasar by an ensemble of randomly placed galaxies, each having a singular isothermal mass distribuiton, is reported. The average surface mass density was 0.2 of the critical value in all models. It is found that the surface mass density averaged over the area of the smallest circle that encompasses the multiple images is 0.82, only slightly smaller than expected from a simple analytical model of Turner et al. (1984). The probability of getting multiple images is also as large as expected analytically. Gravitational lensing is dominated by the matter in the beam; i.e., by the beam convergence. The cases where the multiple imaging is due to asymmetry in mass distribution (i.e., due to shear) are very rare. Therefore, the observed gravitational-lens candidates for which no lensing object has been detected between the images cannot be a result of asymmetric mass distribution outside the images, at least in a model with randomly distributed galaxies. A surprisingly large number of large separations between the multiple images is found: up to 25 percent of multiple images have their angular separation 2 to 4 times larger than expected in a simple analytical model.

  3. A first constraint on the average mass of ultra-diffuse galaxies from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Herbonnet, Ricardo

    2018-01-01

    The recent discovery of thousands of ultra-diffuse galaxies (UDGs) in nearby galaxy clusters has opened a new window into the process of galaxy formation and evolution. Several scenarios have been proposed to explain the formation history of UDGs, and their ability to survive in the harsh cluster environments. A key requirement to distinguish between these scenarios is a measurement of their halo masses which, due to their low surface brightnesses, has proven difficult if one relies on stellar tracers of the potential. We exploit weak gravitational lensing, a technique that does not depend on these baryonic tracers, to measure the average subhalo mass of 784 UDGs selected in 18 clusters at z ≤ 0.09. Our sample of UDGs has a median stellar mass 〈m⋆〉 = 2 × 108 M⊙ and a median effective radius 〈reff〉 = 2.8 kpc. We constrain the average mass of subhaloes within 30 kpc to log mUDG(r < 30 kpc)/M⊙ ≤ 10.99 at 95 per cent credibility, implying an effective virial mass log m200/M⊙ ≤ 11.80, and a lower limit on the stellar mass fraction within 10 kpc of 1.0 per cent. Such mass is consistent with a simple extrapolation of the subhalo-to-stellar mass relation of typical satellite galaxies in massive clusters. However, our analysis is not sensitive to scatter about this mean mass; the possibility remains that extreme UDGs reside in haloes as massive as the Milky Way.

  4. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-04-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  5. Gravitational Wave Detection in the Introductory Lab

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2017-01-01

    A long time ago in a galaxy far, far away, two black holes, one of mass 36 solar masses and the other of mass 29 solar masses, were dancing their death waltz, leading to their coalescence and the emission of gravitational waves carrying away with them three solar masses of energy. More precisely, it happened 1.3 billion years ago at a distance of…

  6. On the Possibility to Construct Gravitational Eye

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Tian

    2007-05-01

    The possibility of modifying a conventional Cavendish torsion pendulum into a half-armed pendulum oscillator to measure the horizontal gravitational acceleration is discussed. A new kind of gravitational detector, gravieye, as we named, can be made by a proper combination of such oscillators to ``see'' remote objects and to be used, e.g. to detect the movement of huge mass at a long distance.

  7. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.

    2018-01-01

    The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.

  8. THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharon, Danor; Perets, Hagai B.

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distributionmore » of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.« less

  9. Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties

    NASA Astrophysics Data System (ADS)

    Healy, James; Lousto, Carlos O.

    2018-04-01

    We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.

  10. Multivariate classification with random forests for gravitational wave searches of black hole binary coalescence

    NASA Astrophysics Data System (ADS)

    Baker, Paul T.; Caudill, Sarah; Hodge, Kari A.; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J.

    2015-03-01

    Searches for gravitational waves produced by coalescing black hole binaries with total masses ≳25 M⊙ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass (≳25 M⊙ ) parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown of binary black holes with total mass between 25 M⊙ and 100 M⊙ , we find sensitive volume improvements as high as 70±13%-109±11% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between 10 M⊙ and 600 M⊙ , we find sensitive volume improvements as high as 61±4%-241±12% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.

  11. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryuichi

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}(more » f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.« less

  12. Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies

    NASA Astrophysics Data System (ADS)

    Bogdán, Ákos; Lovisari, Lorenzo; Volonteri, Marta; Dubois, Yohan

    2018-01-01

    Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy cluster’s potential well may undergo physical processes that are driven by the large-scale characteristics of the galaxy clusters, it is possible that the growth of these BHs is (indirectly) governed by the properties of their host clusters. In this work, we explore the connection between the mass of BHs residing in the brightest group/cluster galaxies (BGGs/BCGs) and the virial temperature, and hence total gravitating mass, of galaxy groups/clusters. To this end, we investigate a sample of 17 BGGs/BCGs with dynamical BH mass measurements and utilize XMM-Newton X-ray observations to measure the virial temperatures and infer the {M}500 mass of the galaxy groups/clusters. We find that the {M}{BH}{--}{kT} relation is significantly tighter and exhibits smaller scatter than the {M}{BH}{--}{M}{bulge} relations. The best-fitting power-law relations are {{log}}10({M}{BH}/{10}9 {M}ȯ )=0.20+1.74{{log}}10({kT}/1 {keV}) and {{log}}10({M}{BH}/{10}9 {M}ȯ ) = -0.80+1.72{{log}}10({M}{bulge}/{10}11 {M}ȯ ). Thus, the BH mass of BGGs/BCGs may be set by physical processes that are governed by the properties of the host galaxy group/cluster. These results are confronted with the Horizon-AGN simulation, which reproduces the observed relations well, albeit the simulated relations exhibit notably smaller scatter.

  13. Gravitational lensing, time delay, and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1992-01-01

    The probability distributions of time delay in gravitational lensing by point masses and isolated galaxies (modeled as singular isothermal spheres) are studied. For point lenses (all with the same mass) the probability distribution is broad, and with a peak at delta(t) of about 50 S; for singular isothermal spheres, the probability distribution is a rapidly decreasing function with increasing time delay, with a median delta(t) equals about 1/h month, and its behavior depends sensitively on the luminosity function of galaxies. The present simplified calculation is particularly relevant to the gamma-ray bursts if they are of cosmological origin. The frequency of 'recurrent' bursts due to gravitational lensing by galaxies is probably between 0.05 and 0.4 percent. Gravitational lensing can be used as a test of the cosmological origin of gamma-ray bursts.

  14. Gravitational waves from SU( N) glueball dark matter

    DOE PAGES

    Soni, Amarjit; Zhang, Yue

    2017-05-30

    Here, a hidden sector with pure non-abelian gauge symmetry is an elegant and just about the simplest model of dark matter. In this model the dark matter candidate is the lightest bound state made of the confined gauge fields, the dark glueball. In spite of its simplicity, the model has been shown to have several interesting non-standard implications in cosmology. In this work, we explore the gravitational waves from binary boson stars made of self-gravitating dark glueball fields as a natural and important consequence. We derive the dark SU(N) star mass and radius as functions of the only two fundamentalmore » parameters in the model, the glueball mass m and the number of colors N, and identify the regions that could be probed by the LIGO and future gravitational wave observatories.« less

  15. Gravitational waves from rotating neutron stars and compact binary systems

    NASA Astrophysics Data System (ADS)

    Wade, Leslie E., IV

    It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitational-wave detectors, such as the two Laser Interferometer Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation for the advanced detector era, I have worked on both detection and post-detection efforts involving two gravitational wave sources: isolated rotating neutron stars (NSs) and compact binary coalescences (CBCs). My dissertation includes three main research projects: 1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for directly measuring the neutron-star (NS) equation of state (EOS). Direct detections of gravitational waves will enrich our current astrophysical knowledge. One such contribution will be through population synthesis of isolated NSs. My collaborators and I show that advanced gravitational-wave detectors can be used to constrain the properties of the Galactic NS population. Gravitational wave detections can also shine light on a currently mysterious astrophysical object: intermediate mass black holes. In developing the IMBHB search, we performed a mock data challenge where signals with total masses up to a few hundred solar masses were injected into recolored data from LIGO's sixth science run. Since this is the first time a matched filter search has been developed to search for IMBHBs, I discuss what was learned during the mock data challenge and how we plan to improve the search going forward. The final aspect of my dissertation focuses on important post-detection science. I present results for a new method of directly measuring the NS EOS. This is done by estimating the parameters of a 4-piece polytropic EOS model that matches theoretical EOS candidates to a few percent. We show that advanced detectors will be capable of measuring the NS radius to within a kilometer for stars with

  16. Orbital synchronization capture of two binaries emitting gravitational waves

    NASA Astrophysics Data System (ADS)

    Seto, Naoki

    2018-03-01

    We study the possibility of orbital synchronization capture for a hierarchical quadrupole stellar system composed by two binaries emitting gravitational waves. Based on a simple model including the mass transfer for white dwarf binaries, we find that the capture might be realized for inter-binary distances less than their gravitational wavelength. We also discuss related intriguing phenomena such as a parasitic relation between the coupled white dwarf binaries and significant reductions of gravitational and electromagnetic radiations.

  17. The Path to Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Barish, Barry

    2017-01-01

    Experimental efforts toward gravitational wave detection began with the innovative resonant bar experiments of Joseph Weber in the 1960s. This technique evolved, but was eventually replaced by the potentially more sensitive suspended mass interferometers. Large scale interferometers, GEO, LIGO and Virgo were funded in 1994. The 22 year history since that time will be discussed, tracing the key technical challenges and solutions that have enabled LIGO to reach the incredible sensitivities where gravitational waves from binary black hole mergers have been observed.

  18. Gravitational Self-Force: Orbital Mechanics Beyond Geodesic Motion

    NASA Astrophysics Data System (ADS)

    Barack, Leor

    The question of motion in a gravitationally bound two-body system is a longstanding open problem of General Relativity. When the mass ratio eta; is small, the problem lends itself to a perturbative treatment, wherein corrections to the geodesic motion of the smaller object (due to radiation reaction, internal structure, etc.) are accounted for order by order in η, using the language of an effective gravitational self-force. The prospect for observing gravitational waves from compact objects inspiralling into massive black holes in the foreseeable future has in the past 15 years motivated a program to obtain a rigorous formulation of the self-force and compute it for astrophysically interesting systems. I will give a brief survey of this activity and its achievements so far, and will identify the challenges that lie ahead. As concrete examples, I will discuss recent calculations of certain conservative post-geodesic effects of the self-force, including the O(η ) correction to the precession rate of the periastron. I will highlight the way in which such calculations allow us to make a fruitful contact with other approaches to the two-body problem.

  19. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  20. Observation of Gravitational Waves from a Binary Black Hole Merger.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  1. Gravitational waves and core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Moiseenko, S. G.

    2017-11-01

    A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation results on core-collapse supernova explosions are presented for the neutrino and magneto-rotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency ν ~ 1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1.2 M⊙ (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zel’dovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.

  2. Investigations of Galaxy Clusters Using Gravitational Lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters andmore » gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.« less

  3. Vortex stretching in self-gravitating protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Regály, Zs.; Vorobyov, E.

    2017-10-01

    Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices efficiently collect dust particles, therefore they can play a major role in planet formation. Former studies suggest that the disc self-gravity weakens vortices formed at the edge of the gap opened by a massive planet in discs whose masses are in the range of 0.01 ≤ Mdisc/M* ≤ 0.1. Here, we present an investigation on the long-term evolution of the large-scale vortices formed at the viscosity transition of the discs' dead zone outer edge by means of two-dimensional hydrodynamic simulations taking disc self-gravity into account. We perform a numerical study of low-mass, 0.001 ≤ Mdisc/M* ≤ 0.01, discs, for which cases disc self-gravity was previously neglected. The large-scale vortices are found to be stretched due to disc self-gravity even for low-mass discs with Mdisc/M* ≳ 0.005, where initially the Toomre Q-parameter was ≲ 50 at the vortex distance. As a result of stretching, the vortex aspect ratio increases and a weaker azimuthal density contrast develops. The strength of the vortex stretching is proportional to the disc mass. The vortex stretching can be explained by a combined action of a non-vanishing gravitational torque caused by the vortex and the Keplerian shear of the disc. Self-gravitating vortices are subject to significantly faster decay than non-self-gravitating ones. We found that vortices developed at sharp viscosity transitions of self-gravitating discs can be described by a Goodman - Narayan - Goldreich (GNG) model as long as the disc viscosity is low, I.e. αdz ≤ 10-5.

  4. A benign property of the ghost mode in massive theory of gravitation

    NASA Astrophysics Data System (ADS)

    Chugreev, Yu. V.

    2018-01-01

    It was shown in the frameworks of massive gravitational theories having in linear approximation mass term {m^2}( {φ ^{α β }}{φ_{α β }} - 1/2{φ ^2}} ) in the lagrangian, that created some time ago spherically-symmetric static sources should possess inside their light cone not only Yukawa potential, but also nonstationary component. It leads to the long ( 1/ m) period of gravitational evaporation of such sources with the mass loss Ṁ m 2 M 2 The magnitude of the flux is c 4/ v 4 times ( c—speed of light, v—velocity of the source particles) bigger then negative gravitational radiation flux corresponding to the ghost scalar mode in the spectrum of such gravitational field, with stabilizing the source.

  5. Detecting high-frequency gravitational waves with optically levitated sensors.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  6. Astrophysics to z approx. 10 with Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Hughes, Scott; Lang, Ryan

    2007-01-01

    The most useful characterization of a gravitational wave detector's performance is the accuracy with which astrophysical parameters of potential gravitational wave sources can be estimated. One of the most important source types for the Laser Interferometer Space Antenna (LISA) is inspiraling binaries of black holes. LISA can measure mass and spin to better than 1% for a wide range of masses, even out to high redshifts. The most difficult parameter to estimate accurately is almost always luminosity distance. Nonetheless, LISA can measure luminosity distance of intermediate-mass black hole binary systems (total mass approx.10(exp 4) solar mass) out to z approx.10 with distance accuracies approaching 25% in many cases. With this performance, LISA will be able to follow the merger history of black holes from the earliest mergers of proto-galaxies to the present. LISA's performance as a function of mass from 1 to 10(exp 7) solar mass and of redshift out to z approx. 30 will be described. The re-formulation of LISA's science requirements based on an instrument sensitivity model and parameter estimation will be described.

  7. Particle production in a gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  8. Determination of the Gravitational Constant with a Beam Balance

    NASA Astrophysics Data System (ADS)

    Schlamminger, St.; Holzschuh, E.; Kündig, W.

    2002-09-01

    The Newtonian gravitational constant G was determined by means of a novel beam-balance experiment with an accuracy comparable to that of the most precise torsion-balance experiments. The gravitational force of two stainless steel tanks filled with 13 521kg mercury on 1.1kg test masses was measured using a commercial mass comparator. A careful analysis of the data and the experimental error yields G=6.674 07(22)×10-11 m3 kg-1 s-2. This value is in excellent agreement with most values previously obtained with different methods.

  9. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    , which affects the evolution of structures. Gravitational lensing is the process by which light from distant galaxies is bent by the gravity of intervening mass in the Universe as it travels toward us. This bending causes the images of background galaxies to appear slightly distorted, and can be used to extract important cosmological information. In the beginning of the twentieth century, A. Einstein predicted that massive bodies could be seen as gravitational lenses that bend the path of light rays by creating a local curvature in space time. One of the first confirmations of Einstein's new theory was the observation during the 1919 solar eclipse of the deflection of light from distant stars by the sun. Since then, a wide range of lensing phenomena have been detected. The gravitational deflection of light by mass concentrations along light paths produces magnification, multiplication, and distortion of images. These lensing effects are illustrated by Figure 14.2, which shows one of the strongest lenses observed: Abell 2218, a very massive and distant cluster of galaxies in the constellation Draco. The observed gravitational arcs are actually the magnified and strongly distorted images of galaxies that are about 10 times more distant than the cluster itself. These strong gravitational lensing effects are very impressive but they are very rare. Far more prevalent are weak gravitational lensing effects, which we consider in this chapter, and in which the induced distortion in galaxy images is much weaker. These gravitational lensing effects are now widely used, but the amplitude of the weak lensing signal is so weak that its detection relies on the accuracy of the techniques used to analyze the data. Future weak lensing surveys are already planned in order to cover a large fraction of the sky with high accuracy, such as Euclid [68]. However, improving accuracy also places greater demands on the methods used to extract the available information.

  10. Gravitational instabilities in a protosolar-like disc - I. Dynamics and chemistry

    NASA Astrophysics Data System (ADS)

    Evans, M. G.; Ilee, J. D.; Boley, A. C.; Caselli, P.; Durisen, R. H.; Hartquist, T. W.; Rawlings, J. M. C.

    2015-10-01

    To date, most simulations of the chemistry in protoplanetary discs have used 1 + 1D or 2D axisymmetric α-disc models to determine chemical compositions within young systems. This assumption is inappropriate for non-axisymmetric, gravitationally unstable discs, which may be a significant stage in early protoplanetary disc evolution. Using 3D radiative hydrodynamics, we have modelled the physical and chemical evolution of a 0.17 M⊙ self-gravitating disc over a period of 2000 yr. The 0.8 M⊙ central protostar is likely to evolve into a solar-like star, and hence this Class 0 or early Class I young stellar object may be analogous to our early Solar system. Shocks driven by gravitational instabilities enhance the desorption rates, which dominate the changes in gas-phase fractional abundances for most species. We find that at the end of the simulation, a number of species distinctly trace the spiral structure of our relatively low-mass disc, particularly CN. We compare our simulation to that of a more massive disc, and conclude that mass differences between gravitationally unstable discs may not have a strong impact on the chemical composition. We find that over the duration of our simulation, successive shock heating has a permanent effect on the abundances of HNO, CN and NH3, which may have significant implications for both simulations and observations. We also find that HCO+ may be a useful tracer of disc mass. We conclude that gravitational instabilities induced in lower mass discs can significantly, and permanently, affect the chemical evolution, and that observations with high-resolution instruments such as Atacama Large Millimeter/submillimeter Array (ALMA) offer a promising means of characterizing gravitational instabilities in protosolar discs.

  11. LIGO - The Laser Interferometer Gravitational-Wave Observatory

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex; Althouse, William E.; Drever, Ronald W. P.; Gursel, Yekta; Kawamura, Seiji; Raab, Frederick J.; Shoemaker, David; Sievers, Lisa; Spero, Robert E.; Thorne, Kip S.

    1992-01-01

    The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics for gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.

  12. Gravitational potential wells and the cosmic bulk flow

    NASA Astrophysics Data System (ADS)

    Wang, Yuyu; Kumar, Abhinav; Feldman, Hume; Watkins, Richard

    2016-03-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales > 10h-1 Mpc.

  13. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  14. Search for gravitational waves from binary black hole inspiral, merger, and ringdown

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2011-06-01

    We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.

  15. The Rotational and Gravitational Effect of Earthquakes

    NASA Technical Reports Server (NTRS)

    Gross, Richard

    2000-01-01

    The static displacement field generated by an earthquake has the effect of rearranging the Earth's mass distribution and will consequently cause the Earth's rotation and gravitational field to change. Although the coseismic effect of earthquakes on the Earth's rotation and gravitational field have been modeled in the past, no unambiguous observations of this effect have yet been made. However, the Gravity Recovery And Climate Experiment (GRACE) satellite, which is scheduled to be launched in 2001, will measure time variations of the Earth's gravitational field to high degree and order with unprecedented accuracy. In this presentation, the modeled coseismic effect of earthquakes upon the Earth's gravitational field to degree and order 100 will be computed and compared to the expected accuracy of the GRACE measurements. In addition, the modeled second degree changes, corresponding to changes in the Earth's rotation, will be compared to length-of-day and polar motion excitation observations.

  16. Gravitational mechanism of active life of the Earth, planets and satellites

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial

  17. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Chantry, V.; Sluse, D.; Magain, P.

    2010-11-01

    Aims: We attempt to place very accurate positional constraints on seven gravitationally lensed quasars currently being monitored by the COSMOGRAIL collaboration, and shape parameters for the light distribution of the lensing galaxy. We attempt to determine simple mass models that reproduce the observed configuration and predict time delays. We finally test, for the quads, whether there is evidence of astrometric perturbations produced by substructures in the lensing galaxy, which may preclude a good fit with the simple models. Methods: We apply the iterative MCS deconvolution method to near-IR HST archival data of seven gravitationally lensed quasars. This deconvolution method allows us to differentiate the contributions of the point sources from those of extended structures such as Einstein rings. This method leads to an accuracy of 1-2 mas in the relative positions of the sources and lens. The limiting factor of the method is the uncertainty in the instrumental geometric distortions. We then compute mass models of the lensing galaxy using state-of-the-art modeling techniques. Results: We determine the relative positions of the lensed images and lens shape parameters of seven lensed quasars: HE 0047-1756, RX J1131-1231, SDSS J1138+0314, SDSS J1155+6346, SDSS J1226-0006, WFI J2026-4536, and HS 2209+1914. The lensed image positions are derived with 1-2 mas accuracy. Isothermal and de Vaucouleurs mass models are calculated for the whole sample. The effect of the lens environment on the lens mass models is taken into account with a shear term. Doubly imaged quasars are equally well fitted by each of these models. A large amount of shear is necessary to reproduce SDSS J1155+6346 and SDSS J1226-006. In the latter case, we identify a nearby galaxy as the dominant source of shear. The quadruply imaged quasar SDSS J1138+0314 is reproduced well by simple lens models, which is not the case for the two other quads, RX J1131-1231 and WFI J2026-4536. This might be the signature

  18. Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented

  19. Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Nitz, Alexander H.

    2018-02-01

    ‘Blip glitches’ are a type of short duration transient noise in LIGO data. The cause for the majority of these is currently unknown. Short duration transient noise creates challenges for searches of the highest mass binary black hole systems, as standard methods of applying signal consistency, which look for consistency in the accumulated signal-to-noise of the candidate event, are unable to distinguish many blip glitches from short duration gravitational-wave signals due to similarities in their time and frequency evolution. We demonstrate a straightforward method, employed during Advanced LIGO’s second observing run, including the period of joint observation with the Virgo observatory, to separate the majority of this transient noise from potential gravitational-wave sources. This yields a  ∼20% improvement in the detection rate of high mass binary black hole mergers (> 60 Mȯ ) for the PyCBC analysis.

  20. Gravitational sedimentation of flocculated waste activated sludge.

    PubMed

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  1. Low-Frequency Gravitational-Wave Science with eLISA/ NGO

    NASA Technical Reports Server (NTRS)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; hide

    2011-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  2. Runners do not push off the ground but fall forwards via a gravitational torque.

    PubMed

    Romanov, Nicholas; Fletcher, Graham

    2007-09-01

    The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.

  3. Gravitational Waves from Gravitational Collapse.

    PubMed

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  4. Determining the Ability of Terrestrial Time-Lapse Microgravity Surveying on a Glacier to Find Summer Mass Balance Using Gravitational Modeling

    NASA Astrophysics Data System (ADS)

    Young, Emma V.

    Mass loss of alpine glaciers presently account for about half of the cryospheric contribution to the global sea-level rise. Mass balance of alpine glaciers has predominantly been monitored by; (1) glaciological and hydrological methods, and (2) satellite gravimetric methods using data from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission. However, the former can be logistically costly and have large extrapolation errors: measurements taken at monthly temporal scales are expensive and have a spatial resolution of roughly one kilometer. The latter provides monthly mass-balance estimates of aggregates of alpine glaciers, although the spatial resolution ( 300 km) is far too coarse for assessing individual glaciers' mass balance. Ground-based, time-lapse microgravity measurements can potentially overcome some of the disadvantages of the glaciological, hydrological, and satellite gravitational methods for assessing mass changes and their spatial distribution on a single glacier. Gravity models were utilized to predict the gravity signals of the summer-time mass balance, changes in the seasonal snow cover outside of the glacier, and the vertical gravity gradient (VGG) needed for the free-air correction on Wolverine Glacier, AK. The modeled gravity signal of the summer-time mass balance (average of -0.237 mGal) is more than an order of magnitude larger than the uncertainty of conventional relative gravimeters (+/- 0.007 mGal). Therefore, modeling predict that the time-lapse gravitational method could detect the summer-time mass balance on Wolverine Glacier. The seasonal snow effect was shown to have the greatest influence ( -0.15 mGal) on the outer 100 m boundary of the glacier and minimal effect ( -0.02 mGal) towards the center, both larger than the uncertainty of relative gravimeters. The VGG has a positive deviation, about -0.1 to -0.2 mGal/m, from the normal VGG (-0.309 mGal/m). Thus, seasonal snow effect and VGG need to be correctly accounted

  5. PLANETESIMAL FORMATION BY GRAVITATIONAL INSTABILITY OF A POROUS DUST DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michikos@ccs.tsukuba.ac.jp, E-mail: kokubo@th.nao.ac.jp

    2016-07-10

    It has recently been proposed that porous icy dust aggregates are formed by the pairwise accretion of dust aggregates beyond the snowline. We calculate the equilibrium random velocity of porous dust aggregates, taking into account mutual gravitational scattering, collisions, gas drag, and turbulent stirring and scattering. We find that the disk of porous dust aggregates becomes gravitationally unstable as the aggregates evolve through gravitational compression in the minimum-mass solar nebula model for a reasonable range of turbulence strength, which leads to rapid formation of planetesimals.

  6. Modelling Gravitational Radiation from Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2006-01-01

    The final merger and coalescence of binary black holes is a key source of strong gravitational waves for the LISA mission. Observing these systems will allow us to probe the formation of cosmic structure to high redshifts and test general relativity directly in the strong-field, dynamical regime. Recently, major breakthroughs have been made in modeling black hole mergers using numerical relativity. This talk will survey these exciting developments, focusing on the gravitational waveforms and the recoil kicks produced from non-equal mass mergers.

  7. Limits on a gravitational field dependence of the proton-electron mass ratio from H2 in white dwarf stars.

    PubMed

    Bagdonaite, J; Salumbides, E J; Preval, S P; Barstow, M A; Barrow, J D; Murphy, M T; Ubachs, W

    2014-09-19

    Spectra of molecular hydrogen (H2) are employed to search for a possible proton-to-electron mass ratio (μ) dependence on gravity. The Lyman transitions of H2, observed with the Hubble Space Telescope towards white dwarf stars that underwent a gravitational collapse, are compared to accurate laboratory spectra taking into account the high temperature conditions (T∼13 000  K) of their photospheres. We derive sensitivity coefficients Ki which define how the individual H2 transitions shift due to μ dependence. The spectrum of white dwarf star GD133 yields a Δμ/μ constraint of (-2.7±4.7stat±0.2syst)×10(-5) for a local environment of a gravitational potential ϕ∼10(4) ϕEarth, while that of G29-38 yields Δμ/μ=(-5.8±3.8stat±0.3syst)×10(-5) for a potential of 2×10(4) ϕEarth.

  8. Gravitational Lenses and the Structure and Evolution of Galaxies

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Kochanek, Christopher

    2004-01-01

    During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, The Importance of Einstein Rings, we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. In the second paper, Cusped Mass Models Of Gravitational Lenses, we introduced a new class of lens models. In the third paper, Global Probes of the Impact of Baryons on Dark Matter Halos, we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. The last two papers explore the properties of two lenses in detail. During the second year we have focused more closely on the relationship of baryons and dark matter. In the third year we have been further examining the relationship between baryons and dark matter. In the present year we extended our statistical analysis of lens mass distributions using a self-similar model for the halo mass distribution as compared to the luminous galaxy.

  9. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema

    Damour, Thibault

    2018-05-22

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  10. The gravitational analog of Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Overduin, James

    2015-04-01

    Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.

  11. Gravitational instabilities of superspinars

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Barausse, Enrico; Berti, Emanuele; Cardoso, Vitor

    2010-08-01

    Superspinars are ultracompact objects whose mass M and angular momentum J violate the Kerr bound (cJ/GM2>1). Recent studies analyzed the observable consequences of gravitational lensing and accretion around superspinars in astrophysical scenarios. In this paper we investigate the dynamical stability of superspinars to gravitational perturbations, considering either purely reflecting or perfectly absorbing boundary conditions at the “surface” of the superspinar. We find that these objects are unstable independently of the boundary conditions, and that the instability is strongest for relatively small values of the spin. Also, we give a physical interpretation of the various instabilities that we find. Our results (together with the well-known fact that accretion tends to spin superspinars down) imply that superspinars are very unlikely astrophysical alternatives to black holes.

  12. Gravitational instabilities of superspinars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pani, Paolo; Barausse, Enrico; Berti, Emanuele

    2010-08-15

    Superspinars are ultracompact objects whose mass M and angular momentum J violate the Kerr bound (cJ/GM{sup 2}>1). Recent studies analyzed the observable consequences of gravitational lensing and accretion around superspinars in astrophysical scenarios. In this paper we investigate the dynamical stability of superspinars to gravitational perturbations, considering either purely reflecting or perfectly absorbing boundary conditions at the 'surface' of the superspinar. We find that these objects are unstable independently of the boundary conditions, and that the instability is strongest for relatively small values of the spin. Also, we give a physical interpretation of the various instabilities that we find. Ourmore » results (together with the well-known fact that accretion tends to spin superspinars down) imply that superspinars are very unlikely astrophysical alternatives to black holes.« less

  13. Gravitational radiation and the ultimate speed in Rosen's bimetric theory of gravity

    NASA Technical Reports Server (NTRS)

    Caves, C. M.

    1980-01-01

    In Rosen's bimetric theory of gravity the (local) speed of gravitational radiation is determined by the combined effects of cosmological boundary values and nearby concentrations of matter. It is possible for the speed of gravitational radiation to be less than the speed of light. It is here shown that the emission of gravitational radiation prevents particles of nonzero rest mass from exceeding the speed of gravitational radiation. Observations of relativistic particles place limits on the speed of gravitational radiation and the cosmological boundary values today, and observations of synchroton radiation from compact radio sources place limits on the cosmological boundary values in the past.

  14. Exciting discoveries of strong gravitational lenses from the HSC Survey

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Team 1: Masayuki Tanaka, Kenneth Wong, et al.; Team 2: Chien-Hsiu Lee, Masamune Oguri, et al.

