Sample records for active hormonal intake

  1. Prospective association between alcohol intake and hormone-dependent cancer risk: modulation by dietary fiber intake.

    PubMed

    Chhim, Anne-Sophie; Fassier, Philippine; Latino-Martel, Paule; Druesne-Pecollo, Nathalie; Zelek, Laurent; Duverger, Lucie; Hercberg, Serge; Galan, Pilar; Deschasaux, Mélanie; Touvier, Mathilde

    2015-07-01

    Alcohol intake is associated with increased circulating concentrations of sex hormones, which in turn may increase hormone-dependent cancer risk. This association may be modulated by dietary fiber intake, which has been shown to decrease steroid hormone bioavailability (decreased blood concentration and increased sex hormone-binding globulin concentration). However, this potential modulation has not been investigated in any prospective cohort. Our objectives were to study the relation between alcohol intake and the risk of hormone-dependent cancers (breast, prostate, ovarian, endometrial, and testicular) and to investigate whether dietary fiber intake modulated these associations. This prospective observational analysis included 3771 women and 2771 men who participated in the Supplémentation en Vitamines et Minéraux Antioxydants study (1994-2007) and completed at least 6 valid 24-h dietary records during the first 2 y of follow-up. After a median follow-up of 12.1 y, 297 incident hormone-dependent cancer cases, including 158 breast and 123 prostate cancers, were diagnosed. Associations were tested via multivariate Cox proportional hazards models. Overall, alcohol intake was directly associated with the risk of hormone-dependent cancers (tertile 3 vs. tertile 1: HR: 1.36; 95% CI: 1.00, 1.84; P-trend = 0.02) and breast cancer (HR: 1.70; 95% CI: 1.11, 2.61; P-trend = 0.04) but not prostate cancer (P-trend = 0.3). In stratified analyses (by sex-specific median of dietary fiber intake), alcohol intake was directly associated with hormone-dependent cancer (tertile 3 vs. tertile 1: HR: 1.76; 95% CI: 1.10, 2.82; P-trend = 0.002), breast cancer (HR: 2.53; 95% CI: 1.30, 4.95; P-trend = 0.02), and prostate cancer (HR: 1.37; 95% CI: 0.65, 2.89; P-trend = 0.02) risk among individuals with low dietary fiber intake but not among their counterparts with higher dietary fiber intake (P-trend = 0.9, 0.8, and 0.6, respectively). The P-interaction between alcohol and dietary fiber

  2. Menstrual cycle hormones, food intake, and cravings

    USDA-ARS?s Scientific Manuscript database

    Objective: Food craving and intake are affected by steroid hormones during the menstrual cycle, especially in the luteal phase, when craving for certain foods has been reported to increase. However, satiety hormones such as leptin have also been shown to affect taste sensitivity, and therefore food ...

  3. Associations between dietary acrylamide intake and plasma sex hormone levels

    PubMed Central

    Hogervorst, Janneke G.; Fortner, Renee T.; Mucci, Lorelei A.; Tworoger, Shelley S.; Eliassen, A. Heather; Hankinson, Susan E.; Wilson, Kathryn M.

    2013-01-01

    Background The rodent carcinogen acrylamide was discovered in 2002 in commonly consumed foods. Epidemiological studies have observed positive associations between acrylamide intake and endometrial, ovarian and breast cancer risks, which suggests that acrylamide may have sex-hormonal effects. Methods We cross-sectionally investigated the relationship between acrylamide intake and plasma levels of sex hormones and SHBG among 687 postmenopausal and 1300 premenopausal controls from nested case-control studies within the Nurses’ Health Studies. Results There were no associations between acrylamide and sex hormones or SHBG among premenopausal women overall or among never-smokers. Among normal-weight premenopausal women, acrylamide intake was statistically significantly positively associated with luteal total and free estradiol levels. Among postmenopausal women overall and among never-smokers, acrylamide was borderline statistically significantly associated with lower estrone sulfate levels but not with other estrogens, androgens, prolactin or SHBG. Among normal weight women, (borderline) statistically significant inverse associations were noted for estrone, free estradiol, estrone sulfate, DHEA, and prolactin, while statistically significant positive associations for testosterone and androstenedione were observed among overweight women. Conclusions Overall, this study did not show conclusive associations between acrylamide intake and sex hormones that would lend unequivocal biological plausibility to the observed increased risks of endometrial, ovarian and breast cancer. The association between acrylamide and sex hormones may differ by menopausal and overweight status. We recommend other studies investigate the relationship between acrylamide and sex hormones in women, specifically using acrylamide biomarkers. Impact The present study showed some interesting associations between acrylamide intake and sex hormones that urgently need confirmation. PMID:23983241

  4. Caffeinated beverage intake and reproductive hormones among premenopausal women in the BioCycle Study.

    PubMed

    Schliep, Karen C; Schisterman, Enrique F; Mumford, Sunni L; Pollack, Anna Z; Zhang, Cuilin; Ye, Aijun; Stanford, Joseph B; Hammoud, Ahmad O; Porucznik, Christina A; Wactawski-Wende, Jean

    2012-02-01

    Caffeinated beverages are widely consumed among women of reproductive age, but their association with reproductive hormones, and whether race modifies any such associations, is not well understood. We assessed the relation between caffeine and caffeinated beverage intake and reproductive hormones in healthy premenopausal women and evaluated the potential effect modification by race. Participants (n = 259) were followed for up to 2 menstrual cycles and provided fasting blood specimens for hormonal assessment at up to 8 visits per cycle and four 24-h dietary recalls per cycle. Weighted linear mixed models and nonlinear mixed models with harmonic terms were used to estimate associations between caffeine and hormone concentrations, adjusted for age, adiposity, physical activity, energy and alcohol intakes, and perceived stress. On the basis of a priori assumptions, an interaction between race and caffeine was tested, and stratified results are presented. Caffeine intake ≥200 mg/d was inversely associated with free estradiol concentrations among white women (β = -0.15; 95% CI: -0.26, -0.05) and positively associated among Asian women (β = 0.61; 95% CI: 0.31, 0.92). Caffeinated soda intake and green tea intake ≥1 cup/d (1 cup = 240 mL) were positively associated with free estradiol concentrations among all races: β = 0.14 (95% CI: 0.06, 0.22) and β = 0.26 (95% CI: 0.07, 0.45), respectively. Moderate consumption of caffeine was associated with reduced estradiol concentrations among white women, whereas caffeinated soda and green tea intakes were associated with increased estradiol concentrations among all races. Further research is warranted on the association between caffeine and caffeinated beverages and reproductive hormones and whether these relations differ by race.

  5. Caffeinated beverage intake and reproductive hormones among premenopausal women in the BioCycle Study123

    PubMed Central

    Schisterman, Enrique F; Mumford, Sunni L; Pollack, Anna Z; Zhang, Cuilin; Ye, Aijun; Stanford, Joseph B; Hammoud, Ahmad O; Porucznik, Christina A; Wactawski-Wende, Jean

    2012-01-01

    Background: Caffeinated beverages are widely consumed among women of reproductive age, but their association with reproductive hormones, and whether race modifies any such associations, is not well understood. Objective: We assessed the relation between caffeine and caffeinated beverage intake and reproductive hormones in healthy premenopausal women and evaluated the potential effect modification by race. Design: Participants (n = 259) were followed for up to 2 menstrual cycles and provided fasting blood specimens for hormonal assessment at up to 8 visits per cycle and four 24-h dietary recalls per cycle. Weighted linear mixed models and nonlinear mixed models with harmonic terms were used to estimate associations between caffeine and hormone concentrations, adjusted for age, adiposity, physical activity, energy and alcohol intakes, and perceived stress. On the basis of a priori assumptions, an interaction between race and caffeine was tested, and stratified results are presented. Results: Caffeine intake ≥200 mg/d was inversely associated with free estradiol concentrations among white women (β = −0.15; 95% CI: −0.26, −0.05) and positively associated among Asian women (β = 0.61; 95% CI: 0.31, 0.92). Caffeinated soda intake and green tea intake ≥1 cup/d (1 cup = 240 mL) were positively associated with free estradiol concentrations among all races: β = 0.14 (95% CI: 0.06, 0.22) and β = 0.26 (95% CI: 0.07, 0.45), respectively. Conclusions: Moderate consumption of caffeine was associated with reduced estradiol concentrations among white women, whereas caffeinated soda and green tea intakes were associated with increased estradiol concentrations among all races. Further research is warranted on the association between caffeine and caffeinated beverages and reproductive hormones and whether these relations differ by race. PMID:22237060

  6. Independent and combined effects of eating rate and energy density on energy intake, appetite, and gut hormones.

    PubMed

    Karl, J Philip; Young, Andrew J; Rood, Jennifer C; Montain, Scott J

    2013-03-01

    Energy density (ED) and eating rate (ER) influence energy intake; their combined effects on intake and on postprandial pancreatic and gut hormone responses are undetermined. To determine the combined effects of ED and ER manipulation on voluntary food intake, subjective appetite, and postprandial pancreatic and gut hormone responses. Twenty nonobese volunteers each consumed high (1.6 kcal g(-1) ; HED) and low (1.2 kcal g(-1) ; LED) ED breakfasts slowly (20 g min(-1) ; SR) and quickly (80 g min(-1) ; FR) ad libitum to satiation. Appetite, and pancreatic and gut hormone concentrations were measured periodically over 3 h. Ad libitum energy intake during the subsequent lunch was then measured. Main effects of ED and ER on energy intake and a main effect of ER, but not ED, on mass of food consumed were observed, FR and HED being associated with increased intake (P < 0.05). Across all conditions, energy intake was highest during FR-HED (P ≤ 0.01). Area under the curve (AUC) of appetite ratings was not different between meals. Main effects of ED and ER on insulin, peptide-YY, and glucagon-like peptide-1 AUC (P < 0.05) were observed, FR and HED being associated with larger AUC. No effects on active or total ghrelin AUC were documented. Total energy intake over both meals was highest during the FR-HED trial with the greatest difference between FR-HED and SR-LED trials (P ≤ 0.01). Consuming an energy dense meal quickly compounds independent effects of ER and ED on energy intake. Energy compensation at the following meal may not occur despite altered gut hormone responses. Copyright © 2013 The Obesity Society.

  7. Dietary Fat, Fiber, and Carbohydrate Intake and Endogenous Hormone Levels in Premenopausal Women

    PubMed Central

    Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E

    2011-01-01

    The authors conducted a cross-sectional study to investigate the associations of fat, fiber and carbohydrate intake with endogenous estrogen, androgen, and insulin-like growth factor (IGF) levels among 595 premenopausal women. Overall, no significant associations were found between dietary intake of these macronutrients and plasma sex steroid hormone levels. Dietary fat intake was inversely associated with IGF-I and IGF-binding protein 3 (IGFBP-3) levels. When substituting 5% of energy from total fat for the equivalent amount of energy from carbohydrate or protein intake, the plasma levels of IGF-I and IGFBP-3 were 2.8% (95% confidence interval [CI] 0.3, 5.3) and 1.6% (95% CI 0.4, 2.8) lower, respectively. Animal fat, saturated fat and monounsaturated fat intakes also were inversely associated with IGFBP-3 levels (P < 0.05). Carbohydrates were positively associated with plasma IGF-I level. When substituting 5% of energy from carbohydrates for the equivalent amount of energy from fat or protein intake, the plasma IGF-I level was 2.0% (95% CI 0.1, 3.9%) higher. No independent associations between fiber intake and hormone levels were observed. The results suggest that a low-fat/high-fiber or carbohydrate diet is not associated with endogenous levels of sex steroid hormones, but it may modestly increase IGF-I and IGFBP-3 levels among premenopausal women. PMID:21761370

  8. Thyroid hormone modulates food intake and glycemia via ghrelin secretion in Zucker fatty rats.

    PubMed

    Patel, K; Joharapurkar, A; Dhanesha, N; Patel, V; Kshirsagar, S; Raval, P; Raval, S; Jain, M R

    2014-10-01

    Hyperthyroidism is known to increase food intake and central administration of thyroid hormone shows acute orexigenic effects in rodents. We investigated whether T3 influences appetite and glucose homeostasis by modulating circulating ghrelin, an important orexigenic hormone, in Zucker fatty rats. The acute anorectic effects of T3 and ghrelin mimetic MK-0677 were studied in rats trained for fasting induced food intake. The serum concentration of T3, ghrelin, glucose, triglycerides, and liver glycogen were estimated. The involvement of sympathetic nervous system was evaluated by conducting similar experiments in vagotomized rats. T3 increased food intake and glucose in rats over 4 h, with increase in serum T3 and decrease in liver glycogen. T3 treatment was associated with increase in serum ghrelin. An additive effect on appetite and glucose was observed when T3 (oral) was administered with central (intracerebroventricular) administration of a ghrelin mimetic, MK-0677. Ghrelin antagonist, compound 8a, antagonized the hyperglycemic and hyperphagic effects of T3. In vagotomized rats, T3 did not show increase in appetite as well as glucose. Serum ghrelin levels were unchanged in these animals after T3 treatment. However, T3 showed increase in serum triglyceride levels indicating its peripheral lipolytic effect, in vagotomized as well as sham treated animals. To conclude, acute orexigenic and hyperglycemic effects of T3 are associated with ghrelin secretion and activity. This effect seems to be mediated via vagus nerves, and is independent of glucoregulatory hormones. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Lateral septum growth hormone secretagogue receptor affects food intake and motivation for sucrose reinforcement.

    PubMed

    Terrill, Sarah J; Wall, Kaylee D; Medina, Nelson D; Maske, Calyn B; Williams, Diana L

    2018-03-28

    The hormone ghrelin promotes eating and is widely considered to be a hunger signal. Ghrelin receptors, growth hormone secretagogue receptors (GHSRs), are found in a number of specific regions throughout the brain, including the lateral septum (LS), an area not traditionally associated with the control of feeding. Here we investigated whether GHSRs in the LS play a role in the control of food intake. We examined the feeding effects of ghrelin and the GHSR antagonists ([D-Lys3]-GHRP-6 and JMV 2959), at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS ghrelin significantly increased chow intake during the mid-light phase, suggesting that pharmacologic activation of LS GHSRs promotes feeding. Conversely, GHSR antagonist delivered to the LS shortly before dark onset significantly reduced chow intake. These data support the hypothesis that exogenous and endogenous stimulation of GHSRs in the LS influence feeding. Ghrelin is known to affect motivation for food, and the dorsal subdivision of LS (dLS) has been shown to play a role in motivation. Thus, we investigated the role of dLS GHSRs in motivation for food reward by examining operant responding for sucrose on a progressive ratio (PR) schedule. Intra-dLS ghrelin increased PR responding for sucrose, while blockade of LS GHSRs did not affect responding in either a fed or fasted state. Together these findings for the first time substantiate the LS as a site of action for ghrelin signaling in the control of food intake.

  10. Dietary intake, glucose metabolism and sex hormones in women with polycystic ovary syndrome (PCOS) compared with women with non-PCOS-related infertility.

    PubMed

    Tsai, Ya-Hui; Wang, Ting-Wen; Wei, Hsiao-Jui; Hsu, Chien-Yeh; Ho, Hsin-Jung; Chen, Wen-Hua; Young, Robert; Liaw, Chian-Mey; Chao, Jane C-J

    2013-06-28

    The present study investigated dietary intake, glucose metabolism and sex hormones in women with polycystic ovary syndrome (PCOS). A total of forty-five women (aged 25–40 years) with PCOS and 161 control women (aged 25–43 years) with non-PCOS-related infertility were recruited. Anthropometry, glucose tolerance and sex hormones were determined and dietary intake was assessed. Women with PCOS had lower serum sex hormone-binding globulin and increased BMI, waist:hip ratio, luteinising hormone, ratio of luteinising hormone: follicle-stimulating hormone, testosterone and free androgen index (FAI). Postprandial glucose, fasting insulin and insulin resistance were elevated in women with PCOS. Women with PCOS had reduced energy and carbohydrate intake but higher fat intake. Serum sex hormone-binding globulin level was negatively associated with BMI in both groups and negatively correlated with macronutrient intake in the PCOS group with hyperandrogenism. However, FAI was positively correlated with BMI, waist circumference and glucose metabolic parameters in both groups. Therefore, women with PCOS consume lower energy and carbohydrate compared with those with non-PCOS-related infertility and macronutrient intake is only negatively associated with serum sex hormone-binding globulin level in the PCOS group with hyperandrogenism.

  11. Relationship of long-term macronutrients intake on anabolic-catabolic hormones in female elite volleyball players.

    PubMed

    Mielgo Ayuso, Juan; Zourdos, Michael C; Urdampilleta, Aritz; Calleja González, Julio; Seco, Jesús; Córdova, Alfredo

    2017-10-24

    Specific macronutrient distribution and training can alter acute and chronic hormone behavior and, subsequently, sport performance. The main aim was to examine relationships between dietary intake and anabolic/catabolic hormone response in elite female volleyball players during a 29-week season. Twenty-two elite female volleyballers (26.4 ± 5.6 years; 178 ± 9 cm; 67.1 ± 7.5 kg) had dietary intake (seven-day dietary recall and food frequency questionnaire), blood concentration of anabolic/catabolic hormones concentration, physical performance, and body composition assessed at four time points: a) T1: baseline/pre-testing; b) T2: eleven weeks after T1; c) T3: ten weeks after T2; and d) T4: eight weeks after T3. Hormones evaluated were: total testosterone (TT), free testosterone (FT) adrenocorticotropic hormone (ACTH), and cortisol (C), along with hormone ratios. Positive correlations were observed between carbohydrate/protein ratio with ΔFT (r = 0.955; p < 0.001), ΔTT/C ratio (r = 0.638; p = 0.047), and ΔFT/C ratio (r = 0.909; p < 0.001). Significant and negative correlations were found between protein intake with ΔTT (r = -0.670; p = 0.034), and FT (r = -0.743; p < 0.001), carbohydrate intake and ΔACTH (r = -0.658; p = 0.006). No relationships were observed regarding Δcortisol. On the other hand, there was no change (p > 0.05) in body mass or body mass index at any time point, and the sum of six skinfolds improved (p < 0.05) from T1 (86.5 ± 6.9 mm) to T4 (75.2 ± 5.6 mm) as did muscle mass (T1: 28.9 ± 0.7 kg vsT4: 30.1 ± 0.8 kg). Vertical jump, spike-jump and speed improved (p < 0.05) from T1 to T4. A high carbohydrate/protein ratio was associated with positive changes in anabolism, while high protein and low carbohydrates (CHO) were associated with an attenuated anabolic response.

  12. Taste perception, associated hormonal modulation, and nutrient intake

    PubMed Central

    Loper, Hillary B.; La Sala, Michael; Dotson, Cedrick

    2015-01-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as “flavor.” It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495

  13. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  14. Better functional mobility in community-dwelling elderly is related to D-hormone serum levels and to daily calcium intake.

    PubMed

    Dukas, L; Staehelin, H B; Schacht, E; Bischoff, H A

    2005-01-01

    The influence of calcitropic hormones on functional mobility has been studied in vitamin D (calcidiol) deficient elderly or elderly with a history of falls, however, data in community-dwelling independent vitamin D replete elderly are missing. We therefore assessed in an observational survey the association of calcidiol (25(OH)D3) and calcitriol (D-hormone / 1,25(OH)2D3) status as well as of daily calcium intake on functional mobility in older subjects We evaluated 192 women and 188 men, aged superior 70 years and living independently. Average Timed-up and go test (TUG-test) in seconds was taken as measure of functional mobility. Calcidiol and D-hormone serum concentrations and daily calcium intake were studied in multivariate controlled linear regression models with TUG-test performance as the dependent variable and/or as dichotomous variables (deficient vs. non-deficient, above vs. below the median, respectively). Subjects with low D-hormone serum concentrations took significantly more time to perform the TUG-test (low = 7.70s +/- 2.52 SD ; high = 6.70s +/- 1.29 SD; p = 0.004). In the linear multivariate controlled regression model increased D-hormone serum concentrations predicted better TUG-test performance (estimate -0.0007, p = 0.044). Participants with a calcium intake of > or =512 mg/day were significantly faster to perform the TUG-test than participants with a daily calcium intake of <512 mg/day (estimate:-0.43, p = 0.007). Other significant predictors of better TUG-test performance in both models were: male gender, less comorbid conditions, younger age, lower BMI, iPTH serum levels and creatinine clearance. Calcidiol serum levels were not associated with TUG-test performance. Higher D-hormone status and a calcium intake of > or =512 mg/day in community-dwelling independent older persons are significant determinants of better functional mobility. Therefore, to ensure optimal functional mobility, the care of older persons should address correction of D-hormone

  15. 48-h Glucose infusion in humans: effect on hormonal responses, hunger and food intake

    PubMed Central

    Teff, Karen L.; Petrova, Maja; Havel, Peter J.; Townsend, Raymond R.

    2009-01-01

    Experimentally-induced hyperglycemia by prolonged glucose infusion allows investigation of the effects of sustained stimulation of the pancreatic β-cell on insulin secretion and sensitivity. Hormonal responses to a meal following prolonged glucose infusions have not been investigated. To determine if a 48-h glucose infusion alters hormonal responses to a test meal as well as food intake and hunger in normal weight individuals, 16 subjects (8 men, 8 women, age 18–30 y, mean BMI=21.7±1.6 kg/m2) were infused for 48-h with either saline (50 ml/h) or 15% glucose (200 mg/m2/min). Subjects ingested a 600 kcal mixed nutrient meal 3-h after infusion termination. Blood samples were taken during the 48-h and for 4 hours following food ingestion. The 48-h glucose infusion elicited a metabolic profile of a glucose intolerant obese subjects, with increased plasma glucose, insulin and leptin (all P<0.01) and increased HOMA-IR (P<0.001). During meal ingestion, early insulin secretion was increased (P<0.05) but postprandial glucose (P<0.01) and insulin (P<0.01) excursions were lower following the glucose infusion. Postprandial plasma triglyceride concentrations were increased after glucose compared with saline. Food intake and hunger ratings were not different between the two conditions. Plasma leptin levels were inversely correlated with hunger (P<0.03) in both conditions and with food intake (P<0.003) during the glucose condition only. Thus, a 48-h glucose infusion does not impair postprandial hormonal responses, alter food intake or hunger in normal weight subjects. The glucose-induced increases in plasma leptin result in a stronger inverse relationship between plasma leptin and hunger as well as food intake. These data are the first to demonstrate a relationship between leptin and hunger in normal weight, non-calorically restricted human subjects. PMID:17275862

  16. Ghrelin: much more than a hunger hormone

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  17. Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control.

    PubMed

    Stensel, David

    2010-01-01

    Knowledge about the relationship between exercise and appetite is important both for athletes wishing to optimise performance and for those interested in maintaining a healthy body weight. A variety of hormones are involved in appetite regulation including both episodic hormones, which are responsive to episodes of feeding, and tonic hormones, which are important regulators of energy storage over the longer term (e.g. insulin and leptin). Notable among the episodic appetite-regulating hormones is ghrelin, which plays a unique role in stimulating appetite and energy intake. Many studies have demonstrated that acute bouts of moderately vigorous exercise transiently suppress appetite and this has been termed 'exercise-induced anorexia'. The mechanisms by which acute exercise suppresses appetite are not fully understood but may involve lowered concentrations of ghrelin and increased concentrations of satiety hormones, notably peptide YY and glucagon-like peptide 1. Evidence suggests that chronic exercise training typically causes a partial but incomplete compensation in energy intake perhaps due to beneficial changes in appetite-regulating hormones. The lack of a full compensatory response of appetite to exercise may facilitate the development of a negative energy balance and weight loss although there is individual variability in the response to exercise. From a practical standpoint athletes should not feel concerned that exercise will cause overeating as there is limited evidence to support this. For those desiring weight loss there may be some merit in performing exercise in the postprandial period as a means of enhancing the satiating effect of a meal but additional evidence is required to confirm the effectiveness of this strategy. Copyright © 2011 S. Karger AG, Basel.

  18. Interrelationship Between Alcohol Intake and Endogenous Sex-Steroid Hormones on Diabetes Risk in Postmenopausal Women.

    PubMed

    Rohwer, Rachelle D; Liu, Simin; You, Nai-Chieh; Buring, Julie E; Manson, JoAnn E; Song, Yiqing

    2015-01-01

    We examined whether circulating concentrations of sex hormones, including estradiol, testosterone, sex hormone-binding globulin (SHBG), and dehydroepiandrosterone sulfate (DHEAS), were associated with alcohol intake or mediated the alcohol-type 2 diabetes (T2D) association. Among women not using hormone replacement therapy and free of baseline cardiovascular disease, cancer, and diabetes in the Women's Health Study, 359 incident cases of T2D and 359 matched controls were chosen during 10 years of follow-up. Frequent alcohol intake (≥1 drink/day) was positively and significantly associated with higher plasma estradiol concentrations in an age-adjusted model (β = 0.14, 95% confidence interval [CI], 0.03, 0.26), compared to rarely/never alcohol intake. After adjusting for additional known covariates, this alcohol-estradiol association remained significant (β = 0.19, 95% CI, 0.07, 0.30). Testosterone (β = 0.13, 95% CI, -0.05, 0.31), SHBG (β = 0.07, 95% CI, -0.07, 0.20), and DHEAS (β = 0.14, 95% CI, -0.04, 0.31) showed positive associations without statistical significance. Estradiol alone or in combination with SHBG appeared to influence the observed protective association between frequent alcohol consumption and T2D risk, with a 12%-21% reduction in odds ratio in the multivariate-adjusted models. Our cross-sectional analysis showed positive associations between alcohol intake and endogenous estradiol concentrations. Our prospective data suggested that baseline concentrations of estradiol, with or without SHBG, might influence the alcohol-T2D association in postmenopausal women.

  19. Taste perception, associated hormonal modulation, and nutrient intake.

    PubMed

    Loper, Hillary B; La Sala, Michael; Dotson, Cedrick; Steinle, Nanette

    2015-02-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes.

    PubMed

    Chen, Xuqi; Wang, Lixin; Loh, Dawn H; Colwell, Christopher S; Taché, Yvette; Reue, Karen; Arnold, Arthur P

    2015-09-01

    We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5months); food intake was measured second-by-second for 7days starting 5weeks later, and body weight and composition were measured for 22weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. FOOD-INTAKE DYSREGULATION IN TYPE 2 DIABETIC GOTO-KAKIZAKI RATS: HYPOTHESIZED ROLE OF DYSFUNCTIONAL BRAINSTEM THYROTROPIN-RELEASING HORMONE AND IMPAIRED VAGAL OUTPUT

    PubMed Central

    Zhao, K.; Ao, Y.; Harper, R.M.; Go, V. L.W.; Yang, H.

    2013-01-01

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56–81% in GK rats. Fasting (48 h) and refeeding (2 h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. PMID:23701881

  2. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output.

    PubMed

    Zhao, K; Ao, Y; Harper, R M; Go, V L W; Yang, H

    2013-09-05

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. Published by Elsevier Ltd.

  3. Effects of randomized whey-protein loads on energy intake, appetite, gastric emptying, and plasma gut-hormone concentrations in older men and women.

    PubMed

    Giezenaar, Caroline; Trahair, Laurence G; Luscombe-Marsh, Natalie D; Hausken, Trygve; Standfield, Scott; Jones, Karen L; Lange, Kylie; Horowitz, Michael; Chapman, Ian; Soenen, Stijn

    2017-09-01

    Background: Protein- and energy-rich supplements are used widely for the management of malnutrition in the elderly. Information about the effects of protein on energy intake and related gastrointestinal mechanisms and whether these differ between men and women is limited. Objective: We determined the effects of whey protein on energy intake, appetite, gastric emptying, and gut hormones in healthy older men and women. Design: Eight older women and 8 older men [mean ± SEM age: 72 ± 1 y; body mass index (in kg/m 2 ): 25 ± 1] were studied on 3 occasions in which they received protein loads of 30 g (120 kcal) or 70 g (280 kcal) or a flavored water control drink (0 kcal). At regular intervals over 180 min, appetite (visual analog scales), gastric emptying (3-dimensional ultrasonography), and blood glucose and plasma gut-hormone concentrations [insulin, glucagon, ghrelin, cholecystokinin, gastric inhibitory polypeptide (GIP), glucagon-like peptide 1 (GLP-1), and peptide tyrosine tyrosine (PYY)] were measured, and ad libitum energy intake was quantified from a buffet meal (180-210 min; energy intake, appetite, and gastric emptying in the men have been published previously). Results: Energy intake at the buffet meal was ∼80% higher in older men than in older women ( P < 0.001). Energy intake was not suppressed by protein compared with the control in men or women ( P > 0.05). There was no effect of sex on gastric emptying, appetite, gastrointestinal symptoms, glucose, or gut hormones ( P > 0.05). There was a protein load-dependent slowing of gastric emptying, an increase in concentrations of insulin, glucagon, cholecystokinin, GIP, GLP-1, and PYY, and an increase in total energy intake (drink plus meal: 12% increase with 30 g and 32% increase with 70 g; P < 0.001). Energy intake at the buffet meal was inversely related to the stomach volume and area under the curve of hormone concentrations ( P < 0.05). Conclusion: In older men and women, whey-protein drinks load

  4. Gastrointestinal hormones regulating appetite

    PubMed Central

    Chaudhri, Owais; Small, Caroline; Bloom, Steve

    2006-01-01

    The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood–brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the

  5. Effects of chewing on appetite, food intake and gut hormones: A systematic review and meta-analysis.

    PubMed

    Miquel-Kergoat, Sophie; Azais-Braesco, Veronique; Burton-Freeman, Britt; Hetherington, Marion M

    2015-11-01

    To seek insights into the relationship between chewing, appetite, food intake and gut hormones, and to consider potentially useful recommendations to promote benefits of chewing for weight management. Papers were obtained from two electronic databases (Medline and Cochrane), from searches of reference lists, and from raw data collected from the figures in the articles. A total of 15 papers were identified that detailed 17 trials. All 15 papers were included in the systematic review; however, a further five studies were excluded from the meta-analysis because appropriate information on hunger ratings was not available. The meta-analysis was conducted on a total of 10 papers that detailed 13 trials. Five of 16 experiments found a significant effect of chewing on satiation or satiety using self-report measures (visual analogue scales, VASs). Ten of 16 experiments found that chewing reduced food intake. Three of five studies showed that increasing the number of chews per bite increased relevant gut hormones and two linked this to subjective satiety. The meta-analysis found evidence of both publication bias and between study heterogeneity (IA(2) = 93.4%, tau(2) = 6.52, p < 0.001) which decreased, but remained, when covariates were considered. Analysis of the heterogeneity found a substantial effect of the fasting period where the duration of fasting influenced the decrease in hunger due to chewing. Prolonged mastication significantly reduces self-reported hunger levels (hunger: − 2.31 VAS point, 95% CI [− 4.67, − 1.38], p < 0.001). Evidence currently suggests that chewing may decrease self-reported hunger and food intake, possibly through alterations in gut hormone responses related to satiety. Although preliminary, the results identify a need for additional research in the area. Focused, uniform, experimental designs are required to clearly understand the relationships that exist between mastication, appetite, satiety, food intake and, ultimately, body weight.

  6. Effects of sleeve gastrectomy surgery with modified jejunoileal bypass on body weight, food intake and metabolic hormone levels of rats.

    PubMed

    Yan, Lingling; Zhu, Zhanyong; Wu, Dan; Zhou, Qixing; Wu, Yiping

    2011-12-01

    This study examined the effects of a combined surgery of sleeve gastrectomy (SG) and modified jejunoileal bypass (JIB) on the body weight, food intake, and the plasma levels of active glucagon-like peptide-1 (GLP-1) and total ghrelin of rats. Rats were divided into 3 groups in terms of different surgical protocol: SG-JIB (n=12), SG (n=12), JIB (n=12) and sham surgery groups (n=10). In SG-JIB group, rats was subjected to sleeve gastrectomy and end to side anastomosis of part of the jejunum (25 cm from the ligament of Treitz) to the ileum 25 cm proximal to the cecum. The body weight and food intake were evaluated during 10 consecutive weeks postoperatively. The levels of active GLP-1 and total ghrelin in the plasma of the rats were measured by ELISA assay. The results showed that the SG-JIB treated rats relative to SG- or JIB-treated ones produced a sustained reduction in food intake and weight gain. The level of active GLP-1 was elevated and total ghrelin level decreased in SG-JIB-treated rats as compared with SG- or JIB-treated ones. It was concluded that SG-JIB could efficiently reduce the body weight and food intake, alter obesity-related hormone levels of the rats, indicating that SG-JIB may be potentially used for the treatment of obesity.

  7. Ileal transposition surgery produces ileal length-dependent changes in food intake, body weight, gut hormones and glucose metabolism in rats.

    PubMed

    Ramzy, A R; Nausheen, S; Chelikani, P K

    2014-03-01

    Enhanced stimulation of the lower gut is hypothesized to play a key role in the weight loss and resolution of diabetes following bariatric surgeries. Ileal transposition (IT) permits study of the effects of direct lower gut stimulation on body weight, glucose homeostasis and other metabolic adaptations without the confounds of gastric restriction or foregut exclusion. However, the underlying mechanisms and the length of the ileum sufficient to produce metabolic benefits following IT surgery remain largely unknown. To determine the effects of transposing varying lengths of the ileum to upper jejunum on food intake, body weight, glucose tolerance and lower gut hormones, and the expression of key markers of glucose and lipid metabolism in skeletal muscle and adipose tissue in rats. Adult male Sprague-Dawley rats (n=9/group) were subjected to IT surgery with translocation of 5, 10 or 20 cm of the ileal segment to proximal jejunum or sham manipulations. Daily food intake and body weight were recorded, and an intraperitoneal glucose tolerance test was performed. Blood samples were assayed for hormones and tissue samples for mRNA (RT-qPCR) and/or protein abundance (immunoblotting) of regulatory metabolic markers. We demonstrate that IT surgery exerts ileal length-dependent effects on multiple parameters including: (1) decreased food intake and weight gain, (2) improved glucose tolerance, (3) increased tissue expression and plasma concentrations of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), and decreased leptin concentrations and (4) upregulation of key markers of glucose metabolism (glucose transporter-4 (GLUT-4), insulin receptor substrate 1 (IRS-1), adenosine monophosphate-activated protein kinase (AMPK), hexokinase (HK) and phosphofructokinase (PFK)) together with a downregulation of lipogenic markers (fatty acid synthase (FAS)) in muscle and adipose tissue. Together, our data demonstrate that the reduction in food intake and weight gain, increase in lower

  8. Effects of Experimental Sleep Restriction on Caloric Intake and Activity Energy Expenditure

    PubMed Central

    Calvin, Andrew D.; Carter, Rickey E.; Adachi, Taro; G. Macedo, Paula; Albuquerque, Felipe N.; van der Walt, Christelle; Bukartyk, Jan; Davison, Diane E.; Levine, James A.

    2013-01-01

    Background: Epidemiologic studies link short sleep duration to obesity and weight gain. Insufficient sleep appears to alter circulating levels of the hormones leptin and ghrelin, which may promote appetite, although the effects of sleep restriction on caloric intake and energy expenditure are unclear. We sought to determine the effect of 8 days/8 nights of sleep restriction on caloric intake, activity energy expenditure, and circulating levels of leptin and ghrelin. Methods: We conducted a randomized study of usual sleep vs a sleep restriction of two-thirds of normal sleep time for 8 days/8 nights in a hospital-based clinical research unit. The main outcomes were caloric intake, activity energy expenditure, and circulating levels of leptin and ghrelin. Results: Caloric intake in the sleep-restricted group increased by +559 kcal/d (SD, 706 kcal/d, P = .006) and decreased in the control group by −118 kcal/d (SD, 386 kcal/d, P = .51) for a net change of +677 kcal/d (95% CI, 148-1,206 kcal/d; P = .014). Sleep restriction was not associated with changes in activity energy expenditure (P = .62). No change was seen in levels of leptin (P = .27) or ghrelin (P = .21). Conclusions: Sleep restriction was associated with an increase in caloric consumption with no change in activity energy expenditure or leptin and ghrelin concentrations. Increased caloric intake without any accompanying increase in energy expenditure may contribute to obesity in people who are exposed to long-term sleep restriction. Trial Registration: ClinicalTrials.gov; No.: NCT01334788; URL: www.clinicaltrials.gov PMID:23392199

  9. Dietary vitamin D intake is not associated with 25-hydroxyvitamin D3 or parathyroid hormone in elderly subjects, whereas the calcium-to-phosphate ratio affects parathyroid hormone.

    PubMed

    Jungert, Alexandra; Neuhäuser-Berthold, Monika

    2013-08-01

    This cross-sectional study investigates whether serum 25-hydroxyvitamin D3 [25(OH)D3] and intact parathyroid hormone (iPTH) are affected by vitamin D, calcium, or phosphate intake in 140 independently living elderly subjects from Germany (99 women and 41 men; age, 66-96 years). We hypothesized that habitual dietary intakes of vitamin D, calcium, and phosphate are not associated with 25(OH)D3 or iPTH and that body mass index confounds these associations. Serum 25(OH)D3 and iPTH were measured by an electrochemiluminescence immunoassay. Dietary intake was determined using a 3-day estimated dietary record. The median dietary intake levels of vitamin D, calcium, and phosphate were 3 μg/d, 999 mg/d, and 1250 mg/d, respectively. Multiple regression analyses confirmed that dietary vitamin D and calcium did not affect 25(OH)D3 or iPTH; however, supplemental intakes of vitamin D and calcium were associated with 25(OH)D3 after adjustment for age, sex, body composition, sun exposure, physical activity, and smoking. In addition, phosphate intake and the calcium-to-phosphate ratio were associated with iPTH after multiple adjustments. In a subgroup analysis, calcium and vitamin D supplements, as well as phosphate intake, were associated with 25(OH)D3 and/or iPTH in normal-weight subjects only. Our results indicate that habitual dietary vitamin D and calcium intakes have no independent effects on 25(OH)D3 or iPTH in elderly subjects without vitamin D deficiency, whereas phosphate intake and the calcium-to-phosphate ratio affect iPTH. However, vitamin D and calcium supplements may increase 25(OH)D3 and decrease iPTH, even during the summer, but the impact of supplements may depend on body mass index. Copyright © 2013. Published by Elsevier Inc.

  10. Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration.

    PubMed

    Holliday, Adrian; Blannin, Andrew

    2017-12-01

    The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m 2 ; VO 2max  = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO 2max Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake - expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P  < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P  < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P  = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of

  11. Selective estrogen receptor modulator promotes weight loss in ovariectomized female rhesus monkeys (Macaca mulatta) by decreasing food intake and increasing activity.

    PubMed

    Sullivan, Elinor L; Shearin, Jean; Koegler, Frank H; Cameron, Judy L

    2012-04-01

    The effect of hormone replacement therapy (HRT) on body weight in postmenopausal women is controversial, with studies reporting an increase, a decrease, and no change in body weight. To examine estrogen receptor actions on body weight, we investigated the effects of treatment with a selective estrogen receptor modulator (SERM) on body weight, food intake, and activity and metabolic rate in a nonhuman primate model. Eighteen ovariectomized female rhesus monkeys were treated with a nonsteroidal SERM (GSK232802A, 5 mg/kg po) for 3 mo. GSK232802A decreased lutenizing hormone (P < 0.0001) and follicle-stimulating hormone levels (P < 0.0001), consistent with the estrogenic action of the compound. GSK232802A treatment produced a small but sustained weight loss (4.6 ± 1.0%, P < 0.0001) and reduced adiposity (P < 0.0001), which was due at least in part to a suppression of food intake (3.6 ± 3.7%, P < 0.0001). Physical activity increased during the 3rd mo of treatment (P = 0.04). Baseline activity level and the change in activity due to treatment were correlated, with the most sedentary individuals exhibiting increased physical activity during the 1st mo of treatment (P = 0.02). Metabolic rate did not change (P = 0.58). These results indicate that GSK232802A treatment reduces body weight and adiposity in ovariectomized nonhuman primates by suppressing food intake and increasing activity, particularly in the most sedentary individuals. These findings suggest that SERM treatment may counteract weight gain in postmenopausal women.

  12. The ghrelin/obestatin balance in the physiological and pathological control of growth hormone secretion, body composition and food intake.

    PubMed

    Hassouna, R; Zizzari, P; Tolle, V

    2010-07-01

    Ghrelin and obestatin are two gastrointestinal peptides obtained by post-translational processing of a common precursor, preproghrelin. Ghrelin is an orexigenic and adipogenic peptide and a potent growth hormone secretagogue (GHS) modified by the enzyme ghrelin-O-acyl-transferase to bind and activate its receptor, the GHS-R. The ghrelin/GHS-R pathway is complex and the effects of ghrelin on GH secretion, adiposity and food intake appear to be relayed by distinct mechanisms involving different transduction signals and constitutive activity for the GH-R, different cofactors as modulators of endogenous ghrelin signalling and/or alternative ghrelin receptors. The discovery of obestatin in 2005 brought an additional level of complexity to this fascinating system. Obestatin was initially identified as an anorexigenic peptide and as the cognate ligand for GPR39, but its effect on food intake and its ability to activate GPR39 are still controversial. Although several teams failed to reproduce the anorexigenic actions of obestatin, this peptide has been shown to antagonise GH secretion and food intake induced by ghrelin and could be an interesting pharmacological tool to counteract the actions of ghrelin. Ghrelin and obestatin immunoreactivities are recovered in the blood with an ultradian pulsatility and their concentrations in plasma vary with the nutritional status of the body. It is still a matter of debate whether both hormones are regulated by independent mechanisms and whether obestatin is a physiologically relevant peptide. Nevertheless, a significant number of studies show that the ghrelin/obestatin ratio is modified in anorexia nervosa and obesity. This suggests that the ghrelin/obestatin balance could be essential to adapt the body's response to nutritional challenges. Although measuring ghrelin and obestatin in plasma is challenging because many forms of the peptides circulate, more sensitive and selective assays to detect the different preproghrelin

  13. The Association of Macro- and Micronutrient Intake with Growth Hormone Secretion

    PubMed Central

    Denny-Brown, S.; Stanley, T.L.; Grinspoon, S.K.; Makimura, H.

    2012-01-01

    Context Growth hormone (GH) is known to be nutritionally regulated, but the effect of dietary composition on detailed GH secretion parameters has not previously been comprehensively evaluated. Objective The objective of the study was to determine whether specific macro- and micronutrients are associated with discrete parameters of GH secretion among subjects with wide ranges of body mass index. Design Detailed macro- and micronutrient intake was assessed by four-day food records while GH secretion was assessed by standard stimulation testing in 108 men and women in one study (Study 1), and by overnight frequent blood sampling in 12 men in another study (Study 2). Results Peak stimulated GH was positively associated with vitamin C (r=+0.29; P=0.003), dietary fiber (r=+0.27; P=0.004), arachidic acid (r=+0.25; P=0.008), and behenic acid (r=+0.30; P=0.002) intake in univariate analysis. Controlling for age, gender, race/ethnicity, visceral fat, HOMA-IR, total caloric intake and these four dietary factors in step-wise multivariate modeling, peak GH remained significantly associated with vitamin C and visceral fat (both P<0.05). In addition, vitamin C intake was associated with various parameters of endogenous GH secretion including basal GH secretion (r=+0.95; P<0.0001), GH half-life (r=+0.75; P=0.005), total GH production (r=+0.76; P=0.004), GH area-under-the-curve (r=+0.89; P=0.0001), mean log10 GH pulse area (r=+0.67; P=0.02), and overnight maximum (r=+0.62; P=0.03), nadir (r=+0.97; P<0.0001), and mean GH secretion (r=+0.89; P=0.0001). Conclusions These results suggest that certain micronutrients such as vitamin C intake are strongly and uniquely associated with stimulated and endogenous spontaneous GH secretion. PMID:22465725

  14. Hormone activation induces nucleosome positioning in vivo

    PubMed Central

    Belikov, Sergey; Gelius, Birgitta; Almouzni, Geneviève; Wrange, Örjan

    2000-01-01

    The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone. A robust hormone- and receptor-dependent activation could be reproduced in Xenopus laevis oocytes. The homogeneous response in this system allowed a detailed analysis of the transition in chromatin structure following hormone activation. This revealed two novel findings: hormone activation led to the establishment of specific translational positioning of nucleosomes despite the lack of significant positioning in the inactive state; and, in the active promoter, a subnucleosomal particle encompassing the glucocorticoid receptor (GR)-binding region was detected. The presence of only a single GR-binding site was sufficient for the structural transition to occur. Both basal promoter elements and ongoing transcription were dispensable. These data reveal a stepwise process in the transcriptional activation by glucocorticoid hormone. PMID:10698943

  15. Nutrient intake and hormonal status of premenopausal vegetarian Seventh-day Adventists and premenopausal nonvegetarians.

