Sample records for active ground water

  1. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  2. Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis

    USGS Publications Warehouse

    Welch, Alan H.

    1995-01-01

    Gross-beta activity has been used as an indicator of beta-emitting isotopes in water since at least the early 1950s. Originally designed for detection of radioactive releases from nuclear facilities and weapons tests, analysis of gross-beta activity is widely used in studies of naturally occurring radioactivity in ground water. Analyses of about 800 samples from 5 ground-water regions of the United States provide a basis for evaluating the utility of this measurement. The data suggest that measured gross-beta activities are due to (1) long-lived radionuclides in ground water, and (2) ingrowth of beta-emitting radionuclides during holding times between collection of samples and laboratory measurements.Although40K and228Ra appear to be the primary sources of beta activity in ground water, the sum of40K plus228Ra appears to be less than the measured gross-beta activity in most ground-water samples. The difference between the contribution from these radionuclides and gross-beta activity is most pronounced in ground water with gross-beta activities > 10 pCi/L, where these 2 radionuclides account for less than one-half the measured ross-beta activity. One exception is groundwater from the Coastal Plain of New Jersey, where40K plus228Ra generally contribute most of the gross-beta activity. In contrast,40K and228Ra generally contribute most of beta activity in ground water with gross-beta activities < 1 pCi/L.The gross-beta technique does not measure all beta activity in ground water. Although3H contributes beta activity to some ground water, it is driven from the sample before counting and therefore is not detected by gross-beta measurements. Beta-emitting radionuclides with half-lives shorter than a few days can decay to low values between sampling and counting. Although little is known about concentrations of most short-lived beta-emitting radionuclides in environmental ground water (water unaffected by direct releases from nuclear facilities and weapons tests), their

  3. STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.

    USGS Publications Warehouse

    Burton, James S.; ,

    1985-01-01

    This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.

  4. Land-subsidence and ground-water storage monitoring in the Tucson Active Management Area, Arizona

    USGS Publications Warehouse

    Pool, Don R.; Winster, Daniel; Cole, K.C.

    2000-01-01

    The Tucson Active Management Area (TAMA) comprises two basins--Tucson Basin and Avra Valley. The TAMA has been directed by Arizona ground-water law to attain an annual balance between groundwater withdrawals and recharge by the year 2025. This balance is defined by the statute as "safe yield." Current ground-water withdrawals exceed recharge, resulting in conditions of ground-water overdraft, which causes removal of water from ground-water storage and subsidence of the land surface. Depletion of storage and associated land subsidence will not be halted until all discharge from the system, both natural and human induced, is balanced by recharge. The amount of the ground-water overdraft has been difficult to estimate until recently because it could not be directly measured. Overdraft has been estimated using indirect water-budget methods that rely on uncertain estimates of recharge. As a result, the status of the ground-water budget could not be known with great certainty. Gravity methods offer a means to directly measure ground-water overdraft through measurement of changes in the gravitational field of the Earth that are caused by changes in the amount of water stored in the subsurface. Changes in vertical position also affect the measured gravity value and thus subsidence also must be monitored. The combination of periodic observations of gravity and vertical positions provide direct measures of changes in stored ground water and land subsidence.

  5. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  6. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  7. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  8. Active water exchange and life near the grounding line of an Antarctic outlet glacier

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro; Aoki, Shigeru

    2014-08-01

    The grounding line (GL) of the Antarctic ice sheet forms the boundary between grounded and floating ice along the coast. Near this line, warm oceanic water contacts the ice shelf, producing the ice sheet's highest basal-melt rate. Despite the importance of this region, water properties and circulations near the GL are largely unexplored because in-situ observations are difficult. Here we present direct evidence of warm ocean-water transport to the innermost part of the subshelf cavity (several hundred meters seaward from the GL) of Langhovde Glacier, an outlet glacier in East Antarctica. Our measurements come from boreholes drilled through the glacier's ∼400-m-thick grounding zone. Beneath the grounding zone, we find a 10-24-m-deep water layer of uniform temperature and salinity (-1.45 °C; 34.25 PSU), values that roughly equal those measured in the ocean in front of the glacier. Moreover, living organisms are found in the thin subglacial water layer. These findings indicate active transport of water and nutrients from the adjacent ocean, meaning that the subshelf environment interacts directly and rapidly with the ocean.

  9. Implications of ground water chemistry and flow patterns for earthquake studies

    USGS Publications Warehouse

    Guangcai, W.; Zuochen, Z.; Min, W.; Cravotta, C.A.; Chenglong, L.

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for ??18O, ??D, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57??C to 160??C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas. Copyright ?? 2005 National Ground Water Association.

  10. National water summary 1986; Hydrologic events and ground-water quality

    USGS Publications Warehouse

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    -scale, or nonpoint, sources of contamination such as agricultural activities or highdensity domestic waste disposal (septic systems) in urban centers. At present, only a very small percentage of the total volume of potable ground water in the United States is contaminated from both point and nonpoint sources; however, available data, especially data about the occurrence of synthetic organic and toxic substances, generally are inadequate to determine the full extent of ground-water contamination in the Nation's aquifers or to define trends in groundwater quality. Most information about the occurrence of these substances has come from the study of individual sites or areas where contamination had already been detected or suspected.Management and protection of ground water present a major challenge to the Nation. Current and projected costs of detection and cleanup of existing ground-water contamination are staggering and, even so, complete removal of pollutants from ground water in the vicinity of some waste sites might not be technically feasible. At all levels of government, the task of protecting the resource for its most beneficial uses is difficult and controversial.Despite increasing awareness that some of the Nation's ground water is contaminated with a variety of toxic metals, synthetic organic chemicals, radionuclides, pesticides, and other contaminants that might present a long-term risk to human health, public policy towards ground-water protection is still in the formative stages. Despite increasing efforts devoted to ground-water protection by State and Federal regulatory and resource-management agencies, the extent of ground-water contamination is likely to appear to increase over the next few years because more agencies will be searching for evidence of contamination, and they will be using increasingly sensitive analytical procedures. Increased technology and expanded monitoring activities probably will detect the effects of past contamination and land uses on

  11. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  12. Implications of ground water chemistry and flow patterns for earthquake studies.

    PubMed

    Guangcai, Wang; Zuochen, Zhang; Min, Wang; Cravotta, Charles A; Chenglong, Liu

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for delta18O, deltaD, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57 degrees C to 160 degrees C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas.

  13. Characterizing Ground-Water Flow Paths in High-Altitude Fractured Rock Settings Impacted by Mining Activities

    NASA Astrophysics Data System (ADS)

    Wireman, M.; Williams, D.

    2003-12-01

    The Rocky Mountains of the western USA have tens of thousands of abandoned, inactive and active precious-metal(gold,silver,copper)mine sites. Most of these sites occur in fractured rock hydrogeologic settings. Mining activities often resulted in mobilization and transport of associated heavy metals (zinc,cadmium,lead) which pose a significant threat to aquatic communities in mountain streams.Transport of heavy metals from mine related sources (waste rock piles,tailings impoudments,underground workings, mine pits)can occur along numerous hydrological pathways including complex fracture controlled ground-water pathways. Since 1991, the United States Environmental Protection Agency, the Colorado Division of Minerals and Geology and the University of Colorado (INSTAAR)have been conducting applied hydrologic research at the Mary Murphy underground mine. The mine is in the Chalk Creek mining district which is located on the southwestern flanks of the Mount Princeton Batholith, a Tertiary age intrusive comprised primarily of quartz monzonite.The Mount Princeton batholith comprises a large portion of the southern part of the Collegiate Range west of Buena Vista in Chaffee County, CO. Chalk Creek and its 14 tributaries drain about 24,900 hectares of the eastern slopes of the Range including the mining district. Within the mining district, ground-water flow is controlled by the distribution, orientation and permeability of discontinuities within the bedrock. Important discontinuities include faults, joints and weathered zones. Local and intermediate flow systems are perturbed by extensive underground excavations associated with mining (adits, shafts, stopes, drifts,, etc.). During the past 12 years numerous hydrological investigations have been completed. The investigations have been focused on developing tools for characterizing ground-water flow and contaminant transport in the vicinity of hard-rock mines in fractured-rock settings. In addition, the results from these

  14. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  15. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  16. Update to the Ground-Water Withdrawals Database for the Death Valley Regional Ground-Water Flow System, Nevada and California, 1913-2003

    USGS Publications Warehouse

    Moreo, Michael T.; Justet, Leigh

    2008-01-01

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  17. Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000

    USGS Publications Warehouse

    Susong, D.D.

    2005-01-01

    Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.

  18. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  19. Ground water hydrology report: Revision 1, Attachment 3. Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  20. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  1. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  2. The Virginia Beach shallow ground-water study

    USGS Publications Warehouse

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  3. National water-information clearinghouse activities; ground-water perspective

    USGS Publications Warehouse

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  4. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  5. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  6. Isotopic Discrimination of Perchlorate Sources in Ground Water

    NASA Astrophysics Data System (ADS)

    Bohlke, J.; Hatzinger, P. B.; Sturchio, N. C.; Gu, B.; Jackson, W. A.; Abbene, I. J.

    2007-12-01

    Perchlorate has been detected in ground water and drinking water in many areas of the U.S. during the past decade. Sources of potential perchlorate enrichment in ground water include releases from past military activities, fireworks manufacture and display, fertilizer applications, discarded road flares, and local atmospheric deposition. Here we present analyses of stable isotopes (δ37Cl, δ18O, and Δ17O) of dissolved perchlorate, along with other supporting environmental tracer data, from selected occurrences in ground water in the U.S. The isotope data indicate that both synthetic and natural perchlorate are present in ground water, and that multiple sources are present locally in some areas. The sampled ground waters generally were oxic and the perchlorate isotopes generally were not affected substantially by biodegradation. In some areas, natural perchlorate, with Δ17O = +7 to +10 ‰, can be attributed to agricultural applications of atmospherically derived natural nitrate fertilizer imported from South America (Atacama Desert, Chile). In at least one agricultural area in New York, concentrations of perchlorate increase with depth and ground-water age, possibly because of decreasing application rates of Atacama nitrate fertilizer and(or) decreasing perchlorate concentrations in the imported fertilizer products in recent years.

  7. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  8. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon withmore » D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.« less

  9. Ground water investigations in Oklahoma

    USGS Publications Warehouse

    Davis, Leon V.

    1955-01-01

    Prior to 1937, ground-water work in Oklahoma consisted of broad scale early-day reconnaissance and a few brief investigations of local areas. The reconnaissance is distinguished by C. N. Gould's "Geology and Water Resources of Oklahoma" (Water-Supply Paper 148, 1905), which covers about half of the present State of Oklahoma. Among the shorter reports are two by Schwennesen for areas near Enid and Oklahoma City, one by Renick for Enid, and one by Thompson on irrigation possibilities near Gage. These reports are now inadequate by modern standards.Cooperative ground-water work in Oklahoma by the United States Geological Survey began in 1937, with the Oklahoma Geological Survey as cooperating agency. With the passage of the new ground-water law by the State Legislature in 1949, the need for more information on available ground waters and the safe yield of the various aquifers became very pressing. Accordingly, the Division of Water Resources of the Oklahoma Planning and Resources Board, to which was delegated the responsibility of administering the Ground-Water Law, entered into a cooperative agreement with the U.S. Geological Survey, providing for an expansion of ground-water investigations. Both cooperators have consistently given full and enthusiastic cooperation, often beyond the requirements of the cooperative program.The first cooperative investigation was an evaluation of ground-water supplies available for irrigation in the Panhandle. In 1937 the Panhandle was still very much in the dust bowl, and it was hoped that irrigation would alleviate the drought. A bulletin on Texas County was published in 1939, and one on Cimarron County in 1943. Ground-water investigations during the World War II were restricted to the demands of Army and Navy installations, and to defense industries. Ground-water investigations since 1945 have included both country-wide and aquifer-type investigations. In Oklahoma it has been the policy for the State cooperator to publish the results

  10. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  11. Summary appraisals of the Nation's ground-water resources; Mid-Atlantic region

    USGS Publications Warehouse

    Sinnott, Allen; Cushing, Elliot Morse

    1978-01-01

    About 949 billion gallons of fresh ground water was withdrawn in 1970. This quantity represents about 9 percent of the total freshwater use of 10,220 billion gallons. Available ground-water reserves indicate that a considerable part of the additional supplies needed for the anticipated increase in economic activity in the region could be developed from ground water.

  12. EPA waiver of ground water cleanup standards in NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, A.A.

    1995-11-01

    EPA may invoke a technical impracticability (TI) waiver at a site when the Agency determines that it is technically impracticable from an engineering perspective to attain cleanup standards within a reasonable time period. The October 6, 1994 TI waiver of ground water cleanup standards at the G.E./Moreau Superfund Site in New York is the first post-Record of Decision (ROD) TI waiver granted by EPA since issuance of the September 1993 guidance on technical impracticability of ground water restoration. In the 1987 ROD, EPA selected natural gradient flushing and treatment as the ground water remedy and estimated that TCE-contaminated ground watermore » within the unconsolidated aquifer at the Site would be restored to drinking water quality within decades. EPA`s subsequent reevaluation showed that cleanup of the ground water would take 200 years or more, regardless of the remedial technology employed, due to the presence of site-specific physical and chemical factors that limit the effectiveness of ground water remediation technologies. Following public participation activities, EPA issued the TI waiver as an Explanation of Significant Differences (ESD) to the ROD. The ESD revised the time frame expected for ground water restoration but did not reduce or change any of the required cleanup actions.« less

  13. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  14. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications in Connecticut. It is a polygon Shapefile that includes polygons for GA, GAA, GAAs, GB, GC and other related ground water quality classes. Each polygon is assigned a ground water quality class, which is s...

  15. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  16. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  17. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  18. Ground-Water Recharge in Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Falteisek, J.D.

    2007-01-01

    'Ground-water recharge' broadly describes the addition of water to the ground-water system. Most water recharging the ground-water system moves relatively rapidly to surface-water bodies and sustains streamflow, lake levels, and wetlands. Over the long term, recharge is generally balanced by discharge to surface waters, to plants, and to deeper parts of the ground-water system. However, this balance can be altered locally as a result of pumping, impervious surfaces, land use, or climate changes that could result in increased or decreased recharge. * Recharge rates to unconfined aquifers in Minnesota typically are about 20-25 percent of precipitation. * Ground-water recharge is least (0-2 inches per year) in the western and northwestern parts of the State and increases to greater than 6 inches per year in the central and eastern parts of the State. * Water-level measurement frequency is important in estimating recharge. Measurements made less frequently than about once per week resulted in as much as a 48 percent underestimation of recharge compared with estimates based on an hourly measurement frequency. * High-quality, long-term, continuous hydrologic and climatic data are important in estimating recharge rates.

  19. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  20. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget R.; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard F.; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  1. Ground-water as a nuisance

    NASA Astrophysics Data System (ADS)

    Straskraba, V.

    1984-03-01

    In certain circumstances, ground-water causes geotechnical problems and can be considered a nuisance rather than a blessing. The cases where ground-water creates considerable complications include construction, tunnelling, mining, landslides, and land subsidence. The development of hydrogeology as a science has proved over the years to substantially reduce the severe problems and disasterous problems caused by ground-water.

  2. The importance of ground water in the Great Lakes Region

    USGS Publications Warehouse

    Grannemann, N.G.; Hunt, R.J.; Nicholas, J.R.; Reilly, T.E.; Winter, T.C.

    2000-01-01

    Ground water is a major natural resource in the Great Lakes Region that helps link the Great Lakes and their watershed. This linkage needs to be more fully understood and quantified before society can address some of the important water-resources issues in the Great Lakes. The Great Lakes constitute the largest concentration of unfrozen fresh surface water in the western hemisphere—about 5,440 mi3. Because the quantity of water in the lakes is so large, ground water in the Great Lakes Basin is often overlooked when evaluating the hydrology of the region. Ground water, however, is more important to the hydrology of the Great Lakes and to the health of ecosystems in the watershed than is generally recognized.Although more than 1,000 mi3 of ground water are stored in the basin—a volume of water that is approximately equal to that of Lake Michigan—development of the groundwater resource must be carefully planned. Development of the ground-water resource removes water from storage and alters the paths of ground-water flow. Ground water that normally discharges to streams, lakes, and wetlands can be captured by pumping (the most common form of development), which may deplete or reduce inflows to the Great Lakes.Ground water is important to ecosystems in the Great Lakes Region because it is, in effect, a large, subsurface reservoir from which water is released slowly to provide a reliable minimum level of water flow to streams, lakes, and wetlands. Ground-water discharge to streams generally provides good quality water that, in turn, promotes habitat for aquatic animals and sustains aquatic plants during periods of low precipitation. Because of the slow movement of ground water, the effects of surface activities on ground-water flow and quality can take years to manifest themselves. As a result, issues relative to ground water are often seemingly less dire than issues related to surface water alone.Ground water is a major natural resource in the Great Lakes Region

  3. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  4. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  5. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other

  6. Activities and summary statistics of radon-222 in stream- and ground-water samples, Owl Creek basin, north-central Wyoming, September 1991 through March 1992

    USGS Publications Warehouse

    Ogle, K.M.; Lee, R.W.

    1994-01-01

    Radon-222 activity was measured for 27 water samples from streams, an alluvial aquifer, bedrock aquifers, and a geothermal system, in and near the 510-square mile area of Owl Creek Basin, north- central Wyoming. Summary statistics of the radon- 222 activities are compiled. For 16 stream-water samples, the arithmetic mean radon-222 activity was 20 pCi/L (picocuries per liter), geometric mean activity was 7 pCi/L, harmonic mean activity was 2 pCi/L and median activity was 8 pCi/L. The standard deviation of the arithmetic mean is 29 pCi/L. The activities in the stream-water samples ranged from 0.4 to 97 pCi/L. The histogram of stream-water samples is left-skewed when compared to a normal distribution. For 11 ground-water samples, the arithmetic mean radon- 222 activity was 486 pCi/L, geometric mean activity was 280 pCi/L, harmonic mean activity was 130 pCi/L and median activity was 373 pCi/L. The standard deviation of the arithmetic mean is 500 pCi/L. The activity in the ground-water samples ranged from 25 to 1,704 pCi/L. The histogram of ground-water samples is left-skewed when compared to a normal distribution. (USGS)

  7. Radon in ground water of the Lower Susqehanna and Potomac River basins

    USGS Publications Warehouse

    Lindsey, Bruce D.; Ator, Scott W.

    1996-01-01

    Ground-water samples collected from 267 wells were analyzed for radon as part of a water-quality reconnaissance of subunits of the Lower Susquehanna and Potomac River Basins conducted by the United States Geological Survey (USGS) as part of the National Water-Quality Assessment (NAWQA) program. Radon is a product of the radioactive decay of uranium. Airborne radon has been cited by the Surgeon General of the United States as the second-leading cause of lung cancer and the United States Environmental Protection Agency (USEPA) has identified ground-water supplies as possible contributing sources of indoor radon. Eighty percent of ground-water samples collected for this study were found to contain radon at activities greater than 300 pCi/L (picocuries per liter), the USEPA's proposed Maximum Contaminant Level for radon in drinking water, and 31 percent of samples contained radon at activities greater than 1,000 pCi/L. The 10 subunits where samples were collected were grouped into three classes - median ground-water radon activity less than 300 pCi/L, between 300 pCi/L and 1,000 pCi/L, and greater than 1,000 pCi/L. Subunits underlain by igneous and metamorphic rocks of the Piedmont Physiographic Province typically have the highest median ground-water radon activities (greater than 1,000 pCi/L); although there is a large variation in radon activities within most of the subunits. Lower median radon activities (between 300 pCi/L and 1,000 pCi/L) were found in ground water in subunits underlain by limestone and dolomite. Of three subunits underlain by sandstone and shale, one fell into each of the three radon-activity classes. The large variability within these subunits may be attributed to the fact that the uranium content of sandstone and shale is related to the uranium content of the sediments from which they formed.

  8. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  9. Ground-water program in Alabama

    USGS Publications Warehouse

    LaMoreaux, P.E.

    1955-01-01

    Several recent years of drought have emphasized the importance of Alabama's ground-water supplies, a matter of concern to us all.  So far we have been blessed in Alabama with ample ground-water, although a combination of increased use, waste, pollution, and drought has brought about critical local water shortages.  These problems serve as a fair warning of what lies ahead if we do not take the necessary steps to obtan adequate knowledge of our ground-water resources.

  10. Ground-water conditions in Georgia, 1999

    USGS Publications Warehouse

    Cressler, Alan M.

    2000-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water investigations conducted by the U.S. Geological Survey (USGS), in cooperation with the State of Georgia and city and county governments, a Statewide water-level-measurement program was started in 1938. Initially, this program consisted of an observation-well network in the coastal area of Georgia to monitor variations in ground-water storage and quality. Additional wells were later included in areas where data could be used to aid in water resources development and management. During 1999, periodic water-level measurements were made in 46 wells, and continuous water-level measurements were obtained from 165 wells. Continuous water-level records were obtained using analog (pen and chart

  11. Effects of Irrigation, Drought, and Ground-Water Withdrawals on Ground-Water Levels in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2006-01-01

    A numerical ground-water-flow model was used to investigate the effects of irrigation on ground-water levels in the southern Lihue Basin, Kauai, Hawaii, and the relation between declining ground-water levels observed in the basin in the 1990s and early 2000s and concurrent drought, irrigation reduction, and changes in ground-water withdrawal. Results of steady-state model simulations indicate that changing from pre-development to 1981 irrigation and ground-water-withdrawal conditions could, given enough time for steady state to be achieved, raise ground-water levels in some areas of the southern Lihue Basin by as much as 200 feet, and that changing from 1981 to 1998 irrigation and ground-water-withdrawal conditions could lower ground-water levels in some areas by as much as 100 feet. Transient simulations combining drought, irrigation reduction, and changes in ground-water withdrawal show trends that correspond with those observed in measured water levels. Results of this study indicate that irrigation reduction was the primary cause of the observed decline in ground-water-levels. In contrast, ground-water withdrawal had a long-duration but small-magnitude effect, and drought had a widespread, high-magnitude but short-duration effect. Inasmuch as irrigation in the future is unlikely to return to the same levels as during the period of peak sugarcane agriculture, the decline in ground-water levels resulting from the reduction and ultimate end of sugarcane irrigation can be considered permanent. Assuming that irrigation does not return to the southern Lihue Basin and that, on average, normal rainfall persists and ground-water withdrawal remains at 1998 rates, model projections indicate that average ground-water levels in the Kilohana-Puhi area will continue to recover from the drought of 1998-2002 and eventually rise to within about 4 feet of the pre-drought conditions. Long-term climate trends, increases in ground-water withdrawal, or other factors not simulated in

  12. Water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1995

    USGS Publications Warehouse

    Rankin, D.R.

    1996-01-01

    Water-quality and ground-water-level data were collected in two areas of eastern Bernalillo County in central New Mexico between March and July of 1995. Fifty-one wells, two springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County and nine wells in the northeast area of the city of Albuquerque were sampled. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; dissolved arsenic, boron, iron, and manganese; and methylene blue active substances. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, temperature, and alkalinity were measured in the field at the time of sample collection. Ground- water-level and well-depth measurements were made at the time of sample collection when possible. Water-quality data, ground- water-level data, and well-depth data are presented in tabular form.

  13. Water rights in areas of ground-water mining

    USGS Publications Warehouse

    Thomas, Harold E.

    1955-01-01

    Ground-water mining, the progressive depletion of storage in a ground-water reservoir, has been going on for several years in some areas, chiefly in the Southwestern States. In some of these States a water right is based on ownership of land overlying the ground-water reservoir and does not depend upon putting the water to use; in some States a right is based upon priority of appropriation and use and may be forfeited if the water is allowed to go unused for a specified period, but ownership of land is not essential; and in several States both these doctrines or modifications thereof are accepted, and each applies to certain classes of water or to certain conditions of development.Experience to date indicates that a cure for ground-water mining does not necessarily depend upon the water-rights doctrine that is accepted in the area. Indeed, some recent court decisions have incorporated both the areal factor of the landownership doctrines and the time factor of the appropriation doctrine. Overdraft can be eliminated if water is available from another source to replace some of the water taken from the affected aquifer. In areas where no alternate source of supply is available at reasonable cost, public opinion so far appears to favor treating ground water as a nonrenewable resource comparable to petroleum and metals, and mining it until the supply is exhausted, rather than curbing the withdrawals at an earlier date.

  14. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  15. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    USGS Publications Warehouse

    Harvey, J.W.; Newlin, J.T.; Krupa, S.L.

    2006-01-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d-1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  16. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    NASA Astrophysics Data System (ADS)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  17. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  18. Ground-water levels in Wyoming, 1975

    USGS Publications Warehouse

    Ballance, Wilbur C.; Freudenthal, Pamela B.

    1976-01-01

    Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included in this report.The program of ground-water observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne.

  19. Ground-water contamination near a uranium tailings disposal site in Colorado

    USGS Publications Warehouse

    Goode, Daniel J.; Wilder, Russell J.

    1987-01-01

    Contaminants from uranium tailings disposed of at an active mill in Colorado have seeped into the shallow ground water onsite. This ground water discharges into the Arkansas River Valley through a superposed stream channel cut in the resistant sandstone ridge at the edge of a synclinal basin. In the river valley, seasonal surface-water irrigation has a significant impact on hydrodynamics. Water levels in residential wells fluctuate up to 20 ft and concentrations of uranium, molybdenum, and other contaminants also vary seasonally, with highest concentrations in the Spring, prior to irrigation, and lowest concentrations in the Fall. Results of a simple transient mixing cell model support the hypothesis that lateral ground-water inflow, and not irrigation recharge, is the source of ground-water contamination.

  20. Radium and radon in ground water in the Chickies Quartzite, southeastern Pennsylvania

    USGS Publications Warehouse

    Senior, L.A.; Vogel, K.L.

    1995-01-01

    The Chickies Quartzite, a Lower Cambrian-age formation compromised of quartzite and slate overlying a basal conglomerate, forms a narrow ridges and crops out discontinuously over 112 square miles in the Piedmont physiographic province of southeastern Pennsylvania. The formation is a low-yielding, fractured- rock, water-table aquifer recharged primarily by local precipitation. It is the sole source of water supply for thousands of domestic users. Ground water in the Chickies Quartzite generally is soft and acidic. During 1986-88, the U.S. Geological Survey sampled water from 160 wells that penetrate the Chickies Quartzite to determine the magnitude and distribution of radium-226 (Ra-226), radium-228 (Ra-228), and radon-222 (Rn-222) activities in ground water in the formation and to characterize the geochemical environmental associated with elevated activities of radium (Ra). In addition, 28 wells penetrating adjacent geologic units and 1 well in the Hardyston Quartzite were sampled to determine relative background Ra and RN-222 activities in ground water. Analyses included determination of activities of dissolved Ra-226, Ra-228, and RN-222, and concentrations of dissolved uranium (U), dissolved organic carbon (DOC), and major and minor dissolved inorganic ions. Rock samples were analyzed for U and thorium (Th) and geophysical logs were run to determine sources of Ra and RN-222 in the Chickies Quartzite. Activities of up to 41 pCi/L (picocuries per liter) for Ra-226, 160 pCi/L for Ra-228, and 32,300 pCi/L for RN-222 were measured in ground water in the Chickies Quartzite. Forty-seven percent of the samples contained Ra-226 and Ra-228 activities greater than 5 pCi/L. Median activities measured were 1.2 pCi/L for Ra-226, 2.6 pCi/L for Ra-228, 4.2 pCi/L for combined Ra-226 and Ra-228, and 2,400 pCi/L for RN-222 Ra-228 activity exceeded Ra-226 activity in about 92 percent of 100 water samples; the median Ra-228/Ra226 activity ratio was 2.4. Ra-228/Ra-226 activity ratios

  1. Flow Pathways of Snow and Ground Ice Melt Water During Initial Seasonal Thawing of the Active Layer on Continuous Permafrost

    NASA Astrophysics Data System (ADS)

    Sjoberg, Y.; Johansson, E.; Rydberg, J.

    2017-12-01

    In most arctic environments, the snowmelt is the main hydrologic event of the year as a large fraction of annual precipitation rapidly moves through the catchment. Flow can occur on top of the frozen ground surface or through the developing active layer, and flow pathways are critical determinants for biogeochemical transport. We study the linkages between micro topography, active layer thaw, and water partitioning on a hillslope in Greenland during late snowmelt season to explore how seasonal subsurface flow pathways develop. During snowmelt, a parallel surface drainage pattern appears across the slope, consisting of small streams, and water also collects in puddles across the slope. Thaw rates in the active layer were significantly higher (T-test p<0.01) on wet parts of the slope (0.8 cm/day), compared to drier parts of the slope (0.6 cm/day). Analyses of stable water isotopic composition show that snow had the lightest isotopic signatures, but with a large spread of values, while seasonally frozen ground and standing surface water (puddles) were heavier. The stream water became heavier over the two-week sampling period, suggesting an increasing fraction of melted soil water input over time. In contrast, standing surface water (puddles) isotopic composition did not change over time. In boreal catchments, seasonal frost has previously been found to not significantly influence flow pathways during most snowmelt events, and pre-event groundwater make out most of the stream water during snowmelt. Our results from a continuous permafrost environment show that both surface (overland) and subsurface flow pathways in the active layer are active, and that a large fraction of the water moving on the hillslope comes from melted ground ice rather than snow in the late snowmelt season. This suggests a possibility that flow pathways during snowmelt could shift to deeper subsurface flow following degradation of continuous permafrost.

  2. Texas ground-water quality

    USGS Publications Warehouse

    Strause, Jeffrey L.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  3. Minnesota ground-water quality

    USGS Publications Warehouse

    Albin, D.R.; Bruemmer, L.B.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  4. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  5. Contributions of flumequine and nitroarenes to the genotoxicity of river and ground waters.

    PubMed

    Ma, Fujun; Yuan, Guanxiang; Meng, Liping; Oda, Yoshimitsu; Hu, Jianying

    2012-07-01

    The SOS/umuC assay was performed in conjunction with analytical measurements to identify potential genotoxins in river and adjacent ground waters in the Jialu River basin, China. The major genotoxic activities of the river and adjacent ground waters occurred in the same two fractions (F4 and F11) when assayed using the Salmonella typhimurium strain TA1535/pSK1002. This indicates that ground water near the Jialu River was influenced by the river water. LC-MS/MS analysis indicated that flumequine accounted for 86% and 76% of the genotoxicity in fraction F11 of the river and adjacent ground waters, respectively. When HPLC fractions were tested using the strain NM3009, three fractions showed genotoxic activities for river water sample, while no fractions from ground water samples elicited genotoxic activities. The specific response to the strain NM3009 in one fraction compared with the strain TA1535/pSK1002 suggested the presence of nitroarenes. However, we failed to identify the exact nitroarenes when GC-MS analysis was used to analyze nitroarenes which are well detected in air and soil samples in previous papers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Remediation of a uranium-contamination in ground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woerner, Joerg; Margraf, Sonja; Hackel, Walter

    2007-07-01

    The former production site of NUKEM where nuclear fuel-elements were developed and handled from 1958 to 1988 was situated in the centre of an industrial park for various activities of the chemical and metallurgical industry. The size of the industrially used part is about 300.000 m{sup 2}. Regulatory routine controls showed elevated CHC (Chlorinated Hydro-Carbons) values of the ground water at the beginning of the 1990's in an area which represented about 80.000 m{sup 2} down-gradient of locations where CHC compounds were stored and handled. Further investigations until 1998 proved that former activities on the NUKEM site, like the UF{submore » 6} conversion process, were of certain relevance. The fact that several measured values were above the threshold values made the remediation of the ground water mandatory. This was addressed in the permission given by the Ministry for Nuclear Installations and Environment of Hesse according to chap. 7 of the German atomic law in October 2000. Ground water samples taken in an area of about 5.000 m{sup 2} showed elevated values of total Uranium activity up to between 50 and 75 Bq/l in 2002. Furthermore in an area of another 20.000 m{sup 2} the samples were above threshold value. In this paper results of the remediation are presented. The actual alpha-activities of the ground waters of the remediation wells show values of 3 to 9 Bq/l which are dominated by 80 to 90 % U-234 activity. The mass-share of total Uranium for this nuclide amounts to 0,05% on average. The authority responsible for conventional water utilisation defined target values for remediation: 20 {mu}g/l for dissolved Uranium and 10 {mu}g/l for CHC. Both values have not yet been reached for an area of about 10.000 m{sup 2}. The remediation process by extracting water from four remediation wells has proved its efficiency by reduction of the starting concentrations by a factor of 3 to 6. Further pumping will be necessary especially in that area of the site where

  7. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  8. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  9. Ground water in Pavant Valley

    USGS Publications Warehouse

    Dennis, P. E.; Maxey, G.B.; Thomas, H.E.

    1946-01-01

    The users of wells for irrigation in Pavant Valley, particularly in the Flowell district, have long been cognizant of their utter dependency upon ground water for livelihood, and were among the first in the State to make an organized effort to conserve supplies by prevention of waste. Since passage of the State ground-water law in 1935, the State Engineer has not approved applications for new wells in the areas of most concentrated development, and has deferred adjudication of existing water rights until adequate data concerning the ground-water resources become available. The investigation of ground-water resources in Pavant Valley was suggested by the State Engineer and constitutes one of a series that are being made in the important groundwater basins of Utah by the Federal Geological Survey in cooperation with the State Engineer. The investigation was under the general supervision of Oscar E. Meinzer, geologist in charge of the ground-water division of the Federal Geological Survey. H. E. Thomas, in charge of groundwater investigations in Utah, returned from military service overseas in time to assist in the completion of the manuscript, and edited the report.