    2017-01-01

    Strong gravitational lenses have numerous applications in astrophysics and cosmology. We expect to discover thousands of strong gravitational lenses from the Hyper Suprime-Cam (HSC) Survey, thanks to its unique combination of deep and wide imaging. I will give highlights on a few interesting gravitational lenses that were discovered recently from early HSC data, for example, the first spectroscopically confirmed double source plane (DSP) lens system dubbed ''Eye of Horus'' and the highest-redshift quadruply-lensed low-luminosity Active Galactic Nucleus (LLAGN).DSP lenses such as ''Eye of Horus'' are even more rare than ordinary lenses but provide tighter constraints on the lens mass distribution and can also be useful to measure cosmological parameters such as Dark Energy and Matter density parameter. The lensed LLAGN discovered recently from HSC is only the second such lens system in our knowledge. LLAGNs are thought to have differentmechanisms driving their nuclear activity compared to their brighter counterparts i.e. quasars. Our knowledge about this abundant but faint population of AGNs is limited to the local universe so far. But lensing magnification will allow studies of distant LLAGNs which should be discovered in large numbers from a deep survey like HSC for the first time. Also, owing to the variable nature of LLAGNs, they could potentially be used as a cosmological probe similar to the lensed quasars.

  15. Migration of Gas Giant Planets in a Gravitationally Unstable Disk

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.

    2017-01-01

    Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.

  16. X ray timing observations and gravitational physics

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.; Wood, Kent S.

    1989-01-01

    Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.

  17. Observing gravitational-wave transient GW150914 with minimal assumptions

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Haas, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ˜600 Mpc . In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of ˜30 M⊙ and a total mass before merger of ˜70 M⊙ in the detector frame.

  18. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    NASA Astrophysics Data System (ADS)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  19. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    PubMed

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  20. Regional Recovery of the Disturbing Gravitational Potential from Satellite Observations of First-, Second- and Third-order Radial Derivatives of the Disturbing Gravitational Potential

    NASA Astrophysics Data System (ADS)

    Novak, P.; Pitonak, M.; Sprlak, M.

    2015-12-01

    Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of a third-order gravitational tensor are currently under investigation, e.g. the gravity-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite observations of first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008. Finally, this contribution also discusses merging a regional solution into a global field as a patchwork.

  1. Modular Gravitational Reference Sensor (MGRS) For Astrophysics and Astronomy

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Buchman, S.; Byer, R. L.; DeBra, D.; Goebel, J.; Allen, G.; Conklin, J.; Gerardi, D.; Higuchi, S.; Leindecker, N.; Lu, P.; Swank, A.; Torres, E.; Trillter, M.; Zoellner, A.

    2009-01-01

    The study of space-time for gravitational wave detection and cosmology beyond Einstein will be an important theme for astrophysics and astronomy in decades to come. Laser Interferometric Space Antenna (LISA) is designed for detecting gravitational wave in space. The Modular Gravitational Reference Sensor (MGRS) is developed as the next generation core instrument for space-time research, including gravitational wave detection beyond LISA, and an array of precision experiments in space. The MGRS provide a stable gravitational cardinal point in space-time by using a test sphere, which eliminates the need for orientation control, minimizing disturbances. The MGRS measures the space-time variation via a two step process: measurement between test mass and housing, and between housings of two spacecraft. Our Stanford group is conducting systematic research and development on the MGRS. Our initial objectives are to gain a system perspective of the MGRS, to develop component technologies, and to establish test platforms. We will review our recent progress in system technologies, optical displacement and angle sensing, diffractive optics, proof mass characterization, UV LED charge management system and space qualification, thermal control and sensor development. Some highlights of our recent results are: Demonstration of the extreme radiation hardness of UV LED which sustained 2 trillion protons per square centimeter; measurement of mass center offset down to 300 nm, and measurement of small angle 0.2 nrad per root hertz using a compact grating angular sensor. The Stanford MGRS program has made exceptional contribution to education of next generation scientists and engineers. We have undergraduate and graduate students in aeronautical and astronautic engineering, applied physics, cybernetics, electrical engineering, mechanical engineering, and physics. We have also housed a number of high school students in our labs for education and public outreach.

  2. The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA)

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas A.; Bolton, Adam J.; Booth, Jeffrey T.; Bullock, James S.; Cheng, Edward; Coe, Dan; Fassnacht, Christopher D.; Gorjian, Varoujan; Heneghan, Cate; Keeton, Charles R.; Kochanek, Christopher S.; Lawrence, Charles R.; Marshall, Philip J.; Metcalf, R. Benton; Natarajan, Priyamvada; Nikzad, Shouleh; Peterson, Bradley M.; Wambsganss, Joachim

    2008-07-01

    Dark matter in a universe dominated by a cosmological constant seeds the formation of structure and is the scaffolding for galaxy formation. The nature of dark matter remains one of the fundamental unsolved problems in astrophysics and physics even though it represents 85% of the mass in the universe, and nearly one quarter of its total mass-energy budget. The mass function of dark matter "substructure" on sub-galactic scales may be enormously sensitive to the mass and properties of the dark matter particle. On astrophysical scales, especially at cosmological distances, dark matter substructure may only be detected through its gravitational influence on light from distant varying sources. Specifically, these are largely active galactic nuclei (AGN), which are accreting super-massive black holes in the centers of galaxies, some of the most extreme objects ever found. With enough measurements of the flux from AGN at different wavelengths, and their variability over time, the detailed structure around AGN, and even the mass of the super-massive black hole can be measured. The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA) is a mission concept for a 1.5-m near-UV through near-IR space observatory that will be dedicated to frequent imaging and spectroscopic monitoring of ~100 multiply-imaged active galactic nuclei over the whole sky. Using wavelength-tailored dichroics with extremely high transmittance, efficient imaging in six channels will be done simultaneously during each visit to each target. The separate spectroscopic mode, engaged through a flip-in mirror, uses an image slicer spectrograph. After a period of many visits to all targets, the resulting multidimensional movies can then be analyzed to a) measure the mass function of dark matter substructure; b) measure precise masses of the accreting black holes as well as the structure of their accretion disks and their environments over several decades of physical scale; and c) measure a

  3. Gravitational radiation, inspiraling binaries, and cosmology

    NASA Technical Reports Server (NTRS)

    Chernoff, David F.; Finn, Lee S.

    1993-01-01

    We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.

  4. Gravitational waves, pulsations, and more : high-speed photometry of low-mass, He-core white dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.

    2013-08-01

    This dissertation is an observational exploration of the exciting physics that can be enabled by high-speed photometric monitoring of extremely low-mass (< 0.25 Msun) white dwarf stars, which are found in some of the most compact binaries known. It includes the cleanest indirect detection of gravitational waves at visible wavelengths, the discovery of pulsations in He-core WDs, the strongest evidence for excited p-mode pulsations in a WD, the discovery of the first tidally distorted WDs and their use to constrain the low-end of the WD mass-radius relationship, and the strongest cases of Doppler beaming observed in a binary system. It is the result of the more than 220 nights spent at McDonald Observatory doing high-speed photometry with the Argos instrument on the 2.1 m Otto Struve telescope, which has led to a number of additional exciting results, including the discovery of an intermediate timescale in the evolution of cooling DA WDs and the discovery of the most massive pulsating WD, which should have an ONe-core and should be highly crystallized.

  5. Gravitational waves from plunges into Gargantua

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  6. An array of correlated atom interferometers to study to study the local fluctuations of the gravitational field and its impact on low fequency gravitational waves observations

    NASA Astrophysics Data System (ADS)

    Bouyer, P.; Canuel, B.; Pelisson, S.; Harms, J.; Bertoldi, A.; Gaffet, S.; Landragin, A.; Lefevre, G.; Riou, I.; Geiger, R.

    2016-12-01

    We will present here the Matter-Wave laser Interferometer Gravitation Antenna, MIGA, a hybrid instrument composed of a network of atom interferometers horizontally aligned and interrogated by the resonant field of an optical cavity. This detector will provide measurements of sub Hertz variations of the gravitational strain tensor. MIGA will bring new methods for geophysics for the characterization of spatial and temporal variations of the local gravity field and will also be a demonstrator for future low frequency Gravitational Wave (GW) detections. The recent first direct observation of gravitational radiation opens the way towards a novel astronomy requires a new class of low frequency Gravitational Wave detectors such as MIGA. Nevertheless, the fluctuations of the Earth gravitational field over different baselines are of high relevance for the functioning of such experiments. Indeed, a fluctuating gravity gradient causes a tidal effect that cannot, in principle, be distinguished from Gravitational Waves.This so-called « Newtonian Noise » is therefore considered up to now as a fundamental limit for any ground based detector and the main reason for restricting future low frequency GW detectors to space. Nevertheless, these two contributions may become discernible by the use of a network of test masses. Indeed, both GW and NN effects will have different spatial signatures over the test mass network. While GW has extremely long characteristic length, NN has shorter characteristic lengths going from the meter to a few kilometers.The array of distant Atom Interferometers in MIGA can be used as network of test masses, which can be correlated using a common laser link. Differential measurements between the atom interferometers of the Network enables for a large reduction of the effect of NN and opens the way towards the realization of low frequency GW detectors.In this paper, we will detail the projection of background NN in the underground environment of the LSBB and

  7. Gravitational waves with dark matter minispikes: The combined effect

    NASA Astrophysics Data System (ADS)

    Yue, Xiao-Jun; Han, Wen-Biao

    2018-03-01

    It was shown that the dark matter (DM) minihalo around an intermediate mass black hole (IMBH) can be redistributed into a cusp, called the DM minispike. We consider an intermediate-mass-ratio inspiral consisting of an IMBH harbored in a DM minispike with nonannihilating DM particles and a small black hole (BH) orbiting around it. We investigate gravitational waves (GWs) produced by this system and analyze the waveforms with the comprehensive consideration of gravitational pull, dynamical friction and accretion of the minispike and calculate the time difference and phase difference caused by it. We find that for a certain range of frequency, the inspiralling time of the system is dramatically reduced for smaller central IMBH and large density of DM. For the central IMBH with 105 M⊙ , the time of merger is ahead, which can be distinguished by LISA, Taiji and Tianqin. We focus on the effect of accretion and compare it with that of gravitational pull and friction. We find that the accretion mass is a small quantity compared to the initial mass of the small BH and the accretion effect is inconspicuous compared with friction. However, the accumulated phase shift caused by accretion is large enough to be detected by LISA, Taiji, and Tianqin, which indicate that the accretion effect can not be ignored in the detection of GWs.

  8. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity

    NASA Astrophysics Data System (ADS)

    Marletto, C.; Vedral, V.

    2017-12-01

    All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons—the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals—is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.

  9. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity.

    PubMed

    Marletto, C; Vedral, V

    2017-12-15

    All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons-the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals-is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.

  10. A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark

    2013-05-20

    The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected withinmore » a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.« less

  11. Data conditioning for gravitational wave detectors: A Kalman filter for regressing suspension violin modes

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel; Mukherjee, Soma

    2001-03-01

    Interferometric gravitational wave detectors operate by sensing the differential light travel time between free test masses. Correspondingly, they are sensitive to anything that changes the physical distance between the test masses, including physical motion of the masses themselves. In ground-based detectors the test masses are suspended as pendula, in order that they be approximately ``free'' above the pendulumn frequency. Still, thermal or other excitations of the suspension wires' violin modes do impart a force on the masses that appears as a strong, albeit narrow-band, ``signal'' in the detectors waveband. Gravitational waves, on the other hand, change the distance between the test masses without disturbing the suspensions. Consequently, violin modes can confound attempts to observe gravitational waves since ``signals'' that are correlated with a disturbance of the suspension violin modes are not likely due to a passing gravitational wave. Here we describe the design of a Kalman filter that determines the time-dependent vibrational state of a detector's suspension ``violin'' modes from time dependent observations of the detector output. From the estimated state we can predict that component of the detector output due to suspension excitations, thermal or otherwise. The wire state can be examined for evidence of suspension disturbances that might, in the absence of such a diagnostic, be mistaken for gravitational wave signals. Additionally, from the wire state we can subtractively remove the contribution from suspension disturbances, thermal or otherwise, from the detector output, leaving a residual free from this instrumental artifact. We demonstrate the filter's effectiveness both through numerical simulations and application to real data taken on the LIGO 40 M prototype detector.

  12. Gravitational Interactions of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    McKeough, James; Robinson, Chloe; Ortiz, Bridget; Hira, Ajit

    2016-03-01

    In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. Funding from National Science Foundation.

  13. Strong gravitational lensing: relativity in action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2010-01-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  14. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  15. Astrometric Observation of MACHO Gravitational Microlensing

    NASA Technical Reports Server (NTRS)

    Boden, A. F.; Shao, M.; Van Buren, D.

    1997-01-01

    This paper discusses the prospects for astrometric observation of MACHO gravitational microlensing events. We derive the expected astrometric observables for a simple microlensing event assuming a dark MACHO, and demonstrate that accurate astrometry can determine the lens mass, distance, and proper motion in a very general fashion.

  16. Gravitational Redshift of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Romero, Alexis; Zubairi, Omair; Weber, Fridolin

    2015-04-01

    Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present and/or the pressure of the matter in the cores of neutron stars is non-isotropic, leading to neutron stars which are deformed. In this work, we investigate the impact of deformation on the gravitational redshift of neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we derive an expression for the gravitational redshift in terms of the mass, radius, and deformity of a neutron star. Numerical solutions for the redshifts of sequences of deformed neutron stars are presented and observational implications are pointed out. This research is funded by the NIH through the Maximizing Access to Research Careers (MARC), under Grant Number: 5T34GM008303-25 and through the National Science Foundation under grant PHY-1411708.

  17. Evaluation of new technologies for the LISA gravitational reference sensor using the UF torsion pendulum

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido

    2016-01-01

    The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.

  18. Scattering of point particles by black holes: Gravitational radiation

    NASA Astrophysics Data System (ADS)

    Hopper, Seth; Cardoso, Vitor

    2018-02-01

    Gravitational waves can teach us not only about sources and the environment where they were generated, but also about the gravitational interaction itself. Here we study the features of gravitational radiation produced during the scattering of a pointlike mass by a black hole. Our results are exact (to numerical error) at any order in a velocity expansion, and are compared against various approximations. At large impact parameter and relatively small velocities our results agree to within percent level with various post-Newtonian and weak-field results. Further, we find good agreement with scaling predictions in the weak-field/high-energy regime. Lastly, we achieve striking agreement with zero-frequency estimates.

  19. On the equilibrium structures of self-gravitating masses of gas containing axisymmetric magnetic fields

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    The general equations describing the equilibrium shapes of self-gravitating gas clouds containing axisymmetric magnetic fields are presented. The general equations admit of a large class of solutions. It is shown that if one additional (ad hoc) asumption is made that the mass be spherically symmetrically distributed, then the gas pressure and the boundary conditions are sufficiently constraining that the general topological structure of the solution is effectively determined. The further assumption of isothermal conditions for this case demands that all solutions possess force-free axisymmetric magnetic fields. It is also shown how the construction of aspherical (but axisymmetric) configurations can be achieved in some special cases, and it is demonstrated that the detailed form of the possible equilibrium shapes depends upon the arbitrary choice of the functional form of the variation of the gas pressure along the field lines.

  20. Quantum metrology for gravitational wave astronomy.

    PubMed

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  1. Apparatus and method for producing an artificial gravitational field

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason (Inventor)

    1993-01-01

    An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.

  2. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case

    NASA Astrophysics Data System (ADS)

    Herrera, L.

    2018-02-01

    We put forward a new definition of complexity, for static and spherically symmetric self-gravitating systems, based on a quantity, hereafter referred to as complexity factor, that appears in the orthogonal splitting of the Riemann tensor, in the context of general relativity. We start by assuming that the homogeneous (in the energy density) fluid, with isotropic pressure is endowed with minimal complexity. For this kind of fluid distribution, the value of complexity factor is zero. So, the rationale behind our proposal for the definition of complexity factor stems from the fact that it measures the departure, in the value of the active gravitational mass (Tolman mass), with respect to its value for a zero complexity system. Such departure is produced by a specific combination of energy density inhomogeneity and pressure anisotropy. Thus, zero complexity factor may also be found in self-gravitating systems with inhomogeneous energy density and anisotropic pressure, provided the effects of these two factors, on the complexity factor, cancel each other. Some exact interior solutions to the Einstein equations satisfying the zero complexity criterium are found, and prospective applications of this newly defined concept, to the study of the structure and evolution of compact objects, are discussed.

  3. Self-gravitating strings in 2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Shahar

    1993-05-01

    We present a family of classical spacetimes in 2+1 dimensions. Such a spacetime is produced by a Nambu-Goto self-gravitating string. Because of the special properties of three-dimensional gravity, the metric is completely described as a Minkowski space with two identified world sheets. In the flat limit, the standard string is recovered. The formalism is developed for an open string with massive end points, but applies to other boundary conditions as well. We consider another limit, where the string tension vanishes in geometrical units but the end masses produce finite deficit angles. In this limit, our open string reduces to the free-masses solution of Gott, which possesses closed timelike curves when the relative motion of the two masses is sufficiently rapid. It is shown that the induced world sheet Liouville mode obeys (-classically)- a sinh- or cosh-Gordon differential equation, which reduces to the Liouville equation in the flat limit. A quadratic-action formulation of this system is presented. The possibility and significance of quantizing the self-gravitating string is discussed.

  4. Binary black holes, gravitational waves, and numerical relativity

    NASA Astrophysics Data System (ADS)

    Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.

    2007-07-01

    The final merger of comparable mass binary black holes produces an intense burst of gravitational radiation and is one of the strongest sources for both ground-based and space-based gravitational wave detectors. Since the merger occurs in the strong-field dynamical regime of general relativity, numerical relativity simulations of the full Einstein equations in 3-D are required to calculate the resulting gravitational dynamics and waveforms. While this problem has been pursued for more than 30 years, the numerical codes have long been plagued by various instabilities and, overall, progress was incremental. Recently, however, dramatic breakthrough have occurred, resulting in robust simulations of merging black holes. In this paper, we examine these developments and the exciting new results that are emerging.

  5. The generation of gravitational waves. III - Derivation of bremsstrahlung formulae

    NASA Technical Reports Server (NTRS)

    Kovacs, S. J.; Thorne, K. S.

    1977-01-01

    Formulas are derived describing the gravitational waves produced by a stellar encounter of the following type. The two stars have stationary (i.e., nonpulsating) nearly Newtonian structures with arbitrary relative masses; they fly past each other with an arbitrary relative velocity; and their impact parameter is sufficiently large that they gravitationally deflect each other through an angle that is small as compared with 90 deg.

  6. Gravitational particle production in braneworld cosmology.

    PubMed

    Bambi, C; Urban, F R

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  7. Information transfer during the universal gravitational decoherence

    NASA Astrophysics Data System (ADS)

    Korbicz, J. K.; Tuziemski, J.

    2017-12-01

    Recently Pikovski et al. (Nat Phys 11:668, 2015) have proposed in an intriguing universal decoherence mechanism, suggesting that gravitation may play a conceptually important role in the quantum-to-classical transition, albeit vanishingly small in everyday situations. Here we analyze information transfer induced by this mechanism. We show that generically on short time-scales, gravitational decoherence leads to a redundant information encoding, which results in a form of objectivization of the center-of-mass position in the gravitational field. We derive the relevant time-scales of this process, given in terms of energy dispersion and quantum Fisher information. As an example we study thermal coherent states and show certain robustness of the effect with the temperature. Finally, we draw an analogy between our objectivization mechanism and the fundamental problem of point individuation in General Relativity as emphasized by the Einstein's Hole argument.

  8. Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-06-01

    Mergers of binary black holes on eccentric orbits are among the targets for second-generation ground-based gravitational-wave detectors. These sources may commonly form in galactic nuclei due to gravitational-wave emission during close flyby events of single objects. We determine the distributions of initial orbital parameters for a population of these gravitational-wave sources. Our results show that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster. For a multi-mass black hole population with masses between 5 {M}ȯ and 80 {M}ȯ , we find that between ∼43–69% (68–94%) of 30 {M}ȯ –30 {M}ȯ (10 M ⊙–10 M ⊙) sources have an eccentricity greater than 0.1 when the gravitational-wave signal reaches 10 Hz, but less than ∼10% of the sources with binary component masses less than 30 {M}ȯ remain eccentric at this level near the last stable orbit (LSO). The eccentricity at LSO is typically between 0.005–0.05 for the lower-mass BHs, and 0.1–0.2 for the highest-mass BHs. Thus, due to the limited low-frequency sensitivity, the six currently known quasicircular LIGO/Virgo sources could still be compatible with this originally highly eccentric source population. However, at the design sensitivity of these instruments, the measurement of the eccentricity and mass distribution of merger events may be a useful diagnostic to identify the fraction of GW sources formed in this channel.

  9. Gravitational Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Jonah Maxwell

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  10. Analysis of Sel-Gravitating Planetary Satellites in the Solar System

    NASA Astrophysics Data System (ADS)

    Yasenev, S. O.

    As of today there have been more than 180 planetary satellites discovered in the Solar system, and the number of outer moons found continues to grow. Most of those natural satellites have insufficient mass and are able to retain their shape only due to the strength of the electromagnetic force. The purpose of this paper is to analyze the moons' physical properties. The analysis of planetary satellites as self-gravitating bodies, i.e. celestial bodies which rely on the weight of their own mass and resulting gravitational force to maintain their shape and tend to bring it closer to the hydrostatic equilibrium, was performed.

  11. Simple Pendulum Determination of the Gravitational Constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Harold V.; Sandia National Laboratories, Albuquerque, New Mexico 87185; Faller, James E.

    We determined the Newtonian constant of gravitation G by interferometrically measuring the change in spacing between two free-hanging pendulum masses caused by the gravitational field from large tungsten source masses. We find a value for G of (6.672 34{+-}0.000 14)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}. This value is in good agreement with the 1986 Committee on Data for Science and Technology (CODATA) value of (6.672 59{+-}0.000 85)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 59, 1121 (1987)] but differs from some more recent determinations as well as the latest CODATA recommendation of (6.674 28{+-}0.000 67)x10{sup -11}more » m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 80, 633 (2008)].« less

  12. Detection by MEGNO of the gravitational resonances between a rotating ellipsoid and a point mass satellite

    NASA Astrophysics Data System (ADS)

    Compère, A.; Lemaître, A.; Delsate, N.

    2012-01-01

    Nowadays the scientific community considers that more than a third of the asteroids are double. The study of the stability of these systems is quite complex, because of their irregular shapes and tumbling rotations, and requires a full body-full body approach. A particular case is analysed here, when the secondary body is sufficiently small and distant from the primary to be considered as a point mass satellite. Gravitational resonances (between the revolution of the satellite and the rotation of the asteroid) of a small body in fast or slow rotation around a rigid ellipsoid are studied. The same model can be used for the motion of a probe around an irregular asteroid. The gravitational potential induced by the primary body is modelled by the MacMillan potential. The stability of the satellite is measured thanks to the MEGNO indicator (Mean Exponential Growth Factor of Nearby Orbits). We present stability maps in the plane {(b/d, c/d)} where d, b, and c are the three semi-axes of the ellipsoid shaping the asteroid. Special stable conic-like curves are detected on these maps and explained by an analytical model, based on a simplification of the MacMillan potential for some specific resonances (1 : 1 and 2 : 1). The efficiency of the MEGNO to detect stability is confirmed.

  13. Strong Gravitational Lensing: Relativity in Action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2009-05-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a "relativistic eclipse" as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated since: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications -- with both photometric and astrometric signatures of lensing being discussed -- will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  14. Gravbox - The First Augmented Reality Sandbox for Gravitational Dynamics

    NASA Astrophysics Data System (ADS)

    Isbell, Jacob; Deam, Sophie; Reed, Mason; Bettis, Wyatt; Lu, Jianbo; Luppen, Zachary; Maier, Erin; McCurdy, Ross; Moore, Sadie; Fu, Hai

    2018-01-01

    Gravitational effects are an overarching theme in astronomy education, yet existing classroom demonstrations are insufficient in elucidating complex gravitational interactions. Inspired by the augmented reality (AR) sandbox developed by geologists, we have developed Gravbox, the first AR sandbox to demonstrate gravitational dynamics. The arbitrary topography of the sand surface represents the mass distribution of a two-dimensional universe. The computer reads the topography with a Kinect camera, calculates the orbit of a test particle with user-defined position and velocity, and projects the topography contour map and orbit animation with an overhead projector, all within a duty cycle of one second. This creates an interactive and intuitive tool to help students at all levels understand gravitational effects. In this contribution, we will describe the development of the Gravbox prototype and show its current capabilities. The Gravbox software will be publicly available along with a building tutorial.

  15. PROSPECTS FOR MEASURING THE MASS OF BLACK HOLES AT HIGH REDSHIFTS WITH RESOLVED KINEMATICS USING GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar D.

    2014-08-20

    Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20%more » of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.« less

  16. Polarizations of gravitational waves in Horndeski theory

    NASA Astrophysics Data System (ADS)

    Hou, Shaoqi; Gong, Yungui; Liu, Yunqi

    2018-05-01

    We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einstein's General Relativity, there is one more polarization state which is the mixture of the transverse breathing and longitudinal polarizations. The additional mode is excited by the massive scalar field. In the massless limit, the longitudinal polarization disappears, while the breathing one persists. The upper bound on the graviton mass severely constrains the amplitude of the longitudinal polarization, which makes its detection highly unlikely by the ground-based or space-borne interferometers in the near future. However, pulsar timing arrays might be able to detect the polarization excited by the massive scalar field. Since additional polarization states appear in alternative theories of gravity, the measurement of the polarizations of gravitational waves can be used to probe the nature of gravity. In addition to the plus and cross states, the detection of the breathing polarization means that gravitation is mediated by massless spin 2 and spin 0 fields, and the detection of both the breathing and longitudinal states means that gravitation is propagated by the massless spin 2 and massive spin 0 fields.

  17. Gravitational polarizability of black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damour, Thibault; Lecian, Orchidea Maria; APC, UMR 7164 du CNRS, Universite Paris 7, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  18. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    PubMed

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  19. The Electrostatic Gavimeter: An Alternative Way of Measuring Gravitational Acceleration

    NASA Astrophysics Data System (ADS)

    Kashinski, David

    2005-03-01

    In the past, Earth’s gravitational acceleration g has been measured in many ways, including the use of a pendulum as well as other models involving the use of a mass and a spring. We have designed a new method incorporating a spring with a capacitor and a voltmeter. This capacitor model still uses a hanging mass on a spring, but alters the method of determining the change in position of the spring due to the gravitational acceleration. We relate the change in position to the potential difference across the capacitor needed to cause a discharge through parallel plates. By relating this voltage directly to the gravitaional acceleration,a new method of measuring g is obtained.

  20. Outlook for Detecting Gravitational Waves with Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic

  1. The string soundscape at gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, Isabel; Krippendorf, Sven; March-Russell, John

    2018-04-01

    We argue that gravitational wave signals due to collisions of ultra-relativistic bubble walls may be common in string theory. This occurs due to a process of post-inflationary vacuum decay via quantum tunnelling. Though we study a specific string construction involving warped throats, we argue that our conclusions are more general. Many such transitions could have occurred in the post-inflationary Universe, as a large number of throats with exponentially different mass scales can be present in the string landscape, leading to several signals of widely different frequencies - a soundscape connected to the landscape of vacua. Detectors such as aLIGO/VIRGO, LISA, and pulsar timing observations with SKA and EPTA have the sensitivity to detect such signals. A distribution of primordial black holes is also a likely consequence, though reliable estimates of masses and their abundance require dedicated numerical simulations, as do the fine details of the gravitational wave spectrum due to the unusual nature of the transition.

  2. First detections of gravitational waves emitted from binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Reitze, D. H.

    2017-11-01

    The LIGO Scientific Collaboration and the Virgo Collaboration carried out the inaugural ‘O1’ observing run from September 12, 2015 through January 19, 2016 using the newly commissioned Advanced LIGO interferometers located in Hanford,WAand Livingston, LA. During theO1 run and the O2 run currently underway, three definitive detections of gravitational waves have occurred, each produced during the mergers of binary stellar mass black holes. A fourth candidate gravitational-wave event was identified, also likely produced from a binary black hole merger. The detected gravitational waveforms allow for the inference of the intrinsic astrophysical parameters of the merging binary systems, as well as the resulting black hole produced by the mergers. The first detect detections of gravitational waves confirm the existence of binary black hole systems and have profound implications for astrophysics using gravitational waves as a new and powerful probe of the universe.

  3. Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-11-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  4. Gravitational Collapse with Heat Flux and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Ahmad, Zahid; Ahmed, Qazi Zahoor; Awan, Abdul Sami

    2013-10-01

    In this paper, we investigated the cylindrical gravitational collapse with heat flux by considering the appropriate geometry of the interior and exterior spacetimes. For this purpose, we matched collapsing fluid to an exterior containing gravitational waves.The effects of heat flux on gravitational collapse are investigated and matched with the results obtained by Herrera and Santos (Class. Quantum Gravity 22:2407, 2005).

  5. Gravitational lens modelling in a citizen science context

    NASA Astrophysics Data System (ADS)

    Küng, Rafael; Saha, Prasenjit; More, Anupreeta; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Surhud; Odermatt, Jonas; Verma, Aprajita; Wilcox, Julianne K.

    2015-03-01

    We develop a method to enable collaborative modelling of gravitational lenses and lens candidates, that could be used by non-professional lens enthusiasts. It uses an existing free-form modelling program (GLASS), but enables the input to this code to be provided in a novel way, via a user-generated diagram that is essentially a sketch of an arrival-time surface. We report on an implementation of this method, SpaghettiLens, which has been tested in a modelling challenge using 29 simulated lenses drawn from a larger set created for the Space Warps citizen science strong lens search. We find that volunteers from this online community asserted the image parities and time ordering consistently in some lenses, but made errors in other lenses depending on the image morphology. While errors in image parity and time ordering lead to large errors in the mass distribution, the enclosed mass was found to be more robust: the model-derived Einstein radii found by the volunteers were consistent with those produced by one of the professional team, suggesting that given the appropriate tools, gravitational lens modelling is a data analysis activity that can be crowd-sourced to good effect. Ideas for improvement are discussed; these include (a) overcoming the tendency of the models to be shallower than the correct answer in test cases, leading to systematic overestimation of the Einstein radius by 10 per cent at present, and (b) detailed modelling of arcs.

  6. Relativistic dynamics and extreme mass ratio inspirals.

    PubMed

    Amaro-Seoane, Pau

    2018-01-01

    It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes-how some of them grow by orders of magnitude in mass-lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.

  7. Probing Black Holes With Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2006-09-01

    Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.