    PubMed

    Shultz, T D; Leklem, J E

    1983-01-01

    The relationship between dietary nutrients and plasma estrone, estradiol-17 beta, estriol, dehydroepiandrosterone sulfate, and prolactin levels was investigated in 14 premenopausal Seventh-day Adventist vegetarian (SV) women and 9 premenopausal non-Seventh-day Adventist nonvegetarian (NV) women. The SV subjects consumed less fat, especially saturated fat, and used significantly less fried food than the NV subjects. Plasma levels of estrone and estradiol-17 beta in the SV subjects were significantly lower than in the NV subjects. SV estradiol-17 beta and estriol levels were positively correlated with linoleic acid and protein intake, while NV prolactin levels were significantly correlated with intakes of oleic and linoleic acids and total fat. The data suggest that specific dietary nutrients were related to the hormonal milieu of these SV and NV subjects.

  16. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters.

    PubMed

    Schuhler, S; Warner, A; Finney, N; Bennett, G W; Ebling, F J P; Brameld, J M

    2007-04-01

    Thyrotrophin-releasing hormone (TRH) is known to play an important role in the control of food intake and energy metabolism in addition to its actions on the pituitary-thyroid axis. We have previously shown that central administration of TRH decreases food intake in Siberian hamsters. This species is being increasingly used as a physiological rodent model in which to understand hypothalamic control of long-term changes in energy balance because it accumulates fat reserves in long summer photoperiods, and decreases food intake and body weight when exposed to short winter photoperiods. The objectives of our study in Siberian hamsters were: (i) to investigate whether peripheral administration of TRH would mimic the effects of central administration of TRH on food intake and whether these effects would differ dependent upon the ambient photoperiod; (ii) to determine whether TRH would have an effect on energy expenditure; and (iii) to investigate the potential sites of action of TRH. Both peripheral (5-50 mg/kg body weight; i.p.) and central (0.5 microg/ml; i.c.v.) administration of TRH decreased food intake, and increased locomotor activity, body temperature and oxygen consumption in the Siberian hamster, with a rapid onset and short duration of action. Systemic treatment with TRH was equally effective in suppressing feeding regardless of ambient photoperiod. The acute effects of TRH are likely to be centrally mediated and independent of its role in the control of the production of thyroid hormones. We conclude that TRH functions to promote a catabolic energetic state by co-ordinating acute central and chronic peripheral (thyroid-mediated) function.

  17. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men.

    PubMed

    Douglas, Jessica A; King, James A; McFarlane, Ewan; Baker, Luke; Bradley, Chloe; Crouch, Nicole; Hill, David; Stensel, David J

    2015-09-01

    Single bouts of exercise do not cause compensatory changes in appetite, food intake or appetite regulatory hormones on the day that exercise is performed. It remains possible that such changes occur over an extended period or in response to a higher level of energy expenditure. This study sought to test this possibility by examining appetite, food intake and appetite regulatory hormones (acylated ghrelin, total peptide-YY, leptin and insulin) over two days, with acute bouts of exercise performed on each morning. Within a controlled laboratory setting, 15 healthy males completed two, 2-day long (09:00-16:00) experimental trials (exercise and control) in a randomised order. On the exercise trial participants performed 60 min of continuous moderate-high intensity treadmill running (day one: 70.1 ± 2.5% VO2peak, day two: 70.0 ± 3.2% VO2max (mean ± SD)) at the beginning of days one and two. Across each day appetite perceptions were assessed using visual analogue scales and appetite regulatory hormones were measured from venous blood samples. Ad libitum energy and macronutrient intakes were determined from meals provided two and six hours into each day and from a snack bag provided in-between trial days. Exercise elicited a high level of energy expenditure (total = 7566 ± 635 kJ across the two days) but did not produce compensatory changes in appetite or energy intake over two days (control: 29,217 ± 4006 kJ; exercise: 28,532 ± 3899 kJ, P > 0.050). Two-way repeated measures ANOVA did not reveal any main effects for acylated ghrelin or leptin (all P > 0.050). However a significant main effect of trial (P = 0.029) for PYY indicated higher concentrations on the exercise vs. control trial. These findings suggest that across a two day period, high volume exercise does not stimulate compensatory appetite regulatory changes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays.

    PubMed

    Brand, Walter; de Jongh, Cindy M; van der Linden, Sander C; Mennes, Wim; Puijker, Leo M; van Leeuwen, Cornelis J; van Wezel, Annemarie P; Schriks, Merijn; Heringa, Minne B

    2013-05-01

    To screen for hormonal activity in water samples, highly sensitive in vitro CALUX bioassays are available which allow detection of estrogenic (ERα), androgenic (AR), progestagenic (PR), and glucocorticoid (GR) activities. This paper presents trigger values for the ERα, AR, PR, and GR CALUX bioassays for agonistic hormonal activities in (drinking) water, which define a level above which human health risk cannot be waived a priori and additional examination of specific endocrine activity may be warranted. The trigger values are based on 1) acceptable or tolerable daily intake (ADI/TDI) values of specific compounds, 2) pharmacokinetic factors defining their bioavailability, 3) estimations of the bioavailability of unknown compounds with equivalent hormonal activity, 4) relative endocrine potencies, and 5) physiological, and drinking water allocation factors. As a result, trigger values of 3.8ng 17β-estradiol (E2)-equivalents (eq)/L, 11ng dihydrotestosterone (DHT)-eq/L, 21ng dexamethasone (DEX)-eq/L, and 333ng Org2058-eq/L were derived. Benchmark Quotient (BQ) values were derived by dividing hormonal activity in water samples by the derived trigger using the highest concentrations detected in a recent, limited screening of Dutch water samples, and were in the order of (value) AR (0.41)>ERα (0.13)>GR (0.06)>PR (0.04). The application of trigger values derived in the present study can help to judge measured agonistic hormonal activities in water samples using the CALUX bioassays and help to decide whether further examination of specific endocrine activity followed by a subsequent safety evaluation may be warranted, or whether concentrations of such activity are of low priority with respect to health concerns in the human population. For instance, at one specific drinking water production site ERα and AR (but no GR and PR) activities were detected in drinking water, however, these levels are at least a factor 83 smaller than the respective trigger values, and

  19. Thyroid hormones and fetal brain development.

    PubMed

    Pemberton, H N; Franklyn, J A; Kilby, M D

    2005-08-01

    Thyroid hormones are intricately involved in the developing fetal brain. The fetal central nervous system is sensitive to the maternal thyroid status. Critical amounts of maternal T3 and T4 must be transported across the placenta to the fetus to ensure the correct development of the brain throughout ontogeny. Severe mental retardation of the child can occur due to compromised iodine intake or thyroid disease. This has been reported in areas of the world with iodine insufficiency, New Guinea, and also in mother with thyroid complications such as hypothyroxinaemia and hyperthyroidism. The molecular control of thyroid hormones by deiodinases for the activation of thyroid hormones is critical to ensure the correct amount of active thyroid hormones are temporally supplied to the fetus. These hormones provide timing signals for the induction of programmes for differentiation and maturation at specific stages of development. Understanding these molecular mechanisms further will have profound implications in the clinical management of individuals affected by abnormal maternal of fetal thyroid status.

  20. Comparison of Dietary Intake and Physical Activity between Women with and without Polycystic Ovary Syndrome: A Review12

    PubMed Central

    Lin, Annie W.; Lujan, Marla E.

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age worldwide. In addition to deleterious effects on fertility imparted by PCOS, women with PCOS are at increased risk of obesity, diabetes, cardiovascular disease, depression, and certain cancers. Hormonal and metabolic aberrations in PCOS have the potential to influence dietary intake and physical activity levels. There are emerging global data that women with PCOS have different baseline dietary energy intakes compared with women without PCOS. These alterations in diet may exacerbate clinical symptoms and compound risk of chronic disease in patients. Few studies have compared baseline physical activity levels between women with and without PCOS. Although comparisons between studies are confounded by several factors, the data point to no differences in activity levels among PCOS and non-PCOS groups. This review provides an assessment of the current literature on baseline dietary intake and physical activity levels in women with PCOS. Future recommendations to strengthen research in this area are provided, given the implications to aid in the development of effective nutrition-focused interventions for PCOS. PMID:25469380

  1. Dietary fiber intake and endogenous serum hormone levels in naturally postmenopausal Mexican American women: the Multiethnic Cohort Study.

    PubMed

    Monroe, Kristine R; Murphy, Suzanne P; Henderson, Brian E; Kolonel, Laurence N; Stanczyk, Frank Z; Adlercreutz, Herman; Pike, Malcolm C

    2007-01-01

    This study investigated dietary fiber intake in association with serum estrogen levels in naturally postmenopausal Latina women with a wide range of fiber intake. Estrone (E1), estradiol (E2), and sex-hormone-binding globulin (SHBG) were measured in 242 women. Associations between estrogen levels and intake of dietary fiber, including insoluble and soluble fractions, quantified from a food frequency questionnaire, were examined. The biomarker enterolactone was also measured. After adjustment for age, weight, and other nondietary factors, dietary fiber intake was inversely associated with E1 and E2; there was a 22% and 17% decrease (2Ptrend=0.023 and 0.045) among subjects in the highest quintile of intake compared with the lowest. Fitting dietary fiber together with soluble and insoluble nonstarch polysaccharides (NSP) showed a much greater decrease in E1 and E2 (47% and 41%, respectively) while increased soluble NSP intake showed increases in E1 and E2 (64% and 69%, respectively). Two foods, avocado and grapefruit, showed significant positive associations with E1 (2Ptrend=0.029 and 0.015, respectively). This study suggests that different components of dietary fiber may have very significant different effects on serum estrogen levels. The suggestive findings relating increased estrogen levels to avocado and grapefruit intakes need confirmation.

  2. Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults.

    PubMed

    Chowdhury, E A; Richardson, J D; Tsintzas, K; Thompson, D; Betts, J A

    2016-02-01

    Breakfast omission is positively associated with obesity and increased risk of disease. However, little is known about the acute effects of extended morning fasting upon subsequent energy intake and associated metabolic/regulatory factors in obese adults. In a randomised cross-over design, 24 obese men (n=8) and women (n=16) extended their overnight fast by omitting breakfast consumption or ingesting a typical carbohydrate-rich breakfast of 2183±393 kJ (521±94 kcal), before an ad libitum pasta lunch 3 h later. Blood samples were obtained throughout the day until 3 h post lunch and analysed for hormones implicated in appetite regulation, along with metabolic outcomes and subjective appetite measures. Lunch intake was unaffected by extended morning fasting (difference=218 kJ, 95% confidence interval -54 kJ, 490 kJ; P=0.1) resulting in lower total intake in the fasting trial (difference=-1964 kJ, 95% confidence interval -1645 kJ, -2281 kJ; P<0.01). Systemic concentrations of peptide tyrosine-tyrosine and leptin were lower during the afternoon following morning fasting (P⩽0.06). Plasma-acylated ghrelin concentrations were also lower following the ad libitum lunch in the fasting trial (P<0.05) but this effect was not apparent for total ghrelin (P⩾0.1). Serum insulin concentrations were greater throughout the afternoon in the fasting trial (P=0.05), with plasma glucose also greater 1 h after lunch (P<0.01). Extended morning fasting did not result in greater appetite ratings after lunch, with some tendency for lower appetite 3 h post lunch (P=0.09). We demonstrate for the first time that, in obese adults, extended morning fasting does not cause compensatory intake during an ad libitum lunch nor does it increase appetite during the afternoon. Morning fasting reduced satiety hormone responses to a subsequent lunch meal but counterintuitively also reduced concentrations of the appetite-stimulating hormone-acylated ghrelin during the afternoon

  3. Higher energy intake at dinner decreases parasympathetic activity during nighttime sleep in menstruating women: A randomized controlled trial.

    PubMed

    Tada, Yuki; Yoshizaki, Takahiro; Tanaka, Izumi; Kanehara, Rieko; Kato, Misao; Hatta, Naoko; Hida, Azumi; Kawano, Yukari

    2018-06-09

    Previous studies have found more frequent increases in dietary intake and nonrestorative nocturnal sleep during the luteal phase than in the follicular phase, but few studies have investigated how increased energy intake at dinner influences sleep by considering the correlation between female hormone and cardiac autonomic nervous system (ANS) activity. This study examined the effects of energy intake at dinner on ANS activity during nighttime sleep in order to evaluate restorative sleep in healthy women. We also examined whether ANS activity is associated with female hormone dynamics. Twenty-four healthy collegiate women participated in this randomized crossover trial. Each was assigned to receive a High Energy Dinner (HED) or Low Energy Dinner (LED) treatment. Energy ratios of each test meal (breakfast, lunch, and dinner) to total energy intake were 1:1:2 and 1:2:1 for HED and LED treatments, respectively. Each participant wore an ECG recorder before dinner and removed it upon waking the next morning. Power spectral analysis of heart rate variability was used to calculate low frequency (LF), high frequency (HF), and total spectral power (TP). Cardiac sympathetic (SNS) and parasympathetic (PNS) nervous system activity were evaluated as LF/HF and HF/TP, respectively. Mean HF/TP for the entire sleeping period was lower with HED treatment compared to LED treatment (41.7 ± 11.4 vs. 45.0 ± 12.13, P = .034). Intergroup comparisons of the initial 3-h sleeping period revealed that LF/HF (0.87 ± 0.82 vs. 0.66 ± 0.82, P = .013) and HF/TP (45.6 ± 13.9 vs. 51.5 ± 11.8, P = .002) were higher and lower, respectively, with HED treatment compared to LED treatment. Progesterone levels were positively correlated with LF/HF with LED treatment, and negatively correlated with HF/TP with both HED and LED treatments. Higher energy intake at dinner increases and decreases SNS and PNS activities, respectively, resulting in nonrestorative nocturnal

  4. Regulation of feeding behavior and food intake by appetite-regulating peptides in wild-type and growth hormone-transgenic coho salmon.

    PubMed

    White, Samantha L; Volkoff, Helene; Devlin, Robert H

    2016-08-01

    Survival, competition, growth and reproductive success in fishes are highly dependent on food intake, food availability and feeding behavior and are all influenced by a complex set of metabolic and neuroendocrine mechanisms. Overexpression of growth hormone (GH) in transgenic fish can result in greatly enhanced growth rates, feed conversion, feeding motivation and food intake. The objectives of this study were to compare seasonal feeding behavior of non-transgenic wild-type (NT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch), and to examine the effects of intraperitoneal injections of the appetite-regulating peptides cholecystokinin (CCK-8), bombesin (BBS), glucagon-like peptide-1 (GLP-1), and alpha-melanocyte-stimulating hormone (α-MSH) on feeding behavior. T salmon fed consistently across all seasons, whereas NT dramatically reduced their food intake in winter, indicating the seasonal regulation of appetite can be altered by overexpression of GH in T fish. Intraperitoneal injections of CCK-8 and BBS caused a significant and rapid decrease in food intake for both genotypes. Treatment with either GLP-1 or α-MSH resulted in a significant suppression of food intake for NT but had no effect in T coho salmon. The differential response of T and NT fish to α-MSH is consistent with the melanocortin-4 receptor system being a significant pathway by which GH acts to stimulate appetite. Taken together, these results suggest that chronically increased levels of GH alter feeding regulatory pathways to different extents for individual peptides, and that altered feeding behavior in transgenic coho salmon may arise, in part, from changes in sensitivity to peripheral appetite-regulating signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of two bakery products on short-term food intake and gut-hormones in young adults: a pilot study.

    PubMed

    Santaliestra-Pasías, A M; Garcia-Lacarte, M; Rico, M C; Aguilera, C M; Moreno, L A

    2015-08-01

    The aim of this study is to compare the effect of conventional bread and a whole grain bread on appetite and energy intake, satiety and satiety gut-hormones. A randomized controlled crossover pilot study was carried out in 11 university students (age: 18.7 ± 0.9 years; body mass index: 22.7 ± 2.7 kg/m(2)). Participants consumed two different mid-morning cereal-based snacks, including a conventional or whole grain bread. Two testing days were completed, including satiety questionnaires, blood sampling and consumption of standardized breakfast, mid-morning test-snacks and ad libitum lunch. Several gut-hormones were analysed and satiation was assessed using Visual Analogue Scale scores. The consumption of whole grain bread increased satiety perception, decreased the remained energy intake during the testing day, and decreased the postprandial response of peptide YY, compared with conventional bread (p < 0.005). These data suggest that the consumption of whole grain bread might be a useful strategy to improve satiety.

  6. Gut hormone activity of children born to women with and without gestational diabetes.

    PubMed

    Chandler-Laney, P C; Bush, N C; Rouse, D J; Mancuso, M S; Gower, B A

    2014-02-01

    What is already known about this subject Children born to women with gestational diabetes have greater risk for obesity. Obesity in adults and children is associated with blunted postprandial gut hormone responses. What this study adds Children of women with gestational diabetes have a blunted postprandial response of GLP-1. Children of women with gestational diabetes have high fasting PYY concentrations. Intrauterine exposure to gestational diabetes mellitus (GDM) increases risk for obesity. Obesity is associated with a blunted postprandial gut hormone response, which may impair satiety and thereby contribute to weight gain. The postprandial response of gut hormones among children of women with GDM has not previously been investigated. To examine whether children of women with GDM have suppressed peptide-tyrosine-tyrosine (PYY) and glucagon-like-peptide-1 (GLP-1), and higher concentrations of ghrelin, following a meal challenge. A secondary objective was to investigate associations of these hormones with children's free-living energy intake. Children (n = 42) aged 5-10 years were stratified into two groups: offspring of GDM mothers (OGD) and of non-diabetic mothers (CTRL). Body composition was measured by dual-energy X-ray absorptiometry, and circulating PYY, GLP-1 and total ghrelin were measured during a liquid meal challenge. Energy intake was assessed by three 24-h diet recalls. Between-groups analyses of fasting and incremental area under the curve (AUC) found no differences in ghrelin. Incremental AUC for GLP-1 was greater among the CTRL vs. OGD (P < 0.05), and fasting PYY, but not incremental AUC, was higher among OGD vs. CTRL (P < 0.01). Associations of fasting and incremental AUC for each gut hormone with children's usual energy intake did not differ significantly by group. Further research is needed to more fully examine the potential role of postprandial GLP-1 suppression and high-fasting PYY concentrations on the feeding behaviour and risk

  7. Structure-activity relationship of crustacean peptide hormones.

    PubMed

    Katayama, Hidekazu

    2016-01-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.

  8. Long-Term Intake of a High-Protein Diet Affects Body Phenotype, Metabolism, and Plasma Hormones in Mice.

    PubMed

    Vu, John P; Luong, Leon; Parsons, William F; Oh, Suwan; Sanford, Daniel; Gabalski, Arielle; Lighton, John Rb; Pisegna, Joseph R; Germano, Patrizia M

    2017-12-01

    Background: High-protein diets (HPDs) recently have been used to obtain body weight and fat mass loss and expand muscle mass. Several studies have documented that HPDs reduce appetite and food intake. Objective: Our goal was to determine the long-term effects of an HPD on body weight, energy intake and expenditure, and metabolic hormones. Methods: Male C57BL/6 mice (8 wk old) were fed either an HPD (60% of energy as protein) or a control diet (CD; 20% of energy as protein) for 12 wk. Body composition and food intakes were determined, and plasma hormone concentrations were measured in mice after being fed and after overnight feed deprivation at several time points. Results: HPD mice had significantly lower body weight (in means ± SEMs; 25.73 ± 1.49 compared with 32.5 ± 1.31 g; P = 0.003) and fat mass (9.55% ± 1.24% compared with 15.78% ± 2.07%; P = 0.05) during the first 6 wk compared with CD mice, and higher lean mass throughout the study starting at week 2 (85.45% ± 2.25% compared with 75.29% ± 1.90%; P = 0.0001). Energy intake, total energy expenditure, and respiratory quotient were significantly lower in HPD compared with CD mice as shown by cumulative energy intake and eating rate. Water vapor was significantly higher in HPD mice during both dark and light phases. In HPD mice, concentrations of leptin [feed-deprived: 41.31 ± 11.60 compared with 3041 ± 683 pg/mL ( P = 0.0004); postprandial: 112.5 ± 102.0 compared with 8273 ± 1415 pg/mL ( P < 0.0001)] and glucagon-like peptide 1 (GLP-1) [feed-deprived: 5.664 ± 1.44 compared with 21.31 ± 1.26 pg/mL ( P = <0.0001); postprandial: 6.54 ± 2.13 compared with 50.62 ± 11.93 pg/mL ( P = 0.0037)] were significantly lower, whereas postprandial glucagon concentrations were higher than in CD-fed mice. Conclusions: In male mice, the 12-wk HPD resulted in short-term body weight and fat mass loss, but throughout the study preserved body lean mass and significantly reduced energy intake and expenditure as well as

  9. Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults

    PubMed Central

    Chowdhury, E A; Richardson, J D; Tsintzas, K; Thompson, D; Betts, J A

    2016-01-01

    Background/Objectives: Breakfast omission is positively associated with obesity and increased risk of disease. However, little is known about the acute effects of extended morning fasting upon subsequent energy intake and associated metabolic/regulatory factors in obese adults. Subjects/Methods: In a randomised cross-over design, 24 obese men (n=8) and women (n=16) extended their overnight fast by omitting breakfast consumption or ingesting a typical carbohydrate-rich breakfast of 2183±393 kJ (521±94 kcal), before an ad libitum pasta lunch 3 h later. Blood samples were obtained throughout the day until 3 h post lunch and analysed for hormones implicated in appetite regulation, along with metabolic outcomes and subjective appetite measures. Results: Lunch intake was unaffected by extended morning fasting (difference=218 kJ, 95% confidence interval −54 kJ, 490 kJ; P=0.1) resulting in lower total intake in the fasting trial (difference=−1964 kJ, 95% confidence interval −1645 kJ, −2281 kJ; P<0.01). Systemic concentrations of peptide tyrosine–tyrosine and leptin were lower during the afternoon following morning fasting (P⩽0.06). Plasma-acylated ghrelin concentrations were also lower following the ad libitum lunch in the fasting trial (P<0.05) but this effect was not apparent for total ghrelin (P⩾0.1). Serum insulin concentrations were greater throughout the afternoon in the fasting trial (P=0.05), with plasma glucose also greater 1 h after lunch (P<0.01). Extended morning fasting did not result in greater appetite ratings after lunch, with some tendency for lower appetite 3 h post lunch (P=0.09). Conclusions: We demonstrate for the first time that, in obese adults, extended morning fasting does not cause compensatory intake during an ad libitum lunch nor does it increase appetite during the afternoon. Morning fasting reduced satiety hormone responses to a subsequent lunch meal but counterintuitively also reduced concentrations of

  10. The effects of hypoxia on hunger perceptions, appetite-related hormone concentrations and energy intake: A systematic review and meta-analysis.

    PubMed

    Matu, Jamie; Gonzalez, Javier T; Ispoglou, Theocharis; Duckworth, Lauren; Deighton, Kevin

    2018-06-01

    Exposure to hypoxia appears to depress appetite and energy intake, however the mechanisms are not fully understood. The aim of this review was to determine the magnitude of changes in hunger and energy intake in hypoxic compared with normoxic environments, and establish any alterations in appetite-related hormone concentrations. PubMed and The Cochrane Library as well as MEDLINE, SPORTDiscus, PsycINFO and CINAHL, via EBSCOhost, were searched through 1st April 2017 for studies that evaluated hunger, energy intake and/or appetite-related hormones in normoxia and during hypoxic exposure in a within-measures design. A total of 28 studies (comprising 54 fasted and 22 postprandial comparisons) were included. A random-effects meta-analysis was performed to establish standardised mean difference (SMD) with 95% confidence intervals. Hypoxic exposure resulted in a trivial but significant decrease in postprandial hunger scores (SMD: -0.15, 95% CI: -0.29 to -0.01; n = 14; p = 0.043) and a moderate decrease in energy intake (SMD: -0.50, 95% CI: -0.85 to -0.15; n = 8; p = 0.006). Hypoxic exposure resulted in a decrease (albeit trivial) in postprandial acylated ghrelin concentrations (SMD: -0.16, 95% CI: -0.25 to -0.08; n = 7; p < 0.0005), and a moderate increase in fasted insulin concentrations (SMD: 0.41, 95% CI: 0.17 to 0.65; n = 34; p = 0.001). Meta-regression revealed a decrease in postprandial acylated ghrelin concentrations (p = 0.010) and an increase in fasted insulin concentrations (p = 0.020) as hypoxic severity increased. Hypoxic exposure reduces hunger and energy intake, which may be mediated by decreased circulating concentrations of acylated ghrelin and elevated insulin concentrations. PROSPERO registration number: CRD42015017231. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The effects of hormonal contraceptives on glycemic regulation

    PubMed Central

    Cortés, Manuel E.; Alfaro, Andrea A.

    2014-01-01

    A number of side effects have been linked to the use of hormonal contraceptives, among others, alterations in glucose levels. Hence, the objective of this mini-review is to show the main effects of hormonal contraceptive intake on glycemic regulation. First, the most relevant studies on this topic are described, then the mechanisms that might be accountable for this glycemic regulation impairment as exerted by hormonal contraceptives are discussed. Finally, we briefly discuss the ethical responsibility of health professionals to inform about the potential risks on glycemic homeostasis regarding hormonal contraceptive intake. PMID:25249703

  12. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  13. Energy-containing beverages: reproductive hormones and ovarian function in the BioCycle Study.

    PubMed

    Schliep, Karen C; Schisterman, Enrique F; Mumford, Sunni L; Pollack, Anna Z; Perkins, Neil J; Ye, Aijun; Zhang, Cuilin J; Stanford, Joseph B; Porucznik, Christina A; Hammoud, Ahmad O; Wactawski-Wende, Jean

    2013-03-01

    Energy-containing beverages are widely consumed among premenopausal women, but their association with reproductive hormones is not well understood. The objective was to assess the association of energy-containing beverages, added sugars, and total fructose intake with reproductive hormones among ovulatory cycles and sporadic anovulation in healthy premenopausal women. Women (n = 259) in the BioCycle Study were followed for up to 2 menstrual cycles; they provided fasting blood specimens during up to 8 visits/cycle and four 24-h dietary recalls/cycle. Women who consumed ≥1 cup (1 cup = 237 mL) sweetened soda/d had 16.3% higher estradiol concentrations compared with women who consumed less sweetened soda (86.5 pg/mL compared with 74.4 pg/mL, P = 0.01) after adjustment for age, BMI, race, dietary factors, and physical activity. Similarly elevated estradiol concentrations were found for ≥1 cup cola/d and noncola soda intake. Neither artificially sweetened soda nor fruit juice intake ≥1 cup/d was significantly associated with reproductive hormones. Added sugar above the average US woman's intake (≥73.2 g/d) or above the 66th percentile in total fructose intake (≥41.5 g/d) was associated with significantly elevated estradiol but not consistently across all models. No associations were found between beverages, added sugars, or total fructose intake and anovulation after multivariate adjustment. Even at moderate consumption amounts, sweetened soda is associated with elevated follicular estradiol concentrations among premenopausal women but does not appear to affect ovulatory function. Further research into the mechanism driving the association between energy-containing beverages and reproductive hormones, and its potential implications for women's health, is warranted.

  14. Addition of crude glycerin to pig diets: sow and litter performance, and metabolic and feed intake regulating hormones.

    PubMed

    Hernández, F; Orengo, J; Villodre, C; Martínez, S; López, M J; Madrid, J

    2016-06-01

    The continued growth in biofuel production has led to a search for alternative value-added applications of its main by-product, crude glycerin. The surplus glycerin production and a higher cost of feedstuffs have increased the emphasis on evaluating its nutritive value for animal feeding. The aim of this research was to evaluate the effect of the dietary addition of crude glycerin on sow and litter performance, and to determine the serum concentrations of hormones related to energy metabolism and feed intake in sows during gestation and lactation. A total of 63 sows were assigned randomly to one of three dietary treatments, containing 0, 3 or 6% crude glycerin (G0, G3 and G6, respectively) added to a barley-soybean meal-based diet. During gestation, none of the dietary treatments had an effect on performance, while during lactation, glycerin-fed sows consumed less feed than those fed the control diet (3.8 v. 4.2kg DM/day; P=0.007). Although lactating sows fed the G3 diet had a higher BW loss than those fed the control diet (���20.6 v. ���8.7 kg; P=0.002), this difference was not reflected in litter performance. In gestation, the inclusion of glycerin did not affect blood concentrations of insulin or cortisol. However, pregnant sows fed diets supplemented with glycerin showed lower concentrations of acyl-ghrelin and higher concentrations of leptin (���55 and +68%, respectively; P<0.001). In lactating sows, there were no differences between dietary treatments for any of the hormones measured. Pre-prandial acyl-ghrelin concentrations were positively correlated with cortisol concentrations during gestation (r=0.81; P=0.001) and lactation (r=0.61; P=0.015). In conclusion, the inclusion of up to 6% crude glycerin did not affect the performance of sows during the gestation period; however it had a negative effect on the feed intake and weight loss of lactating sows. Moreover, further research is needed to elucidate the potential relationship between

  15. Effects of syndyphalin-33 on feed intake and circulating measures of growth hormone, cortisol, and immune cell populations in the recently-weaned pig

    USDA-ARS?s Scientific Manuscript database

    The synthetic met-enkephalin syndyphalin-33 (SD-33) increases feed intake in sheep and transiently increases circulating growth hormone (GH) concentrations in sheep, rats, and pigs. Two experiments were performed to evaluate the effects of SD-33 on recently-weaned pigs. In a preliminary experiment, ...

  16. Effects of intracerebroventricular and intra-accumbens melanin-concentrating hormone agonism on food intake and energy expenditure.

    PubMed

    Guesdon, Benjamin; Paradis, Eric; Samson, Pierre; Richard, Denis

    2009-03-01

    The brain melanin-concentrating hormone (MCH) system represents an anabolic system involved in energy balance regulation through influences exerted on the homeostatic and nonhomeostatic controls of food intake and energy expenditure. The present study was designed to further delineate the effect of the MCH system on energy balance regulation by assessing the actions of the MCH receptor 1 (MCHR1) agonism on both food intake and energy expenditure after intracerebroventricular (third ventricle) and intra-nucleus-accumbens-shell (intraNAcSH) injections of a MCHR1 agonist. Total energy expenditure and substrate oxidation were assessed following injections in male Wistar rats using indirect calorimetry. Food intake was also measured. Pair-fed groups were added to evaluate changes in thermogenesis that would occur regardless of the meal size and its thermogenic response. Using such experimental conditions, we were able to demonstrate that acute MCH agonism in the brain, besides its orexigenic effect, induced a noticeable change in the utilization of the main metabolic fuels. In pair-fed animals, MCH significantly reduced lipid oxidation when it was injected in the third ventricle. Such an effect was not observed following the injection of MCH in the NAcSH, where MCH nonetheless strongly stimulated appetite. The present results further delineate the influence of MCH on energy expenditure and substrate oxidation while confirming the key role of the NAcSH in the effects of the MCH system on food intake.

  17. A Hormonally Active Malignant Struma Ovarii

    PubMed Central

    Lara, Carolina; Salame, Latife; Padilla-Longoria, Rafael

    2016-01-01

    Struma ovarii is a rare monodermal variant of ovarian teratoma that contains at least 50% thyroid tissue. Less than 8% of struma ovarii cases present with clinical and biochemical evidence of thyrotoxicosis due to ectopic production of thyroid hormone and only 5% undergo malignant transformation into a papillary thyroid carcinoma. Only isolated cases of hormonally active papillary thyroid carcinoma developing within a struma ovarii have been reported in the literature. We report the case of a 36-year-old woman who presented with clinical signs and symptoms of hyperthyroidism as well as a left adnexal mass, which proved to be a thyroid hormone-producing, malignant struma ovarii. PMID:27882257

  18. Nutrient intake in community-dwelling adolescent girls with anorexia nervosa and in healthy adolescents123

    PubMed Central

    Misra, Madhusmita; Tsai, Patrika; Anderson, Ellen J; Hubbard, Jane L; Gallagher, Katie; Soyka, Leslie A; Miller, Karen K; Herzog, David B; Klibanski, Anne

    2011-01-01

    Background Adolescence is a common time for the onset of anorexia nervosa (AN), a condition associated with long-term medical and hormonal consequences. Objective The objective was to compare the nutrient intakes of community-dwelling girls with AN with those of healthy adolescents and to describe the associations between specific nutrient intakes and nutritionally dependent hormones. Design Nutrient intakes in 39 community-dwelling girls with AN and 39 healthy adolescents aged 12.1–18.7 y were determined by using 4-d food records. Fasting adiponectin, leptin, ghrelin, insulin, and insulin-like growth factor I (IGF-I) concentrations were measured. Indirect calorimetry was used to assess respiratory quotient and resting energy expenditure. Results In contrast with the control group, the AN group consumed fewer calories from fats (P < 0.0001) and more from carbohydrates (P = 0.0009) and proteins (P < 0.0001). Intake of individual fat components was lower and of dietary fiber higher in the AN group. No significant between-group differences were observed in dietary intakes of calcium, zinc, and iron; however, total intake was greater in the AN group because of greater supplement use (P = 0.006, 0.02, and 0.01, respectively). The AN group had greater intakes of vitamins A, D, and K and of most of the B vitamins, and significantly more girls with AN met the Dietary Reference Intake for calcium (P = 0.01) and vitamin D (P = 0.02) from supplement use. Fat intake predicted ghrelin, insulin, and IGF-I concentrations; carbohydrate intake predicted adiponectin. Resting energy expenditure was lower (P < 0.0001) and leisure activity levels higher in the AN group. Conclusions Despite outpatient follow-up, community-dwelling girls with AN continue to have lower fat and higher fiber intakes than do healthy adolescents, which results in lower calorie intakes. Nutritionally related hormones are associated with specific nutrient intakes. PMID:17023694

  19. Glucokinase activity in the arcuate nucleus regulates glucose intake

    PubMed Central

    Hussain, Syed; Richardson, Errol; Ma, Yue; Holton, Christopher; De Backer, Ivan; Buckley, Niki; Dhillo, Waljit; Bewick, Gavin; Zhang, Shuai; Carling, David; Bloom, Steve; Gardiner, James

    2014-01-01

    The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the “sweet tooth” and carbohydrate craving. PMID:25485685

  20. Differences in the Postprandial Release of Appetite-Related Hormones Between Active and Inactive Men.

    PubMed

    Bøhler, Linn; Coutinho, Sílvia Ribeiro; Rehfeld, Jens F; Morgan, Linda; Martins, Catia

    2018-02-12

    Active, as opposed to inactive, individuals are able to adjust their energy intake after preloads of different energy content. The mechanisms responsible for this remain unknown. This study examined differences in plasma concentration of appetite-related hormones in response to breakfasts of different energy content, between active and inactive men. 16 healthy non-obese (BMI 18.5-27 kg/m 2 ) adult males (9 active, 7 inactive), participated in the study. Participants were given a high- (HE, 570 kcal) or a low-energy (LE, 205 kcal) breakfast in random order. Subjective feelings of appetite and plasma concentrations of active ghrelin (AG), active glucagon-like peptide 1 (GLP-1), total peptide YY (PYY), cholecystokinin (CCK) and insulin were measured in fasting and every 30 minutes up to 2.5 hours, in response to both breakfasts. Mixed ANOVA (fat mass (%) as a covariate) revealed a higher concentration of AG and lower concentration of GLP-1 and CCK after the LE breakfast (p<0.001 for all). Postprandial concentration of PYY was greater after the HE compared with the LE, but for inactive participants only (p=0.014). Active participants had lower postprandial concentrations of insulin than inactive participants (p<0.001). Differences in postprandial insulin between breakfasts were significantly lower in active compared with inactive participants (p<0.001). PA seems to modulate the postprandial plasma concentration of insulin and PYY after the intake of breakfasts of different energy content and that may contribute, at least partially, to the differences in short-term appetite control between active and inactive individuals.

  1. Dairy food intake in relation to semen quality and reproductive hormone levels among physically active young men.

    PubMed

    Afeiche, M; Williams, P L; Mendiola, J; Gaskins, A J; Jørgensen, N; Swan, S H; Chavarro, J E

    2013-08-01

    Is increased consumption of dairy foods associated with lower semen quality? We found that intake of full-fat dairy was inversely related to sperm motility and morphology. These associations were driven primarily by intake of cheese and were independent of overall dietary patterns. It has been suggested that environmental estrogens could be responsible for the putative secular decline in sperm counts. Dairy foods contain large amounts of estrogens. While some studies have suggested dairy as a possible contributing factor for decreased semen quality, this finding has not been consistent across studies. The Rochester Young Men's Study (n = 189) was a cross-sectional study conducted between 2009 and 2010 at the University of Rochester. Men aged 18-22 years were included in this analysis. Diet was assessed via food frequency questionnaire. Linear regression was used to analyze the relation between dairy intake and conventional semen quality parameters (total sperm count, sperm concentration, progressive motility, morphology and ejaculate volume) adjusting for age, abstinence time, race, smoking status, body mass index, recruitment period, moderate-to-intense exercise, TV watching and total calorie intake. Total dairy food intake was inversely related to sperm morphology (P-trend = 0.004). This association was mostly driven by intake of full-fat dairy foods. The adjusted difference (95% confidence interval) in normal sperm morphology percent was -3.2% (-4.5 to -1.8) between men in the upper half and those in the lower half of full-fat dairy intake (P < 0.0001), while the equivalent contrast for low-fat dairy intake was less pronounced [-1.3% (-2.7 to -0.07; P= 0.06)]. Full-fat dairy intake was also associated with significantly lower percent progressively motile sperm (P= 0.05). As it was a cross-sectional study, causal inference is limited. Further research is needed to prove a causal link between a high consumption of full-fat dairy foods and detrimental effects on

  2. Dietary intake, physical activity and energy expenditure of Malaysian adolescents.

    PubMed

    Zalilah, M S; Khor, G L; Mirnalini, K; Norimah, A K; Ang, M

    2006-06-01

    Paediatric obesity is a public health concern worldwide as it can track into adulthood and increase the risk of adult morbidity and mortality. While the aetiology of obesity is multi-factorial, the roles of diet and physical activity are controversial. Thus, the purpose of this study was to report on the differences in energy intake, diet composition, time spent doing physical activity and energy expenditure among underweight (UW), normal weight (NW) and at-risk of overweight (OW) Malaysian adolescents (317 females and 301 males) aged 11-15 years. This was a cross-sectional study with 6,555 adolescents measured for weights and heights for body mass index (BMI) categorisation. A total of 618 subjects were randomly selected from each BMI category according to gender. The subjects' dietary intake and physical activity were assessed using self-reported three-day food and activity records, respectively. Dietary intake components included total energy and macronutrient intakes. Energy expenditure was calculated as a sum of energy expended for basal metabolic rate and physical activity. Time spent (in minutes) in low, medium and high intensity activities was also calculated. The OW adolescents had the highest crude energy intake and energy expenditure. However, after adjusting for body weight, the OW subjects had the lowest energy intake and energy expenditure (p-value is less than 0.001). The study groups did not differ significantly in time spent for low, medium and high intensity activities. Macronutrient intakes differed significantly only among the girls where the OW group had the highest intakes compared to UW and NW groups (p-value is less than 0.05). All study groups had greater than 30 percent and less than 55 percent of energy intake from fat and carbohydrate, respectively. The data suggested that a combination of low energy expenditure adjusted for body weight and high dietary fat intake may be associated with overweight and obesity among adolescents. To

  3. Effect of High Sugar Intake on Glucose Transporter and Weight Regulating Hormones in Mice and Humans

    PubMed Central

    Ritze, Yvonne; Bárdos, Gyöngyi; D’Haese, Jan G.; Ernst, Barbara; Thurnheer, Martin; Schultes, Bernd; Bischoff, Stephan C.

    2014-01-01

    Objective Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. Methods Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. Results In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. Conclusions We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals. PMID:25010715

  4. Activational effects of sex hormones on cognition in men.

    PubMed

    Ulubaev, A; Lee, D M; Purandare, N; Pendleton, N; Wu, F C W

    2009-11-01

    Changing world demographic patterns, such as the increasing number of older people and the growing prevalence of cognitive impairment, present serious obstacles to preserving the quality of life and productivity of individuals. The severity of dementia varies from subclinical, mild cognitive impairment to neurodegenerative diseases such as Alzheimer's. In normally ageing men, these age-related cognitive declines are accompanied by gradual but marked decreases in androgen levels and changes in other hormone profiles. While developmental effects of sex hormones on cognition in the pre- and early postnatal period have been demonstrated, their activational effects in later life are still a focus of contemporary research. Although there is a plethora of published research on the topic, results have been inconsistent with different studies reporting positive, negative or no effects of sex hormones on various aspects of mental agility. This review summarizes the evidence supporting the biological plausibility of the activational effects of sex hormones upon cognition and describes the mechanisms of their actions. It offers a comprehensive summary of the studies of the effects of sex hormones on fluid intelligence in men utilizing elements from the Cochrane Collaboration Guidelines for Reviews. The results of both observational (cross-sectional and longitudinal) and interventional studies published to date are collated in table form and further discussed in the text. Factors contributing to the difficulties in understanding the effects of sex hormones on cognition are also examined. Although there is convincing evidence that steroid sex hormones play an organizational role in brain development in men, the evidence for activational effects of sex hormones affecting cognition in healthy men throughout adult life remains inconsistent. To address this issue, a new multifactorial approach is proposed which takes into account the status of other elements of the sex hormones axis

  5. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake

    PubMed Central

    Jeong, Jae Hoon; Lee, Dong Kun; Liu, Shun-Mei; Chua, Streamson C.; Schwartz, Gary J.

    2018-01-01

    Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)–enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake. PMID:29689050

  6. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake.

    PubMed

    Jeong, Jae Hoon; Lee, Dong Kun; Liu, Shun-Mei; Chua, Streamson C; Schwartz, Gary J; Jo, Young-Hwan

    2018-04-01

    Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.

  7. Energy-containing beverages: reproductive hormones and ovarian function in the BioCycle Study123

    PubMed Central

    Schliep, Karen C; Mumford, Sunni L; Pollack, Anna Z; Perkins, Neil J; Ye, Aijun; Zhang, Cuilin J; Stanford, Joseph B; Porucznik, Christina A; Hammoud, Ahmad O; Wactawski-Wende, Jean

    2013-01-01

    Background: Energy-containing beverages are widely consumed among premenopausal women, but their association with reproductive hormones is not well understood. Objective: The objective was to assess the association of energy-containing beverages, added sugars, and total fructose intake with reproductive hormones among ovulatory cycles and sporadic anovulation in healthy premenopausal women. Design: Women (n = 259) in the BioCycle Study were followed for up to 2 menstrual cycles; they provided fasting blood specimens during up to 8 visits/cycle and four 24-h dietary recalls/cycle. Results: Women who consumed ≥1 cup (1 cup = 237 mL) sweetened soda/d had 16.3% higher estradiol concentrations compared with women who consumed less sweetened soda (86.5 pg/mL compared with 74.4 pg/mL, P = 0.01) after adjustment for age, BMI, race, dietary factors, and physical activity. Similarly elevated estradiol concentrations were found for ≥1 cup cola/d and noncola soda intake. Neither artificially sweetened soda nor fruit juice intake ≥1 cup/d was significantly associated with reproductive hormones. Added sugar above the average US woman's intake (≥73.2 g/d) or above the 66th percentile in total fructose intake (≥41.5 g/d) was associated with significantly elevated estradiol but not consistently across all models. No associations were found between beverages, added sugars, or total fructose intake and anovulation after multivariate adjustment. Conclusions: Even at moderate consumption amounts, sweetened soda is associated with elevated follicular estradiol concentrations among premenopausal women but does not appear to affect ovulatory function. Further research into the mechanism driving the association between energy-containing beverages and reproductive hormones, and its potential implications for women's health, is warranted. PMID:23364018

  8. Hypothalamic mTOR signaling regulates food intake.

    PubMed

    Cota, Daniela; Proulx, Karine; Smith, Kathi A Blake; Kozma, Sara C; Thomas, George; Woods, Stephen C; Seeley, Randy J

    2006-05-12

    The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.