  10. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  11. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  12. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    of the Water Resources Commission to control pollution of ground water, in effect has introduced the doctrine of reasonable use into the law of the State. Excluding controls administered by the Department of Conservation on activities of the oil and gas industry, however, legal controls have not been used abate intrusion of natural saline waters into fresh-water aquifers in response to pumping and other manmade changes in the hydrologic regimen.

  13. Ground-water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1990-1993

    USGS Publications Warehouse

    Kues, G.E.; Garcia, B.M.

    1995-01-01

    Ground-water-quality and ground-water-level data were collected in four unincorporated areas of Bernalillo County during 1990-93. Twenty wells in the east mountain area of Bernalillo County were sampled approximately monthly between January 1990 and June 1993. The water samples were analyzed for concentrations of chloride and selected nutrient species; many of the samples also were analyzed for concentrations of total organic carbon and dissolved boron and iron. Eleven wells northeast of the city of Albuquerque, 20 wells in the Rio Grande Valley immediately north of Albuquerque, and 30 wells in the Rio Grande Valley immediately south of Albuquerque were sampled once each between December 1992 and September 1993; all water samples were analyzed for chloride and selected nutrient species, and selected samples from wells in the north and south valley areas were also analyzed for major dissolved constituents, iron, manganese, and methylene blue active substances. Samples from 10 of the wells in the north and south valley areas were analyzed for 47 selected pesticides. Field measurements of specific conductance, pH, temperature, and alkalinity were made on most samples at the time of sample collection. Water levels also were measured at the time of sample collection when possible. Results of the monthly water-quality and water-level monitoring in the east mountain area of Bernalillo County are presented in graphical form. Water-quality and water-level data collected from the other areas are presented in tabular form.

  14. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  15. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  16. Ground-water flow and ground- and surface-water interaction at McBaine Bottoms, Columbia, Missouri--2000-02

    USGS Publications Warehouse

    Smith, Brenda J.

    2003-01-01

    McBaine Bottoms southwest of Columbia, Missouri, is the site of 4,269 acres of the Eagle Bluffs Conservation Area operated by the Missouri Department of Conservation, about 130 acres of the city of Columbia wastewater-treat-ment wetlands, and the city of Columbia munici-pal-supply well field. The city of Columbia wastewater-treatment wetlands supply treated effluent to the Eagle Bluffs Conservation Area. The presence of a sustained ground-water high underlying the Eagle Bluffs Conservation Area has indicated that ground-water flow is toward the municipal well field that supplies drinking water to the city of Columbia. The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation and the city of Columbia, measured the ground-water levels in about 88 monitoring wells and the surface-water elevation at 4 sites monthly during a 27-month period to determine the ground-water flow and the ground- and surface-water interaction at McBaine Bottoms. Lateral ground-water flow was dominated by the presence of a ground-water high that was beneath the Eagle Bluffs Conservation Area and the presence of a cone of depression in the northern part of the study area. The ground-water high was present during all months of the study. Ground-water flow was radially away from the apex of the ground-water high; west and south of the high, flow was toward the Missouri River, east of the high, flow was toward Perche Creek, and north of the high, flow was toward the north toward the city of Columbia well field. The cone of depression was centered around the city of Columbia well field. Another permanent feature on the water-level maps was a ground-water high beneath treatment wetland unit 1. Although the ground-water high beneath the Eagle Bluffs Conservation Area was present throughout the study period, the configuration of the high changed depending on hydrologic conditions. Generally in the spring, the height of the ground-water high began to decrease and hydraulic

  17. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 1996

    USGS Publications Warehouse

    Littin, Gregory R.; Monroe, Stephen A.

    1997-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1996, ground-water withdrawals for industrial and municipal use totaled about 7,040 acre-feet, which is less than a 1-percent decrease from 1995. Pumpage from the confined part of the aquifer decreased by about 3 percent to 5,390 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 9 percent to 1,650 acre-feet. Water-level declines in the confined area during 1996 were recorded in 11 of 13 wells, and the median change was a decline of about 2.7 feet as opposed to a decline of 1.8 feet for 1995. Water-level declines in the unconfined area were recorded in 11 of 18 wells, and the median change was a decline of 0.5 foot in 1996 as opposed to a decline of 0.1 foot in 1995. The average low-flow discharge at the Moenkopi streamflow-gaging station was 2.3 cubic feet per second in 1996. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1996. Average low-flow discharge was 2.3 cubic feet per second at Laguna Creek, 0.4 cubic foot per second at Dinnebito Wash, and 0.2 cubic foot per second at Polacca Wash. Discharge was measured at three springs. Discharge from Moenkopi School Spring decreased by about 2 gallons per minute from the measurement in 1995. Discharge from an unnamed spring near Dennehotso decreased by 1.3 gallons per minute from the measurement made in 1995; however

  18. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruhlke, J.M.; Galpin, F.L.

    1991-12-31

    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less

  19. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  20. Ground-water recharge in humid areas of the United States: A summary of Ground-Water Resources Program studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  1. Ground Water Rule - Boil Water Advisory - Public Notification Template

    EPA Pesticide Factsheets

    The Ground Water Rule - Boil Water Advisory - Public Notification Template can be use to issue a Tier 1 Public Notification when it has been determined that source ground water is contaminated with E. Coli bacteria.

  2. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    EPA Science Inventory

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  3. Ground Water in a Fish Tank.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1992-01-01

    Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…

  4. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  5. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  6. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  7. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  8. Ground-water conditions in Georgia, 1997

    USGS Publications Warehouse

    Cressler, A.M.

    1998-01-01

    Ground-water conditions in Georgia during 1997 and for the period of record were evaluated using data from ground-water-level and ground-water-quality monitoring networks. Data for 1997 included in this report are from continuous water-level records from 71 wells and chloride analyses from 14 wells. In 1997, annual mean ground-water levels in Georgia ranged from 6.2 feet (ft) lower to 5.6 ft higher than in 1996. Of the 71 wells summarized in this report, 23 wells had annual mean water levels that were higher, 35 wells had annual mean water levels that were lower, and 11 wells had annual mean water levels that were about the same in 1997 as during 1996. Data for two wells are incomplete because data collection was discontinued at one well, and the equipment was vandalized at one well. Record-low daily mean water levels were recorded in six wells tapping the Upper Floridan aquifer, one well tapping the Caliborne aquifer, two wells tapping the Clayton aquifer, and three wells tapping Cretaceous aquifers. These record lows were from 0.2 to 5.6 ft lower than previous record lows. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standard. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water

  9. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    USGS Publications Warehouse

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  10. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  11. Illinois ground-water observation network; a preliminary planning document for network design

    USGS Publications Warehouse

    Frost, L.R.; O'Hearn, Michael; Gibb, J.P.; Sherrill, M.G.

    1984-01-01

    Water-level and water-quality networks in Illinois were evaluated to determine the adequacy and completeness of available data bases. Ground-water data in present data bases are inadequate to provide information on ground-water quality and water levels in large areas of Illinois and in the major geohydrologic units underlying Illinois and surrounding areas. Data-management needs indicate that a new data base is desirable and could be developed by use of carefully selected available data and new data. Types of data needed to define ground-water quality and water levels in selected geohydrologic units were tentatively identified. They include data on concentrations of organic chemicals related to activities of man, and concentrations of inorganic chemicals which relate either to man 's activities or to the chemical composition of the source aquifer. Water-level data are needed which can be used to describe short- and long-term stresses on the ground-water resources of Illinois. Establishment of priorities for data collection has been deferred until existing hydrologic data files can be stored for usable data and until input from other local, State, and Federal agencies can be solicited and compiled. (USGS)

  12. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 1997

    USGS Publications Warehouse

    Littin, Gregory R.; Baum, Bradley M.; Truini, Margot

    1999-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined parts of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1997, ground-water withdrawals for industrial and municipal use totaled about 7,090 acre-feet, which is less than a 1-percent increase from 1996. Pumpage from the confined part of the aquifer increased by about 2 percent to 5,510 acre-feet, and pumpage from the unconfined part of the aquifer decreased by about 4 percent to 1,580 acre-feet. Water-level declines in the confined part during 1997 were recorded in 5 of 12 wells; however, the median change was a rise of about 0.2 foot as opposed to a decline of 2.8 feet for 1996. Water-level declines in the unconfined part were recorded in 7 of 15 wells, and the median change was 0.0 foot in 1997 as opposed to a decline of 0.5 foot in 1996. The low-flow discharge at the Moenkopi streamflow-gaging station ranged from 1.6 to 2.0 cubic feet per second in 1997. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1997. The low-flow discharge ranged from 2.3 to 4.2 cubic feet per second at Laguna Creek, 0.44 to 0.48 cubic foot per second at Dinnebito Wash, and 0.15 to 0.26 cubic foot per second at Polacca Wash. Discharge was measured at three springs. Discharge from Moenkopi School Spring increased by about 3 gallons per minute from the measurement in 1996. Discharge from an unnamed spring near Dennehotso increased by 9.9 gallons per minute from the measurement made in

  13. FUNDAMENTALS OF GROUND-WATER MODELING

    EPA Science Inventory

    Ground-water flow and contaminant transport modeling has been used at many hazardous waste sites with varying degrees of success. odels may be used throughout all phases of the site investigation and remediation processes. eveloping a better understanding of ground-water modeling...

  14. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  15. Pollution of ground water in Europe

    PubMed Central

    Buchan, S.; Key, A.

    1956-01-01

    This paper discusses pollution of ground water in 20 countries of the European region, giving for each an account of the geology and hydrogeology, water supplies, the extent and nature of ground water pollution, and the legal, administrative, and technical means of controlling that pollution. For the countries not considered in the preceding article on surface water pollution, an account is also given of the superficial physical features, rainfall, population, and industries. A general discussion follows of such questions as the ways in which ground water pollution may occur, the factors mitigating or aggravating pollution, and ways of protection against pollution. The authors consider that the problem of ground water pollution in Europe may well be more serious than it would appear to be on the evidence so far obtained. PMID:13374533

  16. International borders, ground water flow, and hydroschizophrenia.

    PubMed

    Jarvis, Todd; Giordano, Mark; Puri, Shammy; Matsumoto, Kyoko; Wolf, Aaron

    2005-01-01

    A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?

  17. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  18. Modeled ground water age distributions

    USGS Publications Warehouse

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  19. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    EPA Science Inventory

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  20. Ground Water Modeling Research

    EPA Pesticide Factsheets

    EPA is supporting region, state, and tribal partners at Superfund sites and brownfields to develop new methods to better characterize, monitor, and treat ground water contamination; in order to protect drinking water, surface water, and indoor air.

  1. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  2. The role of ground water in the national water situation: With state summaries based on reports by District Offices of Ground Water Branch

    USGS Publications Warehouse

    McGuinness, Charles Lee

    1963-01-01

    This report outlines briefly the principles of water occurrence and describes the water situation in the United States as of 1960-61, with emphasis on the occurrence of ground water and the status of development and accompanying problems. The Nation has been divided into 10 major ground-water regions by H. E. Thomas (1952a). The report summarizes the occurrence and development of ground water in each of Thomas' regions. In a large terminal section it also describes the occurrence and development of water, again with emphasis on ground water, in each of the 50 States and in certain other areas. The main text ends with a discussion of the water situation and prospects of the Nation.

  3. Ground-water monitoring in the Albuquerque area

    USGS Publications Warehouse

    Thorn, Condé R.

    1996-01-01

    At present (1996), all drinking water for Albuquerque residents comes from ground-water reserves. The Albuquerque area is the largest population center in the State and the largest consumer of ground water. Recent reports concerning the water resources of the Albuquerque area suggest that the Albuquerque Basin may soon face serious water-availability and water-quality problems due to anticipated ground-water development. Recent studies completed by the U.S. Geological Survey (USGS) have improved the understanding of the ground-water resources in the Albuquerque Basin. These studies have indicated that the more permeable units within the aquifer system--the upper Santa Fe Group--are less extensive than previously thought, and that water-levels have declined as much as 160 feet.

  4. Use of tree-ring chemistry to document historical ground-water contamination events

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  5. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  6. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  7. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  8. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 258.51... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  9. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  10. Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    DTIC Science & Technology

    2001-02-01

    Development Ground Water Issue Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites National Risk Management Research... Phytoremediation , the use of plants in remediation, is one such technology. This issue paper focuses on the processes and applications of phytoremediation ...of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is

  11. Mississippi Embayment Regional Ground Water Study

    EPA Science Inventory

    Increased water usage in the southeastern United States in the tri-state area of Tennessee, Mississippi and Arkansas poses a dilemma to ensuring long-term sustainability of the quantity and quality of ground-water resources that underlie the region. Demand for ground water by ag...

  12. The value of long-term monitoring in the development of ground-water-flow models

    USGS Publications Warehouse

    Feinstein, Daniel T.; Hart, David J.; Krohelski, James T.

    2004-01-01

    As environmental issues have come to the forefront of public concern, so has the awareness of the importance of ground water in the overall water cycle and as a source of the Nation’s drinking water. Heightened interest has spawned a host of scientific enterprises (Taylor and Alley, 2001). Some activities are directed toward collection of water-level data and related information to monitor the physical and chemical state of the resource. Other activities are directed at interpretive studies undertaken, for example, to optimize the location of new water-supply wells or to protect rivers and lakes fed by ground water. An important type of interpretive study is the computer ground-water-flow model that inte- grates field data in a mathematical framework. Long-term, systematic collection of hydro- logic data is crucial to the construction and testing of ground-water models so that they can reproduce the evolution of flow systems and forecast future conditions. 

  13. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    . Currently (2004), there is no federally enforced drinking-water standard for radon in public water-supply systems, but proposed regulations suggest a maximum contaminant level of 300 picocuries per liter (pCi/L) and an alternative maximum contaminant level of 4,000 pCi/L contingent on other mitigating remedial activities to reduce radon levels in indoor air. Radon concentrations in about 91 percent of ground-water samples were greater than or equal to 300 pCi/L, and about 25 percent had radon concentrations greater than or equal to 4,000 pCi/L. Generally, the highest radon concentrations were measured in samples collected from wells completed in the crystalline-rock aquifers. Analyses of ground-water-quality data indicate that recharge from ISDS effluent has affected some local ground-water systems in Park County. Because roughly 90 percent of domestic water used is assumed to be recharged by ISDS's, detections of human-related (wastewater) compounds in ground water in Park County are not surprising; however, concentrations of constituents associated with ISDS effluent generally are low (concentrations near the laboratory reporting levels). Thirty-eight different organic wastewater compounds were detected in 46 percent of ground-water samples, and the number of compounds detected per sample ranged from 1 to 17 compounds. Samples collected from wells with detections of wastewater compounds also had significantly higher (p-value < 0.05) chloride and boron concentrations than samples from wells with no detections of wastewater compounds. ISDS density (average subdivision lot size used to estimate ISDS density) was related to ground-water quality in Park County. Chloride and boron concentrations were significantly higher in ground-water samples collected from wells located in areas that had average subdivision lot sizes of less than 1 acre than in areas that had average subdivision lot sizes greater than or equal to 1 acre. For wells completed in the crystalline-

  14. Summary appraisals of the Nation's ground-water resources; California region

    USGS Publications Warehouse

    Thomas, H.E.; Phoenix, D.A.

    1976-01-01

    Of all the constraints on effective use of ground-water reservoirs, the most formidable may be the attitudes of people. Assurance of water supply is vital in areas of water deficiency, and Government has assumed increasing responsibility for the welfare of people in these areas. Unfortunately, when Government provides this assurance, most beneficiaries demand continued subsidy to the exclusion of perhaps cheaper private development. Indeed, as the water resources are presently segregated-with private rights predominant in ground water and public interest dominant in surface water-ground-water development has suffered for lack of public concern. The region has the scientific and technologic capability for effective use of groundwater reservoirs, as shown by the achievements and programs of several districts, but many districts are not organized or staffed for such comprehensive management and will need assistance and scientific expertise available from State and Federal agencies. Those agencies, in turn, may not have the scientific data that are essential to prevent haphazard activities and to enable programs to be organized for the most effective and attractive utilization of the water resources. In these days of increasing concern over pollution, existing data are generally inadequate to assess the natural deterioration of ground waters as a basis for defining pollution.

  15. Guide to North Dakota's ground-water resources

    USGS Publications Warehouse

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  16. Ground-water flow and water quality in the sand aquifer of Long Beach Peninsula, Washington

    USGS Publications Warehouse

    Thomas, B.E.

    1995-01-01

    This report describes a study that was undertaken to improve the understanding of ground-water flow and water quality in the coastal sand aquifer of the Long Beach Peninsula of southwestern Washington. Data collected for the study include monthly water levels at 103 wells and 28 surface-water sites during 1992, and water-quality samples from about 40 wells and 13 surface-water sites in February and July 1992. Ground water generally flows at right angles to a ground-water divide along the spine of the low-lying peninsula. Historical water-level data indicate that there was no long-term decline in the water table from 1974 to 1992. The water quality of shallow ground water was generally good with a few local problems. Natural concentrations of dissolved iron were higher than 0.3 milligrams per liter in about one-third of the samples. The dissolved-solids concentrations were generally low, with a range of 56 to 218 milligrams per liter. No appreciable amount of seawater has intruded into the sand aquifer, chloride concentrations were low, with a maximum of 52 milligrams per liter. Agricultural activities do not appear to have significantly affected the quality of ground water. Concentrations of nutrients were low in the cranberry-growing areas, and selected pesticides were not found above the analytical detection limits. Septic systems probably caused an increase in the concentration of nitrate from medians of less than 0.05 milligrams per liter in areas of low population density to 0.74 milligrams per liter in areas of high density.

  17. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  18. North Dakota ground-water quality

    USGS Publications Warehouse

    Garklavs, George; Nelson, Rick

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  19. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    USGS Publications Warehouse

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural

  20. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS - WELLS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications for public supply wells in Connecticut. It is a polygon Shapefile that includes GAA areas for public water supply wells. Each polygon is assigned a GAA ground water quality class, which is stored in the d...

  1. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  2. High Plains Regional Ground-water Study web site

    USGS Publications Warehouse

    Qi, Sharon L.

    2000-01-01

    Now available on the Internet is a web site for the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program-High Plains Regional Ground-Water Study. The purpose of the web site is to provide public access to a wide variety of information on the USGS investigation of the ground-water resources within the High Plains aquifer system. Typical pages on the web site include the following: descriptions of the High Plains NAWQA, the National NAWQA Program, the study-area setting, current and past activities, significant findings, chemical and ancillary data (which can be downloaded), listing and access to publications, links to other sites about the High Plains area, and links to other web sites studying High Plains ground-water resources. The High Plains aquifer is a regional aquifer system that underlies 174,000 square miles in parts of eight States (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming). Because the study area is so large, the Internet is an ideal way to provide project data and information on a near real-time basis. The web site will be a collection of living documents where project data and information are updated as it becomes available throughout the life of the project. If you have an interest in the High Plains area, you can check this site periodically to learn how the High Plains NAWQA activities are progressing over time and access new data and publications as they become available.

  3. Hanford Site ground-water monitoring for 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less

  4. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  5. Georgia's Ground-Water Resources and Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.

    2006-01-01

    The U.S. Geological Survey (USGS) ground-water network for Georgia currently consists of 170 wells in which ground-water levels are continuously monitored. Most of the wells are locatedin the Coastal Plain in the southern part of the State where ground-water pumping stress is high. In particular, there are large concentrations of wells in coastal and southwestern Georgia areas, where there are issues related to ground-water pumping, saltwater intrusion along the coast, and diminished streamflow in southwestern Georgia due to irrigation pumping. The map at right shows the USGS ground-water monitoring network for Georgia. Ground-water levels are monitored in 170 wells statewide, of which 19 transmit data in real time via satellite and posted on the World Wide Web at http://waterdata.usgs.gov/ga/nwis/current/?type=gw . A greater concentration of wells occurs in the Coastal Plain where there are several layers of aquifers and in coastal and southwestern Georgia areas, which are areas with specific ground-water issues.

  6. Ground-water conditions in Utah, spring of 1997

    USGS Publications Warehouse

    Gerner, S.J.; Steiger, J.I.; Sory, J.D.; Burden, Carole B.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1997-01-01

    This is the thirty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep aware of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1996. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  7. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    USGS Publications Warehouse

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  8. U.S. Geological Survey ground-water studies in Utah

    USGS Publications Warehouse

    Gates, Joseph S.

    1988-01-01

    Ground water is an important natural resource in Utah. In the basins west of the Wasatch Front, and in many other parts of Utah, ground water is the primary source of water. In many of the basins of the western desert and in parts of the Colorado Plateau, ground water is the only reliable source of water. Along the Wasatch Front to the north and south of Salt Lake City, in the Uinta Basin, and in the Sevier River drainage, surface water is the primary source of water. Ground-water sources supply about 20 percent of all water used in Utah and about 63 percent of the water for public supply. Of the total amount of ground water used, 44 percent is for irrigation, 35 percent is for public supply, 11 percent is for industry, 5 percent is for rural domestic supplies, and 5 percent is for livestock. The major issues related to ground water in Utah are: -Development of additional ground-water supplies while protecting existing water rights and minimizing effects on water levels, water quality, and streamflow, and-Protection of ground-water resources from contamination by pollutants from various types of land-use and waste-disposal practices.

  9. Ground water in the San Joaquin Valley, California

    USGS Publications Warehouse

    Kunkel, Fred; Hofman, Walter

    1966-01-01

    Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the San Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the San Joaquin Valley was "Ground Water in the San Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the San Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the San Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of

  10. Estimating ground water yield in small research basins

    Treesearch

    Elon S. Verry

    2003-01-01

    An analysis of ground water recharge in 32 small research watersheds shows the average flow of ground water out of the watershed (deep seepage) is 45% of streamflow and ranges from 8 to 350 mm/year when apportioned over the watershed area. It is time to meld ground water and small watershed science. The use of we11 networks and the evaluation of ground water well...

  11. Ground-water conditions in Utah, spring of 2002

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  12. Ground-water conditions in Utah, spring of 1999

    USGS Publications Warehouse

    Burden, Carole B.; Spangler, L.E.; Sory, J.D.; Eacret, Robert J.; Kenney, T.A.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    1999-01-01

    This is the thirty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1998. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  13. Ground-water conditions in Utah, spring of 2001

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2001-01-01

    This is the thirty-eighth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2000. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  14. Ground-water conditions in Utah, spring of 2003

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  15. Ground-water conditions in Utah, spring of 2000

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Johnson, K.K.; Kenny, T.A.; Brockner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2000-01-01

    This is the thirty-seventh in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1999. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  16. Ground-water conditions in Utah, spring of 2004

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2004-01-01

    This is the forty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2003. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  17. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    USGS Publications Warehouse

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is

  18. State and territorial use of ground-water strategy grant funds (Section 106 Clean Water Act). Technical report (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-05-01

    This document reports on the activities of States in FY 85 and 86 in developing and implementing State ground-water protection strategies using Clean Water Act Section 106 funds. Every State and all but one territory has participated in the program. Strategies have included emphasis on the need to consolidate State and local agency efforts, and to provide clear policy direction, greater public awareness and education concerning ground-water protection.

  19. Ground-water conditions in Utah, spring of 1998

    USGS Publications Warehouse

    Susong, David D.; Burden, Carole B.; Sory, J.D.; Eacret, Robert J.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1998-01-01

    This is the thirty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1997. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  20. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona: 1998

    USGS Publications Warehouse

    Truini, Margot; Baum, Bradley M.; Littin, Gregory R.; Shingoitewa-Honanie, Gayl

    2000-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined parts of the aquifer, (3) surface-water discharge, (4) flowmeter tests, and (5) ground-water and surface-water chemistry. In 1998, ground-water withdrawals for industrial and municipal use totaled about 7,060 acre-feet, which is less than a 1 percent decrease from 1997. Pumpage from the confined part of the aquifer decreased by less than 1 percent to 5,470 acre-feet, and pumpage from the unconfined part of the aquifer increased by less than 1 percent to 1,590 acre-feet. Water-level declines in the confined part of the aquifer were recorded in 10 of 14 wells during 1998, and the median change from 1997 was a decline of 3.0 feet as opposed to a rise of 0.2 feet for the change from 1996 to 1997. Water-level declines in the unconfined part of the aquifer were recorded in 9 of 16 wells, and the median change from 1997 was 0.0 feet, which is the same as the median change from 1996 to 1997. Of the 35 pumpage meters on municipal wells that were tested, the difference between metered and tested discharge ranged from +6.3 to -19.6 percent. The average difference was about -3.4 percent. Five of the meters exceeded the allowable difference (10 percent) and should be repaired or replaced. The low-flow discharge at the Moenkopi streamflow-gaging station ranged from 2.6 to 4.7 cubic feet per second in 1998. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1998. The low-flow discharge ranged from 0.41 to 5.1 cubic feet

  1. Ground-water provinces of Brazil

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    As part of a study of the status of investigations and development of ground water in Brazil, made under the auspices of the United States International Cooperation Administration and with the cooperation of the Government of Brazil, the country was divided into seven ground-water provinces. The identification and delineation of the provinces were based on the regional distribution of the dominant geologic units which are known or inferred to have distinctive water-bearing characteristics. Three of the provinces, covering most of the country, are underlain by Precambrian crystalline rocks. Three others coincide in part with four extensive sedimentary basins--the Parnaiba or Maranhfio basin and the contiguous Sao Francisco basin in the northeast and east, the Amazon basin in the north and northwest, and the Paranfi basin in the south and southwest. In addition, the narrow, discontinuous coastal plain is considered as a province. the occurrence of ground water is discussed briefly, and pertinent data are given on the more important aquifers, together with information on some existing wells. Because of the widespread distribution of crystalline rocks of low permeability, it is difficult in many areas to develop large or even adequate ground-water supplies. In general, satisfactory supplies of water are available in most of the rest of the country. Some problems include the relative deficiency of rainfall in the northeast together with the occurrence, in parts of this region, of mineralized water in the crystalline rocks. Also, there is a potential problem of excessive lowering of water levels and interference among wells in the intensively developed area of the city of Sao Paulo.

  2. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    USGS Publications Warehouse

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  3. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  4. Water Resources Data, Florida, Water Year 2003 Volume 2B: South Florida Ground Water

    USGS Publications Warehouse

    Prinos, S.; Irvin, R.; Byrne, M.

    2004-01-01

    Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  5. Calibration of the DRASTIC ground water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, M.G.

    2001-01-01

    Ground water vulnerability maps developed using the DRASTIC method have been produced in many parts of the world. Comparisons of those maps with actual ground water quality data have shown that the DRASTIC method is typically a poor predictor of ground water contamination. This study significantly improved the effectiveness of a modified DRASTIC ground water vulnerability map by calibrating the point rating schemes to actual ground water quality data by using nonparametric statistical techniques and a geographic information system. Calibration was performed by comparing data on nitrite plus nitrate as nitrogen (NO2 + NO3-N) concentrations in ground water to land-use, soils, and depth to first-encountered ground water data. These comparisons showed clear statistical differences between NO2 + NO3-N concentrations and the various categories. Ground water probability point ratings for NO2 + NO3-N contamination were developed from the results of these comparisons, and a probability map was produced. This ground water probability map was then correlated with an independent set of NO2 + NO3-N data to demonstrate its effectiveness in predicting elevated NO2 + NO3-N concentrations in ground water. This correlation demonstrated that the probability map was effective, but a vulnerability map produced with the uncalibrated DRASTIC method in the same area and using the same data layers was not effective. Considerable time and expense have been outlaid to develop ground water vulnerability maps with the DRASTIC method. This study demonstrates a cost-effective method to improve and verify the effectiveness of ground water vulnerability maps.

  6. Geology, ground-water flow, and dissolved-solids concentrations in ground water along hydrogeologic sections through Wisconsin aquifers

    USGS Publications Warehouse

    Kammerer, P.A.

    1998-01-01

    A cooperative project between the U.S. Geological Survey (USGS) and the Wisconsin Department of Natural Resources (DNR) was begun with the objectives of describing water quality and its relation to the hydrology of Wisconsin's principal aquifers and summarizing instances of ground-water contamination and quality problems from information available in DNR files. The first objective was met by a hydrologic investigation done by the USGS, and the second, by preparation of a report by the DNR, for their internal use, that describes the State's water resources and known ground-water quality and contamination problems and makes policy recommendations for ground-water management.The USGS investigation was divided into two phases. The first phase consisted of compiling available water-quality and hydrogeologic data and collecting new data to describe general regional water-quality and hydrogeologic relations within and between Wisconsin aquifers. The second phase began concurrently with the later part of the first phase and consisted of an areal description of water quality and flow in the State's shallow aquifer system (Kammerer, 1995). The overall purpose of this investigation was to provide a regional framework that could serve as a basis for intensive local and site specific ground-water investigations by State and local government agencies.This report presents the results of the first phase of the USGS investigation. Regional hydrogeologic and water-quality relations within and between aquifers are shown along 15 hydrogeologic sections that traverse the State. Maps are used to show surficial geology of bedrock and unconsolidated deposits and horizontal direction of ground-water flow. Interpretations on the maps and hydrogeologic sections are based on data from a variety of sources and provide the basis for the areal appraisal of water quality in the State's shallow aquifer system in the second phase of the investigation.

  7. Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts

    USGS Publications Warehouse

    Bent, G.C.

    2001-01-01

    The effects of forest-management activities (timber cutting and herbicide application) on runoff components (total streamflow, direct runoff, and base flow) and on ground-water recharge per unit area were evaluated for two separate paired drainage basins of Quabbin Reservoir in central Massachusetts. The Cadwell Creek study area, studied from 1962-1973, included an experimental basin (Upper Cadwell Creek) and a control basin (Lower Cadwell Creek). In the experimental basin, herbicide was applied to mixed oaks, northern hardwoods, and understory vegetation in different riparian zones during the summers of 1967 and 1968, and some pine plantations were thinned or clear-cut during the winter of 1967-1968. These forest-management activities decreased the total basal area by about 34%. The decrease in total basal area resulted in an increase in total streamflow, direct runoff (total streamflow minus base flow), and ground-water recharge for six dormant seasons (October-April) and six growing seasons (May-September) during 1968-1973. Base flow increased for three dormant seasons and two growing seasons during 1968-1970 and the dormant seasons of 1971 and 1973. Base flow accounted for 34% and direct runoff accounted for 66% of the 94 mm (15%) increase in total streamflow during water years 1968-1973. Sixty-one percent of this increase in total streamflow occurred in the dormant seasons. The Dickey Brook study area, studied from 1985-1989, included an experimental basin (Dickey Brook) and a control basin (Dickey Brook Tributary). Some pine plantations were thinned or clear-cut in the headwaters of the experimental basin from October 1986 to March 1987 and October to December 1988. These forest-management activities decreased the total basal area by 24% during 1986-1987 and an additional 8% during 1988. The decrease in total basal area resulted in an increase in total streamflow, base flow, and ground-water recharge for only one dormant season and one growing season in 1987

  8. Ground-Water Age and its Water-Management Implications, Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Glass, Roy L.

    2002-01-01

    The Cook Inlet Basin encompasses 39,325 square miles in south-central Alaska. Approximately 350,000 people, more than half of Alaska?s population, reside in the basin, mostly in the Anchorage area. However, rapid growth is occurring in the Matanuska?Susitna and Kenai Peninsula Boroughs to the north and south of Anchorage. Ground-water resources provide about one-third of the water used for domestic, commercial and industrial purposes in the Anchorage metropolitan area and are the sole sources of water for industries and residents outside Anchorage. In 1997, a study of the Cook Inlet Basin was begun as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Samples of ground water were collected from 35 existing wells in unconsolidated glacial and alluvial aquifers during 1999 to determine the regional quality of ground water beneath about 790 mi2 of developed land and to gain a better understanding of the natural and human factors that affect the water quality (Glass, 2001). Of the 35 wells sampled, 31 had water analyzed for atmospherically derived substances to determine the ground water?s travel time from its point of recharge to its point of use or discharge?also known as ground-water age. Ground water moves slowly from its point of recharge to its point of use or discharge. This water starts as rain and melting snow that soak into the ground as recharge. In the Matanuska?Susitna, Anchorage, and Kenai Peninsula areas, ground water generally moves from near the mountain fronts toward Cook Inlet or the major rivers. Much of the water pumped by domestic and public-supply wells may have traveled less than 10 miles, and the trip may have taken as short a time as a few days or as long as several decades. This ground water is vulnerable to contamination from the land surface, and many contaminants in the water would follow the same paths and have similar travel times from recharge areas to points of use as the chemical substances analyzed in

  9. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    USGS Publications Warehouse

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  10. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  11. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  12. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    PubMed

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  13. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  14. Ground-water provinces of southern Rhodesia

    USGS Publications Warehouse

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  15. Where this occurs: Ground Water and Drinking Water

    EPA Pesticide Factsheets

    As ground water works its way through the soil, it can pick up excess nutrients and transport them to the water table. When polluted groundwater reaches drinking water systems it can pose serious public health threats.