  8. How to test gravitation theories by means of gravitational-wave measurements

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1974-01-01

    Gravitational-wave experiments are a potentially powerful tool for testing gravitation theories. Most theories in the literature predict rather different polarization properties for gravitational waves than are predicted by general relativity; and many theories predict anomalies in the propagation speeds of gravitational waves.

  9. Gravitational vacuum condensate stars.

    PubMed

    Mazur, Pawel O; Mottola, Emil

    2004-06-29

    A new final state of gravitational collapse is proposed. By extending the concept of Bose-Einstein condensation to gravitational systems, a cold, dark, compact object with an interior de Sitter condensate p(v) = -rho(v) and an exterior Schwarzschild geometry of arbitrary total mass M is constructed. These regions are separated by a shell with a small but finite proper thickness l of fluid with equation of state p = +rho, replacing both the Schwarzschild and de Sitter classical horizons. The new solution has no singularities, no event horizons, and a global time. Its entropy is maximized under small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of the order k(B)lMc/Planck's over 2 pi, instead of the Bekenstein-Hawking entropy formula, S(BH) = 4 pi k(B)GM(2)/Planck's over 2 pi c. Hence, unlike black holes, the new solution is thermodynamically stable and has no information paradox.

  10. Efficiency of ETV diagrams as diagnostic tools for long-term period variations. II. Non-conservative mass transfer, and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H.

    2015-03-01

    Context. The credibility of an eclipse timing variation (ETV) diagram analysis is investigated for various manifestations of the mass transfer and gravitational radiation processes in binary systems. The monotonicity of the period variations and the morphology of the respective ETV diagrams are thoroughly explored in both the direct impact and the accretion disk mode of mass transfer, accompanied by different types of mass and angular momentum losses (through a hot-spot emission from the gainer and via the L2/L3 points). Aims: Our primary objective concerns the traceability of each physical mechanism by means of an ETV diagram analysis. Also, possible critical mass ratio values are sought for those transfer modes that involve orbital angular momentum losses strong enough to dictate the secular period changes even when highly competitive mechanisms with the opposite direction act simultaneously. Methods: The dot{J-dot{P}} relation that governs the orbital evolution of a binary system is set to provide the exact solution for the period and the function expected to represent the subsequent eclipse timing variations. The angular momentum transport is parameterized through appropriate empirical relations, which are inferred from semi-analytical ballistic models. Then, we numerically determine the minimum temporal range over which a particular mechanism is rendered measurable, as well as the critical mass ratio values that signify monotonicity inversion in the period modulations. Results: Mass transfer rates comparable to or greater than 10-8 M⊙ yr-1 are measurable for typical noise levels of the ETV diagrams, regardless of whether the process is conservative. However, the presence of a transient disk around the more massive component defines a critical mass ratio (qcr ≈ 0.83) above which the period turns out to decrease when still in the conservative regime, rendering the measurability of the anticipated variations a much more complicated task. The effects of

  11. GRAVITATIONAL WAVE EXTRACTION FROM AN INSPIRALING CONFIGURATION OF MERGING BLACK HOLES

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Dae-Il, Choi; Koppitz, Michael; van Meter, James

    2005-01-01

    We present new techniques for evolving binary black hole systems which allow the accurate determination of gravitational waveforms directly from the wave zone region of the numerical simulations. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and and good conservation of mass-energy, with just over 3% of the system s mass converted to gravitational radiation.

  12. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Bailes, M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Carullo, G.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dudi, R.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leon, E.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Molina, I.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Nagar, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-10-01

    On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 ×104 years . We infer the component masses of the binary to be between 0.86 and 2.26 M⊙ , in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17 - 1.60 M⊙ , with the total mass of the system 2.7 4-0.01+0.04M⊙ . The source was localized within a sky region of 28 deg2 (90% probability) and had a luminosity distance of 4 0-14+8 Mpc , the closest and most precisely localized gravitational-wave signal yet. The association with the γ -ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ -ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

  13. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Bailes, M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Barthelmy, S D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bernuzzi, S; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Carullo, G; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Dietrich, T; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dudi, R; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Ho, W C G; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Kastaun, W; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Larson, S L; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leon, E; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Liu, X; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Marsh, P; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Molina, I; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morisaki, S; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Nagar, A; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, P; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zimmerman, A B; Zucker, M E; Zweizig, J

    2017-10-20

    On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4}  years. We infer the component masses of the binary to be between 0.86 and 2.26  M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60  M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28  deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8}  Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

  14. Testing cosmogonic models with gravitational lensing.

    PubMed

    Wambsganss, J; Cen, R; Ostriker, J P; Turner, E L

    1995-04-14

    Gravitational lensing provides a strict test of cosmogonic models because it is directly sensitive to mass inhomogeneities. Detailed numerical propagation of light rays through a universe that has a distribution of inhomogeneities derived from the standard CDM (cold dark matter) scenario, with the aid of massive, fully nonlinear computer simulations, was used to test the model. It predicts that more widely split quasar images should have been seen than were actually found. These and other inconsistencies rule out the Cosmic Background Explorer (COBE)-normalized CDM model with density parameter Omega = 1 and the Hubble constant (H(o)) = 50 kilometers second(-1) megaparsec(-1); but variants of this model might be constructed, which could pass the stringent tests provided by strong gravitational lensing.

  15. Bondi mass with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Saw, Vee-Liem

    2018-04-01

    The mass loss of an isolated gravitating system due to energy carried away by gravitational waves with a cosmological constant Λ ∈R was recently worked out, using the Newman-Penrose-Unti approach. In that same article, an expression for the Bondi mass of the isolated system, MΛ, for the Λ >0 case was proposed. The stipulated mass MΛ would ensure that in the absence of any incoming gravitational radiation from elsewhere the emitted gravitational waves must carry away a positive-definite energy. That suggested quantity, however, introduced a Λ -correction term to the Bondi mass MB (where MB is the usual Bondi mass for asymptotically flat spacetimes), which would involve information not just on the state of the system at that moment but ostensibly also its past history. In this paper, we derive the identical mass-loss equation using an integral formula on a hypersurface formulated by Frauendiener based on the Nester-Witten identity and argue that one may adopt a generalization of the Bondi mass with Λ ∈R without any correction, viz., MΛ=MB for any Λ ∈R . Furthermore, with MΛ=MB, we show that for purely quadrupole gravitational waves given off by the isolated system (i.e., when the "Bondi news" σo comprises only the l =2 components of the spherical harmonics with spin-weight 2) the energy carried away is manifestly positive definite for the Λ >0 case. For a general σo having higher multipole moments, this perspicuous property in the Λ >0 case still holds if those l >2 contributions are weak—more precisely, if they satisfy any of the inequalities given in this paper.

  16. Gravitational waves from vacuum first-order phase transitions: From the envelope to the lattice

    NASA Astrophysics Data System (ADS)

    Cutting, Daniel; Hindmarsh, Mark; Weir, David J.

    2018-06-01

    We conduct large scale numerical simulations of gravitational wave production at a first-order vacuum phase transition. We find a power law for the gravitational wave power spectrum at high wave number which falls off as k-1.5 rather than the k-1 produced by the envelope approximation. The peak of the power spectrum is shifted to slightly lower wave numbers from that of the envelope approximation. The envelope approximation reproduces our results for the peak power less well, agreeing only to within an order of magnitude. After the bubbles finish colliding, the scalar field oscillates around the true vacuum. An additional feature is produced in the UV of the gravitational wave power spectrum, and this continues to grow linearly until the end of our simulation. The additional feature peaks at a length scale close to the bubble wall thickness and is shown to have a negligible contribution to the energy in gravitational waves, providing the scalar field mass is much smaller than the Planck mass.

  17. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  18. Gravitational collapse and rotation. II - Gravitational radiation and reduction of the a/m ratio

    NASA Astrophysics Data System (ADS)

    de Felice, F.; Miller, J. C.; Yu, Y.

    1985-11-01

    During collapse of a nonaxisymmetric rotating ellipsoid, gravitational radiation causes a loss of mass M and angular momentum J. Their combined effect on the behavior of the ratio a/m = cJ/GM2 is investigated for constant density models within a post-Newtonian scheme, and it is found that whenever the value of the ratio is initially greater than 1, it tends toward 1 as the configuration approaches the black hole limit.

  19. High-energy gravitational scattering and the general relativistic two-body problem

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2018-02-01

    A technique for translating the classical scattering function of two gravitationally interacting bodies into a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D 94, 104015 (2016), 10.1103/PhysRevD.94.104015]. Using this technique, we derive, for the first time, to second-order in Newton's constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect our classical results to the quantum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.

  20. Convergence Studies of Mass Transport in Disks with Gravitational Instabilities. I. The Constant Cooling Time Case

    NASA Astrophysics Data System (ADS)

    Michael, Scott; Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C.

    2012-02-01

    We conduct a convergence study of a protostellar disk, subject to a constant global cooling time and susceptible to gravitational instabilities (GIs), at a time when heating and cooling are roughly balanced. Our goal is to determine the gravitational torques produced by GIs, the level to which transport can be represented by a simple α-disk formulation, and to examine fragmentation criteria. Four simulations are conducted, identical except for the number of azimuthal computational grid points used. A Fourier decomposition of non-axisymmetric density structures in cos (mphi), sin (mphi) is performed to evaluate the amplitudes Am of these structures. The Am , gravitational torques, and the effective Shakura & Sunyaev α arising from gravitational stresses are determined for each resolution. We find nonzero Am for all m-values and that Am summed over all m is essentially independent of resolution. Because the number of measurable m-values is limited to half the number of azimuthal grid points, higher-resolution simulations have a larger fraction of their total amplitude in higher-order structures. These structures act more locally than lower-order structures. Therefore, as the resolution increases the total gravitational stress decreases as well, leading higher-resolution simulations to experience weaker average gravitational torques than lower-resolution simulations. The effective α also depends upon the magnitude of the stresses, thus αeff also decreases with increasing resolution. Our converged αeff is consistent with predictions from an analytic local theory for thin disks by Gammie, but only over many dynamic times when averaged over a substantial volume of the disk.

  1. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    NASA Astrophysics Data System (ADS)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  2. Gravitational self-force on generic bound geodesics in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    van de Meent, Maarten

    2018-05-01

    In this work we present the first calculation of the gravitational self-force on generic bound geodesics in Kerr spacetime to first order in the mass ratio. That is, the local correction to equations of motion for a compact object orbiting a larger rotating black hole due to its own impact on the gravitational field. This includes both dissipative and conservative effects. Our method builds on and extends earlier methods for calculating the gravitational self-force on equatorial orbits. In particular we reconstruct the local metric perturbation in the outgoing radiation gauge from the Weyl scalar ψ4 , which in turn is obtained by solving the Teukolsky equation using semianalytical frequency domain methods. The gravitational self-force is subsequently obtained using (spherical) l -mode regularization. We test our implementation by comparing the large l -behavior against the analytically known regularization parameters. In addition we validate our results by comparing the long-term average changes to the energy, angular momentum, and Carter constant to changes to these constants of motion inferred from the gravitational wave flux to infinity and down the horizon.

  3. Regional recovery of the disturbing gravitational potential by inverting satellite gravitational gradients

    NASA Astrophysics Data System (ADS)

    Pitoňák, Martin; Šprlák, Michal; Hamáčková, Eliška; Novák, Pavel

    2016-04-01

    Regional recovery of the disturbing gravitational potential in the area of Central Europe from satellite gravitational gradients data is discussed in this contribution. The disturbing gravitational potential is obtained by inverting surface integral formulas which transform the disturbing gravitational potential onto disturbing gravitational gradients in the spherical local north-oriented frame. Two numerical approaches that solve the inverse problem are considered. In the first approach, the integral formulas are rigorously decomposed into two parts, that is, the effects of the gradient data within near and distant zones. While the effect of the near zone data is sought as an inverse problem, the effect of the distant zone data is synthesized from the global gravitational model GGM05S using spectral weights given by truncation error coefficients up to the degree 150. In the second approach, a reference gravitational field up to the degree 180 is applied to reduce and smooth measured gravitational gradients. In both cases we recovered the disturbing gravitational potential from each of the four well-measured gravitational gradients of the GOCE satellite separately as well as from their combination. Obtained results are compared with the EGM2008, DIR-r2, TIM-r2 and SPW-r2 global gravitational models. The best fit was achieved for EGM2008 and the second approach combining all four well-measured gravitational gradients with rms of 1.231 m2 s-2.

  4. Relativistic dynamics and extreme mass ratio inspirals

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau

    2018-05-01

    It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes—how some of them grow by orders of magnitude in mass—lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.

  5. Nonstandard gravitational waves imply gravitational slip: On the difficulty of partially hiding new gravitational degrees of freedom

    NASA Astrophysics Data System (ADS)

    Sawicki, Ignacy; Saltas, Ippocratis D.; Motta, Mariele; Amendola, Luca; Kunz, Martin

    2017-04-01

    In many generalized models of gravity, perfect fluids in cosmology give rise to gravitational slip. Simultaneously, in very broad classes of such models, the propagation of gravitational waves is altered. We investigate the extent to which there is a one-to-one relationship between these two properties in three classes of models with one extra degree of freedom: scalar (Horndeski and beyond), vector (Einstein-aether), and tensor (bimetric). We prove that in bimetric gravity and Einstein-aether, it is impossible to dynamically hide the gravitational slip on all scales whenever the propagation of gravitational waves is modified. Horndeski models are much more flexible, but it is nonetheless only possible to hide gravitational slip dynamically when the action for perturbations is tuned to evolve in time toward a divergent kinetic term. These results provide an explicit, theoretical argument for the interpretation of future observations if they disfavored the presence of gravitational slip.

  6. Local and global gravitational aspects of domain wall space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetic, M.; Griffies, S.; Soleng, H.H.

    1993-09-15

    Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between nonequal and nonpositive cosmological constants on each side of the wall. The assumption of homogeneity, isotropy, and geodesic completeness of the space-time intrinsic to the wall as described in the comoving coordinate system and the constraint that the same symmetries hold in hypersurfaces parallel to the wall yield a general [ital Ansatz] for the line element of space-time. We restrict the problem further by demanding that the wall's surface energy density, [sigma], is positive and by requiring that the infinitely thinmore » wall represents a thin-wall limit of kinklike scalar field configuration. These vacuum domain walls fall in three classes depending on the value of their [sigma]: (1) extreme walls with [sigma]=[sigma][sub ext] are planar, static walls corresponding to supersymmetric configurations, (2) nonextreme walls with [sigma]=[sigma][sub non][gt][sigma][sub ext] correspond to expanding bubbles with observers on either side of the wall being [ital inside] the bubble, and (3) ultraextreme walls with [sigma]=[sigma][sub ultra][lt][sigma][sub ext] represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, nonextreme, and ultraextreme walls exhibit no, repulsive, and attractive effective gravitational forces,'' respectively. These gravitational forces'' are global effects not caused by local curvature. Since the nonextreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessible to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe.« less

  7. Gravitational Lensing by Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Tyson, J.; Murdin, P.

    2000-11-01

    CLUSTERS OF GALAXIES are massive and relatively rare objects containing hundreds of galaxies. Their huge mass—dominated by DARK MATTER—bends light from all background objects, systematically distorting the images of thousands of distant galaxies (shear). This observed gravitational lens distortion can be inverted to produce an `image' of the mass in the foreground cluster of galaxies. Most of the...

  8. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less

  9. Can Disks Produce Companions by Gravitational Fragmentation?

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.

    The nonlinear outcome of gravitational instabilities in disks depends critically on the thermal physics of the gas. Under conditions where thermal energy is lost efficiently, disks disrupt into dense arms, arclets, and clumps. However, the evidence about whether clumps can ever become permanent bound objects is currently inconclusive. Under conditions where cooling is less efficient or where a balance between heating and cooling is achieved, the amplitudes reached by gravitational instabilities are relatively modest. The result is disk heating and transport of mass and angular momentum rather than condensation of bound companions. Future numerical simulations need to resolve the disk vertical structure and include more realistic equations of state and energy transport.

  10. Gravitational Instabilities in Disks with Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Mejía, A. C.; Durisen, R. H.; Pickett, B. K.

    Previous simulations of self-gravitating protoplanetary disks by our group have shown that, once developed, gravitational instabilities are enhanced by cooling the disk constantly during its evolution (Pickett et al. 2002). These earlier calculations included a very simple form of volumetric cooling which acted against the stabilizing effects of shock heating. The present work incorporates more realistic treatments of energy transport. The initial disk model extends from 2.3 to 40 AU, has a mass of 0.07 M⊙, and orbits a 0.5 M⊙ star. The models evolve for a period of over 2500 years, during which the structure of the disks is profoundly altered, transient clumps form in one case, but no permanent bound companion objects develop.

  11. Space gravitational wave detector DECIGO/pre-DECIGO

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru

    2017-09-01

    The gravitational wave (GW) is ripples in gravitational fields caused by the motion of mass such as inspiral and merger of blackhole binaries or explosion of super novae, which was predicted by A.Einstein in his general theory of relativity. In Japan, besides the ground-base GW detector, KAGRA, the space gravitational wave detector, DECIGO, is also promoted for detecting GW at lower frequency range. DECIGO (DECi-heltz Gravitational-wave Observatory) consists of 3 satellites, forming a 1000-km triangle-shaped Fabry-Perot laser interferometer whose designed strain sensitivity is ?l/l < 10-24 /?Hz at the observation band between 0.1 and 1 Hz, and is planed to be launched in 2030s. Before launching DECIGO, we planned a milestone mission for DECIGO named Pre-DECIGO, which has almost the same configuration as DECIGO with shorter arm length of 100 km. Pre-DECIGO is aimed for detecting GW from merger of blackhole binaries with less sensitivity as DECIGO, and also for feasibility test of key technologies for realizing DECIGO. Pre-DECIGO is now under designing and developing for launching in late 2020s, with the financial support of JAXA and JSPS. In our presentation, we will review DECIGO project, and show the design and current status of Pre-DECIGO.

  12. Constraints on Lorentz violation from gravitational Cerenkov radiation

    DOE PAGES

    Kostelecký, V. Alan; Tasson, Jay D.

    2015-08-31

    Limits on gravitational Cerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. As a result, prospects aremore » discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Cerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Cerenkov radiation by gravitons.« less

  13. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C., E-mail: ngoldbau@illinois.edu

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 andmore » leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.« less

  14. Report from the Gravitational Observatory Advisory Team

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Gravitational Observatory Advisory Team

    2016-03-01

    As a response to the selection of the Gravitational Universe as the science theme for ESA's L3 mission, ESA formed the Gravitational-Wave Observatory Advisory Team (GOAT) to advise ESA on the scientific and technological approach for a gravitational wave observatory. NASA is participating with three US scientists and one NASA observer; JAXA was also invited and participates with one observer. The GOAT looked at a range of mission technologies and designs, discussed their technical readiness with respect to the ESA schedule, recommended technology development activities for selected technologies, and worked with the wider gravitational-wave community to analyze the impact on the science of the various mission designs. The final report is expected to be submitted to ESA early March and I plan to summarize its content.

  15. Limits on the power-law mass and luminosity density profiles of elliptical galaxies from gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Yao, Meng; Zhu, Zong-Hong

    2016-09-01

    We use 118 strong gravitational lenses observed by the SLACS, BOSS emission-line lens survey (BELLS), LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light tracers) in elliptical galaxies up to redshift z ˜ 1. Assuming power-law density profiles for the total mass density, ρ = ρ0(r/r0)-α, and luminosity density, ν = ν0(r/r0)-δ, we investigate the power-law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitting cosmology as a prior, we find γ = 2.132 ± 0.055 with a mild trend ∂γ/∂zl = -0.067 ± 0.119 when α = δ = γ, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions indicate the need of treating low-, intermediate- and high-mass galaxies separately. Allowing δ to be a free parameter, we obtain α = 2.070 ± 0.031, ∂α/∂zl = -0.121 ± 0.078 and δ = 2.710 ± 0.143. The model in which mass traces light is rejected at >95 per cent confidence, and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies (200 km s-1 <σap ≤ 300 km s-1) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.

  16. Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae

    NASA Astrophysics Data System (ADS)

    Marek, A.; Janka, H.-T.; Müller, E.

    2009-03-01

    wave production around 100 Hz. Later they are instigated by the SASI and by convective overturn that vigorously stir the neutrino-heating and cooling layers, and also by convective activity developing below the neutrinosphere. The gravitational-wave power then peaks at about 300-800 Hz, connected to changes in the mass quadrupole moment on a timescale of milliseconds. Distinctively higher spectral frequencies originate from the more compact and more rapidly contracting neutron star. Both the neutrino and gravitational-wave emission therefore carry information that is characteristic of the properties of the nuclear equation of state in the hot remnant. The detectability of the SASI effects in the neutrino and gravitational-wave signals is briefly discussed.

  17. The electric field induced by a gravitational wave in a superconductor - A principle for a new gravitational wave antenna

    NASA Technical Reports Server (NTRS)

    Peng, Huei; Torr, Douglas G.

    1990-01-01

    This paper investigates the effect of gravitational waves on a superconductor. It is found that the key properties of a superconductor, namely zero resistance and perfect diamagnetism, give rise to an important new effect, the presence of an induced electric field E in the interior of the superconductor. The E field reacts with the ions and superelectrons. It is argued that the induced E field might provide a significantly more sensitive means of detecting gravitational waves. It appears likely that existing resonant-mass superconducting antennas with L about 3m, Q about 10 to the 8th could be readily modified to detect E fields induced by GWs of dimensionless amplitude h about 10 to the -24th.

  18. Gravitating toward Science: Parent-Child Interactions at a Gravitational-Wave Observatory

    ERIC Educational Resources Information Center

    Szechter, Lisa E.; Carey, Elizabeth J.

    2009-01-01

    This research examined the nature of parent-child conversations at an informal science education center housed in an active gravitational-wave observatory. Each of 20 parent-child dyads explored an interactive exhibit hall privately, without the distraction of other visitors. Parents employed a variety of strategies to support their children's…

  19. Lectures on gravitation

    NASA Astrophysics Data System (ADS)

    Das, Ashok

    1. Basics of geometry and relativity. 1.1. Two dimensional geometry. 1.2. Inertial and gravitational masses. 1.3. Relativity -- 2. Relativistic dynamics. 2.1. Relativistic point particle. 2.2. Current and charge densities. 2.3. Maxwell's equations in the presence of sources. 2.4. Motion of a charged particle in EM field. 2.5. Energy-momentum tensor. 2.6. Angular momentum -- 3. Principle of general covariance. 3.1. Principle of equivalence. 3.2. Principle of general covariance. 3.3. Tensor densities -- 4. Affine connection and covariant derivative. 4.1. Parallel transport of a vector. 4.2. Christoffel symbol. 4.3. Covariant derivative of contravariant tensors. 4.4. Metric compatibility. 4.5. Covariant derivative of covariant and mixed tensors. 4.6. Electromagnetic analogy. 4.7. Gradient, divergence and curl -- 5. Geodesic equation. 5.1. Covariant differentiation along a curve. 5.2. Curvature from derivatives. 5.3. Parallel transport along a closed curve. 5.4. Geodesic equation. 5.5. Derivation of geodesic equation from a Lagrangian -- 6. Applications of the geodesic equation. 6.1. Geodesic as representing gravitational effect. 6.2. Rotating coordinate system and the Coriolis force. 6.3. Gravitational red shift. 6.4. Twin paradox and general covariance. 6.5. Other equations in the presence of gravitation -- 7. Curvature tensor and Einstein's equation. 7.1. Curvilinear coordinates versus gravitational field. 7.2. Definition of an inertial coordinate frame. 7.3. Geodesic deviation. 7.4. Properties of the curvature tensor. 7.5. Einstein's equation. 7.6. Cosmological constant. 7.7. Initial value problem. 7.8. Einstein's equation from an action -- 8. Schwarzschild solution. 8.1. Line element. 8.2. Connection. 8.3. Solution of the Einstein equation. 8.4. Properties of the Schwarzschild solution. 8.5. Isotropic coordinates -- 9. Tests of general relativity. 9.1. Radar echo experiment. 9.2. Motion of a particle in a Schwarzschild background. 9.3. Motion of light rays in a

  20. A new formula of the Gravitational Curvature for the prism

    NASA Astrophysics Data System (ADS)

    Grazia D'Urso, Maria

    2017-04-01

    Gravitational Curvatures (GC) are the components of the third-order gravitational tensor and physically represent the rate of change of the gravity gradient. While scalar, vector and second-order tensor quantities of the Earth's gravitational field have extensively been studied and their properties have been well understood [1], the first successful terrestrial measurements of the third-order vertical gravitational gradients have been recently performed in [2] by atom interferometry sensors in laboratory environment. Possible benefits of the airborne third-order gravitational gradients for exploration geophysics are discussed in [3] while Brieden et al. (2010) [4] have proposed a new satellite mission called OPTical Interferometry for global Mass change detection from space (OPTIMA) sensing the third-order gravitational gradients in space. Moreover, exploitation of GC for modelling the Earth's gravitational field has been object of recent studies [5-7]. We extend the approach presented by the author in previous papers [8-10] by evaluating the algebraic expression of the third-order gravitational tensor for a prism. Comparisons with previous results [11-12] are also included. [1] Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. In: Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin [2] Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001 [3] Di Francesco D, Meyer T, Christensen A, FitzGerald D (2009) Gravity gradiometry - today and tomorrow. In: 11th SAGA Biennial technical meeting and exhibition, 13-18 September 2009, Switzerland, pp 80-83 [4] Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA - novelties and benefit. In: Geotechnologien science report No. 17, Potsdam, pp 134-139 [5] Šprlák M, Novák P (2015) Integral

  1. Birth and initial developments of experiments with resonant detectors searching for gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    2016-12-01

    A history of the experiments for the search of gravitational waves, with emphasis on the experiments made by the Rome group, is given. The search for gravitational waves was initiated by the brilliant scientific acumen of Joseph Weber. In this paper we start from the early times of the resonant detectors at room temperature and continue with the cryogenic resonant detectors: STANFORD, ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE. These cryogenic detectors reached a sensitivity able to observe gravitational waves generated by the conversion of about 0.001 solar masses in the Galaxy. This was an improvement by a factor of a few thousand in energy with respect to the early room temperature experiments. No clear signals due to gravitational waves have been observed with this technique. This research, that has lasted four decades, has paved the way to the more sensitive detectors for gravitational waves, the long-arm laser interferometers, which announced, on February 12th 2016, the first observation of gravitational waves.

  2. Predicting gravitational lensing by stellar remnants

    NASA Astrophysics Data System (ADS)

    Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.

    2018-03-01

    Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.

  3. Numerical Simulation of Self-gravitational Instability of Isothermal Gaseous Slab Under High External Pressure

    NASA Astrophysics Data System (ADS)

    Miyaji, S.; Umekawa, M.; Matsumoto, R.; Yoshida, T.

    1996-05-01

    Gaseous slab is formed with shock waves from super novae, collision of interstellar clouds, etc. When the mass in the Jeans scale is more than Jeans mass, the slab fragments into many clumps by gravitational instability. But in high external pressure environment, even the slab which is stable against Jeans mode can fragment(Elmegreen and Elmegreen 1978).This phenomenon results from incompressible mode instability(Lubow and Pringle 1993). These works are by linear analysis. We study numerically this isothermal gaseous slab which is formed by high external pressure and whose thickness is much smaller than its scale height. We assume self-gravitational fluid, and use two dimensional flux split method. Our model size is taken about the scale of linear maximum growth rate wave length and its five times length, which is an example of much longer than the maximum growth rate wave length. When the incompressible mode instability takes place, it becomes clumps. Each mass of the clumps is less than the Jeans mass. Then the clumps approach each other by gravitational interaction to form bigger clumps. In the presentation we will show results of numerical simulation and discuss about the interaction of fragments on star formation or initial mass function.

  4. Gravitational lenses and dark matter - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1987-01-01

    Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.

  5. Black hole binaries in galactic nuclei and gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Lee, Hyung Mok

    2015-03-01

    Stellar black hole (BH) binaries are one of the most promising gravitational wave (GW) sources for GW detection by the ground-based detectors. Nuclear star clusters (NCs) located at the centre of galaxies are known to harbour massive black holes (MBHs) and to be bounded by a gravitational potential by other galactic components such as the galactic bulge. Such an environment of NCs provides a favourable conditions for the BH-BH binary formation by the gravitational radiation capture due to the high BH number density and velocity dispersion. We carried out detailed numerical study of the formation of BH binaries in the NCs using a series of N-body simulations for equal-mass cases. There is no mass segregation introduced. We have derived scaling relations of the binary formation rate with the velocity dispersion of the stellar system beyond the radius of influence and made estimates of the rate of formation of BH binaries per unit comoving volume and thus expected detection rate by integrating the binary formation rate over galaxy population within the detection distance of the advanced detectors. We find that the overall formation rates for BH-BH binaries per NC is ˜10-10 yr-1 for the Milky Way-like galaxies and weakly dependent on the mass of MBH as Γ ∝ M_MBH^{3/28}. We estimate the detection rate of 0.02-14 yr-1 for advanced LIGO/Virgo considering several factors such as the dynamical evolution of NCs, the variance of the number density of stars and the mass range of MBH giving uncertainties.

  6. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding

  7. Gravitational radiation from binary systems in alternative metric theories of gravity - Dipole radiation and the binary pulsar

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1977-01-01

    The generation of gravitational radiation in several currently viable metric theories of gravitation (Brans-Dicke, Rosen, Ni, and Lightman-Lee) is analyzed, and it is shown that these theories predict the emission of dipole gravitational radiation from systems containing gravitationally bound objects. In the binary system PSR 1913 + 16, this radiation results in a secular change in the orbital period of the system with a nominal magnitude of 3 parts in 100,000 per year. The size of the effect is proportional to the reduced mass of the system, to the square of the difference in (self-gravitational energy)/(mass) between the two components of the system, and to a parameter, xi, whose value varies from theory to theory. In general relativity xi equals 0, in Rosen's (1973) theory xi equals -20/3, and in Ni's (1973) theory xi equals -400/3. The current upper limit on such a secular period change is one part in 1 million per year. It is shown that further observations of the binary system that tighten this limit and that establish the masses of the components and the identity of the companion may provide a crucial test of otherwise viable alternatives to general relativity.

  8. Extragalactic Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Rees, Martin J.

    After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.