  9. Taste matters - effects of bypassing oral stimulation on hormone and appetite responses.

    PubMed

    Spetter, Maartje S; Mars, Monica; Viergever, Max A; de Graaf, Cees; Smeets, Paul A M

    2014-10-01

    The interaction between oral and gastric signals is an important part of food intake regulation. Previous studies suggest that bypassing oral stimulation diminishes the suppression of hunger and increases gastric emptying rate. However, the role of appetite hormones, like cholecystokinin-8 and ghrelin, in this process is still unclear. Our objective was to determine the contributions of gastric and oral stimulation to subsequent appetite and hormone responses and their effect on ad libitum intake. Fourteen healthy male subjects (age 24.6±3.8y, BMI 22.3±1.6kg/m(2)) completed a randomized, single-blinded, cross-over experiment with 3 treatment-sessions: 1) Stomach distention: naso-gastric infusion of 500mL/0kJ water, 2) Stomach distention with caloric content: naso-gastric infusion of 500mL/1770kJ chocolate milk, and 3) Stomach distention with caloric content and oral exposure: oral administration of 500mL/1770kJ chocolate milk. Changes in appetite ratings and plasma glucose, insulin, cholecystokinin-8, and active and total ghrelin concentrations were measured at fixed time-points up to 30min after infusion or oral administration. Subsequently, subjects consumed an ad libitum buffet meal. Oral administration reduced appetite ratings more than both naso-gastric infusions (P<0.0001). Gastric infusion of a caloric load increased insulin and cholecystokinin-8 and decreased total ghrelin concentrations more than ingestion (all P<0.0001). No differences in active ghrelin response were observed between conditions. Ad libitum intake did not differ between oral and gastric administration of chocolate milk (P>0.05). Thus, gastric infusion of nutrients induces greater appetite hormone responses than ingestion does. These data provide novel and additional evidence that bypassing oral stimulation not only affects the appetite profile but also increases anorexigenic hormone responses, probably driven in part by faster gastric emptying. This confirms the idea that learned

  10. Juvenile hormone activity in Dysdercus cingulatus Fabr by juvenile hormone esterase inhibitor, OTFP.

    PubMed

    Elayidam, U Gayathri; Muraleedharan, D

    2007-10-01

    Application of juvenile hormone esterase inhibitor 3-octylthio-1,1,1- trifluropropan-2-one (OTFP) to 5th instar nymphs and virgin females of D. cingulatus revealed the profound role played by juvenile hormone esterase (JHE) in metamorphosis and reproduction. The ability of OTFP to cause delay and the formation of malformed nymphs, suggests that inhibition of JHE in vivo maintains a higher than normal hemolymph JH titer. It is obvious that OTFP does inhibit in vivo JHE activity in late instar nymphs. Further, the application of JHE inhibitor, OTFP to virgin females demonstrates that substituted trifluropropanones can indirectly stimulate egg development by inhibiting JHE activity in virgin females.

  11. Changes in Food Intake and Activity after Quitting Smoking.

    ERIC Educational Resources Information Center

    Hall, Sharon M.; And Others

    1989-01-01

    Evaluated changes in food intake and activity levels among 95 subjects who quit smoking. Found significant increases in calories, sucrose, and fats 2 weeks after quitting. Total sugars changes were less consistent. Activity levels did not change significantly. At week 26, caloric intake for abstinent women was approximately equal to baseline…

  12. More physically active and leaner adolescents have higher energy intake.

    PubMed

    Cuenca-García, Magdalena; Ortega, Francisco B; Ruiz, Jonatan R; Labayen, Idoia; Moreno, Luis A; Patterson, Emma; Vicente-Rodríguez, Germán; González-Gross, Marcela; Marcos, Ascensión; Polito, Angela; Manios, Yannis; Beghin, Laurent; Huybrechts, Inge; Wästlund, Acki; Hurtig-Wennlöf, Anita; Hagströmer, Maria; Molnár, Dénes; Widhalm, Kurt; Kafatos, Anthony; De Henauw, Stefaan; Castillo, Manuel J; Gutin, Bernard; Sjöström, Michael

    2014-01-01

    To test whether youths who engage in vigorous physical activity are more likely to have lean bodies while ingesting relatively large amounts of energy. For this purpose, we studied the associations of both physical activity and adiposity with energy intake in adolescents. The study subjects were adolescents who participated in 1 of 2 cross-sectional studies, the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study (n = 1450; mean age, 14.6 years) or the European Youth Heart Study (EYHS; n = 321; mean age, 15.6 years). Physical activity was measured by accelerometry, and energy intake was measured by 24-hour recall. In the HELENA study, body composition was assessed by 2 or more of the following methods: skinfold thickness, bioelectrical impedance analysis, plus dual-energy X-ray absorptiometry or air-displacement plethysmography in a subsample. In the EYHS, body composition was assessed by skinfold thickness. Fat mass was inversely associated with energy intake in both studies and using 4 different measurement methods (P ≤ .006). Overall, fat-free mass was positively associated with energy intake in both studies, yet the results were not consistent across measurement methods in the HELENA study. Vigorous physical activity in the HELENA study (P < .05) and moderate physical activity in the EYHS (P < .01) were positively associated with energy intake. Overall, results remained unchanged after adjustment for potential confounding factors, after mutual adjustment among the main exposures (physical activity and fat mass), and after the elimination of obese subjects, who might tend to underreport energy intake, from the analyses. Our data are consistent with the hypothesis that more physically active and leaner adolescents have higher energy intake than less active adolescents with larger amounts of fat mass. Copyright © 2014 Mosby, Inc. All rights reserved.

  13. Early water intake restriction to prevent inappropriate antidiuretic hormone secretion following transsphenoidal surgery: low BMI predicts postoperative SIADH.

    PubMed

    Matsuyama, Junko; Ikeda, Hidetoshi; Sato, Shunsuke; Yamamoto, Koh; Ohashi, Genichiro; Watanabe, Kazuo

    2014-12-01

    The goals of this study were to assess the incidence of and risk factors for the syndrome of inappropriate antidiuretic hormone secretion (SIADH) in patients following transsphenoidal surgery (TSS), and to validate the effectiveness of early prophylactic restriction of water intake. Retrospective analysis was performed for 207 patients who had undergone TSS, including 156 patients not placed on early prophylactic water restriction. Sixty-four patients received treatment for SIADH. We compared the incidence of SIADH between patients with and without early water intake restriction, and analyzed various risk factors for SIADH using statistical analyses. BMI was significantly lower for patients with SIADH than for those patients without SIADH. Statistical analysis revealed that the threshold BMI predicting SIADH was 26. Serum sodium levels on postoperative days 5-10 and daily urine volumes on postoperative days 5-10 were significantly lower in patients with SIADH than in those without SIADH. Postoperative body weight loss on days 6, 8, 10, and 11 was significantly higher in patients with SIADH. The incidence of SIADH after starting prophylactic water intake restriction (14%) was significantly lower than the rate before early water restriction (38%; P<0.05). SIADH is relatively common after TSS, and serum sodium concentrations and daily urine volumes should be carefully monitored. Patients with low preoperative BMI should be closely observed, as this represented a significant preoperative risk factor for SIADH. Early prophylactic water intake restriction appears effective at preventing postoperative SIADH. © 2014 European Society of Endocrinology.

  14. Physiological and hormonal responses of lambs repeatedly implanted with zeranol and provided two levels of feed intake.

    PubMed

    Hufstedler, G D; Gillman, P L; Carstens, G E; Greene, L W; Turner, N D

    1996-10-01

    Forty crossbred wethers (average weight 30 kg) were implanted with zeranol (12 mg) at 30-d intervals and fed at two levels of intake in a 2 x 2 factorial arrangement of treatments to determine performance, carcass and bone characteristics, blood metabolites, and hormones. Restricted lambs were fed to gain one-half the BW gained by lambs with ad libitum feed access. Lambs with ad libitum and restricted access to feed were slaughtered after 98 and 154 d, respectively. Zeranol increased ADG (P = .047; 20%), gain to feed (P = .023; 17%), metacarpal length (P = .004; 6%) and weight (P = .013; 13%), and tended to increase carcass crude protein gain (P = .106; 63%) while reducing kidney pelvic fat (P = .001; 33%) and dressing percentage (P = .038; 3%). Restricted feed intake increased the percentage of carcass ash and metacarpal length and weight by 27% (P = .048), 5% (P = .006), and 10% (P = .045), respectively, while reducing quality grade scores (P = .022; 5%), gain to feed (P = .001; 49%), longissimus muscle area (P = .001; 28%), the percentage of kidney pelvic fat (P = .033; 13%), and daily fat gain (P = .001; 54%). Zeranol increased pituitary weight (P = .001; 166%), plasma glucose (P = .036; 13%), mean serum growth hormone (GH; P = .011; 52%), baseline GH (P = .048; 34%), GH pulse amplitude (P = .003; 59%), and IGF-I (P = .001; 53%) concentrations. The results indicate that continuous administration of zeranol from 60 d of age to slaughter increases GH release, which directs nutrient utilization such that a carcass with more desirable lean and fat deposition patterns is obtained when nutrient availability is adequate.

  15. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake

    PubMed Central

    Seif, Taban; Chang, Shao-Ju; Simms, Jeffrey A; Gibb, Stuart L; Dadgar, Jahan; Chen, Billy T; Harvey, Brandon K; Ron, Dorit; Messing, Robert O; Bonci, Antonello; Hopf, F Woodward

    2014-01-01

    Compulsive drinking despite serious adverse medical, social and economic consequences is a characteristic of alcohol use disorders in humans. Although frontal cortical areas have been implicated in alcohol use disorders, little is known about the molecular mechanisms and pathways that sustain aversion-resistant intake. Here, we show that nucleus accumbens core (NAcore) NMDA-type glutamate receptors and medial prefrontal (mPFC) and insula glutamatergic inputs to the NAcore are necessary for aversion-resistant alcohol consumption in rats. Aversion-resistant intake was associated with a new type of NMDA receptor adaptation, in which hyperpolarization-active NMDA receptors were present at mPFC and insula but not amygdalar inputs in the NAcore. Accordingly, inhibition of Grin2c NMDA receptor subunits in the NAcore reduced aversion-resistant alcohol intake. None of these manipulations altered intake when alcohol was not paired with an aversive consequence. Our results identify a mechanism by which hyperpolarization-active NMDA receptors under mPFC- and insula-to-NAcore inputs sustain aversion-resistant alcohol intake. PMID:23817545

  16. Autophagy in the control of food intake.

    PubMed

    Singh, Rajat

    2012-04-01

    The cellular nutrient sensing apparatus detects nutritional depletion and transmits this information to downstream effectors that generate energy from alternate sources. Autophagy is a crucial catabolic pathway that turns over redundant cytoplasmic components in lysosomes to provide energy to the starved cell. Recent studies have described a role for hypothalamic autophagy in the control of food intake and energy balance. Activated autophagy in hypothalamic neurons during starvation mobilized neuron-intrinsic lipids to generate free fatty acids that increased AgRP levels. AgRP neuron-specific inhibition of autophagy decreased fasting-induced increases in AgRP levels and food intake. Deletion of autophagy in AgRP neurons led to constitutive increases in levels of proopiomelanocortin and its active processed product, α-melanocyte stimulating hormone that contributed to reduced adiposity in these rodents. The current manuscript discusses these new findings and raises additional questions that may help understand how hypothalamic autophagy controls food intake and energy balance. These studies may have implications for designing new therapies against obesity and insulin resistance.

  17. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    PubMed

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Daily intake of Lactobacillus casei Shirota increases natural killer cell activity in smokers.

    PubMed

    Reale, Marcella; Boscolo, Paolo; Bellante, Veronica; Tarantelli, Chiara; Di Nicola, Marta; Forcella, Laura; Li, Qing; Morimoto, Kanehisa; Muraro, Raffaella

    2012-07-01

    Dietary probiotics supplementation exerts beneficial health effects. Since cigarette smoking reduces natural killer (NK) activity, we evaluated the effect of Lactobacillus casei Shirota (LcS) intake on NK cytotoxic activity in male smokers. The double-blind, placebo-controlled, randomised study was conducted on seventy-two healthy Italian blue-collar male smokers randomly divided for daily intake of LcS powder or placebo. Before and after 3 weeks of intake, peripheral blood mononuclear cells were isolated and NK activity and CD16⁺ cells' number were assessed. Daily LcS intake for 3 weeks significantly increased NK activity (P < 0.001). The increase in NK activity was paralleled by an increase in CD16⁺ cells (P < 0.001). Before intake, NK cytotoxic activity inversely correlated with the number of cigarettes smoked (R - 0.064). LcS intake prevented the smoke-dependent expected NK activity reduction. The analysis of the distribution of changes in smoke-adjusted NK activity demonstrated that the positive variations were significantly associated with LcS intake, while the negative variations were associated with placebo intake (median value of distributions of differences, 20.98 lytic unit (LU)/10⁷ cells for LcS v. - 4.38 LU/10⁷ cells for placebo, P = 0.039). In conclusion, 3 weeks of daily LcS intake in Italian male smokers was associated with a higher increase in cytotoxic activity and CD16⁺ cells' number in comparison to the placebo intake group.

  19. Markers of Bone Health, Bone-Specific Physical Activities, Nutritional Intake, and Quality of Life of Professional Jockeys in Hong Kong.

    PubMed

    Poon, Eric Tsz-Chun; O'Reilly, John; Sheridan, Sinead; Cai, Michelle Mingjing; Wong, Stephen Heung-Sang

    2018-04-28

    Weight-making practices, regularly engaged in by horse racing jockeys, have been suggested to impair both physiological and mental health. This study aimed to assess bone health markers, nutritional intake, bone-specific physical activity (PA) habits, and quality of life of professional jockeys in Hong Kong (n = 14), with gender-, age-, and body mass index-matched controls (n = 14). Anthropometric measurements, serum hormonal biomarkers, bone mineral density, bone-specific PA habits, nutritional intake, and quality of life were assessed in all participants. The jockey group displayed significantly lower bone mineral density at both calcanei than the control group (left: 0.50 ± 0.06 vs. 0.63 ± 0.07 g/cm 2 ; right: 0.51 ± 0.07 vs. 0.64 ± 0.10 g/cm 2 , both ps < .01). Thirteen of the 14 jockeys (93%) showed either osteopenia or osteoporosis in at least one of their calcanei. No significant difference in bone mineral density was detected for either forearm between the groups. The current bone-specific PA questionnaire score was lower in the jockey group than the control group (5.61 ± 1.82 vs. 8.27 ± 2.91, p < .05). Daily energy intake was lower in the jockeys than the controls (1,360 ± 515 vs. 1,985 ± 1,046 kcal/day, p < .01). No significant group difference was found for micronutrient intake assessed by the bone-specific food frequency questionnaire, blood hormonal markers, and quality of life scores. Our results revealed suboptimal bone conditions at calcanei and insufficient energy intake and bone-loading PAs among professional jockeys in Hong Kong compared with healthy age-, gender-, and body mass index-matched controls. Further research is warranted to examine the effect of improved bone-loading PAs and nutritional habits on the musculoskeletal health of professional jockeys.

  20. Effect of heat exposure and exercise on food intake regulation: A randomized crossover study in young healthy men.

    PubMed

    Faure, Cécile; Charlot, Keyne; Henri, Stéphane; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Antoine-Jonville, Sophie

    2016-10-01

    The effect of physical activity on food intake regulation may be moderated by environmental temperature. The aim of the study was to determine the single and combined effects of metabolic activity and temperature on energy intake and its hormonal regulation. A randomized crossover study was conducted in the laboratory. Ten healthy and physically active young Afro-Caribbean men participated in four experimental sessions (rest at 22°C and 31°C and cycling at 60% of their maximal oxygen uptake at 22°C and 31°C, all for 40 min). Each test period was followed by a 30-min recovery period and then an ad libitum meal. The main outcome measures were energy balance, subjective appetite, and plasma pancreatic polypeptide (PP), cholecystokinin (CCK) and ghrelin concentrations. Relative energy intake was significantly decreased whereas plasma PP was increased in the exercise conditions (p=0.004 and p=0.002, respectively). Postprandial levels of CCK were elevated only in the rest conditions. Exposure to heat induced a decrease in plasma ghrelin (p=0.031). Exercise induced a short-term energy deficit. However, modifications in the hormonal regulation of food intake in response to short-term heat or heat and exercise exposure seem to be minor and did not induce changes in energy intake. This trial was registered at clinicaltrials.gov as NCT02157233. Copyright © 2016. Published by Elsevier Inc.

  1. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    PubMed Central

    Dehkhoda, Farhad; Lee, Christine M. M.; Medina, Johan; Brooks, Andrew J.

    2018-01-01

    The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling. PMID:29487568

  2. Assessment of hormonal activity in patients with premature ejaculation

    PubMed Central

    Canat, Lütfi; Erbin, Akif; Canat, Masum; Dinek, Mehmet; Çaşkurlu, Turhan

    2017-01-01

    ABSTRACT Purpose Premature ejaculation is considered the most common type of male sexual dysfunction. Hormonal controls of ejaculation have not been exactly elucidated. The aim of our study is to investigate the role of hormonal factors in patients with premature ejaculation. Materials and Methods Sixty-three participants who consulted our outpatient clinics with complaints of premature ejaculation and 39 healthy men as a control group selected from volunteers were included in the study. A total of 102 sexual active men aged between 21 and 76 years were included. Premature ejaculation diagnostic tool questionnaires were used to assessment of premature ejaculation. Serum levels of follicle stimulating hormone, luteinizing hormone, prolactin, total and free testosterone, thyroid-stimulating hormone, free triiodothyronine and thyroxine were measured. Results Thyroid-stimulating hormone, luteinizing hormone, and prolactin levels were significantly lower in men with premature ejaculation according to premature ejaculation diagnostic tool (p=0.017, 0.007 and 0.007, respectively). Luteinizing hormone level (OR, 1.293; p=0.014) was found to be an independent risk factor for premature ejaculation. Conclusions Luteinizing hormone, prolactin, and thyroid-stimulating hormone levels are associated with premature ejaculation which was diagnosed by premature ejaculation diagnostic tool questionnaires. The relationship between these findings have to be determined by more extensive studies. PMID:27619666

  3. Serum caffeine and paraxanthine concentrations and menstrual cycle function: correlations with beverage intakes and associations with race, reproductive hormones, and anovulation in the BioCycle Study.

    PubMed

    Schliep, Karen C; Schisterman, Enrique F; Wactawski-Wende, Jean; Perkins, Neil J; Radin, Rose G; Zarek, Shvetha M; Mitchell, Emily M; Sjaarda, Lindsey A; Mumford, Sunni L

    2016-07-01

    Clinicians often recommend limiting caffeine intake while attempting to conceive; however, few studies have evaluated the associations between caffeine exposure and menstrual cycle function, and we are aware of no previous studies assessing biological dose via well-timed serum measurements. We assessed the relation between caffeine and its metabolites and reproductive hormones in a healthy premenopausal cohort and evaluated potential effect modification by race. Participants (n = 259) were followed for ≤2 menstrual cycles and provided fasting blood specimens ≤8 times/cycle. Linear mixed models were used to estimate associations between serum caffeine biomarkers and geometric mean reproductive hormones, whereas Poisson regression was used to assess risk of sporadic anovulation. The highest compared with the lowest serum caffeine tertile was associated with lower total testosterone [27.9 ng/dL (95% CI: 26.7, 29.0 ng/dL) compared with 29.1 ng/dL (95% CI: 27.9, 30.3 ng/dL), respectively] and free testosterone [0.178 ng/mL (95% CI: 0.171, 0.185 ng/dL) compared with 0.186 ng/mL (95% CI: 0.179, 0.194 ng/dL), respectively] after adjustment for age, race, percentage of body fat, daily vigorous exercise, perceived stress, depression, dietary factors, and alcohol intake. The highest tertiles compared with the lowest tertiles of caffeine and paraxanthine were also associated with reduced risk of anovulation [adjusted RRs (aRRs): 0.39 (95% CI: 0.18, 0.87) and 0.40 (95% CI: 0.18, 0.87), respectively]. Additional adjustment for self-reported coffee intake did not alter the reproductive hormone findings and only slightly attenuated the results for serum caffeine and paraxanthine and anovulation. Although reductions in the concentrations of total testosterone and free testosterone and decreased risk of anovulation were greatest in Asian women, there was no indication of effect modification by race. Caffeine intake, irrespective of the beverage source, may be associated with

  4. Physical activity benefits bone density and bone-related hormones in adult men with cervical spinal cord injury.

    PubMed

    Chain, Amina; Koury, Josely C; Bezerra, Flávia Fioruci

    2012-09-01

    Severe bone loss is a recognized complication of chronic spinal cord injury (SCI). Physical exercise contributes to bone health; however, its influence on bone mass of cervical SCI individuals has not been investigated. The aim of this study was to investigate the influence of physical activity on bone mass, bone metabolism, and vitamin D status in quadriplegics. Total, lumbar spine (L1-L4), femur and radius bone mineral density (BMD) were assessed in active (n = 15) and sedentary (n = 10) quadriplegic men by dual energy X-ray absorptiometry. Concentrations of 25-hydroxyvitamin D [25(OH)D], PTH, IGF1, osteocalcin and NTx were measured in serum. After adjustments for duration of injury, total body mass, and habitual calcium intake, bone indices were similar between groups, except for L1-L4 BMD Z score that was higher in the sedentary group (P < 0.05). Hours of physical exercise per week correlated positively with 25(OH)D (r = 0.59; P < 0.05) and negatively with PTH (r = -0.50; P < 0.05). Femur BMD was negatively associated with the number of months elapsed between the injury and the onset of physical activity (r = -0.60; P < 0.05). Moreover, in the active subjects, both L1-L4 BMD Z score (r = 0.72; P < 0.01) and radius BMD (r = 0.59; P < 0.05) were positively associated with calcium intake. In this cross-sectional study, both the onset of physical activity after injury and the number of hours dedicated to exercise were able to influence bone density and bone-related hormones in quadriplegic men. Our results also suggest a positive combined effect of exercise and calcium intake on bone health of quadriplegic individuals.

  5. Physical activity and sex hormone levels in estradiol- and placebo-treated postmenopausal women.

    PubMed

    Choudhury, Farzana; Bernstein, Leslie; Hodis, Howard N; Stanczyk, Frank Z; Mack, Wendy J

    2011-10-01

    Postmenopausal changes in the hormonal milieu in women with or without hormone therapy are hypothesized to be the pathway for a number of menopause-associated modifications in physiology and disease risk. Physical activity may modify these changes in women's hormone profiles. The crucial yet complex relationship between physical activity and physiologic and pharmacologic sex hormone levels in postmenopausal women has not been investigated sufficiently. Using structured recall, physical activity was assessed longitudinally during a period of 2 years in 194 postmenopausal women (90 randomized to 1 mg 17β-estradiol treatment daily and 104 randomized to placebo) in the Estrogen in the Prevention of Atherosclerosis Trial. The levels of physical activity were correlated with the serum sex hormone and the serum hormone-binding globulin levels in each treatment group. Among the placebo-treated women, total energy expenditure was positively associated with sex hormone-binding globulin (SHBG; P < 0.001) and inversely associated with testosterones (total, bioavailable, or free) and androstenedione (P < 0.001 for all), as well as with estradiol (P = 0.02). In estradiol-treated women, estradiol levels were inversely associated with total energy expenditure (P = 0.002) and weekly hours spent in moderate or more vigorous physical activity (P = 0.001). Physical activity is associated with lower serum levels of estradiol in both hormone therapy-treated and untreated women. In placebo-treated women only, physical activity is associated with reduced androgen levels and elevated SHBG levels.

  6. Nutrition activation and dietary intake disparities among US adults.

    PubMed

    Langellier, Brent A; Massey, Philip M

    2016-12-01

    To introduce the concept 'nutrition activation' (the use of health and nutrition information when making food and diet decisions) and to assess the extent to which nutrition activation varies across racial/ethnic groups and explains dietary disparities. Cross-sectional sample representative of adults in the USA. Primary outcome measures include daily energy intake and consumption of sugar-sweetened beverages (SSB), fast foods and sit-down restaurant foods as determined by two 24 h dietary recalls. We use bivariate statistics and multiple logistic and linear regression analyses to assess racial/ethnic disparities in nutrition activation and food behaviour outcomes. USA. Adult participants (n 7825) in the 2007-2010 National Health and Nutrition Examination Survey. Nutrition activation varies across racial/ethnic groups and is a statistically significant predictor of SSB, fast-food and restaurant-food consumption and daily energy intake. Based on the sample distribution, an increase from the 25th to 75th percentile in nutrition activation is associated with a decline of about 377 kJ (90 kcal)/d. Increased nutrition activation is associated with a larger decline in SSB consumption among whites than among blacks and foreign-born Latinos. Fast-food consumption is associated with a larger 'spike' in daily energy intake among blacks (+1582 kJ (+378 kcal)/d) than among whites (+678 kJ (+162 kcal)/d). Nutrition activation is an important but understudied determinant of energy intake and should be explicitly incorporated into obesity prevention interventions, particularly among racial/ethnic minorities.

  7. Effect of thermal stress on physiological parameters, feed intake and plasma thyroid hormones concentration in Alentejana, Mertolenga, Frisian and Limousine cattle breeds

    NASA Astrophysics Data System (ADS)

    Pereira, Alfredo M. F.; Baccari, Flávio; Titto, Evaldo A. L.; Almeida, J. A. Afonso

    2008-01-01

    The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7°C to 40.0°C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.

  8. Nationwide review of hormonally active adrenal tumors highlights high morbidity in pheochromocytoma.

    PubMed

    Parikh, Punam P; Rubio, Gustavo A; Farra, Josefina C; Lew, John I

    2017-07-01

    Adrenal adenomas are benign tumors often discovered incidentally, and >70% are hormonally inactive. The remaining subset may produce excess aldosterone, cortisol, or catecholamine. Perioperative outcomes after adrenalectomy for such "hormonally active" tumors remain unclear. This study examines in-hospital outcomes after unilateral adrenalectomy for hormonally active tumors. A retrospective review was performed using the Nationwide Inpatient Sample (2006-2011) to identify patients undergoing unilateral adrenalectomy for hormonally active or inactive tumors. Malignant adrenal tumors were excluded. Demographics, comorbidities, and postoperative complications were evaluated by univariate analysis, using two-tailed Chi-square and t-tests and multivariate logistic regression. Of 27,312 patients who underwent adrenalectomy, 78% (n = 21,279) had hormonally inactive and 22% (n = 6033) had hormonally active adrenal tumors. Among the latter, 65% (n = 4000) had primary hyperaldosteronism (Conn's syndrome), 33% (n = 1996) had hypercortisolism (Cushing's syndrome), and 1.4% (n = 85) had pheochromocytoma. Patients with pheochromocytoma had higher rate of comorbidities including congestive heart failure, chronic lung disease, and malignant hypertension compared with remaining hormonally active tumors (12% versus 4%, 18% versus 11%, 6% versus 2%; P < 0.01). For patients with pheochromocytoma versus other hormonally active tumors, mean length of stay was 5 versus 3 d and total in-hospital cost was $50,000 versus $41,000 (P < 0.01). On multivariate analysis, pheochromocytoma had an independently higher risk for intraoperative blood transfusion (4.2, 95% confidence interval [CI] 2.4-7.2), postoperative cardiac (7.6, 95% CI 2.8-20.2), and respiratory (1.9, 95% CI 1.0-3.3) complications. Patients with pheochromocytoma have high rates of preoperative comorbidities, postoperative cardiopulmonary complications, and longer and more costly hospitalizations. Such high

  9. Hormonal control of feed intake in swine

    USDA-ARS?s Scientific Manuscript database

    Voluntary feed intake is controlled by a plethora of factors including, but not limited to, day length, social interactions, environmental conditions, oronasal sensory cues (i.e., taste, smell, texture), gastrointestinal fill, health status, metabolic status, dietary composition, drug interactions, ...

  10. Serum caffeine and paraxanthine concentrations and menstrual cycle function: correlations with beverage intakes and associations with race, reproductive hormones, and anovulation in the BioCycle Study12

    PubMed Central

    Schisterman, Enrique F; Wactawski-Wende, Jean; Perkins, Neil J; Radin, Rose G; Zarek, Shvetha M; Mitchell, Emily M; Sjaarda, Lindsey A; Mumford, Sunni L

    2016-01-01

    Background: Clinicians often recommend limiting caffeine intake while attempting to conceive; however, few studies have evaluated the associations between caffeine exposure and menstrual cycle function, and we are aware of no previous studies assessing biological dose via well-timed serum measurements. Objectives: We assessed the relation between caffeine and its metabolites and reproductive hormones in a healthy premenopausal cohort and evaluated potential effect modification by race. Design: Participants (n = 259) were followed for ≤2 menstrual cycles and provided fasting blood specimens ≤8 times/cycle. Linear mixed models were used to estimate associations between serum caffeine biomarkers and geometric mean reproductive hormones, whereas Poisson regression was used to assess risk of sporadic anovulation. Results: The highest compared with the lowest serum caffeine tertile was associated with lower total testosterone [27.9 ng/dL (95% CI: 26.7, 29.0 ng/dL) compared with 29.1 ng/dL (95% CI: 27.9, 30.3 ng/dL), respectively] and free testosterone [0.178 ng/mL (95% CI: 0.171, 0.185 ng/dL) compared with 0.186 ng/mL (95% CI: 0.179, 0.194 ng/dL), respectively] after adjustment for age, race, percentage of body fat, daily vigorous exercise, perceived stress, depression, dietary factors, and alcohol intake. The highest tertiles compared with the lowest tertiles of caffeine and paraxanthine were also associated with reduced risk of anovulation [adjusted RRs (aRRs): 0.39 (95% CI: 0.18, 0.87) and 0.40 (95% CI: 0.18, 0.87), respectively]. Additional adjustment for self-reported coffee intake did not alter the reproductive hormone findings and only slightly attenuated the results for serum caffeine and paraxanthine and anovulation. Although reductions in the concentrations of total testosterone and free testosterone and decreased risk of anovulation were greatest in Asian women, there was no indication of effect modification by race. Conclusion: Caffeine intake

  11. Effects of acute and longer-term dietary restriction on upper gut motility, hormone, appetite, and energy-intake responses to duodenal lipid in lean and obese men.

    PubMed

    Seimon, Radhika V; Taylor, Pennie; Little, Tanya J; Noakes, Manny; Standfield, Scott; Clifton, Peter M; Horowitz, Michael; Feinle-Bisset, Christine

    2014-01-01

    A 4-d 70% energy restriction enhances gastrointestinal sensitivity to nutrients associated with enhanced energy-intake suppression by lipid. To our knowledge, it is unknown whether these changes occur with 30% energy restriction and are sustained in the longer term. We hypothesized that 1) a 4-d 30% energy restriction would enhance effects of intraduodenal lipid on gastrointestinal motility, gut hormones, appetite, and energy intake in lean and obese men and 2) a 12-wk energy restriction associated with weight loss would diminish effects of acute energy restriction on responses to lipid in in obese men. Twelve obese males were studied before (day 0) and after 4 d (day 5), 4 wk (week 4), and 12 wk (week 12), and 12 lean males were studied before and after 4 d of consumption of a 30% energy-restricted diet. On each study day, antropyloroduodenal pressures, gut hormones, and appetite during a 120-min (2.86-kcal/min) intraduodenal lipid infusion and energy intake at a buffet lunch were measured. On day 5, fasting cholecystokinin was less, and ghrelin was higher, in lean (P < 0.05) but not obese men, and lipid-stimulated cholecystokinin and peptide YY and the desire to eat were greater in both groups (P < 0.05), with no differences in energy intakes compared with on day 0. In obese men, a 12-wk energy restriction led to weight loss (9.7 ± 0.7 kg). Lipid-induced basal pyloric pressures (BPPs), peptide YY, and the desire to eat were greater (P < 0.05), whereas the amount eaten was less (P < 0.05), at weeks 4 and 12 compared with day 0. A 4-d 30% energy restriction modestly affects responses to intraduodenal lipid in health and obesity but not energy intake, whereas a 12-wk energy restriction, associated with weight-loss, enhances lipid-induced BPP and peptide YY and reduces food intake, suggesting that energy restriction increases gastrointestinal sensitivity to lipid. This trial was registered at the Australian New Zealand Clinical Trials Registry (www.anzctr.org.au) as

  12. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity

    NASA Technical Reports Server (NTRS)

    Moran, M. M.; Stein, T. P.; Wade, C. E.

    2001-01-01

    A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  13. Athletic Activity and Hormone Concentrations in High School Female Athletes

    PubMed Central

    Wojtys, Edward M.; Jannausch, Mary L.; Kreinbrink, Jennifer L.; Harlow, Siobán D.; Sowers, MaryFran R.

    2015-01-01

    Context: Physical activity may affect the concentrations of circulating endogenous hormones in female athletes. Understanding the relationship between athletic and physical activity and circulating female hormone concentrations is critical. Objective: To test the hypotheses that (1) the estradiol-progesterone profile of high school adolescent girls participating in training, conditioning, and competition would differ from that of physically inactive, age-matched adolescent girls throughout a 3-month period; and (2) athletic training and conditioning would alter body composition (muscle, bone), leading to an increasingly greater lean–body-mass to fat–body-mass ratio with accompanying hormonal changes. Design: Cohort study. Settings: Laboratory and participants' homes. Patients or Other Participants: A total of 106 adolescent girls, ages 14–18 years, who had experienced at least 3 menstrual cycles in their lifetime. Main Outcome Measure(s): Participants were prospectively monitored throughout a 13-week period, with weekly physical activity assessments and 15 urine samples for estrogen, luteinizing hormone, creatinine, and progesterone concentrations. Each girl underwent body-composition measurements before and after the study period. Results: Seventy-four of the 98 girls (76%) who completed the study classified themselves as athletes. Body mass index, body mass, and fat measures remained stable, and 17 teenagers had no complete menstrual cycle during the observation period. Mean concentrations of log(estrogen/creatinine) were slightly greater in nonathletes who had cycles of <24 or >35 days. Mean log(progesterone/creatinine) concentrations in nonathletes were less in the first half and greater in the second half of the cycle, but the differences were not statistically significant. Conclusions: A moderate level of athletic or physical activity did not influence urine concentrations of estrogen, progesterone, or luteinizing hormones. However, none of the

  14. Saturated Fat Intake Is Related to Heart Rate Variability in Women with Polycystic Ovary Syndrome.

    PubMed

    Graff, Scheila K; Mario, Fernanda M; Magalhães, Jose A; Moraes, Ruy S; Spritzer, Poli Mara

    2017-01-01

    There is a heightened risk for cardiovascular diseases in women with polycystic ovary syndrome (PCOS). Alterations in heart rate variability (HRV) may reflect subclinical cardiovascular disease, with a putative association between HRV and dietary fat. This study evaluated HRV in PCOS and control women based on the dietary intake of saturated fatty acid (SFA). Biochemical/hormonal profile, resting metabolic rate, physical activity, HRV in response to the Stroop test, and dietary intake were assessed in 84 PCOS and 54 control women stratified by median SFA intake in the PCOS group (8.5% of daily energy intake). Body mass index (p = 0.041), blood pressure (p < 0.01), and HOMA-IR (p = 0.003) were higher in PCOS vs. PCOS women had higher testosterone (p = 0.001), dehydroepiandrosterone sulfate (p = 0.012), and free androgen index (p = 0.001), and lower sex hormone-binding globulin levels than controls (p = 0.001). In both groups, the clinical profile and calorie intake were similar between SFA categories. In PCOS, testosterone was lower when SFA intake <8.5%. PCOS women with SFA <8.5% consumed more beans, fruits, and vegetables and had better frequency and time domain HRV indices. No differences in HRV were detected between SFA categories in controls. In PCOS, age and SFA intake were independent predictors of HRV. Lower SFA intake is related to improved cardiovascular autonomic function in PCOS. © 2017 S. Karger AG, Basel.

  15. Low subjective socioeconomic status stimulates orexigenic hormone ghrelin - A randomised trial.

    PubMed

    Sim, A Y; Lim, E X; Leow, M K; Cheon, B K

    2018-03-01

    Recent evidence suggests that lower perceived socioeconomic status is linked to increased appetite and intake of greater calories. Yet, whether insecurity of socioeconomic resources directly influences regulatory systems of appetite and energy intake is not known. Considering psychological states, mindsets and beliefs have shown to meaningfully affect physiological responses to food, the present study tested the hypothesis that low subjective socioeconomic status (SSS) will have a direct influence on physiological responses, such as appetite-related hormones (ghrelin, pancreatic polypeptide and insulin). Forty-eight healthy males were randomly (crossover, counterbalanced) assigned, to two experimental conditions where participants were either experimentally induced to feel low SSS or not (control; CON). Feelings of low SSS resulted in an increase in active ghrelin (an orexigenic hormone) following the SSS manipulation compared with baseline, while no change in active ghrelin was observed in CON. Furthermore, participants reported lower fullness and satiety following low SSS compared with CON. Our findings demonstrate that SSS may influence hunger regulation and appetite, and suggest that physiological systems regulating energy balance (i.e. caloric resources) may also be sensitive to perceived deprivation or imbalances in critical non-food resources (socioeconomic resources). Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site

    PubMed Central

    Naranda, Tatjana; Wong, Kenneth; Kaufman, R. Ilene; Goldstein, Avram; Olsson, Lennart

    1999-01-01

    Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin. PMID:10377456

  17. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    PubMed

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  18. Effects of one's sex and sex hormones on sympathetic responses to chemoreflex activation.

    PubMed

    Usselman, Charlotte W; Steinback, Craig D; Shoemaker, J Kevin

    2016-03-01

    What is the topic of this review? This review summarizes sex-dependent differences in the sympathetic responses to chemoreflex activation, with a focus on the role of circulating sex hormones on the sympathetic outcomes. What advances does it highlight? The importance of circulating sex hormones for the regulation of sympathetic nerve activity in humans has only recently begun to be elucidated, and few studies have examined this effect during chemoreflex regulation. We review recent studies indicating that changes in circulating sex hormones are associated with alterations to chemoreflex-driven increases in sympathetic activity and highlight those areas which require further study. Sex-dependent differences in baseline sympathetic nerve activity are established, but little information exists on the influence of sex on sympathetic activation during chemoreflex stimulation. In this article, we review the evidence for the effect of sex on chemoreflex-driven increases in sympathetic nerve activity. We also review recent studies which indicate that changes in circulating sex hormones, as initiated by the menstrual cycle and hormonal contraceptive use, elicit notable changes in the muscle sympathetic activation during chemoreflex stimulation. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  19. Just a Gut Feeling: Central Nervous Effects of Peripheral Gastrointestinal Hormones.

    PubMed

    Roth, Christian L; Doyle, Robert Patrick

    2017-01-01

    Despite greater health education, obesity remains one of the greatest health challenges currently facing the world. The prevalence of obesity among children and adolescents and the rising rates of prediabetes and diabetes are of particular concern. A deep understanding of regulatory pathways and development of new anti-obesity drugs with increased efficacy and safety are of utmost necessity. The 2 major biological players in the regulation of food intake are the gut and the brain as peptides released from the gut in response to meals convey information about the energy needs to brain centers of energy homeostasis. There is evidence that gut hormones not only pass the blood-brain barrier and bind to receptors located in different brain areas relevant for body weight regulation, but some are also expressed in the brain as part of hedonic and homeostatic pathways. Regarding obesity interventions, the only truly effective treatment for obesity is bariatric surgery, the long-term benefits of which may actually involve increased activity of gut hormones including peptide YY3-36 and glucagon-like peptide 1. This review discusses critical gut-hormones involved in the regulation of food intake and energy homeostasis and their effects on peripheral tissues versus central nervous system actions. © 2017 S. Karger AG, Basel.

  20. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans.

    PubMed

    Søberg, Susanna; Sandholt, Camilla H; Jespersen, Naja Z; Toft, Ulla; Madsen, Anja L; von Holstein-Rathlou, Stephanie; Grevengoed, Trisha J; Christensen, Karl B; Bredie, Wender L P; Potthoff, Matthew J; Solomon, Thomas P J; Scheele, Camilla; Linneberg, Allan; Jørgensen, Torben; Pedersen, Oluf; Hansen, Torben; Gillum, Matthew P; Grarup, Niels

    2017-05-02

    The liking and selective ingestion of palatable foods-including sweets-is biologically controlled, and dysfunction of this regulation may promote unhealthy eating, obesity, and disease. The hepatokine fibroblast growth factor 21 (FGF21) reduces sweet consumption in rodents and primates, whereas knockout of Fgf21 increases sugar consumption in mice. To investigate the relevance of these findings in humans, we genotyped variants in the FGF21 locus in participants from the Danish Inter99 cohort (n = 6,514) and examined their relationship with a detailed range of food and ingestive behaviors. This revealed statistically significant associations between FGF21 rs838133 and increased consumption of candy, as well as nominal associations with increased alcohol intake and daily smoking. Moreover, in a separate clinical study, plasma FGF21 levels increased acutely after oral sucrose ingestion and were elevated in fasted sweet-disliking individuals. These data suggest the liver may secrete hormones that influence eating behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A natural variant of obestatin, Q90L, inhibits ghrelin's action on food intake and GH secretion and targets NPY and GHRH neurons in mice.

    PubMed

    Hassouna, Rim; Zizzari, Philippe; Viltart, Odile; Yang, Seung-Kwon; Gardette, Robert; Videau, Catherine; Badoer, Emilio; Epelbaum, Jacques; Tolle, Virginie

    2012-01-01

    Ghrelin and obestatin are two gut-derived peptides originating from the same ghrelin/obestatin prepropeptide gene (GHRL). While ghrelin stimulates growth hormone (GH) secretion and food intake and inhibits γ-aminobutyric-acid synaptic transmission onto GHRH (Growth Hormone Releasing Hormone) neurons, obestatin blocks these effects. In Humans, GHRL gene polymorphisms have been associated with pathologies linked to an unbalanced energy homeostasis. We hypothesized that one polymorphism located in the obestatin sequence (Q to L substitution in position 90 of the ghrelin/obestatin prepropeptide, rs4684677) may impact on the function of obestatin. In the present study, we tested the activity of native and Q90L obestatin to modulate ghrelin-induced food intake, GH secretion, cFos activity in GHRH and Neuropeptide Y (NPY) neurons and γ-aminobutyric-acid activity onto GHRH neurons. Food intake, GH secretion and electrophysiological recordings were assessed in C57BL/6 mice. cFos activity was measured in NPY-Renilla-GFP and GHRH-eGFP mice. Mice received saline, ghrelin or ghrelin combined to native or Q90L obestatin (30 nmol each) in the early light phase. Ghrelin stimulation of food intake and GH secretion varied considerably among individual mice with 59-77% eliciting a robust response. In these high-responders, ghrelin-induced food intake and GH secretion were reduced equally by native and Q90L obestatin. In contrast to in vivo observations, Q90L was slightly more efficient than native obestatin in inhibiting ghrelin-induced cFos activation within the hypothalamic arcuate nucleus and the nucleus tractus solitarius of the brainstem. After ghrelin injection, 26% of NPY neurons in the arcuate nucleus expressed cFos protein and this number was significantly reduced by co-administration of Q90L obestatin. Q90L was also more potent that native obestatin in reducing ghrelin-induced inhibition of γ-aminobutyric-acid synaptic transmission onto GHRH neurons. These data support

  2. Dietary minerals, reproductive hormone levels and sporadic anovulation: associations in healthy women with regular menstrual cycles.