  16. Low-Level Volatile Organic Compounds in Active Public Supply Wells as Ground-Water Tracers in the Los Angeles Physiographic Basin, California, 2000

    USGS Publications Warehouse

    Shelton, Jennifer L.; Burow, Karen R.; Belitz, Kenneth; Dubrovsky, Neil M.; Land, Michael; Gronberg, JoAnn

    2001-01-01

    Data were collected to evaluate the use of low-level volatile organic compounds (VOC) to assess the vulnerability of public supply wells in the Los Angeles physiographic basin. Samples of untreated ground water from 178 active public supply wells in the Los Angeles physiographic basin show that VOCs were detected in 61 percent of the ground-water samples; most of these detections were low, with only 29 percent above 1 mg/L (microgram per liter). Thirty-nine of the 86 VOCs analyzed were detected in at least one sample, and 11 VOCs were detected in 7 percent or more of the samples. The six most frequently detected VOCs were trichloromethane (chloroform) (46 percent); trichloroethene (TCE) (28 percent); tetrachloro-ethene (PCE) (19 percent); methyl tert-butyl ether (MTBE) (14 percent); 1,1-dichloroethane (11 percent); and 1,1,1-trichloroethane (TCA) (11 percent). These VOCs were also the most frequently detected VOCs in ground water representative of a wide range of hydrologically conditions in urban areas nationwide. Only two VOCs (TCE and PCE) exceeded state and federal primary maximum contaminant levels (MCL) for drinking water in a total of seven samples. Because samples were collected prior to water treatment, sample concentrations do not represent the concentrations entering the drinking-water system.Ground water containing VOCs may be considered to be a tracer of postindustrial-aged water-water that was recharged after the onset of intense urban development. The overall distribution of VOC detections is related to the hydrological and the engineered recharge facilities in the Coastal Los Angeles Basin and the Coastal Santa Ana Basin that comprise the Los Angeles physiographic basin. Most of the ground-water recharge occurs at engineered recharge facilities in the generally coarse-grained northeastern parts of the study area (forebay areas). Ground-water recharge from the land surface is minimal in the southwestern part of the basins, distal from the recharge

  17. Ground-water conditions in Utah, spring of 1995

    USGS Publications Warehouse

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  18. Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia

    USGS Publications Warehouse

    ,; Kurt, J.; Kozar, Mark D.

    2007-01-01

    contain wastewater from domestic or industrial sources with CFC concentrations greater than modern atmospheric levels. However, based on a lack of detections of the volatile organic compounds analyzed for in most of the water samples collected for this and similar USGS investigations, ground-water resources of West Virginia used for public and private consumption do not appear to be routinely affected by anthropogenic activities despite their young apparent age.

  19. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  20. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  1. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  2. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  3. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  4. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  5. Flow and geochemistry along shallow ground-water flowpaths in an agricultural area in southeastern Wisconsin

    USGS Publications Warehouse

    Saad, D.A.; Thorstenson, D.C.

    1998-01-01

    Ground water recharging at mid- and downgradient wells is oxic and contains dissolved nitrate, whereas the ground water discharging to the stream is anoxic and contains dissolved ammonium. Redox environments were defined at each well on the basis of relative concentrations of various dissolved redox-active species. Chemically permissible flowpaths inferred from the observed sequence of redox environments at well sites are consistent with flowpaths in the ground-water flow model. The transition from nitrate in recharging ground water to ammonium in ground water discharging to the stream suggests the possibility of nitrate reduction along the flowpath. None of the techniques employed in this study, however, were able to prove the occurrence of this reaction.

  6. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    USGS Publications Warehouse

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  7. Water-quality characteristics and ground water quantity of the Fraser River Watershed, Grand County, Colorado, 1998-2001

    USGS Publications Warehouse

    Bauch, Nancy J.; Bails, Jeffrey B.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Grand County Board of County Commissioners, conducted a 4-year study to assess ground- and surface-water-quality conditions and ground-water quantity in the 302-square-mile Fraser River watershed in north-central Colorado. The Fraser River flows north about 28 miles from the headwaters near the Continental Divide, through the towns of Winter Park, Fraser, Tabernash, and Granby, and is one of the major tributaries to the Upper Colorado River. Increasing urban development, as well as the seasonal influx of tourists, is placing more demands on the water resources in the Fraser River watershed. A ground-water sampling network of 11 wells was established to represent different aquifer systems (alluvial, Troublesome Formation, Precambrian granite), land uses (urban, nonurban), and areas with or without individual septic disposal system use. The well network was sampled for ground-water quality on a semiannual basis from August 1998 through September 2001. The sampling included field properties and the collection of water samples for analysis of major ions, trace elements, nutrients, dissolved organic carbon, bacteria, methylene blue active substances, and radon-222. One surface-water site, on the Fraser River just downstream from the town of Tabernash, Colorado, was sampled bimonthly from August 1998 through September 2001 to assess the cumulative effects of natural and human processes on water quality in the upper part of the Fraser River watershed. Surface-water-quality sampling included field properties and the collection of water-quality samples for analysis of major ions, trace elements, nutrients, organic carbon, and bacteria. Ground water was a calcium-bicarbonate type water and is suitable as a drinking-water, domestic, municipal, industrial, and irrigation source. In general, no widespread ground-water-quality problems were indicated. All pH values and concentrations of dissolved solids, chloride, fluoride

  8. Ground-water conditions in Utah, spring of 2005

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2005-01-01

    This is the forty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2004. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources. This report is available online at http://www.waterrights.utah.gov/techinfo/ wwwpub/gw2005.pdf and http://ut.water.usgs.gov/publications/GW2005.pdf.

  9. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  10. Ground-water conditions in Utah, spring of 2007

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  11. Ground-water conditions in Utah, spring of 2006

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Wilberg, D.E.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2006-01-01

    This is the forty-third in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2005. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/techinfo/wwwpub/gw2006.pdf and http://ut.water.usgs. gov/publications/GW2006.pdf.

  12. Ground-water conditions in Utah, spring of 2008

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  13. Ground-water conditions in Utah, spring of 2009

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  14. Predicting ground-water movement in large mine spoil areas in the Appalachian Plateau

    USGS Publications Warehouse

    Wunsch, D.R.; Dinger, J.S.; Graham, C.D.R.

    1999-01-01

    Spoil created by surface mining can accumulate large quantities of ground-water, which can create geotechnical or regulatory problems, as well as flood active mine pits. A current study at a large (4.1 km2), thick, (up to 90 m) spoil body in eastern Kentucky reveals important factors that control the storage and movement of water. Ground-water recharge occurs along the periphery of the spoil body where surface-water drainage is blocked, as well as from infiltration along the spoil-bedrock contact, recharge from adjacent bedrock, and to a minor extent, through macropores at the spoil's surface. Based on an average saturated thickness of 6.4 m for all spoil wells, and assuming an estimated porosity of 20%, approximately 5.2 x 106 m3 of water is stored within the existing 4.1 km2 of reclaimed spoil. A conceptual model of ground-water flow, based on data from monitoring wells, dye-tracing data, discharge from springs and ponds, hydraulic gradients, chemical data, field reconnaissance, and aerial photographs indicate that three distinct but interconnected saturated zones have been established: one in the spoil's interior, and others in the valley fills that surround the main spoil body at lower elevations. Ground-water movement is sluggish in the spoil's interior, but moves quickly through the valley fills. The conceptual model shows that a prediction of ground-water occurrence, movement, and quality can be made for active or abandoned spoil areas if all or some of the following data are available: structural contour of the base of the lowest coal seam being mined, pre-mining topography, documentation of mining methods employed throughout the mine, overburden characteristics, and aerial photographs of mine progression.Spoil created by surface mining can accumulate large quantities of ground-water, which can create geotechnical or regulatory problems, as well as flood active mine pits. A current study at a large (4.1 km2), thick, (up to 90 m) spoil body in eastern

  15. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  16. Ground-water conditions in Utah, spring of 1994

    USGS Publications Warehouse

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  17. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  18. Naturally occurring radionuclides in the ground water of southeastern Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2000-01-01

    Naturally occurring radionuclides in the ground water of southeastern Pennsylvania may pose a health hazard to some residents, especially those drinking water from wells drilled in the Chickies Quartzite. Water from 46 percent of wells sampled in the Chickies Quartzite and 7 percent of wells sampled in other geologic formations exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for total radium. Radon-222 may pose a health problem for homeowners by contributing to indoor air radon-222 levels. The radon-222 activity of water from 89 percent of sampled wells exceeded 300 pCi/L (picocuries per liter), the proposed USEPA MCL, and water from 16 percent of sampled wells exceeded 4,000 pCi/L. Uranium does not appear to be present in elevated concentrations in ground water in southeastern Pennsylvania.

  19. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 258.51 Section 258.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A...

  20. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    USGS Publications Warehouse

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  1. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  2. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  3. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  4. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  5. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  6. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  7. Seasonal changes in ground-water quality and ground-water levels and directions of ground-water movement in southern Elmore County, southwestern Idaho, including Mountain Home Air Force Base, 1990-1991

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Jones, Michael L.

    1992-01-01

    The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.

  8. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Sanitary surveys for ground water...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401 Sanitary surveys for ground water systems. (a) Ground water systems must provide the State, at the State's...

  9. Faulting arrested by control of ground-water withdrawal in Houston, Texas.

    USGS Publications Warehouse

    Holzer, T.; Gabrysch, R.K.; Verbeek, E.R.

    1983-01-01

    More than 86 historically active faults with an aggregate length of 150 miles have been identified within and adjacent to the Houston, Texas, metropolitan area. Although scarps of these faults grow gradually and without causing damaging earthquakes, historical fault offset has cost millions of dollars in damage to houses and other buildings, utilities, and highways that were built on or across the faults. The historical fault activity results from renewed movement along preexisting faults and appears to be caused principally by withdrawal of ground water for municipal, industrial, and agricultural uses in the Houston area. Approximately one-half of the area's water supply is obtained from local ground water. Monitoring by the US Geological Survey of heights of fault scarps indicates that many of the scarps have recently stopped increasing in height. The area where faulting has ceased coincides with the area where ground-water pumping was cut back in the mid-1970s to slow the damage caused by land subsidence along Galveston Bay and the Houston Ship Channel. Thus, it appears that efforts to halt land subsidence in the coastal area have provided the additional benefit of arresting damaging surface faulting. -from Authors

  10. ECONOMIC ANALYSIS FOR THE GROUND WATER RULE ...

    EPA Pesticide Factsheets

    The Ground Water Rule Economic Analysis provides a description of the need for the rule, consideration of regulatory alternatives, baseline analysis including national ground water system profile and an estimate of pathogen and indicator occurrence (Chapter 4), a risk assessment and benefits analysis (Chapter 5), and a cost analysis ( Chapter 6). Chapters 4, 5 and 6, selected appendices and sections of other chapters will be peer reviewed. The objective of the Economic Analysis Document is to support the final Ground Water Rule.

  11. Ground-water sapping processes, Western Desert, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W.; Arvidson, R.E.; Sultan, M.

    1997-01-01

    Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parametersmore » demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. This {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years. 65 refs., 21 figs., 2 tabs.« less

  12. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  13. Relation between ground water and surface water in Brandywine Creek basin, Pennsylvania

    USGS Publications Warehouse

    Olmsted, F.H.; Hely, A.G.

    1962-01-01

    The relation between ground water and surface water was studied in Brandywine Creek basin, an area of 287 square miles in the Piedmont physiographic province in southeastern Pennsylvania. Most of the basin is underlain by crystalline rocks that yield only small to moderate supplies of water to wells, but the creek has an unusually well-sustained base flow. Streamflow records for the Chadds Ford, Pa., gaging station were analyzed; base flow recession curves and hydrographs of base flow were defined for the calendar years 1928-31 and 1952-53. Water budgets calculated for these two periods indicate that about two-thirds of the runoff of Brandywine Creek is base flow--a significantly higher proportion of base flow than in streams draining most other types of consolidated rocks in the region and almost as high as in streams in sandy parts of the Coastal Plain province in New Jersey and Delaware. Ground-water levels in 16 observation wells were compared with the base flow of the creek for 1952-53. The wells are assumed to provide a reasonably good sample of average fluctuations of the water table and its depth below the land surface. Three of the wells having the most suitable records were selected as index wells to use in a more detailed analysis. A direct, linear relation between the monthly average ground-water stage in the index wells and the base flow of the creek in winter months was found. The average ground-water discharge in the basin for 1952-53 was 489 cfs (316 mgd), of which slightly less than one-fourth was estimated to be loss by evapotranspiration. However, the estimated evapotranspiration from ground water, and consequently the estimated total ground-water discharge, may be somewhat high. The average gravity yield (short-term coefficient of storage) of the zone of water-table fluctuation was calculated by two methods. The first method, based on the ratio of change in ground-water storage as calculated from a witner base-flow recession curve is seasonal

  14. Simulation and particle-tracking analysis of ground-water flow near the Savannah River site, Georgia and South Carolina, 2002, and for selected ground-water management scenarios, 2002 and 2020

    USGS Publications Warehouse

    Cherry, Gregory S.

    2006-01-01

    Ground-water flow under 2002 hydrologic conditions was evaluated in an eight-county area in Georgia and South Carolina near the Savannah River Site (SRS), by updating boundary conditions and pumping rates in an existing U.S. Geological Survey (USGS) ground-water model. The original ground-water model, developed to simulate hydrologic conditions during 1987-92, used the quasi-three-dimensional approach by dividing the Floridan, Dublin, and Midville aquifer systems into seven aquifers. The hydrogeologic system was modeled using six active layers (A2-A7) that were separated by confining units with an overlying source-sink layer to simulate the unconfined Upper Three Runs aquifer (layer A1). Potentiometric- surface maps depicting September 2002 for major aquifers were used to update, evaluate, and modify boundary conditions used by the earlier ground-water flow model. The model was updated using the USGS finite-difference code MODFLOW-2000 for mean-annual conditions during 1987-92 and 2002. The specified heads in the source-sink layer A1 were lowered to reflect observed water-level declines during the 1998-2002 drought. These declines resulted in a decrease of 12.1 million gallons per day (Mgal/d) in simulated recharge or vertical inflow to the uppermost confined aquifer (Gordon, layer A2). Although ground-water pumpage in the study area has increased by 32 Mgal/d since 1995, most of this increase (17.5 Mgal/d) was from the unconfined Upper Three Runs aquifer (source-sink layer A1) with the remaining 14.5 Mgal/d assigned to the active layers within the model (A2-A7). The simulated water budget for 2002 shows a decrease from the 1987-92 model from 1,040 Mgal/d to 1,035 Mgal/d. The decreased ground-water inflows and increased ground-water withdrawal rates reduced the simulated ground-water outflow to river cells in the active layers of the model by 43 Mgal/d. The calibration statistics for all layers of the 2002 simulation resulted in a decrease in the root mean square

  15. U.S. Geological Survey Ground-Water Resources Program, 2001

    USGS Publications Warehouse

    Grannemann, Norman G.

    2001-01-01

    Ground water is among the Nation's most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from over use and contamination. Because ground-water systems typically respond slowly to human actions and climate variability, a long-term perspective is needed to manage this valuable resource. The U.S. Geological Survey Ground-Water Resources Program provides regional evaluations, fundamental data, and predictive tools to help assure the sustainability of our Nation's ground-water resources.

  16. Summary appraisals of the Nation's ground-water resources; Caribbean region

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Heisel, James E.

    1980-01-01

    Ground-water resources will continue to be important within the region. In order to meet future needs, it is necessary that hydrologic principles be applied in managing the total water resource. Optimal use of the water resources can be accomplished through conjunctive use of surface and ground waters and through conservation practices. Optimal use may involve artificial recharge, ground-water salvage, saline-ground-water mining, use of seawater, desalination of saline ground water, waste-water reuse, and use of underground space for temporary storage of wastes, which could otherwise contaminate valuable water supplies.

  17. Patterns and rates of ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Modica, Edward

    1992-01-01

    Increased ground-water contamination from human activities on Long Island has prompted studies to define the pattern and rate of ground-water movement. A two-dimensional, fine-mesh, finite-element model consisting of 11,969 nodes and 22,880 elements was constructed to represent ground-water flow along a north-south section through central Long Island. The model represents average hydrologic conditions within a corridor approximately 15 miles wide. The model solves discrete approximations of both the potential and stream functions. The resulting flownet depicts flow paths and defines the vertical distribution of flow within the section. Ground-water flow rates decrease with depth. Sixty-two percent of the water flows no deeper than the upper glacial (water-table) aquifer, 38 percent enters the underlying Magothy aquifer, and only 3.1 percent enters the Lloyd aquifer. The limiting streamlines for flow to the Magothy and Lloyd aquifers indicate that aquifer recharge areas are narrow east-west bands through the center of the island. The recharge area of the Magothy aquifer is only 5.4 miles wide; that of the Lloyd aquifer is less than 0.5 miles. The distribution of ground-water traveltime and a flownet are calculated from model results; both are useful in the investigation of contaminant transport or the chemical evolution of ground water within the flow system. A major discontinuity in traveltime occurs across the streamline which separates the flow subsystems of the two confined aquifers. Water that reaches the Lloyd aquifer attains traveltimes as high as 10,000 years, whereas water that has not penetrated deeper than the Magothy aquifer attains traveltimes of only 2,000 years. The finite-element approach used in this study is particularly suited to ground-water systems that have complex hydrostratigraphy and cross-sectional symmetry.

  18. Effects of land use on ground-water quality in central Florida; preliminary results, US Geological Survey Toxic Waste-Ground Water Contamination Program

    USGS Publications Warehouse

    Rutledge, A.T.

    1987-01-01

    Groundwater is the principal source of drinking water in central Florida. The most important hydrogeologic unit is the Floridan aquifer system, consisting of fractured limestone and dolomite limestone. Activities of man in areas of recharge to the Floridian aquifer system that may be affecting groundwater quality include: (1) the use of drainage wells for stormwater disposal in urban areas, (2) the use of pesticides and fertilizers in citrus groves, and (3) the mining and processing of phosphate ore in mining areas. Preliminary findings about the impacts of these land uses on ground-water quality by comparison with a fourth land use representing the absence of human activity in another area of recharge are presented. Drainage wells convey excess urban stormwater directly to the Upper Floridian aquifer. The volatile organic compounds are the most common contaminants in ground water. Trace elements such as chromium and lead are entering the aquifer but their movement is apparently attenuated by precipitation reactions associated with high pH or by cation-exchange reactions. Among the trace elements and organic chemicals, most ground-water contamination in citrus production areas is caused by pesticides, which include the organic compounds simazine, ametryne, chlordane, DDE , bromacil, aldicarb, EDB, trifluralin, and diazinon, and the trace elements zinc and copper; other contaminants include benzene, toluene, napthalene, and indene compounds. In the phosphate mining area, constituents of concern are arsenic, selenium, and mercury, and secondarily lead, chromium, cadmium, and others. Organic compounds such as fluorene, naphthalene, di-n-butyl phthalate, alkylated benzenes and naphthalenes, and indene compounds also are entering groundwater. (Author 's abstract)

  19. Geology and ground-water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Cline, Denzel R.

    1965-01-01

    The purpose of the ground-water investigation of Dane County, Wis., was to determine the occurrence, movement, quantity, quality, and availability of ground water in the unconsolidated deposits and the underlying bedrock. The relationships between ground water and surface water were studied in general in Dane County and in detail in the Madison metropolitan area. An analysis was made of the hydrologic system of the Yahara River valley and of the effects of ground-water pumpage on that system.

  20. Ground-water situation in Oregon

    USGS Publications Warehouse

    Newcomb, R.C.

    1951-01-01

    The water that occurs beneath the land surface follows definite and well-known rules of hydraulics, the same as water on the surface. However, ground water must be studied by methods, some of which are unique to that type of water occurrence, in order to evaluate the part it plays in the over-all water scheme.Water that falls on the land surface as rain or snow and water that rests upon the surface may in places pass laterally or downward through the pores of the earth materials. There it may take one or more of a variety of paths before again flowing out on the surface or being expelled to the atmosphere by evaporation and by the transpiration of plants. Water so diverted underground is delayed or diverted from its course toward the sea and that digression results in many services of prime importance to mankind. Underground, the water generally exceeds in total quantity the water present on the land surface at any one time.The discussion of ground water can be clarified somewhat by a description of the major parts or phases of the normal path of water underground.

  1. Ground-water quality protection; why it's important to you

    USGS Publications Warehouse

    Webbers, Ank

    1995-01-01

    Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.

  2. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    USGS Publications Warehouse

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  3. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  4. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  5. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  6. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  7. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  8. Ground water in Tooele Valley, Utah

    USGS Publications Warehouse

    Gates, J.S.; Keller, O.A.

    1970-01-01

    This short report was written by condensing parts of a technical report on the ground water in Tooele Valley, which was prepared as part of a cooperative program between the Utah Department of Natural Resources, Division of Water Rights, and the U. S. Geological Survey to study water in Utah. If you would like to read the more detailed technical report, write for a copy of the Utah State Engineer Technical Publication 12, “Reevaluation of the ground-water resources of Tooele Valley, Utah” by J. S. Gates. Copies can be obtained free of charge from the Division of Water Rights, State Capitol, Salt Lake City, Utah 84114.

  9. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  10. Isotopic compositions and sources of nitrate in ground water from western Salt River Valley, Arizona

    USGS Publications Warehouse

    Gellenbeck, D.J.

    1994-01-01

    Isotopic and chemical compositions of ground water from western Salt River Valley near Phoenix, Arizona, were used to develop identification tech- niques for sources of nitrate in ground water. Four possible sources of nitrate were studied: dairies and feedlots, sewage-treatment plants, agricultural activities, and natural source. End members that represent these sources were analyzed for a variety of chemical and isotopic constituents; contents of the end-member and the ground water were compared to identify nitrate from these sources. Nitrate from dairies and feedlots was identified by delta 15N values higher than +9.0 per mil. Nitrate from sewage treatment plants was identified by some chemical constituents and values of delta 15N, delta 34S, delta 7Li, and delta 11B that were lighter than the values determined for ground water not affected by sewage-treatment plants. Nitrate from agricultural activities was identified by delta 15N, 3H, and delta 34S compositions. Natural nitrate derived from decomposing plants and accumulated by biological fixation was identified by delta 15N values that range between +2 and +8 per mil. In addition to identifying nitrate sources, some chemical and isotopic charabteristics of ground water were determined on the basis of data collected during this study. Concentrations of major ions, lithium, and boron and delta 7Li, delta 11B, 3H, delta D, and delta 18O data identify ground water in different geographic regions in the study area. These differences probably are related to different sources of ground water, geochemical processes, or geologic deposits. The Luke salt body and a geothermal anomaly alter the chemical and isotopic content of some ground water.

  11. Ground Water in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.; Gingerich, Stephen B.

    1998-01-01

    A multi-phased study of ground-water resources, including well drilling, aquifer tests, analysis of ground-water discharge, and numerical ground-water modeling, indicates that the rocks of the southern Lihue Basin, Kauai, have permeabilities that are much lower than in most other areas of ground-water development in the Hawaiian islands. The regional hydraulic conductivity of the Koloa Volcanics, which dominates fresh ground-water flow in the basin, is about 0.275 foot per day. The Waimea Canyon Basalt which surrounds the basin and underlies the Koloa Volcanics within the basin is intruded by dikes that reduce the bulk hydraulic conductivity of the rocks to about 1.11 feet per day. The low permeabilities result in steeper head gradients compared with other areas in the Hawaiian islands, and a higher proportion of ground-water discharging to streams than to the ocean. Water levels rise from near sea level at the coast to several hundreds of feet above sea level at the center of the basin a few miles inland. The high inland water levels are part of a completely saturated ground-water system. Because of the low regional hydraulic conductivity and high influx of water from recharge in the southern Lihue Basin, the rocks become saturated nearly to the surface and a variably saturated/unsaturated (perched) condition is not likely to exist. Streams incising the upper part of the aquifer drain ground water and keep the water levels just below the surface in most places. Streams thus play an important role in shaping the water table in the southern Lihue Basin. At least 62 percent of the ground water discharging from the aquifer in the southern Lihue Basin seeps to streams; the remainder seeps directly to the ocean or is withdrawn by wells.

  12. Copepod communities from surface and ground waters in the everglades, south Florida

    USGS Publications Warehouse

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  13. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  14. Analytic game—theoretic approach to ground-water extraction

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  15. The role of ground water in water-supply emergency planning

    NASA Astrophysics Data System (ADS)

    Reichard, E. G.; Li, Z.; Hermans, C.

    2008-12-01

    Catastrophic events, such as earthquakes or floods, can result in water-supply disruptions. Such disruptions can cause large economic losses and pose threats to public health. Water managers seek to develop cost- effective strategies for reducing these risks and ensuring water security. In many areas, ground water can play an important role in such water-supply emergency planning. We present a probabilistic framework for estimating the hydraulic impacts and associated costs of using ground water as a backup supply in the event of a disruption in imported-water deliveries. We also estimate the benefits of ground-water management strategies, such as artificial recharge, in terms of reduced costs of responding to water-supply emergencies. The magnitude of these benefits will depend on the expected severity and duration of the imported-water disruption, the functioning of the hydrogeologic system, and economic parameters. We apply the framework to address water-supply emergency planning in the Los Angeles area. A simulation model is used to generate response functions, which relate emergency ground-water pumpage to potential adverse effects, such as increased pumping lifts, subsidence, and seawater intrusion. These response functions are incorporated into a Monte Carlo analysis, along with cost coefficients and information on the probable severity of the disruption. Disruption severity is represented by a probability distribution, which can be elicited from water managers. In the example, the primary emergency-related benefits of artificial recharge are reductions in potential subsidence costs. The framework could be extended to consider additional engineering factors (e.g., well capacities and integrity of local distribution systems), institutional arrangements, and regulatory requirements.

  16. Hydrogeology and water quality in the Graces Quarters area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, Frederick J.; Blomquist, Joel D.

    1995-01-01

    Graces Quarters was used for open-air testing of chemical-warfare agents from the late 1940's until 1971. Testing and disposal activities have resulted in the contamination of ground water and surface water. The hydrogeology and water quality were examined at three test areas, four disposal sites, a bunker, and a service area on Graces Quarters. Methods of investigation included surface and borehole geophysics, water-quality sampling, water- level measurement, and hydrologic testing. The hydrogeologic framework is complex and consists of a discontinuous surficial aquifer, one or more upper confining units, and a confined aquifer system. Directions of ground-water flow vary spatially and temporally, and results of site investigations show that ground-water flow is controlled by the geology of the area. The ground water and surface water at Graces Quarters generally are unmineralized; the ground water is mildly acidic (median pH is 5.38) and poorly buffered. Inorganic constituents in excess of certain Federal drinking-water regulations and ambient water-quality criteria were detected at some sites, but they probably were present naturally. Volatile and semivolatile organic com- pounds were detected in the ground water and surface water at seven of the nine sites that were investi- gated. Concentrations of organic compounds at two of the nine sites exceeded Federal drinking-water regulations. Volatile compounds in concentrations as high as 6,000 m/L (micrograms per liter) were detected in the ground water at the site known as the primary test area. Concentrations of volatile compounds detected in the other areas ranged from 0.57 to 17 m/L.

  17. Hydrology of the Sevier-Sigurd ground-water basin and other ground-water basins, central Sevier Valley, Utah.

    USGS Publications Warehouse

    Lambert, P.M.; Mason, J.L.; Puchta, R.W

    1995-01-01

    The hydrologic system in the central Sevier Valley, and more specifically the Sevier-Sigurd basin, is a complex system in which surface- and ground-water systems are interrelated. Seepage from an extensive irrigation system is the primary source of recharge to the basin-fill aquifer in the Sevier-Sigurd basin.Water-quality data indicate that inflow from streams and subsurface inflow that intersect evaporite deposits in the Arapien Shale does not adversely affect ground-water quality in the Sevier-Sigurd basin. Stable-isotope data indicate that large sulfate concentrations in water from wells are from the dissolution of gypsum within the basin fill rather than inflow from the Arapien Shale.A ground-water-flow model of the basin-fill aquifer in the Sevier-Sigurd basin was calibrated to steady-state conditions and transient conditions using yearly water-level changes from 1957-88 and monthly water-level changes from 1958-59. Predictive simulations were made to test the effects of reduced recharge from irrigation and increased well discharge. To simulate the effects of conversion from flood to sprinkler irrigation, recharge from irrigated fields was reduced by 50 percent. After twenty years, this reduction resulted in water-level declines of 1 to 8 feet in most of the basin, and a reduction in ground-water discharge to the Sevier River of 4,800 acre-ft/yr. Water-level declines of as much as 12 feet and a reduction in recharge to the Sevier River of 4,800 acre-ft/yr were the result of increasing well discharge near Richfield and Monroe by 25,000 acre-ft/yr. 

  18. Quality of ground water around Vadnais Lake and in Lambert Creek watershed, and interaction of ground water with Vadnais Lake, Ramsey County, Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1994-01-01

    The results of the seepage analysis and ground-water quality evaluation indicate that the effect of the quality of the surrounding ground water on the quality of Vadnais Lake probably was small. Ground water that discharged to the lake generally had lower concentrations of calcium, magnesium, bicarbonate, and total dissolved solids than the lake. The mixing of ground water with the lake slightly diluted the lake with respect to these constituents.

  19. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    USGS Publications Warehouse

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  20. Worldwide occurrences of arsenic in ground water

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2002-01-01

    Numerous aquifers worldwide carry soluble arsenic at concentrations greater than the World Health Organization--and U.S. Environmental Protection Agency--recommended drinking water standard of 10 mg per liter. Sources include both natural (black shales, young sediments with low flushing rates, gold mineralization, and geothermal environments) and anthropogenic (mining activities, livestock feed additives, pesticides, and arsenic trioxide wastes and stockpiles). Increased solubility and mobility of arsenic is promoted by high pH (>8.5), competing oxyanions, and reducing conditions. In this Policy Forum, Nordstrom argues that human health risks from arsenic in ground water can be minimized by incorporating hydrogeochemical knowledge into water management decisions and by more careful monitoring for arsenic in geologically high-risk areas.

  1. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  2. Pesticides in ground water: distribution, trends, and governing factors

    USGS Publications Warehouse

    Barbash, Jack; Resek, Elizabeth A.

    1997-01-01

    A comprehensive review of published information on the distribution and behavior of pesticides and their transformation products in ground water indicates that pesticides from every chemical class have been detected in ground waters of the United States. Many of these compounds are commonly present at low concentrations in ground water beneath agricultural land. Little information is available on their occurrence beneath non-agricultural land, although the intensity of their use in such areas (on lawns, golf courses, rights of way, timberlands, etc.) is often comparable to, or greater than agricultural use. Information on pesticides in ground water is not sufficient to provide either a statistically representative view of pesticide occurrence in ground water across the United States, or an indication of long-term trends or changes in the severity or extent of this contamination over the past three decades. This is largely due to wide variations in analytical detection limits, well selection procedures, and other design features among studies conducted in different areas or at different times. Past approaches have not been well suited for distinguishing "point source" from "nonpoint source" pesticide contamination. Among the variety of natural and anthropogenic factors examined, those that appear to be most strongly associated with the intensity of pesticide contamination of ground water are the depth, construction and age of the sampled wells, the amount of recharge (by precipitation or irrigation), and the depth of tillage. Approaches commonly employed for predicting pesticide distributions in the subsurface--including computer simulations, indicator solutes (e.g., nitrate or tritium), and ground-water vulnerability assessments--generally provide unreliable predictions of pesticide occurrence in ground water. Such difficulties may arise largely from a general failure to account for the preferential transport of pesticides in the subsurface. Significant

  3. In-Situ Bioremediation of Contaminated Ground Water

    EPA Pesticide Factsheets

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing ...

  4. Ground water in the Piedmont upland of central Maryland

    USGS Publications Warehouse

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  5. Tritium as an indicator of ground-water age in Central Wisconsin

    USGS Publications Warehouse

    Bradbury, Kenneth R.

    1991-01-01

    In regions where ground water is generally younger than about 30 years, developing the tritium input history of an area for comparison with the current tritium content of ground water allows quantitative estimates of minimum ground-water age. The tritium input history for central Wisconsin has been constructed using precipitation tritium measured at Madison, Wisconsin and elsewhere. Weighted tritium inputs to ground water reached a peak of over 2,000 TU in 1964, and have declined since that time to about 20-30 TU at present. In the Buena Vista basin in central Wisconsin, most ground-water samples contained elevated levels of tritium, and estimated minimum ground-water ages in the basin ranged from less than one year to over 33 years. Ground water in mapped recharge areas was generally younger than ground water in discharge areas, and estimated ground-water ages were consistent with flow system interpretations based on other data. Estimated minimum ground-water ages increased with depth in areas of downward ground-water movement. However, water recharging through thick moraine sediments was older than water in other recharge areas, reflecting slower infiltration through the sandy till of the moraine.

  6. Ground-water resources data for Baldwin County, Alabama

    USGS Publications Warehouse

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  7. Identification of Naegleria fowleri in warm ground water aquifers.

    PubMed

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  8. Ground Water Technical Support Center (GWTSC) Annual ...