  9. The Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Astrophysics Data System (ADS)

    Reitze, David

    2016-03-01

    On September 14, 2015, the two LIGO detectors operating at Hanford, WA and Livingston, LA nearly simultaneously recorded a strong trigger consistent with the passage of gravitational waves. An extensive and thorough analysis by the LIGO Scientific Collaboration and the Virgo Collaboration over the following months determined the gravitational waves to originate from the final stage of the inspiral of two black holes with masses approximately 36 and 29 Msun merging to form a 62 Msun black hole located at a distance of roughly 410 Mpc.This discovery is remarkable in many ways. In addition to being the first direct measurement of a gravitational wave by an earth-based detector, this is the first observation of coalescing binary black hole system and the first evidence that ``heavy'' stellar mass black holes exist. The measured gravitational waveform was determined to be highly consistent with that predicted by general relativity for the merger of two black holes. In this talk, the first of two in this special session on the discovery of GW150914, I'll cover a number of topics related to the detection, including a brief description of the operation and performance of the Advanced LIGO detectors during the first `O1' Observing Run as well as the data quality verification methods used to determine the validity of the detection. I'll also present the searches that were used to find and establish the statistical confidence of the event, as well as provide an estimate of its sky localization. Finally, I will discuss the plans for future observations by LIGO, Virgo and other gravitational wave detectors over the next few years and, time permitting, present the short term and longer term programs for improving the sensitivity and range of gravitational wave detectors over the next ten years.

  10. Search for light scalar dark matter with atomic gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken

    2018-04-01

    We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.

  11. Non-gravitational acceleration in the trajectory of 1I/2017 U1 ('Oumuamua).

    PubMed

    Micheli, Marco; Farnocchia, Davide; Meech, Karen J; Buie, Marc W; Hainaut, Olivier R; Prialnik, Dina; Schörghofer, Norbert; Weaver, Harold A; Chodas, Paul W; Kleyna, Jan T; Weryk, Robert; Wainscoat, Richard J; Ebeling, Harald; Keane, Jacqueline V; Chambers, Kenneth C; Koschny, Detlef; Petropoulos, Anastassios E

    2018-06-27

    'Oumuamua (1I/2017 U1) is the first known object of interstellar origin to have entered the Solar System on an unbound and hyperbolic trajectory with respect to the Sun 1 . Various physical observations collected during its visit to the Solar System showed that it has an unusually elongated shape and a tumbling rotation state 1-4 and that the physical properties of its surface resemble those of cometary nuclei 5,6 , even though it showed no evidence of cometary activity 1,5,7 . The motion of all celestial bodies is governed mostly by gravity, but the trajectories of comets can also be affected by non-gravitational forces due to cometary outgassing 8 . Because non-gravitational accelerations are at least three to four orders of magnitude weaker than gravitational acceleration, the detection of any deviation from a purely gravity-driven trajectory requires high-quality astrometry over a long arc. As a result, non-gravitational effects have been measured on only a limited subset of the small-body population 9 . Here we report the detection, at 30σ significance, of non-gravitational acceleration in the motion of 'Oumuamua. We analyse imaging data from extensive observations by ground-based and orbiting facilities. This analysis rules out systematic biases and shows that all astrometric data can be described once a non-gravitational component representing a heliocentric radial acceleration proportional to r -2 or r -1 (where r is the heliocentric distance) is included in the model. After ruling out solar-radiation pressure, drag- and friction-like forces, interaction with solar wind for a highly magnetized object, and geometric effects originating from 'Oumuamua potentially being composed of several spatially separated bodies or having a pronounced offset between its photocentre and centre of mass, we find comet-like outgassing to be a physically viable explanation, provided that 'Oumuamua has thermal properties similar to comets.

  12. CosApps: Simulate gravitational lensing through ray tracing and shear calculation

    NASA Astrophysics Data System (ADS)

    Coss, David

    2017-12-01

    Cosmology Applications (CosApps) provides tools to simulate gravitational lensing using two different techniques, ray tracing and shear calculation. The tool ray_trace_ellipse calculates deflection angles on a grid for light passing a deflecting mass distribution. Using MPI, ray_trace_ellipse may calculate deflection in parallel across network connected computers, such as cluster. The program physcalc calculates the gravitational lensing shear using the relationship of convergence and shear, described by a set of coupled partial differential equations.

  13. The gravitational Schwinger effect and attenuation of gravitational waves

    NASA Astrophysics Data System (ADS)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  14. N-BODY SIMULATION OF PLANETESIMAL FORMATION THROUGH GRAVITATIONAL INSTABILITY AND COAGULATION. II. ACCRETION MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro; Inutsuka, Shu-ichiro, E-mail: michikoshi@cfca.j, E-mail: kokubo@th.nao.ac.j, E-mail: inutsuka@tap.scphys.kyoto-u.ac.j

    2009-10-01

    The gravitational instability of a dust layer is one of the scenarios for planetesimal formation. If the density of a dust layer becomes sufficiently high as a result of the sedimentation of dust grains toward the midplane of a protoplanetary disk, the layer becomes gravitationally unstable and spontaneously fragments into planetesimals. Using a shearing box method, we performed local N-body simulations of gravitational instability of a dust layer and subsequent coagulation without gas and investigated the basic formation process of planetesimals. In this paper, we adopted the accretion model as a collision model. A gravitationally bound pair of particles ismore » replaced by a single particle with the total mass of the pair. This accretion model enables us to perform long-term and large-scale calculations. We confirmed that the formation process of planetesimals is the same as that in the previous paper with the rubble pile models. The formation process is divided into three stages: the formation of nonaxisymmetric structures; the creation of planetesimal seeds; and their collisional growth. We investigated the dependence of the planetesimal mass on the simulation domain size. We found that the mean mass of planetesimals formed in simulations is proportional to L {sup 3/2} {sub y}, where L{sub y} is the size of the computational domain in the direction of rotation. However, the mean mass of planetesimals is independent of L{sub x} , where L{sub x} is the size of the computational domain in the radial direction if L{sub x} is sufficiently large. We presented the estimation formula of the planetesimal mass taking into account the simulation domain size.« less

  15. Inferences about binary stellar populations using gravitational wave observations

    NASA Astrophysics Data System (ADS)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel

    2018-01-01

    With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.

  16. Quasi-periodic accretion and gravitational waves from oscillating `toroidal neutron stars' around a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Zanotti, Olindo; Rezzolla, Luciano; Font, José A.

    2003-05-01

    We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or disruption, can reach very high rest-mass densities and behave effectively as neutron stars but with a toroidal topology (i.e. `toroidal neutron stars'). Here our attention is focused on the dynamical response of these objects to axisymmetric perturbations. We show that upon the introduction of perturbations, these systems either become unstable to the runaway instability or exhibit a regular oscillatory behaviour, resulting in a quasi-periodic variation of the accretion rate as well as of the mass quadrupole. The latter, in particular, is responsible for the emission of intense gravitational radiation for which the signal-to-noise ratio at the detector is comparable to or larger than the typical one expected in stellar-core collapse, making these new sources of gravitational waves potentially detectable. We discuss a systematic investigation of the parameter space in both the linear and non-linear regimes, providing estimates of how the gravitational radiation emitted depends on the mass of the torus and on the strength of the perturbation.

  17. A technique for using radio jets as extended gravitational lensing probes

    NASA Technical Reports Server (NTRS)

    Kronberg, Philipp P.; Dyer, Charles C.; Burbidge, E. Margaret; Junkkarinen, Vesa T.

    1991-01-01

    A new and potentially powerful method of measuring the mass of a galaxy (or dark matter concentration) which lies close in position to a background polarized radio jet is proposed. Using the fact that the polarization angle is not changed by lensing, an 'alignment-breaking parameter' is defined which is a sensitive indicator of gravitational distortion. The method remains sensitive over a wide redshift range of the gravitational lens. This technique is applied to the analysis of polarimetric observations of the jet of 3C 9 at z = 2.012, combined with a newly discovered 20.3 mag foreground galaxy at z = 0.2538 to 'weigh' the galaxy and obtain an approximate upper limit to the mass-to-light ratio.

  18. Degenerate stars and gravitational collapse in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik

    2011-01-01

    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.

  19. Cosmological gravitational waves

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.

    1988-01-01

    A cosmological background of gravitational waves would alter the propagation of radiation, inducing redshift fluctuations, apparent source position deflections, and luminosity variations. By comparing these astrophysical effects with observations, it is possible to deduce upper limits on the energy density present in gravitational waves. Emphasis is placed on microwave background anisotropy from the redshift deviations and galaxy clustering correlation functions from the angular deviations. Many of the gravitational wave effects are shown to be generalizations of the gravitational lensing formalism.

  20. On the Induced Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Becerra, Laura M.; Bianco, Carlo; Fryer, Chris; Rueda, Jorge; Ruffini, Remo

    2018-01-01

    The induced gravitational collapse (IGC) paradigm has been applied to explain the long gamma ray burst (GRB) associated with type Ic supernova, and recently the Xray flashes (XRFs). The progenitor is a binary systems of a carbon-oxygen core (CO) and a neutron star (NS). The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1). For the binary driven hypernova (BdHNe), the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We're going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  1. Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects

    NASA Astrophysics Data System (ADS)

    Desai, Karna M.

    Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In this dissertation, I analyze GIs by inserting different objects in a disk by employing 3D hydrodynamics simulations. GIs in a circumbinary disks are studied to determine how the presence of the companion affects the nature and strength of GIs in the disk. The circumbinary disk achieves a state of sustained marginal instability similar to an identical disk without the companion. A realistic evolution of the binary is detected. Planet and disk interactions play an important role in the evolution of planetary systems. To study this interaction during the early phases of planet formation, a migration study of Jovian planets in a GI-active disk is conducted. I find the migration timescales to be longer in a GI-active disk, when compared to laminar disks. The 3 MJupiter planet controls its own orbital evolution, while the migration of a 0.3 MJupiter planet is stochastic in nature. I define a 'critical mass' as the mass of an arm of the dominant two-armed spiral density wave within the planet's Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks. To understand the stochastic migration of low-mass planets, I perform a simulation of 240 zero-mass planet-tracers by inserting these at a range of locations in the disk. A Diffusion Coefficient is calculated to characterize the stochastic migration of low-mass objects. The eccentricity dispersion for the sample is also studied. I find that the diffusion of planets can be a slow process, resulting in the survival of small planetary cores.

  2. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  3. Twisted gravitational waves

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2018-03-01

    In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.

  4. Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eby, Joshua Armstrong

    Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statistics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in themore » context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a calculation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes. During collapse, a rapidly increasing binding energy implies a fast rate of decay to relativistic particles, giving rise to a Bosenova. Axion stars that are otherwise stable could be caused to collapse either by accretion of free particles to masses above the maximum, or through astrophysical collisions; in the latter case, we estimate the rate of collisions and the parameter space relevant to induced collapse.« less

  5. Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles

    NASA Astrophysics Data System (ADS)

    Eby, Joshua Armstrong

    Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statistics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in the context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a calculation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes. During collapse, a rapidly increasing binding energy implies a fast rate of decay to relativistic particles, giving rise to a Bosenova. Axion stars that are otherwise stable could be caused to collapse either by accretion of free particles to masses above the maximum, or through astrophysical collisions; in the latter case, we estimate the rate of collisions and the parameter space relevant to induced collapse.

  6. The Bright Future of Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Gabriela

    2008-04-01

    These are exciting times in the search for gravitational waves. Gravitational waves are expected from many different astrophysical sources: brief transients from violent events like supernova explosions and collisions of neutron stars and black holes, coalescence of compact binary systems, continuous waves from rotating systems, and stochastic signals from cosmological origin or unresolved transients. The LIGO gravitational wave detectors have achieved unprecedented sensitivity to gravitational waves, and other detectors around the world are expected to reach similar sensitivities. The LIGO Scientific Collaboration (LSC) has recently completed their most sensitive observation run to date with LIGO and GEO detectors, including several months of joint observations with the European VIRGO detector. The LIGO Laboratory and the LSC, as well as the Virgo Collaboration, are actively preparing for operating enhanced detectors in the very near future. The next decade will see the construction and commissioning of Advanced LIGO and VIRGO, and quite possibly the launch of the space-based LISA mission, starting for sure then, if not earlier, a new era for gravitational wave astronomy. Plans for a world-wide network of ground based detectors involving more detectors in Europe, Japan and Australia are becoming more concrete. The future of gravitational wave astronomy is bright indeed! In this talk, will briefly describe the present status of the ground and space based detector projects and discuss the science we may expect to do with the detectors (and detections!) we will have in the upcoming era of gravitational wave astronomy.

  7. SHARP - V. Modelling gravitationally-lensed radio arcs imaged with global VLBI observations

    NASA Astrophysics Data System (ADS)

    Spingola, C.; McKean, J. P.; Auger, M. W.; Fassnacht, C. D.; Koopmans, L. V. E.; Lagattuta, D. J.; Vegetti, S.

    2018-05-01

    We present milliarcsecond (mas) angular resolution observations of the gravitationally lensed radio source MG J0751+2716 (at z = 3.2) obtained with global Very Long Baseline Interferometry (VLBI) at 1.65 GHz. The background object is highly resolved in the tangential and radial directions, showing evidence of both compact and extended structure across several gravitational arcs that are 200 to 600 mas in size. By identifying compact sub-components in the multiple images, we constrain the mass distribution of the foreground z = 0.35 gravitational lens using analytic models for the main deflector [power-law elliptical mass model; ρ(r)∝r-γ, where γ = 2 corresponds to isothermal] and for the members of the galaxy group. Moreover, our mass models with and without the group find an inner mass-density slope steeper than isothermal for the main lensing galaxy, with γ1 = 2.08 ± 0.02 and γ2 = 2.16 ± 0.02 at the 4.2σ level and 6.8σ level, respectively, at the Einstein radius (b1 = 0.4025 ± 0.0008 and b2 = 0.307 ± 0.002 arcsec, respectively). We find randomly distributed image position residuals of about 3 mas, which are much larger that the measurement errors (40 μas on average). This suggests that at the mas level, the assumption of a smooth mass distribution fails, requiring additional structure in the model. However, given the environment of the lensing galaxy, it is not clear whether this extra mass is in the form of sub-haloes within the lens or along the line of sight, or from a more complex halo for the galaxy group.

  8. Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers

    NASA Astrophysics Data System (ADS)

    Poisson, Eric

    1996-11-01

    Among the expected sources of gravitational waves for the Laser Interferometer Space Antenna (LISA) is the capture of solar-mass compact stars by massive black holes residing in galactic centers. We construct a simple model for such a capture, in which the compact star moves freely on a circular orbit in the equatorial plane of the massive black hole. We consider the gravitational waves emitted during the late stages of orbital evolution, shortly before the orbiting mass reaches the innermost stable circular orbit. We construct a simple model for the gravitational-wave signal, in which the phasing of the waves plays the dominant role. The signal's behavior depends on a number of parameters, including μ, the mass of the orbiting star, M, the mass of the central black hole, and J, the black hole's angular momentum. We calculate, using our simplified model, and in the limit of large signal-to-noise ratio, the accuracy with which these quantities can be estimated during a gravitational-wave measurement. For concreteness we consider a typical system consisting of a 10Msolar black hole orbiting a nonrotating black hole of mass 106Msolar, whose gravitational waves are monitored during an entire year before the orbiting mass reaches the innermost stable circular orbit. Defining χ≡cJ/GM2 and η≡μ/M, we find Δχ~=5×10-2/ρ, Δη/η~=6×10-2/ρ, and ΔM/M~=2×10-3/ρ. Here, ρ denotes the signal-to-noise ratio associated with the signal and its measurement. That these uncertainties are all much smaller than 1/ρ, the signal-to-noise ratio level, is due to the large number of wave cycles received by the detector in the course of one year. These are the main results of this paper. Our simplified model also suggests a method for experimentally testing the strong-field predictions of general relativity.

  9. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  10. Matter effects on LIGO/Virgo searches for gravitational waves from merging neutron stars

    NASA Astrophysics Data System (ADS)

    Cullen, Torrey; Harry, Ian; Read, Jocelyn; Flynn, Eric

    2017-12-01

    Gravitational waves from merging neutron stars are expected to be observed in the next five years. We explore the potential impact of matter effects on gravitational waves from merging double neutron-star binaries. If neutron star binaries exist with chirp masses less than roughly one solar mass and typical neutron-star radii are larger than roughly 14 km, or if neutron-star radii are larger than 15-16 km for the chirp masses of galactic neutron-star binaries, then matter will have a significant impact on the effectiveness of a point-particle-based search at Advanced LIGO design sensitivity (roughly 5% additional loss of signals). In a configuration typical of LIGO’s first observing run, extreme matter effects lead to up to 10% potential loss in the most extreme cases.

  11. Comprehensive gravitational modeling of the vertical cylindrical prism by Gauss-Legendre quadrature integration

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, M. F.; Hashemi, H.; von Frese, R. RB

    2018-01-01

    Forward modeling is the basis of gravitational anomaly inversion that is widely applied to map subsurface mass variations. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the gravitational potential, anomaly and gradient components of the vertical cylindrical prism element. These results, in turn, may be integrated to accurately model the complete gravitational effects of fluid bearing rock formations and other vertical cylinder-like geological bodies with arbitrary variations in shape and density. Comparing the GLQ gravitational effects of uniform density, vertical circular cylinders against the effects calculated by a number of other methods illustrates the veracity of the GLQ modeling method and the accuracy limitations of the other methods. Geological examples include modeling the gravitational effects of a formation washout to help map azimuthal variations of the formation's bulk densities around the borehole wall. As another application, the gravitational effects of a seismically and gravimetrically imaged salt dome within the Laurentian Basin are evaluated for the velocity, density and geometric properties of the Basin's sedimentary formations.

  12. NANOGrav Constraints on Gravitational Wave Bursts with Memory

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cordes, J. M.; Cornish, N. J.; Demorest, P. B.; Deng, X.; Dolch, T.; Ellis, J. A.; Ferdman, R. D.; Fonseca, E.; Garver-Daniels, N.; Jenet, F.; Jones, G.; Kaspi, V. M.; Koop, M.; Lam, M. T.; Lazio, T. J. W.; Levin, L.; Lommen, A. N.; Lorimer, D. R.; Luo, J.; Lynch, R. S.; Madison, D. R.; McLaughlin, M. A.; McWilliams, S. T.; Nice, D. J.; Palliyaguru, N.; Pennucci, T. T.; Ransom, S. M.; Siemens, X.; Stairs, I. H.; Stinebring, D. R.; Stovall, K.; Swiggum, J.; Vallisneri, M.; van Haasteren, R.; Wang, Y.; Zhu, W. W.; NANOGrav Collaboration

    2015-09-01

    Among efforts to detect gravitational radiation, pulsar timing arrays are uniquely poised to detect “memory” signatures, permanent perturbations in spacetime from highly energetic astrophysical events such as mergers of supermassive black hole binaries. The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) observes dozens of the most stable millisecond pulsars using the Arecibo and Green Bank radio telescopes in an effort to study, among other things, gravitational wave memory. We herein present the results of a search for gravitational wave bursts with memory (BWMs) using the first five years of NANOGrav observations. We develop original methods for dramatically speeding up searches for BWM signals. In the directions of the sky where our sensitivity to BWMs is best, we would detect mergers of binaries with reduced masses of {10}9 {M}⊙ out to distances of 30 Mpc; such massive mergers in the Virgo cluster would be marginally detectable. We find no evidence for BWMs. However, with our non-detection, we set upper limits on the rate at which BWMs of various amplitudes could have occurred during the time spanned by our data—e.g., BWMs with amplitudes greater than 10-13 must encounter the Earth at a rate less than 1.5 yr-1.

  13. Gravitational waves — A review on the theoretical foundations of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Dirkes, Alain

    2018-05-01

    In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.

  14. A VLA gravitational lens survey

    NASA Technical Reports Server (NTRS)

    Hewitt, J. N.; Turner, E. L.; Burke, B. F.; Lawrence, C. R.; Bennett, C. L.

    1987-01-01

    A VLA survey designed to detect gravitational lensing on sub-arc second and arc second scales is described, and preliminary results of radio data are presented. In particular, it is found that the density of matter in the form of a uniform comoving number density of 10 to the 11th - 10 to the 12th solar mass compact objects, luminous or dark, must be substantially less than the critical density. Data obtained for the radio source 1042+178 are briefly examined.

  15. Optimized formulas for the gravitational field of a tesseroid

    NASA Astrophysics Data System (ADS)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2013-07-01

    Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton's integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid's potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly

  16. Top mass from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron

    2018-02-01

    We discover that asymptotically safe quantum gravity could predict the top-quark mass. For a broad range of microscopic gravitational couplings, quantum gravity could provide an ultraviolet completion for the Standard Model by triggering asymptotic freedom in the gauge couplings and bottom Yukawa and asymptotic safety in the top-Yukawa and Higgs-quartic coupling. We find that in a part of this range, a difference of the top and bottom mass of approximately 170GeV is generated and the Higgs mass is determined in terms of the top mass. Assuming no new physics below the Planck scale, we construct explicit Renormalization Group trajectories for Standard Model and gravitational couplings which link the transplanckian regime to the electroweak scale and yield a top pole mass of Mt,pole ≈ 171GeV.

  17. Gravitational Casimir-Polder effect

    NASA Astrophysics Data System (ADS)

    Hu, Jiawei; Yu, Hongwei

    2017-04-01

    The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir-Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z-5 in the near zone, and z-6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose-Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10-21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  18. Quaternary gravitational morpho-genesis of Central Apennines (Italy): Insights from the Mt. Genzana case history

    NASA Astrophysics Data System (ADS)

    Esposito, C.; Bianchi-Fasani, G.; Martino, S.; Scarascia-Mugnozza, G.

    2013-10-01

    This paper focuses on a study aimed at defining the role of geological-structural setting and Quaternary morpho-structural evolution on the onset and development of a deep-seated gravitational slope deformation which affects the western slope of Mt. Genzana ridge (Central Apennines, Italy). This case history is particularly significant as it comprises several aspects of such gravitational processes both in general terms and with particular reference to the Apennines. In fact: i) the morpho-structural setting is representative of widespread conditions in Central Apennines; ii) the deforming slope partially evolved in a large rockslide-avalanche; iii) the deformational process provides evidence of an ongoing state of activity; iv) the rockslide-avalanche debris formed a stable natural dam, thus implying significant variations in the morphologic, hydraulic and hydrogeological setting; v) the gravitational deformation as well as the rockslide-avalanche reveal a strong structural control. The main study activities were addressed to define a detailed geological model of the gravity-driven process, by means of geological, structural, geomorphological and geomechanical surveys. As a result, a robust hypothesis about the kinematics of the process was possible, with particular reference to the identification of geological-structural constraints. The process, in fact, involves a specific section of the slope exactly where a dextral transtensional structure is present, thus implying local structural conditions that favor sliding processes: the rock mass is intensively jointed by high angle discontinuity sets and the bedding attitude is quite parallel to the slope angle. Within this frame the gravitational process can be classified as a structurally constrained translational slide, locally evolved into a rockslide-avalanche. The activation of such a deformation can be in its turn related to the Quaternary morphological evolution of the area, which was affected by a significant

  19. Numerical simulations of merging black holes for gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2014-03-01

    Gravitational waves from merging binary black holes (BBHs) are among the most promising sources for current and future gravitational-wave detectors. Accurate models of these waves are necessary to maximize the number of detections and our knowledge of the waves' sources; near the time of merger, the waves can only be computed using numerical-relativity simulations. For optimal application to gravitational-wave astronomy, BBH simulations must achieve sufficient accuracy and length, and all relevant regions of the BBH parameter space must be covered. While great progress toward these goals has been made in the almost nine years since BBH simulations became possible, considerable challenges remain. In this talk, I will discuss current efforts to meet these challenges, and I will present recent BBH simulations produced using the Spectral Einstein Code, including a catalog of publicly available gravitational waveforms [black-holes.org/waveforms]. I will also discuss simulations of merging black holes with high mass ratios and with spins nearly as fast as possible, the most challenging regions of the BBH parameter space.

  20. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    PubMed Central

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-01-01

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors. PMID:25705087

  1. Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Michimura, Yuta; Komori, Kentaro; Nishizawa, Atsushi; Takeda, Hiroki; Nagano, Koji; Enomoto, Yutaro; Hayama, Kazuhiro; Somiya, Kentaro; Ando, Masaki

    2018-06-01

    Cryogenic cooling of the test masses of interferometric gravitational wave detectors is a promising way to reduce thermal noise. However, cryogenic cooling limits the incident power to the test masses, which limits the freedom of shaping the quantum noise. Cryogenic cooling also requires short and thick suspension fibers to extract heat, which could result in the worsening of thermal noise. Therefore, careful tuning of multiple parameters is necessary in designing the sensitivity of cryogenic gravitational wave detectors. Here, we propose the use of particle swarm optimization to optimize the parameters of these detectors. We apply it for designing the sensitivity of the KAGRA detector, and show that binary neutron star inspiral range can be improved by 10%, just by retuning seven parameters of existing components. We also show that the sky localization of GW170817-like binaries can be further improved by a factor of 1.6 averaged across the sky. Our results show that particle swarm optimization is useful for designing future gravitational wave detectors with higher dimensionality in the parameter space.

  2. Plane Poiseuille flow of a rarefied gas in the presence of strong gravitation.

    PubMed

    Doi, Toshiyuki

    2011-02-01

    Plane Poiseuille flow of a rarefied gas, which flows horizontally in the presence of strong gravitation, is studied based on the Boltzmann equation. Applying the asymptotic analysis for a small variation in the flow direction [Y. Sone, Molecular Gas Dynamics (Birkhäuser, 2007)], the two-dimensional problem is reduced to a one-dimensional problem, as in the case of a Poiseuille flow in the absence of gravitation, and the solution is obtained in a semianalytical form. The reduced one-dimensional problem is solved numerically for a hard sphere molecular gas over a wide range of the gas-rarefaction degree and the gravitational strength. The presence of gravitation reduces the mass flow rate, and the effect of gravitation is significant for large Knudsen numbers. To verify the validity of the asymptotic solution, a two-dimensional problem of a flow through a long channel is directly solved numerically, and the validity of the asymptotic solution is confirmed. ©2011 American Physical Society

  3. Estimating gravitational radiation from super-emitting compact binary systems

    NASA Astrophysics Data System (ADS)

    Hanna, Chad; Johnson, Matthew C.; Lehner, Luis

    2017-06-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  4. MHz gravitational wave constraints with decameter Michelson interferometers

    NASA Astrophysics Data System (ADS)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; Larson, Shane L.; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Weiss, Rainer; Holometer Collaboration

    2017-03-01

    A new detector, the Fermilab Holometer, consists of separate yet identical 39-meter Michelson interferometers. Strain sensitivity achieved is better than 10-21/√{Hz } between 1 to 13 MHz from a 130-h data set. This measurement exceeds the sensitivity and frequency range made from previous high frequency gravitational wave experiments by many orders of magnitude. Constraints are placed on a stochastic background at 382 Hz resolution. The 3 σ upper limit on ΩGW, the gravitational wave energy density normalized to the closure density, ranges from 5.6 ×1 012 at 1 MHz to 8.4 ×1 015 at 13 MHz. Another result from the same data set is a search for nearby primordial black hole binaries (PBHB). There are no detectable monochromatic PBHBs in the mass range 0.83 - 3.5 ×1 021 g between the Earth and the Moon. Projections for a chirp search with the same data set increase the mass range to 0.59 -2.5 ×1 025 g and distances out to Jupiter. This result presents a new method for placing limits on a poorly constrained mass range of primordial black holes. Additionally, solar system searches for PBHBs place limits on their contribution to the total dark matter fraction.

  5. Gravitationally self-bound quantum states in unstable potentials

    NASA Astrophysics Data System (ADS)

    Jääskeläinen, Markku

    2018-04-01

    Quantum mechanics at present cannot be unified with the theory of gravity at the deepest level, and to guide research towards the solution of this fundamental problem, we need to look for ways to observe or refute predictions originating from attempts to combine quantum theory with gravity. The influence of the gravitational field created by the material density given by the wave function itself gives rise to nontrivial phenomena. In this study I consider the wave function for the center-of-mass coordinate of a spherical mass distribution under the influence of the self-interaction of Newtonian gravity. I solve numerically for the ground state in the presence of an unstable potential and find that the energy of the free-space bound state can be lowered despite the nontrapping character of the potential. The center-of-mass ground state becomes increasingly localized for the used unstable potentials, although only in a limited parameter regime. The feebleness of the energy shift makes the observation of these effects demanding and requires further developments in the cooling of material particles. In addition, the influence of gravitational perturbations that are present in typical laboratory settings necessitates the use of extremely quiet and controlled environments such as those provided by recently proposed space-borne experiments.

  6. The effect of clulstering of galaxies on the statistics of gravitational lenses

    NASA Technical Reports Server (NTRS)

    Anderson, N.; Alcock, C.

    1986-01-01

    It is examined whether clustering of galaxies can significantly alter the statistical properties of gravitational lenses? Only models of clustering that resemble the observed distribution of galaxies in the properties of the two-point correlation function are considered. Monte-Carlo simulations of the imaging process are described. It is found that the effect of clustering is too small to be significant, unless the mass of the deflectors is so large that gravitational lenses become common occurrences. A special model is described which was concocted to optimize the effect of clustering on gravitational lensing but still resemble the observed distribution of galaxies; even this simulation did not satisfactorily produce large numbers of wide-angle lenses.

  7. Turbulent Collapse of Gravitationally Bound Clouds

    NASA Astrophysics Data System (ADS)

    Murray, Daniel W.

    In this dissertation, I explore the time-variable rate of star formation, using both numerical and analytic techniques. I discuss the dynamics of collapsing regions, the effect of protostellar jets, and development of software for use in the hydrodynamic code RAMSES. I perform high-resolution adaptive mesh refinement simulations of star formation in self-gravitating turbulently driven gas. I have run simulations including hydrodynamics (HD), and HD with protostellar jet feedback. Accretion begins when the turbulent fluctuations on largescales, near the driving scale, produce a converging flow. I find that the character of the collapse changes at two radii, the disk radius rd, and the radius r* where the enclosed gas mass exceeds the stellar mass. This is the first numerical work to show that the density evolves to a fixed attractor, rho(r, t) → rho( r), for rd < r < r*; mass flows through this structure onto a sporadically gravitationally unstable disk, and from thence onto the star. The total stellar mass M*(t) (t - t*)2, where (t - t *)2 is the time elapsed since the formation of the first star. This is in agreement with previous numerical and analytic work that suggests a linear rate of star formation. I show that protostellar jets change the normalization of the stellar mass accretion rate, but do not strongly affect the dynamics of star formation in hydrodynamics runs. In particular, M*(t) infinity (1 - f jet)2(t - t*) 2 is the fraction of mass accreted onto the protostar, where fjet is the fraction ejected by the jet. For typical values of fjet 0.1 - 0.3 the accretion rate onto the star can be reduced by a factor of two or three. However, I find that jets have only a small effect (of order 25%) on the accretion rate onto the protostellar disk (the "raw" accretion rate). In other words, jets do not affect the dynamics of the infall, but rather simply eject mass before it reaches the star. Finally, I show that the small scale structure--the radial density

  8. On the gravitational wave background from black hole binaries after the first LIGO detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias, E-mail: icholis1@jhu.edu

    The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density)more » of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.« less

  9. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  10. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.