    PubMed

    Kim, Keewan; Wactawski-Wende, Jean; Michels, Kara A; Schliep, Karen C; Plowden, Torie C; Chaljub, Ellen N; Mumford, Sunni L

    2018-04-20

    Although minerals are linked to several reproductive outcomes, it is unknown whether dietary minerals are associated with ovulatory function. We hypothesised that low intakes of minerals would be associated with an increased risk of anovulation. We investigated associations between dietary mineral intake and both reproductive hormones and anovulation in healthy women in the BioCycle Study, which prospectively followed up 259 regularly menstruating women aged 18-44 years who were not taking mineral supplements for two menstrual cycles. Intakes of ten selected minerals were assessed through 24-h dietary recalls at up to four times per cycle in each participant. Oestradiol, progesterone, luteinising hormone (LH), follicle-stimulating hormone (FSH), sex-hormone-binding globulin and testosterone were measured in serum up to eight times per cycle. We used weighted linear mixed models to evaluate associations between minerals and hormones and generalised linear models for risk of anovulation. Compared with Na intake ≥1500 mg, Na intake <1500 mg was associated with higher levels of FSH (21·3 %; 95 % CI 7·5, 36·9) and LH (36·8 %; 95 % CI 16·5, 60·5) and lower levels of progesterone (-36·9 %; 95 % CI -56·5, -8·5). Na intake <1500 mg (risk ratio (RR) 2·70; 95 % CI 1·00, 7·31) and Mn intake <1·8 mg (RR 2·00; 95 % CI 1·02, 3·94) were associated with an increased risk of anovulation, compared with higher intakes, respectively. Other measured dietary minerals were not associated with ovulatory function. As essential minerals are mostly obtained via diet, our results comparing insufficient levels with sufficient levels highlight the need for future research on dietary nutrients and their associations with ovulatory cycles.

  3. Flavonoid intake and incident hypertension in women.

    PubMed

    Lajous, Martin; Rossignol, Emilie; Fagherazzi, Guy; Perquier, Florence; Scalbert, Augustin; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine

    2016-04-01

    Intake of flavonoid-containing food has been shown to have a beneficial effect on blood pressure in short-term randomized trials. There are limited data on total flavonoid and flavonoid-subclass consumption over a long period of time and the corresponding incidence of hypertension. We aimed to evaluate the relation between flavonoid subclasses and total flavonoid intakes and incidence of hypertension. In a prospective cohort of 40,574 disease-free French women who responded to a validated dietary questionnaire, we observed 9350 incident cases of hypertension between 1993 and 2008. Cases were identified through self-reports of diagnosed or treated hypertension. Multivariate Cox regression models were adjusted for age, family history of hypertension, body mass index, physical activity, smoking, diabetes, hypercholesterolemia, hormone therapy, and alcohol, caffeine, magnesium, potassium, omega-3 (n-3), and processed meat intakes. Women in the highest quintile of flavonol intake had a 10% lower rate of hypertension than women in the lowest quintile (HR: 0.90; 95% CI: 0.84, 0.97;P-trend = 0.031). Similarly, there was a 9% lower rate for women in the highest category of intake than for women in the lowest category of intake for both anthocyanins and proanthocyanidin polymers [HRs: 0.91 (95% CI: 0.84, 0.97;P-trend = 0.0075) and 0.91 (95% CI: 0.85, 0.97;P-trend = 0.0051), respectively]. An inverse association for total flavonoid intake was observed with a similar magnitude. In this large prospective cohort of French middle-aged women, participants with greater flavonol, anthocyanin, and polymeric flavonoid intakes and greater total flavonoid intake were less likely to develop hypertension. © 2016 American Society for Nutrition.

  4. Hypothalamic roles of mTOR complex I: Integration of nutrient and hormone signals to regulate energy homeostasis

    USDA-ARS?s Scientific Manuscript database

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight...

  5. l-phenylalanine modulates gut hormone release and glucose tolerance, and suppresses food intake through the calcium-sensing receptor in rodents.

    PubMed

    Alamshah, A; Spreckley, E; Norton, M; Kinsey-Jones, J S; Amin, A; Ramgulam, A; Cao, Y; Johnson, R; Saleh, K; Akalestou, E; Malik, Z; Gonzalez-Abuin, N; Jomard, A; Amarsi, R; Moolla, A; Sargent, P R; Gray, G W; Bloom, S R; Murphy, K G

    2017-11-01

    High-protein diets (HPDs) are associated with greater satiety and weight loss than diets rich in other macronutrients. The exact mechanisms by which HPDs exert their effects are unclear. However, evidence suggests that the sensing of amino acids produced as a result of protein digestion may have a role in appetite regulation and satiety. We investigated the effects of l-phenylalanine (L-Phe) on food intake and glucose homeostasis in rodents. We investigated the effects of the aromatic amino-acid and calcium-sensing receptor (CaSR) agonist l-phenylalanine (L-Phe) on food intake and the release of the gastrointestinal (GI) hormones peptide YY (PYY), glucagon-like peptide-1 (GLP-1) and ghrelin in rodents, and the role of the CaSR in mediating these effects in vitro and in vivo. We also examined the effect of oral l-Phe administration on glucose tolerance in rats. Oral administration of l-Phe acutely reduced food intake in rats and mice, and chronically reduced food intake and body weight in diet-induced obese mice. Ileal l-Phe also reduced food intake in rats. l-Phe stimulated GLP-1 and PYY release, and reduced plasma ghrelin, and also stimulated insulin release and improved glucose tolerance in rats. Pharmacological blockade of the CaSR attenuated the anorectic effect of intra-ileal l-Phe in rats, and l-Phe-induced GLP-1 release from STC-1 and primary L cells was attenuated by CaSR blockade. l-Phe reduced food intake, stimulated GLP-1 and PYY release, and reduced plasma ghrelin in rodents. Our data provide evidence that the anorectic effects of l-Phe are mediated via the CaSR, and suggest that l-Phe and the CaSR system in the GI tract may have therapeutic utility in the treatment of obesity and diabetes. Further work is required to determine the physiological role of the CaSR in protein sensing in the gut, and the role of this system in humans.

  6. A Novel Wearable Device for Food Intake and Physical Activity Recognition

    PubMed Central

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  7. A Novel Wearable Device for Food Intake and Physical Activity Recognition.

    PubMed

    Farooq, Muhammad; Sazonov, Edward

    2016-07-11

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure.

  8. Z-505 hydrochloride, an orally active ghrelin agonist, attenuates the progression of cancer cachexia via anabolic hormones in Colon 26 tumor-bearing mice.

    PubMed

    Yoshimura, Makoto; Shiomi, Yoshihiro; Ohira, Yuta; Takei, Mineo; Tanaka, Takao

    2017-09-15

    Cancer cachexia is a progressive wasting syndrome characterized by anorexia and weight loss, specifically muscle wasting and fat depletion. There is no therapeutic agent for treatment of this syndrome. We investigated the anti-cachexia effects of Z-505 hydrochloride (Z-505), a new oral growth hormone secretagogue receptor 1a (GHSR1a) agonist, using a mouse model of cancer cachexia. We performed a calcium flux assay in Chinese hamster ovary (CHO-K1) cells stably expressing human GHSR1a to quantify the agonistic activity of Z-505. In Colon 26 tumor-bearing mice, Z-505 (300mg/kg, p.o., twice daily) was administered for 7 days to assess its anti-cachexia effects. Body weight and food intake were monitored during the period, and the skeletal muscle and epididymal fat weights were measured. Serum levels of insulin, insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6), and corticosterone were measured to confirm the mechanism of the anti-cachexia action of Z-505. Z-505 showed strong agonistic activity similar to that of human ghrelin, with a half maximal effective concentration (EC 50 ) value of 0.45nM. Z-505 treatment significantly increased food intake and inhibited the progression of weight loss. Z-505 also significantly attenuated muscle wasting and fat loss, and increased circulating levels of anabolic factors such as insulin and IGF-1, but not catabolic factors such as IL-6 and corticosterone. These findings suggest that Z-505 might be effective in the treatment of cachexia via the increased anabolic hormone levels stimulated by the activation of the ghrelin receptor, GHSR1a. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ghrelin affects stopover decisions and food intake in a long-distance migrant.

    PubMed

    Goymann, Wolfgang; Lupi, Sara; Kaiya, Hiroyuki; Cardinale, Massimiliano; Fusani, Leonida

    2017-02-21

    Billions of birds migrate long distances to either reach breeding areas or to spend the winter at more benign places. On migration, most passerines frequently stop over to rest and replenish their fuel reserves. To date, we know little regarding how they decide that they are ready to continue their journey. What physiological signals tell a bird's brain that its fuel reserves are sufficient to resume migration? A network of hormones regulates food intake and body mass in vertebrates, including the recently discovered peptide hormone, ghrelin. Here, we show that ghrelin reflects body condition and influences migratory behavior of wild birds. We measured ghrelin levels of wild garden warblers ( Sylvia borin ) captured at a stopover site. Further, we manipulated blood concentrations of ghrelin to test its effects on food intake and migratory restlessness. We found that acylated ghrelin concentrations of garden warblers with larger fat scores were higher than those of birds without fat stores. Further, injections of unacylated ghrelin decreased food intake and increased migratory restlessness. These results represent experimental evidence that appetite-regulating hormones control migratory behavior. Our study lays a milestone in migration physiology because it provides the missing link between ecologically dependent factors such as condition and timing of migration. In addition, it offers insights in the regulation of the hormonal system controlling food intake and energy stores in vertebrates, whose disruption causes eating disorders and obesity.

  10. Comparison of TRH and anorexigenic peptide on food intake and gastrointestinal secretions.

    PubMed

    Konturek, S J; Tasler, J; Jaworek, J; Dobrzańska, M; Coy, D H; Schally, A V

    1981-01-01

    Thyrotropin releasing hormone (TRH), distributed throughout the gastrointestinal tract, and anorexigenic peptide (AP), isolated recently from the urine of females with "hypothalamic" anorexia nervosa, have been shown to affect food intake but no study has been performed to compare their action on gastrointestinal secretions. This report shows that both TRH and AP reduce dose-dependently the food intake during sham-feeding and inhibit gastric and pancreatic secretions in response to various exogenous and endogenous stimulants in conscious dogs. The results indicate that TRH and AP have similar inhibitory action on feeding and gastrointestinal secretory activity and that they may be involved in peptidergic mediation of satiety and gastrointestinal secretion.

  11. The stimulatory effect of neuropeptide Y on growth hormone expression, food intake, and growth in olive flounder (Paralichthys olivaceus).

    PubMed

    Li, Meijie; Tan, Xungang; Sui, Yulei; Jiao, Shuang; Wu, Zhihao; Wang, Lijuan; You, Feng

    2017-02-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide known to be a strong orexigenic (appetite-stimulating) factor in many species. In this study, we investigated the effect of NPY on food intake and growth in the olive flounder (Paralichthys olivaceus). Recombinant full-length NPY was injected intraperitoneally into olive flounder at the dose of 1 μg/g body weight; phosphate buffered saline was used as the negative control. In a long-term experiment, NPY and control groups were injected every fifth day over a period of 30 days. In a short-term experiment, NPY and control groups were given intraperitoneal injections and maintained for 24 h. Food intake and growth rates were significantly higher in fish injected with recombinant NPY than in the control fish (P < 0.05). Higher growth hormone (GH) and NPY mRNA transcript levels were observed in both experiments, indicating a stimulatory effect of NPY on GH release. These findings demonstrate that NPY is an effective appetite-stimulating factor in olive flounder with the potential to improve the growth of domestic fish species and enhance efficiency in aquaculture.

  12. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  13. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay.

    PubMed Central

    Prestwich, G D; Wawrzeńczyk, C

    1985-01-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites. PMID:3860862

  14. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    PubMed Central

    Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001) and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001). The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701

  15. Dietary Carbohydrate Intake Does Not Impact Insulin Resistance or Androgens in Healthy, Eumenorrheic Women.

    PubMed

    Sjaarda, Lindsey A; Schisterman, Enrique F; Schliep, Karen C; Plowden, Torie; Zarek, Shvetha M; Yeung, Edwina; Wactawski-Wende, Jean; Mumford, Sunni L

    2015-08-01

    Diet is proposed to contribute to androgen-related reproductive dysfunction. This study evaluated the association between dietary macronutrient intake, carbohydrate fraction intake, and overall diet quality on androgens and related hormones, including anti-Müllerian hormone (AMH) and insulin, in healthy, regularly menstruating women. This was a prospective cohort study from 2005 and 2007. The study was conducted at the University at Buffalo, western New York State, USA. Participants were 259 eumenorrheic women without a self-reported history of infertility, polycystic ovary syndrome (PCOS), or other endocrine disorder. A 24-hour dietary recall was administered 4 times per menstrual cycle, and hormones were measured 5 to 8 times per cycle for 1 (n = 9) or 2 (n = 250) cycles per woman (n = 509 cycles). Associations between the dietary intake of carbohydrates (starch, sugar, sucrose, and fiber), macronutrients, overall diet quality and hormones (insulin, AMH, and total and free testosterone), as well as the relationship of dietary intake with occurrences of high total testosterone combined with high AMH (fourth quartile of each), ie, the "PCOS-like phenotype," were assessed. No significant relationships were identified between dietary intake of carbohydrates, percent calories from any macronutrient or overall diet quality (ie, Mediterranean diet score) and relevant hormones (insulin, AMH, and total and free testosterone). Likewise, no significant relationships were identified between dietary factors and the occurrence of a subclinical PCOS-like phenotype. Despite evidence of a subclinical continuum of a PCOS-related phenotype of elevated androgens and AMH related to sporadic anovulation identified in previous studies, dietary carbohydrate and diet quality do not appear to relate to these subclinical endocrine characteristics in women without overt PCOS.

  16. The Radioimmunoassay of Fluid and Electrolyte Hormones

    NASA Technical Reports Server (NTRS)

    Keil, Lanny C.

    1985-01-01

    The subject of the paper will be the assay of fluid/electrolyte hormones. ADH (antidiuretic hormone also referred to as vasopressin) reduces fluid loss by increasing water reabsorption by the kidney. The stimuli for its release from the pituitary are loss of blood, dehydration, or increased salt intake. Angiotensin II is the next hormone of interest. It is "generated" from a blood protein by the release of renin from the kidney. One of its functions is to stimulate the secretion of aldosterone from the adrenal gland. Release of renin is also stimulated by volume and sodium loss.

  17. High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys.

    PubMed

    Chevalley, Thierry; Bonjour, Jean-Philippe; Ferrari, Serge; Rizzoli, René

    2008-01-01

    In 232 healthy prepubertal boys, increased physical activity was associated with greater BMC at both axial and appendicular sites under high-protein intake. Physical activity is an important lifestyle determinant of bone mineral mass acquisition. Its impact during childhood can be modulated by nutrition, particularly by protein and calcium intakes. We analyzed the relationship between physical activity levels and protein compared with calcium intake on BMC. In 232 healthy prepubertal boys (age: 7.4 +/- 0.4 [SD] yr; standing height: 125.7 +/- 5.9 cm; body weight: 25.3 +/- 4.6 kg), physical activity and protein and calcium intakes were recorded. BMC was measured by DXA at the radial metaphysis, radial diaphysis, total radius, femoral neck, total hip, femoral diaphysis, and L(2)-L(4) vertebrae. In univariate analysis, the correlation coefficients r with BMC of the various skeletal sites were as follows: physical activity, from 0.26 (p = 0.0001) to 0.40 (p = 0.0001); protein intake, from 0.18 (p = 0.005) to 0.27 (p = 0.0001); calcium intake, from 0.09 (p = 0.181) to 0.17 (p = 0.007). By multiple regression analysis, the beta-adjusted values remained correlated with BMC, ranging as follows: physical activity, from 0.219 (p = 0.0007) to 0.340 (p < 0.0001); protein intake, from 0.120 (p = 0.146) to 0.217 (p = 0.009). In contrast, it was not correlated for calcium intake: from -0.069 (p = 0.410) to 0.001 (p = 0.986). With protein intake (mean = 2.0 g/kg body weight/d) above the median, increased physical activity from 168 to 321 kcal/d was associated with greater mean BMC Z-score (+0.6, p = 0.0005). In contrast with protein intake (mean = 1.5 g/kg body weight/d) below the median, increased physical activity from 167 to 312 kcal/d was not associated with a significantly greater mean BMC Z-score (+0.2, p = 0.371). The interaction between physical activity and protein intake was close to statistical significance for mean BMC Z-score (p = 0.055) and significant for femoral

  18. Adipokinetic hormones control amylase activity in the cockroach (Periplaneta americana) gut.

    PubMed

    Bodláková, Karolina; Jedlička, Pavel; Kodrík, Dalibor

    2017-04-01

    This study examined the biochemical characteristics of α-amylase and hormonal (adipokinetic hormone: AKH) stimulation of α-amylase activity in the cockroach (Periplaneta americana) midgut. We applied two AKHs in vivo and in vitro, then measured resultant amylase activity and gene expression, as well as the expression of AKH receptor (AKHR). The results revealed that optimal amylase activity is characterized by the following: pH: 5.7, temperature: 38.4 °C, K m (Michaelis-Menten constant): 2.54 mg starch/mL, and V max (maximum reaction velocity): 0.185 μmol maltose/mL/min. In vivo application of AKHs resulted in significant increase of amylase activity: by two-fold in the gastric caeca and 4-7 fold in the rest of the midgut. In vitro experiments supported results seen in vivo: a 24-h incubation with the hormones resulted in the increase of amylase activity by 1.4 times in the caeca and 4-9 times in the midgut. Further, gene expression analyses reveal that AKHR is expressed in both the caeca and the rest of the midgut, although expression levels in the former were 23 times higher than levels in the latter. A similar pattern was found for the amylase (AMY) gene. Hormonal treatment did not affect the expression of either gene. This study is the first to provide evidence indicating direct AKH stimulation of digestive enzyme activity in the insect midgut, supported by specific AKHR gene expression in this organ. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Nutrient Intake, Physical Activity, and CVD Risk Factors in Children

    PubMed Central

    Day, R. Sue; Fulton, Janet E.; Dai, Shifan; Mihalopoulos, Nicole L.; Barradas, Danielle T.

    2009-01-01

    Background Associations among dietary intake, physical activity, and cardiovascular disease (CVD) risk factors are inconsistent among male and female youth, possibly from lack of adjustment for pubertal status. The purpose of this report is to describe the associations of CVD risk factors among youth, adjusted for sexual maturation. Methods Data analyzed in 2007 from a sumsample of 556 children aged 8, 11, and 14 years in Project HeartBeat!, 1991–1993, provide cross-sectional patterns of CVD risk factors by age and gender, adjusting for sexual maturation, within dietary fat and physical activity categories. Results Girls consuming moderate- to high-fat diets were significantly less physically active than those consuming low-fat diets. Boys and girls consuming high-fat diets had higher saturated fat and cholesterol intakes than children in low-fat categories. Boys had no significant differences in physical activity, blood pressure, waist circumference, or plasma cholesterol levels across fat categories. Girls’ plasma cholesterol levels showed no significant differences across fat categories. Dietary intake did not differ across moderate-to-vigorous physical activity (MVPA) categories within gender. There were no differences in BMI by fat or MVPA categories for either gender. Girls’ waist circumference differed significantly by fat category, and systolic blood pressure differed significantly across fat and MVPA categories. Boys’ fifth-phase diastolic blood pressure was significantly different across MVPA categories. Conclusions Girls consuming atherogenic diets were significantly less physically active than those with low fat intakes, whereas boys consuming high-fat diets did not show differences in physical activity measures. With the prevalence of overweight rising among youth, the impact of atherogenic diets and sedentary lifestyles on CVD risk factors is of concern to public health professionals. PMID:19524152

  20. Ghrelin affects stopover decisions and food intake in a long-distance migrant

    PubMed Central

    Lupi, Sara; Kaiya, Hiroyuki; Cardinale, Massimiliano

    2017-01-01

    Billions of birds migrate long distances to either reach breeding areas or to spend the winter at more benign places. On migration, most passerines frequently stop over to rest and replenish their fuel reserves. To date, we know little regarding how they decide that they are ready to continue their journey. What physiological signals tell a bird’s brain that its fuel reserves are sufficient to resume migration? A network of hormones regulates food intake and body mass in vertebrates, including the recently discovered peptide hormone, ghrelin. Here, we show that ghrelin reflects body condition and influences migratory behavior of wild birds. We measured ghrelin levels of wild garden warblers (Sylvia borin) captured at a stopover site. Further, we manipulated blood concentrations of ghrelin to test its effects on food intake and migratory restlessness. We found that acylated ghrelin concentrations of garden warblers with larger fat scores were higher than those of birds without fat stores. Further, injections of unacylated ghrelin decreased food intake and increased migratory restlessness. These results represent experimental evidence that appetite-regulating hormones control migratory behavior. Our study lays a milestone in migration physiology because it provides the missing link between ecologically dependent factors such as condition and timing of migration. In addition, it offers insights in the regulation of the hormonal system controlling food intake and energy stores in vertebrates, whose disruption causes eating disorders and obesity. PMID:28167792

  1. Hormonal, lifestyle, and dietary factors in relation to leptin among elderly men.

    PubMed

    Lagiou, P; Signorello, L B; Mantzoros, C S; Trichopoulos, D; Hsieh, C C; Trichopoulou, A

    1999-01-01

    Leptin, the adipocyte-secreted protein product of the ob gene, has been strongly linked to obesity and is believed to play a role in the regulation of the reproductive system. This study examines the potential influence of lifestyle and dietary factors, as well as of other hormones, on serum levels of leptin. The authors studied a population of 48 healthy elderly Greek men. Sera from these men were analyzed for leptin, several steroid hormones, sex hormone-binding globulin, and insulin-like growth factor 1. The authors also utilized data from food frequency questionnaires and information on demographic, anthropometric, and lifestyle (cigarette smoking, alcohol and coffee drinking) factors. Using linear regression modeling, serum leptin levels were inversely associated with testosterone and positively associated with estradiol and dehydroepiandrosterone sulfate, after adjustment for the other hormones and body mass index (BMI). Leptin levels in men with a BMI >30 kg/m2 were 170% higher than in men with a BMI <27 kg/m2 (95% CI 63- 346%). Height was also positively associated with leptin, independent of BMI. No notable relationships were observed between leptin, on the one hand, and smoking, alcohol drinking, coffee drinking, or total energy intake, on the other. When total energy intake was separated into its three major components (carbohydrate, fat, and protein), it appeared that fat intake may have an isocalorically differential effect on serum leptin levels; one marginal quintile increase in fat intake corresponded to an 11% increase in leptin (95% CI 0-24%). Serum levels of leptin may be influenced by other endocrine factors, especially testosterone and estradiol, and may be positively associated with excess fat intake independently of obesity.

  2. Vegetable and fruit consumption and the risk of hormone receptor-defined breast cancer in the EPIC cohort.

    PubMed

    Emaus, Marleen J; Peeters, Petra H M; Bakker, Marije F; Overvad, Kim; Tjønneland, Anne; Olsen, Anja; Romieu, Isabelle; Ferrari, Pietro; Dossus, Laure; Boutron-Ruault, Marie Christine; Baglietto, Laura; Fortner, Renée T; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Masala, Giovanna; Pala, Valeria; Panico, Salvatore; Tumino, Rosario; Polidoro, Silvia; Skeie, Guri; Lund, Eiliv; Weiderpass, Elisabete; Quirós, J Ramón; Travier, Noémie; Sánchez, María-José; Chirlaque, Maria-Dolores; Ardanaz, Eva; Dorronsoro, Miren; Winkvist, Anna; Wennberg, Maria; Bueno-de-Mesquita, H Bas; Khaw, Kay-Tee; Travis, Ruth C; Key, Timothy J; Aune, Dagfinn; Gunter, Marc; Riboli, Elio; van Gils, Carla H

    2016-01-01

    The recent literature indicates that a high vegetable intake and not a high fruit intake could be associated with decreased steroid hormone receptor-negative breast cancer risk. This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk. A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors. After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk. This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk. © 2016 American Society for Nutrition.

  3. Meat intake and reproductive parameters among young men.

    PubMed

    Afeiche, Myriam C; Williams, Paige L; Gaskins, Audrey J; Mendiola, Jaime; Jørgensen, Niels; Swan, Shanna H; Chavarro, Jorge E

    2014-05-01

    In the United States, anabolic sex steroids are administered to cattle for growth promotion. There is concern regarding the reproductive consequences of this practice in men who eat beef. We investigated whether meat consumption was associated with semen quality parameters and reproductive hormone levels in young men. Semen samples were obtained from 189 men aged 18-22 years. Diet was assessed with a previously validated food frequency questionnaire. We used linear regression to analyze the cross-sectional associations of meat intake with semen quality parameters and reproductive hormones while adjusting for potential confounders. There was an inverse relation between processed red meat intake and total sperm count. The adjusted relative differences in total sperm counts for men in increasing quartiles of processed meat intake were 0 (ref), -3 (95% confidence interval = -67 to 37), -14 (-82 to 28), and -78 (-202 to -5) million (test for trend, P = 0.01). This association was strongest among men with abstinence time less than 2 days and was driven by a strong inverse relation between processed red meat intake and ejaculate volume (test for trend, P = 0.003). In our population of young men, processed meat intake was associated with lower total sperm count. We cannot distinguish whether this association is because of residual confounding by abstinence time or represents a true biological effect.

  4. [The adaptation reactions in hormonal systems to the internal use of mineral waters].

    PubMed

    Polushina, N D

    1991-01-01

    A single intake of mineral water Essentuki 17 by male Wistar rats (n-130, b. w. 180-250 g) leads to stress reactions. It is evident from elevated levels of ACTH, hydrocortisone, leuenkephaline, glucagon and gastrin. Course intake of the water brings about a rise in most of the hormones levels studied. However, single doses of Essentuki 17 inhibit production of hormones in the adrenals, hypophysis, hypothalamus, the system of endogenic opiates. The enhancement of relevant levels are noted in the gastroenteropancreatic system.

  5. A Natural Variant of Obestatin, Q90L, Inhibits Ghrelin's Action on Food Intake and GH Secretion and Targets NPY and GHRH Neurons in Mice

    PubMed Central

    Hassouna, Rim; Zizzari, Philippe; Viltart, Odile; Yang, Seung-Kwon; Gardette, Robert; Videau, Catherine; Badoer, Emilio; Epelbaum, Jacques; Tolle, Virginie

    2012-01-01

    Background Ghrelin and obestatin are two gut-derived peptides originating from the same ghrelin/obestatin prepropeptide gene (GHRL). While ghrelin stimulates growth hormone (GH) secretion and food intake and inhibits γ-aminobutyric-acid synaptic transmission onto GHRH (Growth Hormone Releasing Hormone) neurons, obestatin blocks these effects. In Humans, GHRL gene polymorphisms have been associated with pathologies linked to an unbalanced energy homeostasis. We hypothesized that one polymorphism located in the obestatin sequence (Q to L substitution in position 90 of the ghrelin/obestatin prepropeptide, rs4684677) may impact on the function of obestatin. In the present study, we tested the activity of native and Q90L obestatin to modulate ghrelin-induced food intake, GH secretion, cFos activity in GHRH and Neuropeptide Y (NPY) neurons and γ-aminobutyric-acid activity onto GHRH neurons. Methodology/Principal findings Food intake, GH secretion and electrophysiological recordings were assessed in C57BL/6 mice. cFos activity was measured in NPY-Renilla-GFP and GHRH-eGFP mice. Mice received saline, ghrelin or ghrelin combined to native or Q90L obestatin (30 nmol each) in the early light phase. Ghrelin stimulation of food intake and GH secretion varied considerably among individual mice with 59–77% eliciting a robust response. In these high-responders, ghrelin-induced food intake and GH secretion were reduced equally by native and Q90L obestatin. In contrast to in vivo observations, Q90L was slightly more efficient than native obestatin in inhibiting ghrelin-induced cFos activation within the hypothalamic arcuate nucleus and the nucleus tractus solitarius of the brainstem. After ghrelin injection, 26% of NPY neurons in the arcuate nucleus expressed cFos protein and this number was significantly reduced by co-administration of Q90L obestatin. Q90L was also more potent that native obestatin in reducing ghrelin-induced inhibition of γ-aminobutyric-acid synaptic

  6. Dietary Carbohydrate Intake Does Not Impact Insulin Resistance or Androgens in Healthy, Eumenorrheic Women

    PubMed Central

    Schisterman, Enrique F.; Schliep, Karen C.; Plowden, Torie; Zarek, Shvetha M.; Yeung, Edwina; Wactawski-Wende, Jean; Mumford, Sunni L.

    2015-01-01

    Context: Diet is proposed to contribute to androgen-related reproductive dysfunction. Objective: This study evaluated the association between dietary macronutrient intake, carbohydrate fraction intake, and overall diet quality on androgens and related hormones, including anti-Müllerian hormone (AMH) and insulin, in healthy, regularly menstruating women. Design: This was a prospective cohort study from 2005 and 2007. Setting: The study was conducted at the University at Buffalo, western New York State, USA. Participants: Participants were 259 eumenorrheic women without a self-reported history of infertility, polycystic ovary syndrome (PCOS), or other endocrine disorder. Main Outcome Measures: A 24-hour dietary recall was administered 4 times per menstrual cycle, and hormones were measured 5 to 8 times per cycle for 1 (n = 9) or 2 (n = 250) cycles per woman (n = 509 cycles). Associations between the dietary intake of carbohydrates (starch, sugar, sucrose, and fiber), macronutrients, overall diet quality and hormones (insulin, AMH, and total and free testosterone), as well as the relationship of dietary intake with occurrences of high total testosterone combined with high AMH (fourth quartile of each), ie, the “PCOS-like phenotype,” were assessed. Results: No significant relationships were identified between dietary intake of carbohydrates, percent calories from any macronutrient or overall diet quality (ie, Mediterranean diet score) and relevant hormones (insulin, AMH, and total and free testosterone). Likewise, no significant relationships were identified between dietary factors and the occurrence of a subclinical PCOS-like phenotype. Conclusions: Despite evidence of a subclinical continuum of a PCOS-related phenotype of elevated androgens and AMH related to sporadic anovulation identified in previous studies, dietary carbohydrate and diet quality do not appear to relate to these subclinical endocrine characteristics in women without overt PCOS. PMID:26066675

  7. Effect of soy protein foods on low-density lipoprotein oxidation and ex vivo sex hormone receptor activity--a controlled crossover trial.

    PubMed

    Jenkins, D J; Kendall, C W; Garsetti, M; Rosenberg-Zand, R S; Jackson, C J; Agarwal, S; Rao, A V; Diamandis, E P; Parker, T; Faulkner, D; Vuksan, V; Vidgen, E

    2000-04-01

    Plant-derived estrogen analogs (phytoestrogens) may confer significant health advantages including cholesterol reduction, antioxidant activity, and possibly a reduced cancer risk. However, the concern has also been raised that phytoestrogens may be endocrine disrupters and major health hazards. We therefore assessed the effects of soy foods as a rich source of isoflavonoid phytoestrogens on LDL oxidation and sex hormone receptor activity. Thirty-one hyperlipidemic subjects underwent two 1-month low-fat metabolic diets in a randomized crossover study. The major differences between the test and control diets were an increase in soy protein foods (33 g/d soy protein) providing 86 mg isoflavones/2,000 kcal/d and a doubling of the soluble fiber intake. Fasting blood samples were obtained at the start and at weeks 2 and 4, with 24-hour urine collections at the end of each phase. Soy foods increased urinary isoflavone excretion on the test diet versus the control (3.8+/-0.7 v 0.0+/-0.0 mg/d, P < .001). The test diet decreased both oxidized LDL measured as conjugated dienes in the LDL fraction (56+/-3 v 63+/-3 micromol/L, P < .001) and the ratio of conjugated dienes to LDL cholesterol (15.0+/-1.0 v 15.7+/-0.9, P = .032), even in subjects already using vitamin E supplements (400 to 800 mg/d). No significant difference was detected in ex vivo sex hormone activity between urine samples from the test and control periods. In conclusion, consumption of high-isoflavone foods was associated with reduced levels of circulating oxidized LDL even in subjects taking vitamin E, with no evidence of increased urinary estrogenic activity. Soy consumption may reduce cardiovascular disease risk without increasing the risk for hormone-dependent cancers.

  8. Steroid hormone levels associated with passive and active smoking

    PubMed Central

    Soldin, Offie P.; Makambi, Kepher H.; Soldin, Steven J.; O’Mara, Daniel M.

    2013-01-01

    Context Cigarette tobacco smoke is a potent environmental contaminant known to adversely affect health including fertility and pregnancy. Objective To examine the associations between second-hand cigarette tobacco-smoke exposure, or active smoking and serum concentrations of steroid hormones using tandem mass spectrometry. Design Healthy women (18–45 y) from the general community in the Metropolitan Washington, DC were recruited at the follicular stage of their menstrual cycle. Participants were assigned to one of three study groups: active smokers (N= 107), passive smokers (N= 86), or non-smokers (N= 100). Classifications were based on a combination of self-reporting and serum cotinine concentrations. Methods Serum androgens, estrogens, progestins, androstenedione, aldosterone, cortisol, corticosterone, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), 11-deoxycortisol and 25-hydroxy-vitamin D3 (25-OHVitD3) and cotinine were measured by isotope dilution tandem mass spectrometry (LC/MS/MS) (API-5000). Kruskal–Wallis tests were used to assess median differences among the three groups, with Dunn’s multiple comparison test for post hoc analysis. Results Serum estrone, estradiol, and estriol concentrations were lower in active and passive smokers than in non-smokers. The three study groups differed significantly in serum concentrations of 16-OHE1, aldosterone and 25-OHVitD3, as well as in the ratios of many of the steroids. Pair-wise comparison of the groups demonstrated significant differences in hormone concentrations between (i) smokers and nonsmokers for aldosterone: (ii) passive smokers and non-smokers for aldosterone, progesterone and estriol. Moreover, for smokers and passive smokers, there were no significant differences in these hormone concentrations. Conclusions Smoke exposure was associated with lower than normal median steroid hormone concentrations. These processes may be instrumental in explaining some adverse effects of

  9. Neuroprotective Actions of Ghrelin and Growth Hormone Secretagogues

    PubMed Central

    Frago, Laura M.; Baquedano, Eva; Argente, Jesús; Chowen, Julie A.

    2011-01-01

    The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, growth hormone secretagogues–GH secretagogue-receptor, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety, and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved. PMID:21994488

  10. Regulation of Renin Secretion and Arterial Pressure During Prolonged Baroreflex Activation: Influence of Salt Intake

    PubMed Central

    Hildebrandt, Drew A.; Irwin, Eric D.; Cates, Adam W.; Lohmeier, Thomas E.

    2014-01-01

    Chronic electrical activation of the carotid baroreflex produces sustained reductions in sympathetic activity and arterial pressure and is currently being evaluated as antihypertensive therapy for patients with resistant hypertension. However, the influence of variations in salt intake on blood pressure lowering during baroreflex activation has not been determined. As sensitivity of arterial pressure to salt intake is linked to the responsiveness of renin secretion, we determined steady-state levels of arterial pressure and neurohormonal responses in 6 dogs on low, normal, and high salt intakes ( 5, 40, 450 mmol/day, respectively) under control conditions and during a 7-day constant level of baroreflex activation. Under control conditions, there was no difference in mean arterial pressure at low (92±1) and normal (92±2 mmHg) sodium intakes, but pressure increased 9 ±2 mmHg during high salt. Plasma renin activity (2.01±0.23, 0.93±0.20, 0.01±0.01 ng ANGI/mL/hr) and plasma aldosterone (10.3±1.9, 3.5±0.5, 1.7±0.1ng/dL) were inversely related to salt intake, whereas there were no changes in plasma norepinephrine. Although mean arterial pressure (19-22 mmHg) and norepinephrine (20-40%) were lower at all salt intakes during baroreflex activation, neither the changes in pressure nor the absolute values for plasma renin activity or aldosterone in response to salt were different from control conditions. These findings demonstrate that suppression of sympathetic activity by baroreflex activation lowers arterial pressure without increasing renin release and indicate that changes in sympathetic activity are not primary mediators of the effect of salt on renin secretion. Consequently, blood pressure lowering during baroreflex activation is independent of salt intake. PMID:24935941

  11. Hormonally active phytochemicals and vertebrate evolution.

    PubMed

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  12. The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat.

    PubMed

    Ghanizadeh, G; Babaei, M; Naghii, Mohammad Reza; Mofid, M; Torkaman, G; Hedayati, M

    2014-04-01

    Evidence indicates that optimal nutrition plays a role in bone formation and maintenance. Besides major components of mineralization such as calcium, phosphorus, and vitamin D, other nutrients like boron and fluoride have beneficial role, too. In this study, 34 male Wistar rats were divided into five groups: control diet, fluoride, fluoride + boron, fluoride + calcium + vitamin D, and fluoride + boron + calcium + vitamin D. Boron equal to 1.23 mg, calcium and vitamin D equal to 210 mg + 55 IU and fluoride equal to 0.7 mg/rat/day was added to their drinking water for 8 weeks. Plasma blood samples and bones were collected. Findings are evidence that fluoride + boron intake revealed significant positive effects on bone mechanical properties and bone metabolic hormones. These findings suggest that combined intake of these two elements has beneficial effects on bone stiffness and breaking strength comparing to even calcium + vitamin D supplementation. This evidence dealing with health problems related to bone and skeletal system in humans should justify further investigation of the role of boron and fluoride with other elements in relation to bone.

  13. Lifetime physical activity and calcium intake related to bone density in young women.

    PubMed

    Wallace, Lorraine Silver; Ballard, Joyce E

    2002-05-01

    Osteoporosis is a significant public health problem associated with increased mortality and morbidity. Our aim in this cross-sectional study was to investigate the relationship between lifetime physical activity and calcium intake and bone mineral density (BMD) and BMC (bone mineral content) in 42 regularly menstruating Caucasian women (age 21.26+/-1.91 years, BMI 23.83+/-5.85). BMD and BMC at the lumbar spine (L2-L4), hip (femoral neck, trochanter, total), and total body were assessed by dual energy x-ray absorptiometry (DXA). Lifetime history of physical activity and calcium intake was obtained by a structured interview using valid and reliable instruments. Measures of both lifetime physical activity and calcium intake were highly correlated. In stepwise multiple regression analyses, lean mass was the most important and consistent factor for predicting BMD and BMC at all skeletal sites (attributable r2 = 28.8%-78.7%). Lifetime physical activity contributed to 3.0% of the variation in total body BMD, and life-time weight-bearing physical activity explained 15.1% of variance in lumbar spine BMC. Current calcium intake predicted 6% of the variance in BMD at the femoral neck and trochanter. We found lean mass to be a powerful predictor of BMD and BMC in young women. Because lean mass can be modified to some extent by physical activity, public health efforts must be directed at increasing physical activity throughout the lifespan. Furthermore, our results suggest that adequate calcium intake may help to enhance bone mass, thus decreasing the risk of osteoporotic fracture later in life.

  14. Meat intake and reproductive parameters among young men

    PubMed Central

    Afeiche, Myriam C; Williams, Paige L; Gaskins, Audrey J; Mendiola, Jaime; Jørgensen, Niels; Swan, Shanna H

    2014-01-01

    Background In the United States, anabolic sex steroids are administered to cattle for growth promotion. There is concern regarding the reproductive consequences of this practice for men who eat beef. We investigated whether meat consumption was associated with semen quality parameters and reproductive hormone levels in young men. Methods Semen samples were obtained from 189 men aged 18-22 years. Diet was assessed with a previously validated food frequency questionnaire. We used linear regression to analyze the cross-sectional associations of meat intake with semen quality parameters and reproductive hormones, while adjusting for potential confounders. Results There was an inverse relation between processed red meat intake and total sperm count. The adjusted relative differences in total sperm counts for men in increasing quartiles of processed meat intake were 0 (ref), −3 (95% confidence interval = −67 to 37), −14 (−82 to 28), and −78 (−202 to −5) million (test for trend, P = 0.01). This association was strongest among men with abstinence time less than 2 days and was driven by a strong inverse relation between processed red meat intake and ejaculate volume (test for trend, P =0.003). Conclusions In our population of young men, processed meat intake was associated with lower total sperm count. We cannot distinguish whether this association is due to residual confounding by abstinence time or represents a true biological effect. PMID:24681577

  15. Acute sex hormone suppression reduces skeletal muscle sympathetic nerve activity.

    PubMed

    Day, Danielle S; Gozansky, Wendolyn S; Bell, Christopher; Kohrt, Wendy M

    2011-10-01

    Comparisons of sympathetic nervous system activity (SNA) between young and older women have produced equivocal results, in part due to inadequate control for potential differences in sex hormone concentrations, age, and body composition. The aim of the present study was to determine the effect of a short-term reduction in sex hormones on tonic skeletal muscle sympathetic nerve activity (MSNA), an indirect measure of whole body SNA, using an experimental model of sex hormone deficiency in young women. We also assessed the independent effects of estradiol and progesterone add-back therapy on MSNA. MSNA was measured in 9 women (30±2 years; mean±SE) on three separate occasions: during the mid-luteal menstrual cycle phase, on the fifth day of gonadotropin-releasing hormone antagonist (GnRHant) administration, and after 5 days add-back of either estradiol (n=4) or progesterone (n=3) during continued GnRHant administration. In response to GnRHant, there were significant reductions in serum estradiol and progesterone (both p<0.01) and MSNA (25.0±1.9 vs. 19.2±2.4 bursts/min, p=0.04). Continued GnRHant plus add-back estradiol or progesterone resulted in a nonsignificant decrease (19.2±1.7 vs. 12.1±1.9 bursts/min, p=0.07) or increase (16.2±1.7 vs. 21.0±6.0 bursts/min, p=0.39), respectively, in MSNA when compared with GnRHant alone. The findings of this preliminary study suggest that short-term ovarian hormone suppression attenuates MSNA and that this may be related to the suppression of progesterone rather than estradiol.

  16. Free Access to Running Wheels Abolishes Hyperphagia in Human Growth Hormone Transgenic Rats

    PubMed Central

    KOMATSUDA, Mugiko; YAMANOUCHI, Keitaro; MATSUWAKI, Takashi; NISHIHARA, Masugi

    2014-01-01

    ABSTRACT Obesity is a major health problem, and increased food intake and decreased physical activity are considered as two major factors causing obesity. Previous studies show that voluntary exercise in a running wheel decreases not only body weight but also food intake of rats. We previously produced human growth hormone transgenic (TG) rats, which are characterized by severe hyperphagia and obesity. To gain more insight into the effects on physical activity to food consumption and obesity, we examined whether voluntary running wheel exercise causes inhibition of hyperphagia and alteration of body composition in TG rats. Free access to running wheels completely abolished hyperphagia in TG rats, and this effect persisted for many weeks as far as the running wheel is accessible. Unexpectedly, though the running distances of TG rats were significantly less than those of wild type rats, it was sufficient to normalize their food consumption. This raises the possibility that rearing environment, which enables them to access to a running wheel freely, rather than the amounts of physical exercises is more important for the maintenance of proper food intake. PMID:24717416

  17. Free access to running wheels abolishes hyperphagia in human growth hormone transgenic rats.

    PubMed

    Komatsuda, Mugiko; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi

    2014-07-01

    Obesity is a major health problem, and increased food intake and decreased physical activity are considered as two major factors causing obesity. Previous studies show that voluntary exercise in a running wheel decreases not only body weight but also food intake of rats. We previously produced human growth hormone transgenic (TG) rats, which are characterized by severe hyperphagia and obesity. To gain more insight into the effects on physical activity to food consumption and obesity, we examined whether voluntary running wheel exercise causes inhibition of hyperphagia and alteration of body composition in TG rats. Free access to running wheels completely abolished hyperphagia in TG rats, and this effect persisted for many weeks as far as the running wheel is accessible. Unexpectedly, though the running distances of TG rats were significantly less than those of wild type rats, it was sufficient to normalize their food consumption. This raises the possibility that rearing environment, which enables them to access to a running wheel freely, rather than the amounts of physical exercises is more important for the maintenance of proper food intake.