    EPA Pesticide Factsheets

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo

  9. Developing a state water plan: Ground-water conditions in Utah, spring of 1978

    USGS Publications Warehouse

    Gates, Joseph S.; Jibson, W.N.; Herbert, L.R.; Mower, R.W.; Razem, A.C.; Cordova, R.M.; Jensen, V.L.; ReMillard, M.D.; Emett, D.C.; Sumison, C.T.; Carroll, P.A.; DeGrand, M.J.; Sandberg, G.W.

    1978-01-01

    This report is the fifteenth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, prepared cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others (see References, p. 13), contains information on well construction, ground-water withdrawals, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-table configuration are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water withdrawal in the State for the calendar year 1977. Water-level fluctuations, however, are described for the period spring 1977 to spring 1978. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  10. Developing a state water plan: Ground-water conditions in Utah, spring of 1979

    USGS Publications Warehouse

    Price, Don; Jibson, W.N.; Contratto, P. Kay; Mower, R.W.; Steiger, Judy I.; Jensen, V.L.; ReMillard, M.D.; Emett, D.C.; Sumison, C.T.; Carroll, P.A.; Neff, L.J.; Sandberg, G.W.; Herbert, L.R.

    1979-01-01

    This report is the sixteenth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, prepared cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawals, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-table configuration are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water withdrawal in the State for the calendar year 1978. Water-level fluctuations, however, are described for the period spring 1978 to spring 1979. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  11. A geographic data model for representing ground water systems.

    PubMed

    Strassberg, Gil; Maidment, David R; Jones, Norm L

    2007-01-01

    The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.

  12. Ground-water data for Georgia, 1983

    USGS Publications Warehouse

    Clarke, J.S.; Peck, M.F.; Longsworth, S.A.; McFadden, K.W.

    1984-01-01

    Continuous water-level records from 134 wells and more than 700 water-level measurements made in Georgia during 1983 provide the basic data for this report. Selected wells illustrate the effects that changes in recharge and pumping have had on the various ground-water resources in the State. Daily mean water levels are shown in hydrographs for 1983. Monthly means are shown for the 10-year period 1974-83. Mean annual water levels ranged from 9 feet higher to 6 feet lower in 1983 than in 1982. Water-quality samples are collected periodically throughout Georgia and analyzed as part of areal and regional ground-water studies. Along the coast, chloride concentrations in the upper and lower water-bearing zones of the Floridan aquifer system generally remained steady in the Brunswick and Hilton Head Island areas. (USGS)

  13. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  14. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    , selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

  15. Ground-Water Conditions and Studies in the Albany Area of Dougherty County, Georgia, 2007

    USGS Publications Warehouse

    Gordon, Debbie W.

    2008-01-01

    The U.S. Geological Survey (USGS) has been working with the Albany Water, Gas, and Light Commission to monitor ground-water quality and availability since 1977. This report presents an overview of ground-water conditions and studies in the Albany area of Dougherty County, Georgia, during 2007. Historical data are also presented for comparison with 2007 data. Ongoing monitoring activities include continuous water-level recording in 24 wells and monthly water-level measurements in 5 wells. During 2007, water levels in 21 of the continuous-recording wells were below normal, corresponding to lower than average rainfall. Ground-water samples collected from the Upper Floridan aquifer indicate that nitrate levels have decreased or remained about the same since 2006. Water samples were collected from the Flint River and wells at the Albany wellfield, and data were plotted on a trilinear diagram to show the percent composition of selected major cations and anions. Ground-water constituents (major cations and anions) of the Upper Floridan aquifer at the Albany wellfield are distinctly different from those in the water of the Flint River. To improve the understanding of the ground-water flow system and nitrate movement in the Upper Floridan aquifer, the USGS is developing a ground-water flow model in the southwestern Albany area of Georgia. The model is being calibrated to simulate periods of dry (October 1999) and relatively wet (March 2001) hydrologic conditions. Preliminary water-level simulations indicate a generally good fit to measured water levels.

  16. Isotope Geochemistry and Chronology of Offshore Ground Water Beneath Indian River Bay, Delaware

    USGS Publications Warehouse

    Böhlke, John Karl; Krantz, David E.

    2003-01-01

    detected by geophysical surveys beneath Indian River Bay represent lateral continuations of the active surficial nitrate-contaminated freshwater flow systems originating on land, but they do not indicate directly the magnitude of fresh ground-water discharge or nutrient exchange with the estuary. There is evidence that some of the terrestrial ground-water nitrate is reduced before discharging directly beneath the estuary. Local estuarine sediment-derived ammonium in saline pore water may be a substantial benthic source of nitrogen in offshore areas of the estuary.

  17. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    USGS Publications Warehouse

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  18. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    USGS Publications Warehouse

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  19. Geochemistry and the understanding of ground-water systems

    USGS Publications Warehouse

    Glynn, Pierre D.; Plummer, Niel

    2005-01-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems.

  20. Sewage in ground water in the Florida Keys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinn, E.A.

    1995-12-31

    More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels weremore » beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.« less

  1. Estuarine water-quality and sediment data, and surface-water and ground-water-quality data, Naval Submarine Base Kings Bay, Camden County, Georgia, January 1999

    USGS Publications Warehouse

    Leeth, David C.; Holloway, Owen G.

    2000-01-01

    In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).

  2. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    NASA Astrophysics Data System (ADS)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  3. Reagent removal of manganese from ground water

    NASA Astrophysics Data System (ADS)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  4. Compilation of regional ground water monitoring data to investigate 60 years of ground water dynamics in New England

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Weider, K. M.

    2010-12-01

    Theory suggests that ground water systems at shallow depths are sensitive to climate system dynamics but respond at differing rates due to primarily hydrogeologic characteristics of the aquifer. These rates are presumably to a first order controlled by the transmissivity and hydrogeologic settings of aquifer systems. Regional scale modeling and understanding of the impact of this behavior is complicated by the fact that aquifer systems in glaciated regions of the North American continent often possess high degrees of heterogeneity as well as disparate hydraulic connections between aquifer systems. In order to investigate these relationships we present the results of a regional compilation of groundwater hydraulic head data across the New England states together with corresponding atmospheric (precipitation and temperature) and streamflow data for a 60 year period (1950-2010). Ground water trends are calculated as normalized anomalies, and analyzed with respect to regional compiled precipitation, temperature, and streamflow. Anomalies in ground water levels are analyzed together with hydrogeologic variables such as aquifer thickness, topographic setting, and distance from coast. The time-series display decadal patterns with ground water levels being highly variable and lagging that of precipitation and streamflow pointing to site specific and non-linear response to changes in climate. Sites with deeper water tables respond slower and with larger anomalies compared to shallow water table sites. Tills consistently respond quicker and have larger anomalies compared to outwash and stratified glacial deposits. The data set suggests that while regional patterns in ground water table response are internally consistent, the magnitude and timing of the response to wet or dry periods is extremely sensitive to hydrogeologic characteristics of the host aquifer.

  5. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  6. Evaluation of Ground Water Near Sidney, Western Nebraska, 2004-05

    USGS Publications Warehouse

    Steele, G.V.; Sibray, S.S.; Quandt, K.A.

    2007-01-01

    During times of drought, ground water in the Lodgepole Creek area around Sidney, western Nebraska, may be insufficient to yield adequate supplies to private and municipal wells. Alternate sources of water exist in the Cheyenne Tablelands north of the city, but these sources are limited in extent. In 2003, the U.S. Geological Survey and the South Platte Natural Resources District began a cooperative study to evaluate the ground water near Sidney. The 122-square-mile study area lies in the south-central part of Cheyenne County, with Lodgepole Creek and Sidney Draw occupying the southern and western parts of the study area and the Cheyenne Tablelands occupying most of the northern part of the study area. Twenty-nine monitoring wells were installed and then sampled in 2004 and 2005 for physical characteristics, nutrients, major ions, and stable isotopes. Some of the 29 sites also were sampled for ground-water age dating. Ground water is limited in extent in the tableland areas. Spring 2005 depths to ground water in the tableland areas ranged from 95 to 188 feet. Ground-water flow in the tableland areas primarily is northeasterly. South of a ground-water divide, ground-water flows southeasterly toward Lodgepole Creek Valley. Water samples from monitoring wells in the Ogallala Group were predominantly a calcium bicarbonate type, and those from monitoring wells in the Brule Formation were a sodium bicarbonate type. Water samples from monitoring wells open to the Brule sand were primarily a calcium bicarbonate type at shallow depths and a sodium bicarbonate type at deeper depths. Ground water in Lodgepole Creek Valley had a strong sodium signature, which likely results from most of the wells being open to the Brule. Concentrations of sodium and nitrate in ground-water samples from the Ogallala were significantly different than in water samples from the Brule and Brule sand. In addition, significant differences were seen in concentrations of calcium between water samples

  7. Synopsis of ground-water and surface-water resources of North Dakota

    USGS Publications Warehouse

    Winter, T.C.; Benson, R.D.; Engberg, R.A.; Wiche, G.J.; Emerson, D.G.; Crosby, O.A.; Miller, J.E.

    1984-01-01

    This report describes the surface- and ground-water resources of North Dakota and the limitations of our understanding of these resources. Ground water and surface water are actually one resource, because they are often hydraulically interconnected. They are discussed separately for convenience. In general, the surface-water resources of the mainstem of the Missouri river are abundant and suitable for most uses. Other rivers may be important locally as water-supply sources, but the quantities of flow are small, quite variable in time, and generally of an unsuitable quality for most uses. Streamflow characteristics of North Dakota reflect its arid to semiarid climate (annual precipitation varies from 13 to 20 inches from west to east across the State), cold winters (usually including a significant snowpack available for spring snowmelt runoff), and the seasonal distribution of annual precipitation (almost 50 percent falls from Nky to July).Significant volumes of shallow ground water, of variable quality are found in the glacial-drift aquifers in parts of central, northern, and eastern North Dakota. Existing information provides only a limited capability to assess the long-term reliability of these scattered aquifers. There are significant indications, however, of water-quality problems related to sustained production of wells if long-term utilization of these aquifers is planned. A summary of the general suitability for use of surface water and ground water is given in Table E1.

  8. ERTS imagery for ground-water investigations

    USGS Publications Warehouse

    Moore, Gerald K.; Deutsch, Morris

    1975-01-01

    ERTS imagery offers the first opportunity to apply moderately high-resolution satellite data to the nationwide study of water resources. This imagery is both a tool and a form of basic data. Like other tools and basic data, it should be considered for use in ground-water investigations. The main advantage of its use will be to reduce the need for field work. In addition, however, broad regional features may be seen easily on ERTS imagery, whereas they would be difficult or impossible to see on the ground or on low-altitude aerial photographs. Some present and potential uses of ERTS imagery are to locate new aquifers, to study aquifer recharge and discharge, to estimate ground-water pumpage for irrigation, to predict the location and type of aquifer management problems, and to locate and monitor strip mines which commonly are sources for acid mine drainage. In many cases, boundaries which are gradational on the ground appear to be sharp on ERTS imagery. Initial results indicate that the accuracy of maps produced from ERTS imagery is completely adequate for some purposes.

  9. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    USGS Publications Warehouse

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  10. Ground-water resources of Coke County, Texas

    USGS Publications Warehouse

    Wilson, Clyde A.

    1973-01-01

    Coke County, located in semiarid west-central Texas, where large ranches, small farms, and oil production are the main bases of the economy, has a small supply of ground and surface water. Of the approximately 1,900 acre-feet of fresh to moderately saline ground water used in 1968, industry used 880 acre-feet, irrigation used 210 acre-feet, and domestic supply and livestock used 820 acre-feet. All of the water for municipal supply and some of the water for industry is obtained from surface-water reservoirs.

  11. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sufficient to yield ground-water samples that are: (i) Representative of background ground-water quality in... not required provided that provisions for sampling upgradient and downgradient water quality will... perforated, and packed with gravel or sand where necessary, to enable sample collection at depths where...

  12. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  13. 40 CFR 264.97 - General ground-water monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection of ground-water samples. The annular space (i.e., the space between the bore hole and well casing... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General ground-water monitoring... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements...

  14. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to

  15. Ground-water and water-chemistry data for the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Caldwell, Rodney R.; Truini, Margot

    1997-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the upper Deschutes Basin, Oregon. Data in this report include tabulated information and a location map for more than 1,500 field-located water wells, hydrographs showing water-level fluctuations over various time periods for 102 of the wells, and water-chemistry analyses from 26 wells, 7 springs, and 5 surface-water sites.

  16. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  17. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  18. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2004-01-01

    Flow-path and time-of-travel results for the Mojave River ground-water basin, southern California, calculated using the ground-water flow model MODFLOW and particle-tracking model MODPATH were similar to flow path and time-of-travel interpretations derived from delta-deuterium and carbon-14 data. Model and isotopic data both show short flow paths and young ground-water ages throughout the floodplain aquifer along most the Mojave River. Longer flow paths and older ground-water ages as great as 10,000 years before present were measured and simulated in the floodplain aquifer near the Mojave Valley. Model and isotopic data also show movement of water between the floodplain and regional aquifer and subsequent discharge of water from the river to dry lakes in some areas. It was not possible to simulate the isotopic composition of ground-water in the regional aquifer away from the front of the San Gabriel and San Bernardino Mountains - because recharge in these areas does not occur under the present-day climatic conditions used for calibration of the model.

  19. Ground-water quality along the Mojave River near Barstow, California, 1974-79

    USGS Publications Warehouse

    Eccles, Lawrence A.

    1981-01-01

    The quality of ground water in the alluvium along the usually dry Mojave River near Barstow, Calif., has been monitored since 1974. Degradation has occurred as a result of wastewater discharge and irrigation return. Characteristics of the degraded ground water include concentrations of dissolved solids exceeding 1,000 milligrams per liter, odor threshold numbers exceeding 5, dissolved organic carbon exceeding 2.0 milligrams per liter, chloride exceeding 250 milligrams per liter, phenols exceeding 1 microgram per liter, and methylene blue active substances exceeding 0.20 milligram per liter. Large flows in the river during the winters of 1977-78 and 1978-79 recharged the aquifer with water from storm runoff. The ground-water-quality monitoring data showed that few changes in the concentration and distribution of chemical constituents occurred between 1974 and 1977, but between 1977 and 1979 there were overall decreases in most constituents and in odor. The monitoring data also showed that between 1977 and 1979 the degraded ground water spread and moved downgradient, whereas prior to 1977 it had been generally confined to an area between Barstow and the U.S. Marine Corps Supply Center. (USGS)

  20. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  1. Dynamic factor analysis for estimating ground water arsenic trends.

    PubMed

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  2. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Sanitary surveys for ground water systems. 141.401 Section 141.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401 Sanitary surveys for ground water systems. (a)...

  3. Methods of collecting and interpreting ground-water data

    USGS Publications Warehouse

    Bentall, Ray

    1963-01-01

    Because ground water is hidden from view, ancient man could only theorize as to its sources of replenishment and its behavior. His theories held sway until the latter part of the 17th century, which marked the first experimental work to determine the source and movement of ground water. Thus founded, the science of ground-water hydrology grew slowly and not until the 19th century is there substantial evidence of conclusions having been based on observational data. The 20th century has witnessed tremendous advances in the science in the methods of field investigation and interpretation of collected data, in the methods of determining the hydrologic characteristics of water-bearing material, and in the methods of inventorying ground-water supplies. Now, as is true of many other disciplines, the science of ground-water hydrology is characterized by frequent advancement of new ideas and techniques, refinement of old techniques, and an increasing wealth of data awaiting interpretation.So that its widely scattered staff of professional hydrologists could keep abreast of new ideas and advances in the techniques of groundwater investigation, it has been the practice in the U.S. Geological Survey to distribute such information for immediate internal use. As the methods become better established and developed, they are described in formal publications. Six papers pertaining to widely different phases of ground-water investigation comprise this particular contribution. For the sake of clarity and conformity, the original papers have been revised and edited by the compiler.

  4. Water Resources Data, Florida, Water Year 2003, Volume 1B: Northeast Florida Ground Water

    USGS Publications Warehouse

    George, H.G.; Nazarian, A.P.; Dickerson, S.M.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  5. Sampling colloids and colloid-associated contaminants in ground water

    USGS Publications Warehouse

    Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.

    1993-01-01

    It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in

  6. Science to Help Understand and Manage Important Ground-Water Resources

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    Throughout California, as pressure on water resources continues to grow, water-supply agencies are looking to the state?s biggest ?reservoir? ? its ground-water basins ? for supply and storage. To better utilize that resource, the Sweetwater Authority and other local partners, including the city of San Diego and Otay Water Districts, are working with the U.S. Geological Survey (USGS) to develop the first comprehensive study of the coastal ground-water resources of southern San Diego County. USGS research is providing the integrated geologic and hydrologic knowledge necessary to help effectively utilize this resource on a coordinated, regional basis. USGS scientists are building a real-time well-monitoring network and gathering information about how the aquifers respond to different pumping and recharge-management strategies. Real-time ground-water levels are recorded every hour and are viewable on a project web site (http://ca.water.usgs.gov/sandiego/index.html). Data from the wells are helping to define the geology and hydrogeology of the area, define ground-water quality, and assess ground-water levels. The wells also are strategi-cally placed and designed to be usable by the local agencies for decades to come to help manage surface-water and ground-water operations. Additionally, the knowledge gained from the USGS study will help local, state, and federal agencies; water purveyors; and USGS scientists to understand the effects of urbanization on the local surface-water, ground-water, and biological resources, and to better critique ideas and opportuni-ties for additional ground-water development in the San Diego area.

  7. Surface-water/ground-water relations in the Lemhi River Basin, east-central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    1998-01-01

    This report summarizes work carried out in cooperation with the Bureau of Reclamation to provide hydrologic information to help Federal, State, and local agencies meet the goals of the Lemhi River Model Watershed Project. The primary goal of the project is to maintain, enhance, and restore anadromous and resident fish habitat in the Lemhi River, while maintaining a balance between resource protection and established water uses. The main objectives of the study were to carry out seepage measurements to determine seasonal distributed gains and losses in the Lemhi River and to estimate annual ground-water underflow from the basin to the Salmon River. In 1997, seepage measurements were made during and after the irrigation season along a 60-mile reach of the Lemhi River between Leadore and Salmon. Except for one 4-mile reach that lost 1.3 cubic feet per second per mile, the river gained from ground water in early August when ground-water levels were high. Highest flows in the Lemhi River in early August were about 400 cubic feet per second. In October, when ground-water levels were low, river losses to ground water were about 1 to 16 cubic feet per second per mile. In October, highest flows in the Lemhi River were about 500 cubic feet per second, near the river's mouth. Annual ground-water underflow from the Lemhi River Basin to the Salmon River was estimated by using a simplified water budget and by using Darcy's equation. The water-budget method contained large uncertainties associated with estimating precipitation and evapotranspiration. Results of both methods indicate that the quantity of ground water leaving the basin as underflow is small, probably less than 2 percent of the basin's total annual water yield.

  8. Effects of storm-water runoff on local ground-water quality, Clarksville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.

    1990-01-01

    range of drainage areas used in the development of the models, or to the below-normal amounts of rainfall during the period of sampling for this investigation. Loads& in storm-water runoff for 22 constituents were extrapolated from sampled storms to total loads for the period February to October 1988. Calculated loads for trace metals for the period ranged from 0.030pound.s for cadmium to 12pound.s for strontium. Loads of the primary nutrients ranged from 0.97pounds for nitrite as nitrogen to 34pounds of organic nitrogen. Storm-water quality at the drainage-well and Mobley Spring sites was compared to background water quality of the local aquifer; as characterized by dry-weather samples from three springs and two observation wells in the Clarksville area. Concentrations of total-recoverable cadmium, chromium, copper, lead, and nickel were higher in many stormwater samples from both the drainage-well and Mobley Spring sites than in samples from any other site. In addition, concentrations of total organic carbon, methylene blue active substances, and total-recoverable oil and grease were generally higher in storm-water samples from the drainage-well site than in any ground-water sample. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total recoverable iron, manganese, and methylene blue active substances in storm samples from the drainage-well site exceeded the maximum contaminant levels listed in Tennessee?s drinking-water standards (1988) by as much as 2,500 and 5,500 colonies per 100 milliliters, and 2.7, 0.29, and 0.05 milligrams per liter, respectively. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total-recoverable iron, manganese, and lead in storm samples from Mobley Spring exceeded the maximum contaminant levels by as much as 500 and 4,500 colonies per 100 milliliters, and 18.7,0.65, and 0.02 milligrams per liter, respectively. For iron, manganese, and bacteria, these undesirable

  9. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  10. Ground water and small research basins: an historical perspective

    Treesearch

    Elon S. Verry

    2003-01-01

    Scientists have been studying hydrological processes within a watershed context for hundreds of years. Throughout much of that history, little attention was paid to the significance of ground water; in nearly all early studies, ground water was never considered. In many recent studies, ground water fluxes are assumed to be insignificantly small. The following is a...

  11. Ground-water management under the appropriation doctrine. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, D.; Bruhl, E.J.

    The purpose of the research is to better understand the characteristics of ground-water management under the prior-appropriation doctrine in the western United States. The general objective is to summarize the legal and administrative controls on ground-water use in eight western states and to compare the impacts of these controls on ground water systems.

  12. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    USGS Publications Warehouse

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  13. Ground-water flow patterns and water budget of a bottomland forested wetland, Black Swamp, eastern Arkansas

    USGS Publications Warehouse

    Gonthier, G.J.; Kleiss, B.A.

    1996-01-01

    The U.S. Geological Survey, working in cooperation with the U.S. Army Corps of Engineers, Waterways Experiment Station, collected surface-water and ground-water data from 119 wells and 13 staff gages from September 1989 to September 1992 to describe ground-water flow patterns and water budget in the Black Swamp, a bottomland forested wetland in eastern Arkansas. The study area was between two streamflow gaging stations located about 30.5 river miles apart on the Cache River. Ground-water flow was from northwest to southeast with some diversion toward the Cache River. Hydraulic connection between the surface water and the alluvial aquifer is indicated by nearly equal changes in surface-water and ground-water levels near the Cache River. Diurnal fluctuations of hydraulic head ranged from more than 0 to 0.38 feet and were caused by evapotranspiration. Changes in hydraulic head of the alluvial aquifer beneath the wetland lagged behind stage fluctuations and created the potential for changes in ground-water movement. Differences between surface-water levels in the wetland and stage of the Cache River created a frequently occurring local ground-water flow condition in which surface water in the wetland seeped into the upper part of the alluvial aquifer and then seeped into the Cache River. When the Cache River flooded the wetland, ground water consistently seeped to the surface during falling surface-water stage and surface water seeped into the ground during rising surface-water stage. Ground-water flow was a minor component of the water budget, accounting for less than 1 percent of both inflow and outflow. Surface-water drainage from the study area through diversion canals was not accounted for in the water budget and may be the reason for a surplus of water in the budget. Even though ground-water flow volume is small compared to other water budget components, ground-water seepage to the wetland surface may still be vital to some wetland functions.

  14. Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1998-01-01

    Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.

  15. Active microwave water equivalence

    NASA Technical Reports Server (NTRS)

    Boyne, H. S.; Ellerbruch, D. A.

    1980-01-01

    Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.

  16. The origin of high-nitrate ground waters in the Australian arid zone

    NASA Astrophysics Data System (ADS)

    Barnes, C. J.; Jacobson, G.; Smith, G. D.

    1992-08-01

    Nitrate concentrations beyond the drinking-water limit of 10 mg1 -1 NO 3-N, are common in Australian arid-zone ground waters and are often associated with otherwise potable waters. In some aquifers nitrate-N concentrations of up to 80 mg1 -1 have been found, and this is a severe constraint on water supply development for small settlements. Water-bore data indicate a correlation of high-nitrate ground waters with shallow unconfined aquifers. Aguifer hydrochemistry indicats that these ground waters were emplaced by episodic Holocene recharge events in an otherwise arid climate regime. Nitrate has been flushed through the unsaturated zone which apparently lacks denitrification activity. The nitrate originates by near-surface biological fixation and contributing organisms include cyanobacteria in soil crusts and bacteria in termite mounds with the highest soil nitrate concentrations found in the outer skin of termite mounds. Bacteria associated with the termites appear to fix nitrogen, which eventually appears in an inorganic form, principally as ammonia. Nitrate is produced by bacterial oxidation of the ammonia, and is leached to the outside of the termite mound by capillary action. Diffuse recharge from extreme rainfall events then flushes this nitrate to the water table.

  17. Ground-water resources of the Clifton Park area, Saratoga County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2002-01-01

    Ground water is the sole source of public water supply for Clifton Park, a growing suburban community north of Albany, New York. Increasing water demand, coupled with concerns over ground-water quantity and quality, led the Clifton Park Water Authority in 1995 to initiate a cooperative study with the U.S. Geological Survey to update and refine the understanding of ground-water resources in the area.Ground-water resources are largely associated with three aquifers in the eastern half of the area. These aquifers overlie or encompass the Colonie Channel, a north-south-oriented bedrock channel that is filled primarily with lacustrine glacial deposits. The three aquifers are: (1) an unconfined lacustrine sand aquifer, (2) the Colonie Channel aquifer, which is confined within the deepest parts of the channel and variably confined and unconfined within the shallower, peripheral channel areas, and (3) an unconfined alluvial aquifer beneath the Mohawk River flood plain, which represents the southern limit of the study area. The lacustrine sand aquifer has little potential for large-scale withdrawals because it is predominantly fine grained and is susceptible to contamination from human activities at land surface. Water from this aquifer can, however, recharge the underlying peripheral parts of the Colonie Channel aquifer where hydraulic connections are present. The Colonie Channel aquifer consists of thin sand and gravel and (or) shallow, fractured bedrock over much of the channel area; discontinuous deposits of thicker (more than 20 feet) sand and gravel are common in the peripheral channel areas. The deepest, or central, channel area of this aquifer is isolated from the overlying lacustrine sand aquifer by a continuous lacustrine silt and clay unit, which is the primary channel-fill deposit. The most productive areas of the Colonie Channel aquifer are typically the shallow peripheral areas, where conditions range from unconfined to confined. The most productive aquifer

  18. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    USGS Publications Warehouse

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Results of detailed water-quality analyses, ground-waterage dating, and dissolved-gas analyses indicated the vulnerability of ground water to specific types of contamination, the sequence of contaminant introduction to the aquifer relative to greenfield development, and processes that may mitigate the contamination. Concentrations of chloride and sodium and chloride/bromide weight ratios in sampled water from five wells indicated the vulnerability of the upper aquifer to roaddeicer contamination. Ground-water-age estimates from these wells indicated the onset of upgradient road-deicer use within the previous 25 years. Nitrate in the upper aquifer predates the post-1972 development, based on a ground-water-age date (30 years) and the nitrate concentration (5.12 milligrams per liter as nitrogen) in water from a deep well. Vulnerability of the aquifer to nitrate contamination is limited partially by denitrification. Detection of one to four atrazine transformation products in water samples from the upper aquifer indicated biological and hydrochemical processes that may limit the vulnerability of the ground water to atrazine contamination. Microbial processes also may limit the aquifer vulnerability to small inputs of halogenated aliphatic compounds, as indicated by microbial transformations of trichlorofluoromethane and trichlorotrifluoroethane relative to dichlorodifluoromethane. The vulnerability of ground water to contamination in other parts of the aquifer system also may be mitigated by hydrodynamic dispersion and biologically mediated transformations of nitrate, pesticides, and some organic compounds. Identification of the sequence of contamination and processes affecting the vulnerability of ground water to contamination would have been unlikely with conventional assessment methods.

  19. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    USGS Publications Warehouse

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  20. Submarine Ground Water Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Hawai'i:Part 2, Spatial and Temporal Variations in Salinity, Radium-Isotope Activity, and Nutrient Concentrations in Coastal Waters, December 2003-April 2006

    USGS Publications Warehouse

    Knee, Karen; Street, Joseph; Grossman, Eric E.; Paytan, Adina

    2008-01-01

    The aquatic resources of Kaloko-Honokohau National Historical Park, including rocky shoreline, fishponds, and anchialine pools, provide habitat to numerous plant and animal species and offer recreational opportunities to local residents and tourists. A considerable amount of submarine groundwater discharge was known to occur in the park, and this discharge was suspected to influence the park's water quality. Thus, the goal of this study was to characterize spatial and temporal variations in the quality and quantity of groundwater discharge in the park. Samples were collected in December 2003, November 2005, and April 2006 from the coastal ocean, beach pits, three park observation wells, anchialine pools, fishponds, and Honokohau Harbor. The activities of two Ra isotopes commonly used as natural ground-water tracers (223Ra and 224Ra), salinity, and nutrient concentrations were measured. Fresh ground water composed a significant proportion (8-47 volume percent) of coastal-ocean water. This percentage varied widely between study sites, indicating significant spatial variation in submarine groundwater discharge at small (meter to kilometer) scales. Nitrate + nitrite, phosphate, and silica concentrations were significantly higher in nearshore coastal-ocean samples relative to samples collected 1 km or more offshore, and linear regression showed that most of this difference was due to fresh ground-water discharge. High-Ra-isotope-activity, higher-salinity springs were a secondary source of nutrients, particularly phosphate, at Honokohau Harbor and Aiopio Fishtrap. Salinity, Ra-isotope activity, and nutrient concentrations appeared to vary in response to the daily tidal cycle, although little seasonal variation was observed, indicating that submarine ground-water discharge may buffer the park's water quality against the severe seasonal changes that would occur in a system where freshwater inputs were dominated by rivers and runoff. Ra-isotope-activity ratios indicated

  1. Ground-water field trip, Tucson to Nogales, Arizona

    USGS Publications Warehouse

    Coates, D.R.; Halpenny, L.C.

    1954-01-01

    A field excursion following the route described herein was conducted as a part of the curriculum of the 6th Ground Water Short Course, which was held by the Geological Survey at the University of Arizona in April 1954. The route log and descriptive text were designed to provide a general background of the ground-water situation in the Upper Santa Cruz Basin, a few of the geologic features that affect the occurrence of ground water, and some of the historical highlights of the region. 

  2. Latin hypercube approach to estimate uncertainty in ground water vulnerability

    USGS Publications Warehouse

    Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.

  3. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the

  4. Handling the decline of ground water using artificial recharge areas

    NASA Astrophysics Data System (ADS)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  5. Pesticides in Ground Water of the Maryland Coastal Plain

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  6. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  7. Ground-water quality in the central part of the Passaic River basin, northeastern New Jersey, 1959-88

    USGS Publications Warehouse

    Czarnik, T.S.; Kozinski, Jane

    1994-01-01

    Ground-water samples were collected from 71 wells screened in or open to three aquifers in the central part of the Passaic River basin during 1959-88. Water samples from aquifers in glacial sediments and aquifers in sedimentary and igneous bedrock of the Newark Supergroup were analyzed for major ions. Most samples were analyzed for metals, nutrients, and tritium; 38 samples were analyzed for purgeable organic compounds. Calcium and bicarbonate were the predominant ions in ground water in the study area. Ground water was dilute (median dissolved-solids concentration 239 milligrams per liter) and slightly basic (median pH 7.89). Concentrations of inorganic constituents were within U.S. Environmental Protection Agency (USEPA) primary drinking-water regulations. Concentrations of benzene, tetrachloroethylene, and trichloroethylene, however, were greater than USEPA primary drinking-water regulations in six samples. Ground-water samples from aquifers in sedimentary bedrock were enriched in barium, calcium, magnesium, strontium,and sulfate relative to samples form the other aquifers. Such ion enrichment can be attributed either to disolution of carbonate and sulfate-containing minerals or to human activities. Ground-water samples from two wells screened in glacial sediments near swamps contained sulfate in concentrations higher than the median for the aquifer. Sulfate enrichment could result from downward leaching of water enriched in sulfur from the decay of organic matter in the swamps, from the disolution of sulfate-containing minerals, or from human activities. No regional trends in the chemical composition of the ground water in the study area were identified. Sulfate concentrations in ground- water samples from the sedimentary bedrock tended to increase with decreasing altitude of the deepest opening of the well; the correlation coefficient for the ranks of sulfate concentration and the altitude of the deepest opening of the well for 17 pairs of data is -0

  8. Ground-water levels, water quality, and potential effects of toxic-substance spills or cessation of quarry dewatering near a municipal ground-water supply, southeastern Franklin County, Ohio

    USGS Publications Warehouse

    Sedam, A.C.; Eberts, S.M.; Bair, E.S.