    2008-01-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.

  11. BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Poisson, Eric

    2008-10-01

    A superficial introduction to gravitational waves can be found in most textbooks on general relativity, but typically, the treatment hardly does justice to a field that has grown tremendously, both in its theoretical and experimental aspects, in the course of the last twenty years. Other than the technical literature, few other sources have been available to the interested reader; exceptions include edited volumes such as [1] and [2], Weber's little book [3] which happily is still in print, and Peter Saulson's text [4] which appears, unfortunately, to be out of print. In addition to these technical references, the story of gravitational waves was famously told by a sociologist of scientific knowledge [5] (focusing mostly on the experimental aspects) and a historian of science [6] (focusing mostly on the theoretical aspects). The book Gravitational Waves, Volume 1, by Michele Maggiore, is a welcome point of departure. This is, as far as I know, the first comprehensive textbook on gravitational waves. It describes the theoretical foundations of the subject, the known (and anticipated) sources, and the principles of detection by resonant masses and laser interferometers. This book is a major accomplishment, and with the promised volume 2 on astrophysical and cosmological aspects of gravitational waves, the community of all scientists interested in this topic will be well served. Part I of the book is devoted to the theoretical aspects of gravitational waves. In chapter 1 the waves are introduced in usual relativist's fashion, in the context of an approximation to general relativity in which they are treated as a small perturbation of the Minkowski metric of flat spacetime. This is an adequate foundation to study how the waves propagate, and how they interact with freely moving masses making up a detector. The waves are presented in the usual traceless-transverse gauge, but the detection aspects are also worked out in the detector's proper rest frame; this dual

  12. Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing

    NASA Astrophysics Data System (ADS)

    Schneider, Peter; Sluse, Dominique

    2013-11-01

    The light travel time differences in strong gravitational lensing systems allows an independent determination of the Hubble constant. This method has been successfully applied to several lens systems. The formally most precise measurements are, however, in tension with the recent determination of H0 from the Planck satellite for a spatially flat six-parameters ΛCDM cosmology. We reconsider the uncertainties of the method, concerning the mass profile of the lens galaxies, and show that the formal precision relies on the assumption that the mass profile is a perfect power law. Simple analytical arguments and numerical experiments reveal that mass-sheet like transformations yield significant freedom in choosing the mass profile, even when exquisite Einstein rings are observed. Furthermore, the characterization of the environment of the lens does not break that degeneracy which is not physically linked to extrinsic convergence. We present an illustrative example where the multiple imaging properties of a composite (baryons + dark matter) lens can be extremely well reproduced by a power-law model having the same velocity dispersion, but with predictions for the Hubble constant that deviate by ~20%. Hence we conclude that the impact of degeneracies between parametrized models have been underestimated in current H0 measurements from lensing, and need to be carefully reconsidered.

  13. Gravitational microlensing of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1993-01-01

    A Monte Carlo code is developed to calculate gravitational microlensing in three dimensions when the lensing optical depth is low or moderate (not greater than 0.25). The code calculates positions of microimages and time delays between the microimages. The majority of lensed gamma-ray bursts should show a simple double-burst structure, as predicted by a single point mass lens model. A small fraction should show complicated multiple events due to the collective effects of several point masses (black holes). Cosmological models with a significant fraction of mass density in massive compact objects can be tested by searching for microlensing events in the current BATSE data. Our catalog generated by 10,000 Monte Carlo models is accessible through the computer network. The catalog can be used to take realistic selection effects into account.

  14. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  15. Alteration of glacigenic landforms by gravitational mass movements, Ragnarbreen and Ebbabreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Ewertowski, Marek; Pleskot, Krzysztof; Tomczyk, Aleksandra

    2015-04-01

    The extensive recession of Svalbard's glaciers exposed areas containing large amount of dead-ice covered by relatively thin - usually less than a couple of meters - veneer of debris. This landscape can be very dynamic, mainly due to the mass movement processes and dead-ice melting. Continuous redistribution of sediments causes several phases of debris transfer and relief inversion. Hence, the primary glacial deposits released from ice are subsequently transferred by mass movement processes, until they finally reach more stable position. Investigations of dynamics of the mass movement and the way in which they alter the property of glacigenic sediments are therefore cruicial for proper understanding of sedimentary records of previous glaciations. The main objectives of this study were to: (1) quantify short-term dynamic of mass wasting processes; (2) investigate the transformation of the sediment's characteristic by mass wasting processes; (3) asses the contribution of different process to the overall dynamic of proglacial landscape. We focused on the mass-wasting processes in the forelands of two glaciers, Ebbabreen and Ragnarbreen, located near the Petuniabukta at the northern end of the Billefjorden, Spitsbergen. Repetitive topographic scanning was combined with sedimentological analysis of: grain size, clast shape in macro and micro scale and thin sections. Debris falls, slides, rolls and flows were the most important processes leading to reworking of glacigenic sediments and altering their properties. Contribution of different processes to the overall dynamic of the landforms was related mainly to the local conditions. Four different morphological types of sites were identified: (1) near vertical ice-cliffs covered with debris, transformed mainly due to dead-ice backwasting and debris falls and slides, (2) steep debris slopes with exposed ice-cores dominated by debris slides, (3) gentle sediment-mantled slopes transformed due to debris flows, and (4) non-active

  16. A simple pendulum laser interferometer for determining the gravitational constant

    PubMed Central

    Parks, Harold V.; Faller, James E.

    2014-01-01

    We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry–Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. PMID:25201994

  17. Gravitational-wave cosmography with LISA and the Hubble tension

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Seto, Naoki

    2017-04-01

    We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ˜100 Mpc in the era of the Laser Interferometer Space Antenna (LISA). High calibration accuracy and annual motion of LISA could enable us to localize up to ≈60 binaries more accurately than the error volume of ≈100 Mpc3 without electromagnetic counterparts under moderately optimistic assumptions. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4 σ level, which amounts to ≈9 %.

  18. Self-Gravitating Fundamental Strings and Black Holes

    NASA Technical Reports Server (NTRS)

    Damour, T.; Veneziano, G.

    1999-01-01

    The configuration of typically highly excited M much greater than M(sub s) which is approximately equal to alpha(prime) to the 1/2 power string states is considered as the string coupling g is adiabatically increased. The size distribution of very massive single string states is studied and the mass shift, due to a long-range gravitational, dilatonic, and axionic attraction, is estimated.

  19. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. III. Simulations with Radiative Cooling and Realistic Opacities

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Mejía, Annie C.; Durisen, Richard H.; Cai, Kai; Pickett, Megan K.; D'Alessio, Paola

    2006-11-01

    This paper presents a fully three-dimensional radiative hydrodymanics simulation with realistic opacities for a gravitationally unstable 0.07 Msolar disk around a 0.5 Msolar star. We address the following aspects of disk evolution: the strength of gravitational instabilities under realistic cooling, mass transport in the disk that arises from GIs, comparisons between the gravitational and Reynolds stresses measured in the disk and those expected in an α-disk, and comparisons between the SED derived for the disk and SEDs derived from observationally determined parameters. The mass transport in this disk is dominated by global modes, and the cooling times are too long to permit fragmentation for all radii. Moreover, our results suggest a plausible explanation for the FU Ori outburst phenomenon.

  20. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    DOEpatents

    Hull, John R.

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  1. Andrzej Trautman, Ivor Robinson, and the foundations of gravitational radiation theory

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald

    It is especially pertinent following the momentous detection of gravitational waves by LIGO and the death of Ivor Robinson in 2016 that we investigate the central role played by the Polish physicist Andrzej Trautman and his dear collaborator Robinson in helping to establish the foundations of gravitational wave research. Trautman was a student of Leopold Infeld who had famously rejected the reality of gravitational waves. Yet Trautman's intuition, informed in part by his training as a radio engineer, led him to be the first to correctly pose asymptotic boundary conditions that described the mass loss of an isolated system through emitted gravitational radiation. His series of papers announcing these results were published in a then obscure Polish journal. Fortunately, though, Felix Pirani visited Warsaw in 1957 and he was so impressed with Trautman that he arranged for him to visit his group at King's College in London. Trautman's lectures in London won him wide admiration, and significantly affected the subsequent work on gravitational wave solutions of Einstein's equations in the group led by Hermann Bondi. This was also the occasion in which Trautman and Robinson discovered a deep and abiding mathematical affinity, resulting in the discovery of exact solutions of Einstein's equations that could be interpreted as representing gravitational radiation. This talk is based in part on an interview with Trautman conducted in Warsaw in June, 2016.

  2. Semiclassical gravitational effects on the gravitational lensing in the spacetime of topological defects

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Rahaman, Farook; Banerjee, Ayan

    2018-02-01

    The theory of gravitational lensing has revealed many generic and fundamental properties of compact objects like black holes and wormholes. In this article, we utilize a recent formulation to compute the quantum effects on the deflection angle of a light ray, namely, the Gauss-Bonnet theorem (GBT) to explore the semiclassical gravitational effects in the spacetime of a point-like global monopole and a cosmic string. Previously, the Gauss-Bonnet theorem (Gibbons and Werner, 2008) was proposed as an alternative way to compute the deflection angle of light in a static, spherically symmetric and asymptotically flat spacetime. In the present article we have used the celebrated GBT that applied to the optical metric as well as the geodesic method in computing the deflection angle. Interestingly one can observe that we have found an exact result between GBT and the standard approach up to the third-order contributions terms by modifying the domain of integration for cosmic string and global monopole deflection angles. Finally we have considered the time delay in the cosmic string/global monopole spacetime and found that the delay in time is proportional to the linear mass density of the cosmic string and global monopole parameter, respectively.

  3. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  4. Gravitational-wave emission from rotating gravitational collapse in three dimensions.

    PubMed

    Baiotti, L; Hawke, I; Rezzolla, L; Schnetter, E

    2005-04-08

    We present the first three-dimensional (3D) calculations of the gravitational-wave emission in the collapse of uniformly rotating stars to black holes. The initial models are polytropes which are dynamically unstable and near the mass-shedding limit. The waveforms have been extracted using a gauge-invariant approach and reflect the properties of both the initial stellar models and of newly produced black holes, being in good qualitative agreement with those computed in previous 2D simulations. The wave amplitudes, however, are about 1 order of magnitude smaller, giving, for a source at 10 kpc, a signal-to-noise ratio S/N approximately 0.25 for LIGO-VIRGO and S/N less than or approximately equal 4 for LIGO II.

  5. Gravitational lensing of photons coupled to massive particles

    NASA Astrophysics Data System (ADS)

    Glicenstein, J.-F.

    2018-04-01

    The gravitational deflection of massless and massive particles, both with and without spin, has been extensively studied. This paper discusses the lensing of a particle which oscillates between two interaction eigenstates. The deflection angle, lens equation and time delay between images are derived in a model of photon to hidden-photon oscillations. In the case of coherent oscillations, the coupled photon behaves as a massive particle with a mass equal to the product of the coupling constant and hidden-photon mass. The conditions for observing coherent photon-hidden photon lensing are discussed.

  6. Probing the internal composition of neutron stars with gravitational waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás

    2015-11-01

    Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to

  7. Effective Alphas and Mixing for Disks with Gravitational Instabilities: Convergence Testing in Global 3D Simulations

    NASA Astrophysics Data System (ADS)

    Michael, Scott A.; Steiman-Cameron, T.; Durisen, R.; Boley, A.

    2008-05-01

    Using 3D simulations of a cooling disk undergoing gravitational instabilities (GIs), we compute the effective Shakura and Sunyaev (1973) alphas due to gravitational torques and compare them to predictions from an analytic local theory for thin disks by Gammie (2001). Our goal is to determine how accurately a locally defined alpha can characterize mass and angular momentum transport by GIs in disks. Cases are considered both with cooling by an imposed constant global cooling time (Mejia et al. 2005) and with realistic radiative transfer (Boley et al. 2007). Grid spacing in the azimuthal direction is varied to investigate how the computed alpha is affected by numerical resolution. The azimuthal direction is particularly important, because higher resolution in azimuth allows GI power to spread to higher-order (multi-armed) modes that behave more locally. We find that, in many important respects, the transport of mass and angular momentum by GIs is an intrinsically global phenomenon. Effective alphas are variable on a dynamic time scale over global spatial scales. Nevertheless, preliminary results at the highest resolutions for an imposed cooling time show that our computed alphas, though systematically higher, tend on average to follow Gammie's prediction to within perhaps a factor of two. Our computed alphas include only gravitational stresses, while in Gammie's treatment the effective alpha is due equally to hydrodynamic (Reynolds) and gravitational stresses. So Gammie's prediction may significantly underestimate the true average stresses in a GI-active disk. Our effective alphas appear to be reasonably well converged for 256 and 512 azimuthal zones. We also have a high-resolution simulation under way to test the extent of radial mixing by GIs of gas and its entrained dust for comparison with Stardust observations. Results will be presented if available at the time of the meeting.

  8. New Astrometric Limits on the Stochastic Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Darling, Jeremiah K.; Truebenbach, Alexandra; Paine, Jennie

    2018-06-01

    We present new limits on the low frequency (f < 10-8 Hz) stochastic gravitational wave background using correlated extragalactic proper motions. The familiar methods for gravitational wave detection are ground- and space-based laser interferometry, pulsar timing, and polarization of the cosmic microwave background. Astrometry offers an additional path to gravitational wave detection because gravitational waves deflect the light rays of extragalactic objects, creating apparent proper motions in a quadrupolar (and higher order modes) pattern. Astrometry is sensitive to gravitational waves with frequencies between roughly 10-18 Hz and 10-8 Hz (between H0 and 1/3 yr-1), which overlaps and bridges the pulsar timing and CMB polarization regimes. We present the methods and results of two complementary approaches to astrometric gravitational wave detection: (1) a small ~500-object radio interferometric sample with low per-source proper motion uncertainty but large intrinsic proper motions caused by radio jets, and (2) a thousand-fold larger sample with large per-source uncertainties that has small intrinsic proper motions (Gaia active galactic nuclei). Both approaches produce limits on ΩGW, the energy density of gravitational waves as a fraction of the cosmological critical energy density.The authors acknowledge support from the NSF grant AST-1411605 and the NASA grant 14-ATP14-0086.

  9. Gravitational perturbation of irregular bodies modeled with regular polyhedra

    NASA Astrophysics Data System (ADS)

    Venditti, Flaviane; Prado, Antonio

    In this work the study of the dynamics around bodies with non-spherical shapes is considered. The gravitational field of an irregular body, meaning that the mass distribution is asymmetric, generates orbits around this body to perform different from a keplerian orbit. In this case, there is a perturbation on the gravitational field that must be analyzed. To know the gravitational force of an irregular object, first it is necessary to model this body, which is not an easy thing to do, considering that, usually, they are not symmetric figures. To better model the irregular objects, a combination of several geometric figures can be used, like parallelepipeds. This can be applied to asteroids, which are objects with non-spherical shapes. The disturbing force generated by these bodies can then be obtained as the sum of the force on each figure. Here the equation for the potential of a cube is considered (MacMillan, 1930), which makes it possible to have analytical results. The main idea is to build a body with several cubes, and having the gravitational potential of each cube, it is possible to obtain the total perturbation as the sum of the forces acting on each piece. This methodology can be very helpful on space missions to small bodies, because when a spacecraft is in the vicinity of an irregular body, the gravitational perturbation generated by its shape must be considered to compensate this effect.

  10. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  11. Gravitationally bound BCS state as dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Stephon; Cormack, Sam, E-mail: stephon_alexander@brown.edu, E-mail: samuel.c.cormack.gr@dartmouth.edu

    2017-04-01

    We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of ∼ 200 eV. We findmore » a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines.« less

  12. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  13. Evolution of the f-mode instability in neutron stars and gravitational wave detectability

    NASA Astrophysics Data System (ADS)

    Passamonti, A.; Gaertig, E.; Kokkotas, K. D.; Doneva, D.

    2013-04-01

    We study the dynamical evolution of the gravitational-wave driven instability of the f mode in rapidly rotating relativistic stars. With an approach based on linear perturbation theory we describe the evolution of the mode amplitude and follow the trajectory of a newborn neutron star through its instability window. The influence on the f-mode instability of the magnetic field and the presence of an unstable r mode is also considered. Two different configurations are studied in more detail, an N=1 polytrope with a typical mass and radius and a more massive polytropic N=0.62 model with gravitational mass M=1.98M⊙. We study several evolutions with different initial rotation rates and temperature and determine the gravitational waves radiated during the instability. In more massive models, an unstable f mode with a saturation energy of about 10-6M⊙c2 may generate a gravitational wave signal which can be detected by the Advanced LIGO/Virgo detector from the Virgo cluster. The magnetic field affects the evolution and then the detectability of the gravitational radiation when its strength is higher than 1012G, while the effects of an unstable r mode become dominant when this mode reaches the maximum saturation value allowed by nonlinear mode couplings. However, the relative saturation amplitude of the f and r modes must be known more accurately in order to provide a definitive answer to this issue. From the thermal evolution we find also that the heat generated by shear viscosity during the saturation phase completely balances the neutrinos’ cooling and prevents the star from entering the regime of mutual friction. The evolution time of the instability is therefore longer and the star loses significantly larger amounts of angular momentum via gravitational waves.

  14. Coalescing neutron stars - gravitational waves from polytropic models.

    NASA Astrophysics Data System (ADS)

    Ruffert, M.; Rampp, M.; Janka, H.-T.

    1997-05-01

    The dynamics, time evolution of the mass distribution, and gravitational wave signature of coalescing neutron stars described by polytropes are compared with three simulations published previously: (a) "Run 2" of Zhuge et al. (1994PhRvD..50.6247Z), (b) "Model III" of Shibata et al. (1992, Prog, Theor. Phys. 88, 1079), and (c) "Model A64" of Ruffert et al. (1996A&A...311..532R). We aim at studying the differences due to the use of different numerical methods, different implementations of the gravitational wave backreaction, and different equations of state. We integrate the three-dimensional Newtonian equations of hydrodynamics by the Riemann-solver based "Piecewise Parabolic Method" on an equidistant Cartesian grid. Comparison (a) confronts the results of our grid-based PPM scheme with those from an SPH code. We find that due to the lower numerical viscosity of the PPM code, the post-merging oscillations and pulsations can be followed for a longer time and lead to larger secondary and tertiary maxima of the gravitational wave luminosity and to a stronger peak of the gravitational wave spectrum at a frequency of about f=~1.8KHz when compared to the results of Zhuge et al. (1994PhRvD..50.6247Z). In case (b) two grid based codes with the same backreaction formalism but differing hydrodynamic integrators and slightly different initial conditions are compared. Instead of rotationally deformed initial neutron stars we use spherically shaped stars. Satisfactory agreement of the amplitude of the gravitational wave luminosity is established, although due to the different initial conditions a small time delay develops in the onset of the dynamical instability setting in when the two stars come very close. In (c) we find that using a polytropic equation of state instead of the high-density equation of state of Lattimer & Swesty (1991, Nucl. Phys. A535, 331) employed by Ruffert et al. (1996A&A...311..532R) does not change the overall dynamical evolution of the merger and

  15. UV LED charge control of an electrically isolated proof mass in a Gravitational Reference Sensor configuration at 255 nm

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Karthik; Sun, Ke-Xun

    2012-07-01

    Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. We show that AlGaN UV LEDs operating at 255 nm are an effective substitute for Mercury vapor lamps used in previous missions because of their ability to withstand space qualification levels of vibration and thermal cycling. After 27 thermal and thermal vacuum cycles and 9 minutes of 14.07 g RMS vibration, there is less than 3% change in current draw, less than 15% change in optical power, and no change in spectral peak or FWHM (full width at half maximum). We also demonstrate UV LED stimulated photoemission from a wide variety of thin film carbide proof mass coating candidates (SiC, Mo2C, TaC, TiC, ZrC) that were applied using electron beam evaporation on an Aluminum 6061-T6 substrate. All tested carbide films have measured quantum efficiencies of 3.8-6.8*10^-7 and reflectivities of 0.11-0.15, which compare favorably with the properties of previously used gold films. We demonstrate the ability to control proof mass potential on an 89 mm diameter spherical proof mass over a 20 mm gap in a GRS-like configuration. Proof mass potential was measured via a non-contact DC probe, which would allow control without introducing dynamic forcing of the spacecraft. Finally we provide a look ahead to an upcoming technology demonstration mission of UV LEDs and future applications toward charge control of electrically isolated proof masses.

  16. A report on the gravitational redshift test for non-metric theories of gravitation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The frequencies of two atomic hydrogen masers and of three superconducting cavity stabilized oscillators were compared as the ensemble of oscillators was moved in the Sun's gravitational field by the rotation and orbital motion of the Earth. Metric gravitation theories predict that the gravitational redshifts of the two types of oscillators are identical, and that there should be no relative frequency shift between the oscillators; nonmetric theories, in contrast, predict a frequency shift between masers and SCSOs that is proportional to the change in solar gravitational potential experienced by the oscillators. The results are consistent with metric theories of gravitation at a level of 2%.

  17. Quantum Gravitational Spectroscopy

    DOE PAGES

    Nesvizhevsky, Valery V.; Antoniadis, Ignatios; Baessler, Stefan; ...

    2015-01-01

    We report that one of the main goals for improving the accuracy of quantum gravitational spectroscopy with neutrons is searches for extra short-range fundamental forces. We discuss also any progress in all competing nonneutron methods as well as constraints at other characteristic distances. Among major methodical developments related to the phenomenon of gravitational quantum states are the detailed theoretical analysis and the planning experiments on observation of gravitational quantum states of antihydrogen atoms.

  18. Relativistic Transverse Gravitational Redshift

    NASA Astrophysics Data System (ADS)

    Mayer, A. F.

    2012-12-01

    The parametrized post-Newtonian (PPN) formalism is a tool for quantitative analysis of the weak gravitational field based on the field equations of general relativity. This formalism and its ten parameters provide the practical theoretical foundation for the evaluation of empirical data produced by space-based missions designed to map and better understand the gravitational field (e.g., GRAIL, GRACE, GOCE). Accordingly, mission data is interpreted in the context of the canonical PPN formalism; unexpected, anomalous data are explained as similarly unexpected but apparently real physical phenomena, which may be characterized as ``gravitational anomalies," or by various sources contributing to the total error budget. Another possibility, which is typically not considered, is a small modeling error in canonical general relativity. The concept of the idealized point-mass spherical equipotential surface, which originates with Newton's law of gravity, is preserved in Einstein's synthesis of special relativity with accelerated reference frames in the form of the field equations. It was not previously realized that the fundamental principles of relativity invalidate this concept and with it the idea that the gravitational field is conservative (i.e., zero net work is done on any closed path). The ideal radial free fall of a material body from arbitrarily-large range to a point on such an equipotential surface (S) determines a unique escape-velocity vector of magnitude v collinear to the acceleration vector of magnitude g at this point. For two such points on S separated by angle dφ , the Equivalence Principle implies distinct reference frames experiencing inertial acceleration of identical magnitude g in different directions in space. The complete equivalence of these inertially-accelerated frames to their analogous frames at rest on S requires evaluation at instantaneous velocity v relative to a local inertial observer. Because these velocity vectors are not parallel, a

  19. Gravitational waves from dark first order phase transitions and dark photons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Marcianò, Antonino

    2018-01-01

    Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)

  20. Searching for the QCD Axion with Black Holes and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Baryakhtar, Masha

    2017-01-01

    The LIGO detection of gravitational waves has opened a new window on the universe. I will discuss how the process of superradiance, combined with gravitational wave measurements, makes black holes into nature's laboratories to search for new light bosons. When a bosonic particle's Compton wavelength is comparable to the horizon size of a black hole, superradiance of these bosons into bound ``Bohr orbitals'' extracts energy and angular momentum from the black hole. The occupation number of the levels grows exponentially and the black hole spins down. For efficient superradiance of stellar black holes, the particle must be ultralight, with mass below 10-10 eV; one candidate for such an ultralight boson is the QCD axion with decay constant above the GUT scale. Measurements of BH spins in X-ray binaries and in mergers at Advanced LIGO can exclude or provide evidence for an ultralight axion. Axions transitioning between levels of the gravitational ``atom'' and annihilating to gravitons may produce thousands of monochromatic gravitational wave signals, turning LIGO into a particle detector.

  1. Gravitational memory charges of supertranslation and superrotation on Rindler horizons

    NASA Astrophysics Data System (ADS)

    Hotta, Masahiro; Trevison, Jose; Yamaguchi, Koji

    2016-10-01

    In a Rindler-type coordinate system spanned in a region outside of a black hole horizon, we have nonvanishing classical holographic charges as soft hairs on the horizon for stationary black holes. Taking a large black hole mass limit, the spacetimes with the charges are described by asymptotic Rindler metrics. We construct a general theory of gravitational holographic charges for a (1 +3 )-dimensional linearized gravity field in the Minkowski background with Rindler horizons. Although matter crossing a Rindler horizon causes horizon deformation and a time-dependent coordinate shift—that is, gravitational memory—the supertranslation and superrotation charges on the horizon can be defined during and after its passage through the horizon. It is generally proven that holographic states on the horizon cannot store any information about absorbed perturbative gravitational waves. However, matter crossing the horizon really excites holographic states. By using gravitational memory operators, which consist of the holographic charge operators, we suggest a resolution of the no-cloning paradox of quantum information between matter falling into the horizon and holographic charges on the horizon from the viewpoint of the contextuality of quantum measurement.

  2. Gravitational Reference Sensor Technology Development at the University of Florida

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Chiani, Giacomo; Mueller, Guido; Shelley, Ryan

    2013-04-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for detecting gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million kilometer-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics. A single TM together with its protective housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3 x 10-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2014. In order to increase U.S. competency in GRS technologies, various research activities at the University of Florida (UF) have been initiated. The first is the development of a nearly thermally noise limited torsion pendulum for testing the GRS and for understanding the dozens of acceleration noise sources that affect the performance of the LISA GRS. The team at UF also collaborates with Stanford and NASA Ames on a small satellite mission that will test the performance of UV LEDs for ac charge control in space. This presentation will describe the design of the GRS testing facility at UF, the status of the UV LED small satellite mission, and plans for UF participation in the LISA Pathfinder mission.

  3. Evaluation of Optimal Formulas for Gravitational Tensors up to Gravitational Curvatures of a Tesseroid

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Le; Shen, Wen-Bin

    2018-01-01

    The forward modeling of the topographic effects of the gravitational parameters in the gravity field is a fundamental topic in geodesy and geophysics. Since the gravitational effects, including for instance the gravitational potential (GP), the gravity vector (GV) and the gravity gradient tensor (GGT), of the topographic (or isostatic) mass reduction have been expanded by adding the gravitational curvatures (GC) in geoscience, it is crucial to find efficient numerical approaches to evaluate these effects. In this paper, the GC formulas of a tesseroid in Cartesian integral kernels are derived in 3D/2D forms. Three generally used numerical approaches for computing the topographic effects (e.g., GP, GV, GGT, GC) of a tesseroid are studied, including the Taylor Series Expansion (TSE), Gauss-Legendre Quadrature (GLQ) and Newton-Cotes Quadrature (NCQ) approaches. Numerical investigations show that the GC formulas in Cartesian integral kernels are more efficient if compared to the previously given GC formulas in spherical integral kernels: by exploiting the 3D TSE second-order formulas, the computational burden associated with the former is 46%, as an average, of that associated with the latter. The GLQ behaves better than the 3D/2D TSE and NCQ in terms of accuracy and computational time. In addition, the effects of a spherical shell's thickness and large-scale geocentric distance on the GP, GV, GGT and GC functionals have been studied with the 3D TSE second-order formulas as well. The relative approximation errors of the GC functionals are larger with the thicker spherical shell, which are the same as those of the GP, GV and GGT. Finally, the very-near-area problem and polar singularity problem have been considered by the numerical methods of the 3D TSE, GLQ and NCQ. The relative approximation errors of the GC components are larger than those of the GP, GV and GGT, especially at the very near area. Compared to the GC formulas in spherical integral kernels, these new GC

  4. MHz gravitational wave constraints with decameter Michelson interferometers

    DOE PAGES

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; ...

    2017-03-03

    A new detector, the Fermilab Holometer, consists of separate yet identical 39-meter Michelson interferometers. Strain sensitivity achieved is better than 10 –21/√Hz between 1 to 13 MHz from a 130-h data set. This measurement exceeds the sensitivity and frequency range made from previous high frequency gravitational wave experiments by many orders of magnitude. Constraints are placed on a stochastic background at 382 Hz resolution. The 3σ upper limit on Ω GW, the gravitational wave energy density normalized to the closure density, ranges from 5.6 × 10 12 at 1 MHz to 8.4 × 10 15 at 13 MHz. Another resultmore » from the same data set is a search for nearby primordial black hole binaries (PBHB). There are no detectable monochromatic PBHBs in the mass range 0.83–3.5 × 10 21 g between the Earth and the Moon. Projections for a chirp search with the same data set increase the mass range to 0.59–2.5 × 10 25 g and distances out to Jupiter. Furthermore, this result presents a new method for placing limits on a poorly constrained mass range of primordial black holes. Additionally, solar system searches for PBHBs place limits on their contribution to the total dark matter fraction.« less

  5. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background.

    PubMed

    Wang, Sai; Wang, Yi-Fan; Huang, Qing-Guo; Li, Tjonnie G F

    2018-05-11

    Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1M_{⊙}≲M_{PBH}≲100M_{⊙}, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.

  6. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background

    NASA Astrophysics Data System (ADS)

    Wang, Sai; Wang, Yi-Fan; Huang, Qing-Guo; Li, Tjonnie G. F.

    2018-05-01

    Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1 M⊙≲MPBH≲100 M⊙, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.