  18. Evaluation of dietary energy intake and physical activity in dogs undergoing a controlled weight-loss program.

    PubMed

    Wakshlag, Joseph J; Struble, Angela M; Warren, Barbour S; Maley, Mary; Panasevich, Matthew R; Cummings, Kevin J; Long, Grace M; Laflamme, Dorothy E

    2012-02-15

    To quantify physical activity and dietary energy intake in dogs enrolled in a controlled weight-loss program and assess relationships between energy intake and physical activity, sex, age, body weight, and body condition score (BCS). Prospective clinical study. 35 client-owned obese dogs (BCS > 7/9). Dogs were fed a therapeutic diet with energy intake restrictions to maintain weight loss of approximately 2%/wk. Collar-mounted pedometers were used to record the number of steps taken daily as a measure of activity. Body weight and BCS were assessed at the beginning of the weight-loss program and every 2 weeks thereafter throughout the study. Relationships between energy intake and sex, age, activity, BCS, and body weight at the end of the study were assessed via multivariable linear regression. Variables were compared among dogs stratified post hoc into inactive and active groups on the basis of mean number of steps taken (< or > 7,250 steps/d, respectively). Mean ± SD daily energy intake per unit of metabolic body weight (kg(0.75)) of active dogs was significantly greater than that of inactive dogs (53.6 ± 15.2 kcal/kg(0.75) vs 42.2 ± 9.7 kcal/kg(0.75), respectively) while maintaining weight-loss goals. In regression analysis, only the number of steps per day was significantly associated with energy intake. Increased physical activity was associated with higher energy intake while maintaining weight-loss goals. Each 1,000-step interval was associated with a 1 kcal/kg(0.75) increase in energy intake.

  19. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone.

    PubMed

    Granata, Riccarda; Isgaard, Jörgen; Alloatti, Giuseppe; Ghigo, Ezio

    2011-05-01

    In 1976, small peptide growth hormone secretagogues (GHSs) were discovered and found to promote growth hormone (GH) release from the pituitary. The GHS receptor (GHS-R) was subsequently cloned, and its endogenous ligand ghrelin was later isolated from the stomach. Ghrelin is a 28-amino acid peptide, whose acylation is essential for binding to GHS-R type 1a and for the endocrine functions, including stimulation of GH secretion and subsequent food intake. Unacylated ghrelin, the other ghrelin form, although devoid of GHS-R binding is an active peptide, sharing many peripheral effects with acylated ghrelin (AG). The ghrelin system is broadly expressed in myocardial tissues, where it exerts different functions. Indeed, ghrelin inhibits cardiomyocyte and endothelial cell apoptosis, and improves left ventricular (LV) function during ischemia-reperfusion (I/R) injury. In rats with heart failure (HF), ghrelin improves LV dysfunction and attenuates the development of cardiac cachexia. Similarly, ghrelin exerts vasodilatory effects in humans, improves cardiac function and decreases systemic vascular resistance in patients with chronic HF. Obestatin is a recently identified ghrelin gene peptide. The physiological role of obestatin and its binding to the putative GPR39 receptor are still unclear, although protective effects have been demonstrated in the pancreas and heart. Similarly to AG, the hypothalamic peptide growth hormone-releasing hormone (GHRH) stimulates GH release from the pituitary, through binding to the GHRH-receptor. Besides its proliferative effects in different cell types, at the cardiovascular level GHRH inhibits cardiomyocyte apoptosis, and reduces infarct size in both isolated rat heart after I/R and in vivo after myocardial infarction. Therefore, both ghrelin and GHRH exert cardioprotective effects, which make them candidate targets for therapeutic intervention in cardiovascular dysfunctions.

  20. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity.

    PubMed

    Jensen-Otsu, Elsbeth; Austin, Gregory L

    2015-11-20

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005-2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09-2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use.

  1. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity

    PubMed Central

    Jensen-Otsu, Elsbeth; Austin, Gregory L.

    2015-01-01

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005–2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09–2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use. PMID:26610562

  2. The regulation of the SARK promoter activity by hormones and environmental signals.

    PubMed

    Delatorre, Carla A; Cohen, Yuval; Liu, Li; Peleg, Zvi; Blumwald, Eduardo

    2012-09-01

    The Senescence Associated Receptor Protein Kinase (P(SARK)) promoter, fused to isopentenyltransferase (IPT) gene has been shown to promote drought tolerance in crops. We dissected P(SARK) in order to understand the various elements associated with its activation and suppression. The activity of P(SARK) was higher in mature and early senescing leaves, and abiotic stress induced its activity in mature leaves. Bioinformatics analysis suggests the interactions of multiple cis-acting elements in the control of P(SARK) activity. In vitro gel shift assays and yeast one hybrid system revealed interactions of P(SARK) with transcription factors related to abscisic acid and cytokinin response. Deletion analysis of P(SARK), fused to GUS-reporter gene was used to identify specific regions regulating transcription under senescence or during drought stress. Effects of exogenous hormonal treatments were characterized in entire plants and in leaf disk assays, and regions responsive to various hormones were defined. Our results indicate a complex interaction of plant hormones and additional factors modulating P(SARK) activity under stress resulting in a transient induction of expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Growth hormone and drug metabolism. Acute effects on microsomal mixed-function oxidase activities in rat liver.

    PubMed Central

    Wilson, J T; Spelsberg, T C

    1976-01-01

    Adult male rats were subjected either to sham operation or to hypophysectomy and adrenalectomy and maintained for a total of 10 days before treatment with growth hormone. Results of the early effects of growth hormone on the activities of the mixed-function oxidases in rat liver over a 96h period after growth-hormone treatment are presented. 2. Hypophysectomy and adrenalectomy result in decreased body and liver weight and decreased drug metabolism (mixed-function oxidases). Concentrations of electron-transport-system components are also decreased. 3. In the hypophysectomized/adrenalectomized rats, growth hormone decreases the activities of the liver mixed-function oxidases and the cytochrome P-450 and cytochrome c reductases, as well as decreasing the concentration of cytochrome P-450 compared with that of control rats. Similar but less dramatic results are obtained with sham-operated rats. 4. It is concluded that whereas growth hormone enhances liver growth, including induction of many enzyme activities, it results in a decrease in mixed-function oxidase activity. Apparently, mixed-function oxidase activity decreases in liver when growth (mitogenesis) increases. PMID:938458

  4. Glucagon‐related peptides and the regulation of food intake in chickens

    PubMed Central

    2016-01-01

    Abstract The regulatory mechanisms underlying food intake in chickens have been a focus of research in recent decades to improve production efficiency when raising chickens. Lines of evidence have revealed that a number of brain‐gut peptides function as a neurotransmitter or peripheral satiety hormone in the regulation of food intake both in mammals and chickens. Glucagon, a 29 amino acid peptide hormone, has long been known to play important roles in maintaining glucose homeostasis in mammals and birds. However, the glucagon gene encodes various peptides that are produced by tissue‐specific proglucagon processing: glucagon is produced in the pancreas, whereas oxyntomodulin (OXM), glucagon‐like peptide (GLP)‐1 and GLP‐2 are produced in the intestine and brain. Better understanding of the roles of these peptides in the regulation of energy homeostasis has led to various physiological roles being proposed in mammals. For example, GLP‐1 functions as an anorexigenic neurotransmitter in the brain and as a postprandial satiety hormone in the peripheral circulation. There is evidence that OXM and GLP‐2 also induce anorexia in mammals. Therefore, it is possible that the brain‐gut peptides OXM, GLP‐1 and GLP‐2 play physiological roles in the regulation of food intake in chickens. More recently, a novel GLP and its specific receptor were identified in the chicken brain. This review summarizes current knowledge about the role of glucagon‐related peptides in the regulation of food intake in chickens. PMID:27150835

  5. Exercise-Trained Men and Women: Role of Exercise and Diet on Appetite and Energy Intake

    PubMed Central

    Howe, Stephanie M.; Hand, Taryn M.; Manore, Melinda M.

    2014-01-01

    The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals. PMID:25389897

  6. Exercise-trained men and women: role of exercise and diet on appetite and energy intake.

    PubMed

    Howe, Stephanie M; Hand, Taryn M; Manore, Melinda M

    2014-11-10

    The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals.

  7. Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism.

    PubMed

    Cammisotto, Philippe G; Levy, Emile; Bukowiecki, Ludwik J; Bendayan, Moise

    2010-09-01

    The understanding of the regulation of food intake has become increasingly complex. More than 20 hormones, both orexigenic and anorexigenic, have been identified. After crossing the blood-brain barrier, they reach their main site of action located in several hypothalamic areas and interact to balance satiety and hunger. One of the most significant advances in this matter has been the discovery of leptin. This hormone plays fundamental roles in the control of appetite and in regulating energy expenditure. In accordance with the lipostatic theory stated by Kennedy in 1953, leptin was originally discovered in white adipose tissue. Its expression by other tissues was later established. Among them, the gastric mucosa has been shown to secrete large amounts of leptin. Both the adipose and the gastric tissues share similar characteristics in the synthesis and storage of leptin in granules, in the formation of a complex with the soluble receptor and a secretion modulated by hormones and energy substrates. However while adipose tissue secretes leptin in a slow constitutive endocrine way, the gastric mucosa releases leptin in a rapid regulated exocrine fashion into the gastric juice. Exocrine-secreted leptin survives the extreme hydrolytic conditions of the gastric juice and reach the duodenal lumen in an intact active form. Scrutiny into transport mechanisms revealed that a significant amount of the exocrine leptin crosses the intestinal wall by active transcytosis. Leptin receptors, expressed on the luminal and basal membrane of intestinal epithelial cells, are involved in the control of nutrient absorption by enterocytes, mucus secretion by goblet cells and motility, among other processes, and this control is indeed different depending upon luminal or basal stimulus. Gastric leptin after transcytosis reaches the central nervous system, to control food intake. Studies using the Caco-2, the human intestinal cell line, in vitro allowed analysis of the mechanisms of leptin

  8. Effect of feeding a high-carbohydrate or a high-fat diet on subsequent food intake and blood concentration of satiety-related hormones in dogs.

    PubMed

    Schauf, S; Salas-Mani, A; Torre, C; Jimenez, E; Latorre, M A; Castrillo, C

    2018-02-01

    Although studies in rodents and humans have evidenced a weaker effect of fat in comparison to carbohydrates on the suppression of food intake, very few studies have been carried out in this field in dogs. This study investigates the effects of a high-carbohydrate (HC) and a high-fat (HF) diets on subsequent food intake and blood satiety-related hormones in dogs. Diets differed mainly in their starch (442 vs. 271 g/kg dry matter) and fat (99.3 vs. 214 g/kg dry matter) contents. Twelve Beagle dogs received the experimental diets at maintenance energy requirements in two experimental periods, following a cross-over arrangement. In week 7 of each period, blood concentrations of active ghrelin, glucagon-like peptide (GLP-1), peptide YY, insulin, and glucose were determined before and at 30, 60, 120, 180, and 360 min post-feeding. The following week, intake of a challenge food offered 180 min after the HC and HF diets was recorded over two days. In comparison to the dogs on the HC diet, those on the HF diet had a higher basal concentration of GLP-1 (p = .010) and a higher total area under the curve over 180 min post-prandial (tAUC 0-180 ) (p = .031). Dogs on the HC diet showed a higher elevation of ghrelin at 180 min (p = .033) and of insulin at 360 min (p = .041), although ghrelin and insulin tAUC 0-180 did not differ between the two diets (p ˃ .10). Diet had no effect on challenge food intake (p ˃ .10), which correlated with the tAUC 0-180 of ghrelin (r = .514, p = .010), insulin (r = -.595, p = .002), and glucose (r = -.516, p = .010). Feeding a diet high in carbohydrate or fat at these inclusion levels does not affect the feeding response at 180 min post-prandial, suggesting a similar short-term satiating capacity. © 2017 Blackwell Verlag GmbH.

  9. Osteoporosis Knowledge, Calcium Intake, and Weight-Bearing Physical Activity in Three Age Groups of Women.

    ERIC Educational Resources Information Center

    Terrio, Kate; Auld, Garry W.

    2002-01-01

    Determined the extent and integration of osteoporosis knowledge in three age groups of women, comparing knowledge to calcium intake and weight bearing physical activity (WBPA). Overall calcium intake was relatively high. There were no differences in knowledge, calcium intake, or WBPA by age, nor did knowledge predict calcium intake and WBPA. None…

  10. [Influence of hormonal contraceptives on indices of zinc homeostasis and bone remodeling in young adult women].

    PubMed

    Simões, Tania Mara Rodrigues; Zapata, Carmiña Lucía Vargas; Donangelo, Carmen Marino

    2015-09-01

    To investigate the influence of the use of oral hormonal contraceptive agents (OCA) on the biochemical indices related to metabolic zinc utilization and distribution, and to bone turnover in young adult women. Cross-sectional study. Blood and urine samples from non-users (-OCA; control; n=69) and users of hormonal contraceptives for at least 3 months (+OCA; n=62) were collected under controlled conditions. Indices of zinc homeostasis and of bone turnover were analyzed in serum or plasma (total, albumin-bound and α2-macroglobulin-bound zinc, albumin and total and bone alkaline phosphatase activity), in erythrocytes (zinc and metallothionein) and in urine (zinc, calcium and hydroxyproline). The habitual zinc and calcium intakes were evaluated by a food frequency questionnaire. Dietary zinc intake was similar in both groups and on average above recommended values, whereas calcium intake was similarly sub-adequate in +OCA and -OCA. Compared to controls, +OCA had lower concentrations of total and α2-macroglobulin-bound zinc (11 and 28.5%, respectively, p<0.001), serum albumin (13%, p<0.01), total and bone-specific alkaline phosphatase activity (13 and 18%, respectively, p<0.05), erythrocyte metallothionein (13%, p<0.01), and, urinary zinc (34%, p<0.05). OCA use decreases serum zinc, alters zinc distribution in major serum fractions with possible effects on tissue uptake, enhances zinc retention in the body and decreases bone turnover. Prolonged OCA use may lead to lower peak bone mass and/or to impaired bone mass maintenance in young women, particularly in those with marginal calcium intake. The observed OCA effects were more evident in women younger than 25 years and in nulliparous women, deserving special attention in future studies.

  11. Constitutively active follicle-stimulating hormone receptor enables androgen-independent spermatogenesis.

    PubMed

    Oduwole, Olayiwola O; Peltoketo, Hellevi; Poliandri, Ariel; Vengadabady, Laura; Chrusciel, Marcin; Doroszko, Milena; Samanta, Luna; Owen, Laura; Keevil, Brian; Rahman, Nafis A; Huhtaniemi, Ilpo T

    2018-05-01

    Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor-null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr-/- mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution.

  12. Regulation of food intake and body weight by recombinant proghrelin.

    PubMed

    Zhang, Weizhen; Majumder, Arundhati; Wu, Xiaobin; Mulholland, Michael W

    2009-12-01

    Ghrelin is a 28-amino-acid hormone derived from the endoproteolytic processing of its prehormone proghrelin. Although ghrelin has been reported to regulate food intake and body weight, it is still unknown whether proghrelin exercises any biological function. Here we show that recombinant proghrelin alters food intake and energy metabolism in mice. After intraperitoneal administration of recombinant proghrelin (100 nmol/kg body wt), cumulative food intake was significantly increased at days 1, 2, and 3 (6 +/- 0.3, 13 +/- 0.5, and 20 +/- 0.8 g vs. 5 +/- 0.2, 10 +/- 0.2, and 16 +/- 0.3 g of the control mice receiving normal saline, respectively, n = 6, P < 0.05). Twelve-hour cumulative food intake in the light photo period in mice treated with proghrelin increased significantly relative to the control (2.1 +/- 0.04 vs. 1.3 +/- 0.2 g, n = 6, P < 0.05). No change in 12-h cumulative food intake in the dark photo period was observed between mice treated with proghrelin and vehicle (4.2 +/- 0.6 vs. 4.3 +/- 0.6 g, n = 6, P > 0.05). This is associated with a decrease in body weight (0.42 +/- 0.04 g) for mice treated with proghrelin, whereas control animals gained body weight (0.31 +/- 0.04 g). Mice treated with proghrelin demonstrate a significant decrease in respiratory quotient, indicating an increase in fat consumption. Recombinant proghrelin is functionally active with effects on food intake and energy metabolism.

  13. Stress and immunological response of heifers divergently ranked for residual feed intake following an adrenocorticotropic hormone challenge.

    PubMed

    Kelly, A K; Lawrence, P; Earley, B; Kenny, D A; McGee, M

    2017-01-01

    When an animal is exposed to a stressor, metabolic rate, energy consumption and utilisation increase primarily through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Changes to partitioning of energy by an animal are likely to influence the efficiency with which it is utilised. Therefore, this study aimed to determine the physiological stress response to an exogenous adrenocorticotropic hormone (ACTH) challenge in beef heifers divergently ranked on phenotypic residual feed intake (RFI). Data were collected on 34 Simmental weaning beef heifers the progeny of a well characterized and divergently bred RFI suckler beef herd. Residual feed intake was determined on each animal during the post-weaning stage over a 91-day feed intake measurement period during which they were individually offered adlibitum grass silage and 2 kg of concentrate per head once daily. The 12 highest [0.34 kg DM/d] and 12 lowest [-0.48 kg DM/d] ranking animals on RFI were selected for use in this study. For the physiological stress challenge heifers (mean age 605 ± 13 d; mean BW 518 ± 31.4 kg) were fitted aseptically with indwelling jugular catheters to facilitate intensive blood collection. The response of the adrenal cortex to a standardised dose of ACTH (1.98 IU/kg metabolic BW 0.75 ) was examined. Serial blood samples were analysed for plasma cortisol, ACTH and haematology variables. Heifers differing in RFI did not differ ( P  = 0.59) in ACTH concentrations. Concentration of ACTH peaked ( P  < 0.001) in both RFI groups at 20 min post-ACTH administration, following which concentration declined to baseline levels by 150 min. Similarly, cortisol systemic profile peaked at 60 min and concentrations remained continuously elevated for 150 min. A RFI × time interaction was detected for cortisol concentrations ( P  = 0.06) with high RFI heifers had a greater cortisol response than Low RFI from 40 min to 150 min relative to ACTH administration. Cortisol

  14. Adipocyte iron regulates leptin and food intake

    PubMed Central

    Gao, Yan; Li, Zhonggang; Gabrielsen, J. Scott; Simcox, Judith A.; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T.; McClain, Donald A.

    2015-01-01

    Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810

  15. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men.

    PubMed

    St-Onge, M-P; Mayrsohn, B; O'Keeffe, M; Kissileff, H R; Choudhury, A R; Laferrère, B

    2014-10-01

    Medium chain triglycerides (MCT) enhance thermogenesis and may reduce food intake relative to long chain triglycerides (LCT). The goal of this study was to establish the effects of MCT on appetite and food intake and determine whether differences were due to differences in hormone concentrations. Two randomized, crossover studies were conducted in which overweight men consumed 20 g of MCT or corn oil (LCT) at breakfast. Blood samples were obtained over 3 h. In Study 1 (n=10), an ad lib lunch was served after 3 h. In Study 2 (n=7), a preload containing 10 g of test oil was given at 3 h and lunch was served 1 h later. Linear mixed model analyses were performed to determine the effects of MCT and LCT oil on change in hormones and metabolites from fasting, adjusting for body weight. Correlations were computed between differences in hormones just before the test meals and differences in intakes after the two oils for Study 1 only. Food intake at the lunch test meal after the MCT preload (Study 2) was (mean±s.e.m.) 532±389 kcal vs 804±486 kcal after LCT (P<0.05). MCT consumption resulted in a lower rise in triglycerides (P=0.014) and glucose (P=0.066) and a higher rise in peptide YY (PYY, P=0.017) and leptin (P=0.036) compared with LCT (combined data). Correlations between differences in hormone levels (glucagon-like peptide (GLP-1), PYY) and differences in food intake were in the opposite direction to expectations. MCT consumption reduced food intake acutely but this does not seem to be mediated by changes in GLP-1, PYY and insulin.

  16. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men

    PubMed Central

    St-Onge, Marie-Pierre; Mayrsohn, Brian; O’Keeffe, Majella; Kissileff, Harry R.; Choudhury, Arindam Roy; Laferrère, Blandine

    2014-01-01

    Background Medium chain triglycerides (MCT) enhance thermogenesis and may reduce food intake relative to long chain triglycerides (LCT). The goal of this study was to establish the effects of MCT on appetite and food intake and determine whether differences were due to differences in hormone concentrations. Methods Two randomized, crossover studies were conducted in which overweight men consumed 20 g of MCT or corn oil (LCT) at breakfast. Blood samples were obtained over 3 h. In Study 1 (n=10), an ad lib lunch was served after 3 h. In Study 2 (n=7), a pre-load containing 10 g of test oil was given at 3 h and lunch was served 1 h later. Linear mixed model analyses were performed to determine the effects of MCT and LCT oil on change in hormones and metabolites from fasting, adjusting for body weight. Correlations were computed between differences in hormones just before the test meals and differences in intakes after the two oils for Study 1 only. Results Food intake at the lunch test meal after the MCT pre-load (Study 2) was (mean ± SEM) 532 ± 389 kcal vs. 804 ± 486 kcal after LCT (P < 0.05). MCT consumption resulted in a lower rise in triglycerides (P = 0.014) and glucose (P = 0.066) and a higher rise in peptide YY (P = 0.017) and leptin (P = 0.036) compared to LCT (combined data). Correlations between differences in hormone levels (GLP-1, PYY) and differences in food intake were in the opposite direction to expectations. Conclusions MCT consumption reduced food intake acutely but this does not seem to be mediated by changes in GLP-1, PYY, and insulin. PMID:25074387

  17. Transport of steroid hormones, phytoestrogens, and estrogenic activity across a swine lagoon/sprayfield system.

    PubMed

    Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Williams, C Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W

    2014-10-07

    The inflow, transformation, and attenuation of natural steroid hormones and phytoestrogens and estrogenic activity were assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet, particularly, daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at 2 months postapplication. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone was found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a livestock lagoon/sprayfield and provides global insight into the fate of these analytes in this widely used waste management system.

  18. Transport of Steroid Hormones, Phytoestrogens, and Estrogenic Activity across a Swine Lagoon/Sprayfield System

    PubMed Central

    Yost, Erin E.; Meyer, Michael T.; Dietze, Julie E.; Williams, C. Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W.

    2017-01-01

    The inflow, transformation, and attenuation of natural steroid hormones, phytoestrogens, and estrogenic activity was assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet; particularly daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at two months post-application. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a lagoon/sprayfield system, and provides global insight into the fate of these analytes in this widely used waste management system. PMID:25148584

  19. Limits to sustained energy intake. XVI. Body temperature and physical activity of female mice during pregnancy.

    PubMed

    Gamo, Yuko; Bernard, Amelie; Mitchell, Sharon E; Hambly, Catherine; Al Jothery, Aqeel; Vaanholt, Lobke M; Król, Elzbieta; Speakman, John R

    2013-06-15

    Lactation is the most energy-demanding phase of mammalian reproduction, and lactation performance may be affected by events during pregnancy. For example, food intake may be limited in late pregnancy by competition for space in the abdomen between the alimentary tract and fetuses. Hence, females may need to compensate their energy budgets during pregnancy by reducing activity and lowering body temperature. We explored the relationships between energy intake, body mass, body temperature and physical activity throughout pregnancy in the MF1 mouse. Food intake and body mass of 26 females were recorded daily throughout pregnancy. Body temperature and physical activity were monitored every minute for 23 h a day by implanted transmitters. Body temperature and physical activity declined as pregnancy advanced, while energy intake and body mass increased. Compared with a pre-mating baseline period, mice increased energy intake by 56% in late pregnancy. Although body temperature declined as pregnancy progressed, this served mostly to reverse an increase between baseline and early pregnancy. Reduced physical activity may compensate the energy budget of pregnant mice but body temperature changes do not. Over the last 3 days of pregnancy, food intake declined. Individual variation in energy intake in the last phase of pregnancy was positively related to litter size at birth. As there was no association between the increase in body mass and the decline in intake, we suggest the decline was not caused by competition for abdominal space. These data suggest overall reproductive performance is probably not constrained by events during pregnancy.

  20. Changes in gut hormones and leptin in military personnel during operational deployment in Afghanistan.

    PubMed

    Hill, Neil E; Fallowfield, Joanne L; Delves, Simon K; Ardley, Christian; Stacey, Michael; Ghatei, Mohammad; Bloom, Stephen R; Frost, Gary; Brett, Stephen J; Wilson, Duncan R; Murphy, Kevin G

    2015-03-01

    Understanding the mechanisms that drive weight loss in a lean population may elucidate systems that regulate normal energy homeostasis. This prospective study of British military volunteers investigated the effects of a 6-month deployment to Afghanistan on energy balance and circulating concentrations of specific appetite-regulating hormones. Measurements were obtained twice in the UK (during the Pre-deployment period) and once in Afghanistan, at Mid-deployment. Body mass, body composition, food intake, and appetite-regulatory hormones (leptin, active and total ghrelin, PYY, PP, GLP-1) were measured. Repeated measures analysis of 105 volunteers showed body mass decreased by 4.9% ± 3.7% (P < 0.0001) during the first half of the deployment. Leptin concentrations were significantly correlated with percentage body fat at each time point. The reduction in percentage body fat between Pre-deployment and Mid-deployment was 8.6%, with a corresponding 48% decrease in mean circulating leptin. Pre-deployment leptin and total and active ghrelin levels correlated with subsequent change in body mass; however. no changes were observed in the anorectic gut hormones GLP-1, PP, or PYY. These data suggest that changes in appetite-regulating hormones in front line military personnel occur in response to, but do not drive, reductions in body mass. © 2015 The Obesity Society.

  1. Is nutrient intake associated with physical activity levels in healthy young adults?

    PubMed

    Yan, Yi; Drenowatz, Clemens; Hand, Gregory A; Shook, Robin P; Hurley, Thomas G; Hebert, James R; Blair, Steven N

    2016-08-01

    Both physical activity (PA) and diet are important contributors to health and well-being; however, there is limited information on the association of these behaviours and whether observed associations differ by weight. The present study aimed to evaluate whether nutrient intake is associated with PA and if this association varies by weight in young adults. Cross-sectional study to analyse the association between PA and nutrient intake. Participants were stratified as normal weight (18·5 kg/m2 intakes of minerals (except Ca, Fe and Zn), B-vitamins and choline (P for trend <0·05). In the overweight/obese group, higher PAL was associated with higher intakes of fibre, K, Na and Cu (P for trend <0·05). These differences, however, were no longer significant after additionally controlling for total energy intake. More active young adults have higher intakes of essential micronutrients. The benefits of PA may be predominantly due to a higher overall food intake while maintaining energy balance rather than a healthier diet.

  2. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health.

    PubMed

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-05-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake. © 2015 American Society for Nutrition.

  3. Glucagon-related peptides and the regulation of food intake in chickens.

    PubMed

    Honda, Kazuhisa

    2016-09-01

    The regulatory mechanisms underlying food intake in chickens have been a focus of research in recent decades to improve production efficiency when raising chickens. Lines of evidence have revealed that a number of brain-gut peptides function as a neurotransmitter or peripheral satiety hormone in the regulation of food intake both in mammals and chickens. Glucagon, a 29 amino acid peptide hormone, has long been known to play important roles in maintaining glucose homeostasis in mammals and birds. However, the glucagon gene encodes various peptides that are produced by tissue-specific proglucagon processing: glucagon is produced in the pancreas, whereas oxyntomodulin (OXM), glucagon-like peptide (GLP)-1 and GLP-2 are produced in the intestine and brain. Better understanding of the roles of these peptides in the regulation of energy homeostasis has led to various physiological roles being proposed in mammals. For example, GLP-1 functions as an anorexigenic neurotransmitter in the brain and as a postprandial satiety hormone in the peripheral circulation. There is evidence that OXM and GLP-2 also induce anorexia in mammals. Therefore, it is possible that the brain-gut peptides OXM, GLP-1 and GLP-2 play physiological roles in the regulation of food intake in chickens. More recently, a novel GLP and its specific receptor were identified in the chicken brain. This review summarizes current knowledge about the role of glucagon-related peptides in the regulation of food intake in chickens. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  4. Self-Control Constructs Related to Measures of Dietary Intake and Physical Activity in Adolescents

    PubMed Central

    Wills, Thomas A.; Isasi, Carmen R.; Mendoza, Don; Ainette, Michael G.

    2007-01-01

    Purpose To test self-regulation concepts in relation to dietary intake and physical activity patterns in adolescence, which we predicted to be influenced by components of a self-control model. Methods A survey was conducted with a multiethnic sample of 9th grade public school students in a metropolitan area (N = 539). Confirmatory analysis tested the measurement structure of self-control. Structural equation modeling tested the association of self-control constructs with measures of fruit and vegetable intake, saturated-fat intake, physical activity, and sedentary behavior. Results Confirmatory analysis of 14 indicators of self-control showed best fit for a two-factor structure, with latent constructs of good self-control (planfulness) and poor self-control (impulsiveness). Good self-control was related to more fruit and vegetable intake, more participation in sports, and less sedentary behavior. Poor self-control was related to more saturated-fat intake and less vigorous exercise. These effects were independent of gender, ethnicity, and parental education, which themselves had relations to diet and exercise measures. Multiple-group modeling indicated that effects of self-control were comparable across gender and ethnicity subgroups. Conclusions Self-control concepts are relevant for patterns of dietary intake and physical activity among adolescents. Attention to self-control processes may be warranted for prevention programs to improve health behaviors in childhood and adolescence. PMID:18023783

  5. Ovarian hormones and obesity.

    PubMed

    Leeners, Brigitte; Geary, Nori; Tobler, Philippe N; Asarian, Lori

    2017-05-01

    Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a

  6. Metabolic Impact Of Sex Hormones On Obesity

    PubMed Central

    Brown, Lynda M.; Gent, Lana; Davis, Kathryn; Clegg, Deborah J.

    2010-01-01

    Obesity and its associated health disorders and costs are increasing. Men and postmenopausal women have greater risk of developing complications of obesity than younger women. Within the brain, the hypothalamus is an important regulator of energy homeostasis. Two of its sub-areas, the ventrolateral portion of the ventral medial nucleus (VL VMN) and the arcuate (ARC) respond to hormones and other signals to control energy intake and expenditure. When large lesions are made in the hypothalamus which includes both the VL VMN and the ARC, animals eat more, have reduced energy expenditure, and become obese. The ARC and the VL VMN, in addition to other regions in the hypothalamus, have been demonstrated to contain estrogen receptors. There are two estrogen receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). We and others have previously demonstrated that activation of ERα by estrogens reduces food intake and increases body weight. This review focuses on the relative contribution of activation of ERα by estrogens in the ARC and the VL VMN in the regulation of food intake and body weight. Additionally, estrogen receptors have been found in many peripheral tissues including adipose tissue. Estrogens are thought to have direct effects on adipose tissue and estrogens may provide anti-inflammatory properties both in the periphery and the in the central nervous system (CNS) which may protect women from diseases associated with inflammation. Understanding the mechanisms by which estrogens regulate body weight and inflammation will assist in determining potential therapeutic agents for menopausal women to decrease the propensity of diseases associated with obesity. PMID:20441773

  7. The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis.

    PubMed

    Riediger, T; Zuend, D; Becskei, C; Lutz, T A

    2004-01-01

    Amylin is a peptide hormone that is cosecreted with insulin from the pancreas during and after food intake. Peripherally injected amylin potently inhibits feeding by acting on the area postrema (AP), a circumventricular organ lacking a functional blood-brain barrier. We recently demonstrated that AP neurons are excited by a near physiological concentration of amylin. However, the subsequent neuronal mechanisms and the relevance of endogenously released amylin for the regulation of food intake are poorly understood. Therefore, we investigated 1) amylin's contribution to feeding-induced c-Fos expression in the rat AP and its ascending projection sites, and 2) amylin's ability to reverse fasting-induced c-Fos expression in the lateral hypothalamic area (LHA). Similar to amylin (20 microg/kg sc), refeeding of 24-h food-deprived rats induced c-Fos expression in the AP, the nucleus of the solitary tract, the lateral parabrachial nucleus, and the central nucleus of the amygdala. In AP-lesioned rats, the amylin-induced c-Fos expression in each of these sites was blunted, indicating an AP-mediated activation of these structures. Pretreatment with the amylin antagonist AC-187 (1 mg/kg sc) inhibited feeding-induced c-Fos expression in the AP. Food deprivation activated LHA neurons, a response known to be associated with hunger. This effect was reversed within 2 h after refeeding and also in nonrefed animals that received amylin. In summary, our data provide the first evidence that feeding-induced amylin release activates AP neurons projecting to subsequent relay stations known to transmit meal-related signals to the forebrain. Activation of this pathway seems to coincide with an inhibition of LHA neurons.

  8. Intracellular signals mediating the food intake suppressive effects of hindbrain glucagon-like-peptide-1 receptor activation

    PubMed Central

    Hayes, Matthew R.; Leichner, Theresa M.; Zhao, Shiru; Lee, Grace S.; Chowansky, Amy; Zimmer, Derek; De Jonghe, Bart C.; Kanoski, Scott E.; Grill, Harvey J.; Bence, Kendra K.

    2011-01-01

    Summary Glucagon-like-peptide-1 receptor (GLP-1R) activation within the nucleus tractus solitarius (NTS) suppresses food intake and body weight (BW), but the intracellular signals mediating these effects are unknown. Here, hindbrain (4th icv) GLP-1R activation by Exendin-4 increased PKA and MAPK activity and decreased phosphorylation of AMPK in NTS. PKA and MAPK signaling contribute to food intake and BW suppression by Exendin-4, as inhibitors RpcAMP and U0126 (4th icv), respectively, attenuated Exendin-4's effects. Hindbrain GLP-1R activation inhibited feeding by reducing meal number, not meal size. This effect was attenuated with stimulation of AMPK activity by AICAR (4th icv). The PKA, MAPK and AMPK signaling responses by Ex-4 were present in immortalized GLP-1R-expressing neurons (GT1-7). In conclusion, hindbrain GLP-1R activation suppresses food intake and BW through coordinated PKA-mediated suppression of AMPK and activation of MAPK. Pharmacotherapies targeting these signaling pathways, which mediate intake-suppressive effects of CNS GLP-1R activation, may prove efficacious in treating obesity. PMID:21356521

  9. Structure-activity relationship for peptídic growth hormone secretagogues.

    PubMed

    Ferro, P; Krotov, G; Zvereva, I; Rodchenkov, G; Segura, J

    2017-01-01

    Growth hormone releasing peptides (GHRPs) could be widely used by cheating athletes because they produce growth hormone (GH) secretion, so may generate an ergogenic effect in the body. Knowledge of the essential amino acids needed in GHRP structure for interaction with the target biological receptor GHSR1a, the absorption through different administration routes, and the maintenance of pharmacological activity of potential biotransformation products may help in the fight against their abuse in sport. Several GHRPs and truncated analogues with the common core Ala-Trp-(D-Phe)-Lys have been studied with a radio-competitive assay for the GHSR1a receptor against the radioactive natural ligand ghrelin. Relevant chemical modifications influencing the activity for positions 1, 2, 3, and 7 based on the structure aa-aa-aa-Ala-Trp-(D-Phe)-Lys have been obtained. To test in vivo the applicability of the activities observed, the receptor assay activity in samples from excretion studies performed after nasal administration of GHRP-1, GHRP-2, GHRP-6, Hexarelin, and Ipamorelin was confirmed. Overall results obtained allow to infer structure-activity information for those GHRPs and to detect GHSR1a binding (intact GHRPs plus active metabolites) in excreted urines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Growth Hormone Therapy in Adults with Prader-Willi Syndrome.

    PubMed

    Vogt, Karen S; Emerick, Jill E

    2015-04-16

    Prader-Willi syndrome (PWS) is characterized by hyperphagia, obesity if food intake is not strictly controlled, abnormal body composition with decreased lean body mass and increased fat mass, decreased basal metabolic rate, short stature, low muscle tone, cognitive disability, and hypogonadism. In addition to improvements in linear growth, the benefits of growth hormone therapy on body composition and motor function in children with PWS are well established. Evidence is now emerging on the benefits of growth hormone therapy in adults with PWS. This review summarizes the current literature on growth hormone status and the use of growth hormone therapy in adults with PWS. The benefits of growth hormone therapy on body composition, muscle strength, exercise capacity, certain measures of sleep-disordered breathing, metabolic parameters, quality of life, and cognition are covered in detail along with potential adverse effects and guidelines for initiating and monitoring therapy.

  11. [The effect of a single inhalation of mineral water on the blood hormonal status in healthy volunteers].

    PubMed

    Khinchagov, B P; Polushina, N D; Frolkov, V K

    1998-01-01

    Concentrations of ACTH, TTH, STH, LH, PSH, hydrocortisone, insulin, glucagone, triiodthyronine, thyroxine, aldosterone, glucose and unesterified fatty acids (NEFA) were measured in the blood of 23 healthy male volunteers aged 18 to 35 years 15, 30 and 60 min after a single nose inhalation and oral intake of mineral water Essentuki No. 17. Inhalation of Essentuki No. 17 stimulated secretion of the hormones and some parameters of metabolic reactions: the levels of glucose, NEFA, hydrocortisone, aldosterone, TTH, PSH and LH rose while those of insulin and growth hormone decreased. Oral intake of this water brought about the same changes in the hormone status except blood insulin the levels of which went up.

  12. Choline and betaine intake and risk of breast cancer among post-menopausal women.

    PubMed

    Cho, E; Holmes, M D; Hankinson, S E; Willett, W C

    2010-02-02

    Choline and betaine, similar to folate, are nutrients involved in one-carbon metabolism and hypothesised to reduce breast cancer risk. No prospective study among post-menopausal women has examined choline and betaine intakes in relation to breast cancer risk. We examined the intake of choline and betaine and breast cancer risk among 74 584 post-menopausal women in the Nurses' Health Study. Nutrient intake was assessed using a validated food-frequency questionnaire six times since 1984. During 20 years of follow-up from 1984 until 2004, we documented 3990 incident cases of invasive breast cancer. Overall, choline (mean+/-s.d.; 326+/-61 mg per day) and betaine (104+/-33 mg per day) intake was not associated with a reduced risk of post-menopausal breast cancer. Participants in the highest quintile of intakes had multivariate relative risks of 1.10 (95% confidence interval (95% CI): 0.99-1.22; P-value, test for trend=0.14) for choline and 0.98 (95% CI: 0.89-1.09; P-value, test for trend=0.96) for betaine, compared with those in the lowest quintiles of intakes. The results were similar in breast cancer stratified by hormone receptor (oestrogen receptor/progesterone receptor) status. The association between choline intake and breast cancer risk did not differ appreciably by alcohol intake (non-drinker, <15 or 15+ g per day) or several other breast cancer risk factors, including family history of breast cancer, history of benign breast disease, body mass index, post-menopausal hormone use, and folate intake. We found no evidence that higher intakes of choline and betaine reduce risk of breast cancer among post-menopausal women.

  13. Sodium intake and physical activity impact cognitive maintenance in older adults: the NuAge Study.

    PubMed

    Fiocco, Alexandra J; Shatenstein, Bryna; Ferland, Guylaine; Payette, Hélène; Belleville, Sylvie; Kergoat, Marie-Jeanne; Morais, José A; Greenwood, Carol E

    2012-04-01

    This study examines the association between sodium intake and its interaction with physical activity on cognitive function over 3 years in older adults residing in Québec, Canada. We analyzed a subgroup from the NuAge cohort (aged 67-84 years) with nutrient intake data, including sodium, from a food frequency questionnaire administered at baseline. Baseline physical activity was assessed using the Physical Activity Scale for the Elderly (PASE; high-low). Modified Mini Mental State Examination (3MS) was administered at baseline and annually for 3 additional years. Controlling for age, sex, education, waist circumference, diabetes, and dietary intakes, analyses showed an association between sodium intake and cognitive change over time in the low PASE group only. Specifically, in the low PASE group, elders in the low sodium intake tertile displayed better cognitive performance over time (mean decline in 3MS over years: mean [M] = -0.57, standard error [SE] = 0.002) compared with the highest (M = -1.72, SE = 0.01) and mid sodium intake (M = -2.07, SE = 0.01) groups. This finding may have significant public health implications, emphasizing the importance of addressing multiple lifestyle factors rather than a single domain effect on brain health. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Efficacy of sequential or simultaneous interactive computer-tailored interventions for increasing physical activity and decreasing fat intake.

    PubMed

    Vandelanotte, Corneel; De Bourdeaudhuij, Ilse; Sallis, James F; Spittaels, Heleen; Brug, Johannes

    2005-04-01

    Little evidence exists about the effectiveness of "interactive" computer-tailored interventions and about the combined effectiveness of tailored interventions on physical activity and diet. Furthermore, it is unknown whether they should be executed sequentially or simultaneously. The purpose of this study was to examine (a) the effectiveness of interactive computer-tailored interventions for increasing physical activity and decreasing fat intake and (b) which intervening mode, sequential or simultaneous, is most effective in behavior change. Participants (N = 771) were randomly assigned to receive (a) the physical activity and fat intake interventions simultaneously at baseline, (b) the physical activity intervention at baseline and the fat intake intervention 3 months later, (c) the fat intake intervention at baseline and the physical activity intervention 3 months later, or (d) a place in the control group. Six months postbaseline, the results showed that the tailored interventions produced significantly higher physical activity scores, F(2, 573) = 11.4, p < .001, and lower fat intake scores, F(2, 565) = 31.4, p < .001, in the experimental groups when compared to the control group. For both behaviors, the sequential and simultaneous intervening modes showed to be effective; however, for the fat intake intervention and for the participants who did not meet the recommendation in the physical activity intervention, the simultaneous mode appeared to work better than the sequential mode.

  15. The association of soy food consumption with the risk of subtype of breast cancers defined by hormone receptor and HER2 status

    PubMed Central

    Baglia, Michelle L; Zheng, Wei; Li, Honglan; Yang, Gong; Gao, Jing; Gao, Yu-Tang; Shu, Xiao-Ou

    2016-01-01

    Soy-food intake has previously been associated with reduced breast cancer risk. Epidemiological evidence for subgroups of breast cancer, particularly by menopausal and hormone receptor status, is less consistent. To evaluate the role of hormone receptor and menopausal status on the association between soy-food intake and breast cancer risk, we measured usual soy-food intake in adolescence and adulthood via food frequency questionnaire in 70,578 Chinese women, aged 40-70 years, recruited to the Shanghai Women’s Health Study (1996-2000). After a median follow-up of 13.2 years (range:0.01-15.0), 1,034 incident breast cancer cases were identified. Using Cox models, we found that adult soy intake was inversely associated with breast cancer risk (hazard ratio-HR) for fifth versus first quintile soy protein intake=0.78; 95% confidence interval (CI):0.63-0.97). The association was predominantly seen in premenopausal women (HR=0.46; 95% CI:0.29-0.74). Analyses further stratified by hormone receptor status showed that adult soy intake was associated with significantly decreased risk of ER+/PR+ breast cancer in postmenopausal women (HR=0.72; 95% CI:0.53-0.96) and decreased risk of ER−/PR− breast cancer in premenopausal women (HR=0.46; 95% CI:0.22-0.97). The soy association did not vary by HER2 status. Furthermore, we found that high soy intake during adulthood and adolescence was associated with reduced premenopausal breast cancer risk (HR=0.53; 95% CI:0.32-0.88; comparing third versus first tertile) while high adulthood soy intake was associated with postmenopausal breast cancer only when adolescent intake was low (HR=0.63; 95% CI:0.43-0.91). Our study suggests that hormonal status, menopausal status, and time window of exposure are important factors influencing the soy-breast cancer association. PMID:27038352

  16. Growth arrest despite growth hormone replacement, post-craniopharyngioma surgery.

    PubMed Central

    DeVile, C J; Hayward, R D; Neville, B G; Grant, D B; Stanhope, R

    1995-01-01

    Children with growth failure, whether secondary to an endocrinopathy such as growth hormone deficiency or secondary to neurological handicap with poor nutrient intake, grow at a subnormal rate but it is most unusual for a child to have complete growth arrest. PMID:7745571

  17. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    PubMed

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-04-25

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.