    1989-01-01

    A newly completed municipal ground-water supply that produces from a sand and gravel aquifer in southern Franklin County, Ohio, may be susceptible to potential sources of pollution. Among these are spills of toxic substances that could enter recharge areas of the aquifer or be carried by surface drainage and subsequently enter the aquifer by induced infiltration. Ground water of degraded quality also is present in the vicinity of several landfills located upstream from the municipal supply. Local dewatering by quarrying operations has created a ground-water divide which, at present, prevents direct movement of the degraded ground water to the municipal supply. In addition, the dewatering has held water levels at the largest landfills below the base of the landfill. Should the dewatering cease, concern would be raised regarding the rise of water levels at this landfills and transport of contaminants through the aquifer to the Scioto River and subsequently by the river to the well field. From June 1984 through July 1986, the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, investigated the relations among the ground-water supply and potential sources of contamination by means of an observation-well network and a program of measuring water levels and sampling for water quality. Sample collections included those made to determine the baseline levels of organic chemicals and metals, as well as periodic sampling and analysis for common constituents to evaluate any changes taking place in the system. Finally, a steady-state, three-dimensional numerical model was used to determine ground-water flow directions and average ground-water velocities to asses potential effects of toxic-substance spills. The model also was used to simulate changes in the ground-water flow system that could result if part or all of the quarry dewatering ceased. Few of the organic-chemical and metal constituents analyzed for were present at detectable levels. With respect to

  9. Geology and ground-water resources of Waushara County, Wisconsin

    USGS Publications Warehouse

    Summers, William Kelly

    1965-01-01

    Abundant ground water for irrigation is available in the outwash deposits in western Waushara County, and many more large-capacity wells can be developed in these deposits without seriously lowering the water level. Pumping for irrigation temporarily lowers water levels in the vicinity of the wells but has not lowered regional water levels. Pumpage has probably intercepted and utilized some of the recharge that would have been rapidly discharged from the aquifer. Ground water is continuously being discharged to streams and to the atmosphere by evapotranspiration, but intermittent recharge from precipitation replaces the discharged water. Recharge and discharge are in approximate balance, maintaining about the same amount of ground water in storage. Further recharge to the aquifer is rapidly discharged to streams. The sandstones, till, and glaciolacustrine deposits in Waushara County generally yield small to moderate amounts of water to wells but do not produce enough water for irrigation ; recent alluvium may yield large quantities of water to wells. In general, the ground water is of good quality, except for hardness and local high-iron concentrations.

  10. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    USGS Publications Warehouse

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (<5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  11. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment technique...

  12. Use of Microgravity to Assess the Effects of El Nino on Ground-Water Storage in Southern Arizona

    USGS Publications Warehouse

    Parker, John T.C.; Pool, Donald R.

    1998-01-01

    The availability of ground water is of extreme importance in areas, such as southern Arizona, where it is the main supply for agricultural, industrial, or domestic purposes. Where ground-water use exceeds recharge, monitoring is critical for managing water supplies. Typically, monitoring has been done by measuring water levels in wells; however, this technique only partially describes ground-water conditions in a basin. A new application of geophysical technology is enabling U.S. Geological Survey (USGS) scientists to measure changes in the amount of water in an aquifer using a network of microgravity stations. This technique enables a direct measurement of ground-water depletion and recharge. In Tucson, Arizona, residents have relied solely upon ground water for most of their needs since the 19th century. Water levels in some wells in the Tucson area have declined more than 200 ft in the past 50 years. Similar drops in water levels have occurred elsewhere in Arizona. In response to the overdrafting of ground water, the State of Arizona passed legislation designed to attain 'safe yield,' which is defined as a balance between ground-water withdrawals and annual recharge of aquifers. To monitor progress in complying with the legislation, ground-water withdrawals are measured and estimated, and annual recharge is estimated. The Tucson Basin and Avra Valley are two ground-water basins that form the Tucson Active Management Area (TAMA), which by State statute must attain 'safe yield' by the year 2025.

  13. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial

  14. Ground-water quality and susceptibility of ground water to effects from domestic wastewater disposal in eastern Bernalillo County, central New Mexico, 1990-91

    USGS Publications Warehouse

    Blanchard, Paul J.; Kues, Georgianna E.

    1999-01-01

    Eastern Bernalillo County is a historically rural, mountainous area east of Albuquerque, New Mexico. Historically, the primary economic activity consisted of subsistence farming and ranching and support of these activities from small communities. During the last 40 to 50 years, however, the area increasingly has become the site of residential developments. Homes in these developments typically are on 1- to 2-acre lots and are serviced by individual wells and septic systems. Between 1970 and 1990, the population of the area increased from about 4,000 to more than 12,000, and housing units increased from about 1,500 to more than 5,000. Results of analysis of water samples collected from 121 wells throughout eastern Bernalillo County in 1990 indicated that (1) total-nitrate concentrations in 10 samples exceeded the U.S. Environmental Protection Agency national primary drinking-water regulation maximum contaminant level of 10 milligrams per liter as nitrogen; (2) total-nitrate concentrations may be related to the length of time an area has been undergoing development; and (3) large dissolved-chloride concentrations may result from geologic origins, such as interbedded salt deposits or upward movement of saline ground water along faults and fractures, as well as from domestic wastewater disposal. Ground water throughout eastern Bernalillo County was assessed to be highly susceptible to contamination by overlying domestic wastewater disposal because (1) soils in more than 95 percent of eastern Bernalillo County were determined by the U.S. Department of Agriculture Natural Resources Conservation Service to have severe limitations for use as septic-system absorption fields and (2) a fractured carbonate geologic terrane, which typically has large secondary permeability and limited sorption capacity, is at the surface or underlying unconsolidated material in 73 percent of the area. Ground-water-level rises following an episodal precipitation event during July 22-27, 1991

  15. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Ground water has been the only source of potable water supply for residential, industrial, and agricultural users in the Beaumont and Banning storage units of the San Gorgonio Pass area, Riverside County, California. Ground-water levels in the Beaumont area have declined as much as 100 feet between the early 1920s and early 2000s, and numerous natural springs have stopped flowing. In 1961, the San Gorgonio Pass Water Agency (SGPWA) entered into a contract with the California State Department of Water Resources to receive 17,300 acre-feet per year of water to be delivered by the California State Water Project (SWP) to supplement natural recharge. Currently (2005), a pipeline is delivering SWP water into the area, and the SGPWA is artificially recharging the ground-water system using recharge ponds located along Little San Gorgonio Creek in Cherry Valley with the SWP water. In addition to artificial recharge, SGPWA is considering the direct delivery of SWP water for the irrigation of local golf courses and for agricultural supply in lieu of ground-water pumpage. To better understand the potential hydrologic effects of different water-management alternatives on ground-water levels and movement in the Beaumont and Banning storage units, existing geohydrologic and geochemical data were compiled, new data from a basin-wide ground-water level and water-quality monitoring network were collected, monitoring wells were installed near the Little San Gorgonio Creek recharge ponds, geohydrologic and geochemical analyses were completed, and a ground-water flow simulation model was developed. The San Gorgonio Pass area was divided into several storage units on the basis of mapped or inferred faults. This study addresses primarily the Beaumont and Banning storage units. The geologic units in the study area were generalized into crystalline basement rocks and sedimentary deposits. The younger sedimentary deposits and the surficial deposits are the main water-bearing deposits in the

  16. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    USGS Publications Warehouse

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  17. Ground water recharge and discharge in the central Everglades

    USGS Publications Warehouse

    Harvey, Judson W.; Krupa, Steven L.; Krest, James M.

    2004-01-01

    Rates of ground water recharge and discharge are not well known in the central Everglades. Here we report estimates of ground water recharge and discharge at 15 sites in the Everglades Nutrient Removal Project and in Water Conservation Area 2A (WCA-2A), along with measurements of hydraulic properties of peat at 11 sites. A simple hydrogeologic simulation was used to assess how specific factors have influenced recharge and discharge. Simulations and measurements agreed that the highest values of recharge and discharge occur within 600 m of levees, the result of ground water flow beneath levees. There was disagreement in the interior wetlands of WCA-2A (located > 1000 m from levees) where measurements of recharge and discharge were substantially higher than simulated fluxes. A five-year time series (1997 to 2002) of measured fluxes indicated that recharge and discharge underwent reversals in direction on weekly, monthly, and annual timescales at interior sites in WCA-2A. Ground water discharge tended to occur during average to moderately dry conditions when local surface water levels were decreasing. Recharge tended to occur during moderately wet periods or during very dry periods just as water levels began to increase following precipitation or in response to a pulse of surface water released from water-control structures by water managers. Discharge also tended to occur at sites in the wetland interior for ∼1 week preceding the arrival of the surface water pulse. We conclude that ground water recharge and discharge vary cyclically in the interior wetlands of the central Everglades, driven by the differential responses of surface water and ground water to annual, seasonal, and weekly trends in precipitation and operation of water-control structures.

  18. Selected Ground-Water Data of Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    USGS Publications Warehouse

    Locke, Glenn L.; La Camera, Richard J.

    2003-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992-2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985-93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3-2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  19. Radium-226 and radium-228 in shallow ground water, southern New Jersey

    USGS Publications Warehouse

    Szabo, Zoltan; dePaul, Vincent T.

    1998-01-01

    Concentrations of total radium (the sum of radium-226 and radium-228) and gross alpha-particle activities in drinking water that exceed the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) are known to cause cancer. Results of investigations by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP) indicate that concentrations of total radium in water samples from 33 percent of 170 wells in the Kirkwood-Cohansey aquifer system in southern New Jersey exceeded the MCL of 5 pCi/L (picocuries per liter) (fig. 1). Wells containing water in which concentrations of total radium were greater than the MCL typically are found where the Bridgeton Formation crops out, in or near an agricultural area, where ground water is acidic (pH less than 5), and where nitrate concentrations generally exceed 5 mg/L (milligrams per liter). Leaching of nitrogen, calcium, and magnesium from agricultural chemicals (fertilizer, lime) applied to cropland may increase the mobility of radium in ground water. Gross alphaparticle activities exceeded the USEPA MCL of 15 pCi/L in water from 14 percent of 127 wells. A statistically significant 2:1 ratio between gross alpha-particle activity and concentration of total radium indicates that gross alpha-particle activity can be used as a screening tool to predict the presence of water that may have a high total-radium concentration.

  20. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  1. Ground-water in the Austin area, Lander County, Nevada

    USGS Publications Warehouse

    Phoenix, David A.

    1949-01-01

    The U.S. Geological Survey, in cooperation with the State Engineer of Nevada, made a preliminary survey of ground-water conditions in the Austin area, Nev., during the period July 25 to 28, 1949. The purpose was to evaluate ground-water conditions with special reference to the quantity of ground water that might be available in the area--an adequate water supply has been a constant problem throughout the history of the Austin area. The investigation was made by the writer under the supervision of Thomas W. Robinson, district engineer, Ground Water Branch, U.S. Geological Survey. Material assistance was given in the field by local residents. Frank Bertrand, water commissioner, Thomas Peacock, county assessor, and George McGinnis, county commissioner, guided the writer to springs new utilized by the town of Austin and rendered other valuable field assistance.

  2. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    EPA Science Inventory

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  3. Use of environmental tracers to evaluate ground-water age and water-quality trends in a buried-valley aquifer, Dayton area, southwestern, Ohio

    USGS Publications Warehouse

    Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter

    1999-01-01

    , sulfate, and organic carbon. Elevated concentrations of these constituents in shallow ground water are probably related to human activities. Temporal trends in which concentrations declined as ground-water age increased may reflect natural processes that reduce constituent concentrations to low levels. For example, the absence of nitrate detections in ground water recharged before 1980 may indicate natural removal of nitrate by bacterially mediated denitrification. Temporal trends observed for dissolved oxygen, iron, nitrate and silica indicate that these constituents may help identify recently (post-1990) recharged ground water.

  4. Ground-water resources data for Warren County, Pennsylvania

    USGS Publications Warehouse

    Moore, M.E.; Buckwalter, T.F.

    1996-01-01

    This report presents lithologic, hydrologic, and chemical data collected during a study of the ground-water resources of Warren County, Pa. The study was conducted during 1983-90 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, and the Warren County Commissioners. The data include information on aquifers, water levels, and yields for about 600 wells, and records for 57 springs. Descriptions of aquifer lithology and chemical analyses of water samples collected at well and spring sites are provided. Chemical analyses include major cations, anions, nutrients, and selected trace elements. Also included are data on concentrations of volatile organic compounds, dissolved methane, ethane, propane, and total organic carbon. The report presents a summary of the source and significance of selected chemical constituents in ground water, a listing of Federal drinking water standards, and information on selected methods of removing or reducing concentrations of undesirable chemical constituents from water. Daily ground- water levels for five observation wells are tabulated. Maps of Warren County show the location of townships, boroughs, and 7-1/2-minute quadrangles. Data-collection sites are shown on 18 figures. A glossary is provided for readers unfamiliar with ground-water terminology.

  5. Hydrogeologic Setting, Ground-Water Flow, and Ground-Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, 2000-2005

    USGS Publications Warehouse

    Pippin, Charles G.; Chapman, Melinda J.; Huffman, Brad A.; Heller, Matthew J.; Schelgel, Melissa E.

    2008-01-01

    A 6-year intensive field study (2000-2005) of a complex, regolith-fractured bedrock ground-water system was conducted at the Langtree Peninsula research station on the Davidson College Lake Campus in Iredell County, North Carolina. This research station was constructed as part of the Piedmont and Mountains Resource Evaluation Program, a cooperative study being conducted by the North Carolina Department of Environment and Natural Resources and the U.S. Geological Survey. Results of the study characterize the distinction and interaction of a two-component ground-water system in a quartz diorite rock type. The Langtree Peninsula research station includes 17 monitoring wells and 12 piezometers, including 2 well transects along high to low topographic settings, drilled into separate parts of the ground-water-flow system. The location of the research station is representative of a metaigneous intermediate (composition) regional hydrogeologic unit. The primary rock type is mafic quartz diorite that has steeply dipping foliation. Primary and secondary foliations are present in the quartz diorite at the site, and both have an average strike of about N. 12 degree E. and dip about 60 degree in opposite directions to the southeast (primary) and the northwest (secondary). This rock is cut by granitic dikes (intrusions) ranging in thickness from 2 to 50 feet and having an average strike of N. 20 degree W. and an average dip of 66 degree to the southwest. Depth to consolidated bedrock is considered moderate to deep, ranging from about 24 to 76 feet below land surface. The transition zone was delineated and described in each corehole near the well clusters but had a highly variable thickness ranging from about 1 to 20 feet. Thickness of the regolith (23 to 68 feet) and the transition zone do not appear to be related to topographic setting. Delineated bedrock fractures are dominantly low angle (possibly stress relief), which were observed to be open to partially open at depths of

  6. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is

  7. Ground-water conditions and studies in Georgia, 2001

    USGS Publications Warehouse

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  8. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  9. Pesticides in Ground Water of Central and Western Maryland

    USGS Publications Warehouse

    Ator, Scott W.; Reyes, Betzaida

    2008-01-01

    Selected pesticides and degradates (products of pesticide degradation) are detectable in ground water in many parts of central and western Maryland, although concentrations are generally less than 0.1 micrograms per liter. Ground-water samples collected recently (1994-2003) from 72 wells in areas of Maryland underlain by consolidated carbonate, crystalline, or siliciclastic aquifers (areas north and west of the Fall Line) were analyzed for selected pesticides and degradates. Pesticides were typically detected in mixtures of multiple compounds in ground water, and degradates were commonly detected, often at greater concentrations than their respective parent compounds. No pesticides were observed at concentrations greater than established standards for drinking water, and nearly all observed concentrations were below other health-based guidelines. Although such standards and guidelines are generally much greater than measured concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of pesticides and degradates in ground water is related to application practices, as well as chemical and environmental factors that affect the fate and movement of individual compounds.

  10. Summary appraisals of the Nation's ground-water resources; Pacific Northwest region

    USGS Publications Warehouse

    Foxworthy, Bruce L.

    1979-01-01

    Management opportunities in the region include: (1) Development of new supplies and additional uses of ground water; (2) protection and enhancement of water quality; (3) reduction of waterlogging; (4) energy development from some ground-water reservoirs; (5) improving access to the ground water; (6) increased use of underground space for storage and disposal; and (7) greater use of advanced management and conservation techniques. Conjunctive use of surface and ground water to provide greater available supplies probably is the most promising water-management opportunity. However, if the full potential of the ground-water resources is to be realized, important constraints, including present water-right structures and serious deficiencies in information, must be overcome.

  11. Water Resources Data for California, 1966, 1967, 1968; Part 3: Ground Water Records

    USGS Publications Warehouse

    1970-01-01

    The water-level records are arranged alphabetically by county, and for each county by valley or ground-water basin. Thus, each group of data pertains to a distinct ground-water area, as indicated by subheadings in the report. Under each subhead, the records are arranged numerically by well number.

  12. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  13. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records-update

    USGS Publications Warehouse

    Rutledge, A.T.

    1998-01-01

    The computer programs included in this report can be used to develop a mathematical expression for recession of ground-water discharge and estimate mean ground-water recharge and discharge. The programs are intended for analysis of the daily streamflow record of a basin where one can reasonably assume that all, or nearly all, ground water discharges to the stream except for that which is lost to riparian evapotranspiration, and where regulation and diversion of flow can be considered to be negligible. The program RECESS determines the master reces-sion curve of streamflow recession during times when all flow can be considered to be ground-water discharge and when the profile of the ground-water-head distribution is nearly stable. The method uses a repetitive interactive procedure for selecting several periods of continuous recession, and it allows for nonlinearity in the relation between time and the logarithm of flow. The program RORA uses the recession-curve displacement method to estimate the recharge for each peak in the streamflow record. The method is based on the change in the total potential ground-water discharge that is caused by an event. Program RORA is applied to a long period of record to obtain an estimate of the mean rate of ground-water recharge. The program PART uses streamflow partitioning to estimate a daily record of base flow under the streamflow record. The method designates base flow to be equal to streamflow on days that fit a requirement of antecedent recession, linearly interpolates base flow for other days, and is applied to a long period of record to obtain an estimate of the mean rate of ground-water discharge. The results of programs RORA and PART correlate well with each other and compare reasonably with results of the corresponding manual method.

  14. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  15. Inventory of ground-water resources in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Broshears, Robert E.; Akbari, M. Amin; Chornack, Michael P.; Mueller, David K.; Ruddy, Barbara C.

    2005-01-01

    In 2004, the U.S. Geological Survey began working with engineers at the Afghanistan Geological Survey to provide hydrologic training and equipment and to apply these tools to build an inventory of water wells in the Kabul Basin of Afghanistan. An inventory of 148 wells now includes information on well location, depth, and access. Water-level and water-quality measurements have been made at most of these wells. A water-level elevation map has been constructed, and general directions of ground-water flow have been defined. Ground-water flow in the Kabul Basin is primarily through saturated alluvium and other basin-fill sediments. The water-table surface generally mirrors topography, and ground water generally flows in the directions of surface-water discharge. The quality of ground water in the Kabul Basin varies widely. In some areas, ground-water quality is excellent, with low concentrations of dissolved solids and no problematic constituents. In other areas, however, high concentrations of dissolved solids and the presence of some constituents at concentrations deemed harmful to humans and crops render untreated ground water marginal or unsuitable for public supply and/or agricultural use. Of particular concern are elevated concentrations of nitrate, boron, and dissolved solids, and an indication of fecal pollution in some parts of the basin. As Afghanistan emerges from years of conflict, as institutional capacities rejuvenate and grow, and as the need for wise water-management decisions continues, adequate data and a fuller understanding of the ground-water resource in the Kabul Basin will be imperative. The work described in this report represents only a modest beginning in what will be a long-term data-collection and interpretive effort.

  16. Using thermal-infrared imagery to delineate ground-water discharge

    USGS Publications Warehouse

    Banks, W.S.L.; Paylor, R.L.; Hughes, W.B.

    1996-01-01

    On March 8 and 9, 1992, a thermal-infrared-multispectral scanner (TIMS) was flown over two military ordnance disposal facilities at the Edgewood Area of Aberdeen Proving Ground, Maryland. The data, collected bythe National Aeronautics and Space Administration, in cooperation with the U.S. Army and the U.S. Geological Survey, were used to locate ground-water discharge zones in surface water. The images from the flight show areas where ground-water discharge is concentrated, as well as areas of diffuse discharge. Concentrated discharge is predominant in isolated or nearly isolated ponds and creeks in the study area. Diffuse dicharge is found near parts of the shoreline where the study area meets the surrounding estuaries of the Chesapeake Bay and the Gunpowder River. The average temperature for surface water, measured directly in the field, and the average temperature, calculated from atmospherically corrected TIMS images, was 10.6??C (Celsius) at the first of two sites. Potentiometric surface maps of both field sites show discharge toward the nontidal marshes, the estuaries which surround the field sites, and creeks which drain into the estuaries. The average measured temperature of ground water at both sites was 10.7??C. The calculated temperature from the TIMS imagery at both sites where ground-water discharge is concentrated within a surface-water body is 10.4??C. In the estuaries which surround the field sites, field measurements of temperature were made resulting in an average temperature of 9.0??C. The average calculated TIMS temperature from the estuaries was 9.3??C. Along the shoreline at the first site and within 40 to 80 meters of the western and southern shores of the second site, water was 1?? to 2??C warmer than water more than 80 meters away. The pattern of warmer water grading to cooler water in an offshore direction could result from diffuse ground-water discharge. Tonal differences in the TIMS imagery could indicate changes in surface-water

  17. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona-2005-06

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2007-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area averages about 6 to 14 inches per year. The water monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2005 to September 2006. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2005, ground-water withdrawals in the Black Mesa area totaled 7,330 acre-feet, including ground-water withdrawals for industrial (4,480 acre-feet) and municipal (2,850 acre-feet) uses. From 2004 to 2005, total withdrawals increased by less than 2 percent, industrial withdrawals increased by approximately 3 percent, and total municipal withdrawals increased by 0.35 percent. From 2005 to 2006, annually measured water levels in the Black Mesa area declined in 10 of 13 wells in the unconfined areas of the N aquifer, and the median change was -0.5 foot. Measurements indicated that water levels declined in 12 of 15 wells in the confined area of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2006, the median water-level change for 29 wells was -8.5 feet. Median water-level changes were -0.2 foot for 13 wells in the unconfined areas and -46.6 feet for 16 wells in the confined area. Ground-water discharges were measured once in 2005 and once in 2006 at Moenkopi School Spring and Burro

  18. An application of thermometry to the study of ground water

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    The precise measurement of fluctuations in ground-water temperature, based on monthly readings in shallow glacial-outwash aquifers (up to about 70 feet deep), is useful in the study of ground-water movement and recharge. In addition to the study of natural phenomena in the hydrologic cycle, thermometry may be used as a tool in making detailed studies of (1) the effects of inducing the infiltration of surface water, (2) artificial recharge, (3) the effects of injecting petroleum products or radioactive or other wastes into the ground, and (4) ground-water movement in mines.

  19. Hydrologic and geochemical approaches for determining ground-water flow components

    USGS Publications Warehouse

    Hjalmarson, H.W.; Robertson, F.N.

    1991-01-01

    Lyman Lake is an irrigation-storage reservoir on the Little Colorado River near St. Johns, Arizona. The main sources of water for the lake are streamflow in the Little Colorado River and ground-water inflow from the underlying Coconino aquifer. Two approaches, a hydrologic analysis and a geochemical analysis, were used to compute the quantity of ground-water flow to and from Lyman Lake. Hydrologic data used to calculate a water budget were precipitation on the lake, evaporation from the lake, transpiration from dense vegetation, seepage through the dam, streamflow in and out of the lake, and changes in lake storage. Geochemical data used to calculate the ground-water flow components were major ions, trace elements, and the stable isotopes of hydrogen and oxygen. During the study, the potentiometric level of the Coconino aquifer was above the lake level at the upstream end of the lake and below the lake level at the downstream end. Hydrologic and geochemical data indicate that about 10 percent and 8 percent, respectively, of the water in the lake is ground-water inflow and that about 35 percent of the water in the Little Colorado River 6 miles downgradient from the lake near Salado Springs is ground water. These independent estimates of ground-water flow derived from each approach are in agreement and support a conceptual model of the water budget.

  20. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  1. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  2. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  3. Winter Thaws Can Raise Ground Water Levels in Driftless Area

    Treesearch

    Richard S. Sartz

    1967-01-01

    Springflow and ground water levels both rose with winter thaws, even when the ground was frozen. A high soil water content suggests that water moved to the water table through a continuous column of soil water rather than as a wetting front

  4. Ground-Water Reconnaissance at Pinnacles National Monument, California

    USGS Publications Warehouse

    Evenson, R.E.

    1962-01-01

    Ground-water supplies at Pinnacles National Monument have been obtained from springs that occur in fractures and along bedding planes of volcanic flows and deposits, and from springs discharged from perched water in a sedimentary fanglomerate formation. The spring-water yield is barely adequate to supply existing camp facilities, and therefore a supplemental water supply is necessary before existing campgrounds can be expanded. This supplemental water can be supplied by good-quality ground water obtained from shallow wells drilled in the alluvium of Chalone Creek. The yield of properly constructed wells in this area should exceed 10 gallons per minute.

  5. Ground-water and water-chemistry data for the Willamette basin, Oregon

    USGS Publications Warehouse

    Orzol, Leonard L.; Wozniak, Karl C.; Meissner, Tiffany R.; Lee, Douglas B.

    2000-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the Willamette River Basin, Oregon. The report includes tabulated information and a location map for 1,234 field-located water wells and 6 springs, hydrographs showing water-level fluctuations during various time periods for 265 of the wells, borehole geophysical data for 16 wells, and water-chemistry analyses from 125 wells and 6 springs. These data, as well as data for 4,752 additional fieldlocated wells and 1 spring, are included on a CD-ROM. In addition, the locations of the field-located wells and springs are provided in geographic information system formats on the CD-ROM.

  6. Transboundary impacts on regional ground water modeling in Texas

    USGS Publications Warehouse

    Rainwater, K.; Stovall, J.; Frailey, S.; Urban, L.

    2005-01-01

    Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to

  7. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    USGS Publications Warehouse

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  8. Occurrence of trihalomethanes in the nation's ground water and drinking-water supply wells, 1985-2002

    USGS Publications Warehouse

    Schaap, Bryan D.; Zogorski, John S.

    2006-01-01

    This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples

  9. Chemical and isotopic constraints on the origin of Wadi El-Tarfa ground waters, Eastern Desert, Egypt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultan, M.; Sturchio, N. C.; Abdel Hady, Y.

    2000-10-01

    We evaluated the use of the renewable ground water resources of the Eastern Desert to develop sustainable agriculture in Upper Egypt, an alternative that could alleviate some of Egypt's dependence on water from the Nile River. Ground water from shallow aquifers in the Eastern Desert of Egypt, near the intersection of Wadi El-Tarfa and the Nile River, was analyzed for chemical compositions, stable isotope ratios, and tritium activities. The ground water has a range in total dissolved solids of 300 to 5000 mg/L. Values of {delta}D and {delta}{sup 18}O range from -10 to +34 %o and -2 to +5.2 %o,more » respectively, and defines a line having a slope of 5.7 that intersects the meteoric water line at about {delta}D = -15% on a plot of 8D versus {delta}{sup 18}O. These findings indicate that the water might have been derived by a combination of evaporation of and salt addition to regional precipitation. Only one sample could have been derived directly by evaporation and transpiration of modern Nile River water. Salinization of the ground water could have occurred through dissolution of marine aerosol dry fallout, carbonate minerals, gypsum, and other trace evaporitic minerals at and near the ground surface. Tritium activities ranged from 0.04 to 12.9 TU (tritium unite), indicating that all but one of the samples were derived at least partly from precipitation that occurred within the last 45 years. These data indicate that Nubian Aquifer paleowater is not a significant component of the shallow aquifers of this portion of the Eastern Desert. The most likely source of this ground water is sporadic flash flood events yielding locally voluminous recharge that accumulates in coarse sediments and fractured rock beneath alluvial channels. The magnitude of this renewable ground water resource and its potential for supporting sustainable agriculture require further investigation.« less

  10. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  11. Ground-water hydrology of the Willamette basin, Oregon

    USGS Publications Warehouse

    Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.

    2005-01-01

    The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple

  12. Land subsidence caused by ground water withdrawal in urban areas

    USGS Publications Warehouse

    Holzer, T.L.; Johnson, A.I.

    1985-01-01

    At least eight urban areas in the world have encountered significant economic impact from land subsidence caused by pumping of ground water from unconsolidated sediment. The areas, most of which are coastal, include Bangkok, Houston, Mexico City, Osaka, San Jose, Shanghai, Tokyo, and Venice. Flooding related to decreased ground elevation is the principal adverse effect of the subsidence. Lesser effects include regional tilting, well-casing failures, "rising" buildings, and ground failure or rupture. Subsidence of most of these urban areas began before the phenomenon was discovered and understood. Thus, the subsidence problems were unanticipated. Methods to arrest subsidence typically have included control of ground water pumping and development of surface water to offset the reductions of ground water pumping. Ground water recharge has also been practiced. Areas threatened by flooding have been protected by extensive networks of dikes and sea walls, locks, and pumping stations to remove storm runoff. ?? 1985 D. Reidel Publishing Company.

  13. An imminent human resource crisis in ground water hydrology?

    PubMed

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  14. 18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Ground water withdrawal... DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19 Ground water withdrawal metering, recording, and reporting. (a) Each person, firm, corporation, or other...

  15. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of wells that... at other wells will provide an indication of background ground-water quality that is as...

  16. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the uppermost aquifer (as defined in § 258.2) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may...; or (ii) Sampling at other wells will provide an indication of background ground-water quality that is...

  17. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  18. EVALUATION OF A MATRIX INTERFERENCE IN GROUND WATER ARSENIC MEASUREMENT BY ICP-OES

    EPA Science Inventory

    Arsenic enters ground water systems by either the weathering of naturally occurring subsurface materials or human activities such as mining and pesticide manufacturing. The current EPA drinking water limit for arsenic is set at 50 ug/L, with the reduction to 10 ug/L in 2006. The...

  19. U.S. Geological Survey Ground-Water Climate Response Network

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey serves the Nation by providing reliable hydrologic information used by others to manage the Nation's water resources. The U.S. Geological Survey (USGS) measures more than 20,000 wells each year for a variety of objectives as part of Federal programs and in cooperation with State and local agencies. Water-level data are collected using consistent data-collection and quality-control methods. A small subset of these wells meets the criteria necessary to be included in a 'Climate Response Network' of wells designed to illustrate the response of the ground-water system to climate variations nationwide. The primary purpose of the Climate Response Network is to portray the effect of climate on ground-water levels in unconfined aquifers or near-surface confined aquifers that are minimally affected by pumping or other anthropogenic stresses. The Climate Response Network Web site (http://groundwaterwatch.usgs.gov/) is the official USGS Web site for illustrating current ground-water conditions in the United States and Puerto Rico. The Climate Response Network Web pages provide information on ground-water conditions at a variety of scales. A national map provides a broad overview of water-table conditions across the Nation. State maps provide a more local picture of ground-water conditions. Site pages provide the details about a specific well.

  20. Summary appraisals of the Nation's ground-water resources; Upper Colorado region

    USGS Publications Warehouse

    Price, Don; Arnow, Ted

    1974-01-01

    Options available for use of ground water in water-resources management·in the·region include conjunctive use with surface water or development of ground water as an independent supply. The latter option could be for & perennial supply or for a time-limited supply (mining ground water), depending on the need and the existing ground-water conditions. All options can be carried out so as to meet the requirements of the Colorado River Compact. The options could be implemented to optimally develop the Upper Colorado River Basin's allocation of Colorado River water while meeting the Compact commitments to the Lower Basin.

  1. Ground-water, surface-water, and water-chemistry data, Black Mesa area, Northeastern Arizona: 1999

    USGS Publications Warehouse

    Thomas, Blakemore E.; Truini, Margot

    2000-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and a precipitation of only about 6 to 12 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 1999, total ground-water withdrawals were 7,110 acre-feet, industrial use was 4,210 acre-feet, and municipal use was 2,900 acre-feet. From 1998 to 1999, total withdrawals increased by 0.7 percent, industrial use increased by 4 percent, and municipal use decreased by 4 percent. From 1998 to 1999, water levels declined in 11 of 15 wells in the unconfined part of the aquifer, and the median decline was 0.7 foot. Water levels declined in 14 of 16 wells in the confined part of the aquifer, and the median decline was 1.2 feet. From the prestress period (prior to 1965) to 1999, the median water-level decline in 31 wells was 10.6 feet. Median water-level changes were 0.0 foot for 15 wells in the unconfined part of the aquifer and a decline of 45.5 feet in 16 wells in the confined part. From 1998 to 1999, discharges were measured annually at four springs. Discharges declined 30 percent and 3 percent at 2 springs, did not change at 1 spring, and increased by 11 percent at 1 spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend was not observed. Continuous records of surface-water discharge have been collected from July 1976 to 1999 at Moenkopi Wash, July 1996 to 1999 at Laguna Creek, June 1993 to 1999 at Dinnebito Wash, and April

  2. Hydrogeologic setting, ground-water flow, and ground-water quality at the Lake Wheeler Road research station, 2001-03 : North Carolina Piedmont and Mountains Resource Evaluation Program

    USGS Publications Warehouse

    Chapman, Melinda J.; Bolich, Richard E.; Huffman, Brad A.