  7. A simple pendulum laser interferometer for determining the gravitational constant.

    PubMed

    Parks, Harold V; Faller, James E

    2014-10-13

    We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry-Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Gravitational decoherence

    NASA Astrophysics Data System (ADS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-10-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.

  9. Some considerations on measuring the Newtonian gravitational constant G in an orbiting laboratory

    NASA Technical Reports Server (NTRS)

    Baker, Stephen D.

    1986-01-01

    A common suggestion for measuring the Newtonian gravitational constant G in a near-earth orbiting laboratory is simply to put two balls in orbit around each other and observe the resulting motion, thereby determining G. However, the radial variation with distance of the gravitational field of the earth is so large that tidal forces on the balls in near-earth orbit can be several times greater than the gravitational attraction between the two masses, leading some writers to assume that two objects will not stably orbit about each other and that this method of measuring G in low-earth is impossible, or at least impractical. Certain orbits were identified which are stable (at least over many periods of the spacecraft about the earth). In this case, the objects experience their gravitational interaction for a long time, and it becomes reasonable to consider such orbits as candidates for measurements of G.

  10. Galilean-invariant scalar fields can strengthen gravitational lensing.

    PubMed

    Wyman, Mark

    2011-05-20

    The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.

  11. Gravitation research

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Muehlner, D. J.; Benford, R. L.; Owens, D. K.; Pierre, N. A.; Rosenbluh, M.

    1972-01-01

    Balloon measurements were made of the far infrared background radiation. The radiometer used and its calibration are discussed. An electromagnetically coupled broadband gravitational antenna is also considered. The proposed antenna design and noise sources in the antenna are reviewed. A comparison is made between interferometric broadband and resonant bar antennas for the detection of gravitational wave pulses.

  12. Covariant theory of gravitation in the framework of special relativity

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Brentan, H. B.

    2018-04-01

    In this work, we study the magnetic effects of gravity in the framework of special relativity. Imposing covariance of the gravitational force with respect to the Lorentz transformations, we show from a thought experiment that a magnetic-like force must be present whenever two or more bodies are in motion. The exact expression for this gravitomagnetic force is then derived purely from special relativity and the consequences of such a covariant theory are developed. For instance, we show that the gravitomagnetic fields satisfy a system of differential equations similar to the Maxwell equations of electrodynamics. This implies that the gravitational waves spread out with the speed of light in a flat spacetime, which is in agreement with the recent results concerning the gravitational waves detection. We also propose that the vector potential can be associated with the interaction momentum in the same way as the scalar potential is usually associated with the interaction energy. Other topics are also discussed, for example, the transformation laws for the fields, the energy and momentum stored in the gravitomagnetic fields, the invariance of the gravitational mass and so on. We remark that is not our intention here to propose an alternative theory of gravitation but, rather, only a first approximation for the gravitational phenomena, so that it can be applied whenever the gravitational force can be regarded as an ordinary effective force field and special relativity can be used with safety. To make this point clear we present briefly a comparison between our approach and that based on the (linearized) Einstein's theory. Finally, we remark that although we have assumed nothing from the electromagnetic theory, we found that gravity and electricity share many properties in common -these similarities, in fact, are just a requirement of special relativity that must apply to any physically acceptable force field.

  13. Theoretical physics implications of gravitational wave observation with future detectors

    NASA Astrophysics Data System (ADS)

    Chamberlain, Katie; Yunes, Nicolás

    2017-10-01

    Gravitational waves encode invaluable information about the nature of the relatively unexplored extreme gravity regime, where the gravitational interaction is strong, nonlinear and highly dynamical. Recent gravitational wave observations by advanced LIGO have provided the first glimpses into this regime, allowing for the extraction of new inferences on different aspects of theoretical physics. For example, these detections provide constraints on the mass of the graviton, Lorentz violation in the gravitational sector, the existence of large extra dimensions, the temporal variability of Newton's gravitational constant, and modified dispersion relations of gravitational waves. Many of these constraints, however, are not yet competitive with constraints obtained, for example, through Solar System observations or binary pulsar observations. In this paper, we study the degree to which theoretical physics inferences drawn from gravitational wave observations will strengthen with detections from future detectors. We consider future ground-based detectors, such as the LIGO-class expansions A + , Voyager, Cosmic Explorer and the Einstein Telescope, as well as space-based detectors, such as various configurations of eLISA and the recently proposed LISA mission. We find that space-based detectors will place constraints on general relativity up to 12 orders of magnitude more stringently than current aLIGO bounds, but these space-based constraints are comparable to those obtained with the ground-based Cosmic Explorer or the Einstein Telescope (A + and Voyager only lead to modest improvements in constraints). We also generically find that improvements in the instrument sensitivity band at low frequencies lead to large improvements in certain classes of constraints, while sensitivity improvements at high frequencies lead to more modest gains. These results strengthen the case for the development of future detectors, while providing additional information that could be useful in

  14. The generation of gravitational waves. 2: The post-linear formalism revisited

    NASA Technical Reports Server (NTRS)

    Crowley, R. J.; Thorne, K. S.

    1975-01-01

    Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. The DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs post-linear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the post-linear formalism allow one to treat the interacting bodies as point masses, while others do not.

  15. Statistics of Dark Matter Halos from Gravitational Lensing.

    PubMed

    Jain; Van Waerbeke L

    2000-02-10

    We present a new approach to measure the mass function of dark matter halos and to discriminate models with differing values of Omega through weak gravitational lensing. We measure the distribution of peaks from simulated lensing surveys and show that the lensing signal due to dark matter halos can be detected for a wide range of peak heights. Even when the signal-to-noise ratio is well below the limit for detection of individual halos, projected halo statistics can be constrained for halo masses spanning galactic to cluster halos. The use of peak statistics relies on an analytical model of the noise due to the intrinsic ellipticities of source galaxies. The noise model has been shown to accurately describe simulated data for a variety of input ellipticity distributions. We show that the measured peak distribution has distinct signatures of gravitational lensing, and its non-Gaussian shape can be used to distinguish models with different values of Omega. The use of peak statistics is complementary to the measurement of field statistics, such as the ellipticity correlation function, and is possibly not susceptible to the same systematic errors.

  16. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG),more » and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.« less

  17. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Campbell, Andrew I.; Wittkowski, Raphael; ten Hagen, Borge; Löwen, Hartmut; Ebbens, Stephen J.

    2017-08-01

    The self-propulsion mechanism of active colloidal particles often generates not only translational but also rotational motion. For particles with an anisotropic mass density under gravity, the motion is usually influenced by a downwards oriented force and an aligning torque. Here we study the trajectories of self-propelled bottom-heavy Janus particles in three spatial dimensions both in experiments and by theory. For a sufficiently large mass anisotropy, the particles typically move along helical trajectories whose axis is oriented either parallel or antiparallel to the direction of gravity (i.e., they show gravitaxis). In contrast, if the mass anisotropy is small and rotational diffusion is dominant, gravitational alignment of the trajectories is not possible. Furthermore, the trajectories depend on the angular self-propulsion velocity of the particles. If this component of the active motion is strong and rotates the direction of translational self-propulsion of the particles, their trajectories have many loops, whereas elongated swimming paths occur if the angular self-propulsion is weak. We show that the observed gravitational alignment mechanism and the dependence of the trajectory shape on the angular self-propulsion can be used to separate active colloidal particles with respect to their mass anisotropy and angular self-propulsion, respectively.

  18. The next detectors for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael

    2015-12-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

  19. Limiting majoron self-interactions from gravitational wave experiments

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Marcianò, Antonino

    2018-01-01

    We show how majoron models may be tested/limited in gravitational wave experiments. In particular, the majoron self-interaction potential may induce a first order phase transition, producing gravitational waves from bubble collisions. We dub such a new scenario the violent majoron model, because it would be associated with a violent phase transition in the early Universe. Sphaleron constraints can be avoided if the global U{(1)}B-L is broken at scales lower than the electroweak scale, provided that the B-L spontaneously breaking scale is lower than 10 TeV in order to satisfy the cosmological mass density bound. The possibility of a sub-electroweak phase transition is practically unconstrained by cosmological bounds and it may be detected within the sensitivity of the next generation of gravitational wave experiments: eLISA, DECIGO and BBO. We also comment on its possible detection in the next generation of electron-positron colliders, where majoron production can be observed from the Higgs portals in missing transverse energy channels. Supported by the Shanghai Municipality, through the grant No. KBH1512299, and by Fudan University, through the grant No. JJH1512105

  20. Gravitating lepton bag model

    NASA Astrophysics Data System (ADS)

    Burinskii, A.

    2015-08-01

    The Kerr-Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr's gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring-string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag-string-quark system.

  1. Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Schutz, B.; Murdin, P.

    2000-11-01

    Gravity is one of the fundamental forces of nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of SPECIAL RELATIVITY. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that, when the gravitational field of an object changes, the changes ripple outwards throu...

  2. Gravitation in Material Media

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  3. Certain problems in the current theory of gravitation

    NASA Astrophysics Data System (ADS)

    Markov, M. A.

    1984-04-01

    A number of problems (considered by the author to be the most significant) connected with the possible role of gravitation in the elementary-particle physics and cosmology are examined. Particular attention is given to the problems of self-energy, the limit mass of elementary particles, maximons and the evolution of the universe, the origin of the universe, and the physical meaning of Planck's length.

  4. A kilonova as the electromagnetic counterpart to a gravitational-wave source.

    PubMed

    Smartt, S J; Chen, T-W; Jerkstrand, A; Coughlin, M; Kankare, E; Sim, S A; Fraser, M; Inserra, C; Maguire, K; Chambers, K C; Huber, M E; Krühler, T; Leloudas, G; Magee, M; Shingles, L J; Smith, K W; Young, D R; Tonry, J; Kotak, R; Gal-Yam, A; Lyman, J D; Homan, D S; Agliozzo, C; Anderson, J P; Angus, C R; Ashall, C; Barbarino, C; Bauer, F E; Berton, M; Botticella, M T; Bulla, M; Bulger, J; Cannizzaro, G; Cano, Z; Cartier, R; Cikota, A; Clark, P; De Cia, A; Della Valle, M; Denneau, L; Dennefeld, M; Dessart, L; Dimitriadis, G; Elias-Rosa, N; Firth, R E; Flewelling, H; Flörs, A; Franckowiak, A; Frohmaier, C; Galbany, L; González-Gaitán, S; Greiner, J; Gromadzki, M; Guelbenzu, A Nicuesa; Gutiérrez, C P; Hamanowicz, A; Hanlon, L; Harmanen, J; Heintz, K E; Heinze, A; Hernandez, M-S; Hodgkin, S T; Hook, I M; Izzo, L; James, P A; Jonker, P G; Kerzendorf, W E; Klose, S; Kostrzewa-Rutkowska, Z; Kowalski, M; Kromer, M; Kuncarayakti, H; Lawrence, A; Lowe, T B; Magnier, E A; Manulis, I; Martin-Carrillo, A; Mattila, S; McBrien, O; Müller, A; Nordin, J; O'Neill, D; Onori, F; Palmerio, J T; Pastorello, A; Patat, F; Pignata, G; Podsiadlowski, Ph; Pumo, M L; Prentice, S J; Rau, A; Razza, A; Rest, A; Reynolds, T; Roy, R; Ruiter, A J; Rybicki, K A; Salmon, L; Schady, P; Schultz, A S B; Schweyer, T; Seitenzahl, I R; Smith, M; Sollerman, J; Stalder, B; Stubbs, C W; Sullivan, M; Szegedi, H; Taddia, F; Taubenberger, S; Terreran, G; van Soelen, B; Vos, J; Wainscoat, R J; Walton, N A; Waters, C; Weiland, H; Willman, M; Wiseman, P; Wright, D E; Wyrzykowski, Ł; Yaron, O

    2017-11-02

    Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

  5. A kilonova as the electromagnetic counterpart to a gravitational-wave source

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K. C.; Huber, M. E.; Krühler, T.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Tonry, J.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Bulger, J.; Cannizzaro, G.; Cano, Z.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Denneau, L.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flewelling, H.; Flörs, A.; Franckowiak, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Greiner, J.; Gromadzki, M.; Guelbenzu, A. Nicuesa; Gutiérrez, C. P.; Hamanowicz, A.; Hanlon, L.; Harmanen, J.; Heintz, K. E.; Heinze, A.; Hernandez, M.-S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Klose, S.; Kostrzewa-Rutkowska, Z.; Kowalski, M.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Lowe, T. B.; Magnier, E. A.; Manulis, I.; Martin-Carrillo, A.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, Ph.; Pumo, M. L.; Prentice, S. J.; Rau, A.; Razza, A.; Rest, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Schady, P.; Schultz, A. S. B.; Schweyer, T.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Stalder, B.; Stubbs, C. W.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; van Soelen, B.; Vos, J.; Wainscoat, R. J.; Walton, N. A.; Waters, C.; Weiland, H.; Willman, M.; Wiseman, P.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.

    2017-11-01

    Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

  6. Gravitational-wave astronomy

    NASA Technical Reports Server (NTRS)

    Press, W. H.; Thorne, K. S.

    1972-01-01

    The significance of experimental evidence for gravitational waves is considered for astronomy. Properties, generation, and astrophysical sources of the waves are discussed. Gravitational wave receivers and antennas are described. A review of the Weber experiment is presented.

  7. The Effects of Gravitational Instabilities on Gas Giant Planet Migration in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Michael, Scott A.; Durisen, R. H.

    2010-05-01

    In this paper we conduct several three-dimensional radiative hydrodynamic simulations to explore the effect of the inclusion of gas giant planets in gravitationally unstable protoplanetary disks. We compare several simulations carried out with the CHYMERA code including: a baseline simulation without a planet, and three simulations including planets of various masses 0.3, 1 and 3 Jupiter masses. The planets are inserted into the baseline simulation after the gravitational instabilities (GIs) have grown to non-linear amplitude. The planets are inserted at the same radius, which coincides with the co-rotation radius of the dominant global mode in the baseline simulation. We examine the effect that the GIs have on migration rates as well as the potential of halting inward migration. We also examine the effect the insertion of the planet has on the global torques caused by the GIs. Furthermore, we explore the relationship between planet mass and migration rates and effect on GIs.

  8. A lunar gravitational wave antenna using a laser interferometer

    NASA Astrophysics Data System (ADS)

    Stebbins, R. T.; Bender, P. L.

    1990-03-01

    A moon-based laser interferometer for detecting gravitational radiation could detect signals in the band 0.1 - 10,000 Hz. A preliminary evaluation of the noise budget for an optimistic antenna design is reported here and compared to that for other planned gravitational wave interferometers. Over most of the frequency range, the sensitivity is controlled by the thermal noise in the test mass suspensions. From roughly 3 to a few hundred Hertz, it is about the same as the sensitivity expected in terrestrial antennas of the same construction, which will have been operating for at least a decade. Below 0.3 Hz, a proposed space-based interferometer, designed for operation down to 10 exp -5 Hz, would have better sensitivity.

  9. Low-energy dynamics of gravitation

    NASA Astrophysics Data System (ADS)

    Torma, Tibor

    The present status of theories of quantum gravity are reviewed from the low energy point of view. String theory relates classical black-hole type solutions of Einstein- like equations (e.g. axidilaton gravity) to the string vacuum. Several such solutions are proposed and their properties are investigated, including their behavior under supersymmetry transformations. A general feature of all possible quantum theories of gravitation is that they lead to a field theory description at low (as compared to the Planck mass) energies. The theoretical consistency, uniqueness and consequences of such an effective theory are investigated. I show that a power counting theorem allows for the momentum expansion that defines the effective theory even in the presence of large masses. I also show that graviton-graviton scattering is free of potential infrared and collinear divergencies that plague perturbative discussions of Yang-Mills theories.

  10. Migration of Gas Giant Planets in Gravitationally Unstable Disks

    NASA Astrophysics Data System (ADS)

    Michael, Scott; Durisen, Richard H.; Boley, Aaron C.

    2011-08-01

    Characterization of migration in gravitationally unstable disks is necessary to understand the fate of protoplanets formed by disk instability. As part of a larger study, we are using a three-dimensional radiative hydrodynamics code to investigate how an embedded gas giant planet interacts with a gas disk that undergoes gravitational instabilities (GIs). This Letter presents results from simulations with a Jupiter-mass planet placed in orbit at 25 AU within a 0.14 M sun disk. The disk spans 5-40 AU around a 1 M sun star and is initially marginally unstable. In one simulation, the planet is inserted prior to the eruption of GIs; in another, it is inserted only after the disk has settled into a quasi-steady GI-active state, where heating by GIs roughly balances radiative cooling. When the planet is present from the beginning, its own wake stimulates growth of a particular global mode with which it strongly interacts, and the planet plunges inward 6 AU in about 103 years. In both cases with embedded planets, there are times when the planet's radial motion is slow and varies in direction. At other times, when the planet appears to be interacting with strong spiral modes, migration both inward and outward can be relatively rapid, covering several AUs over hundreds of years. Migration in both cases appears to stall near the inner Lindblad resonance of a dominant low-order mode. Planet orbit eccentricities fluctuate rapidly between about 0.02 and 0.1 throughout the GI-active phases of the simulations.

  11. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  12. Gravitation in material media

    NASA Astrophysics Data System (ADS)

    Ridgely, Charles T.

    2011-03-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  13. Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan

    2017-05-01

    Massive Primordial Black Holes (MPBH) can be formed after inflation due to broad peaks in the primordial curvature power spectrum that collapse gravitationally during the radiation era, to form clusters of black holes that merge and increase in mass after recombination, generating today a broad mass-spectrum of black holes with masses ranging from 0.01 to 105 M⊙ . These MPBH could act as seeds for galaxies and quick-start structure formation, initiating reionization, forming galaxies at redshift z > 10 and clusters at z > 1. They may also be the seeds on which SMBH and IMBH form, by accreting gas onto them and forming the centers of galaxies and quasars at high redshift. They form at rest with zero spin and have negligible cross-section with ordinary matter. If there are enough of these MPBH, they could constitute the bulk of the Dark Matter today. Such PBH could be responsible for the observed fluctuations in the CIB and X-ray backgrounds. MPBH could be directly detected by the gravitational waves emitted when they merge to form more massive black holes, as recently reported by LIGO. Their continuous merging since recombination could have generated a stochastic background of gravitational waves that could eventually be detected by LISA and PTA. MPBH may actually be responsible for the unidentified point sources seen by Fermi, Magic and Chandra. Furthermore, the ejection of stars from shallow potential wells like those of Dwarf Spheroidals (DSph), via the gravitational slingshot effect, could be due to MPBH, thus alleviating the substructure and too-big-to-fail problems of standard collisionless CDM. Their mass distribution peaks at a few tens of M⊙ today, and could therefore be detected also with long-duration microlensing events, as well as by the anomalous motion of stars in the field of GAIA. Their presence as CDM in the Universe could be seen in the time-dilation of strong-lensing images of quasars. The hierarchical large scale structure behaviour of MPBH

  14. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; hide

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.

  15. The gravitational-optical methods for examination of the hypothesis about galaxies and antigalaxies in the Universe

    NASA Astrophysics Data System (ADS)

    Gribov, I. A.; Trigger, S. A.

    2018-01-01

    The optical-gravitational methods for distinction between photons and antiphotons (galaxies, emitting photons and antigalaxies, emitting antiphotons) in the proposed hypothesis of totally gravitationally neutral (TGN)-Universe are considered. These methods are based on the extension of the earlier proposed the gravitationally neutral Universe concept, including now gravitational neutrality of vacuum. This concept contains (i) enlarged unbroken baryon-like, charge, parity and time and full ±M gr gravitational symmetries between all massive elementary particles-antiparticles, including (ia) ordinary matter (OM)-ordinary antimatter (OAM), (ib) dark matter (DM)-dark antimatter (DAM) and (ii) the resulting gravitational repulsion between equally presented (OM+DM)-galactic and (OAM+DAM)-antigalactic clusters, what spatially isolates and preserves their mutual annihilations in the large-scale TGN-Universe. It is assumed the gravitational balance not only between positive and negative gravitational masses of elementary particles and antiparticles, but also between all massless fields of the quantum field theory (QFT), including the opposite gravitational properties of photons and antiphotons, etc, realizing the totally gravitationally neutral vacuum in the QFT. These photons and antiphotons could be distinguishable optically-gravitationally, if one can observe a massive, deviating OM-star or a deviating (OM+DM)-galaxy from our galactic group, moving fast enough on the heavenly sphere, crossing the line directed to spatially separated far-remote galactic clusters (with the visible OM-markers, emitting photons) or antigalactic cluster (with the visible OAM-markers, emitting antiphotons). The deviations and gravitational microlensing with temporarily increased or decreased brightness of their OM and OAM rays will be opposite, indicating the galaxies and antigalaxies in the Universe.

  16. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2017-03-24

    A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

  17. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-03-01

    A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω0<1.7 ×10-7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ˜33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

  18. Gamma-ray-burst beaming and gravitational-wave observations.

    PubMed

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  19. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    NASA Technical Reports Server (NTRS)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  20. Episodic accretion in binary protostars emerging from self-gravitating solar mass cores

    NASA Astrophysics Data System (ADS)

    Riaz, R.; Vanaverbeke, S.; Schleicher, D. R. G.

    2018-06-01

    Observations show a large spread in the luminosities of young protostars, which are frequently explained in the context of episodic accretion. We tested this scenario with numerical simulations that follow the collapse of a solar mass molecular cloud using the GRADSPH code, thereby varying the strength of the initial perturbations and temperature of the cores. A specific emphasis of this paper is to investigate the role of binaries and multiple systems in the context of episodic accretion and to compare their evolution to the evolution in isolated fragments. Our models form a variety of low-mass protostellar objects including single, binary, and triple systems in which binaries are more active in exhibiting episodic accretion than isolated protostars. We also find a general decreasing trend in the average mass accretion rate over time, suggesting that the majority of the protostellar mass is accreted within the first 105 years. This result can potentially help to explain the surprisingly low average luminosities in the majority of the protostellar population.

  1. Gravitational Waves Propagation through the Stochastic Background of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Frajuca, C.; Bortoli, F. S.; Nakamoto, F. Y.; Santos, G. A.

    2018-02-01

    With the recent claim that gravitational waves were finally detected and with other efforts around the world for GWs detection, its is reasonable to imagine that the relic gravitational wave background could be detected in some time in the future and with such information gather some hints about the origin of the universe. But, it’s also be considered that gravity has self-interaction, with such assumption it’s reasonable to expect that these gravitational wave will interact with the relic or nonrelic GW background by scattering, for example. Such interaction should decrease the distance which such propagating waves could be detected The propagation of gravitational waves (GWs) is analyzed in an asymptotically de Sitter space by the perturbation expansion around Minkowski space using a scalar component. Using the case of de Sitter inflationary phase scenario, the perturbation propagates through a FRW background. The GW, using the actual value for the Hubble scale (Ho), has a damping factor with a very small valor for the size of the observational universe; the stochastic relic GW background is given by a dimensionless function of the frequency. In this work we analyze this same damping including the gravitational wave background due to astrophysical sources such background is 3 orders of magnitude bigger in some frequencies and produces a higher damping factor.

  2. Self-gravitating black hole scalar wigs

    NASA Astrophysics Data System (ADS)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier

    2017-07-01

    It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.

  3. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles

    NASA Astrophysics Data System (ADS)

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P.; Scheel, Mark A.; Chu, Tony; Kidder, Lawrence E.; Pan, Yi

    2015-07-01

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5 M⊙ . We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

  4. Numerical relativity reaching into post-Newtonian territory: a compact-object binary simulation spanning 350 gravitational-wave cycles

    NASA Astrophysics Data System (ADS)

    Scheel, Mark; Szilagyi, Bela; Blackman, Jonathan; Chu, Tony; Kidder, Lawrence; Pfeiffer, Harald; Buonanno, Alessandra; Pan, Yi; Taracchini, Andrea; SXS Collaboration

    2015-04-01

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors such as LIGO, Virgo and KAGRA, for mass ratio 7 and total mass as low as 45 . 5M⊙ . We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a loss in detection rate due to modeling error smaller than 0 . 3 % . In contrast, post-Newtonian inspiral waveforms and existing phenomenological inspiral-merger-ringdown waveforms display much greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

  5. LISA Pathfinder: First steps to observing gravitational waves from space

    NASA Astrophysics Data System (ADS)

    McNamara, Paul; LISA Pathfinder Collaboration

    2017-01-01

    With the first direct detection of gravitational waves a little over a year ago, the gravitational window to the Universe has been opened. The gravitational wave spectrum spans many orders of magnitude in frequency, with several of the most interesting astronomical sources emitting gravitational waves at frequencies only observable from space The European Space Agency (ESA) has been active in the field of space-borne gravitational wave detection for many years, and in 2013 selected the Gravitational Universe as the science theme for the third large class mission in the Cosmic Vision science programme. In addition, ESA took the step of developing the LISA Pathfinder mission to demonstrate the critical technologies required for a future mission. The goal of the LISA Pathfinder mission is to place a test body in free fall such that any external forces (acceleration) are reduced to levels lower than those expected from the passage of a gravitational wave LISA Pathfinder was launched on the 3rd December 2015 from the European Spaceport in Kourou, French Guiana. After a series of 6 apogee raising manoeuvres, the satellite left earth orbit, and travelled to its final science orbit around the first Sun-Earth Lagrange point (L1). Following a relatively short commissioning phase, science operations began on 1st March 2016. In the following 3 months over 100 experiments and over 1500hours of noise measurements have been performed, demonstrating that the observation of gravitational waves from space can be realised.

  6. Gravitational Signal of Mass Redistribution Due to Interannual Meteorological Oscillations in Atmosphere and Ocean

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Au, A. Y.; Johnson, T.; Smith, David E. (Technical Monitor)

    2001-01-01

    Interannual meteorological oscillations (ENSO, QBO, NAO, etc.) have demonstrable influences on Earth's rotation. Here we study their effects on global gravitational field, whose temporal variations are being studied using SLR (satellite laser ranging) data and in anticipation of the new space mission GRACE. The meteorological oscillation modes are identified using the EOF (empirical orthogonal function)/PC (principal component) decomposition of surface fields (in which we take care of issues associated with the area-weighting and non-zero mean). We examine two fields, one for the global surface pressure field for the atmosphere obtained from the NCEP reanalysis (for the past 40 years), one for the surface topography field for the ocean from the Topex/Poseidon (T/P) data (for the past 8 years). We use monthly maps, and remove the mean-monthly ("climatology") values from each grid point, hence focusing only on non-seasonal signals. The T/P data were first subject to a steric correction where the steric contribution to the ocean surface topography was removed according to output of the numerical POCM model. The respective atmospheric and oceanic contributions to the gravitational variation, in terms of harmonic Stokes coefficients, are then combined mode-by-mode. Since the T/P data already contain the oceanic response to overlying atmospheric pressure, no regards to the inverted-barometer behavior for the ocean need be considered. Results for the lowest-degree Stokes coefficients can then be compared with space geodetic observations including the Earth's rotation and the SLR data mentioned above, to identify the importance of each meteorological oscillations in gravitational variation signals.

  7. Gravitational lens models of arcs in clusters

    NASA Technical Reports Server (NTRS)

    Bergmann, Anton G.; Petrosian, Vahe; Lynds, Roger

    1990-01-01

    It is now well established that the luminous arcs discovered in clusters of galaxies, in particular those in Abell 370 and Cluster 2244-02, are produced by gravitational lensing of background sources. The arcs are modeled and constraints are placed on the distribution of the mass in the clusters and the shape and size of the sources. The models require, as expected, a large amount of dark matter in the clusters and a mass-to blue-light ratio for the cluster which exceeds 100 solar mass/solar luminosity and could be as high as 1000 solar mass/solar luminosity depending on cosmological parameters and the distribution of the dark matter. Furthermore, it is found that in the case of the arc in A370 the dark matter must have a different distribution than the luminous galaxies, while for the arc in Cl 2244 the dark matter can have a distribution similar to that of the light matter (galaxies) or a separate distribution.

  8. On the mass and orbit of the ninth planet

    NASA Astrophysics Data System (ADS)

    Ugwoke, Azubike Christian

    2016-07-01

    ON THE MASS AND ORBIT OF THE NINTH PLANET A new planet is currently being proposed in the literature.This yet to be observed planet has its mass and orbit yet to be determined. However, if this planet is to escape being labelled a plutinoid, it must posses all the characteristics of a planet as currently set by the IAU. In addition it must be massive enough to enable it couple into the gravitational potential of the sun. Our earlier paper on this issue has suggested that no new planets are expected beyond Neptune , due to the vanishing gravitational potential of the sun within that orbit.Any new planet must be indeed very massive to be gravitationally linked sufficiently to the sun. In the current paper we have obtained estimates for planet 9 orbit and mass using this method.

  9. MG0414+0534: A Dusty Gravitational Lens

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Elston, R.; Jannuzi, B.; Turner, E.

    1996-01-01

    The gravitational lens system MG0414+0534 has an unexceptional four-image lensing geometry; however, the optical counterparts of the radio images are exceedingly red, with spectra unlike that of any previously observed active nucleus.

  10. Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate

    ERIC Educational Resources Information Center

    Acedo, Luis; Tung, Michael M.

    2012-01-01

    The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The…

  11. Constraints on cosmological models from strong gravitational lensing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combiningmore » stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.« less

  12. Astrophysical Model Selection in Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  13. Structural models for nickel electrode active mass

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Karjala, P. J.; Loyselle, P. L.

    1987-01-01

    Raman spectroscopic data allow one to distinguish nickel electrode active mass, alpha and beta phase materials. Discharges active mass is not isostructural with beta-Ni(OH)2. This is contrary to the generally accepted model for the discharged beta phase of active mass. It is concluded that charged active mass displays a disordered and nonstoichiometric, nonclose packed structure of the R3 bar m, NiOOH structure type. Raman spectral data and x ray diffraction data are analyzed and shown to be consistent with this structural model.

  14. Two-component gravitating systems and the red giant-like structure

    NASA Technical Reports Server (NTRS)

    Fujimoto, Masayuki Y.; Tomisaka, Kohji

    1992-01-01

    The present study investigates the equilibria and evolution of gravitating systems composed of two components by approximating their equations of states to polytropes. The structures are explored in hydrostatic equilibrium systematically under the condition that two components interact with each other only through gravity. The systems are found to be characterized by four parameters, the ratio of central densities and the ratio of central thermal energies per unit mass, and the polytropic indices of two components. If the central density is much higher, the structure is little affected by the presence of the other component. If the difference in the central thermal energies is smaller than specified by beta-cri, the system adopts an equilibrium configuration for any mass ratio. Two-component systems necessarily evolve to have the red giantlike structure if one component suffers cooling faster than the other. It is concluded that the red giant structure is a general characteristic of gravitating systems for which there is an appropriate mechanism to decouple the constituent into the hotter and cooler components.