  18. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  19. Hormones in international meat production: biological, sociological and consumer issues.

    PubMed

    Galbraith, Hugh

    2002-12-01

    proliferation in cells maintaining receptivity. Mathematical models describing quantitative relationships between consumption of small amounts of oestrogens in meat in addition to greater concentrations from endogenous production, chemical stoichiometry at cellular level and human pathology have not been developed. Such an approach will be necessary to establish 'molecular materiality' of the additional hormone intake as a component of relative risk assessment. The other hormones, although generally less well researched, are similarly subject to a range of tests to determine potentially adverse effects. The resulting limited international consensus relates to the application of the 'precautionary principle' and non-acceptance by the European Commission of the recommendations of the Codex Alimentarius Commission, which determined that meat from cattle, hormone-treated according to good practice, was safe for human consumers. The present review considers the hormone issue in the context of current international social methodology and regulation, recent advances in knowledge of biological activity of hormones and current status of science-based evaluation of food safety and risk for human consumers.

  20. Inverse associations of outdoor activity and vitamin D intake with the risk of Parkinson's disease.

    PubMed

    Zhu, Dan; Liu, Gui-you; Lv, Zheng; Wen, Shi-rong; Bi, Sheng; Wang, Wei-zhi

    2014-10-01

    Early studies had suggested that vitamin D intake was inversely associated with neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. However, the associations of vitamin D intake and outdoor activities with Parkinson's disease (PD) are still unclear, so this study is to evaluate these relationships from a case-control study in elderly Chinese. The study population involved 209 cases with new onsets of PD and 210 controls without neurodegenerative diseases. The data on dietary vitamin D and outdoor activities were collected using a food-frequency questionnaire and self-report questionnaire. Multivariable logistic regressions were used to examine the associations between dietary outdoor activities, vitamin D intake and PD. Adjustment was made for sex, age, smoking, alcohol use, education, and body mass index (BMI). Adjusted odds ratios (ORs) for PD in quartiles for outdoor physical activity were 1 (reference), 0.739 (0.413, 1.321), 0.501 (0.282, 0.891), and 0.437 (0.241, 0.795), respectively (P=0.002 for trend). Adjusted ORs for PD in quartiles for total vitamin D intake were 1 (reference), 0.647 (0.357, 1.170), 0.571 (0.318, 1.022), and 0.538 (0.301, 0.960), respectively (P=0.011 for trend). Our study suggested that outdoor activity and total vitamin D intake were inversely associated with PD, and outdoor activity seems to be more significantly associated with decreased risk for PD.

  1. Controversies Surrounding High-Protein Diet Intake: Satiating Effect and Kidney and Bone Health12

    PubMed Central

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-01-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake. PMID:25979491

  2. Ovarian hormones and obesity

    PubMed Central

    Leeners, Brigitte; Geary, Nori; Tobler, Philippe N.; Asarian, Lori

    2017-01-01

    Abstract BACKGROUND Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. OBJECTIVE AND RATIONALE We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. SEARCH METHODS Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. OUTCOMES We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates

  3. Sex Hormone Effects on Physical Activity Levels: Why Doesn’t Jane Run as Much as Dick?

    PubMed Central

    Bowen, Robert S.; Turner, Michael J.; Lightfoot, J. Timothy

    2010-01-01

    The relationship between physical activity levels and disease rates have become an important health related concern in the developed world. Heart disease, certain cancers, and obesity persist at epidemic rates in the United States and Western Europe. Increased physical activity levels have been shown to reduce the occurrence of many chronic diseases leading to reductions in the burden on the health care system. Activity levels in humans are affected by many cultural and environmental factors, nevertheless current research points to a strong biological input with potential genetic, neurological, and endocrinological origins. Of unique interest, the sex hormones appear to have a very strong influence on activity levels. The current animal literature suggests that females tend to be more active than males due to biological pathways of estrogenic origin. The majority of human epidemiological and anthropological data, on the contrary, suggest women are less active than men in spite of this inherent activity-increasing mechanism. The purpose of this manuscript was to review the current literature regarding the control of physical activity levels by the sex hormones in humans. Using the natural transitional phases of the aging endocrine system, natural periodicity of the menstrual cycle, and pharmacological/hormone replacement therapy as variable experimental stages, some authors have been able to provide some information regarding the existence of an inherent activity-increasing mechanism in humans. In brief, activity levels during life stages prior to and after menopause do not significantly differ, despite the vast changes in sex hormone levels and function. Activity difference throughout a regular menstrual cycle do not appear to influence activity levels in humans either—an effect that is pronounced in the female rodent. The use of hormone replacement therapies provide researchers with more systematic controls over hormone modulation in human subjects; however

  4. Feed intake of gilts following intracerebroventicular injection of the novel hypothalamic RFamide (RFa) neuropeptide, 26RFa

    USDA-ARS?s Scientific Manuscript database

    RFamide (RFa) peptides have been implicated in a broad spectrum of biological processes including energy expenditure and feed intake. 26RFa is a recently discovered hypothalamic neuropeptide that altered the release of pituitary hormones and stimulated feed intake via a NPY-specific mechanism in rat...

  5. High salt intake enhances swim stress-induced PVN vasopressin cell activation and active stress coping.

    PubMed

    Mitchell, N C; Gilman, T L; Daws, L C; Toney, G M

    2018-07-01

    Stress contributes to many psychiatric disorders; however, responsivity to stressors can vary depending on previous or current stress exposure. Relatively innocuous heterotypic (differing in type) stressors can summate to result in exaggerated neuronal and behavioral responses. Here we investigated the ability of prior high dietary sodium chloride (salt) intake, a dehydrating osmotic stressor, to enhance neuronal and behavioral responses of mice to an acute psychogenic swim stress (SS). Further, we evaluated the contribution of the osmo-regulatory stress-related neuropeptide arginine vasopressin (VP) in the hypothalamic paraventricular nucleus (PVN), one of only a few brain regions that synthesize VP. The purpose of this study was to determine the impact of high dietary salt intake on responsivity to heterotypic stress and the potential contribution of VPergic-mediated neuronal activity on high salt-induced stress modulation, thereby providing insight into how dietary (homeostatic) and environmental (psychogenic) stressors might interact to facilitate psychiatric disorder vulnerability. Salt loading (SL) with 4% saline for 7 days was used to dehydrate and osmotically stress mice prior to exposure to an acute SS. Fluid intake and hematological measurements were taken to quantify osmotic dehydration, and serum corticosterone levels were measured to index stress axis activation. Immunohistochemistry (IHC) was used to stain for the immediate early gene product c-Fos to quantify effects of SL on SS-induced activation of neurons in the PVN and extended amygdala - brain regions that are synaptically connected and implicated in responding to osmotic stress and in modulation of SS behavior, respectively. Lastly, the role of VPergic PVN neurons and VP type 1 receptor (V1R) activity in the amygdala in mediating effects of SL on SS behavior was evaluated by quantifying c-Fos activation of VPergic PVN neurons and, in functional experiments, by nano-injecting the V1R selective

  6. Osteoporosis, vitamin C intake, and physical activity in Korean adults aged 50 years and over

    PubMed Central

    Kim, Min Hee; Lee, Hae-Jeung

    2016-01-01

    [Purpose] To investigate associations between vitamin C intake, physical activity, and osteoporosis among Korean adults aged 50 and over. [Subjects and Methods] This study was based on bone mineral density measurement data from the 2008 to 2011 Korean National Health and Nutritional Examination Survey. The study sample comprised 3,047 subjects. The normal group was defined as T-score ≥ −1.0, and the osteoporosis group as T-score ≤ −2.5. The odds ratios for osteoporosis were assessed by logistic regression of each vitamin C intake quartile. [Results] Compared to the lowest quartile of vitamin C intake, the other quartiles showed a lower likelihood of osteoporosis after adjusting for age and gender. In the multi-variate model, the odds ratio for the likelihood of developing osteoporosis in the non-physical activity group significantly decreased to 0.66, 0.57, and 0.46 (p for trend = 0.0046). However, there was no significant decrease (0.98, 1.00, and 0.97) in the physical activity group. [Conclusion] Higher vitamin C intake levels were associated with a lower risk of osteoporosis in Korean adults aged over 50 with low levels of physical activity. However, no association was seen between vitamin C intake and osteoporosis risk in those with high physical activity levels. PMID:27134348

  7. Eating habits and caloric intake of physically active young boys, ages 10 to 14 years.

    PubMed

    Thomson, M J; Cunningham, D A; Wearring, G A

    1980-03-01

    Eating habits of 104 male participants (ages 10 to 14 years) in organized ice hockey were compared across age groups and levels of competition. The boys were members of either a highly skilled and intensively active competitive league group (CL) or a less skilled, moderately active house league group (HL). Eating habits were recorded during a school day from a 24 hour recall questionnaire administered by a trained interviewer. The types and amounts of foods eaten were recorded and caloric intake was calculated. The total caloric intakes were not significantly different by age or competitive group. The boys had higher caloric intakes by age (200 kcal day-1) than reported by other studies but the caloric intake by kilogram of body weight was similar. There was a trend towards larger caloric intake by the CL boys (ages 10 and 11 years), however when divided by body weight the differences were not significant suggesting that this trend was due to a greater body weight of the CL boys and not a significantly increased caloric expenditure. The types of foods eaten (fruit, vegetables, dairy, meat, bread or "empty calories") were similar for the two activity groups and across ages 10 to 14 years. The caloric intakes of dairy and meat products of both groups were significantly higher than for the other food groups.

  8. The Asp(327)Asn polymorphism in the sex hormone-binding globulin gene modifies the association of soy food and tea intake with endometrial cancer risk.

    PubMed

    Xu, Wang Hong; Zheng, Wei; Cai, Qiuyin; Cheng, Jia-Rong; Cai, Hui; Xiang, Yong-Bing; Shu, Xiao Ou

    2008-01-01

    We evaluated the interactive effect of polymorphisms in the sex hormone-binding globulin (SHBG) gene with soy isoflavones, tea consumption, and dietary fiber on endometrial cancer risk in a population-based, case-control study of 1,199 endometrial cancer patients and 1,212 controls. Genotyping of polymorphisms was performed by using TaqMan (Applied Biosystems, Foster City, CA) assays (rs6259) or the Affymetrix MegAllele Targeted Genotyping System (Affymetrix, Inc., US) (rs13894, rs858521, and rs2955617). Dietary information was obtained using a validated food frequency questionnaire. A logistic regression model was employed to compute adjusted odds ratios (ORs) and 95% confidence intervals (CIs). We found that the Asp(327)Asn (rs6259) polymorphism was associated with decreased risk of endometrial cancer, particularly among postmenopausal women (OR = 0.79, 95% CI = 0.62-1.00). This single nucleotide polymorphism (SNP) modified associations of soy isoflavones and tea consumption but not fiber intake with endometrial cancer, with the inverse association of soy intake and tea consumption being more evident for those with the Asp/Asp genotype of the SHBG gene at Asp(327)Asn (rs6259), particularly premenopausal women (P(interaction) = 0.06 and 0.02, respectively, for soy isoflavones and tea intake). This study suggests that gene-diet interaction may play an important role in the etiology of endometrial cancer risk.

  9. Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome.

    PubMed

    Jakubowicz, Daniela; Barnea, Maayan; Wainstein, Julio; Froy, Oren

    2013-11-01

    In women with PCOS (polycystic ovary syndrome), hyperinsulinaemia stimulates ovarian cytochrome P450c17α activity that, in turn, stimulates ovarian androgen production. Our objective was to compare whether timed caloric intake differentially influences insulin resistance and hyperandrogenism in lean PCOS women. A total of 60 lean PCOS women [BMI (body mass index), 23.7±0.2 kg/m²] were randomized into two isocaloric (~1800 kcal; where 1 kcal≈4.184 J) maintenance diets with different meal timing distribution: a BF (breakfast diet) (980 kcal breakfast, 640 kcal lunch and 190 kcal dinner) or a D (dinner diet) group (190 kcal breakfast, 640 kcal lunch and 980 kcal dinner) for 90 days. In the BF group, a significant decrease was observed in both AUC(glucose) (glucose area under the curve) and AUC(insulin) (insulin area under the curve) by 7 and 54% respectively. In the BF group, free testosterone decreased by 50% and SHBG (sex hormone-binding globulin) increased by 105%. GnRH (gonadotropin-releasing hormone)-stimulated peak serum 17OHP (17α-hydroxyprogesterone) decreased by 39%. No change in these parameters was observed in the D group. In addition, women in the BF group had an increased ovulation rate. In lean PCOS women, a high caloric intake at breakfast with reduced intake at dinner results in improved insulin sensitivity indices and reduced cytochrome P450c17α activity, which ameliorates hyperandrogenism and improves ovulation rate. Meal timing and distribution should be considered as a therapeutic option for women with PCOS.

  10. The relationship between physical activity, appetite and energy intake in older adults: A systematic review.

    PubMed

    Clegg, M E; Godfrey, A

    2018-06-07

    Ageing often causes a reduction in appetite and energy intake in older adults which can result in malnutrition. Current guidelines for older adults suggest increasing physical activity to enhance appetite. However, it is unclear if there is evidence to support this advice. This aim of this review is to assess if appetite and energy intake is changed in older adults that undertake acute or regular physical activity (measured from cross sectional and intervention studies). Databases SPORTDiscus, CINAHL, MEDLINE were searched for studies between 1970 and 2017 using search terms related to ageing, physical activity (including exercise), energy and appetite. Studies included contained adults over 60 years, including acute, cross-sectional and intervention (longitudinal) studies. Of 34 full-text articles assessed, 8 were included. The Cochrane Collaboration's tool was used for assessing risk of bias. No acute studies were found. Of the cross-sectional studies, one study suggested that individuals who undertake habitual physical activity had an increased energy intake and none of the studies found differences in appetite ratings. Energy intakes increased in the intervention studies, though not always sufficiently to maintain energy balance. One study showed that ability to correctly compensate for previous energy intake was better in those that undertake habitual physical activity. The limited number of studies, wide range of data collection methodologies, time-scales and interventions mean that definitive outcomes are difficult to identify. At this stage advice to increase acute or habitual physical activity as a mean to increase appetite is not supported by sufficient evidence. Copyright © 2018. Published by Elsevier Ltd.

  11. Variations of body composition, physical activity and caloric intake in schoolchildren during national holidays.

    PubMed

    Cristi-Montero, Carlos; Munizaga, Cristian; Tejos, Constanza; Ayala, Raquel; Henríquez, Raúl; Solís-Urra, Patricio; Rodríguez-Rodríguez, Fernando

    2016-06-01

    Scientific literature has described that a significant body weight increase in schoolchildren occurs during some holiday periods (summer, winter, and thanksgiving holidays), harming their health. In this regard, it is thought that this phenomenon is mainly due to changes in eating habits and the variation in levels of physical activity; however, this approach has not yet been explored during national holidays (NAH) in Chile. To determine any changes in body composition, physical activity and caloric intake during NAH. A total of 46 schoolchildren (24 boys, age 10.5 ± 0.5; BMI 21.7 ± 4.7) participated. Measurements were performed 2 days before and after the NAH (9 days). Weight was measured and fat percentage was established using the Slaughter formula. Levels of physical activity were measured with accelerometers, validating 3 weekdays and 1 weekend; caloric intake was established through a 24-h recall. Weight, percentage of fat and caloric intake increased significantly (250 g, 2.2 % and 733.3 kcal, respectively; p < 0.05); however, none of the variables of physical activity showed significant changes. The change in caloric intake seems to be the main cause of weight and fat gain during the NAH.

  12. [Thyroid hormone metabolism and action].

    PubMed

    Köhrle, Josef

    2004-05-01

    Reductive deiodination of thyroid hormones at the phenolic and tyrosyl ring leads to the activation or inactivation of the thyromimetic activity inherent to thyroid hormones. Alterations in the activities of the three selenocysteine-containing enzymes, the iodothyronine deiodinases, have been reported during development and in specific cells and tissues of the adult organism. Furthermore, pathophysiological changes in the deiodinase expression lead to therapeutically relevant disturbances of the homeostasis of thyroid hormones. Metabolisation of thyroid hormones by conjugation of their phenolic 4'-OH group, their alanine side chain or cleavage of their diphenylether bridge also contributes to both local and systemic supply of thyromimetic activity or hormone degradation. Further components mediating the pleiotropic action of thyroid hormones in part include redundant T3 receptors, binding and transport proteins, metabolising enzymes and T3-regulated gene products. This is achieved in a finely tuned manner with multiple feedback control, malfunction or complete failure of individual components and networks involved in the iodothyronine metabolism and thyroid hormone action can thus be compensated or prevented.

  13. Choline and betaine intake and risk of breast cancer among post-menopausal women

    PubMed Central

    Cho, E; Holmes, M D; Hankinson, S E; Willett, W C

    2010-01-01

    Background: Choline and betaine, similar to folate, are nutrients involved in one-carbon metabolism and hypothesised to reduce breast cancer risk. No prospective study among post-menopausal women has examined choline and betaine intakes in relation to breast cancer risk. Methods: We examined the intake of choline and betaine and breast cancer risk among 74 584 post-menopausal women in the Nurses' Health Study. Nutrient intake was assessed using a validated food-frequency questionnaire six times since 1984. During 20 years of follow-up from 1984 until 2004, we documented 3990 incident cases of invasive breast cancer. Results: Overall, choline (mean±s.d.; 326±61 mg per day) and betaine (104±33 mg per day) intake was not associated with a reduced risk of post-menopausal breast cancer. Participants in the highest quintile of intakes had multivariate relative risks of 1.10 (95% confidence interval (95% CI): 0.99–1.22; P-value, test for trend=0.14) for choline and 0.98 (95% CI: 0.89–1.09; P-value, test for trend=0.96) for betaine, compared with those in the lowest quintiles of intakes. The results were similar in breast cancer stratified by hormone receptor (oestrogen receptor/progesterone receptor) status. The association between choline intake and breast cancer risk did not differ appreciably by alcohol intake (non-drinker, <15 or 15+ g per day) or several other breast cancer risk factors, including family history of breast cancer, history of benign breast disease, body mass index, post-menopausal hormone use, and folate intake. Conclusion: We found no evidence that higher intakes of choline and betaine reduce risk of breast cancer among post-menopausal women. PMID:20051955

  14. Current knowledge of the roles of ghrelin in regulating food intake and energy balance in birds.

    PubMed

    Kaiya, Hiroyuki; Furuse, Mitsuhiro; Miyazato, Mikiya; Kangawa, Kenji

    2009-09-01

    A decade has passed since the peptide hormone ghrelin was first discovered in rat stomach. During this period, ghrelin has been identified not only in other mammals but also in fish, amphibians, reptiles and birds, and its physiological functions have been widely investigated. Avian ghrelin was first identified in chickens in 2002 and to date, the amino acid sequences of six different avian ghrelin peptides have been reported. In mammals, ghrelin is the only known gut-derived hormone to stimulate food intake when administered centrally or peripherally. In studies on chickens and quail, however, ghrelin inhibits food intake when injected centrally, while the effects on feeding behavior elicited by ghrelin injected peripherally are equivocal. This review summarizes what is currently known about the regulation of food intake and energy balance by ghrelin in birds.

  15. Review and analysis of physical exercise at hormonal and brain level, and its influence on appetite.

    PubMed

    Gómez Escribano, Laura; Gálvez Casas, Arancha; Escribá Fernández-Marcote, Antonio R; Tárraga López, Pedro; Tárraga Marcos, Loreto

    Due to the currently growing rate of obesity, it is important to maintain good control of food intake. The main purpose of the present study is to determine the influence of physical exercise on appetite, changes in hormone concentrations, and changes in certain neuronal regions. To achieve this, a literature search was conducted using different data bases. The results show how exercise produces changes in the appetite perception, in the amount of energy intake, and in different weight-control related hormones, as well as in specific neuronal responses. In conclusion, it can be shown that exercise leads to changes in appetite, hunger, and energy intake. In addition, exercise decreases the ghrelin levels and increases concentrations of leptin. Likewise, it is shown how physical exercise alters the responses of certain neuronal regions after visualizing specific food elements decreasing so the appetite or the intake of them. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists.

    PubMed

    Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W

    2006-05-12

    The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.

  17. Lifetime cumulative number of menstrual cycles and serum sex hormone levels in postmenopausal women.

    PubMed

    Chavez-MacGregor, Mariana; van Gils, Carla H; van der Schouw, Yvonne T; Monninkhof, Evelyn; van Noord, Paulus A H; Peeters, Petra H M

    2008-03-01

    Lifetime cumulative number of menstrual cycles is related to breast cancer risk. The aim of this study is to investigate the relation between this index and serum sex hormone levels in postmenopausal women. Cross-sectional study including 860 naturally postmenopausal Dutch participants of the European Prospective Investigation into Cancer and Nutrition. Lifetime cumulative number of menstrual cycles was computed using questionnaire data on ages at menarche and menopause, number of pregnancies, breastfeeding, oral contraceptive use (OC) and regularity pattern. Measurements of hormones included estrone (E1), estradiol (E2), andostrenedione, testosterone, sex-hormone binding globulin (SHBG) and dehydroepiandrostenedione sulfate (DHEAS). The relation between the lifetime cumulative number of menstrual cycles and hormone levels was assessed using analysis of covariance. Relations between reproductive characteristics and hormone levels were also studied. Adjustments for characteristics at blood collection included age, years since menopause, BMI, hormone replacement therapy use, OC use, smoking habits, alcohol intake and physical activity were done. Lifetime cumulative number of cycles was related with SHBG; participants in the lowest category had higher SHBG levels. For the separate characteristics, DHEAS and androstenedione increased significantly with increasing age at menarche, while androstenedione and testosterone decreased with increasing age at menopause. For the parity characteristics, SHBG levels increased according to the number of live births. Lifetime cumulative number menstrual cycles was related only to SHBG. Therefore, free levels of estrogens or androgens may be related to this number of menstrual cycles estimate, reflecting lifetime exposure to ovarian hormones.

  18. Pancreatic signals controlling food intake; insulin, glucagon and amylin

    PubMed Central

    Woods, Stephen C; Lutz, Thomas A; Geary, Nori; Langhans, Wolfgang

    2006-01-01

    The control of food intake and body weight by the brain relies upon the detection and integration of signals reflecting energy stores and fluxes, and their interaction with many different inputs related to food palatability and gastrointestinal handling as well as social, emotional, circadian, habitual and other situational factors. This review focuses upon the role of hormones secreted by the endocrine pancreas: hormones, which individually and collectively influence food intake, with an emphasis upon insulin, glucagon and amylin. Insulin and amylin are co-secreted by B-cells and provide a signal that reflects both circulating energy in the form of glucose and stored energy in the form of visceral adipose tissue. Insulin acts directly at the liver to suppress the synthesis and secretion of glucose, and some plasma insulin is transported into the brain and especially the mediobasal hypothalamus where it elicits a net catabolic response, particularly reduced food intake and loss of body weight. Amylin reduces meal size by stimulating neurons in the hindbrain, and there is evidence that amylin additionally functions as an adiposity signal controlling body weight as well as meal size. Glucagon is secreted from A-cells and increases glucose secretion from the liver. Glucagon acts in the liver to reduce meal size, the signal being relayed to the brain via the vagus nerves. To summarize, hormones of the endocrine pancreas are collectively at the crossroads of many aspects of energy homeostasis. Glucagon and amylin act in the short term to reduce meal size, and insulin sensitizes the brain to short-term meal-generated satiety signals; and insulin and perhaps amylin as well act over longer intervals to modulate the amount of fat maintained and defended by the brain. Hormones of the endocrine pancreas interact with receptors at many points along the gut–brain axis, from the liver to the sensory vagus nerve to the hindbrain to the hypothalamus; and their signals are

  19. The appetite suppressant d-fenfluramine reduces water intake, but not food intake, in activity-based anorexia.

    PubMed

    Hillebrand, J J G; Heinsbroek, A C M; Kas, M J H; Adan, R A H

    2006-02-01

    Biochemical, genetic and imaging studies support the involvement of the serotonin (5-HT) system in anorexia nervosa. Activity-based anorexia (ABA) is considered an animal model of anorexia nervosa, and combines scheduled feeding with voluntary running wheel activity (RWA). We investigated the effect of d-fenfluramine (d-FEN) treatment on development and propagation of ABA. d-FEN is an appetite suppressant and acts on 5-HT(2C) receptors that are located on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus. Since stimulation activation of the melanocortin system stimulates ABA, we hypothesized that d-FEN treatment enhances the development and propagation of ABA. Rats were exposed to the ABA model and chronically infused with d-FEN. Unexpectedly, d-FEN-treated ABA rats did not reduce food intake or increase wheel running as compared with vehicle-treated ABA rats. Furthermore d-FEN treatment did not affect body weight loss, hypothalamus-pituitary-adrenal axis activation, or starvation-induced hypothermia in ABA rats. POMC mRNA levels in d-FEN-treated rats were not different from vehicle-treated rats after one week of exposure to the ABA paradigm. However, d-FEN-treated ABA rats showed hypodypsia and increased plasma osmolality and arginine-vasopressin expression levels in the hypothalamus. We conclude that d-FEN treatment does not enhance ABA under the experimental conditions of this study, but strongly reduces water intake in ABA rats.

  20. Neuroendocrine and physiological regulation of intake with particular reference to domesticated ruminant animals.

    PubMed

    Roche, John R; Blache, Dominique; Kay, Jane K; Miller, Dale R; Sheahan, Angela J; Miller, David W

    2008-12-01

    The central nervous system undertakes the homeostatic role of sensing nutrient intake and body reserves, integrating the information, and regulating energy intake and/or energy expenditure. Few tasks regulated by the brain hold greater survival value, particularly important in farmed ruminant species, where the demands of pregnancy, lactation and/or growth are not easily met by often bulky plant-based and sometimes nutrient-sparse diets. Information regarding metabolic state can be transmitted to the appetite control centres of the brain by a diverse array of signals, such as stimulation of the vagus nerve, or metabolic 'feedback' factors derived from the pituitary gland, adipose tissue, stomach/abomasum, intestine, pancreas and/or muscle. These signals act directly on the neurons located in the arcuate nucleus of the medio-basal hypothalamus, a key integration, and hunger (orexigenic) and satiety (anorexigenic) control centre of the brain. Interest in human obesity and associated disorders has fuelled considerable research effort in this area, resulting in increased understanding of chronic and acute factors influencing feed intake. In recent years, research has demonstrated that these results have relevance to animal production, with genetic selection for production found to affect orexigenic hormones, feeding found to reduce the concentration of acute controllers of orexigenic signals, and exogenous administration of orexigenic hormones (i.e. growth hormone or ghrelin) reportedly increasing DM intake in ruminant animals as well as single-stomached species. The current state of knowledge on factors influencing the hypothalamic orexigenic and anorexigenic control centres is reviewed, particularly as it relates to domesticated ruminant animals, and potential avenues for future research are identified.

  1. Active school transport and fast food intake: Are there racial and ethnic differences?

    PubMed

    Sanchez-Vaznaugh, E V; Bécares, L; Sallis, J F; Sánchez, B N

    2016-10-01

    To investigate whether active school transport was associated with fast food consumption, and to examine differences across racial/ethnic groups. Adolescent data (n=3194) from the 2009 California Health Interview Survey were analyzed with logistic regression models to examine the association between active school transport (AST) and fast food intake across racial/ethnic groups. In the overall sample, AST during 1-2days in the past week was associated with greater likelihood of fast food intake (OR: 1.58; 95% CI: 1.03-2.43), compared with zero days of AST, controlling for demographic and other factors. The association between AST and fast food intake differed significantly by race/ethnicity (p<0.01). Among Latino adolescents, greater frequency of AST was significantly associated with greater likelihood of fast food intake (1-2days OR, 2.37, 95%CI: 1.05-5.35; 3-4days OR, 2.78, 95% CI: 1.04-7.43; 5days OR, 2.20, 95%CI: 1.23-3.93). Among White and Asian adolescents, there was a curvilinear pattern: relative to adolescents who reported zero days of AST, those who did AST 1-2days/week had greater likelihood of fast food intake, but AST of 3-4days and 5days/week was associated respectively, with higher and lower likelihood of fast food intake among both groups. AST appears to be a risk factor for fast food intake, and may expose some ethnic groups more than others to increased opportunity to purchase and consume fast food. Programs and policies to promote AST among adolescents should incorporate efforts to encourage healthy eating and discourage concentration of fast food outlets near schools. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Affective responsiveness is influenced by intake of oral contraceptives.

    PubMed

    Radke, Sina; Derntl, Birgit

    2016-06-01

    Despite the widespread use of oral contraceptive pills (OCs), little is known about their impact on psychological processes and emotional competencies. Recent data indicate impaired emotion recognition in OC users compared to naturally cycling females. Building upon these findings, the current study investigated the influence of OC use on three components of empathy, i.e., emotion recognition, perspective-taking, and affective responsiveness. We compared naturally cycling women to two groups of OC users, one being tested in their pill-free week and one in the phase of active intake. Whereas groups did not differ in emotion recognition and perspective-taking, an effect of pill phase was evident for affective responsiveness: Females currently taking the pill showed better performance than those in their pill-free week. These processing advantages complement previous findings on menstrual cycle effects and thereby suggest an association with changes in endogenous and exogenous reproductive hormones. The current study highlights the need for future research to shed more light on the neuroendocrine alterations accompanying OC intake. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  3. Active immunization to luteinizing hormone releasing hormone to inhibit the induction of mammary tumors in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravdin, P.M.; Jordan, V.C.

    1988-01-01

    Immunization of female rats with a bovine serum albumin-luteinizing hormone releasing hormone conjugate results in suppression of dimethylbenzanthracene mammary tumor incidence. Tumor incidence was 1.3, and 1.29 tumors per rat in bovine serum albumin alone (n = 10) and unimmunized (n = 18) control groups, but no tumors were found in the bovine serum albumin-luteinizing hormone releasing hormone conjugate immunized animals (n = 10). In a second experiment immunization with bovine serum albumin-luteinizing hormone releasing hormone conjugates reduced tumor incidence to 0.3 tumors per rat (n = 10) from the 1.2 tumors per animal seen in the control animals (nmore » = 10) immunized with bovine serum albumin alone. Bovine serum albumin-luteinizing hormone immunization caused the production of anti-LHRH antibodies, an interruption of estrous cycles, lowered serum estradiol and progesterone levels, and atrophy of the ovaries and uteri. Immunization BSA-hormone conjugates is a novel anti-tumor strategy.« less

  4. Corticotropin-releasing hormone regulates IL-6 expression during inflammation

    PubMed Central

    Venihaki, Maria; Dikkes, Pieter; Carrigan, Allison; Karalis, Katia P.

    2001-01-01

    Stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by proinflammatory cytokines results in increased release of glucocorticoid that restrains further development of the inflammatory process. IL-6 has been suggested to stimulate the HPA axis during immune activation independent of the input of hypothalamic corticotropin-releasing hormone (CRH). We used the corticotropin-releasing hormone–deficient (Crh+/+) mouse to elucidate the effect of CRH deficiency on IL-6 expression and IL-6–induced HPA axis activation during turpentine-induced inflammation. We demonstrate that during inflammation CRH is required for a normal adrenocorticotropin hormone (ACTH) increase but not for adrenal corticosterone rise. The paradoxical increase of plasma IL-6 associated with CRH deficiency suggests that IL-6 release during inflammation is CRH-dependent. We also demonstrate that adrenal IL-6 expression is CRH-dependent, as its basal and inflammation-induced expression is blocked by CRH deficiency. Our findings suggest that during inflammation, IL-6 most likely compensates for the effects of CRH deficiency on food intake. Finally, we confirm that the HPA axis response is defective in Crh+/+/IL-6+/+ mice. These findings, along with the regulation of IL-6 by CRH, support the importance of the interaction between the immune system and the HPA axis in the pathophysiology of inflammatory diseases. PMID:11602623

  5. Influence of dietary forage and feed intake on carbohydrase activities and small intestinal morphology of calves.

    PubMed

    Kreikemeier, K K; Harmon, D L; Peters, J P; Gross, K L; Armendariz, C K; Krehbiel, C R

    1990-09-01

    Twenty (12 Holstein, 8 Longhorn cross) calves (198 kg and 7 mo old) were used in a randomized complete block design to evaluate the effects of dietary forage concentration and feed intake on carbohydrase activities and small intestinal (SI) morphology. Calves were individually fed 90% forage (alfalfa) or a 90% concentrate (50% sorghum: 50% wheat) diet at either one or two times NEm for 140 d and slaughtered; tissues and small intestinal digesta were collected. Increased feed intake increased (P less than .05) pancreatic weight, alpha-amylase and glucoamylase activities in the pancreas, SI length and SI digesta weight. Forage-fed calves gained faster (P less than .01) and had greater (P less than .05) pancreatic protein concentrations, alpha-amylase and glucoamylase activities in the pancreas and greater SI digesta alpha-amylase activities than grain-fed calves did. Increased feed intake increased (P less than .01) mucosal weight/cm small intestine only in forage-fed calves and increased (P less than .05) SI surface/volume only in grain-fed calves. Mucosal weight was greatest (P less than .05) at the terminal ileum, surface/volume was greatest (P less than .05) in the duodenum, and mucosal protein concentration was highest (P less than .05) in the SI mid-section. Mucosal lactase was higher (P less than .05) in proximal segments, whereas mucosal isomaltase was higher in middle and distal segments of the small intestine. For mucosal maltase activity, there was a feed intake x SI sampling site interaction (P less than .05) and for trehalase, a diet x feed intake x SI sampling site interaction (P less than .05). The SI distribution patterns of maltase and isomaltase were similar, as were those of trehalase and lactase. The alpha-amylase activity in the pancreas and SI morphology were influenced greatly by diet composition and feed intake by calves.

  6. Energy balance, physical activity, and cancer risk.

    PubMed

    Fair, Alecia Malin; Montgomery, Kara

    2009-01-01

    This chapter posits that cancer is a complex and multifactorial process as demonstrated by the expression and production of key endocrine and steroid hormones that intermesh with lifestyle factors (physical activity, body size, and diet) in combination to heighten cancer risk. Excess weight has been associated with increased mortality from all cancers combined and for cancers of several specific sites. The prevalence of obesity has reached epidemic levels in many parts of the world; more than 1 billion adults are overweight with a body mass index (BMI) exceeding 25. Overweight and obesity are clinically defined indicators of a disease process characterized by the accumulation of body fat due to an excess of energy intake (nutritional intake) relative to energy expenditure (physical activity). When energy intake exceeds energy expenditure over a prolonged period of time, the result is a positive energy balance (PEB), which leads to the development of obesity. This physical state is ideal for intervention and can be modulated by changes in energy intake, expenditure, or both. Nutritional intake is a modifiable factor in the energy balance-cancer linkage primarily tested by caloric restriction studies in animals and the effect of energy availability. Restriction of calories by 10 to 40% has been shown to decrease cell proliferation, increasing apoptosis through anti-angiogenic processes. The potent anticancer effect of caloric restriction is clear, but caloric restriction alone is not generally considered to be a feasible strategy for cancer prevention in humans. Identification and development of preventive strategies that "mimic" the anticancer effects of low energy intake are desirable. The independent effect of energy intake on cancer risk has been difficult to estimate because body size and physical activity are strong determinants of total energy expenditure. The mechanisms that account for the inhibitory effects of physical activity on the carcinogenic process

  7. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control.

    PubMed

    Blasiak, Anna; Gundlach, Andrew L; Hess, Grzegorz; Lewandowski, Marian H

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the "control" of the "master biological clock" reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.

  8. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    PubMed

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Effects of evening vs morning levothyroxine intake: a randomized double-blind crossover trial.

    PubMed

    Bolk, Nienke; Visser, Theo J; Nijman, Judy; Jongste, Ineke J; Tijssen, Jan G P; Berghout, Arie

    2010-12-13

    Levothyroxine sodium is widely prescribed to treat primary hypothyroidism. There is consensus that levothyroxine should be taken in the morning on an empty stomach. A pilot study showed that levothyroxine intake at bedtime significantly decreased thyrotropin levels and increased free thyroxine and total triiodothyronine levels. To date, no large randomized trial investigating the best time of levothyroxine intake, including quality-of-life evaluation, has been performed. To ascertain if levothyroxine intake at bedtime instead of in the morning improves thyroid hormone levels, a randomized double-blind crossover trial was performed between April 1, 2007, and November 30, 2008, among 105 consecutive patients with primary hypothyroidism at Maasstad Hospital Rotterdam in the Netherlands. Patients were instructed during 6 months to take 1 capsule in the morning and 1 capsule at bedtime (one containing levothyroxine and the other a placebo), with a switch after 3 months. Primary outcome measures were thyroid hormone levels; secondary outcome measures were creatinine and lipid levels, body mass index, heart rate, and quality of life. Ninety patients completed the trial and were available for analysis. Compared with morning intake, direct treatment effects when levothyroxine was taken at bedtime were a decrease in thyrotropin level of 1.25 mIU/L (95% confidence interval [CI], 0.60-1.89 mIU/L; P < .001), an increase in free thyroxine level of 0.07 ng/dL (0.02-0.13 ng/dL; P = .01), and an increase in total triiodothyronine level of 6.5 ng/dL (0.9-12.1 ng/dL; P = .02) (to convert thyrotropin level to micrograms per liter, multiply by 1.0; free thyroxine level to picomoles per liter, multiply by 12.871; and total triiodothyronine level to nanomoles per liter, multiply by 0.0154). Secondary outcomes, including quality-of-life questionnaires (36-Item Short Form Health Survey, Hospital Anxiety and Depression Scale, 20-Item Multidimensional Fatigue Inventory, and a symptoms

  10. Sodium and water metabolism under the influence of prolactin, aldosterone, and antidiuretic hormone.

    PubMed Central

    Burstyn, P G

    1978-01-01

    1. Rabbits were placed in metabolism cages in order to measure their intakes of food, water, and sodium chloride (as 1% saline solution), and to measure urinary and faecal excretion of sodium, potassium, and water. 2. Antidiuretic hormone (0.2 i.u./day) caused a reduction in urine volume and no change in sodium excretion. There was full compensatory reduction in water intake so that no accumulation of water occurred. 3. Aldosterone (4 mg/da) caused a reduction in renal sodium excretion for 1--2 days. The saline intake was reduced, though this was insufficient to prevent some sodium accumulation. 4. Renal mineralocorticoid 'escape' resulted in a large increase in sodium excretion at the end of the aldosterone treatment period. This was fully compensated through increased saline intake, and balance was maintained. 5. Prolactin (200 i.u./day) caused a reduction in urine volume and in renal sodium excretion and since there were no compensatory changes in water and sodium intake, this led to substantial accumulation of both water and sodium. 6. The effects of smaller doses of both aldosterone and prolactin were investigated and found to be similar but smaller. 7. It is suggested that whereas prolactin may have little or no role to play in the sodium homoeostasis of the normal animal, the hormone may well be responsible for the substantial increase in body fluids in pregnancy. PMID:633132

  11. Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis.

    PubMed

    Schmitt-Ney, M; Happ, B; Hofer, P; Hynes, N E; Groner, B

    1992-12-01

    The mammary gland-specific nuclear factor (MGF) is a crucial contributor to the regulation of transcription from the beta-casein gene promoter. The beta-casein gene encodes a major milk protein, which is expressed in mammary epithelial cells during lactation and can be induced by lactogenic hormones in the clonal mammary epithelial cell line HC11. We have investigated the specific DNA-binding activity of MGF in mammary epithelial cells in vivo and in vitro. Comparison of MGF in HC11 cells and mammary gland cells from lactating mice revealed molecules with identical DNA-binding properties. Bandshift and UV cross-linking experiments indicated that MGF in HC11 cells has a higher mol wt than MGF found in mice. Little MGF activity was detected in nuclear extracts from HC11 cells cultured in the absence of lactogenic hormones. Lactogenic hormone treatment of HC11 cells led to a strong induction of MGF activity. The induction of MGF activity as well as utilization of the beta-casein promoter were suppressed when epidermal growth factor was present in the tissue culture medium simultaneously with the lactogenic hormones. In lactating animals, MGF activity is regulated by suckling, milk stasis, and systemic hormone signals. The mammary glands from maximally lactating animals, 16 days postpartum, contain drastically reduced MGF activity after removal of the pups for only 8 h. The down-regulation of MGF by pup withdrawal was slower in early lactation, 6 days postpartum. We also investigated the relative contributions of local signals, generated by milk stasis, and systemic hormone signals to the regulation of MGF activity. The access to one row of mammary glands of lactating mothers was denied to the pups for 24 h. High levels of MGF were found in the accessible mammary glands, and intermediate levels of MGF were found in the inaccessible glands of the same mouse. Very low MGF levels were detected when the pups were removed from the dams for 24 h. We conclude that systemic as

  12. Persistent Organochlorine Pollutants with Endocrine Activity and Blood Steroid Hormone Levels in Middle-Aged Men

    PubMed Central

    Emeville, Elise; Giton, Frank; Giusti, Arnaud; Oliva, Alejandro; Fiet, Jean; Thomé, Jean-Pierre; Blanchet, Pascal; Multigner, Luc

    2013-01-01

    Background Studies relating long-term exposure to persistent organochlorine pollutants (POPs) with endocrine activities (endocrine disrupting chemicals) on circulating levels of steroid hormones have been limited to a small number of hormones and reported conflicting results. Objective We examined the relationship between serum concentrations of dehydroepiandrosterone, dehydroepiandrosterone sulphate, androstenedione, androstenediol, testosterone, free and bioavailable testosterone, dihydrotestosterone, estrone, estrone sulphate, estradiol, sex-hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone as a function of level of exposure to three POPs known to interfere with hormone-regulated processes in different way: dichlorodiphenyl dichloroethene (DDE), polychlorinated biphenyl (PCB) congener 153, and chlordecone. Methods We collected fasting, morning serum samples from 277 healthy, non obese, middle-aged men from the French West Indies. Steroid hormones were determined by gas chromatography-mass spectrometry, except for dehydroepiandrosterone sulphate, which was determined by immunological assay, as were the concentrations of sex-hormone binding globulin, follicle-stimulating hormone and luteinizing hormone. Associations were assessed by multiple linear regression analysis, controlling for confounding factors, in a backward elimination procedure, in multiple bootstrap samples. Results DDE exposure was negatively associated to dihydrotestosterone level and positively associated to luteinizing hormone level. PCB 153 was positively associated to androstenedione and estrone levels. No association was found for chlordecone. Conclusions These results suggested that the endocrine response pattern, estimated by determining blood levels of steroid hormones, varies depending on the POPs studied, possibly reflecting differences in the modes of action generally attributed to these compounds. It remains to be investigated whether this response pattern

  13. Physical activity in the prevention and amelioration of osteoporosis in women : interaction of mechanical, hormonal and dietary factors.

    PubMed

    Borer, Katarina T

    2005-01-01

    Osteoporosis is a serious health problem that diminishes quality of life and levies a financial burden on those who fear and experience bone fractures. Physical activity as a way to prevent osteoporosis is based on evidence that it can regulate bone maintenance and stimulate bone formation including the accumulation of mineral, in addition to strengthening muscles, improving balance, and thus reducing the overall risk of falls and fractures. Currently, our understanding of how to use exercise effectively in the prevention of osteoporosis is incomplete. It is uncertain whether exercise will help accumulate more overall peak bone mass during childhood, adolescence and young adulthood. Also, the consistent effectiveness of exercise to increase bone mass, or at least arrest the loss of bone mass after menopause, is also in question. Within this framework, section 1 introduces mechanical characteristics of bones to assist the reader in understanding their responses to physical activity. Section 2 reviews hormonal, nutritional and mechanical factors necessary for the growth of bones in length, width and mineral content that produce peak bone mass in the course of childhood and adolescence using a large sample of healthy Caucasian girls and female adolescents for reference. Effectiveness of exercise is evaluated throughout using absolute changes in bone with the underlying assumption that useful exercise should produce changes that approximate or exceed the absolute magnitude of bone parameters in a healthy reference population. Physical activity increases growth in width and mineral content of bones in girls and adolescent females, particularly when it is initiated before puberty, carried out in volumes and at intensities seen in athletes, and accompanied by adequate caloric and calcium intakes. Similar increases are seen in young women following the termination of statural growth in response to athletic training, but not to more limited levels of physical activity

  14. Effects of hormones on platelet aggregation.

    PubMed

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  15. Prevalence and Determinants of Physical Activity and Fluid Intake in Kidney Transplant Recipients

    PubMed Central

    Gordon, Elisa J.; Prohaska, Thomas R.; Gallant, Mary P.; Sehgal, Ashwini R.; Strogatz, David; Conti, David; Siminoff, Laura A.