    2005-01-01

    Results of a 2-year field study of the regolith-fractured bedrock ground-water system at the Lake Wheeler Road research station in Wake County, North Carolina, indicate both disconnection and interaction among components of the ground-water system. The three components of the ground-water system include (1) shallow, porous regolith; (2) a transition zone, including partially weathered rock, having both secondary (fractures) and primary porosity; and (3) deeper, fractured bedrock that has little, if any, primary porosity and is dominated by secondary fractures. The research station includes 15 wells (including a well transect from topographic high to low settings) completed in the three major components of the ground-water-flow system and a surface-water gaging station on an unnamed tributary. The Lake Wheeler Road research station is considered representative of a felsic gneiss hydrogeologic unit having steeply dipping foliation and a relatively thick overlying regolith. Bedrock foliation generally strikes N. 10? E. to N. 30? E. and N. 20? W. to N. 40? W. to a depth of about 400 feet and dips between 70? and 80? SE. and NE., respectively. From 400 to 600 feet, the foliation generally strikes N. 70? E. to N. 80? E., dipping 70? to 80? SE. Depth to bedrock locally ranges from about 67 to 77 feet below land surface. Fractures in the bedrock generally occur in two primary sets: low dip angle, stress relief fractures that cross cut foliation, and steeply dipping fractures parallel to foliation. Findings of this study generally support the conceptual models of ground-water flow from high to low topographic settings developed for the Piedmont and Blue Ridge Provinces in previous investigations, but are considered a refinement of the generalized conceptual model based on a detailed local-scale investigation. Ground water flows toward a surface-water boundary, and hydraulic gradients generally are downward in recharge areas and upward in discharge areas; however, local

  3. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  4. Ground-water levels in observation wells in Oklahoma, 1969-70

    USGS Publications Warehouse

    Moore, R.L.

    1972-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. In addition to the water-supply papers, the U.S. Geological Survey, cooperation with the Oklahoma Water Resources Board, has published the following informal reports on water levels in Oklahoma. Ground-water levels in observations wells in Oklahoma, 1956-60 Ground-water levels in observations wells in Oklahoma, 1961-62 Ground-water levels in observations wells in Oklahoma, 1963-64 Ground-water levels in observations wells in Oklahoma, 1965-66 Ground-water levels in observations wells in Oklahoma, 1967-68 Records of water-level measurements in wells in the Oklahoma Panhandle, 1966-70 Records of water-level measurements in wells in the Oklahoma Panhandle, 1971-72 The basic observation-well network in Oklahoma during the period 1969-70 included the following counties: Alfalfa, Beaver, Beckham, Caddo, Cimarron

  5. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  6. Ground-water vulnerability to nitrate contamination in the mid-atlantic region

    USGS Publications Warehouse

    Greene, Earl A.; LaMotte, Andrew E.; Cullinan, Kerri-Ann; Smith, Elizabeth R.

    2005-01-01

    The U.S. Environmental Protection Agency?s (USEPA) Regional Vulnerability Assessment (ReVA) Program has developed a set of statistical tools to support regional-scale, integrated ecological risk-assessment studies. One of these tools, developed by the U.S. Geological Survey (USGS), is used with available water-quality data obtained from USGS National Water-Quality Assessment (NAWQA) and other studies in association with land cover, geology, soils, and other geographic data to develop logistic-regression equations that predict the vulnerability of ground water to nitrate concentrations exceeding specified thresholds in the Mid-Atlantic Region. The models were developed and applied to produce spatial probability maps showing the likelihood of elevated concentrations of nitrate in the region. These maps can be used to identify areas that currently are at risk and help identify areas where ground water has been affected by human activities. This information can be used by regional and local water managers to protect water supplies and identify land-use planning solutions and monitoring programs in these vulnerable areas.

  7. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is as...

  8. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is as...

  9. Use of RORA for Complex Ground-Water Flow Conditions

    USGS Publications Warehouse

    Rutledge, A.T.

    2004-01-01

    The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.

  10. Ground Water Discharges (EPA's Underground Injection ...

    EPA Pesticide Factsheets

    2017-07-06

    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  11. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  12. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    USGS Publications Warehouse

    Cowdery, Timothy K.

    2005-01-01

    Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.

  13. Potential effects of climate change on ground water in Lansing, Michigan

    USGS Publications Warehouse

    Croley, T.E.; Luukkonen, C.L.

    2003-01-01

    Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri-County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.

  14. 40 CFR 141.405 - Reporting and recordkeeping for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Reporting and recordkeeping for ground water systems. 141.405 Section 141.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.405 Reporting and recordkeeping for ground...

  15. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin

  16. Arsenic in ground-water under oxidizing conditions, south-west United States

    USGS Publications Warehouse

    Robertson, F.N.

    1989-01-01

    play a role in the occurrence of arsenic in ground-water. Under oxidizing conditions in Arizona, arsenic in ground-water appears to be controlled in part by sorption or desorption of HAsO4???2 on active ferric oxyhydroxide surfaces. ?? 1989 Sciences and Technology Letters.

  17. Water-quality and ground-water-level trends, 1990-99, and data collected from 1995 through 1999, East Mountain area, Bernalillo County, central New Mexico

    USGS Publications Warehouse

    Rankin, D.R.

    2000-01-01

    Bernalillo County officials recognize the importance of monitoring water quality and ground-water levels in rapidly developing areas. For this reason, water-quality and ground-water- level data were collected from 87 wells, 3 springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County between January 1990 and June 1999. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; methylene blue active substances; and dissolved arsenic. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, air and water temperature, alkalinity, and dissolved oxygen were measured in the field at the time of sample collection. Ground-water levels were measured at the time of sample collection. From January 1990 through June 1993, water-quality and ground- water-level data were collected monthly from an initial set of 20 wells; these data were published in a 1995 report. During 1995, water samples and ground-water-level data were collected and analyzed from the initial set of 20 wells and from an additional 31 wells, 2 springs, and the Ojo Grande Acequia; these data were published in a 1996 report. Additional water-quality and ground-water-level data have been collected from sites in the east mountain area: 34 wells and the acequia during 1997, 14 wells and 1 spring during 1998, and 6 wells during 1999. Water-quality and ground- water-level data collected in the east mountain area during 1995 through 1999 are presented in tables. In addition, temporal trends for ground-water levels, concentrations of total and dissolved nitrite plus nitrate, concentrations of dissolved chloride, and specific conductance are presented for 20 selected wells in water-quality and water- level hydrographs.

  18. Chemical quality of ground water in the eastern Sacramento Valley, California

    USGS Publications Warehouse

    Fogelman, Ronald P.

    1979-01-01

    The study area is about 1,300 square miles in the eastern Sacramento Valley, Calif., extending from the latitude of Roseville on the south to thelatitude of Chico on the north. Considering the increased agricultural development of the area, this report documents the chemical character of the ground water prior to water-level declines that could result from extensive pumping for irrigation or to changes caused by extensive use of imported surface water. Chemical analyses of samples from 222 wells show that most of the area is underlain by ground water of a quality suitable for most agricultural and domestic purposes. Ninety-five percent of the water sampled has dissolved-solids concentrations of less than 700 milligrams per liter. The general water type for the area is a calcium and magnesium bicarbonate water and there are negligible amounts of toxic trace elements. The potential for water-quality problems exists in the area south of Yuba City along the west bank of the Feather River. There, concentrations of chloride, sulfate, and dissolved solids are higher than in other parts of the area, and they could limit future agricultural activities if chloride- and sulfate-sensitive crops are grown. (Woodard-USGS)

  19. Nitrate in ground water and spring water near four dairy farms in North Florida, 1990-93

    USGS Publications Warehouse

    Andrews, W.J.

    1994-01-01

    Concentrations of nitrate and other selected water- quality characteristics were analyzed periodically for two years in water from 51 monitoring wells installed at four farms and in water discharging from three nearby springs along the Suwannee River in Lafayette and Suwannee Counties to examine the quality of ground water at these farms and the transport of nutrients in ground water to the nearby spring-fed Suwannee River: Ground water from shallow wells, which were completed in the top ten feet of the saturated zone in a surficial sandy aquifer and in the karstic Upper Floridan aquifer generally had the highest concentrations of nitrate, ranging from <.02 to 130 mg/L as nitrogen. Nitrate concentrations commonly exceeded the primary drinking water standard of 10 mg/L for nitrate as nitrogen in water from shallow wells, which tapped the top ten feet of the uppermost aquifers near waste-disposal areas such as wastewater lagoons and defoliated, intensive-use areas near milking barns. Upgradient from waste-disposal areas, concentrations of nitrate in ground water were commonly less than 1 mg/L as nitrogen. Water samples from deep wells (screened 20 feet deeper than shallow wells in these aquifers) generally had lower concentrations of nitrate (ranging from <0.02 to 84 mg/L) than water from shallow wells. Water samples from the three monitored springs (Blue, Telford, and Convict Springs) had nitrate concentrations ranging from 1.5 to 6.5 mg/L as nitrogen, which were higher than those typically occurring in water from upgradient wells at the monitored dairy farms or from back- ground wells sampled in the region. Analyses of nitrogen isotope ratios in nitrate indicated that leachate from animal wastes was the principal source of nitrate in ground water adjacent to waste-disposal areas at the monitored and unmonitored dairy farms. Leachate from a combi- nation of fertilizers, soils, and animal wastes appeared to be the source of nitrate in ground- water downgradient from

  20. A modification of the finite-difference model for simulation of two dimensional ground-water flow to include surface-ground water relationships

    USGS Publications Warehouse

    Ozbilgin, M.M.; Dickerman, D.C.

    1984-01-01

    The two-dimensional finite-difference model for simulation of groundwater flow was modified to enable simulation of surface-water/groundwater interactions during periods of low streamflow. Changes were made to the program code in order to calculate surface-water heads for, and flow either to or from, contiguous surface-water bodies; and to allow for more convenient data input. Methods of data input and output were modified and entries (RSORT and HDRIVER) were added to the COEF and CHECKI subroutines to calculate surface-water heads. A new subroutine CALC was added to the program which initiates surface-water calculations. If CALC is not specified as a simulation option, the program runs the original version. The subroutines which solve the ground-water flow equations were not changed. Recharge, evapotranspiration, surface-water inflow, number of wells, pumping rate, and pumping duration can be varied for any time period. The Manning formula was used to relate stream depth and discharge in surface-water streams. Interactions between surface water and ground water are represented by the leakage term in the ground-water flow and surface-water mass balance equations. Documentation includes a flow chart, data deck instructions, input data, output summary, and program listing. Numerical results from the modified program are in good agreement with published analytical results. (USGS)

  1. Ground water hydrology of the Elizabethtown area, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Lyverse, M.A.

    1984-01-01

    The principal aquifer in a 52 square mile karst area in north central Kentucky is the St. Louis Limestone of Mississippian age. Unconsolidated residuum and surficial deposits of slumped material may store water and recharge the underlying limestone aquifer. Precipitation averages 49 inches annually; 6 inches recharges ground-water reservoirs. The shallow ground-water velocity ranged from 0.30 to 1.40 feet per second. Flow net analysis indicates that about 2 million gallons of water per day flows through a 1.8 mile wide section of the aquifer. A water-level contour map indicates that the hydraulic gradient averages 40 feet per mile and that the water levels near the city supply wells have not lowered in 10 years. The effects of three faults on the ground-water flow system is shown as ponding on the upthrown side of the faults. Caliper logs suggest that shallow ground-water flow occurs in sheet-like openings within 100 feet of land surface. The openings range in height from 1 inch or less to 6 feet. A test well penetrated 5 zones of horizontal openings. The specific capacity ranged from 11.5 to 12.1 gallons per minute per foot of drawdown after 12 and 72 hours of pumping at 280 to 510 gallons per minute. Water in 28 wells and springs meets most drinking water standards and generally is a very hard calcium bicarbonate type. Heavily pumped industrial and public-supply wells tend to yield water with high values of specific conductance and sulfate. Coliform bacteria varied widely in rural wells and the city springs. Seven wells had no coliform bacteria. (USGS)

  2. Eolian transport of geogenic hexavalent chromium to ground water

    USGS Publications Warehouse

    Wood, W.W.; Clark, D.; Imes, J.L.; Councell, T.B.

    2010-01-01

    A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.

  3. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1988-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  4. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  5. Assessing background ground water chemistry beneath a new unsewered subdivision

    USGS Publications Warehouse

    Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.

  6. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14

  7. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1999

    USGS Publications Warehouse

    Locke, G.L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1999. Data collected prior to 1999 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-99. At two water-supply wells median water levels for calendar year 1999 were unchanged from their respective baseline periods. At a nearby observation well, the 1999 median water level was slightly lower (0.1 foot) than its baseline period. At the remaining four wells in Jackass Flats, median water levels for 1999 were slightly higher (0.2 foot to 1.6 feet) than for their respective baseline periods.

  8. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  9. Research to More Effectively Manage Critical Ground-Water Basins

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  10. Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Conger, Randall W.; Ulrich, James E.; Asmussen, Michael P.

    2005-01-01

    This study, completed by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (T&GS), provides estimates of ground-water recharge for watersheds throughout Pennsylvania computed by use of two automated streamflow-hydrograph-analysis methods--PART and RORA. The PART computer program uses a hydrograph-separation technique to divide the streamflow hydrograph into components of direct runoff and base flow. Base flow can be a useful approximation of recharge if losses and interbasin transfers of ground water are minimal. The RORA computer program uses a recession-curve displacement technique to estimate ground-water recharge from each storm period indicated on the streamflow hydrograph. Recharge estimates were made using streamflow records collected during 1885-2001 from 197 active and inactive streamflow-gaging stations in Pennsylvania where streamflow is relatively unaffected by regulation. Estimates of mean-annual recharge in Pennsylvania computed by the use of PART ranged from 5.8 to 26.6 inches; estimates from RORA ranged from 7.7 to 29.3 inches. Estimates from the RORA program were about 2 inches greater than those derived from the PART program. Mean-monthly recharge was computed from the RORA program and was reported as a percentage of mean-annual recharge. On the basis of this analysis, the major ground-water recharge period in Pennsylvania typically is November through May; the greatest monthly recharge typically occurs in March.

  11. Ground-water resources and water-supply alternatives in the Wawona area of Yosemite National Park, California

    USGS Publications Warehouse

    Borchers, J.W.

    1996-01-01

    Planning efforts to implement the 1980 General Management Plan, which recommends relocating park administrative facilities and employee housing from Yosemite Valley in Yosemite National Park, California, have focused on the availability of water at potential relocation sites within the park. Ground-water resources and water-supply alternatives in the Wawona area, one of several potential relocation sites, were evaluated between June 1991 and October 1993. Ground water flowing from Biledo Spring near the headwaters of Rainier Creek, about 5 miles southeast of Wawona, is probably the most reliable source of good quality ground water for Wawona. A dilute calcium bicarbonate ground water flows from the spring at about 250 gallons per minute. No Giardia was detected in a water sample collected from Biledo Spring in July 1992. The concentration of dissolved 222radon at Biledo Spring was 420 picoCuries per liter, exceeding the primary drinking-water standard of 300 picoCuries per liter proposed by the U.S. Environmental Protection Agency. This concentration, however, was considerably lower than the concentrations of dissolved 222radon measured in ground water at Wawona. The median value for 15 wells sampled at Wawona was 4,500 picoCuries per liter. Water- quality samples from 45 wells indicate that ground water in the South Fork Merced River valley at Wawona is segregated vertically. Shallow wells produce a dilute calcium sodium bicarbonate water that results from chemical dissolution of minerals as water flows through fractured granitic rock from hillside recharge areas toward the valley floor. Tritium concentrations indicate that ground water in the shallow wells originated as precipitation after the 1960's when testing of atmospheric nuclear devices stopped. Ground water from the deep flowing wells in the valley floor is older sodium calcium chloride water. This older water probably originated either as precipitation during a climatically cooler period or as

  12. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  13. Radon-222 in the ground water of Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units.The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Significant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types.Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  14. Arsenic in ground water of the United States: occurrence and geochemistry

    USGS Publications Warehouse

    Welch, Alan H.; Westjohn, D.B.; Helsel, Dennis R.; Wanty, Richard B.

    2000-01-01

    Concentrations of naturally occurring arsenic in ground water vary regionally due to a combination of climate and geology. Although slightly less than half of 30,000 arsenic analyses of ground water in the United States were 1 μg/L, about 10% exceeded 10 μg/L. At a broad regional scale, arsenic concentrations exceeding 10 μg/L appear to be more frequently observed in the western United States than in the eastern half. Arsenic concentrations in ground water of the Appalachian Highlands and the Atlantic Plain generally are very low ( 1 μg/L). Concentrations are somewhat greater in the Interior Plains and the Rocky Mountain System. Investigations of ground water in New England, Michigan, Minnesota, South Dakota, Oklahoma, and Wisconsin within the last decade suggest that arsenic concentrations exceeding 10 μg/L are more widespread and common than previously recognized.Arsenic release from iron oxide appears to be the most common cause of widespread arsenic concentrations exceeding 10 μg/L in ground water. This can occur in response to different geochemical conditions, including release of arsenic to ground water through reaction of iron oxide with either natural or anthropogenic (i.e., petroleum products) organic carbon. Iron oxide also can release arsenic to alkaline ground water, such as that found in some felsic volcanic rocks and alkaline aquifers of the western United States. Sulfide minerals are both a source and sink for arsenic. Geothermal water and high evaporation rates also are associated with arsenic concentrations 10g/L in ground and surface water, particularly in the west.Arsenic release from iron oxide appears to be the most common cause of widespread arsenic concentrations exceeding 10 µg/L a ground water. This can occur in response to different geochemical conditions, including release of arsenic to ground water through reaction of iron oxide with either natural or anthropogenic (i.e., petroleum products) organic carbon. Iron oxide also can

  15. Arsenic in ground water in Tuscola County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  16. Ground Water and Surface Water in the Haiku Area, East Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The Haiku study area lies on the gently sloping eastern flank of the East Maui Volcano (Haleakala) between the drainage basins of Maliko Gulch to the west and Kakipi Gulch to the east. The study area lies on the northwest rift zone of East Maui Volcano, a geologic feature 3 to 5 miles wide marked by surface expressions such as cinder, spatter, and pumice cones. The study area contains two geologic units, the main shield-building stage Honomanu Basalt and the Kula Volcanics. The hydraulic conductivity of the Honomanu Basalt was estimated to be between 1,000 and 3,600 feet per day on the basis of aquifer tests and 3,300 feet per day on the basis of the regional recharge rate and observed ground-water heads. The hydraulic conductivity of the Kula Volcanics is expected to be several orders of magnitude lower. An estimated 191 million gallons per day of rainfall and 22 million gallons per day of fog drip reach the study area and about 98 million gallons per day enters the ground-water system as recharge. Nearly all of the ground water currently withdrawn in the study area is from well 5520-01 in Maliko Gulch, where historic withdrawal rates have averaged about 2.8 million gallons per day. An additional 18 million gallons per day of ground-water withdrawal is proposed. Flow in Waiohiwi Gulch, a tributary to Maliko Gulch, is perennial between about 2,000 ft and 4,000 ft altitude. At lower altitudes in Maliko Gulch, flow is perennial at only a few spots downstream of springs and near the coast. The Kuiaha and Kaupakulua Gulch systems are usually dry from sea level to an altitude of 350 feet and gain water from about 350 feet to about 900 feet altitude. The two main branches of the Kaupakulua Gulch system alternately gain and lose water as high as 2,400 feet altitude. Kakipi Gulch has perennial flow over much of its length but is often dry near the coast below 400 feet altitude. Fresh ground water occurs in two main forms: (1) as perched high-level water held up by

  17. Ground-water conditions in the central Virgin River basin, Utah

    USGS Publications Warehouse

    Cordova, R.M.; Sandberg, G.W.; McConkie, Wilson

    1972-01-01

    Water-rights problems have occurred in the central Virgin River basin and are expected to increase as development of the water resources increases. The Utah State Engineer needs a basic knowledge of ground-water conditions and of the relation of ground water to surface water as a first step to understanding and resolving the problems. Accordingly, the State Engineer requested the U. S. Geological Survey to make a ground-water investigation of the central Virgin River basin as part of the Statewide cooperative agreement with the Utah Department of Natural Resources. The investigation was begun July 1, 1968, and fieldwork was completed in August 1970. Detailed information was obtained for the principal aquifers and for recharge, movement, discharge, storage, utilization, and chemical quality of ground water. A progress report (Cordova, Sandberg, and McConkie, 1970) describes the general findings in the first year of the investigation.

  18. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....404 Treatment technique violations for ground water systems. (a) A ground water system with a...

  19. Ground-water flow and water quality in northeastern Union County, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1987-01-01

    A study was done by the U.S. Geological Survey, in cooperation with the Village of Richwood, Ohio, to determine directions of ground-water flow, ground-water-level fluctuations, and water quality in the northeastern part of Union County. The topography of the study area generally is featureless, and the land surfaces slopes gently eastward from 985 to 925 feet above sea level. Glacial deposits up to 48 feet thick cover the carbonate-bedrock aquifer. Three municipal wells and an adjoining abandoned landfill are located in an area previously excavated for clay deposits. An agricultural supply company is adjacent to the well field. Ground water flows from west to east with local variation to the northeast and southeast because of the influence of Fulton Creek. Richwood Lake occupies an abandoned sand-and-gravel quarry. Water-level fluctuations indicate that the and gravel deposits beneath the lake may be hydraulically connected to the bedrock aquifer. Water-quality data collected from 14 wells and Richwood Lake indicate that a hard to very hard calcium bicarbonate type water is characteristic of the study area. Dissolved solids ranged from 200 to 720 mg/L (Milligrams per liter) throughout the study area. Potassium ranged from 1.3 to 15 mg/L, with a median concentration of 2.0 mg/L. Concentration of 10 and 15 mg/L at one municipal well were five to eight times greater than the median concentration. Total organic carbon, ammonia, and organic nitrogen were present at every site. Concentrations of ammonia above 1 mg/L as nitrogen were found in water from two municipal wells and one domestic well. Total organic carbon was detected at a municipal well, a landfill well, and a domestic well at concentrations above 5 mg/L. Ground-water quality is similar throughout the study area except in the vicinity of the municipal well field, where water from one well had elevated concentrations of ammonia, dissolved manganese, dissolved chloride, dissolved, sodium, and total organic

  20. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  1. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1998

    USGS Publications Warehouse

    Locke, Glenn L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1998. Data collected prior to 1998 are graphically presented and data collected by other agencies (or as part of other Geolgical Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-98. At two water-supply wells and a nearby observation well, median water levels for calendar year 1998 were slightly lower (0.2 to 0.3 foot) than for their respective baseline periods. At the remaining four wells in Jackass Flats, median water levels for 1998 were unchanged at two wells and slightly higher (0.4 and 1.4 foot) at two wells than those for their respective baseline periods.

  2. GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...

  3. Characterization and identification of Na-Cl sources in ground water

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O'Kelly, D. J.

    2006-01-01

    Elevated concentrations of sodium (Na+) and chloride (Cl -) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br-), and iodide (I-) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I- and Br-; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources. Copyright ?? 2005 National Ground Water Association.

  4. Susceptibility of ground water to surface and shallow sources of contamination, Orange County, North Carolina

    USGS Publications Warehouse

    Terziotti, Silvia; Eimers, J.L.

    1999-01-01

    In 1998, the relative susceptibility of ground water in Orange County, North Carolina,to contamination from surface and shallow sources was evaluated. A geographic information system was used to build three county-wide layers--soil permeability, land use/land cover, and land-surface slope. The harmonic mean permeability of soil layers was used to estimate a location's capacity to transmit water through the soil. Values for each of these three factors were categorized and ranked from 1 to 10 according to relative potential for contamination. Each factor was weighted to reflect its relative potential contribution to ground-water contamination, then the factors were combined to create a relative susceptibility index. The relative susceptibility index was categorized to reflect lowest, low, moderate, high, and highest potential for ground-water contamination. The relative susceptibility index for about 12 percent of the area in Orange County was categorized as high or highest. The high and highest range areas have highly permeable soils, land cover or land-use activities that have a high contamination potential, and low to moderate slopes. Most of the county is within the moderate category of relative susceptibility to ground-water contamination. About 21 percent of the county is ranked as low or lowest relative susceptibility to ground-water contamination.

  5. Ground water in Oklahoma

    USGS Publications Warehouse

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U. S. Geological Survey, Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water resources investigations of the U. S. Geological Survey, In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board, In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator.

  6. Framework for a ground-water quality monitoring and assessment program for California

    USGS Publications Warehouse

    Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler

    2003-01-01

    The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has

  7. Ground-water recharge in the arid and semiarid southwestern United States

    USGS Publications Warehouse

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    fostered new types of recharge assessments. Chemical and isotopic techniques include an increasing variety of environmental tracers that are useful and robust. Physically based techniques include the use of heat as a tracer and computationally intensive geophysical imaging tools for characterizing hydrologic conditions in the unsaturated zone. Modeling-based techniques include spatially distributed water-budget computations using high-resolution remotely sensed and ground-based geographic data. Application of these techniques to arid and semiarid settings in the southwestern United States reveals distinct patterns of recharge corresponding to geologic setting, climatic and vegetative history, and land use. Analysis of recharge patterns shows that large expanses of alluvial basin floors are drying out under current climatic conditions, with little to no recharge to underlying ground water. Ground-water recharge occurs mainly beneath upland catchments in which thin soils overlie permeable bedrock, ephemeral channels in which flow may average only several hours per year, and active agricultural areas. The chapters in this professional paper represent a coordinated attempt to develop a better understanding of one of the Nation's most critical yet difficult-to-quantify renewable resources.

  8. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  9. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona--2003-04

    USGS Publications Warehouse

    Truini, Margot; Macy, Jamie P.; Porter, Thomas J.

    2005-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2003, total ground-water withdrawals were 7,240 acre-feet, industrial withdrawals were 4,450 acre-feet, and municipal withdrawals were 2,790 acre-feet. From 2002 to 2003, total withdrawals decreased by 10 percent, industrial withdrawals decreased by 4 percent, and municipal withdrawals decreased by 20 percent. Flowmeter testing was completed for 24 municipal wells in 2004. The median difference between pumping rates for the permanent meter and a test meter for all the sites tested was -2.9 percent. Values ranged from -10.9 percent at Forest Lake NTUA 1 to +7.8 percent at Rough Rock NTUA 2. From 2003 to 2004, water levels declined in 6 of 12 wells in the unconfined part of the aquifer, and the median change was -0.1 foot. Water levels declined in 7 of 11 wells in the confined part of the aquifer, and the median change was -2.7 feet. From the prestress period (prior to 1965) to 2003, the median water-level change for 26 wells was -23.2 feet. Median water-level change were -6.1 feet for 14 wells in the unconfined parts of the aquifer and and -72.1 feet for 12 wells in the confined part. Discharges were measured once in 2003 and once in 2004 at four springs. Discharge stayed the same at Pasture Canyon Spring, increased 9 percent at

  10. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 2002-03

    USGS Publications Warehouse

    Truini, Margot; Thomas, Blakemore E.

    2004-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2002, total ground-water withdrawals were 8,000 acre-feet, industrial use was 4,640 acre-feet, and municipal use was 3,360 acre-feet. From 2001 to 2002, total withdrawals increased by 4 percent, industrial use increased by 2 percent, and municipal use increased by 7 percent. Flowmeter testing was completed for 32 municipal wells in 2003. The median difference between pumping rates for the permanent meter and a test meter for all the sites tested was -2.0 percent. Values ranged from -13.7 percent at Hopi High School no. 2 to +12.9 percent at Shonto PM3. From 2002 to 2003, water levels declined in 5 of 13 wells in the unconfined part of the aquifer, and the median change was 0.0 foot. Water levels declined in 8 of 13 wells in the confined part of the aquifer, and the median change was -1.1 feet. From the prestress period (prior to 1965) to 2003, the median water-level change for 26 wells was -8.3 feet. Median water-level changes were -0.4 foot for 13 wells in the unconfirned part of the aquifer and -60.3 feet for 13 wells in the confined part. Discharges were measured once in 2002 and once in 2003 at four springs. Discharge decreased by 16 percent at Pasture Canyon Spring, increased 10 percent at Moenkopi Spring and 90 percent at an

  11. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona--2004-05

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2006-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2004, total ground-water withdrawals were 7,210 acre-feet, industrial withdrawals were 4,370 acre-feet, and municipal withdrawals were 2,840 acre-feet. From 2003 to 2004, total withdrawals decreased by less than 1 percent, industrial withdrawals decreased by 2 percent, and municipal withdrawals increased by 2 percent. From 2004 to 2005, annually measured water levels declined in 6 of 13 wells in the unconfined areas of the aquifer, and the median change was -0.1 foot. Water levels declined in 8 of 12 wells in the confined area of the aquifer, and the median change was -1.2 feet. From the prestress period (prior to 1965) to 2005, the median water-level change for 33 wells was -9.0 feet. Median water-level changes were -0.6 foot for 16 wells in the unconfined areas and -32.0 feet for 17 wells in the confined area. Discharges were measured once in 2004 and once in 2005 at four springs. Discharge increased by 8 percent at Pasture Canyon Spring, decreased by 5 percent at Moenkopi School Spring, increased by 71 percent at an unnamed spring near Dennehotso, and stayed the same at Burro Spring. For the period of record at each spring, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent

  12. Electrical-analog analysis of ground-water depletion in central Arizona

    USGS Publications Warehouse

    Anderson, T.W.

    1968-01-01

    The Salt River Valley and the lower Santa Cruz River basin are the two largest agricultural areas in Arizona. The extensive use of ground water for irrigation has resulted in the need for a thorough appraisal of the present and future ground-water resources. The ground-water reservoir provides 80 percent (3.2 million acre-feet) of the total annual water supply. The amount of water pumped greatly exceeds the rate at which the ground-water supply is being replenished and has resulted in water-level declines of as much as 20 feet per year in some places. The depletion problem is of economic importance because ground water will become more expensive as pumping lifts increase and well yields decrease. The use of electrical-analog modeling techniques has made it possible to predict future ground-water levels under conditions of continued withdrawal in excess of the rate of replenishment. The electrical system is a representation of the hydrologic system: resistors and capacitors represent transmissibility and storage coefficients. The analogy between the two systems is accepted when the data obtained from the model closely match the field data in this instance, measured water-level change since 1923. The prediction of future water-table conditions is accomplished by a simple extension of the pumping trends to determine the resultant effect on the regional water levels. The results of this study indicate the probable depths to water in central Arizona in 1974 and 1984 if the aquifer characteristics are accurately modeled and if withdrawal of ground water continues at the same rate and under the tame areal distribution as existed between 1958 and 1964. The greatest depths to water in 1984 will be more than 700 feet near Stanfield and more than 650 feet in Deer Valley and northeast of Gilbert. South of Eloy and northwest of Litchfield Park, a static water level of more than 550 feet is predicted. The total water-level decline in the 20-year period 1964-84 at the deepest

  13. Geostatistical applications in ground-water modeling in south-central Kansas

    USGS Publications Warehouse

    Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.

    1999-01-01

    This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described

  14. Hydrology and quality of ground water in northern Thurston County, Washington

    USGS Publications Warehouse

    Dion, N.P.; Turney, G.L.; Jones, M.A.

    1994-01-01

    Northern Thurston County is underlain by as much as 1,000 feet of unconsolidated deposits of Pleistocene Age, that are of both glacial and nonglacial origin. Interpretation of 17 geelogic sections led to the delineation of 7 major geohydrologic units, 3 of which constitute aquifers in the area. Precipi- tation ranges from about 35 to 65 inches per year across the study area. Estimates of gross recharge from precipitation indicate that the ground-water system of the area receives about 25 inches per year. The net recharge to the system (recharge from precipitation minus withdrawals from wells) is the equivalent of about 23 inches per year. Ground water generally moves toward marine bodiesand to major surface drainage channels. Leakage from Lake St. Clair, which lies in a compound kettle within permeable glacial outwash, is almost 24 feet per year per unit area. Leakage from the lake may make up part of the water that discharges at McAllister Springs, north of the lake. Of the few water-quality problems encountered, the most widespread is seawater intrusion, which is caused by the activities of man. Most water-quality problems in the study area, however, are due to natural causes. Iron concentrations axe as large as 21,000 micrograms per liter, manganese concentrations are as large as 3,400 micrograms per liter, and connate seawater is present in ground water in the southern pan of the study area.

  15. EPA Research Evaluating CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  16. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  17. Simulation of the effects of ground-water withdrawals and recharge on ground-water flow in Cape Cod, Martha's Vineyard, and Nantucket Island basins, Massachusetts

    USGS Publications Warehouse

    Masterson, John P.; Barlow, Paul M.

    1994-01-01

    The effects of changing patterns of ground-water pumping and aquifer recharge on the surface-water and ground-water hydrologic systems were determined for the Cape Cod, Martha's Vineyard, and Nantucket Island Basins. Three-dimensional, transient, ground-water-flow modelS that simulate both freshwater and saltwater flow were developed for the f1ow cells of Cape Cod which currently have large-capacity public-supply wells. Only the freshwater-flow system was simulated for the Cape Cod flow cells where public-water supply demands are satisfied by small-capacity domestic wells. Two- dimensional, finite-difference, change models were developed for Martha's Vineyard and Nantucket Island to determine the projected drawdowns in response to projected in-season pumping rates for 180 days of no aquifer recharge. Results of the simulations indicate very little change in the position of the freshwater-saltwater interface from predevelopment flow conditions to projected ground-water pumping and recharge rates for Cape Cod in the year 2020. Results of change model simulations for Martha's Vineyard and Nantucket Island indicate that the greatest impact in response to projected in-season ground-water pumping occurs at the pumping centers and the magnitude of the drawdowns are minimal with respect to the total thickness of the aquifers.