  15. A 3D Numerical Study of Gravitational Instabilities in Young Circumbinary Disks

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Michael, Scott; Durisen, Richard

    2013-07-01

    Gravitational instabilities (GIs) in protoplanetary disks have been suggested as one of the major formation mechanisms of giant planets. Theoretical and computational studies have indicated that certain family of GIs can be excited in a circumbinary disk, which could lead to enhanced protoplanet formation (e.g., Sellwood & Lin 1989, Boss 2006). We have carried out a 3D simulation of a gravitationally unstable circumbinary disk around a young Sun-like star and a 0.02-Msun companion, both inside the central hole of the disk. Here we present a preliminary comparison between this simulation and a similarly simulated circumstellar disk around a solar-mass star but without the low-mass companion. The GIs stimulated by the binary and those that arise spontaneously are quite different in structure and strength. However, no fragmentation is observed, even after many orbital periods as measured in the outer disk.

  16. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  17. Effect of eccentricity on searches for gravitational waves from coalescing compact binaries in ground-based detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Duncan A.; Zimmerman, Peter J.

    2010-01-15

    Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model themore » gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.« less

  18. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Astrophysics Data System (ADS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.

    2007-12-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).

  19. Gravitational properties of light: The emission of counter-propagating laser pulses from an atom

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Wilkens, Martin; Menzel, Ralf

    2017-04-01

    The gravitational field of a laser pulse, although not detectable at the moment, has a special feature which continues to attract attention; cause and effect propagate with the same speed, the speed of light. One particular result of this feature is that the gravitational field of an emitted laser pulse and the gravitational effect of the emitter's energy-momentum change are intimately entangled. In this article, a specific example of an emission process is considered: An atom, modeled as a point mass, emits two counter-propagating pulses. The corresponding curvature and the effect on massive and massless test particles is discussed. A comparison is made with the metric corresponding to a spherically symmetric massive object that isotropically emits radiation; the Vaidya metric.

  20. Gravitational waves and the death-dance of compact stellar binaries

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    1996-05-01

    The completion of a network of advanced laser-interferometric gravitational-wave observatories (US LIGO and European VIRGO projects) around 2001 will make possible the study of the inspiral and coalescence of binary systems of compact objects (neutron stars and black holes), using gravitational radiation. To extract useful information from the waves, such as the masses and spins of the bodies, theoretical general relativistic gravitational waveforms will be used as templates, cross-correlated against the detector output, in a matched filtering process. Because the broad-band detectors will be very sensitive to the non-linearly evolving phase of the waves, the templates must be extremely accurate in their treatment of the gravitational back-reaction on the orbital frequency, probably as accurate as O[(v/c)^6] beyond the predictions of the quadrupole formula. This presents a major challenge to theorists. Recently, templates accurate to O[(v/c)^4] were obtained by two independent methods (L. Blanchet, T. Damour, B. R. Iyer, C. M. Will and A. G. Wiseman, Phys. Rev. Lett. 74), 3515 (1995), and extensions to O[(v/c)^5] and higher are in progress. We summarize one of these methods, which extends and improves an earlier framework due to Epstein and Wagoner (R. Epstein and R. V. Wagoner, Astrophys. J. 210), 764 (1975), in which Einstein's equations are recast as a flat spacetime wave equation with source comprised of matter confined to compact regions and gravitational non-linearities extending to infinity. The new method (C. M. Will and A. G. Wiseman, Phys. Rev. D, submitted), carried through O[(v/c)^4], is free of divergences or undefined integrals, correctly predicts all gravitational wave ``tail'' effects caused by backscatter of the outgoing radiation off the background curved spacetime, and yields radiation that propagates asymptotically along true null cones of the curved spacetime.

  1. Magnetorotational collapse of supermassive stars: Black hole formation, gravitational waves, and jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2017-08-01

    We perform magnetohydrodynamic simulations in full general relativity of uniformly rotating stars that are marginally unstable to collapse. These simulations model the direct collapse of supermassive stars (SMSs) to seed black holes that can grow to become the supermassive black holes at the centers of quasars and active galactic nuclei. They also crudely model the collapse of massive Population III stars to black holes, which could power a fraction of distant, long gamma-ray bursts. The initial stellar models we adopt are Γ =4 /3 polytropes initially with a dynamically unimportant dipole magnetic field. We treat initial magnetic-field configurations either confined to the stellar interior or extending out from the stellar interior into the exterior. We find that the black hole formed following collapse has mass MBH≃0.9 M (where M is the mass of the initial star) and dimensionless spin parameter aBH/MBH≃0.7 . A massive, hot, magnetized torus surrounds the remnant black hole. At Δ t ˜400 - 550 M ≈2000 -2700 (M /106 M⊙)s following the gravitational wave peak amplitude, an incipient jet is launched. The disk lifetime is Δ t ˜105(M /106 M⊙)s , and the outgoing Poynting luminosity is LEM˜1 051 -52 ergs /s . If≳1 %-10 % of this power is converted into gamma rays, Swift and Fermi could potentially detect these events out to large redshifts z ˜20 . Thus, SMSs could be sources of ultra-long gamma-ray bursts (ULGRBs), and massive Population III stars could be the progenitors that power a fraction of the long GRBs observed at redshift z ˜5 - 8 . Gravitational waves are copiously emitted during the collapse and peak at ˜15 (106 M⊙/M ) mHz [˜0.15 (104 M⊙/M ) Hz ], i.e., in the LISA (DECIGO/BBO) band; optimally oriented SMSs could be detectable by LISA (DECIGO/BBO) at z ≲3 (z ≲11 ). Hence, 1 04 M⊙ SMSs collapsing at z ˜10 are promising multimessenger sources of coincident gravitational and electromagnetic waves.

  2. ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric

    2016-03-01

    A classical Green's function approach for computing gravitationally consistent sea-level variations associated with mass redistribution on the earth's surface employed in contemporary sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on a mesh system also requires repetitive forward and inverse transforms. In order to overcome these limitations, we present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The goal of the current version of this model is to provide high-resolution solid-earth, gravitational, sea-level and rotational responses for earth system models operating in the domain of the earth's outer fluid envelope on timescales less than about 1 century when viscous effects can largely be ignored over most of the globe. The model has numerous important geophysical applications. For example, we compute time-varying computations of global geodetic and sea-level signatures associated with recent ice-sheet changes that are derived from space gravimetry observations. We also demonstrate the capability of our model to simultaneously resolve kilometer-scale sources of the earth's time-varying surface mass transport, derived from high-resolution modeling of polar ice sheets, and predict the corresponding local and global geodetic signatures.

  3. Signatures of extra dimensions in gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriot, David; Gómez, Gustavo Lucena, E-mail: andriotphysics@gmail.com, E-mail: glucenag@aei.mpg.de

    2017-06-01

    Considering gravitational waves propagating on the most general 4+ N -dimensional space-time, we investigate the effects due to the N extra dimensions on the four-dimensional waves. All wave equations are derived in general and discussed. On Minkowski{sub 4} times an arbitrary Ricci-flat compact manifold, we find: a massless wave with an additional polarization, the breathing mode, and extra waves with high frequencies fixed by Kaluza-Klein masses. We discuss whether these two effects could be observed.

  4. The astrophysical science case for a decihertz gravitational-wave detector

    NASA Astrophysics Data System (ADS)

    Mandel, Ilya; Sesana, Alberto; Vecchio, Alberto

    2018-03-01

    We discuss the astrophysical science case for a decihertz gravitational-wave mission. We focus on unique opportunities for scientific discovery in this frequency range, including probes of type IA supernova progenitors, mergers in the presence of third bodies, intermediate mass black holes, seeds of massive black holes, improved sky localization, and tracking the population of merging compact binaries.

  5. The link between tidal interaction and nuclear activity in galaxies

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Pringle, J. E.; Rees, M. J.

    1988-01-01

    It is considered how nuclear activity in galaxies may be induced by the tidal perturbation of companion galaxies. It is suggested that if the central regions of the galaxies contain marginally self-gravitating disks of gas, trailing spiral density waves, triggered by nonaxisymmetric gravitational instability, lead to efficient angular momentum transport. If the net effect of the external perturbation is to increase the effect of self-gravity in the gas, then the result is to induce a considerable increase in the mass accretion rate into the central region on a relatively short time scale. With a simple prescription, the evolution of self-gravitating accretion disks is examined in this context. These results are discussed in the context of the frequent occurrence of nuclear activity in interacting galaxies.

  6. Discovery and Mass Measurements of a Cold, Sub-Neptune Mass Planet and Its Host Star

    NASA Technical Reports Server (NTRS)

    Barry, Richard K., Jr.

    2011-01-01

    The gravitational microlensing exoplanet detection method is uniquely sensitive to cold, low-mass planets which orbit beyond the snow-line, where the most massive planets are thought to form. The early statistical results from microlensing indicate that Neptune-Saturn mass planets located beyond the snow-line are substantially more common than their counterparts in closer orbits that have found by the Doppler radial velocity method. We present the discovery of the planet MOA-2009-BLG-266Lb, which demonstrates that the gravitational microlensing method also has the capability to measure the masses of cold, low-mass planets. The mass measurements of the host star and the planet are made possible by the detection of the microlensing parallax signal due to the orbital motion or the Earth as well as observations from the EPOXI spacecraft in a Heliocentric orbit. The microlensing light curve indicates a planetary host star mass of M(sun) = 0.54 + / - 0.05M(sun) located at a distance of DL= 2.94 _ 0.21 kpc, orbited by a planet of mass mp= 9.8 +/-1.1M(Earth) with a semi-major axis of a = 3.1(+1.9-0.4)MAU.

  7. Gravitational lensing by eigenvalue distributions of random matrix models

    NASA Astrophysics Data System (ADS)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  8. Gravitational Instability of a Dust Layer Composed of Porous Silicate Dust Aggregates in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Tatsuuma, Misako; Michikoshi, Shugo; Kokubo, Eiichiro

    2018-03-01

    Planetesimal formation is one of the most important unsolved problems in planet formation theory. In particular, rocky planetesimal formation is difficult because silicate dust grains are easily broken when they collide. It has recently been proposed that they can grow as porous aggregates when their monomer radius is smaller than ∼10 nm, which can also avoid the radial drift toward the central star. However, the stability of a layer composed of such porous silicate dust aggregates has not been investigated. Therefore, we investigate the gravitational instability (GI) of this dust layer. To evaluate the disk stability, we calculate Toomre’s stability parameter Q, for which we need to evaluate the equilibrium random velocity of dust aggregates. We calculate the equilibrium random velocity considering gravitational scattering and collisions between dust aggregates, drag by mean flow of gas, stirring by gas turbulence, and gravitational scattering by gas density fluctuation due to turbulence. We derive the condition of the GI using the disk mass, dust-to-gas ratio, turbulent strength, orbital radius, and dust monomer radius. We find that, for the minimum mass solar nebula model at 1 au, the dust layer becomes gravitationally unstable when the turbulent strength α ≲ 10‑5. If the dust-to-gas ratio is increased twice, the GI occurs for α ≲ 10‑4. We also find that the dust layer is more unstable in disks with larger mass, higher dust-to-gas ratio, and weaker turbulent strength, at larger orbital radius, and with a larger monomer radius.

  9. Quantum phenomena in gravitational field

    NASA Astrophysics Data System (ADS)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  10. Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Le; Shen, Wen-Bin

    2018-04-01

    Proper understanding of how the Earth's mass distributions and redistributions influence the Earth's gravity field-related functionals is crucial for numerous applications in geodesy, geophysics and related geosciences. Calculations of the gravitational curvatures (GC) have been proposed in geodesy in recent years. In view of future satellite missions, the sixth-order developments of the gradients are becoming requisite. In this paper, a set of 3D integral GC formulas of a tesseroid mass body have been provided by spherical integral kernels in the spatial domain. Based on the Taylor series expansion approach, the numerical expressions of the 3D GC formulas are provided up to sixth order. Moreover, numerical experiments demonstrate the correctness of the 3D Taylor series approach for the GC formulas with order as high as sixth order. Analogous to other gravitational effects (e.g., gravitational potential, gravity vector, gravity gradient tensor), numerically it is found that there exist the very-near-area problem and polar singularity problem in the GC east-east-radial, north-north-radial and radial-radial-radial components in spatial domain, and compared to the other gravitational effects, the relative approximation errors of the GC components are larger due to not only the influence of the geocentric distance but also the influence of the latitude. This study shows that the magnitude of each term for the nonzero GC functionals by a grid resolution 15^' } } × 15^' }} at GOCE satellite height can reach of about 10^{-16} m^{-1} s2 for zero order, 10^{-24 } or 10^{-23} m^{-1} s2 for second order, 10^{-29} m^{-1} s2 for fourth order and 10^{-35} or 10^{-34} m^{-1} s2 for sixth order, respectively.

  11. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

  12. FY15 Gravitational-Wave Mission Activities Project

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2014-01-01

    The Gravitational-Wave (GW) team at Goddard provides leadership to both the US and international research communities through science and conceptual design competencies. To sustain the US effort to either participate in the GW mission that ESA selected for the L3 opportunity or to initiate a NASA-led mission, the Goddard team will engage in the advancement of the science and the conceptual design of a future GW mission. We propose two tasks: (1) deliver new theoretical tools to help the external research community understand how GW observations can contribute to their science and (2) explore new implementations for laser metrology systems based on techniques from time-domain reflectometry and laser communications.

  13. Low-temperature mechanical dissipation of thermally evaporated indium film for use in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Murray, Peter G.; Martin, Iain W.; Cunningham, Liam; Craig, Kieran; Hammond, Giles D.; Hofmann, Gerd; Hough, James; Nawrodt, Ronny; Reifert, David; Rowan, Sheila

    2015-06-01

    Indium bonding is under consideration for use in the construction of cryogenic mirror suspensions in future gravitational wave detectors. This paper presents measurements of the mechanical loss of a thermally evaporated indium film over a broad range of frequencies and temperatures. It provides an estimate of the resulting thermal noise at 20 K for a typical test mass geometry for a cryogenic interferometric gravitational wave detector from an indium layer between suspension elements.

  14. REVIEWS OF TOPICAL PROBLEMS: Gravitational wave astronomy: in anticipation of first sources to be detected

    NASA Astrophysics Data System (ADS)

    Grishchuk, Leonid P.; Lipunov, V. M.; Postnov, Konstantin A.; Prokhorov, Mikhail E.; Sathyaprakash, B. S.

    2001-01-01

    The first generation of long-baseline laser interferometric detectors of gravitational waves will start collecting data in 2001 - 2003. We carefully analyse their planned performance and compare it with the expected strengths of astrophysical sources. The scientific importance of the anticipated discovery of various gravitational wave signals and the reliability of theoretical predictions are taken into account in our analysis. We try to be conservative in evaluating both the theoretical uncertainties in the parameters of the source and the prospects of its detection. Upon considering many possible sources, we place our emphasis on (i) inspiraling binaries consisting of stellar mass black holes and (ii) relic gravitational waves. We conclude that inspiraling binary black holes are likely to be detected by the early ground-based interferometers first. We estimate that the first interferometers will see 2 - 3 events per year from black hole binaries with component masses of 10 - 15M\\odot, with a signal-to-noise ratio of about 3, in a network of detectors consisting of GEO, VIRGO and two LIGOs. It appears that other possible sources, including coalescing neutron stars, are unlikely to be detected by the early instruments. We also argue that relic gravitational waves may be discovered by space-based interferometers in the frequency interval 2 × 10-3 - 10-2 Hz, at a signal-to-noise ratio level of about 3.

  15. Gravitational instability of finite isothermal spheres in general relativity. Analogy with neutron stars

    NASA Astrophysics Data System (ADS)

    Chavanis, P. H.

    2002-01-01

    We investigate the effects of relativity on the gravitational instability of finite isothermal gaseous spheres. In the first part of the paper, we treat the gravitational field within the framework of Newtonian mechanics but we allow the speed of the particles to be close to the velocity of light so that special relativity must be taken into account. In the second part of the paper, we study the full general relativistic problem for a gas described by an equation of state p=qepsilon such that the pressure is proportional to the energy density (``isothermal'' distribution). For q=1/3, this equation of state describes the core of neutron stars. The mass-density diagram displays some damped oscillations and there exists a critical value of mass-energy above which no equilibrium state is possible. We show analytically that the mass peaks are associated with new modes of instability. These results are strikingly similar to those obtained by Antonov (1962) and Lynden-Bell & Wood (1968) for a classical isothermal gas. Our study completes the analogy between isothermal spheres and neutron stars investigated by Yabushita (1974).

  16. Exploring stellar evolution with gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2018-05-01

    Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.

  17. Gravitational radiation from extreme Kerr black hole

    NASA Technical Reports Server (NTRS)

    Sasaki, Misao; Nakamura, Takashi

    1989-01-01

    Gravitational radiation induced by a test particle falling into an extreme Kerr black hole was investigated analytically. Assuming the radiation is dominated by the infinite sequence of quasi-normal modes which has the limiting frequency m/(2M), where m is an azimuthal eigenvalue and M is the mass of the black hole, it was found that the radiated energy diverges logarithmically in time. Then the back reaction to the black hole was evaluated by appealing to the energy and angular momentum conservation laws. It was found that the radiation has a tendency to increase the ratio of the angular momentum to mass of the black hole, which is completely different from non-extreme case, while the contribution of the test particle is to decrease it.

  18. Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization

    NASA Astrophysics Data System (ADS)

    Talbot, Colm; Thrane, Eric

    2018-04-01

    Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M ⊙. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ⊙ ≲ M ≲ 150 M ⊙ to form ∼40 M ⊙ black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M ⊙. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.

  19. Gravitational induction

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram

    2008-11-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show explicitly that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.

  20. Arcs from gravitational lensing

    NASA Technical Reports Server (NTRS)

    Grossman, Scott A.; Narayan, Ramesh

    1988-01-01

    The proposal made by Paczynski (1987) that the arcs of blue light found recently in two cluster cores are gravitationally lensed elongated images of background galaxies is investigated. It is shown that lenses that are circularly symmetric in projection produce pairs of arcs, in conflict with the observations. However, more realistic asymmetric lenses produce single arcs, which can become as elongated as the observed ones whenever the background galaxy is located on or close to a cusp caustic. Detailed computer simulations of lensing by clusters using a reasonable model of the mass distribution are presented. Elongated and curved lensed images longer than 10 arcsec occur in 12 percent of the simulated clusters. It is concluded that the lensing hypothesis must be taken seriously.

  1. Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor

    NASA Astrophysics Data System (ADS)

    McManus, D. J.; Forsyth, P. W. F.; Yap, M. J.; Ward, R. L.; Shaddock, D. A.; McClelland, D. E.; Slagmolen, B. J. J.

    2017-07-01

    Newtonian noise is likely to be a future challenge at low frequencies for Advanced LIGO and other second generation gravitational wave detectors. We present the TorPeDO system: a dual torsion pendulum sensor designed to measure local gravitational forces to high precision. Gravitational forces induce a differential rotation between the two torsion beams, which is measured with an optical read-out. Both torsion pendulums have a common suspension point, tunable centre of mass, and resonant frequency. This produces a high level of mechanical common mode noise cancellation. We report on a controls prototype of the TorPeDO system, presenting the frequency response and tuning range of both pendulums. A noise budget and mechanical cross-coupling model for this system are also presented. We demonstrate frequency tuning of the two torsion pendulums to a difference of 4.3 μHz.

  2. Verified solutions for the gravitational attraction to an oblate spheroid: Implications for planet mass and satellite orbits

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.; Criss, Robert E.; Criss, Everett M.

    2018-03-01

    Forces external to the oblate spheroid shape, observed from planetary to galactic scales, are demonstrably non-central, which has important ramifications for planetary science. We simplify historic formulae and derive new analytical solutions for the gravitational potential and force outside a constant density oblate. Numerical calculations that sum point mass contributions in a >109 element mesh confirm our equations. We show that contours of constant force and potential about oblate bodies are closely approximated by two confocal families whose foci (f) respectively are (9/10)½ae and (3/5)½ae for a body with f = ae. This leads to useful approximations that address internal density variations. We demonstrate that the force on a general point is not directed towards the oblate's center, nor are forces simply proportional to the inverse square of that distance, despite forces in the equatorial and axial directions pointing towards the center. Our results explain complex dynamics of galactic systems. Because most planets and stars have an aspect ratio >0.9, the spherical approximation is reasonable except for orbits within ∼2 body radii. We show that applying the "generalized" potential, which assumes central forces, yields J2 values half those expected for oblate bodies, and probably underestimates masses of Uranus and Neptune by ∼0.2%. We show that the inner Saturnian moons are subject to non-central forces, which may affect calculations of their orbital precession. Our new series should improve interpretation of flyby data.

  3. LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.

  4. SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruobing; Vorobyov, Eduard; Pavlyuchenkov, Yaroslav

    2016-06-01

    Protostellar (class 0/I) disks, which have masses comparable to those of their nascent host stars and are fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and millimeter-wave interferometry, we explore the observational signatures of GI in disks using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and millimeter dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of astronomical units, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane; therefore,more » arms scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. In contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes; such fragments appear fainter than their surroundings in NIR scattered light. Spiral arms and streamers recently imaged in four FU Ori systems at NIR wavelengths resemble GI-induced structures and support the interpretation that FUors are gravitationally unstable protostellar disks. At millimeter wavelengths, both spirals and clumps appear brighter in thermal emission than the ambient disk and can be detected by ALMA at distances up to 0.4 kpc with one hour integration times at ∼0.″1 resolution. Collapsed fragments having masses ≳1 M {sub J} can be detected by ALMA within ∼10 minutes.« less

  5. Gravitational Waves from Fallback Accretion onto Neutron Stars

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Thrane, Eric

    2012-12-01

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low-mass end and collapse to a BH more likely at the high-mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, an NS is initially formed, which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (which may or may not be jet powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion spins up the NS sufficiently to produce non-axisymmetric instabilities and gravitational radiation at frequencies of ~700-2400 Hz for ~30-3000 s until collapse to a BH occurs. Using a realistic excess cross-power search algorithm, we show that such events are detectable by Advanced LIGO out to ≈17 Mpc. From the rate of nearby core-collapse supernovae in the past five years, we estimate that there will be ~1-2 events each year that are worth checking for fallback GWs. The observation of these unique GW signatures coincident with electromagnetic detections would identify the transient events that are associated with this channel of BH formation, while providing information about the protoneutron star progenitor.

  6. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by the Interplanetary Network

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; hide

    2014-01-01

    We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  7. The limit behavior of the evolution of the Tsallis entropy in self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Zheng, Yahui; Du, Jiulin; Liang, Faku

    2017-06-01

    In this letter, we study the limit behavior of the evolution of the Tsallis entropy in self-gravitating systems. The study is carried out under two different situations, drawing the same conclusion. No matter in the energy transfer process or in the mass transfer process inside the system, when the nonextensive parameter q is more than unity, the total entropy is bounded; on the contrary, when this parameter is less than unity, the total entropy is unbounded. There are proofs in both theory and observation that the q is always more than unity. So the Tsallis entropy in self-gravitating systems generally exhibits a bounded property. This indicates the existence of a global maximum of the Tsallis entropy. It is possible for self-gravitating systems to evolve to thermodynamically stable states.

  8. Testing new technologies for the LISA Gravitational Reference Senso

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido

    2015-01-01

    LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement of < 3×10-15 m/sec2Hz1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the summer of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.

  9. Amplification and polarization of supernovae by gravitational lensing

    NASA Technical Reports Server (NTRS)

    Schneider, P.; Wagoner, Robert V.

    1987-01-01

    The gravitational lensing of supernovae by individual masses which could comprise the dark matter is analyzed. Detailed predictions of the amplification and polarization are presented, including effects of a galactic environment. Their time dependence is produced by the expansion of the supernovae beam within the lens. The fraction of supernovae which might thus be identified as being lensed in surveys at proposed limiting magnitudes is estimated. These two effects could provide the only known unique signature of microlensing.

  10. Stellar streams as gravitational experiments. I. The case of Sagittarius

    NASA Astrophysics Data System (ADS)

    Thomas, Guillaume F.; Famaey, Benoit; Ibata, Rodrigo; Lüghausen, Fabian; Kroupa, Pavel

    2017-07-01

    Tidal streams of disrupting dwarf galaxies orbiting around their host galaxy offer a unique way to constrain the shape of galactic gravitational potentials. Such streams can be used as "leaning tower" gravitational experiments on galactic scales. The most well-motivated modification of gravity proposed as an alternative to dark matter on galactic scales is Milgromian dynamics (MOND), and we present here the first ever N-body simulations of the dynamical evolution of the disrupting Sagittarius dwarf galaxy in this framework. Using a realistic baryonic mass model for the Milky Way, we attempt to reproduce the present-day spatial and kinematic structure of the Sagittarius dwarf and its immense tidal stream that wraps around the Milky Way. With very little freedom on the original structure of the progenitor, constrained by the total luminosity of the Sagittarius structure and by the observed stellar mass-size relation for isolated dwarf galaxies, we find reasonable agreement between our simulations and observations of this system. The observed stellar velocities in the leading arm can be reproduced if we include a massive hot gas corona around the Milky Way that is flattened in the direction of the principal plane of its satellites. This is the first time that tidal dissolution in MOND has been tested rigorously at these mass and acceleration scales. The movie associated to Fig. 6 is available at http://www.aanda.org

  11. Gravitational Stokes parameters. [for electromagnetic and gravitational radiation in relativity

    NASA Technical Reports Server (NTRS)

    Anile, A. M.; Breuer, R. A.

    1974-01-01

    The electromagnetic and gravitational Stokes parameters are defined in the general theory of relativity. The general-relativistic equation of radiative transfer for polarized radiation is then derived in terms of the Stokes parameters for both high-frequency electromagnetic and gravitational waves. The concept of Stokes parameters is generalized for the most general class of metric theories of gravity, where six (instead of two) independent states of polarization are present.

  12. The inner mass power spectrum of galaxies using strong gravitational lensing: beyond linear approximation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Koopmans, Léon V. E.

    2018-02-01

    In the last decade, the detection of individual massive dark matter sub-haloes has been possible using potential correction formalism in strong gravitational lens imaging. Here, we propose a statistical formalism to relate strong gravitational lens surface brightness anomalies to the lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model. This is very similar to weak lensing formalism and we show that in this way we can measure the power spectrum of these perturbations to the potential. We test the method by applying it to simulated mock lenses of different geometries and by performing an MCMC analysis of the theoretical power spectra. This method can measure density fluctuations in early type galaxies on scales of 1-10 kpc at typical rms levels of a per cent, using a single lens system observed with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.

  13. Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Baker, John G.; Boyle, Michael; Brügmann, Bernd; Chu, Tony; Dorband, Nils; Herrmann, Frank; Hinder, Ian; Kelly, Bernard J.; Kidder, Lawrence E.; Laguna, Pablo; Matthews, Keith D.; van Meter, James R.; Pfeiffer, Harald P.; Pollney, Denis; Reisswig, Christian; Scheel, Mark A.; Shoemaker, Deirdre

    2009-04-01

    We quantify the consistency of numerical-relativity black-hole-binary waveforms for use in gravitational-wave (GW) searches with current and planned ground-based detectors. We compare previously published results for the (ℓ=2,|m|=2) mode of the gravitational waves from an equal-mass nonspinning binary, calculated by five numerical codes. We focus on the 1000M (about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the subsequent ringdown. We find that the phase and amplitude agree within each code’s uncertainty estimates. The mismatch between the (ℓ=2,|m|=2) modes is better than 10-3 for binary masses above 60M⊙ with respect to the Enhanced LIGO detector noise curve, and for masses above 180M⊙ with respect to Advanced LIGO, Virgo, and Advanced Virgo. Between the waveforms with the best agreement, the mismatch is below 2×10-4. We find that the waveforms would be indistinguishable in all ground-based detectors (and for the masses we consider) if detected with a signal-to-noise ratio of less than ≈14, or less than ≈25 in the best cases.

  14. Gravitational Instabilities in Gaseous Protoplanetary Disks and Implications for Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.; Boss, A. P.; Mayer, L.; Nelson, A. F.; Quinn, T.; Rice, W. K. M.

    Protoplanetary gas disks are likely to experience gravitational instabilities (GIs) during some phase of their evolution. Density perturbations in an unstable disk grow on a dynamic timescale into spiral arms that produce efficient outward transfer of angular momentum and inward transfer of mass through gravitational torques. In a cool disk with sufficiently rapid cooling, the spiral arms in an unstable disk form self-gravitating clumps. Whether gas giant protoplanets can form by such a disk instability process is the primary question addressed by this review. We discuss the wide range of calculations undertaken by ourselves and others using various numerical techniques, and we report preliminary results from a large multicode collaboration. Additional topics include triggering mechanisms for GIs, disk heating and cooling, orbital survival of dense clumps, interactions of solids with GI-driven waves and shocks, and hybrid scenarios where GIs facilitate core accretion. The review ends with a discussion of how well disk instability and core accretion fare in meeting observational constraints.

  15. Towards an understanding of dark matter: Precise gravitational lensing analysis complemented by robust photometric redshifts

    NASA Astrophysics Data System (ADS)

    Coe, Daniel Aaron

    The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve

  16. Weight, gravitation, inertia, and tides

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  17. Gravitational Grating

    NASA Astrophysics Data System (ADS)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  18. Mapping the core mass function to the initial mass function

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.