    2009-01-01

    Background and Significance Self-care for kidney transplantation is recommended to maintain kidney function. Little is known about levels of self-care practices, and demographic, psychosocial, and health-related correlates. Aim We investigated patients’ self-reported exercise and fluid intake, demographic and psychosocial factors associated with these self-care practices, and health-related quality of life. Methods Eighty-eight of 158 kidney recipients from two academic medical centers completed a semi-structured interview and surveys 2 months post-transplant. Results Most patients were sedentary (76%) with a quarter exercising either regularly (11%) or not at current recommendations (13%). One third (35%) reported drinking the recommended three liters of fluid daily. Multivariate analyses indicated that private insurance, high self-efficacy, and better physical functioning were significantly associated with engaging in physical activity (p<0.05); while male gender, private insurance, high self-efficacy, and not attributing oneself responsible for transplant success were significant predictors of adherence to fluid intake (p<0.05). Despite the significance of these predictors, models for physical activity and fluid intake explained 10–15% of the overall variance in these behaviors. Multivariate analyses indicated that younger age, high value of exercise, and higher social functioning significantly (p<0.05) predicted high self-efficacy for physical activity, while being married significantly (p<0.05) predicted high self-efficacy for fluid intake. Conclusion Identifying patients at risk of inadequate self-care practice is essential for educating patients about the importance of self-care. PMID:19925468

  16. Prevalence and determinants of physical activity and fluid intake in kidney transplant recipients.

    PubMed

    Gordon, Elisa J; Prohaska, Thomas R; Gallant, Mary P; Sehgal, Ashwini R; Strogatz, David; Conti, David; Siminoff, Laura A

    2010-01-01

    Self-care for kidney transplantation is recommended to maintain kidney function. Little is known about levels of self-care practices and demographic, psychosocial, and health-related correlates. To investigate patients' self-reported exercise and fluid intake, demographic and psychosocial factors associated with these self-care practices, and health-related quality of life. Eighty-eight of 158 kidney recipients from two academic medical centers completed a semi-structured interview and surveys 2 months post-transplant. Most patients were sedentary (76%) with a quarter exercising either regularly (11%) or not at current recommendations (13%). One-third (35%) reported drinking the recommended 3 L of fluid daily. Multivariate analyses indicated that private insurance, high self-efficacy, and better physical functioning were significantly associated with engaging in physical activity (p < 0.05); while male gender, private insurance, high self-efficacy, and not attributing oneself responsible for transplant success were significant predictors of adherence to fluid intake (p < 0.05). Despite the significance of these predictors, models for physical activity and fluid intake explained 10-15% of the overall variance in these behaviors. Multivariate analyses indicated that younger age, high value of exercise, and higher social functioning significantly (p < 0.05) predicted high self-efficacy for physical activity, while being married significantly (p < 0.05) predicted high self-efficacy for fluid intake. Identifying patients at risk of inadequate self-care practice is essential for educating patients about the importance of self-care.

  17. Geography Influences Dietary Intake, Physical Activity and Weight Status of Adolescents

    PubMed Central

    Downs, Shauna M.; Fraser, Shawn N.; Storey, Kate E.; Forbes, Laura E.; Spence, John C.; Plotnikoff, Ronald C.; Raine, Kim D.; Hanning, Rhona M.; McCargar, Linda J.

    2012-01-01

    Purpose. The purpose of this study was to assess rural and urban differences in the dietary intakes, physical activity levels and weight status of a large sample of Canadian youth in both 2005 and 2008. Materials and Methods. A cross-sectional study of rural and urban adolescents (n = 10, 023) in Alberta was conducted in both 2005 and 2008 using a web-based survey. Results. There was an overall positive change in nutrient intakes between 2005 and 2008; however, rural residents generally had a poorer nutrient profile than urban residents (P < .001). They consumed less fibre and a greater percent energy from saturated fat. The mean physical activity scores increased among rural youth between 2005 and 2008 (P < .001), while remaining unchanged among urban youth. Residence was significantly related to weight status in 2005 (P = .017), but not in 2008. Conclusion. Although there were small improvements in nutrient intakes from 2005 to 2008, several differences in the lifestyle behaviours of adolescents living in rural and urban areas were found. The results of this study emphasize the importance of making policy and program recommendations to support healthy lifestyle behaviours within the context of the environments in which adolescents live. PMID:22685637

  18. Active kallikrein response to changes in sodium-chloride intake in essential hypertensive patients.

    PubMed

    Ferri, C; Bellini, C; Carlomagno, A; Desideri, G; Santucci, A

    1996-03-01

    To evaluate the behavior of active kallikrein excretion in salt-sensitive and salt-resistant hypertensive patients during changes in sodium-chloride (NaCl) intake, 61 male, nonobese, nondiabetic outpatients affected by uncomplicated essential hypertension were given a diet that contained 140 mmol NaCl per day for 2 wk. Patients then received either a low- (20 mmol NaCl/day) or a high- (320 mmol NaCl/day) sodium diet for 2 wk, according to a randomized, double-blind, cross-over protocol. Hypertensive patients were classified as salt sensitive when their diastolic blood pressure rose by at least 10 mm Hg after the high-sodium diet, and decreased by at least 10 mm Hg after the low-sodium diet, considering as baseline blood pressure values those that were taken at the end of the 140 mmol NaCl/day intake period. The remaining patients were classified as salt resistant or, when diastolic blood pressure increased by 10 mm Hg or more after low-sodium intake, as counter-regulating. Twenty-three patients were therefore classified as salt sensitive, 28 as salt resistant, and 10 as counter-regulating. The baseline active kallikrein excretion was significantly lower (P < 0.0001) in salt-sensitive (0.62 +/- 0.31 U/24 h) patients than in salt-resistant (1.39 +/- 0.44 U/24 h) and counter-regulating patients (1.27 +/- 0.38 U/24 h). Surprisingly, the kallikrein response to changes in sodium intake was similar in all subgroups, although enzyme excretion was always at the lowest level in salt-sensitive hypertensive patients. This latter group also showed the highest plasma atrial natriuretic peptide levels (28.2 +/- 8.5 fmol/mL, P < 0.0001 versus salt-resistant and counter-regulating patients), and the greatest peptide increment with sodium load (P < 0.0001 versus salt-resistant and counter-regulating patients). Counter-regulating patients showed the steepest increase in plasma renin activity (from 0.24 +/- 0.18 to 0.83 +/- 0.21 ng/L per s, P < 0.001) and decrease of plasma atrial

  19. Variability in HOMA-IR, lipoprotein profile and selected hormones in young active men.

    PubMed

    Keska, Anna; Lutoslawska, Grazyna; Czajkowska, Anna; Tkaczyk, Joanna; Mazurek, Krzysztof

    2013-01-01

    Resistance to insulin actions is contributing to many metabolic disturbances. Such factors as age, sex, nutrition, body fat, and physical activity determine body insulin resistance. Present study attempted to asses insulin resistance and its metabolic effects with respect to energy intake in young, lean, and active men. A total of 87 men aged 18-23 participated in the study. Plasma levels of glucose, insulin, lipoproteins, cortisol, and TSH were determined. Insulin resistance was expressed as Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and calculated using homeostatic model. The median value of HOMA-IR (1.344) was used to divide subjects into two groups. Men did not differ in anthropometric parameters, daily physical activity, and plasma TSH and cortisol levels. However, in men with higher HOMA-IR significantly lower daily energy intake was observed concomitantly with higher TG, TC, and HDL-C concentrations in plasma versus their counterparts with lower HOMA-IR. Exclusively in subjects with higher HOMA-IR significant and positive correlation was noted between HOMA-IR and TC and LDL-C. We concluded that despite a normal body weight and physical activity, a subset of young men displayed unfavorable changes in insulin sensitivity and lipid profile, probably due to insufficient energy intake.

  20. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis

    PubMed Central

    Xu, Yong; Liu, Feng

    2016-01-01

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight. mTOR integrates signals from a variety of “energy balancing” hormones such as leptin, insulin, and ghrelin, although its action varies in response to these distinct hormonal stimuli as well as across different neuronal populations. In this review, we summarize and highlight recent findings regarding the functional roles of mTOR complex 1 (mTORC1) in the hypothalamus specifically in its regulation of body weight, energy expenditure, and glucose/lipid homeostasis. Understanding the role and underlying mechanisms behind mTOR-related signaling in the brain will undoubtedly pave new avenues for future therapeutics and interventions that can combat obesity, insulin resistance, and diabetes. PMID:27166282

  1. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis.

    PubMed

    Hu, Fang; Xu, Yong; Liu, Feng

    2016-06-01

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight. mTOR integrates signals from a variety of "energy balancing" hormones such as leptin, insulin, and ghrelin, although its action varies in response to these distinct hormonal stimuli as well as across different neuronal populations. In this review, we summarize and highlight recent findings regarding the functional roles of mTOR complex 1 (mTORC1) in the hypothalamus specifically in its regulation of body weight, energy expenditure, and glucose/lipid homeostasis. Understanding the role and underlying mechanisms behind mTOR-related signaling in the brain will undoubtedly pave new avenues for future therapeutics and interventions that can combat obesity, insulin resistance, and diabetes. Copyright © 2016 the American Physiological Society.

  2. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.

    PubMed

    Gul, Sumera; Saleem, Darakhshan; Haleem, Muhammad A; Haleem, Darakhshan Jabeen

    2017-11-03

    Stress in known to alter hormonal systems. Pharmacological doses of tryptophan, the essential amino acid precursor of serotonin, increase circulating leptin and decrease ghrelin in normal healthy adults. Because systemically injected leptin inhibits stress-induced behavioral deficits and systemically injected serotonin modulates leptin release from the adipocytes, we used tryptophan as a pharmacological tool to modulate hormonal and behavioral responses in unstressed and stressed rats. Leptin, ghrelin, serotonin, tryptophan, and behavior were studied in unstressed and stressed rats following oral administration of 0, 100, 200, and 300 mg/kg of tryptophan. Following oral administration of tryptophan at a dose of 300 mg/kg, circulating levels of serotonin and leptin increased and those of ghrelin decreased in unstressed animals. No effect occurred on 24-hours cumulative food intake and elevated plus maze performance. Exposure to 2 hours immobilization stress decreased 24 hours cumulative food intake and impaired performance in elevated plus maze monitored next day. Serum serotonin decreased, leptin increased, and no effect occurred on ghrelin. Stress effects on serotonin, leptin, food intake, and elevated plus maze performance did not occur in tryptophan-pretreated animals. Tryptophan-induced decreases of ghrelin also did not occur in stressed animals. The findings show an important role of serum serotonin, leptin, and ghrelin in responses to stress and suggest that the essential amino acid tryptophan can improve therapeutics in stress-induced hormonal and behavioral disorders.

  3. Impact of Metabolic Hormones Secreted in Human Breast Milk on Nutritional Programming in Childhood Obesity.

    PubMed

    Badillo-Suárez, Pilar Amellali; Rodríguez-Cruz, Maricela; Nieves-Morales, Xóchitl

    2017-09-01

    Obesity is the most common metabolic disease whose prevalence is increasing worldwide. This condition is considered a serious public health problem due to associated comorbidities such as diabetes mellitus and hypertension. Perinatal morbidity related to obesity does not end with birth; this continues affecting the mother/infant binomial and could negatively impact on metabolism during early infant nutrition. Nutrition in early stages of growth may be essential in the development of obesity in adulthood, supporting the concept of "nutritional programming". For this reason, breastfeeding may play an important role in this programming. Breast milk is the most recommended feeding for the newborn due to the provided benefits such as protection against obesity and diabetes. Health benefits are based on milk components such as bioactive molecules, specifically hormones involved in the regulation of food intake. Identification of these molecules has increased in recent years but its action has not been fully clarified. Hormones such as leptin, insulin, ghrelin, adiponectin, resistin, obestatin and insulin-like growth factor-1 copeptin, apelin, and nesfatin, among others, have been identified in the milk of normal-weight women and may influence the energy balance because they can activate orexigenic or anorexigenic pathways depending on energy requirements and body stores. It is important to emphasize that, although the number of biomolecules identified in milk involved in regulating food intake has increased considerably, there is a lack of studies aimed at elucidating the effect these hormones may have on metabolism and development of the newborn. Therefore, we present a state-of-the-art review regarding bioactive compounds such as hormones secreted in breast milk and their possible impact on nutritional programming in the infant, analyzing their functions in appetite regulation.

  4. Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination.

    PubMed

    Köhrle, Josef

    2007-06-01

    Thyroid hormone metabolism by the three deiodinase selenoproteins -- DIO1, DIO2, and DIO3 -- regulates the local availability of various iodothyronine metabolites and thus mediates their effects on gene expression, thermoregulation, energy metabolism, and many key reactions during the development and maintenance of an adult organism. Circulating serum levels of thyroid hormone and thyroid-stimulating hormone, used as a combined indicator of thyroid hormone status, reflect a composite picture of: thyroid secretion; tissue-specific production of T(3) by DIO1 and DIO2 activity, which both contribute to circulating levels of T(3); and degradation of the prohormone T4, of the thyromimetically active T(3), of the inactive rT(3), of other iodothyronines metabolites with a lower iodine content and of thyroid hormone conjugates. Degradation reactions are catalyzed by either DIO1 or DIO3. Aberrant expression of individual deiodinases in disease, single nucleotide polymorphisms in their genes, and novel regulators of DIO gene expression (such as bile acids) provide a more complex picture of the fine tuning and the adaptation of systemic and local bioavailability of thyroid hormones.

  5. Habitual alcohol consumption associated with reduced semen quality and changes in reproductive hormones; a cross-sectional study among 1221 young Danish men.

    PubMed

    Jensen, Tina Kold; Gottschau, Mads; Madsen, Jens Otto Broby; Andersson, Anne-Maria; Lassen, Tina Harmer; Skakkebæk, Niels E; Swan, Shanna H; Priskorn, Lærke; Juul, Anders; Jørgensen, Niels

    2014-10-02

    Study associations between three measures of alcohol consumption (recent, typical/habitual, binging), semen quality and serum reproductive hormones. Cross-sectional population based study. 1221 young Danish men, aged 18-28 years were recruited when they attended a compulsory medical examination to determine their fitness for military service from 2008 to 2012. Total alcohol consumption: (1) in the week preceding (habitual/typical) the visit (recent alcohol intake), (2) in a typical week and (3) frequency of 'binge drinking' (consuming more than 5 units/day)) in the past 30 days was estimated. Semen quality (volume, sperm concentration, total sperm count, and percentages of motile and morphologically normal spermatozoa) and serum concentration of reproductive hormones (follicle-stimulating hormone, luteinising hormone, testosterone, sex hormone binding globulin, oestradiol, free testosterone and inhibin B). Sperm concentration, total sperm count and percentage of spermatozoa with normal morphology were negatively associated with increasing habitual alcohol intake. This association was observed in men reporting at least 5 units in a typical week but was most pronounced for men with a typical intake of more than 25 units/week. Men with a typical weekly intake above 40 units had a 33% (95% CI 11% to 59%) reduction in sperm concentration compared to men with an intake of 1-5 units/week. A significant increase in serum free testosterone with increasing alcohol consumption the week preceding the visit was found. Binging was not independently associated with semen quality. Our study suggests that even modest habitual alcohol consumption of more than 5 units per week had adverse effects on semen quality although most pronounced associations were seen in men who consumed more than 25 units per week. Alcohol consumption was also linked to changes in testosterone and SHBG levels. Young men should be advised to avoid habitual alcohol intake. Published by the BMJ Publishing

  6. Association Between Energy Balance and Metabolic Hormone Suppression During Ultraendurance Exercise.

    PubMed

    Geesmann, Bjoern; Gibbs, Jenna C; Mester, Joachim; Koehler, Karsten

    2017-08-01

    Ultraendurance athletes often accumulate an energy deficit when engaging in ultraendurance exercise, and on completion of the exercise, they exhibit endocrine changes that are reminiscent of starvation. However, it remains unclear whether these endocrine changes are a result of the exercise per se or secondary to the energy deficit and, more important, whether these changes can be attenuated by increased dietary intake. The goal of the study was to assess the relationship between changes in key metabolic hormones after ultraendurance exercise and measures of energy balance. Metabolic hormones, as well as energy intake and expenditure, were assessed in 14 well-trained male cyclists who completed a 1230-km ultraendurance cycling event. After completion of the event, serum testosterone (-67% ± 18%), insulin-like growth factor-1 (IGF-1) (-45% ± 8%), and leptin (-79% ± 9%) were significantly suppressed (P < .001) and remained suppressed after a 12-h recovery period (P < .001). Changes in IGF-1 were positively correlated with energy balance over the course of the event (r = .65, P = .037), which ranged from an 11,859-kcal deficit to a 3593-kcal surplus. The marked suppression of testosterone, IGF-1, and leptin after ultraendurance exercise is comparable to changes occurring during acute starvation. The suppression of IGF-1, but not that of other metabolic hormones, was strongly associated with the magnitude of the energy deficit, indicating that athletes who attained a greater energy deficit exhibited a more pronounced drop in IGF-1. Future studies are needed to determine whether increased dietary intake can attenuate the endocrine response to ultraendurance exercise.

  7. [Food intake, nutritional status and physical activity between elderly with and without chronic constipation. A comparative study].

    PubMed

    Vargas-García, Elisa Joan; Vargas-Salado, Enrique

    2013-01-01

    Constipation is one of the most frequently found gastrointestinal problems in the elderly as aging modifies their food intake, nutritional status and physical activity, which are associated factors in the development of constipation. To compare food intake, nutritional status and physical activity between elderly subjects with or without chronic constipation. The study included a total of 140 subjects who were divided in two groups according to the presence or absence of constipation using the Rome III criteria. Diet intake was obtained through a 3-day dietary record (2 days during the week and one on Saturday or Sunday). Height, weight, arm circumference, and triceps skinfold thickness were measured and the International Physical Activity Questionnaire (IPAQ) was applied to all participants. Fiber and water intake were not statistically different between both groups. Constipated participants showed significantly less variety and less inclusion of all food groups in their diets compared to their non-constipated counterparts (p < 0.02; p < 0.03). Mean nutritional status was overweight and it didn't differ from each studied group (p= 0.49). Higher levels of physical activity were found in non-constipated subjects (1664 vs 1049 MET, p= 0.004). This study indicates that lower physical activity levels as well as an incomplete and less varied diet are associated to constipation in the elderly. Water and fibre intake do not seem to be contributing to constipation.

  8. Endogenous sex hormone exposure and repetitive element DNA methylation in healthy postmenopausal women.

    PubMed

    Boyne, Devon J; Friedenreich, Christine M; McIntyre, John B; Stanczyk, Frank Z; Courneya, Kerry S; King, Will D

    2017-12-01

    Epigenetic mechanisms may help to explain the complex and heterogeneous relation between sex hormones and cancer. Few studies have investigated the effects of sex hormones on epigenetic markers related to cancer risk such as levels of methylation within repetitive DNA elements. Our objective was to describe the association between endogenous sex hormone exposure and levels of LINE-1 and Alu methylation in healthy postmenopausal women. We nested a cross-sectional study within the Alberta Physical Activity and Breast Cancer Prevention Trial (2003-2006). Study participants consisted of healthy postmenopausal women who had never been diagnosed with cancer (n = 289). Sex hormone exposures included serum concentrations of estradiol, estrone, testosterone, androstenedione, and sex hormone-binding globulin. We estimated the participants' lifetime number of menstrual cycles (LNMC) as a proxy for cumulative exposure to ovarian sex hormones. Buffy coat samples were assessed for DNA methylation. Linear regression was used to model the associations of interest and to control for confounding. Both estradiol and estrone had a significant positive dose-response association with LINE-1 methylation. LNMC was associated with both LINE-1 and Alu methylation. Specifically, LNMC had a non-linear "U-shaped" association with LINE-1 methylation regardless of folate intake and a negative linear association with Alu methylation, but only amongst low folate consumers. Androgen exposure was not associated with either outcome. Current and cumulative estrogen exposure was associated with repetitive element DNA methylation in a group of healthy postmenopausal women. LINE-1 and Alu methylation may be epigenetic mechanisms through which estrogen exposure impacts cancer risk.

  9. Recording the nutrient intake of nursing home residents by food weighing method and measuring the physical activity.

    PubMed

    Schmid, A; Weiss, M; Heseker, H

    2003-01-01

    The nutrient intake of 47 female nursing home residents, able to eat without help, and of 20 eating-dependent seniors was measured by weighing method. Hand grip strength was examined by a dynamometer. Furthermore the level of physical activity of the seniors able to eat without help was determined by means of a questionnaire. The results showed that the median energy intake of self-feeding elderly women was 1620 kcal (850-4450 kcal). More than one third of the seniors consumed less than 1700 kcal / d. The intake of vitamins and minerals remained below 40-90% of the recommended level. One important cause for the inadequate micronutrient intake was that 30% of the total energy intake is met by foods of a low nutrient density (cakes, cookies, spreadable fats, soups). The eating-dependent seniors were at high risk for protein-calorie malnutrition, consuming an average of 1130 kcal / d and 34 g protein / d. The level of physical activity was very low. Only 34% of the seniors were active for more than 2 hours per week (walking, gymnastics). 30% of the residents were largely inactive although they were able to walk. It is often ignored that immobility is a major risk factor for the development of malnutrition. Firstly inactivity accelerates the loss of muscle mass. This loss of metabolically active tissue decreases the energy requirements thus leading to a loss of appetite and reduced food intake.

  10. Apolipoprotein A-II polymorphism: relationships to behavioural and hormonal mediators of obesity.

    PubMed

    Smith, C E; Ordovás, J M; Sánchez-Moreno, C; Lee, Y-C; Garaulet, M

    2012-01-01

    The interaction between apolipoprotein A-II (APOA2) m265 genotype and saturated fat for obesity traits has been more extensively demonstrated than for any other locus, but behavioural and hormonal mechanisms underlying this relationship are unexplored. In this study, we evaluated relationships between APOA2 and obesity risk with particular focus on patterns of eating and ghrelin, a hormonal regulator of food intake. Cross-sectional study. Overweight and obese subjects (n=1225) were evaluated at baseline in five weight loss clinics in southeastern Spain. Behavioural data were assessed using a checklist of weight loss obstacles. Logistic regression models were fitted to estimate the risk of a specific behaviour associated with APOA2 genotype. Relationships between APOA2 genotype and saturated fat intakes for anthropometric traits and plasma ghrelin were evaluated by analysis of variance. To construct categorical variables to evaluate interactions, saturated fat intake was dichotomized into high and low according to the population median intake or as tertiles. Homozygous minor (CC) subjects were more likely to exhibit behaviours that impede weight loss ('Do you skip meals', odds ratio (OR)=2.09, P=0.008) and less likely to exhibit the protective behaviour of 'Do you plan meals in advance' (OR=0.64, P=0.034). Plasma ghrelin for CC subjects consuming low saturated fat was lower compared with (1) CC subjects consuming high saturated fat, (2) TT+TC carriers consuming low saturated fat and (3) TT+TC carriers consuming high saturated fat (all P<0.05). APOA2 m265 genotype may be associated with eating behaviours and dietary modulation of plasma ghrelin. Expansion of knowledge of APOA2 and obesity to include modulation of specific behaviours and hormonal mediators not only broadens understanding of gene-diet interactions, but also facilitates the pragmatic, future goal of developing dietary guidelines based on genotype.

  11. Body Mass Changes Associated With Hyper-Gravity are Independent of Adrenal Derived Hormones

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moran, Megan M.; Wang, Tommy J.; Baer, Lisa A.; Yuan, Fang; Fung, Cyra K.; Stein, T. Peter; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Exposure to hyper-gravity results in a number of metabolic changes associated with increases in catecholamines and corticosterone. These changes result in a loss of body and fat mass. To assess the role of hormones derived from the adrenal gland in the changes we studied sham operated (SO) and adrenalectomized (ADX) male rats exposed to hyper-gravity of 2 G for 14 days. Control groups at 1 G were also studied. Urinary epinephrine (EPI) and corticosterone (CORT) were reduced in ADX animals. In response to 2 G there was an increase in urinary EPI and CORT in SO rats, while levels were unchanged in ADX animals. Both groups of animals had similar increases in urinary norepinephrine levels. The reductions of body mass gain in response to 2 G were the same in both groups. The decrease in relative fat mass was greater in ADX. Energy intake and expenditure were not different between groups. In response of returning to 1 G for 24 hours and reexposure to hyper-gravity there were no differences between SO and ADX in the changes of food and water intake, body mass or activity. The changes in metabolism with exposure to hyper-gravity do not appear to require hormones derived from the adrenal gland. The increase in lypolysis and alterations body and fat mass appear to be modulated by sympathetically derived norepinehrine.

  12. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system.

    PubMed

    Sánchez-Fuentes, Asai; Marichal-Cancino, Bruno A; Méndez-Díaz, Mónica; Becerril-Meléndez, Alline L; Ruiz-Contreras, Alejandra E; Prospéro-Garcia, Oscar

    2016-09-19

    Mounting evidence has shown that glutamatergic and endocannabinoid systems in the hypothalamus regulate mammalian food intake. Stimulation of hypothalamic mGluR1/5 and CB1 receptors induces hyperphagia suggesting a possible interaction between these systems to control food intake. In addition, synthesis of endocannabinoids has been reported after mGluR1/5 stimulation in the brain. The aim of this study was to examine the potential cannabinergic activity in the food intake induction by lateral hypothalamic stimulation of mGluR1/5. Wistar albino male rats received bilateral infusions in the lateral hypothalamus (LH) of: (i) vehicle; (ii) (RS)-2-Chloro-5-hidroxyphenylglycine (CHPG; mGluR1/5 agonist); (iii) 2-AG (CB1 endogenous agonist); (iv) AM251 (CB1 antagonist); (v) tetrahydrolipstatin (THL, 1.2μg; diacyl-glycerol lipase inhibitor); and (vi) combinations of CHPG + with the other aforementioned drugs. Food intake was evaluated the first two hours after drug administration. CHPG significantly increased food intake; whereas CHPG in combination with a dose of 2-AG (with no effects on food intake) greatly increased food ingestion compared to CHPG alone. The increase induced by CHPG in food intake was prevented with AM251 or THL. These results suggest that activation of mGluR1/5 in the lateral hypothalamus induces an orexigenic effect via activation of the endocannabinoid system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway.

    PubMed

    Lee, Ju-Hee; Moon, Myung-Hee; Jeong, Jae-Kyo; Park, Yang-Gyu; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2012-10-05

    Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. [Iodine intake in Portuguese school children].

    PubMed

    Limbert, Edward; Prazeres, Susana; São Pedro, Márcia; Madureira, Deolinda; Miranda, Ana; Ribeiro, Manuel; Carrilho, Francisco; Jácome de Castro, J; Lopes, Maria Santana; Cardoso, João; Carvalho, Andre; Oliveira, Maria João; Reguengo, Henrique; Borges, Fátima

    2012-01-01

    The aim of the present study was to evaluate iodine intake in portuguese school children in order to inform health authorities of eventual measures to be implemented. Iodine is the key element for thyroid hormone synthesis and its deficiency even mild, as found in other European countries, may have deleterious effects in pregnancy resulting in cognitive problems of offsprings. In Portugal there are no recent data on iodine intake in schoolchildren. 3680 children aged 6-12 years of both sexes, from 78 different schools were studied. Iodine intake was evaluated trough urine iodine (UI) determinations using a colorimetic method. The global median UI value was 105.5 µg/L; the percentage of children with UI <100 µg/L was 47.1%, corresponding to 41% of the studied schools. The percentage of values <50 µg/L was 11.8%. The male gender, the south region of the country and the distribution of milk in school were significantly linked with a higher iodine elimination. Our global results point to a borderline/ mildly insufficient iodine intake in the portuguese school population. However 47% of the children had UI under 100 µg /L. The comparison of our results with the available data from 30 years ago, point to a considerable improvement, due to silent prophylaxis. Male gender, geographical area and milk distribution influenced positively iodine intake.The importance of milk has been referred in numerous papers. The study of UI in the Portuguese school population points to a borderline iodine intake. However, in 47% of children iodine intake was inadequate. Compared with data from the eighties, a considerable increase in iodine elimination was found. Taking into account the potencial deleterious effects of inadequate iodine intake, a global prophylaxis with salt iodization has to be considered.

  15. Longitudinal analysis of physical activity, fluid intake, and graft function among kidney transplant recipients

    PubMed Central

    Gordon, Elisa J.; Prohaska, Thomas R.; Gallant, Mary P.; Sehgal, Ashwini R.; Strogatz, David; Yucel, Recai; Conti, David; Siminoff, Laura A.

    2010-01-01

    Summary Self-care is recommended to kidney transplant recipients as a vital component to maintain long-term graft function. However, little is known about the effects of physical activity, fluid intake, and smoking history on graft function. This longitudinal study examined the relationship between self-care practices on graft function among 88 new kidney transplant recipients in Chicago, IL and Albany, NY between 2005 and 2008. Participants were interviewed, completed surveys, and medical charts were abstracted. Physical activity, fluid intake, and smoking history at baseline were compared with changes in estimated glomerular filtration rate (eGFR) (every 6 months up to 1 year) using bivariate and multivariate regression analysis, while controlling for sociodemographic and clinical transplant variables. Multivariate analyses revealed that greater physical activity was significantly (P < 0.05) associated with improvement in GFR at 6 months; while greater physical activity, absence of smoking history, and nonwhite ethnicity were significant (P < 0.05) predictors of improvement in GFR at 12 months. These results suggest that increasing physical activity levels in kidney recipients may be an effective behavioral measure to help ensure graft functioning. Our findings suggest the need for a randomized controlled trial of exercise, fluid intake, and smoking history on GFR beyond 12 months. PMID:19619168

  16. Longitudinal analysis of physical activity, fluid intake, and graft function among kidney transplant recipients.

    PubMed

    Gordon, Elisa J; Prohaska, Thomas R; Gallant, Mary P; Sehgal, Ashwini R; Strogatz, David; Yucel, Recai; Conti, David; Siminoff, Laura A

    2009-10-01

    Self-care is recommended to kidney transplant recipients as a vital component to maintain long-term graft function. However, little is known about the effects of physical activity, fluid intake, and smoking history on graft function. This longitudinal study examined the relationship between self-care practices on graft function among 88 new kidney transplant recipients in Chicago, IL and Albany, NY between 2005 and 2008. Participants were interviewed, completed surveys, and medical charts were abstracted. Physical activity, fluid intake, and smoking history at baseline were compared with changes in estimated glomerular filtration rate (eGFR) (every 6 months up to 1 year) using bivariate and multivariate regression analysis, while controlling for sociodemographic and clinical transplant variables. Multivariate analyses revealed that greater physical activity was significantly (P < 0.05) associated with improvement in GFR at 6 months; while greater physical activity, absence of smoking history, and nonwhite ethnicity were significant (P < 0.05) predictors of improvement in GFR at 12 months. These results suggest that increasing physical activity levels in kidney recipients may be an effective behavioral measure to help ensure graft functioning. Our findings suggest the need for a randomized controlled trial of exercise, fluid intake, and smoking history on GFR beyond 12 months.

  17. Obesigenic families: parents’ physical activity and dietary intake patterns predict girls’ risk of overweight

    PubMed Central

    Davison, K Krahnstoever; Birch, L Lipps

    2008-01-01

    OBJECTIVE To determine whether obesigenic families can be identified based on mothers’ and fathers’ dietary and activity patterns. METHODS A total of 197 girls and their parents were assessed when girls were 5 y old; 192 families were reassessed when girls were 7 y old. Measures of parents’ physical activity and dietary intake were obtained and entered into a cluster analysis to assess whether distinct family clusters could be identified. Girls’ skinfold thickness and body mass index (BMI) were also assessed and were used to examine the predictive validity of the clusters. RESULTS Obesigenic and a non-obesigenic family clusters were identified. Mothers and fathers in the obesigenic cluster reported high levels of dietary intake and low levels of physical activity, while mothers and fathers in the non-obesigenic cluster reported low levels of dietary intake and high levels of activity. Girls from families in the obesigenic cluster had significantly higher BMI and skinfold thickness values at age 7 and showed significantly greater increases in BMI and skinfold thickness from ages 5 to 7 y than girls from non-obesigenic families; differences were reduced but not eliminated after controlling for parents’ BMI. CONCLUSIONS Obesigenic families, defined in terms of parents’ activity and dietary patterns, can be used predict children’s risk of obesity. PMID:12187395

  18. The odor of Osmanthus fragrans attenuates food intake

    PubMed Central

    Yamamoto, Takashi; Inui, Tadashi; Tsuji, Tadataka

    2013-01-01

    Odors have been shown to exert an influence on various physiological and behavioral activities. However, little is known whether or not odor stimulation directly affects the levels of feeding-related neuropeptides. Here we show that the neural transmission by Osmanthus fragrans (OSM) decreased the mRNA expression of orexigenic neuropeptides, such as agouti-related protein, neuropeptide Y, melanin-concentrating hormone and prepro-orexin, while increased anorexigenic neuropeptides, such as cocaine- and amphetamine-regulated transcript and proopiomelanocortin in rats. The decreased number of orexin-immunoreactive neurons in the hypothalamus coincided well with the OSM-induced decreases in the expression of prepro-orexin mRNA. This study demonstrates that the OSM odor, which is known to have a mild sedative effect, decreases the motivation to eat, food intake and body weight, accompanied by sluggish masticatory movements. The data suggest that these effects are due to suppression of orexigenic neuropeptides and activation of anorexigenic neuropeptides in the hypothalamus. PMID:23519146

  19. Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism.

    PubMed

    Varela, Luis; Martínez-Sánchez, Noelia; Gallego, Rosalía; Vázquez, María J; Roa, Juan; Gándara, Marina; Schoenmakers, Erik; Nogueiras, Rubén; Chatterjee, Krishna; Tena-Sempere, Manuel; Diéguez, Carlos; López, Miguel

    2012-06-01

    Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-06-13

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  1. FTO variant, energy intake, physical activity and basal metabolic rate in Caucasians. The HAPIEE study.

    PubMed

    Hubáček, J A; Pikhart, H; Peasey, A; Kubínová, R; Bobák, M

    2011-01-01

    The FTO gene variants are the most important genetic determinants of body weight and obesity known so far, but the mechanism of their effect remains unclear. We have analyzed FTO rs17817449 variant (G>T in first intron) in 6024 adults aged 45-69 years to assess the potential mediating role of diet and physical activity. Diet was assessed by a 140-item food frequency questionnaire. Physical activity was measured by hours spent during a typical week by sport, walking and other activities outside of work requiring heavy and medium physical activity. Basal metabolic rate was calculated according Schofield formula. The FTO variant was significantly associated with body mass index (means in GG, GT and TT carriers were 28.7, 28.2 and 27.8 kg/m(2), p<0.001) and basal metabolic rate (BMR) (means in GG, GT and TT were 1603, 1588 and 1576 kcal per day, respectively, p<0.008) but it was not associated with physical activity, total energy intake or with energy intakes from fat, carbohydrates, proteins or alcohol. Results were essentially similar in men and women and the adjustment for physical activity or dietary energy intake did not reduce the effect of the FTO polymorphism. Means of BMR per kg of body weight was lowest in GG carriers (20.09, 20.21 for GT and 20.30 for TT, p<0.006) and this effect was more pronounced in females. These results suggest that the effect of the FTO rs17817449 variant on BMI in Caucasian adults is not mediated by energy intake or physical activity, but some effect on BMR per kg of body weight is possible.

  2. Within subject variation of satiety hormone responses to a standard lunch

    USDA-ARS?s Scientific Manuscript database

    Background: Insulin (Ins), leptin (Lep), GLP-1, and glucagon (Glg) are known regulators of glucose metabolism and food intake, but reproducibility in response to a meal challenge is not well characterized. We assessed within-subject variation of these hormones in 14 young adult women.Methods: Subjec...

  3. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms.

    PubMed

    Hazell, Tom J; Islam, Hashim; Townsend, Logan K; Schmale, Matt S; Copeland, Jennifer L

    2016-03-01

    The physiological control of appetite regulation involves circulating hormones with orexigenic (appetite-stimulating) and anorexigenic (appetite-inhibiting) properties that induce alterations in energy intake via perceptions of hunger and satiety. As the effectiveness of exercise to induce weight loss is a controversial topic, there is considerable interest in the effect of exercise on the appetite-regulating hormones such as acylated ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and pancreatic polypeptide (PP). Research to date suggests short-term appetite regulation following a single exercise session is likely affected by decreases in acylated ghrelin and increases in PYY, GLP-1, and PP. Further, this exercise-induced response may be intensity-dependent. In an effort to guide future research, it is important to consider how exercise alters the circulating concentrations of these appetite-regulating hormones. Potential mechanisms include blood redistribution, sympathetic nervous system activity, gastrointestinal motility, cytokine release, free fatty acid concentrations, lactate production, and changes in plasma glucose and insulin concentrations. This review of relevant research suggests blood redistribution during exercise may be important for suppressing ghrelin, while other mechanisms involving cytokine release, changes in plasma glucose and insulin concentrations, SNS activity, and muscle metabolism likely mediate changes in the anorexigenic signals PYY and GLP-1. Overall, changes in appetite-regulating hormones following acute exercise appear to be intensity-dependent, with increasing intensity leading to a greater suppression of orexigenic signals and greater stimulation of anorexigenic signals. However, there is less research on how exercise-induced responses in appetite-regulating hormones differ between sexes or different age groups. A better understanding of how exercise intensity and workload affect appetite across the sexes and life

  4. Phthalate exposure and reproductive hormones and sex-hormone binding globulin before puberty - Phthalate contaminated-foodstuff episode in Taiwan.

    PubMed

    Wen, Hui-Ju; Chen, Chu-Chih; Wu, Ming-Tsang; Chen, Mei-Lien; Sun, Chien-Wen; Wu, Wen-Chiu; Huang, I-Wen; Huang, Po-Chin; Yu, Tzu-Yun; Hsiung, Chao A; Wang, Shu-Li

    2017-01-01

    In May 2011, a major incident involving phthalates-contaminated foodstuffs occurred in Taiwan. Di-(2-ethylhexyl) phthalate (DEHP) was added to foodstuffs, mainly juice, jelly, tea, sports drink, and dietary supplements. Concerns arose that normal pubertal development, especially reproductive hormone regulation in children, could be disrupted by DEHP exposure. To investigate the association between phthalate exposure and reproductive hormone levels among children following potential exposure to phthalate-tainted foodstuffs. A total of 239 children aged <12 years old were recruited from 3 hospitals in north, central, and south Taiwan after the episode. Structured questionnaires were used to collect the frequency and quantity of exposures to 5 categories of phthalate-contaminated foodstuffs to assess phthalate exposure in children. Urine samples were collected for the measurement of phthalate metabolites. The estimated daily intake of DEHP exposure at the time of the contamination incident occurred was calculated using both questionnaire data and urinary DEHP metabolite concentrations. Multiple regression analyses were applied to assess associations between phthalate exposure and reproductive hormone levels in children. After excluding children with missing data regarding exposure levels and hormone concentrations and girls with menstruation, 222 children were included in the statistical analyses. After adjustment for age and birth weight, girls with above median levels of urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, and sum of mono-(2-ethylhexyl) phthalate concentrations had higher odds of above median follicle-stimulating hormone concentrations. Girls with above median estimated average daily DEHP exposures following the contamination episode also had higher odds of sex hormone-binding globulin above median levels. Phthalate exposure was associated with alterations of reproductive hormone levels in girls.

  5. Gluten Intake Is Positively Associated with Plasma α2-Macroglobulin in Young Adults.

    PubMed

    Jamnik, Joseph; García-Bailo, Bibiana; Borchers, Christoph H; El-Sohemy, Ahmed

    2015-06-01

    Gluten-free foods have increased in popularity over the past decade and are now being consumed by individuals without celiac disease. However, the physiologic effects of gluten intake in individuals without celiac disease remain unknown. High-abundance plasma proteins involved in inflammation, endothelial function, and other physiologic pathways may represent potential biomarkers of biological effects of gluten intake. The objective was to examine the association between gluten intake and plasma proteomic biomarkers in a population of adults without clinically diagnosed celiac disease. Subjects (n = 1095) were participants of the Toronto Nutrigenomics and Health Study, a cross-sectional examination of young adults aged 20-29 y. Dietary gluten intake was estimated by using a 1-mo, 196-item semiquantitative food-frequency questionnaire. The concentrations of 54 plasma proteins were measured simultaneously by liquid chromatography/multiple-reaction monitoring mass spectrometry. The association between gluten intake and each proteomic biomarker was examined by using general linear models. Analyses were then conducted in individuals who do not have the human leukocyte antigen (HLA)-DQ2 or DQ8 risk variants required for the development of celiac disease to determine whether any associations observed could have been due to undiagnosed cases of celiac disease. Increased gluten intake was associated with increased concentrations of plasma α2-macroglobulin (P = 0.01), a marker of inflammation and cytokine release. The association remained after adjusting for age, sex, BMI, ethnicity, physical activity, energy intake, fiber intake, and hormonal contraceptive use among women. This relation was not modified by HLA risk variants. Gluten consumption is associated with increased plasma α2-macroglobulin in young adults, which appears to be independent of celiac disease, suggesting possible effects of gluten on inflammation. © 2015 American Society for Nutrition.

  6. [Protein intake in selected youth groups of different physical activity and requirements for athletes].

    PubMed

    Nazarewicz, Rafał; Babicz-Zielińska, Ewa

    2004-01-01

    The aim of the study was to investigate protein intake in groups of different physical activity. The research was undertaken over a group of young people of different physical activity (age group 15-18 years) including ballet dancers, karate fighters, cross runners as well as adolescents of average physical activity (female and male). The investigation was performed in two series. The first--before intense exercise training and the second--after intense exercise training. In control group there was only one series. Urea was estimated by using urease which converts urea into ammonia, CO2 and glutamic dehydrogenase reaction via measurements of ammonia derived from urea. The amounts of urea were applied for counting quantity of consumed proteins. In the physically active groups the protein intake was too low in comparison to required.

  7. Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? A systematic review.

    PubMed

    Donnelly, Joseph E; Herrmann, Stephen D; Lambourne, Kate; Szabo, Amanda N; Honas, Jeffery J; Washburn, Richard A

    2014-01-01

    The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. TO ADDRESS THE QUESTION: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? PubMed and Embase were searched (January 1990-January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18-64 years). Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure, or employed adequate assessment methods for energy and macronutrient intake. We found no consistent evidence that increased physical activity or

  8. Cortical activation during mental rotation in male-to-female and female-to-male transsexuals under hormonal treatment.