  18. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2004-01-01

    derived from Medano and Sand Creeks. Major ion chemistry of water from sites completed in the confined aquifer is different than water from sites completed in the unconfined aquifer, but insufficient data exist to quantify if the two aquifers are hydrologically disconnected. Radiocarbon dating of ground water in the confined aquifer indicates it is about 30,000 years old (plus or minus 3,000 years). The peak of the last major ice advance (Wisconsin) during the ice age occurred about 20,000 years before present; ground water from the confined aquifer is much older than that. Water quality and water levels of the interdunal ponds are not affected by waters from the confined aquifer. Instead, the interdunal ponds are affected directly by fluctuations in the water table of the unconfined aquifer. Any lowering of the water table of the unconfined aquifer would result in an immediate decrease in water levels of the interdunal ponds. The water quality of the interdunal ponds probably results from several factors, including the water quality of the unconfined aquifer, evaporation of the pond water, and biologic activity within the ponds.

  19. Quality of Shallow Ground Water in Three Areas of Unsewered Low-Density Development in Wyoming and Montana, 2001

    USGS Publications Warehouse

    Bartos, Timothy T.; Quinn, Thomas L.; Hallberg, Laura L.; Eddy-Miller, Cheryl A.

    2008-01-01

    The quality of shallow ground water underlying unsewered low-density development outside of Sheridan and Lander, Wyo., and Red Lodge, Mont., was evaluated. In 2001, 29 wells (10 each in Sheridan and Lander and 9 in Red Lodge) were installed at or near the water table and sampled for a wide variety of constituents to identify potential effects of human activities on shallow ground-water quality resulting from development on the land surface. All wells were completed in unconfined aquifers in unconsolidated deposits of Quaternary age with shallow water tables (less than 50 feet below land surface). Land use and land cover was mapped in detail within a 500-meter radius surrounding each well, and potential contaminant sources were inventoried within the radii to identify human activities that may affect shallow ground-water quality. This U.S. Geological Survey National Water-Quality Assessment ground-water study was conducted to examine the effects of unsewered low-density development that often surrounds cities and towns of many different sizes in the western United States?a type of development that often is informally referred to as ?exurban? or ?rural ranchette? development. This type of development has both urban and rural characteristics. Residents in these developments typically rely on a private ground-water well for domestic water supply and a private septic system for sanitary waste disposal. Although the quality of shallow ground water generally was suitable for domestic or other uses without treatment, some inorganic constituents were detected infrequently in ground water in the three study areas at concentrations larger than U.S. Environmental Protection Agency drinking-water standards or proposed standards. Natural factors such as geology, aquifer properties, and ground-water recharge rates likely influence most concentrations of these constituents. These inorganic constituents generally occur naturally in the study areas and were more likely to limit

  20. The effects of using ground water to maintain water levels of Cedar Lake, Wisconsin

    USGS Publications Warehouse

    McLeod, R.S.

    1980-01-01

    There were no identifiable changes in measured physical and chemical characteristics of lake water during sustained pumping of ground water into the lake, nor were there identifiable changes in the number or makeup of the phytoplankton community. Differences in physical and chemical characteristics of lake water and ground water added to the lake probably were not great enough to cause changes within the lake.

  1. Annual summary of ground-water conditions in Arizona, spring 1982 to spring 1983

    USGS Publications Warehouse

    ,

    1984-01-01

    The withdrawal of ground water was slightly less than 4.2 million acre-feet in Arizona in 1982, which is about 1.2 million acre-feet less than the amount withdrawn in 1981. Most of the decrease in 1982 was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Through 1982, slightly more than 193 million acre-feet of ground water had been withdrawn from the ground-water reservoirs in Arizona. The report contains three small-scale maps that show ground-water pumpage by areas, the status of the ground-water inventory and observation-well program, and the ground-water quality sampling program. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1983, and change in water level in selected wells from 1978 to 1983. A brief text summarizes the current ground-water conditions in the State. (USGS)

  2. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  3. Fundamentals of Ground-Water Modeling

    EPA Pesticide Factsheets

    This paper presents an overview of the essential components of ground-water flow and contaminant transport modeling in saturated porous media. While fractured rocks and fractured porous rocks may behave like porous media with respect to many flow and...

  4. Simulation of ground-water discharge to Biscayne Bay, southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian David

    2001-01-01

    As part of the Place-Based Studies Program, the U.S. Geological Survey initiated a project in 1996, in cooperation with the U.S. Army Corps of Engineers, to quantify the rates and patterns of submarine ground-water discharge to Biscayne Bay. Project objectives were achieved through field investigations at three sites (Coconut Grove, Deering Estate, and Mowry Canal) along the coastline of Biscayne Bay and through the development and calibration of variable-density, ground-water flow models. Two-dimensional, vertical cross-sectional models were developed for steady-state conditions for the Coconut Grove and Deering Estate transects to quantify local-scale ground-water discharge patterns to Biscayne Bay. A larger regional-scale model was developed in three dimensions to simulate submarine ground-water discharge to the entire bay. The SEAWAT code, which is a combined version of MODFLOW and MT3D, was used to simulate the complex variable-density flow patterns. Field data suggest that ground-water discharge to Biscayne Bay relative to the shoreline is restricted to within 300 meters at Coconut Grove, 600 to 1,000 meters at Deering Estate, and 100 meters at Mowry Canal. The vertical cross-sectional models, which were calibrated to the field data using the assumption of steady state, tend to focus ground-water discharge to within 50 to 200 meters of the shoreline. With homogeneous distributions for aquifer parameters and a constant-concentration boundary for Biscayne Bay, the numerical models could not reproduce the lower ground-water salinities observed beneath the bay, which suggests that further research may be necessary to improve the accuracy of the numerical simulations. Results from the cross-sectional models, which were able to simulate the approximate position of the saltwater interface, suggest that longitudinal dispersivity ranges between 1 and 10 meters, and transverse dispersivity ranges from 0.1 to 1 meter for the Biscayne aquifer. The three

  5. Potential health consequences of ground-water contamination by nitrates in Nebraska.

    PubMed

    Weisenburger, D D

    1993-01-01

    Ground water serves as the primary source of drinking water for nearly all of rural Nebraska. However, ground-water contamination by nitrates, largely due to the use of fertilizers, is an increasing problem. In an ecologic study, the author found that counties characterized by high fertilizer usage and significant ground-water contamination by nitrates also had a high incidence of non-Hodgkin's lymphoma. Other potential health effects of nitrates in drinking water are also discussed.

  6. Regional Water Table (2002) and Water-Level Changes in the Mojave River and Morongo Ground-Water Basins, Southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.; Stamos, Christina L.; Predmore, Steven K.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During 2002, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 600 wells, providing coverage for most of the basins. Twenty-eight hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 9 short-term (1997 to 2002) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 2000 and 2002 water levels throughout the basins. In the Mojave River ground-water basin, about 66 percent of the wells had water-level declines of 0.5 ft or more since 2000 and about 27 percent of the wells had water-level declines greater than 5 ft. The only area that had water-level increases greater than 5 ft that were not attributed to fluctuations in nearby pumpage was in the Harper Lake (dry) area where there has been a significant reduction in pumpage during the last decade. In the Morongo ground-water basin, about 36 percent of the wells had water-level declines of 0.5 ft or more and about 10 percent of the wells had water-level declines greater than 5 ft. Water-level increases greater than 5 ft were measured only in the Warren subbasin, where artificial

  7. Quantifying Ground-Water and Surface-Water Discharge from Evapotranspiration Processes in 12 Hydrographic Areas of the Colorado Regional Ground-Water Flow System, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    DeMeo, Guy A.; Smith, J. LaRue; Damar, Nancy A.; Darnell, Jon

    2008-01-01

    Rapid population growth in southern Nevada has increased the demand for additional water supplies from rural areas of northern Clark and southern Lincoln counties to meet projected water-supply needs. Springs and rivers in these undeveloped areas sustain fragile riparian habitat and may be susceptible to ground-water withdrawals. Most natural ground-water and surface-water discharge from these basins occurs by evapotranspiration (ET) along narrow riparian corridors that encompassed about 45,000 acres or about 1 percent of the study area. This report presents estimates of ground- and surface-water discharge from ET across 3.5 million acres in 12 hydrographic areas of the Colorado Regional Ground-Water Flow System. Ground-and surface-water discharge from ET were determined by identifying areas of ground- and surface-water ET, delineating areas of similar vegetation and soil conditions (ET units), and computing ET rates for each of these ET units. Eight ET units were identified using spectral-reflectance characteristics determined from 2003 satellite imagery, high-resolution aerial photography, and land classification cover. These ET units are dense meadowland vegetation (200 acres), dense woodland vegetation (7,200 acres), moderate woodland vegetation (6,100 acres), dense shrubland vegetation (5,800 acres), moderate shrubland vegetation (22,600 acres), agricultural fields (3,100 acres), non-phreatophytic areas (3,400,000 acres), and open water (300 acres). ET from diffuse ground-water and channelized surface-water is expressed as ETgs and is equal to the difference between total annual ET and precipitation. Total annual ET rates were calculated by the Bowen ratio and eddy covariance methods using micrometeorological data collected from four sites and estimated at 3.9 ft at a dense woodland site (February 2003 to March 2005), 3.6 ft at a moderate woodland site (July 2003 to October 2006), 2.8 ft at a dense shrubland site (June 2005 to October 2006), and 1.5 ft at a

  8. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  9. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  10. Bibliography of publications relating to ground water in Connecticut

    USGS Publications Warehouse

    Cushman, R.V.

    1950-01-01

    In 1939, when it became necessary to curtail the work being carried on by the Works Progress Administration, cooperation was arranged between the Federal Ecological Survey and the State Water Commission to continue investigations relative to the over-development of ground-water supplies in the New Haven area. From time to time additional funds have been made available to meet growing demands by the State for data on its ground-water supplied and the present cooperative program between the U.S. Geological Survey and the State Water Commission is a continuation of the original arrangement. It is estimated that about 14 per cont of the State has been covered by recent ground-water surveys and in addition some data are available for another 20 per cent of he State.

  11. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  12. Ground-water, surface-water and water-chemistry data, Black Mesa area, northeastern Arizona: 2001-02

    USGS Publications Warehouse

    Thomas, Blakemore E.

    2002-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 2001, total ground-water withdrawals were 7,680 acre-feet, industrial use was 4,530 acre-feet, and municipal use was 3,150 acre-feet. From 2000 to 2001, total withdrawals decreased by 1 percent, industrial use increased by 1 percent, and municipal use decreased by 3 percent. From 2001 to 2002, water levels declined in 5 of 14 wells in the unconfined part of the aquifer, and the median change was +0.2 foot. Water levels declined in 12 of 17 wells in the confined part of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2002, the median water-level change for 32 wells was -15.8 feet. Median water-level changes were -1.3 feet for 15 wells in the unconfined part of the aquifer and -31.7 feet for 17 wells in the confined part. Discharges were measured once in 2001 and once in 2002 at four springs. Discharges decreased by 26 percent and 66 percent at two springs, increased by 100 percent at one spring, and did not change at one spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent. Continuous records of surface-water discharge have been collected from 1976 to 2001 at Moenkopi Wash, 1996 to 2001 at Laguna Creek, 1993 to 2001 at Dinnebito Wash, and 1994 to 2001 at

  13. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  14. Geology and ground-water resources of Washington County, Colorado

    USGS Publications Warehouse

    McGovern, Harold E.

    1964-01-01

    Washington County, in northeastern Colorado, has an area of 2,520 square miles. The eastern two-thirds of the county, part of the High Plains physiographic section, is relatively flat and has been moderately altered by the deposition of loess and dune sand, and by stream erosion. The western one-third is a part of the South Platte River basin and has been deeply dissected by tributary streams. The soils and climate of the county are generally suited for agriculture, which is the principal industry. The rocks that crop out in the county influence the availability of ground water. The Pierre Shale, of Late Cretaceous age, underlies the entire area and ranges in thickness from 2,000 to 4,500 feet. This dense shale is a barrier to the downward movement of water and yields little or no water to wells. The Chadron Formation, of Oligocene age, overlies the Pierre Shale in the northern and central parts of the area. The thickness of the formation ranges from a few feet to about 300 feet. Small to moderate quantities of water are available from the scattered sand lenses and from the highly fractured zones of the siltstone. The Ogallala Formation, of Pliocene age, overlies the Chadron Formation and in Washington County forms the High Plains section of the Great Plains province. The thickness of the Ogallala Formation ranges from 0 to about 400 feet, and the yield from wells ranges from a few gallons per hour to about 1,500 gpm. Peorian loess, of Pleistocene age, and dune sand, of Pleistocene to Recent age, mantle a large pan of the county and range in thickness from a few inches to about 120 feet Although the loess and dune sand yield little water to wells, they absorb much of the precipitation and conduct the water to underlying formations. Alluvium, of Pleistocene and Recent age, occupies most of the major stream valleys in thicknesses of a few feet to about 250 feet. The yield of wells tapping the alluvium ranges from a few gallons per minute to about 3,000 gpm, according

  15. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  16. Hydrology and simulation of ground-water flow, Lake Point, Tooele County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.

    2006-01-01

    Water for new residential development in Lake Point, Utah may be supplied by public-supply wells completed in consolidated rock on the east side of Lake Point. Ground-water flow models were developed to help understand the effect the proposed withdrawal will have on water levels, flowing-well discharge, spring discharge, and ground-water quality in the study area. This report documents the conceptual and numerical ground-water flow models for the Lake Point area.The ground-water system in the Lake Point area receives recharge from local precipitation and irrigation, and from ground-water inflow from southwest of the area. Ground water discharges mostly to springs. Discharge also occurs to evapotranspiration, wells, and Great Salt Lake. Even though ground water discharges to Great Salt Lake, dense salt water from the lake intrudes under the less-dense ground water and forms a salt-water wedge under the valley. This salt water is responsible for some of the high dissolved-solids concentrations measured in ground water in Lake Point.A steady-state MODFLOW-2000 ground-water model of Tooele Valley adequately simulates water levels, ground-water discharge, and ground-water flow direction observed in Lake Point in 1969 and 2002. Simulating an additional 1,650 acre-feet per year withdrawal from wells causes a maximum projected drawdown of about 550 feet in consolidated rock near the simulated wells and drawdown exceeding 80 feet in an area encompassing most of the Oquirrh Mountains east of Lake Point. Drawdown in most of Lake Point ranges from 2 to 10 ft, but increases to more than 40 feet in the areas proposed for residential development. Discharge to Factory Springs, flowing wells, evapotranspiration, and Great Salt Lake is decreased by about 1,100 acre-feet per year (23 percent).The U.S. Geological Survey SUTRA variable-density ground-water-flow model generates a reasonable approximation of 2002 dissolved-solids concentration when simulating 2002 withdrawals. At most

  17. Heat, chloride, and specific conductance as ground water tracers near streams

    USGS Publications Warehouse

    Cox, M.H.; Su, G.W.; Constantz, J.

    2007-01-01

    Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.

  18. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    USGS Publications Warehouse

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  19. Statistical summaries of ground-water level data collected in the Suwannee River Water Management District, 1948 to 1994

    USGS Publications Warehouse

    Collins, J.J.; Freeman, L.D.

    1996-01-01

    Since 1948, ground-water level data have beensystematically collected from selected wells in theSuwannee River Water Management District (SRWMD) by the U.S. Geological Survey (USGS),the SRWMD, and other agencies. Records of waterlevels in the SRWMD (fig. 1), collected by the USGS and SRWMD through 1990, and by the SRWMD from 1990 to 1994, have been published for many years in the USGS annual report series "Water Resources Data for Florida." However, no systematic statistical summaries of water levels in the SRWMD have been previously published. The need for such statistical summary data forevaluations of drought severity, ground-water supplyavailability, and minimum water levels for regulatory purposes increases daily as demands for ground-water usage increase. Also, much of the base flow of the Suwannee River is dependent upon ground water. As the population and demand for ground water for drinking water and irrigation purposes increase, the ability to quickly and easily predict trends in ground-water availability will become paramount. In response to this need, the USGS, in cooperation with the SRWMD, compiled this report. Ground-water sta tistics for 136 sites are presented as well as figures showing water levels that were measured in wells from 1948 through September 1994. In 1994, the SRWMD and the USGS began a long- term program of cooperative studies designed tobetter understand minimum and maximum streamflows and ground-water levels in the SRWMD. Minimum and maximum flows and levels are needed by the district to manage the surface- and ground-water resources of the SRWMD and to maintain or improve the various ecosystems. Data evaluation was a necessary first step in the long- term SRWMD ground-water investigations program, because basic statistics for ground-water levels are not included in the USGS annual data reports such as "Water Resources Data for Florida, Water Year 1994" (Fran klin and others, 1995). Statistics included in this report were generated

  20. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  1. Geology and ground water of the Tualatin Valley, Oregon

    USGS Publications Warehouse

    Hart, D.H.; Newcomb, R.C.

    1965-01-01

    The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland. Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains. Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial aquifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development. The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers. The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor

  2. GROUND WATER ISSUE - PERFORMANCE EVALUATIONS OF PUMP-AND-TREAT REMEDIATIONS

    EPA Science Inventory

    One of the most commonly used ground-water remediation technologies is to pump contaminated water to the surface for treatment. Evaluating the effectiveness of pump-and-treat remediations at Superfund sites is an issue identified by the Regional Superfund Ground Water Forum as a ...

  3. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico

    USGS Publications Warehouse

    Bartolino, James R.; Niswonger, Richard G.

    1999-01-01

    An important gap in the understanding of the hydrology of the Middle Rio Grande Basin, central New Mexico, is the rate at which water from the Rio Grande recharges the Santa Fe Group aquifer system. Several methodologies-including use of the Glover-Balmer equation, flood pulses, and channel permeameters- have been applied to this problem in the Middle Rio Grande Basin. In the work presented here, ground-water temperature profiles and ground-water levels beneath the Rio Grande were measured and numerically simulated at four sites. The direction and rate of vertical ground-water flux between the river and underlying aquifer was simulated and the effective vertical hydraulic conductivity of the sediments underlying the river was estimated through model calibration. Seven sets of nested piezometers were installed during July and August 1996 at four sites along the Rio Grande in the Albuquerque area, though only four of the piezometer nests were simulated. In downstream order, these four sites are (1) the Bernalillo site, upstream from the New Mexico State Highway 44 bridge in Bernalillo (piezometer nest BRN02); (2) the Corrales site, upstream from the Rio Rancho sewage treatment plant in Rio Rancho (COR01); (3) the Paseo del Norte site, upstream from the Paseo del Norte bridge in Albuquerque (PDN01); and (4) the Rio Bravo site, upstream from the Rio Bravo bridge in Albuquerque (RBR01). All piezometers were completed in the inner-valley alluvium of the Santa Fe Group aquifer system. Ground-water levels and temperatures were measured in the four piezometer nests a total of seven times in the 24-month period from September 1996 through August 1998. The flux between the surface- and ground-water systems at each of the field sites was quantified by one-dimensional numerical simulation of the water and heat exchange in the subsurface using the heat and water transport model VS2DH. Model calibration was aided by the use of PEST, a model-independent computer program that uses

  4. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah

    USGS Publications Warehouse

    Mower, R.W.

    1981-01-01

    This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)

  5. Summary appraisals of the Nation's ground-water resources; Missouri Basin region

    USGS Publications Warehouse

    Taylor, O. James

    1978-01-01

    Comprehensive water-management planning in the Missouri Basin Region will require periodic or continuing inventory of precipitation, streamflow, surface-water storage, and ground water. Water demands for irrigation, industrial, public supply, and rural use are increasing rapidly. Reliance on ground-water supplies is increasing even though in many areas the ground water is still mostly undeveloped. Optimal use of water supplies will require the establishment of realistic goals and carefully conceived water-management plans, each of which will necessarily be based on an adequate baseline of hydrologic data and knowledge of the highly variable hydrologic systems in the region.

  6. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  7. Ground water for irrigation in the Snake River Basin in Idaho

    USGS Publications Warehouse

    Mundorff, Maurice John; Crosthwaite, E.G.; Kilburn, Chabot

    1964-01-01

    The Snake River basin, in southern Idaho, upstream from the mouth of the Powder River in Oregon, includes more than 50 percent of the land area and 65 percent of the total population of the State. More than 2.5 million acres of land is irrigated ; irrigation agriculture and industry allied with agriculture are the basis of the economy of the basin. Most of the easily developed sources of surface water are fully utilized, and few storage sites remain where water could be made available to irrigate lands under present economic conditions. Because surface-water supplies have be come more difficult to obtain, use of ground water has increased greatly. At the present time (1959), about 600,000 acres of land is irrigated with ground water. Ground-water development has been concentrated in areas where large amounts of water are available beneath or adjacent to tracts of arable land and where the depth to water is not excessive under the current economy. Under these criteria, many of the most favorable areas already have been developed; however, tremendous volumes of water are still available for development. In some places, water occurs at depths considered near or beyond the limit for economic recovery, whereas in some other places, water is reasonably close to the surface but no arable land is available in the vicinity. In other parts of the basin large tracts of arable land are without available water supply. Thus the chief tasks in development of the ground-water resources include not only locating and evaluating ground-water supplies but also the planning necessary to bring the water to the land. Irrigation began in the 1860's ; at the present time more than 10 million acre feet of surface water, some of which is recirculated water, is diverted annually for irrigation of more than 2.5 million acres. Diversion of this large quantity of water has had a marked effect on the ground-water regimen. In some areas, the water table has risen more than 100 feet and the

  8. Phenol adsorption by activated carbon produced from spent coffee grounds.

    PubMed

    Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C

    2011-01-01

    The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue.

  9. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  10. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    DOE PAGES

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; ...

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

  11. Shallow ground-water quality in selected agricultural areas of south-central Georgia, 1994

    USGS Publications Warehouse

    Crandall, C.A.

    1996-01-01

    The Georgia-Florida Coastal Plain National Water-Quality Assessment Program began an agricultural land-use study in March 1994. The study area is located in the upper Suwannee River basin in Tift, Turner, Worth, Irwin, Wilcox, and Crisp Counties, Ga. Twenty-three shallow monitoring wells were installed in a 1,335-square- mile area characterized by intensive row-crop agriculture (peanuts, corn, cotton, and soybeans). The study focused on recently recharged shallow ground water in surficial aquifers to assess the relation between land-use activities and ground- water quality. All wells were sampled in March and April (spring) 1994, and 14 of these wells were resampled in August (summer) 1994. Shallow ground water in the study area is characterized by oxic and acidic conditions, low bicarbonate, and low dissolved-solids concentrations. The median pH of shallow ground water was 4.7 and the median bicarbonate concentration was 1.7 mg/L (milligrams per liter). Dissolved oxygen concentrations ranged from 3.0 to 8.0 mg/L. The median dissolved-solids concentration in samples collected in the spring was 86 mg/L. Major inorganic ion composition was generally mixed with no dominant cation; nitrate was the dominant anion (greater than 60 percent of the anion composition) in 14 of 23 samples. Only concentrations of bicarbonate, dissolved organic carbon, and nitrate had significant differences in concentrations between samples collected in the spring and the background samples. However, median concentrations of some of the major ingredients in fertilizer (including magnesium, chloride, nitrate, iron, and manganese) were higher in water samples from agricultural wells than in background samples. The median concentration of dissolved solids in ground-water samples collected in the spring (86 mg/L) was more than double the median concentration (41 mg/L) of the background samples. The median nitrate as nitrogen concentration of 6.7 mg/L in the spring samples reflects the effects of

  12. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  13. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  14. Observation-well network for collection of ground-water level data in Massachusetts

    USGS Publications Warehouse

    Socolow, Roy S.

    1994-01-01

    Aquifers--water-bearing deposits of sand and gravel, glacial till, and fractured bedrock--provide an extensive and readily accessible ground-water supply in Massachusetts. Ground water affects our everyday lives, not just in terms of how much water is available, but also in terms of the position of ground-water levels in relation to land surface. Knowledge of ground-water levels is needed by Federal, State, and local agencies to help plan, manage, and protect ground-water supplies, and by private construction companies for site planning and evaluation. A primary part of the mission of the U.S. Geological Survey (USGS), Water Resources Division, is the systematic collection of ground-water, surface-water, and water-quality data. These data are needed to manage and protect the nation's water resources. The Massachusetts-Rhode Island District of the USGS, in cooperation with the Massachusetts Department of Environmental Management (DEM), Office of Water Resources, and county and town environmental agencies, has maintained a network of observation wells throughout the Commonwealth since the mid 1930's. The purpose of this network is to monitor seasonal and long-term changes in groundwater storage in different lithologic, topographic, and geographic settings. These data are analyzed to provide a monthly index of ground-water conditions to aid in water-resources management and planning, and to define long-term changes in water levels resulting from manmade stresses (such as pumping and construction-site drainage) and natural stresses (such as floods and droughts).

  15. Wyoming Water Resources Data, Water Year 2002, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2003-01-01

    Water resources data for the 2002 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 156 gaging stations; water quality for 33 gaging stations and 34 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  16. Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2004-01-01

    Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  17. Wyoming Water Resources Data, Water Year 2000, Volume 2. Ground Water

    USGS Publications Warehouse

    Mason, J.P.; Swanson, R.B.; Roberts, S.C.

    2001-01-01

    Water resources data for the 2000 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 141 gaging stations; stage and contents for 15 lakes and reservoirs; and water quality for 22 gaging stations and 21 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  18. Methanogenic biodegradation of creosote contaminants in natural and simulated ground-water ecosystems

    USGS Publications Warehouse

    Godsy, E. Michael; Goerlitz, Donald; Grbic-Galic, Dunja

    1992-01-01

    Wastes from a wood preserving plant in Pensacola, Florida have contaminated the near-surface sand-and-gravel aquifer with creosote-derived compounds and pentachlorophenol. Contamination resulted from the discharge of plant waste waters to and subsequent seepage from unlined surface impoundments that were in direct hydraulic contact with the ground water. Two distinct phases resulted when the creosote and water mixed: a denser than water hydrocarbon phase that moved vertically downward, and an organic-rich aqueous phase that moved laterally with the ground-water flow. The aqueous phase is enriched in organic acids, phenolic compounds, single- and double-ring nitrogen, sulfur, and oxygen containing compounds, and single- and double-ring aromatic hydrocarbons. The ground water is devoid of dissolved O2, is 60-70% saturated with CH4 and contains H2S. Field analyses document a greater decrease in concentration of organic fatty acids, benzoic acid, phenol, 2-, 3-, 4-methylphenol, quinoline, isoquinoline, 1(2H)-quinolinone, and 2(1H)-isoquinolinone during downgradient movement in the aquifer than could be explained by dilution and/or dispersion. Laboratory microcosm studies have shown that within the study region, this effect can be attributed to microbial degradation to CH4 and CO2. A small but active methanogenic population was found on sediment materials taken from highly contaminated parts of the aquifer.

  19. Geochemical characterization of shallow ground water in the Eutaw aquifer, Montgomery, Alabama

    USGS Publications Warehouse

    Robinson, J.L.; Journey, C.A.

    2004-01-01

    Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium-sodium-chloride- dominated type in the recharge area to calcium-bicarbonate-dominated type in the confined portion of the aquifer. Ground water in the recharge area was undersaturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite-plus-nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.

  20. Regional water table (2004) and water-level changes in the Mojave River and Morongo ground-water basins, Southwestern Mojave Desert, California

    USGS Publications Warehouse

    Stamos, Christina L.; Huff, Julia A.; Predmore, Steven K.; Clark, Dennis A.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During March and April 2004, the U.S. Geological Survey and other agencies made almost 900 water-level measurements in about 740 wells in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with historical data, changes in ground-water levels. A water-level contour map was drawn using data from 500 wells, providing coverage for most of the basins. In addition, 26 long-term (as much as 74 years) hydrographs were constructed which show water-level conditions throughout the basins, 9 short-term (1992 to 2004) hydrographs were constructed which show the effects of recharge and discharge along the Mojave River, and a water-level-change map was compiled to compare 2002 and 2004 water levels throughout the basins. The water-level change data show that in the Mojave River ground-water basin, more than one half (102) of the wells had water-level declines of 0.5 ft or more and almost one fifth (32) of the wells had declines greater than 5 ft. between 2002 and 2004. The water-level change data also show that about one tenth (17) of the wells compared in the Mojave River ground-water basin had water level increases of 0.5 ft or more. Most of the water-level increases were the result of stormflow in the Mojave River during March 2004, which resulted in recharge to wells in the floodplain aquifer mainly along the river in the Alto subarea and the Transition zone, and along the

  1. Simulation of ground-water flow, contributing recharge areas, and ground-water travel time in the Missouri River alluvial aquifer near Ft. Leavenworth, Kansas

    USGS Publications Warehouse

    Kelly, Brian P.

    2004-01-01

    The Missouri River alluvial aquifer near Ft. Leavenworth, Kansas, supplies all or part of the drinking water for Ft. Leavenworth; Leavenworth, Kansas; Weston, Missouri; and cooling water for the Kansas City Power and Light, Iatan Power Plant. Ground water at three sites within the alluvial aquifer near the Ft. Leavenworth well field is contaminated with trace metals and organic compounds and concerns have been raised about the potential contamination of drinking-water supplies. In 2001, the U.S. Geological Survey, U.S. Army Corps of Engineers, and the U.S. Army began a study of ground-water flow in the Missouri River alluvial aquifer near Ft. Leavenworth. Hydrogeologic data from 173 locations in the study area was used to construct a ground-water flow model (MODFLOW-2000) and particle-tracking program (MODPATH) to determine the direction and travel time of ground-water flow and contributing recharge areas for water-supply well fields within the alluvial aquifer. The modeled area is 28.6 kilometers by 32.6 kilometers and contains the entire study area. The model uses a uniform grid size of 100 meters by 100 meters and contains 372,944 cells in 4 layers, 286 columns, and 326 rows. The model represents the alluvial aquifer using four layers of variable thickness with no intervening confining layers. The model was calibrated to both quasi-steady-state and transient hydraulic head data collected during the study and ground-water flow was simulated for five well-pumping/river-stage scenarios. The model accuracy was calculated using the root mean square error between actual measurements of hydraulic head and model generated hydraulic head at the end of each model run. The accepted error for the model calibrations were below the maximum measurement errors. The error for the quasi-steady-state calibration was 0.82 meter; for the transient calibration it was 0.33 meter. The shape, size, and ground-water travel time within the contributing recharge area for each well or well

  2. Applications of thermal remote sensing to detailed ground water studies

    NASA Technical Reports Server (NTRS)

    Souto-Maior, J.

    1973-01-01

    Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.

  3. Determination of natural radioactivity by gross alpha and beta measurements in ground water samples.

    PubMed

    Turhan, S; Ozçitak, E; Taşkin, H; Varinlioğlu, A

    2013-06-01

    In this study, the activity concentrations of the gross α and β in ground water samples collected from the different drilled wells in Nevşehir province were measured to assess annual effective dose due to the ingestion of the water samples. Nevşehir province is one of the major cities of Cappadocia Region which is a popular tourist destination as it has many areas with unique geological, historic, and cultural features. Sampling and measurements were carried out in the autumn of 2011 and the spring of 2012. The values of the activity concentrations of the gross α and β measured in the water samples ranged from 80 to 380 mBq L(-1) with a mean of 192 mBq L(-1) and 120-3470 mBq L(-1) with a mean of 579 mBq L(-1) respectively. All values of the gross α were lower than the limit value of 500 mBq L(-1) while two ground water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). Therefore two water samples were the subject of further radioisotope-specific analysis. The obtained result indicated that the elevated activity concentrations of the gross β in these water samples are dominated by (40)K activity. Annual effective doses ranged from 0.04 to 0.20 mSv y(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  5. Annual summary of ground-water conditions in Arizona, Spring 1981 to Spring 1982

    USGS Publications Warehouse

    ,

    1982-01-01

    The withdrawal of ground water was about 5.4 million acre-feet in Arizona in 1981, which is about 800,000 acre-feet more than the amount withdrawn in 1980. Most of the increase in 1981 was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Through 1981, slightly more than 189 million acre-feet of ground water had been withdrawn from the ground-water reservoirs in Arizona. The report contains two small-scale maps that show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1982, and change in water level in selected wells from 1977 to 1982. A brief text summarizes the current ground-water conditions in the State. (USGS)

  6. Hydrogeolgy and Ground-Water-Flow Simulation in the Former Airfield Area of Naval Support Activity Mid-South, Millington, Tennessee

    USGS Publications Warehouse

    Haugh, Connor J.; Carmichael, John K.; Ladd, David E.