    2015-07-01

    It has been shown that fragmentation within self-gravitating, turbulent molecular clouds (`turbulent fragmentation') can naturally explain the observed properties of protostellar cores, including the core mass function (CMF). Here, we extend recently developed analytic models for turbulent fragmentation to follow the time-dependent hierarchical fragmentation of self-gravitating cores, until they reach effectively infinite density (and form stars). We show that turbulent fragmentation robustly predicts two key features of the initial mass function (IMF). First, a high-mass power-law scaling very close to the Salpeter slope, which is a generic consequence of the scale-free nature of turbulence and self-gravity. We predict the IMF slope (-2.3) is slightly steeper than the CMF slope (-2.1), owing to the slower collapse and easier fragmentation of large cores. Secondly, a turnover mass, which is set by a combination of the CMF turnover mass (a couple solar masses, determined by the `sonic scale' of galactic turbulence, and so weakly dependent on galaxy properties), and the equation of state (EOS). A `soft' EOS with polytropic index γ < 1.0 predicts that the IMF slope becomes `shallow' below the sonic scale, but fails to produce the full turnover observed. An EOS, which becomes `stiff' at sufficiently low surface densities Σgas ˜ 5000 M⊙ pc-2, and/or models, where each collapsing core is able to heat and effectively stiffen the EOS of a modest mass (˜0.02 M⊙) of surrounding gas, are able to reproduce the observed turnover. Such features are likely a consequence of more detailed chemistry and radiative feedback.

  19. A new torsion pendulum for testing enhancements to the LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, A.; Ciani, G.; Mueller, G.; Olatunde, T.; Shelley, R.

    2014-01-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for observing gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million km-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics in spacetime. A single test mass together with its housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance between these free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3E-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2015. Recently, efforts have begun in the U.S. to design and assemble a new, nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and will consist of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. The GRS technology enhancements under development include a novel TM charge control scheme based on ultraviolet LEDs, simplified capacitive readout electronics, and a six degree-of-freedom, all-optical TM sensor. This presentation will describe the design of the torsion pendulum facility, its expected performance, and the potential technology enhancements.

  20. Optical Telescope System-Level Design Considerations for a Space-Based Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Sankar, Shannon R.

    2016-01-01

    The study of the Universe through gravitational waves will yield a revolutionary new perspective on the Universe, which has been intensely studied using electromagnetic signals in many wavelength bands. A space-based gravitational wave observatory will enable access to a rich array of astrophysical sources in the measurement band from 0.1 to 100 mHz, and nicely complement observations from ground-based detectors as well as pulsar timing arrays by sampling a different range of compact object masses and astrophysical processes. The observatory measures gravitational radiation by precisely monitoring the tiny change in the proper distance between pairs of freely falling proof masses. These masses are separated by millions of kilometers and, using a laser heterodyne interferometric technique, the change in their proper separation is detected to approx. 10 pm over timescales of 1000 seconds, a fractional precision of better than one part in 10(exp 19). Optical telescopes are essential for the implementation of this precision displacement measurement. In this paper we describe some of the key system level design considerations for the telescope subsystem in a mission context. The reference mission for this purpose is taken to be the enhanced Laser Interferometry Space Antenna mission (eLISA), a strong candidate for the European Space Agency's Cosmic Visions L3 launch opportunity in 2034. We will review the flow-down of observatory level requirements to the telescope subsystem, particularly pertaining to the effects of telescope dimensional stability and scattered light suppression, two performance specifications which are somewhat different from the usual requirements for an image forming telescope.

  1. Gravitational wave astronomy: needle in a haystack.

    PubMed

    Cornish, Neil J

    2013-02-13

    A worldwide array of highly sensitive ground-based interferometers stands poised to usher in a new era in astronomy with the first direct detection of gravitational waves. The data from these instruments will provide a unique perspective on extreme astrophysical objects, such as neutron stars and black holes, and will allow us to test Einstein's theory of gravity in the strong field, dynamical regime. To fully realize these goals, we need to solve some challenging problems in signal processing and inference, such as finding rare and weak signals that are buried in non-stationary and non-Gaussian instrument noise, dealing with high-dimensional model spaces, and locating what are often extremely tight concentrations of posterior mass within the prior volume. Gravitational wave detection using space-based detectors and pulsar timing arrays bring with them the additional challenge of having to isolate individual signals that overlap one another in both time and frequency. Promising solutions to these problems will be discussed, along with some of the challenges that remain.

  2. The foundations of space biology and medicine. Volume 2: Ecological and physiological bases of space biology and medicine. Part 3: Effect on the organism of dynamic flight factors. Chapter 1: Principles of gravitational biology

    NASA Technical Reports Server (NTRS)

    Smith, A. H.

    1972-01-01

    The physical principles of gravitation are discussed, such as gravitational and intertial forces, weight and mass, weightlessness, size and scale effects, scale limits of gravitational effects, and gravity as a biogenic factor. The behavior of the accelerative force gravitation, is described. This law proposes and quantifies the mutual gravitational attraction existing between all bodies of matter, the force being proportional to the product of masses, and inversely related to the square of the distance separating them. Gravity orientation, chronic acceleration, and hematology are examined. Systematic responses, such as circulation and renal functions, are also considered, along with animal response to a decreased acceleration field and physiology of hyper- and hypodynamic fields.

  3. The Gravitation of the Moon Plays Pivotal Roles in the Occurrence of the Acute Myocardial Infarction

    PubMed Central

    Wake, Ryotaro; Yoshikawa, Junichi; Haze, Kazuo; Otani, Shinichiro; Yoshimura, Takayoshi; Toda, Iku; Nishimoto, Masaki; Kawarabayashi, Takahiko; Tanaka, Atsushi; Shimada, Kenei; Iida, Hidetaka; Takeuchi, Kazuhide; Yoshiyama, Minoru

    2008-01-01

    Acute myocardial infarction (AMI) is a social burden. However, being able to predict AMI could lead to prevention. A previous study showed only the relation between the lunar phase and the occurrence of AMI, but the period it takes for the moon to orbit around the earth and the period of the lunar phase differ. This study investigated the effect of the gravitation of the moon on AMI. Data was comprised of 1369 consecutive patients with first AMI at 5 hospitals from October, 1984 to December, 1997. The universal gravitation of the moon was calculated and compared to the earth onset time of AMI. Universal gravitation of the moon was derived by G*m/d2 (G: universal gravitation constant, m: the mass of the moon, d: the distance between the center of the moon and the center of the earth). The relationship between m/d2 and the cases of AMI was determined. There was an increase in cases, when there is a distance of more than 399864 km from the center of the earth to the center of the moon. The gravitation of more than 399864 km was determined to be weaker gravitation. It is confirmed that the number of AMI patients significantly increases at weaker gravitation periods in this multicenter trial. In conclusion, these results suggest that the gravitation of the moon may have an influence on the occurrence of AMI. PMID:21572849

  4. The Gravitational Process Path (GPP) model (v1.0) - a GIS-based simulation framework for gravitational processes

    NASA Astrophysics Data System (ADS)

    Wichmann, Volker

    2017-09-01

    The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each component several modeling approaches are provided, which makes the tool configurable for different processes such as rockfall, debris flows or snow avalanches. The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping but also contains components for scenario-based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their applicability in numerous studies, also including geomorphological research questions such as the delineation of sediment cascades or the study of process connectivity. This is the first open-source implementation, completely re-written, extended and improved in many ways. The tool has been committed to the main repository of the System for Automated Geoscientific Analyses (SAGA) and thus will be available with every SAGA release.

  5. Mass Gauging Demonstrator for Any Gravitational Conditions

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Pedersen, Kevin W. (Inventor); Witherow, William K. (Inventor)

    2013-01-01

    The present invention is a mass gauging interferometry system used to determine the volume contained within a tank. By using an optical interferometric technique to determine gas density and/or pressure a much smaller compression volume or higher fidelity measurement is possible. The mass gauging interferometer system is comprised of an optical source, a component that splits the optical source into a plurality of beams, a component that recombines the split beams, an optical cell operatively coupled to a tank, a detector for detecting fringes, and a means for compression. A portion of the beam travels through the optical cell operatively coupled to the tank, while the other beam(s) is a reference.

  6. Gravitational Wave Detection in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2017-01-01

    Great physics breakthroughs are rarely included in the introductory physics course. General relativity and binary black hole coalescence are no different, and can be included in the introductory course only in a very limited sense. However, we can design activities that directly involve the detection of GW150914, the designation of the Gravitation Wave signal detected on September 14, 2015, thereby engage the students in this exciting discovery directly. The activities naturally do not include the construction of a detector or the detection of gravitational waves. Instead, we design it to include analysis of the data from GW150914, which includes some interesting analysis activities for students of the introductory course. The same activities can be assigned either as a laboratory exercise or as a computational project for the same population of students. The analysis tools used here are simple and available to the intended student population. It does not include the sophisticated analysis tools, which were used by LIGO to carefully analyze the detected signal. However, these simple tools are sufficient to allow the student to get important results. We have successfully assigned this lab project for students of the introductory course with calculus at Georgia Gwinnett College.

  7. Exploring cosmic origins with CORE: Gravitational lensing of the CMB

    NASA Astrophysics Data System (ADS)

    Challinor, A.; Allison, R.; Carron, J.; Errard, J.; Feeney, S.; Kitching, T.; Lesgourgues, J.; Lewis, A.; Zubeldía, Í.; Achucarro, A.; Ade, P.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; d'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Zotti, G.; Delabrouille, J.; Di Valentino, E.; Diego, J.-M.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Liguori, M.; Lindholm, V.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-S/N modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19

  8. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  9. Where Else Is Null the Gravitational Field between Two Massive Spheres?

    ERIC Educational Resources Information Center

    Lima, F. M. S.

    2009-01-01

    To find the point between two massive spherical bodies at which their gravitational fields cancel is an apparently simple problem usually found in introductory physics textbooks. However, by noting that such a point does not exist when the distance between the spheres is small and one of the masses is much smaller than the other--e.g., between the…

  10. The diverse lives of massive protoplanets in self-gravitating discs

    NASA Astrophysics Data System (ADS)

    Stamatellos, Dimitris; Inutsuka, Shu-ichiro

    2018-04-01

    Gas giant planets may form early-on during the evolution of protostellar discs, while these are relatively massive. We study how Jupiter-mass planet-seeds (termed protoplanets) evolve in massive, but gravitationally stable (Q≳1.5), discs using radiative hydrodynamic simulations. We find that the protoplanet initially migrates inwards rapidly, until it opens up a gap in the disc. Thereafter, it either continues to migrate inwards on a much longer timescale or starts migrating outwards. Outward migration occurs when the protoplanet resides within a gap with gravitationally unstable edges, as a high fraction of the accreted gas is high angular momentum gas from outside the protoplanet's orbit. The effect of radiative heating from the protoplanet is critical in determining the direction of the migration and the eccentricity of the protoplanet. Gap opening is facilitated by efficient cooling that may not be captured by the commonly used β-cooling approximation. The protoplanet initially accretes at a high rate (˜10-3MJ yr-1), and its accretion luminosity could be a few tenths of the host star's luminosity, making the protoplanet easily observable (albeit only for a short time). Due to the high gas accretion rate, the protoplanet generally grows above the deuterium-burning mass-limit. Protoplanet radiative feedback reduces its mass growth so that its final mass is near the brown dwarf-planet boundary. The fate of a young planet-seed is diverse and could vary from a gas giant planet on a circular orbit at a few AU from the central star to a brown dwarf on an eccentric, wide orbit.

  11. Gravitational Lenses and the Structure and Evolution of Galaxies

    NASA Technical Reports Server (NTRS)

    Kochanek, Christopher

    2003-01-01

    The grant has supported the completion of 16 papers and 4 conference proceedings to date. During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, "The Importance of Einstein Rings", we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. We applied the theory to three lenses with lensed host galaxies. For the time delay lens PG 1115+080 we found that the structure of the Einstein ring ruled out models of the gravitational potential which permitted a large Hubble constant (70 km/s Mpc). In the second paper, :Cusped Mass Models Of Gravitational Lenses", we introduced a new class of lens models where the central density is characterized by a cusp ( rho proportional to tau(sup -gamma), 1 less than gamma less than 2) as in most modern models and theories of galaxies rather than a finite core radius. In the third paper, "Global Probes of the Impact of Baryons on Dark Matter Halos", we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. We show that the key physics for the origin of the sharp separation cutoff in the separation distribution near 3 arc sec is the effect of the cooling baryons in galaxies on the density structure of the system.

  12. Discovery of a Jupiter/Saturn analog with gravitational microlensing.

    PubMed

    Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2008-02-15

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  13. Gravitational resonance: Saturn's rings

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Perhaps no one thought much more would need to be known about Saturn's rings 100 or so years ago, when Daniel Kirkwood explained the various features. The main rings, within the three so-called Cassini divisions, were due to gravitational resonance conditions between small orbiting particles and the satellite Mimas. Now, after several spacecraft—especially Voyager—have shown the rings' close-up characteristics, there has been a great deal of activity in the planetary geophysics community to try to explain the origin of the numerous features of the rings of solar system bodies that were far beyond the resolution of telescopes in Kirkwood s day. A pretty good sample of that activity was reported recently by R.A. Kerr (Science, Oct. 8, 1982), who stated ‘Resonance theory still stands after the onslaught of spacecraft observations, but its new applications have yielded a greater variety of ring features than Kirkwood ever dreamed.’ One has only to have an inkling of the levels of gravitational mechanics to appreciate the complexities of the theories that have yielded resonance variations such as spiral density waves and bending waves in the past few years. As theories unfold, however, and are tested against Voyager's results, it has become evident that most of the actually observed ring structure of the major planets remains unexplained.

  14. Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-06-01

    This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ˜200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc-3 Myr-1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ˜20%.

  15. Massive gravity and the suppression of anisotropies and gravitational waves in a matter-dominated contracting universe

    NASA Astrophysics Data System (ADS)

    Lin, Chunshan; Quintin, Jerome; Brandenberger, Robert H.

    2018-01-01

    We consider a modified gravity model with a massive graviton, but which nevertheless only propagates two gravitational degrees of freedom and which is free of ghosts. We show that non-singular bouncing cosmological background solutions can be generated. In addition, the mass term for the graviton prevents anisotropies from blowing up in the contracting phase and also suppresses the spectrum of gravitational waves compared to that of the scalar cosmological perturbations. This addresses two of the main problems of the matter bounce scenario.

  16. An analytical approach to gravitational lensing by an ensemble of axisymmetric lenses

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Spergel, David N.

    1990-01-01

    The problem of gravitational lensing by an ensemble of identical axisymmetric lenses randomly distributed on a single lens plane is considered and a formal expression is derived for the joint probability density of finding shear and convergence at a random point on the plane. The amplification probability for a source can be accurately estimated from the distribution in shear and convergence. This method is applied to two cases: lensing by an ensemble of point masses and by an ensemble of objects with Gaussian surface mass density. There is no convergence for point masses whereas shear is negligible for wide Gaussian lenses.

  17. Gravitational Wave Detection with Single-Laser Atom Interferometers

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  18. On Gravitational Effects in the Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    2014-04-01

    The Schrödinger equation for a particle of rest mass and electrical charge interacting with a four-vector potential can be derived as the non-relativistic limit of the Klein-Gordon equation for the wave function , where and , or equivalently from the one-dimensional action for the corresponding point particle in the semi-classical approximation , both methods yielding the equation in Minkowski space-time , where and . We show that these two methods generally yield equations that differ in a curved background space-time , although they coincide when if is replaced by the effective mass in both the Klein-Gordon action and , allowing for non-minimal coupling to the gravitational field, where is the Ricci scalar and is a constant. In this case , where and , the correctness of the gravitational contribution to the potential having been verified to linear order in the thermal-neutron beam interferometry experiment due to Colella et al. Setting and regarding as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space-time. Conservation of probability and electrical current requires both electromagnetic gauge and space-time coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div, where and . The quantum-cosmological Schrödinger (Wheeler-DeWitt) equation is also discussed in the -dimensional mini-superspace idealization, with particular regard to the vacuum potential and the characteristics of the ground state, assuming a gravitational Lagrangian which contains higher-derivative terms up to order . For the heterotic superstring theory , consists of an infinite series in , where is the Regge slope parameter, and in the perturbative approximation , is positive semi-definite for . The maximally symmetric ground state satisfying the field equations is Minkowski space for and

  19. UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serjeant, S.

    2014-09-20

    The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function.more » Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.« less

  20. Progress in the determination of the gravitational coefficient of the earth

    NASA Technical Reports Server (NTRS)

    Ries, J. C.; Eanes, R. J.; Shum, C. K.; Watkins, M. M.

    1992-01-01

    In most of the recent determinations of the geocentric gravitational coefficient (GM) of the earth, the laser ranging data to the Lageos satellite have had the greatest influence on the solution. These data, however, have generally been processed with a small but significant error in one of the range corrections. In a new determination of GM using the corrected center-of-mass offset, a value of 398600.4415 cu km/sq sec (including the mass of the atmosphere) has been obtained, with an estimated uncertainty (1 sigma of 0.0008 cu km/sq sec.

  1. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.

  2. Note: Silicon Carbide Telescope Dimensional Stability for Space-based Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Sanjuah, J.; Korytov, D.; Mueller, G.; Spannagel, R.; Braxmaier, C.; Preston, A.; Livas, J.

    2012-01-01

    Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(exp -1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 C are also shown although the requirements are not met due to temperature fluctuations in the setup.

  3. Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors.

    PubMed

    Sanjuán, J; Korytov, D; Mueller, G; Spannagel, R; Braxmaier, C; Preston, A; Livas, J

    2012-11-01

    Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(-1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 °C are also shown although the requirements are not met due to temperature fluctuations in the setup.

  4. (abstract) Spacecraft Doppler Tracking with the Deep Space Network in the Search for Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Renzetti, Nicholas

    1994-01-01

    The Deep Space Network generates accurate radio science data observables for investigators who use radio links between spacecraft and the Earth to examine small changes in the phase and/or amplitude of the signal to study a wide variety of structures and phenomena in space. Several such studies are directed at aspects of the theory of general relativity such as gravitational redshift and gravitational waves. A gravitational wave is a propagating, polarized gravitational field, a ripple in the curvature of space-time. In Einstein's theory of general relativity, the waves are propagating solutions of the Einstein field equations. Their amplitudes are dimensionless strain amplitudes that change the fractional difference in distance between test masses and the rates at which separated clocks keep time. Predicted by all relativistic theories of gravity, they are extremely weak (the ratio of gravitational forces to electrical forces is about 10(sup -40)) and are generated at detectable levels only by astrophysical sources - very massive sources under violent dynamical conditions. The waves have never been detected but searches in the low-frequency band using Doppler tracking of many spacecraft have been conducted and others are being planned. Upper limits have been placed on the gravitational wave strength with the best sensitivities to date are for periodic waves being 7 x 10(sup -15).

  5. On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences

    NASA Astrophysics Data System (ADS)

    McKechan, David J. A.

    2010-11-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.

  6. Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-01-01

    We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20)M⊙ coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M⊙ of 3.3×10-7 mergers Mpc-3yr-1.

  7. The applicability of the viscous α-parameterization of gravitational instability in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2010-01-01

    We study numerically the applicability of the effective-viscosity approach for simulating the effect of gravitational instability (GI) in disks of young stellar objects with different disk-to-star mass ratios ξ . We adopt two α-parameterizations for the effective viscosity based on Lin and Pringle [Lin, D.N.C., Pringle, J.E., 1990. ApJ 358, 515] and Kratter et al. [Kratter, K.M., Matzner, Ch.D., Krumholz, M.R., 2008. ApJ 681, 375] and compare the resultant disk structure, disk and stellar masses, and mass accretion rates with those obtained directly from numerical simulations of self-gravitating disks around low-mass (M∗ ∼ 1.0M⊙) protostars. We find that the effective viscosity can, in principle, simulate the effect of GI in stellar systems with ξ≲ 0.2- 0.3 , thus corroborating a similar conclusion by Lodato and Rice [Lodato, G., Rice, W.K.M., 2004. MNRAS 351, 630] that was based on a different α-parameterization. In particular, the Kratter et al.'s α-parameterization has proven superior to that of Lin and Pringle's, because the success of the latter depends crucially on the proper choice of the α-parameter. However, the α-parameterization generally fails in stellar systems with ξ≳ 0.3 , particularly in the Classes 0 and I phases of stellar evolution, yielding too small stellar masses and too large disk-to-star mass ratios. In addition, the time-averaged mass accretion rates onto the star are underestimated in the early disk evolution and greatly overestimated in the late evolution. The failure of the α-parameterization in the case of large ξ is caused by a growing strength of low-order spiral modes in massive disks. Only in the late Class II phase, when the magnitude of spiral modes diminishes and the mode-to-mode interaction ensues, may the effective viscosity be used to simulate the effect of GI in stellar systems with ξ≳ 0.3 . A simple modification of the effective viscosity that takes into account disk fragmentation can somewhat improve

  8. The GEM Theory of the Unification of Gravitation and Electro-Magnetism

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. E.

    2012-01-01

    The GEM (Gravity Electro-Magnetism), theory is presented as an alloy of Sakharov and Kaluza-Klein approaches to field unification. GEM uses the concept of gravity fields as Poynting fields to postulate that the non-metric portion of the EM stress tensor becomes the metric tensor in strong fields leading to "self-censorship". Covariant formulation of the GEM theory is accomplished through definition of the spacetime metric tensor as a portion of the EM stress tensor normalized by its own trace: gab = 4(FcaFcb )/(FabFab), it is found that this results in a massless ground state vacuum and a Newtonian gravitation potential f=1/2 E2/B2 =GM/r , where E, B and F are part of the vacuum Zero Point Fluctuation (ZPF) and M and r are the mass and distance from the center of a gravitating body and G is the Newton gravitation constant. It is found that a Lorentz flat-space metric is recovered in the limit of a vacuum full spectrum ZPF. The vacuum ZPF energy and vacuum quantities G, h, c, gives birth to particles quantities mp, me, e,-e in a process triggered by the appearance of the Kaluza-Klein fifth dimension, where also the EM and gravity forces split from each other in a process correlated to the splitting apart of protons and electrons. The separate appearance of the proton and electron occurs as the splitting of a light-like spacetime interval of zero-length into a finite space-like portion containing three subdimensions identified with the quarks and a time-like portion identified with the electron. The separation of mass with charge for the electron and proton pair comes about from a U(1) symmetry with a rotation in imaginary angle. A logarithmic variation of charge with mass for the proton-electron pair results and leads to the formula ln(ro/rp) = s, where s = (mp/me)1/2 , where mp and me are the electron and proton masses respectively and where ro =e2/moc2 , and where mo = (mpme)1/2 and where rp is the Planck length . This leads to the formula G=e2/mo2aexp(-2s)=6

  9. Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; hide

    2010-01-01

    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.

  10. Towards a Population Synthesis Model of Objects formed by Self-Gravitating Disc Fragmentation and Tidal Downsizing

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Rice, Ken

    2013-07-01

    Recently, the gravitational instability (GI) model of giant planet and brown dwarf formation has been revisited and recast into what is often referred to as the "tidal downsizing" hypothesis. The fragmentation of self-gravitating protostellar discs into gravitationally bound embryos - with masses of a few to tens of Jupiter masses, at semi major axes above 30 - 40 AU - is followed by a combination of grain sedimentation inside the embryo, radial migration towards the central star and tidal disruption of the embryo's upper layers. The properties of the resultant object depends sensitively on the timescales upon which each process occurs. Therefore, GI followed by tidal downsizing can theoretically produce objects spanning a large mass range, from terrestrial planets to giant planets and brown dwarfs. Whether such objects can be formed in practice, and what proportions of the observed population they would represent, requires a more involved statistical analysis. We present a simple population synthesis model of star and planet formation via GI and tidal downsizing. We couple a semi-analytic model of protostellar disc evolution to analytic calculations of fragmentation, initial embryo mass, grain growth and sedimentation, embryo migration and tidal disruption. While there are key pieces of physics yet to be incorporated, it represents a first step towards a mature statistical model of GI and tidal downsizing as a mode of star and planet formation. We show results from four runs of the population synthesis model, varying the opacity law and the strength of migration, as well as investigating the effect of disc truncation during the fragmentation process.

  11. Strong gravitational lensing probes of the particle nature of dark matter

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas A.; Abazajian, Kevork; Benson, Andrew; Bolton, Adam S.; Bullock, James S.; Chen, Jacqueline; Cheng, Edward; Coe, Dan; Congdon, Arthur B.; Dalal, Neal; Diemand, Juerg; Dobke, Benjamin M.; Dobler, Greg; Dore, Olivier; Dutton, Aaron; Ellis, Richard; Fassnacht, Chris D.; Ferguson, Henry; Finkbeiner, Douglas; Gavassi, Raphael; High, Fredrick William; Jeltema, Telsa; Jullo, Eric; Kaplinghat, Manoj; Keeton, Charles R.; Kneib, Jean-Paul; Koopmans, Leon V.E.; Koishiappas, Savvas M.; Kuhlen, Michael; Kusenko, Alexander; Lawrence, Charles R.; Loeb, Avi; Madae, Piero; Marshall, Phil; Metcalf, R. Ben; Natarajan, Priya; Primack, Joel R.; Profumo, Stefano; Seiffert, Michael D.; Simon, Josh; Stern, Daniel; Strigari, Louis; Taylor, James E.; Wayth, Randall; Wambsganss, Joachim; Wechsler, Risa; Zentner, Andrew

    There is a vast menagerie of plausible candidates for the constituents of dark matter, both within and beyond extensions of the Standard Model of particle physics. Each of these candidates may have scattering (and other) cross section properties that are consistent with the dark matter abundance, BBN, and the most scales in the matter power spectrum; but which may have vastly different behavior at sub-galactic "cutoff" scales, below which dark matter density fluctuations are smoothed out. The only way to quantitatively measure the power spectrum behavior at sub-galactic scales at distances beyond the local universe, and indeed over cosmic time, is through probes available in multiply imaged strong gravitational lenses. Gravitational potential perturbations by dark matter substructure encode information in the observed relative magnifications, positions, and time delays in a strong lens. Each of these is sensitive to a different moment of the substructure mass function and to different effective mass ranges of the substructure. The time delay perturbations, in particular, are proving to be largely immune to the degeneracies and systematic uncertainties that have impacted exploitation of strong lenses for such studies. There is great potential for a coordinated theoretical and observational effort to enable a sophisticated exploitation of strong gravitational lenses as direct probes of dark matter properties. This opportunity motivates this white paper, and drives the need for: a) strong support of the theoretical work necessary to understand all astrophysical consequences for different dark matter candidates; and b) tailored observational campaigns, and even a fully dedicated mission, to obtain the requisite data.

  12. On the numbers of images of two stochastic gravitational lensing models

    NASA Astrophysics Data System (ADS)

    Wei, Ang

    2017-02-01

    We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.

  13. Gravitational Waves from Rotating Neutron Stars and Evaluation of fast Chirp Transform Techniques

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    X-ray observations suggest that neutron stars in low mass X-ray binaries (LMXB) are rotating with frequencies from 300 - 600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince in the context of searching for the chirping signals observed during X-ray bursts.

  14. A gravitationally lensed quasar discovered in OGLE

    NASA Astrophysics Data System (ADS)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.

    2018-05-01

    We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ≈ -102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ≈ 20.0 mag and I ≈ 19.6 mag, respectively, and a lensing galaxy that becomes detectable as I ≈ 21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z = 2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).

  15. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  16. Self-gravitational instability of dense degenerate viscous anisotropic plasma with rotation

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Patidar, Archana

    2017-12-01

    The influence of finite Larmor radius correction, tensor viscosity and uniform rotation on self-gravitational and firehose instabilities is discussed in the framework of the quantum magnetohydrodynamic and Chew-Goldberger-Low (CGL) fluid models. The general dispersion relation is obtained for transverse and longitudinal modes of propagation. In both the modes of propagation the dispersion relation is further analysed with respect to the direction of the rotational axis. In the analytical discussion the axis of rotation is considered in parallel and in the perpendicular direction to the magnetic field. (i) In the transverse mode of propagation, when rotation is parallel to the direction of the magnetic field, the Jeans instability criterion is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but remains unaffected due to the presence of tensor viscosity. The calculated critical Jeans masses for rotating and non-rotating dense degenerate plasma systems are \\odot $ and \\odot $ respectively. It is clear that the presence of rotation enhances the threshold mass of the considered system. (ii) In the case of longitudinal mode of propagation when rotation is parallel to the direction of the magnetic field, Alfvén and viscous self-gravitating modes are obtained. The Alfvén mode is modified by FLR corrections and rotation. The analytical as well as graphical results show that the presence of FLR and rotation play significant roles in stabilizing the growth rate of the firehose instability by suppressing the parallel anisotropic pressure. The viscous self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure and the quantum parameter while it remains free from rotation and FLR corrections. When the direction of rotation is perpendicular to the magnetic field, the rotation of the considered system coupled the Alfvén and viscous self-gravitating modes to each other. The finding of the present work is applicable to

  17. GLADE: A Galaxy Catalogue for Multi-Messenger Searches in the Advanced Gravitational-Wave Detector Era

    NASA Astrophysics Data System (ADS)

    Dálya, G.; Galgóczi, G.; Dobos, L.; Frei, Z.; Heng, I. S.; Macas, R.; Messenger, C.; Raffai, P.; de Souza, R. S.

    2018-06-01

    We introduce a value-added full-sky catalogue of galaxies, named as Galaxy List for the Advanced Detector Era, or GLADE. The purpose of this catalogue is to (i) help identifications of host candidates for gravitational-wave events, (ii) support target selections for electromagnetic follow-up observations of gravitational-wave candidates, (iii) provide input data on the matter distribution of the local universe for astrophysical or cosmological simulations, and (iv) help identifications of host candidates for poorly localised electromagnetic transients, such as gamma-ray bursts observed with the InterPlanetary Network. Both being potential hosts of astrophysical sources of gravitational waves, GLADE includes inactive and active galaxies as well. GLADE was constructed by cross-matching and combining data from five separate (but not independent) astronomical catalogues: GWGC, 2MPZ, 2MASS XSC, HyperLEDA and SDSS-DR12Q. GLADE is complete up to d_L=37^{+3}_{-4} Mpc in terms of the cumulative B-band luminosity of galaxies within luminosity distance dL, and contains all of the brightest galaxies giving half of the total B-band luminosity up to dL = 91 Mpc. As B-band luminosity is expected to be a tracer of binary neutron star mergers (currently the prime targets of joint GW+EM detections), our completeness measures can be used as estimations of completeness for containing all binary neutron star merger hosts in the local universe.

  18. Quantum Emulation of Gravitational Waves.

    PubMed

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  19. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. IV. Simulations with Envelope Irradiation

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Durisen, Richard H.; Boley, Aaron C.; Pickett, Megan K.; Mejía, Annie C.

    2008-02-01

    It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamic simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 M⊙ around a young star of 0.5 M⊙, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower order modes, and irradiation preferentially suppresses higher order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS 5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two- and three-armed modes.

  20. Estimation of skeletal muscle mass from body creatine content

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.