    2004-01-01

    Naval Support Activity Mid-South is a Department of the Navy base located in Millington, Tennessee. The facility was home to the Naval Aviation Technical Training Center from 1943 until 1996. As part of the Base Closure and Realignment Act of 1990, the primary training mission of the facility was realigned and most of the northern part of the base, referred to as the Northside and consisting primarily of an airfield, was transferred to the city of Millington in January 2000. During environmental investigations at the base, plumes of dissolved chlorinated solvents resulting from past aircraft maintenance and training operations were identified in shallow ground water beneath the airfield area. The airfield area containing the plumes has been designated as Area of Concern (AOC) A. Chlorinated solvents, primarily trichloroethene (TCE), are the principal contaminants in ground water at AOC A, with TCE identified in concentrations as high as 4,400 micrograms per liter. The nature and extent of these plumes at AOC A were addressed during a Resource Conservation and Recovery Act Facility Investigation, and selected options for remediation currently are being implemented under a corrective action program. As part of these efforts, the U.S. Geological Survey (USGS) is working with the Navy and its consultants to study the hydrogeologic framework of the base and surrounding area, with a focus on AOC A. Since 1997, investigations at and near the facility have produced data prompting revisions and additions to information published that year in two USGS reports. The updates are presented in this report and consist primarily of (1) refinements to selected hydrogeologic maps presented in the 1997 reports, on the basis of data collected from new wells at on- and off-base locations, (2) additional hydraulic-conductivity data collected for the alluvial-fluvial deposits aquifer at AOC A, and (3) construction of a potentiometric-surface map of the shallow aquifer for the former part

  7. Over-Water Aspects of Ground-Effect Vehicles

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Carter, Arthur W.; Schade, Robert O.

    1960-01-01

    The large thrust augmentation obtainable with annular-jet configurations in ground proximity has led to the serious investigation of ground-effect machines. The basic theoretical work on these phenomena has been done by Chaplin and Boehler. Large thrust-augmentation factors, however, can be obtained only at very low heights, that is, of the order of a few percent of the diameter of the vehicle. To take advantage of this thrust augmentation therefore the vehicle must be either very large or must operate over very smooth terrain. Over-land uses of these vehicles then will probably be rather limited. The water, however, is inherently smooth and those irregularities that do exist, that is waves, are statistically known. It appears therefore that some practical application of ground-effect machines may be made in over-water application.

  8. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  9. Simulated effects of development on regional ground-water/surface-water interactions in the northern Coastal Plain of New Jersey

    NASA Astrophysics Data System (ADS)

    Pucci, Amleto A.; Pope, Daryll A.

    1995-05-01

    Stream flow in the Coastal Plain of New Jersey is primarily controlled by ground-water discharge. Ground-water flow in a 400 square mile area (1035 km 2) of the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey was simulated to examine development effects on water resources. Simulations showed that historical development caused significant capture of regional ground-water discharge to streams and wetlands. The Cretaceous PRMA primarily is composed of fine to coarse sand, clays and silts which form the Upper and Middle aquifers and their confining units. The aquifer outcrops are the principal areas of recharge and discharge for the regional flow system and have many traversing streams and surface-water bodies. A quasi-three-dimensional numerical model that incorporated ground-water/surface-water interactions and boundary flows from a larger regional model was used to represent the PRMA. To evaluate the influence of ground-water development on interactions in different areas, hydrogeologically similar and contiguous model stream cells were aggregated as 'stream zones'. The model representation of surface-water and ground-water interaction was limited in the areas of confining unit outcrops and because of this, simulated ground-water discharge could not be directly compared with base flow. Significant differences in simulated ground-water and surface-water interactions between the predevelopment and developed system, include; (1) redistribution of recharge and discharge areas; (2) reduced ground-water discharge to streams. In predevelopment, the primary discharge for the Upper and Middle aquifers is to low-lying streams and wetlands; in the developed system, the primary discharge is to ground-water withdrawals. Development reduces simulated ground-water discharge to streams in the Upper Aquifer from 61.4 to 10% of the Upper Aquifer hydrologic budget (28.9%, if impounded stream flow is included). Ground-water discharge to streams

  10. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    USGS Publications Warehouse

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  11. Ground-water resources in the Hood Basin, Oregon

    USGS Publications Warehouse

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of

  12. Automated ground-water monitoring with Robowell: case studies and potential applications

    NASA Astrophysics Data System (ADS)

    Granato, Gregory E.; Smith, Kirk P.

    2002-02-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/

  13. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.; ,

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  14. Ground-water areas and well logs, central Sevier Valley, Utah

    USGS Publications Warehouse

    Young, Richard A.

    1960-01-01

    Between September 1959 and June 1960 the United States Geological Survey and the Utah State Engineer, with financial assistance from Garfield, Millard, Piute, Sanpete, and Sevier Counties and from local water-users’ associations, cooperated in an investigation to determine the structural framework of the central Sevier Valley and to evaluate the valley’s ground-water potential. An important aspect of the study was the drilling of 22 test holes under private contract. These data and other data collected during the course of the larger ground-water investigation of which the test drilling was a part will be evaluated in a report on the geology and ground-water resources of the central Sevier Valley. The present report has been prepared to make available the logs of test holes and to describe in general terms the availability of ground water in the different areas of the valley.

  15. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    USGS Publications Warehouse

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    Floridan aquifer, the major processes controlling the concentrations of major dissolved species included dissolution of calcite and dolomite, and degradation of organic matter under oxic conditions. The Upper Floridan aquifer is highly susceptible to contamination from activities at the land surface in the Tallahassee area. The presence of post-1950s concentrations of 3H in ground water from depths greater than 100 m below land surface indicates that water throughout much of the Upper Floridan aquifer has been recharged during the last 40 years. Even though mixing is likely between ground water and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, which due to dilution effects shows little if any impact from trace elements or nutrients that are present in surface waters.The water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface water. Chemical and isotopic analyses, tritium, and strontium-87/strontium-86 along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of groundwater. Differences in the composition of water isotopes in rainfall, groundwater and surface water were used to develop mixing models of surface water and groundwater. Even though mixing is likely between groundwater and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, showing little impact from trace elements present in surface waters.

  16. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  17. Reading Ground Water Levels with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  18. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    USGS Publications Warehouse

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  19. Summary appraisals of the Nation's ground-water resources; Ohio region

    USGS Publications Warehouse

    Bloyd, Richard M.

    1974-01-01

    Rapid advance of techniques in ground-water hydrology during recent years has provided methods which the hydrologist can use for evaluating planned ground-water development. Therefore, the manager can resolve the inherent problems that historically have bred caution when this part of our total water resource was considered for development.

  20. Dichlorobenzene in ground water: Evidence for long-term persistence

    USGS Publications Warehouse

    Barber, L.B.

    1988-01-01

    Hydrologic and geochemical evidence were used to establish the long-term persistence of dichlorobenzene in ground water that has been contaminated from 50 years of rapid-infiltration sewage disposal. An extensive plume of dichlorobenzene extends more than 3,500 meters downgradient from the disposal beds, with concentrations of the combined isomers ranging from less than 0.01 to over 1.0 ??g/l. Based on estimates of maximum ground-water flow velocities, a minimum age of 20 years was established for the farthest downgradient zone of dichlorobenzene contamination. Branched-chained, alkylbenzenesulfonic acid surfactants, that were introduced into the ground water prior to 1966, occur along with dichlorobenzene in the downgradient part of the plume, further establish residence of the compounds in the aquifer for at least 20 years. Although dichlorobenzene can be biologically degraded under aerobic conditions, its persistence at this field site is attributed to the dynamics of the ground-water system. Denitrifying conditions, resulting from the degradation of organic compounds in the aquifer near the disposal beds, appear to have enhanced the persistence of dichlorobenzene, which is not degraded by anaerobic bacteria. Biological degradation of dichlorobenzene in the aerobic part of the plume downgradient from the source is probably limited by the paucity of a suitable organic-carbon substrate and the low concentrations of dissolved oxygen in the contaminated ground water.

  1. Summary appraisals of the Nation's ground-water resources; Texas Gulf region

    USGS Publications Warehouse

    Baker, E.T.; Wall, James Ray

    1974-01-01

    Because significant amounts of ground water are available, the opportunities for expanded and conjunctive use of ground water and surface water should be considered in regional plans for water development and conservation. The complexities of water management and the difficulties of achieving an integrated system of total water management will require additional technical information.

  2. Summary appraisals of the Nation's ground-water resources; Texas-Gulf region

    USGS Publications Warehouse

    Baker, E.T.; Wall, J.R.

    1976-01-01

    Because significant amounts of ground water are available, the opportunities for expanded and conjunctive use of ground water and surface water should be considered in regional plans for water development and conservation. The complexities of water management and the difficulties of achieving an integrated system of total-water management will require additional technical information.

  3. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  4. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    USGS Publications Warehouse

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  5. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPAmore » ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.« less

  6. Ground-water resources of Cambodia

    USGS Publications Warehouse

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  7. Ground water chlorinated ethenes in tree trunks: Case studies, influence of recharge, and potential degradation mechanism

    USGS Publications Warehouse

    Vroblesky, D.A.; Clinton, B.D.; Vose, J.M.; Casey, C.C.; Harvey, G.J.; Bradley, P.M.

    2004-01-01

    Trichloroethene (TCE) was detected in cores of trees growing above TCE-contaminated ground at three sites: the Carswell Golf Course in Texas, Air Force Plant PJKS in Colorado, and Naval Weapons Station Charleston in South Carolina. This was true even when the depth to water was 7.9 m or when the contaminated aquifer was confined beneath ???3 m of clay. Additional ground water contaminants detected in the tree cores were cis-1,2-dichloroethene at two sites and tetrachloroethene at one site. Thus, tree coring can be a rapid and effective means of locating shallow subsurface chlorinated ethenes and possibly identifying zones of active TCE dechlorination. Tree cores collected over time were useful in identifying the onset of ground water contamination. Several factors affecting chlorinated ethene concentrations in tree cores were identified in this investigation. The factors include ground water chlorinated ethene concentrations and depth to ground water contamination. In addition, differing TCE concentrations around the trunk of some trees appear to be related to the roots deriving water from differing areas. Opportunistic uptake of infiltrating rainfall can dilute prerain TCE concentrations in the trunk. TCE concentrations in core headspace may differ among some tree species. In some trees, infestation of bacteria in decaying heartwood may provide a TCE dechlorination mechanism within the trunk.

  8. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  9. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  10. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    year period 1947-51, inclusive. Most irrigation wells in the Douglas basin are less than 200 feet in depth and usually produce less than 400 gpm (gallons per minute). The average specific capacity of the wells is about 12 gpm per foot of drawdown. Although water in some parts of the basin is artesian, all irrigation wells must be pumped. Ground water in the basin is generally of excellent to good quality for irrigation use, In small areas along the southern part of Whitewater Draw and east of Douglas the ground water is high in dissolved-solids content. Although most of the water is hard, it is generally satisfactory for domestic use. In many areas the fluoride content is more than 1.5 ppm (parts per million).

  11. Ground-water contamination in East Bay Township, Michigan

    USGS Publications Warehouse

    Twenter, F.R.; Cummings, T.R.; Grannemann, N.G.

    1985-01-01

    Glacial deposits, as much as 360 feet thick, underlie the study area. The upper 29 to 118 feet, a sand and gravel unit, is the aquifer tapped for water by all wells in the area. This unit is underlain by impermeable clay that is at least 100 feet thick. Ground-water flow is northeastward at an estimated rate of 3 to 6 feet per day. Hydraulic conductivities in the aquifer range from 85 to 150 feet per day; 120 feet per day provided the best match of field data in a ground-water flow model. The depth to water ranged from 1 to 20 feet. Chemical anlayses indicate that ground water is contaminated with organic chemicals from near the Hangar/Administration building at the U.S. Coast Guard Air Station to East Bay, about 4,300 feet northeast. The plume, which follows ground-water flow lines, ranges from 180 to 400 feet wide. In the upper reach of the plume, hydrocarbons less dense than water occur at the surface of the water table; they move downward in the aquifer as they move toward East Bay. Maximum concentrations of the major organic compounds include: benzene, 3,390 micrograms per liter; toluene, 55,500 micrograms per liter; xylene, 3,900 micrograms per liter; tetrachloroethylene, 3,410 micrograms per liter; and bis (2-ethyl hexyl) phthalate, 2,100 micrograms per liter. Soils are generally free of these hydrocarbons; however, in the vicinity of past drum storage, aircraft maintenance operations, and fuel storage and dispensing, as much as 1,100 micrograms per kilogram of tetrachloroethylene and 1,500 micrograms per kilogram of bis (2-ethyl hexyl) phthalate were detected. At a few locations higher molecular weight hydrocarbons, characteristic of petroleum distillates, were found.

  12. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  13. The water situation in the United States with special reference to ground water

    USGS Publications Warehouse

    McGuinness, Charles Lee

    1951-01-01

    This report constitutes appendixes B and C of a report prepared in April 1950 by the Geological Survey at the request of the President’s Water Resources Policy Commission. The full report was entitled "Water facts in relation to a national water-resources policy.” The brief text, entitled "Water in relation to the national economy,” and appendix A, entitled "A  summary of the water situation in the United States, with special reference to ground water,” were drafted by A. M. Piper of the Geological Survey and are to be published separately, in slightly modified form, under his name.This report discusses the occurrence of ground water in nature and its relation to surface water and to the national water picture as a whole, and it lists numerous existing water problems and discusses their solution.

  14. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarov, E. E.; Parsekian, A. D.; Schaefer, K.

    Ground penetrating radar (GPR) has emerged as an effective tool for estimating active layer thickness (ALT) and volumetric water content (VWC) within the active layer. In August 2013, we conducted a series of GPR and probing surveys using a 500 MHz antenna and metallic probe around Barrow, Alaska. Here, we collected about 15 km of GPR data and 1.5 km of probing data. We describe the GPR data processing workflow from raw GPR data to the estimated ALT and VWC. We then include the corresponding uncertainties for each measured and estimated parameter. The estimated average GPR-derived ALT was 41 cm,more » with a standard deviation of 9 cm. The average probed ALT was 40 cm, with a standard deviation of 12 cm. The average GPR-derived VWC was 0.65, with a standard deviation of 0.14.« less

  15. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska

    DOE PAGES

    Jafarov, E. E.; Parsekian, A. D.; Schaefer, K.; ...

    2018-01-09

    Ground penetrating radar (GPR) has emerged as an effective tool for estimating active layer thickness (ALT) and volumetric water content (VWC) within the active layer. In August 2013, we conducted a series of GPR and probing surveys using a 500 MHz antenna and metallic probe around Barrow, Alaska. Here, we collected about 15 km of GPR data and 1.5 km of probing data. We describe the GPR data processing workflow from raw GPR data to the estimated ALT and VWC. We then include the corresponding uncertainties for each measured and estimated parameter. The estimated average GPR-derived ALT was 41 cm,more » with a standard deviation of 9 cm. The average probed ALT was 40 cm, with a standard deviation of 12 cm. The average GPR-derived VWC was 0.65, with a standard deviation of 0.14.« less

  16. A national look at nitrate contamination of ground water

    USGS Publications Warehouse

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Knowing where and what type of risks to ground water exist can alert water-resource managers and private users of the need to protect water supplies. Although nitrate generally is not an adult public-health threat, ingestion in drinking water by infants can cause low oxygen levels in the blood, a potentially fatal condition (Spalding and Exner, 1993). For this reason, the U.S. Environmental Protection Agency (EPA) has established a drinking-water standard of 10 milligrams per liter (mg/L) nitrate as nitrogen (U.S. Environmental Protection Agency, 1995). Nitrate concentrations in natural ground waters are usually less than 2 mg/L (Mueller and others, 1995).

  17. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, G.A.; Stamos, C.L.; Predmore, S.K.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During 2002, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 660 wells, providing coverage for most of the basins. Twenty-eight hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 9 short-term (1997 to 2002) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 2000 and 2002 water levels throughout the basins. In the Mojave River ground-water basin, about 66 percent of the wells had water-level declines of 0.5 ft or more since 2000 and about 27 percent of the wells had water-level declines greater than 5 ft. The only area that had water-level increases greater than 5 ft that were not attributed to fluctuations in nearby pumpage was in the Harper Lake (dry) area where there has been a significant reduction in pumpage during the last decade. In the Morongo ground-water basin, about 36 percent of the wells had water-level declines of 0.5 ft or more and about 10 percent of the wells had water-level declines greater than 5 ft. Water-level increases greater than 5 ft were measured only in the Warren subbasin, where artificial

  18. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien

  19. Ground-water quality, water year 1995, and statistical analysis of ground-water-quality data, water years 1994-95, at the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Roybal, R.G.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was closed in 1989, and the Texas Natural Resources Conservation Commission issued permit number HW-50296 (U.S. Environmental Protection Agency number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in monitoring and evaluating ground-water quality at the site. One upgradient ground-water monitoring well (MW1) and two downgradient ground-water monitoring wells (MW2 and MW3), installed adjacent to the chromic acid pit, are monitored on a quarterly basis. Ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The ground-water level, measured in a production well located approximately 1,700 feet southeast of the Chromic Acid Pit site, has declined about 29.43 feet from 1982 to 1995. Depth to water at the Chromic Acid Pit site in September 1995 was 284.2 to 286.5 feet below land surface; ground-water flow at the water table is assumed to be toward the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site during water year 1995 contained dissolved- solids concentrations of 481 to 516 milligrams per liter. Total chromium concentrations detected above the laboratory reporting limit ranged from 0.0061 to 0.030 milligram per liter; dissolved chromium concentrations ranged from 0.0040 to 0.010 milligram per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.8 milligrams per

  20. 76 FR 48859 - Agency Information Collection Activities; Proposed Collection; Comment Request; Facility Ground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... Activities; Proposed Collection; Comment Request; Facility Ground-Water Monitoring Requirements AGENCY...) concerning groundwater monitoring reporting and recordkeeping requirements. This ICR is scheduled to expire... arrived at the estimate that you provide. 5. Offer alternative ways to improve the collection activity. 6...

  1. Volatile organic compounds in the nation's ground water and drinking-water supply wells

    USGS Publications Warehouse

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.

    2006-01-01

    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  2. Recycling ground water in Waushara County, Wisconsin : resource management for cold-water fish hatcheries

    USGS Publications Warehouse

    Novitzki, R.P.

    1976-01-01

    Other recharge-recycling schemes can also be evaluated. Estimating the recycling efficiency (of recharge ponds, trenches, spreading areas, or irrigated fields) provides a basis for predicting water-level declines, the concentration of conservative ions (conservative in the sense that no reaction other than mixing occurs to change the character of the ion being considered) in the water supply and in the regional ground-water system, and the temperature of the water supply. Hatchery development and management schemes can be chosen to optimize hatchery productivity or minimize operation costs while protecting the ground-water system.

  3. Ground-water/surface-water relations along Honey Creek, Washtenaw County, Michigan, 2003

    USGS Publications Warehouse

    Healy, Denis F.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Ann Arbor, Mich., investigated the ground-water/ surface-water relations along the lower reaches of Honey Creek, Washtenaw County, Mich., and an unnamed tributary to Honey Creek (the discharge tributary) from June through October 2003. Streamflow in these reaches was artificially high during a naturally low-flow period due to an anthropogenic discharge. Ground-water/surface-water relations were examined by seepage runs (series of streamflow measurements for the computation of streams gains or losses) and measurements of the difference in head between the stream surface and shallow aquifer. Specific conductance and water-temperature measurements were used as ancillary data to help identify gaining and losing reaches. Three seepage runs and four runs in which hydraulic-head differences between the stream and shallow aquifer were measured (piezometer runs) were made during periods of base flow. Streamflow measurements were made at 18 sites for the seepage runs. Instream piezometers were installed at 16 sites and bank piezometers were installed at 2 sites. Two deeper instream piezometers were installed at site 13 on September 4, 2003 to collect additional data on the ground-water/surface-water relations at that site. The seepage runs indicate that the main stem of Honey Creek and the discharge tributary in the study area are overall gaining reaches. The seepage runs also indicate that smaller reaches of Honey Creek and the discharge tributary may be losing reaches and that this relation may change over time with changing hydraulic conditions. The piezometer-run measurements support the seepage-run results on the main stem, whereas piezometer-run measurements both support and conflict with seepage-run measurements on the discharge tributary. Seepage runs give an average for the reach, whereas piezometer head-difference measurements are for a specific area around the piezometer. Data that may appear to be

  4. 18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Ground water withdrawal metering, recording, and reporting. 430.19 Section 430.19 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19...

  5. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; La Marche, Jonathan L.; Fisher, Bruce J.; Polette, Danial J.

    2007-01-01

    The upper Klamath Basin spans the California-Oregon border from the flank of the Cascade Range eastward to the Basin and Range Province, and encompasses the Klamath River drainage basin above Iron Gate Dam. Most of the basin is semiarid, but the Cascade Range and uplands in the interior and eastern parts of the basin receive on average more than 30 inches of precipitation per year. The basin has several perennial streams with mean annual discharges of hundreds of cubic feet per second, and the Klamath River at Iron Gate Dam, which represents drainage from the entire upper basin, has a mean annual discharge of about 2,100 cubic feet per second. The basin once contained three large lakes: Upper and Lower Klamath Lakes and Tule Lake, each of which covered areas of 100 to 150 square miles, including extensive marginal wetlands. Lower Klamath Lake and Tule Lake have been mostly drained, and the former lake beds are now cultivated. Upper Klamath Lake remains, and is an important source of irrigation water. Much of the wetland surrounding Upper Klamath Lake has been diked and drained, although efforts are underway to restore large areas. Upper Klamath Lake and the remaining parts of Lower Klamath and Tule Lakes provide important wildlife habitat, and parts of each are included in the Klamath Basin National Wildlife Refuges Complex. The upper Klamath Basin has a substantial regional ground-water flow system. The late Tertiary to Quaternary volcanic rocks that underlie the region are generally permeable, with transmissivity estimates ranging from 1,000 to 100,000 feet squared per day, and compose a system of variously interconnected aquifers. Interbedded with the volcanic rocks are late Tertiary sedimentary rocks composed primarily of fine-grained lake sediments and basin-filling deposits. These sedimentary deposits have generally low permeability, are not good aquifers, and probably restrict ground-water movement in some areas. The regional ground-water system is underlain

  6. Remediation of ground water containing volatile organic compounds and tritium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water inmore » this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ``pump-and-treat`` technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations.« less

  7. Thermal Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  8. Ground-water hydrology of Pahvant Valley and adjacent areas, Utah

    USGS Publications Warehouse

    1990-01-01

    The primary ground-water reservoir in Pahvant Valley and adjacent areas is in the unconsolidated basin fill and interbedded basalt. Recharge in 1959 was estimated to be about 70,000 acre-feet per year and was mostly by seepage from streams, canals, and unconsumed irrigation water and by infiltration of precipitation. Discharge in 1959 was estimated to be about 109,000 acre-feet and was mostly from springs, evapotranspiration, and wells.Water-level declines of more than 50 feet occurred in some areas between 1953 and 1980 because of less-than-normal precipitation and extensive pumping for irrigation. Water levels recovered most of these declines between 1983 and 1986 because of reduced withdrawals and record quantities of precipitation.The quality of ground water in the area west of Kanosh has deteriorated since large ground-water withdrawals began in about 1953. The cause of the deterioration probably is movement of poor quality water into the area from the southwest and possibly the west during periods of large ground-water withdrawals and recycling of irrigation water. The quality of water from some wells has improved since 1983, due to increased recharge and decreased withdrawals for irrigation.Water-level declines of m:>re than 80 feet in some parts of Pahvant Valley are projected if ground-water withdrawals continue for 20 years at the 1977 rate of about 96,000 acre-feet. Rises of as much as 58 feet and declines of as much as 47 feet are projected with withdrawals of 48,000 acre-feet per year for 20 years. The elimination of recharge from the Central Utah Canal is projected to cause water-level declines of up to 8 feet near the canal.

  9. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major

  10. Annual summary of ground-water conditions in Arizona, spring 1977 to spring 1978

    USGS Publications Warehouse

    ,

    1978-01-01

    The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1977. About 4.7 million acre-feet of ground water was used for the irrigation of crops in 1977. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1973-77, ground-water withdrawal in the two areas was about 8.1 and 5.1 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, scale 1:500 ,000, shows potential well production, depth to water in selected wells in spring 1978, and change in water level in selected wells from 1973 to 1978. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. (Woodard-USGS)

  11. Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California

    USGS Publications Warehouse

    Hanson, R.T.; Dettinger, M.D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.

  12. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for...

  13. Summary of the Ground-Water-Level Hydrologic Conditions in New Jersey 2006

    USGS Publications Warehouse

    Jones, Walter; Pope, Daryll

    2007-01-01

    Ground water is one of the Nation's most important natural resources. It provides about 40 percent of our Nation's public water supply. Currently, nearly one-half of New Jersey's drinking-water is supplied by over 300,000 wells that serve more than 4.3 million people (John P. Nawyn, U.S. Geological Survey, written commun., 2007). New Jersey's population is projected to grow by more than a million people by 2030 (U.S. Census Bureau, accessed March 2, 2006, at http://www.census.gov). As demand for water increases, managing the development and use of the ground-water resource so that the supply can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences is of paramount importance. This report describes the U.S. Geological Survey (USGS) New Jersey Water Science Center Observation Well Networks. Record low ground-water levels during water year 2006 (October 1, 2005 to September 30, 2006) are listed, and water levels in six selected water-table observation wells and three selected confined wells are shown in hydrographs. The report describes the trends in water levels in various confined aquifers in southern New Jersey and in water-table and fracture rock aquifers throughout the State. Web site addresses to access the data also are included. The USGS has operated a network of observation wells in New Jersey since 1923 for the purpose of monitoring ground-water-level changes throughout the State. Long-term systematic measurement of water levels in observation wells provides the data needed to evaluate changes in the ground-water resource over time. Records of ground-water levels are used to evaluate the effects of climate changes and water-supply development, to develop ground-water models, and to forecast trends.

  14. Geology and occurrence of ground water in Lyon County, Minnesota

    USGS Publications Warehouse

    Rodis, Harry G.

    1963-01-01

    Large quantities of ground water are available from melt-water channels in the county. Moderate quantities, adequate for domestic and small industrial needs, are available from many of the small isolated deposits of sand and gravel in the till. Small quantities of ground water, adequate only for domestic supply, generally can be obtained from Cretaceous sandstone.

  15. Ground-Water Resources of Saipan, Commonwealth of the Northern Meriana Islands

    USGS Publications Warehouse

    Carruth, Rob

    2003-01-01

    Introduction Saipan has an area of 48 mi2 and is the largest of the 14 islands in the Commonwealth of the Northern Mariana Islands (CNMI). The island is formed by volcanic rocks overlain by younger limestones. The island is situated in the western Pacific Ocean at latitude 15?12'N and longitude 145?45'E, about 3,740 mi west-southwest of Honolulu and midway between Japan and New Guinea (fig. 1). The climate on Saipan is classified as tropical marine with an average temperature of 80?F. The natural beauty of the island and surrounding waters are the basis for a growing tourist-based economy. The resulting rapid development and increases in resident and tourist populations have added stresses to the island's limited water supplies. Freshwater resources on Saipan are not readily observable because, aside from the abundant rainfall, most freshwater occurs as ground water. Fresh ground water is found in aquifers composed mainly of fragmental limestones. About 90 percent of the municipal water supply comes from 140 shallow wells that withdraw about 11 Mgal/d. The chloride concentration of water withdrawn from production wells ranges from less than 100 mg/L for wells in the Akgak and Capital Hill well fields, to over 2,000 mg/L from wells in the Puerto Rico, Maui IV, and Marpi Quarry well fields. The chloride concentrations and rates of ground-water production are not currently adequate for providing island residents with a potable 24-hour water supply and future demands are expected to be higher. To better understand the ground-water resources of the island, and water resources on tropical islands in general, the U.S. Geological Survey (USGS) entered into a cooperative program with the Commonwealth Utilities Corporation (CUC). The objective of the program, initiated in 1989, is to assess the ground-water resources of Saipan and to make hydrologic information available to the CUC in support of their ongoing efforts to improve the quality and quantity of the municipal water

  16. GWERD Overview: U.S. EPA's Ground Water and Ecosystems Restoration Division

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  17. Ground-water quality in Geauga County, Ohio; review of previous studies, status in 1999, and comparison of 1986 and 1999 data

    USGS Publications Warehouse

    Jagucki, Martha L.; Darner, Robert A.

    2001-01-01

    Most residents in Geauga County, Ohio, rely on ground water as their primary source of drinking water. With population growing at a steady rate, the possibility that human activity will affect ground-water quality becomes considerable. This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the Geauga County Planning Commission and Board of County Commissioners, to provide a brief synopsis of work previously done within the county, to assess the present (1999) ground-water quality, and to determine any changes in ground-water quality between 1986 and 1999. Previous studies of ground-water quality in the county have consistently reported that manganese and iron concentrations in ground water in Geauga County often exceed the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL). Road salt and, less commonly, oil-field brines and volatile organic compounds (VOCs) have been found in ground water at isolated locations. Nitrate has not been detected above the USEPA Maximum Contaminant Level (MCL) of 10 milligrams per liter as N; however, nitrate has been found in some locations at levels that may indicate the effects of fertilizer application or effluent from septic systems. Between June 7 and July 1, 1999, USGS personnel collected a total of 31 water-quality samples from wells completed in glacial deposits, the Pottsville Formation, the Cuyahoga Group, and the Berea Sandstone. All samples were analyzed for VOCs, sulfide, dissolved organic carbon, major ions, trace elements, alkalinity, total coliforms, and Escherichia coli bacteria. Fourteen of the samples also were analyzed for tritium. Water-quality data were used to determine (1) suitability of water for drinking, (2) age of ground water, (3) stratigraphic variation in water quality, (4) controls on water quality, and (5) temporal variation in water quality. Water from 16 of the 31 samples exceeded the Geauga County General Health

  18. Ground Water Atlas of the United States: Introduction and national summary

    USGS Publications Warehouse

    Miller, James A.

    1999-01-01

    The Ground Water Atlas of the United States provides a summary of the most important information available for each principal aquifer, or rock unit that will yield usable quantities of water to wells, throughout the 50 States, Puerto Rico, and the U.S. Virgin Islands. The Atlas is an outgrowth of the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey (USGS), a program that investigated 24 of the most important aquifers and aquifer systems of the Nation and one in the Caribbean Islands (fig. 1). The objectives of the RASA program were to define the geologic and hydrologic frameworks of each aquifer system, to assess the geochemistry of the water in the system, to characterize the ground-water flow system, and to describe the effects of development on the flow system. Although the RASA studies did not cover the entire Nation, they compiled much of the data needed to make the National assessments of ground-water resources presented in the Ground Water Atlas of the United States. The Atlas, however, describes the location, extent, and geologic and hydrologic characteristics of all the important aquifers in the United States, including those not studied by the RASA program. The Atlas is written so that it can be understood by readers who are not hydrologists. Simple language is used to explain technical terms. The principles that control the presence, movement, and chemical quality of ground water in different climatic, topographic, and geologic settings are clearly illustrated. The Atlas is, therefore, useful as a teaching tool for introductory courses in hydrology or hydrogeology at the college level and as an overview of ground-water conditions for consultants who need information about an individual aquifer. It also serves as an introduction to regional and National ground-water resources for lawmakers, personnel of local, State, or Federal agencies, or anyone who needs to understand ground-water occurrence, movement, and quality. The

  19. Determining the mean hydraulic gradient of ground water affected by tidal fluctuations

    USGS Publications Warehouse

    Serfes, Michael E.

    1991-01-01

    Tidal fluctuations in surface-water bodies produce progressive pressure waves in adjacent aquifers. As these pressure waves propagate inland, ground-water levels and hydraulic gradients continuously fluctuate, creating a situation where a single set of water-level measurements cannot be used to accurately characterize ground-water flow. For example, a time series of water levels measured in a confined aquifer in Atlantic City, New Jersey, showed that the hydraulic gradient ranged from .01 to .001 with a 22-degree change in direction during a tidal day of approximately 25 hours. At any point where ground water tidally fluctuates, the magnitude and direction of the hydraulic gradient fluctuates about the mean or regional hydraulic gradient. The net effect of these fluctuations on ground-water flow can be determined using the mean hydraulic gradient, which can be calculated by comparing mean ground- and surface-water elevations. Filtering methods traditionally used to determine daily mean sea level can be similarly applied to ground water to determine mean levels. Method (1) uses 71 consecutive hourly water-level observations to accurately determine the mean level. Method (2) approximates the mean level using only 25 consecutive hourly observations; however, there is a small error associated with this method.

  20. Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1977-01-01

    The Metropolitan Denver Sewage Disposal District and the City and County of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system included determining the direction of ground-water movement in the area, evaluating the impact of the wastedisposal activities on the chemical quality of local ground water, and evaluating the need for continued water-quality monitoring.Surficial geology of the area consists of two principal units: (1) Alluvium with a maximum thickness of about 25 feet (7.6 meters) deposited along stream channels, and (2) bedrock consisting of undifferentiated Denver and Dawson Formations. Ground water in formations less than 350 feet (110 meters) deep moves to the north, as does surface flow, while ground water in formations between 570 and 1,500 feet (170 and 460 meters) deep moves to the west. Estimates of ground-water velocity were made using assumed values for hydraulic conductivity and porosity, and the observed hydraulic gradient from the study area. Lateral velocities are estimated to be 380 feet (120 meters) per year in alluvium and 27 feet (8.2 meters) per year in the upper part of the bedrock formations. Vertical velocity is estimated to be 0.58 foot (0.18 meter) per year in the upper part of the bedrock formations.Potentiometric head decreases with depth in the bedrock formations indicating a potential for downward movement of ground water. However, waterquality analysis and the rate and direction of ground-water movement suggest that ground-water movement in the area is primarily in the lateral rather than the vertical direction. Five wells perforated in alluvium were found to have markedly degraded water quality. One well was located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others were located downgradient and near sewage-sludge burial areas