    PubMed

    Carrillo, Beatriz; Gómez-Gil, Esther; Rametti, Giuseppina; Junque, Carme; Gomez, Angel; Karadi, Kazmer; Segovia, Santiago; Guillamon, Antonio

    2010-09-01

    There is strong evidence of sex differences in mental rotation tasks. Transsexualism is an extreme gender identity disorder in which individuals seek cross-gender treatment to change their sex. The aim of our study was to investigate if male-to-female (MF) and female-to-male (FM) transsexuals receiving cross-sex hormonal treatment have different patterns of cortical activation during a three-dimensional (3D) mental rotation task. An fMRI study was performed using a 3-T scan in a sample of 18 MF and 19 FM under chronic cross-sex hormonal treatment. Twenty-three males and 19 females served as controls. The general pattern of cerebral activation seen while visualizing the rotated and non-rotated figures was similar for all four groups showing strong occipito-parieto-frontal brain activation. However, compared to control males, the activation of MF transsexuals during the task was lower in the superior parietal lobe. Compared to control females, MF transsexuals showed higher activation in orbital and right dorsolateral prefrontal regions and lower activation in the left prefrontal gyrus. FM transsexuals did not differ from either the MF transsexual or control groups. Regression analyses between cerebral activation and the number of months of hormonal treatment showed a significant negative correlation in parietal, occipital and temporal regions in the MF transsexuals. No significant correlations with time were seen in the FM transsexuals. In conclusion, although we did not find a specific pattern of cerebral activation in the FM transsexuals, we have identified a specific pattern of cerebral activation during a mental 3D rotation task in MF transsexuals under cross-sex hormonal treatment that differed from control males in the parietal region and from control females in the orbital prefrontal region. The hypoactivation in MF transsexuals in the parietal region could be due to the hormonal treatment or could reflect a priori cerebral differences between MF transsexual

  9. Gastroenteropancreatic hormones and metabolism in fish.

    PubMed

    Nelson, Laura E; Sheridan, Mark A

    2006-09-01

    Metabolism of vertebrates integrates a vast array of systems and processes, including the pursuit and capture of food, feeding and digestion of ingested food, absorption and transport of nutrients, assimilation, partitioning and utilization of energy, and the processing and elimination of wastes. Fish, which are the most diverse group of vertebrates and occupy a wide range of habitats and display numerous life history patterns, have proven to be important models for the study of the structure, biosynthesis, evolution, and function of gastroenteropancreatic (GEP) hormones. Food intake is promoted by galanin, neuropeptide Y, and pancreatic polypeptide (PP), while cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) inhibit food intake. Digestion of ingested food is facilitated by CCK, PP, and secretin by coordinating gastrointestinal tract motility and regulation of exocrine secretion. Somatostatins (SS), on the other hand, generally inhibit exocrine secretions. Insulin facilitates assimilation by promoting the uptake of nutrient molecules (e.g., glucose, amino acids, and fatty acids) into cells. Insulin also is generally anabolic and stimulates the synthesis and deposition of energy reserves (e.g., glycogen, triacylglycerol) as well as of proteins, thereby facilitating organismal growth. Insulin-like growth factors (e.g., IGF-1) also promote cell proliferation and organismal growth. Breakdown and mobilization of stored energy reserves is stimulated by glucagon, GLP-1, and SS. Somatostatins also affect metabolism and reproduction via their effects on the thyroid axis as well as growth via effects on growth hormone (GH) release and perhaps directly via modulation of GH sensitivity. Studies in fish have revealed that GEP hormones play an important role in coordinating the various aspects of metabolism with each other and with the physiological and developmental status of the animal as well as with the environment.

  10. Gonadotrophin-releasing activity of neurohypophysial hormones: II. The pituitary oxytocin receptor mediating gonadotrophin release differs from that of corticotrophs.

    PubMed

    Evans, J J; Catt, K J

    1989-07-01

    Neurohypophysial hormones stimulate gonadotrophin release from dispersed rat anterior pituitary cells in vitro, acting through receptors distinct from those which mediate the secretory response to gonadotrophin-releasing hormone (GnRH). The LH response to oxytocin was not affected by the presence of the phosphodiesterase inhibitor, methyl isobutylxanthine, but was diminished in the absence of extracellular calcium and was progressively increased as the calcium concentration in the medium was raised to normal. In addition, the calcium channel antagonist, nifedipine, suppressed oxytocin-stimulated secretion of LH. It is likely that the mechanisms of LH release induced by GnRH and neurohypophysial hormones are similar, although stimulation of gonadotrophin secretion is mediated by separate receptor systems. Oxytocin was more active than vasopressin in releasing LH, but less active in releasing ACTH. The highly selective oxytocin agonist, [Thr4,Gly7]oxytocin, elicited concentration-dependent secretion of LH but had little effect on corticotrophin secretion. The neurohypophysial hormone antagonist analogues, [d(CH2)5Tyr(Me)2]vasopressin, [d(CH2)5Tyr(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2Val4,Cit8]vasopressin, inhibited the LH response to both oxytocin and vasopressin. However, [d(CH2)5Tyr(Me)2]vasopressin was much less effective in inhibiting the ACTH response to the neurohypophysial hormones, and [d(CH2)5Tyr-(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2,Val4,Cit8]vasopressin exhibited no inhibitory activity against ACTH release. Thus, agonist and antagonist analogues of neurohypophysial hormones display divergent activities with regard to LH and ACTH responses, and the neuropeptide receptor mediating gonadotroph activation is clearly different from that on the corticotroph. Whereas the corticotroph receptor is a vasopressin-type receptor an oxytocin-type receptor is responsible for gonadotrophin release by neurohypophysial hormones.

  11. Interactions between hormones and epilepsy.

    PubMed

    Taubøll, Erik; Sveberg, Line; Svalheim, Sigrid

    2015-05-01

    There is a complex, bidirectional interdependence between sex steroid hormones and epilepsy; hormones affect seizures, while seizures affect hormones thereby disturbing reproductive endocrine function. Both female and male sex steroid hormones influence brain excitability. For the female sex steroid hormones, progesterone and its metabolites are anticonvulsant, while estrogens are mainly proconvulsant. The monthly fluctuations in hormone levels of estrogen and progesterone are the basis for catamenial epilepsy described elsewhere in this issue. Androgens are mainly anticonvulsant, but the effects are more varied, probably because of its metabolism to, among others, estradiol. The mechanisms for the effects of sex steroid hormones on brain excitability are related to both classical, intracellularly mediated effects, and non-classical membrane effects due to binding to membrane receptors. The latter are considered the most important in relation to epilepsy. The different sex steroids can also be further metabolized within the brain to different neurosteroids, which are even more potent with regard to their effect on excitability. Estrogens potentiate glutamate responses, primarily by potentiating NMDA receptor activity, but also by affecting GABA-ergic mechanisms and altering brain morphology by increasing dendritic spine density. Progesterone and its main metabolite 5α-pregnan-3α-ol-20-one (3α-5α-THP) act mainly to enhance postsynaptic GABA-ergic activity, while androgens enhance GABA-activated currents. Seizures and epileptic discharges also affect sex steroid hormones. There are close anatomical connections between the temporolimbic system and the hypothalamus controlling the endocrine system. Several studies have shown that epileptic activity, especially mediated through the amygdala, alters reproductive function, including reduced ovarian cyclicity in females and altered sex steroid hormone levels in both genders. Furthermore, there is an asymmetric

  12. Water intake and risk of hyponatraemia in Prader-Willi syndrome.

    PubMed

    Akefeldt, A

    2009-06-01

    Unusual water intake and drinking behaviour has occasionally been observed in individuals with Prader-Willi syndrome (PWS). The aim of this study is to explore whether this observation is a part of the PWS phenotype and what the consequences may be. The parents of 51 individuals with PWS (age range 2-40 years) were asked by questionnaire to answer on past and present water intake, drinking behaviour, fluid preferences and medical treatment in their PWS-affected and unaffected children. Questionnaires with information on 47 PWS individuals and 17 without PWS were returned for analysis. The questionnaire information was complemented with information from the individual's medical records. Siblings to PWS individuals made up the control group. The study was approved by the regional medical research ethics committee. During infancy, 36 (76%) individuals with PWS disliked water without any flavouring and had an extremely small daily intake of water. Seven individuals (15%) increased the daily water intake to unusually high amounts. In 45 the clinical PWS diagnosis was confirmed by molecular (genetic) testing: nine of them with a confirmed PWS diagnosis had a deletion of chromosome 15q11-13, in nine individuals no deletion was identified. The majority of individuals who increased their water consumption to extreme values belonged to the non-deletion group. Two in the non-deletion group developed hyponatraemia while receiving psychiatric medication. Infants with PWS seem to be predisposed to unusual drinking behaviour. They dislike and have an unusually small intake of pure water without flavouring, and most of them continue this even after infancy. Some individuals, especially those without deletion, increase their fluid intake and also accept pure water. They have an increased risk of developing water retention and severe hyponatraemia if exposed to medication known to cause side effects like the syndrome of inappropriate antidiuretic hormone secretion. Perhaps this

  13. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    PubMed Central

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.; Großkinsky, Dominik K.; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C.; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  14. Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon

    USGS Publications Warehouse

    Yost, Erin E.; Meyer, Michael T.; Dietze, Julie E.; Meissner, Benjamin M.; Williams, Mike; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W.

    2013-01-01

    In this study, the distribution of steroid hormones, phytoestrogens, and estrogenic activity was thoroughly characterized within the anaerobic waste lagoon of a typical commercial swine sow operation. Three independent rounds of sampling were conducted in June 2009, April 2010, and February 2011. Thirty-seven analytes in lagoon slurry and sludge were assessed using LC/MS-MS, and yeast estrogen screen was used to determine estrogenic activity. Of the hormone analytes, steroidal estrogens were more abundant than androgens or progesterone, with estrone being the predominant estrogen species. Conjugated hormones were detected only at low levels. The isoflavone metabolite equol was by far the predominant phytoestrogen species, with daidzein, genistein, formononetin, and coumestrol present at lower levels. Phytoestrogens were often more abundant than steroidal estrogens, but contributed minimally towards total estrogenic activity. Analytes were significantly elevated in the solid phases of the lagoon; although low observed log KOC values suggest enhanced solubility in the aqueous phase, perhaps due to dissolved or colloidal organic carbon. The association with the solid phase, as well as recalcitrance of analytes to anaerobic degradation, results in a markedly elevated load of analytes and estrogenic activity within lagoon sludge. Overall, findings emphasize the importance of adsorption and transformation processes in governing the fate of these compounds in lagoon waste, which is ultimately used for broadcast application as a fertilizer.

  15. Comprehensive Assessment of Hormones, Phytoestrogens, and Estrogenic Activity in an Anaerobic Swine Waste Lagoon

    PubMed Central

    2013-01-01

    In this study, the distribution of steroid hormones, phytoestrogens, and estrogenic activity was thoroughly characterized within the anaerobic waste lagoon of a typical commercial swine sow operation. Three independent rounds of sampling were conducted in June 2009, April 2010, and February 2011. Thirty-seven analytes in lagoon slurry and sludge were assessed using LC/MS-MS, and yeast estrogen screen was used to determine estrogenic activity. Of the hormone analytes, steroidal estrogens were more abundant than androgens or progesterone, with estrone being the predominant estrogen species. Conjugated hormones were detected only at low levels. The isoflavone metabolite equol was by far the predominant phytoestrogen species, with daidzein, genistein, formononetin, and coumestrol present at lower levels. Phytoestrogens were often more abundant than steroidal estrogens, but contributed minimally toward total estrogenic activity. Analytes were significantly elevated in the solid phases of the lagoon; although low observed log KOC values suggest enhanced solubility in the aqueous phase, perhaps due to dissolved or colloidal organic carbon. The association with the solid phase, as well as recalcitrance of analytes to anaerobic degradation, results in a markedly elevated load of analytes and estrogenic activity within lagoon sludge. Overall, findings emphasize the importance of adsorption and transformation processes in governing the fate of these compounds in lagoon waste, which is ultimately used for broadcast application as a fertilizer. PMID:24144340

  16. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    PubMed

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  17. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity.

    PubMed

    Ismail-Beigi, F; Edelman, I S

    1971-06-01

    In an earlier study, we proposed that thyroid hormone stimulation of energy utilization by the Na(+) pump mediates the calorigenic response. In this study, the effects of triiodothyronine (T(3)) on total oxygen consumption (Q(OO2)), the ouabain-sensitive oxygen consumption [Q(OO2)(t)], and NaK-ATPase in liver, kidney, and cerebrum were measured. In liver, approximately 90% of the increase in Q(OO2) produced by T(3) in either thyroidectomized or euthyroid rats was attributable to the increase in Q(OO2)(t). In kidney, the increase in Q(OO2)(t) accounted for 29% of the increase in Q(OO2) in thyroidectomized and 46% of the increase in Q(OO2) in euthyroid rats. There was no demonstrable effect of T(3) in euthyroid rats on Q(OO2) or Q(OO2)(t) of cerebral slices. The effects of T(3) on NaK-ATPase activity in homogenates were as follows: In liver +81% from euthyroid rats and +54% from hypothyroid rats. In kidney, +21% from euthyroid rats and +69% from hypothyroid rats. T(3) in euthyroid rats produced no significant changes in NaK-ATPase or Mg-ATPase activity of cerebral homogenates. Liver plasma membrane fractions showed a 69% increase in NaK-ATPase and no significant changes in either Mg-ATPase or 5'-nucleotidase activities after T(3) injection. These results indicate that thyroid hormones stimulate NaK-ATPase activity differentially. This effect may account, at least in part, for the calorigenic effects of these hormones.

  18. Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity.

    PubMed

    Varamini, Pegah; Rafiee, Amirreza; Giddam, Ashwini Kumar; Mansfeld, Friederike M; Steyn, Frederik; Toth, Istvan

    2017-10-26

    Gonadotropin-releasing hormone (GnRH) agonists (e.g., triptorelin) are used for androgen suppression therapy. They possess improved stability as compared to the natural GnRH, yet they suffer from a poor pharmacokinetic profile. To address this, we used a GnRH peptide-modified dendrimer platform with and without lipidation strategy. Dendrimers were synthesized on a polylysine core and bore either native GnRH (1, 2, and 5) or lipid-modified GnRH (3 and 4). Compound 3, which bore a lipidic moiety in a branched tetramer structure, showed approximately 10-fold higher permeability and metabolic stability and 39 times higher antitumor activity against hormone-resistant prostate cancer cells (DU145) relative to triptorelin. In gonadotropin-release experiments, dendrimer 3 was shown to be the most potent construct. Dendrimer 3 showed similar luteinizing hormone (LH)-release activity to triptorelin in mice. Our findings indicate that dendrimer 3 is a promising analog with higher potency for the treatment of hormone-resistant prostate cancer than the currently available GnRH agonists.

  19. The effects of stressful stimuli and hypothalamic-pituitary-adrenal axis activation are reversed by the melanin-concentrating hormone 1 receptor antagonist SNAP 94847 in rodents.

    PubMed

    Smith, Daniel G; Hegde, Laxminarayan G; Wolinsky, Toni D; Miller, Silke; Papp, Mariusz; Ping, Xiaoli; Edwards, Tanya; Gerald, Christophe P; Craig, Douglas A

    2009-02-11

    Melanin-concentrating hormone (MCH) is an orexigenic and dipsogenic neuropeptide that has been reported to mediate acute behavioral and neuroendocrine stress-related responses via MCH(1) receptor activation in rodents. The purpose of the present investigation was to use the MCH(1) receptor antagonist SNAP 94847 (N-(3-{1-[4-(3,4-difluoro-phenoxy)-benzyl]-piperidin-4-yl}-4-methyl-phenyl)-isobutyramide) to determine the effects of MCH(1) receptor blockade on MCH-evoked adrenocorticotropic hormone (ACTH) release, chronic mild stress-induced anhedonia, stress-induced hyperthermia and forced swim stress-induced immobility. The appropriate dose range for testing SNAP 94847 was determined by measuring MCH-evoked water drinking. The corresponding occupancy of MCH(1) receptors in rat striatum was also measured across a broad dose range. Orally administered (p.o.) SNAP 94847 (1-10 mg/kg) corresponds to 30-60% occupancy at MCH(1) receptors and significantly blocks water drinking induced by the intracerebroventricular (i.c.v.) injection of MCH. MCH (i.c.v.) significantly elevates plasma levels of ACTH in rats, and SNAP 94847 (2.5 mg/kg, p.o.) blocks MCH-evoked ACTH release. Using the chronic mild stress paradigm, we show that repeated daily exposure to environmental stressors for 5 weeks significantly suppresses sucrose intake in rats, and that SNAP 94847 (1 mg/kg, BID) for 1-5 weeks restores baseline sucrose intake. Moreover, a single administration of SNAP 94847 attenuates stress-induced hyperthermia and the behavioral effects of forced swim stress with minimal effective doses of 2.5 and 30 mg/kg (p.o.), respectively. The regulation of ACTH release and reversal of the effects of chronic and acute stress by SNAP 94847 are suggestive of a role for MCH(1) receptor blockade in the treatment of disorders characterized by high allostatic load.

  20. Molecular characterization of melanin-concentrating hormone (MCH) in Schizothorax prenanti: cloning, tissue distribution and role in food intake regulation.

    PubMed

    Wang, Tao; Yuan, Dengyue; Zhou, Chaowei; Lin, Fangjun; Wei, Rongbin; Chen, Hu; Wu, Hongwei; Xin, Zhiming; Liu, Ju; Gao, Yundi; Chen, Defang; Yang, Shiyong; Wang, Yan; Pu, Yundan; Li, Zhiqiong

    2016-06-01

    Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.

  1. Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones.

    PubMed

    Wang, Lixin; Goebel-Stengel, Miriam; Yuan, Pu-Qing; Stengel, Andreas; Taché, Yvette

    2017-01-01

    Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4-6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting

  2. Hormones and the blood-brain barrier.

    PubMed

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  3. The Effects of Intensive Weight Reduction on Body Composition and Serum Hormones in Female Fitness Competitors.

    PubMed

    Hulmi, Juha J; Isola, Ville; Suonpää, Marianna; Järvinen, Neea J; Kokkonen, Marja; Wennerström, Annika; Nyman, Kai; Perola, Markus; Ahtiainen, Juha P; Häkkinen, Keijo

    2016-01-01

    Worries about the potential negative consequences of popular fat loss regimens for aesthetic purposes in normal weight females have been surfacing in the media. However, longitudinal studies investigating these kinds of diets are lacking. The purpose of the present study was to investigate the effects of a 4-month fat-loss diet in normal weight females competing in fitness-sport. In total 50 participants finished the study with 27 females (27.2 ± 4.1 years) dieting for a competition and 23 (27.7 ± 3.7 years) acting as weight-stable controls. The energy deficit of the diet group was achieved by reducing carbohydrate intake and increasing aerobic exercise while maintaining a high level of protein intake and resistance training in addition to moderate fat intake. The diet led to a ~12% decrease in body weight ( P < 0.001) and a ~35-50% decrease in fat mass (DXA, bioimpedance, skinfolds, P < 0.001) whereas the control group maintained their body and fat mass (diet × group interaction P < 0.001). A small decrease in lean mass (bioimpedance and skinfolds) and in vastus lateralis muscle cross-sectional area (ultrasound) were observed in diet ( P < 0.05), whereas other results were unaltered (DXA: lean mass, ultrasound: triceps brachii thickness). The hormonal system was altered during the diet with decreased serum concentrations of leptin, triiodothyronine (T3), testosterone ( P < 0.001), and estradiol ( P < 0.01) coinciding with an increased incidence of menstrual irregularities ( P < 0.05). Body weight and all hormones except T3 and testosterone returned to baseline during a 3-4 month recovery period including increased energy intake and decreased levels aerobic exercise. This study shows for the first time that most of the hormonal changes after a 35-50% decrease in body fat in previously normal-weight females can recover within 3-4 months of increased energy intake.

  4. Evaluation of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal axis.

    PubMed

    Ding, Yu; Li, Juan; Yu, Yongguo; Yang, Peirong; Li, Huaiyuan; Shen, Yongnian; Huang, Xiaodong; Liu, Shijian

    2018-03-28

    This study aimed to identify the predictive value of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal (HPG) axis in girls. Gonadotropin-releasing hormone (GnRH) stimulation tests were performed and evaluated in a total of 1750 girls with development of secondary sex characteristics. Correlation analyses were conducted between basal sex hormones and peak luteinizing hormone (LH) levels ≥5 IU/L during the GnRH stimulation test. Receiver operating characteristic (ROC) curves for basal levels of LH, follicle-stimulating hormone (FSH), LH/FSH, and estradiol (E2) before the GnRH stimulation test were plotted. The area under the curve (AUC) and 95% confidence intervals (CIs) were measured for each curve. The maximum AUC value was observed for basal LH levels (0.77, 95% CI: 0.74-0.79), followed by basal FSH levels (0.73, 95% CI: 0.70-0.75), the basal LH/FSH ratio (0.68, 95% CI: 0.65-0.71), and basal E2 levels (0.61, 95% CI: 0.59-0.64). The appropriate cutoff value of basal LH levels associated with a positive response of the GnRH stimulation test was 0.35 IU/L, with a sensitivity of 63.96% and specificity of 76.3% from the ROC curves when Youden's index showed the maximum value. When 100% of patients had peak LH levels ≥5 IU/L, basal LH values were >2.72 IU/L, but the specificity was only 5.45%. Increased basal LH levels are a significant predictor of a positive response during the GnRH stimulation test for assessing activation of the HPG axis in most girls with early pubertal signs.

  5. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays.

    PubMed

    Real, Macarena; Molina-Molina, José-Manuel; Jiménez-Díaz, Inmaculada; Arrebola, Juan Pedro; Sáenz, José-María; Fernández, Mariana F; Olea, Nicolás

    2015-01-01

    Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Physical activity, energy requirements, and adequacy of dietary intakes of older persons in a rural Filipino community.

    PubMed

    Risonar, Maria Grace D; Rayco-Solon, Pura; Ribaya-Mercado, Judy D; Solon, Juan Antonio A; Cabalda, Aegina B; Tengco, Lorena W; Solon, Florentino S

    2009-05-04

    Aging is a process associated with physiological changes such as in body composition, energy expenditure and physical activity. Data on energy and nutrient intake adequacy among elderly is important for disease prevention, health maintenance and program development. This descriptive cross-sectional study was designed to determine the energy requirements and adequacy of energy and nutrient intakes of older persons living in private households in a rural Filipino community. Study participants were generally-healthy, ambulatory, and community living elderly aged 60-100 y (n = 98), 88 of whom provided dietary information in three nonconsecutive 24-hour food-recall interviews. There was a decrease in both physical activity and food intake with increasing years. Based on total energy expenditure and controlling for age, gender and socio-economic status, the average energy requirement for near-old (>or= 60 to < 65 y) males was 2074 kcal/d, with lower requirements, 1919 and 1699 kcal/d for the young-old (>or= 65 to < 75 y) and the old-old (>or= 75 y), respectively. Among females, the average energy requirements for the 3 age categories were 1712, 1662, and 1398 kcal/d, respectively. Actual energy intakes, however, were only approximately 65% adequate for all subjects as compared to energy expenditure. Protein, fat, and micronutrients (vitamins A and C, thiamin, riboflavin, iron and calcium) intakes were only approximately 24-51% of the recommended daily intake. Among this population, there was a weight decrease of 100 g (p = 0.012) and a BMI decrease of 0.04 kg/m2 (p = 0.003) for every 1% decrease in total caloric intake as percentage of the total energy expenditure requirements. These community living elderly suffer from lack of both macronutrient intake as compared with energy requirements, and micronutrient intake as compared with the standard dietary recommendations. Their energy intakes are ~65% of the amounts required based on their total energy expenditure. Though

  7. Physical activity, energy requirements, and adequacy of dietary intakes of older persons in a rural Filipino community

    PubMed Central

    Risonar, Maria Grace D; Rayco-Solon, Pura; Ribaya-Mercado, Judy D; Solon, Juan Antonio A; Cabalda, Aegina B; Tengco, Lorena W; Solon, Florentino S

    2009-01-01

    Background Aging is a process associated with physiological changes such as in body composition, energy expenditure and physical activity. Data on energy and nutrient intake adequacy among elderly is important for disease prevention, health maintenance and program development. Methods This descriptive cross-sectional study was designed to determine the energy requirements and adequacy of energy and nutrient intakes of older persons living in private households in a rural Filipino community. Study participants were generally-healthy, ambulatory, and community living elderly aged 60–100 y (n = 98), 88 of whom provided dietary information in three nonconsecutive 24-hour food-recall interviews. Results There was a decrease in both physical activity and food intake with increasing years. Based on total energy expenditure and controlling for age, gender and socio-economic status, the average energy requirement for near-old (≥ 60 to < 65 y) males was 2074 kcal/d, with lower requirements, 1919 and 1699 kcal/d for the young-old (≥ 65 to < 75 y) and the old-old (≥ 75 y), respectively. Among females, the average energy requirements for the 3 age categories were 1712, 1662, and 1398 kcal/d, respectively. Actual energy intakes, however, were only ~65% adequate for all subjects as compared to energy expenditure. Protein, fat, and micronutrients (vitamins A and C, thiamin, riboflavin, iron and calcium) intakes were only ~24–51% of the recommended daily intake. Among this population, there was a weight decrease of 100 g (p = 0.012) and a BMI decrease of 0.04 kg/m2 (p = 0.003) for every 1% decrease in total caloric intake as percentage of the total energy expenditure requirements. Conclusion These community living elderly suffer from lack of both macronutrient intake as compared with energy requirements, and micronutrient intake as compared with the standard dietary recommendations. Their energy intakes are ~65% of the amounts required based on their total energy

  8. Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in diet-induced obese rats.

    PubMed

    Cluny, Nina L; Eller, Lindsay K; Keenan, Catherine M; Reimer, Raylene A; Sharkey, Keith A

    2015-04-01

    Oligofructose (OFS) is a prebiotic that reduces energy intake and fat mass via changes in gut satiety hormones and microbiota. The effects of OFS may vary depending on predisposition to obesity. The aim of this study was to examine the effect of OFS in diet-induced obese (DIO) and diet-resistant (DR) rats. Adult, male DIO, and DR rats were randomized to: high-fat/high-sucrose (HFS) diet or HFS diet + 10% OFS for 6 weeks. Body composition, food intake, gut microbiota, plasma gut hormones, and cannabinoid CB(1) receptor expression in the nodose ganglia were measured. OFS reduced body weight, energy intake, and fat mass in both phenotypes (P < 0.05). Select gut microbiota differed in DIO versus DR rats (P < 0.05), the differences being eliminated by OFS. OFS did not modify plasma ghrelin or CB(1) expression in nodose ganglia, but plasma levels of GIP were reduced and PYY were elevated (P < 0.05) by OFS. OFS was able to reduce body weight and adiposity in both prone and resistant obese phenotypes. OFS-induced changes in gut microbiota profiles in DIO and DR rats, along with changes in gut hormone levels, likely contribute to the sustained lower body weights. © 2015 The Obesity Society.

  9. Association of Proton Pump Inhibitor (PPI) Use with Energy Intake, Physical Activity, and Weight Gain

    PubMed Central

    Czwornog, Jennifer L.; Austin, Gregory L.

    2015-01-01

    Studies suggest proton pump inhibitor (PPI) use impacts body weight regulation, though the effect of PPIs on energy intake, energy extraction, and energy expenditure is unknown. We used data on 3073 eligible adults from the National Health and Nutrition Examination Survey (NHANES). Medication use, energy intake, diet composition, and physical activity were extracted from NHANES. Multivariate regression models included confounding variables. Daily energy intake was similar between PPI users and non-users (p = 0.41). Diet composition was similar between the two groups, except that PPI users consumed a slightly greater proportion of calories from fat (34.5% vs. 33.2%; p = 0.02). PPI users rated themselves as being as physically active as their age/gender-matched peers and reported similar frequencies of walking or biking. However, PPI users were less likely to have participated in muscle-strengthening activities (OR: 0.53; 95% CI: 0.30–0.95). PPI users reported similar sedentary behaviors to non-users. Male PPI users had an increase in weight (of 1.52 ± 0.59 kg; p = 0.021) over the previous year compared to non-users, while female PPI users had a non-significant increase in weight. The potential mechanisms for PPI-associated weight gain are unclear as we did not find evidence for significant differences in energy intake or markers of energy expenditure. PMID:26492268

  10. Dietary and hormonal interrelationships among vegetarian Seventh-Day Adventists and nonvegetarian men.

    PubMed

    Howie, B J; Shultz, T D

    1985-07-01

    The relationship between dietary nutrients and plasma testosterone, 5 alpha-dihydrotestosterone, estradiol-17 beta, luteinizing hormone, and prolactin levels was investigated in 12 Seventh-Day Adventist (SDA) vegetarian (SV), 10 SDA nonvegetarian (SNV), and 8 non-SDA nonvegetarian (NV) men. Fasting blood samples and 3-day dietary intake information were obtained from each subject. The SV subjects consumed significantly more crude and dietary fiber than the SNV and NV subjects, respectively. Plasma levels of testosterone and estradiol-17 beta were significantly lower in the SV than in the omnivores. Additionally, the plasma levels of testosterone and estradiol-17 beta of the combined groups (SV, SNV, and NV) revealed a significant negative relationship with their crude and dietary fiber intakes. These subjects hormonal milieu was related to specific dietary constituents, possibly leading to a decreased plasma concentration of androgen and estrogen in vegetarians. Implications include the possible modification of prostate cancer risk through dietary intervention.

  11. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake.

    PubMed

    Drougard, Anne; Fournel, Audren; Valet, Philippe; Knauf, Claude

    2015-01-01

    Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  12. Does Increased Exercise or Physical Activity Alter Ad-Libitum Daily Energy Intake or Macronutrient Composition in Healthy Adults? A Systematic Review

    PubMed Central

    Donnelly, Joseph E.; Herrmann, Stephen D.; Lambourne, Kate; Szabo, Amanda N.; Honas, Jeffery J.; Washburn, Richard A.

    2014-01-01

    Background The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. Objective To address the question: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? Data Sources PubMed and Embase were searched (January 1990–January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Study Eligibility Criteria Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18–64 years). Study Appraisal and Synthesis Methods Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. Results No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. Limitations The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure

  13. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia.

    PubMed

    Nagaya, Noritoshi; Kojima, Masakazu; Kangawa, Kenji

    2006-01-01

    Ghrelin is a novel growth hormone (GH)-releasing peptide, isolated from the stomach, which has been identified as an endogenous ligand for GH secretagogue receptor. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. This peptide also stimulates food intake and induces adiposity through GH-independent mechanisms. In addition, ghrelin acts directly on the central nervous system to decrease sympathetic nerve activity. Thus, ghrelin plays important roles for maintaining GH release and energy homeostasis. Repeated administration of ghrelin improves body composition, muscle wasting, functional capacity, and sympathetic augmentation in cachectic patients with heart failure or chronic obstructive pulmonary disease. These results suggest that ghrelin has anti-cachectic effects through GH-dependent and independent mechanisms. Thus, administration of ghrelin may be a new therapeutic strategy for the treatment of cardiopulmonary-associated cachexia.

  14. The role of hormones, cytokines and heat shock proteins during age-related muscle loss.

    PubMed

    Lee, Claire E; McArdle, Anne; Griffiths, Richard D

    2007-10-01

    Ageing is associated with a progressive decline of muscle mass, strength, and quality, a condition known as sarcopenia. Due to the progressive ageing of western populations, age-related sarcopenia is a major public health problem. Several possible mechanisms for age-related muscle atrophy have been described; however the precise contribution of each is unknown. Age-related muscle loss is thought to be a multi-factoral process composed of events such as physical activity, nutritional intake, oxidative stress, inflammatory insults and hormonal changes. There is a need for a greater understanding of the loss of muscle mass with age as this could have a dramatic impact on the elderly and critically ill if this research leads to maintenance or improvement in functional ability. This review aims to outline the process of skeletal muscle degeneration with ageing, normal and aberrant skeletal muscle regeneration, and to address recent research on the effects of gender and sex steroid hormones during the process of age-related muscle loss.

  15. Effects of electromagnetic radiation exposure on stress-related behaviors and stress hormones in male wistar rats.

    PubMed

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Yaghmaei, Parichehreh; Tavakoli, Hassan

    2014-11-01

    Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas nor-adrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.

  16. Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats

    PubMed Central

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Yaghmaei, Parichehreh; Tavakoli, Hassan

    2014-01-01

    Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas nor-adrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure. PMID:25489427

  17. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    PubMed Central

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX. PMID:21845098

  18. Enhanced anti-tumoral activity of methotrexate-human serum albumin conjugated nanoparticles by targeting with Luteinizing Hormone-Releasing Hormone (LHRH) peptide.

    PubMed

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120-138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX.

  19. Malignant mixed Mullerian tumour of uterus secondary to tamoxifen therapy for hormone responsive breast cancer.

    PubMed

    Gupta, Mayank; Kiruthiga, Kala Gnanasekaran

    2015-06-29

    Tamoxifen is used in the treatment of hormone responsive breast cancer because of its antiestrogenic effect. However, it also has an estrogenic effect on the uterus, thereby increasing the risk of endometrial hyperplasia, endometrial polyp and endometrial neoplasms such as endometrial adenocarcinoma and malignant mixed Mullerian tumour (MMMT). This case describes the possible pathogenesis and risk of developing MMMT due to long-term tamoxifen intake in hormone responsive breast cancer. 2015 BMJ Publishing Group Ltd.

  20. The effect of moderate versus severe simulated altitude on appetite, gut hormones, energy intake and substrate oxidation in men.

    PubMed

    Matu, Jamie; Deighton, Kevin; Ispoglou, Theocharis; Duckworth, Lauren

    2017-06-01

    Acute exposure to high altitude (>3500 m) is associated with marked changes in appetite regulation and substrate oxidation but the effects of lower altitudes are unclear. This study examined appetite, gut hormone, energy intake and substrate oxidation responses to breakfast ingestion and exercise at simulated moderate and severe altitudes compared with sea-level. Twelve healthy males (mean ± SD; age 30 ± 9years, body mass index 24.4 ± 2.7 kg·m -2 ) completed in a randomised crossover order three, 305 min experimental trials at a simulated altitude of 0 m, 2150 m (∼15.8% O 2 ) and 4300 m (∼11.7% O 2 ) in a normobaric chamber. Participants entered the chamber at 8am following a 12 h fast. A standardised breakfast was consumed inside the chamber at 1 h. One hour after breakfast, participants performed a 60 min treadmill walk at 50% of relative V˙O 2max . An ad-libitum buffet meal was consumed 1.5 h after exercise. Blood samples were collected prior to altitude exposure and at 60, 135, 195, 240 and 285 min. No trial based differences were observed in any appetite related measure before exercise. Post-exercise area under the curve values for acylated ghrelin, pancreatic polypeptide and composite appetite score were lower (all P < 0.05) at 4300 m compared with sea-level and 2150 m. There were no differences in glucagon-like peptide-1 between conditions (P = 0.895). Mean energy intake was lower at 4300 m (3728 ± 3179 kJ) compared with sea-level (7358 ± 1789 kJ; P = 0.007) and 2150 m (7390 ± 1226 kJ; P = 0.004). Proportional reliance on carbohydrate as a fuel was higher (P = 0.01) before breakfast but lower during (P = 0.02) and after exercise (P = 0.01) at 4300 m compared with sea-level. This study suggests that altitude-induced anorexia and a subsequent reduction in energy intake occurs after exercise during exposure to severe but not moderate simulated altitude. Acylated ghrelin concentrations may contribute to

  1. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress.

    PubMed

    López, E; Mellado, M; Martínez, A M; Véliz, F G; García, J E; de Santiago, A; Carrillo, E

    2018-04-01

    This study aimed to investigate the effect of heat stress and month of birth on growth performance, pelleted starter intake, and stress-related hormones in Holstein calves. Birth weight and growth records, representing 4735 Holstein calves from a large commercial dairy herd in northern Mexico (25° N; 22.3 °C mean annual temperature) from 2013 to 2015, were analyzed. Temperature-humidity index (THI) at calving, season of birth, and month of birth were the independent variables, whereas growth traits were the dependent variables. Increased THI at birth from < 65 to > 85 units was associated with a decrease in birth weight from 39.3 to 38.7 kg. Calves subjected to high THI (> 75 units) at calving showed lesser (P < 0.01) pre-weaning gains (405 ± 97 g/calf/day), whereas those calves born with THI < 70 units presented the highest gains (466 ± 112 g/calf/day). Birth during the fall months reduced (P < 0.01) weaning weight by about 5 kg compared with winter months. Also, the pre-weaning average daily gain for calves born in the fall was about 70 g less (P < 0.01) than calves delivered in winter months. Plasma triiodothyronine and tetraiodothyronine levels were lower (1.02 ± 0.21 and 48 ± 7.9 ng/mL, respectively; P < 0.01) in summer and highest in winter (1.64 ± 0.48 and 66 ± 11 ng/mL, respectively). Mean plasma cortisol concentration was higher in heat-stressed calves born in summer (59 ± 40 ng/mL) than calves born in winter (20 ± 28 ng/mL). Pelleted starter intake 1 week before weaning was lowest (P < 0.01) in the fall (0.82 ± 0.26 kg/calf/day; mean ± SD) and highest in spring (1.26 ± 0.43 kg/calf/day). It was concluded that in this particular environment, heat stress affects birth weight and growth rate of Holstein calves. Thus, environmental management of the newborn calf during hot spring and summer months is warranted to optimize pelleted starter intake and calf growth rates.

  2. Steroid hormones as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    PubMed

    Tutton, P J; Barkla, D H

    1988-01-01

    Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.

  3. A HLA class I cis-regulatory element whose activity can be modulated by hormones.

    PubMed

    Sim, B C; Hui, K M

    1994-12-01

    To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.

  4. Sex Differences in Stress Response Circuitry Activation Dependent on Female Hormonal Cycle

    PubMed Central

    Goldstein, Jill M.; Jerram, Matthew; Abbs, Brandon; Whitfield-Gabrieli, Susan; Makris, Nikos

    2010-01-01

    Understanding sex differences in stress regulation has important implications for understanding basic physiological differences in the male and female brain and their impact on vulnerability to sex differences in chronic medical disorders associated with stress response circuitry. In this fMRI study, we demonstrated that significant sex differences in brain activity in stress response circuitry were dependent on women's menstrual cycle phase. Twelve healthy Caucasian premenopausal women were compared to a group of healthy men from the same population, based on age, ethnicity, education, and right-handedness. Subjects were scanned using negative valence/high arousal versus neutral visual stimuli that we demonstrated activated stress response circuitry (amygdala, hypothalamus, hippocampus, brainstem, orbitofrontal and medial prefrontal cortices (OFC and mPFC), and anterior cingulate gyrus (ACG). Women were scanned twice based on normal variation in menstrual cycle hormones (i.e., early follicular (EF) compared with late follicular-midcycle menstrual phases (LF/MC)). Using SPM8b, there were few significant differences in BOLD signal changes in men compared to EF women, except ventromedial (VMN) and lateral (LHA) hypothalamus, left amygdala, and ACG. In contrast, men exhibited significantly greater BOLD signal changes compared to LF/MC women on bilateral ACG and OFC, mPFC, LHA, VMN, hippocampus, and periaqueductal gray, with largest effect sizes in mPFC and OFC. Findings suggest that sex differences in stress response circuitry are hormonally regulated via the impact of subcortical brain activity on the cortical control of arousal, and demonstrate that females have been endowed with a natural hormonal capacity to regulate the stress response that differs from males. PMID:20071507

  5. Sex differences in stress response circuitry activation dependent on female hormonal cycle.

    PubMed

    Goldstein, Jill M; Jerram, Matthew; Abbs, Brandon; Whitfield-Gabrieli, Susan; Makris, Nikos

    2010-01-13

    Understanding sex differences in stress regulation has important implications for understanding basic physiological differences in the male and female brain and their impact on vulnerability to sex differences in chronic medical disorders associated with stress response circuitry. In this functional magnetic resonance imaging study, we demonstrated that significant sex differences in brain activity in stress response circuitry were dependent on women's menstrual cycle phase. Twelve healthy Caucasian premenopausal women were compared to a group of healthy men from the same population, based on age, ethnicity, education, and right handedness. Subjects were scanned using negative valence/high arousal versus neutral visual stimuli that we demonstrated activated stress response circuitry [amygdala, hypothalamus, hippocampus, brainstem, orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), and anterior cingulate gyrus (ACG)]. Women were scanned twice based on normal variation in menstrual cycle hormones [i.e., early follicular (EF) compared with late follicular-midcycle (LF/MC) menstrual phases]. Using SPM8b, there were few significant differences in blood oxygenation level-dependent (BOLD) signal changes in men compared to EF women, except ventromedial nucleus (VMN), lateral hypothalamic area (LHA), left amygdala, and ACG. In contrast, men exhibited significantly greater BOLD signal changes compared to LF/MC women on bilateral ACG and OFC, mPFC, LHA, VMN, hippocampus, and periaqueductal gray, with largest effect sizes in mPFC and OFC. Findings suggest that sex differences in stress response circuitry are hormonally regulated via the impact of subcortical brain activity on the cortical control of arousal, and demonstrate that females have been endowed with a natural hormonal capacity to regulate the stress response that differs from males.

  6. The receptive function of hypothalamic and brainstem centres to hormonal and nutrient signals affecting energy balance.

    PubMed

    Riediger, Thomas

    2012-11-01

    The hypothalamic arcuate nucleus (ARC) and the area postrema (AP) represent targets for hormonal and metabolic signals involved in energy homoeostasis, e.g. glucose, amylin, insulin, leptin, peptide YY (PYY), glucagon-like peptide 1 (GLP-1) and ghrelin. Orexigenic neuropeptide Y expressing ARC neurons are activated by food deprivation and inhibited by feeding in a nutrient-dependent manner. PYY and leptin also reverse or prevent fasting-induced activation of the ARC. Interestingly, hypothalamic responses to fasting are blunted in different models of obesity (e.g. diet-induced obesity (DIO) or late-onset obesity). The AP also responds to feeding-related signals. The pancreatic hormone amylin acts via the AP to control energy intake. Amylin-sensitive AP neurons are also glucose-responsive. Furthermore, diet-derived protein attenuates amylin responsiveness suggesting a modulation of AP sensitivity by macronutrient supply. This review gives an overview of the receptive function of the ARC and the AP to hormonal and nutritional stimuli involved in the control of energy balance and the possible implications in the context of obesity. Collectively, there is consistency between the neurophysiological actions of these stimuli and their effects on energy homoeostasis under experimental conditions. However, surprisingly little progress has been made in the development of effective pharmacological approaches against obesity. A promising way to improve effectiveness involves combination treatments (e.g. amylin/leptin agonists). Hormonal alterations (e.g. GLP-1 and PYY) are also considered to mediate body weight loss observed in obese patients receiving bariatric surgery. The effects of hormonal and nutritional signals and their interactions might hold the potential to develop poly-mechanistic therapeutic strategies against obesity.

  7. Effect of physical exercise on spontaneous physical activity energy expenditure and energy intake in overweight adults (the EFECT study): a study protocol for a randomized controlled trial.

    PubMed

    Paravidino, Vitor Barreto; Mediano, Mauro Felippe Felix; Silva, Inácio Crochemore M; Wendt, Andrea; Del Vecchio, Fabrício Boscolo; Neves, Fabiana Alves; Terra, Bruno de Souza; Gomes, Erika Alvarenga Corrêa; Moura, Anibal Sanchez; Sichieri, Rosely

    2018-03-07

    Physical exercise interventions have been extensively advocated for the treatment of obesity; however, clinical trials evaluating the effectiveness of exercise interventions on weight control show controversial results. Compensatory mechanisms through a decrease in energy expenditure and/or an increase in caloric consumption is a possible explanation. Several physiological mechanisms involved in the energy balance could explain compensatory mechanisms, but the influences of physical exercise on these adjustments are still unclear. Therefore, the present trial aims to evaluate the effects of exercise on non-exercise physical activity energy expenditure, energy intake and appetite sensations among active overweight/obese adults, as well as, to investigate hormonal changes associated with physical exercise. This study is a randomized controlled trial with parallel, three-group experimental arms. Eighty-one overweight/obese adults will be randomly allocated (1:1:1 ratio) to a vigorous exercise group, moderate exercise group or control group. The trial will be conducted at a military institution and the intervention groups will be submitted to exercise sessions in the evening, three times a week for 65 min, during a 2-week period. The primary outcome will be total spontaneous physical activity energy expenditure during a 2-week period. Secondary outcomes will be caloric intake, appetite sensations and laboratorial biomarkers. Intention-to-treat analysis will be performed using linear mixed-effects models to evaluate the effect of treatment-by-time interaction on primary and secondary outcomes. Data analysis will be performed using SAS 9.3 and statistical significance will be set at p < 0.05. The results of the present study will help to understand the effect of physical exercise training on subsequent non-exercise physical activity, appetite and energy intake as well as understand the physiological mechanisms underlying a possible compensatory phenomenon

  8. Stress hormone levels in a freshwater turtle from sites differing in human activity.

    PubMed

    Polich, Rebecca L

    2016-01-01

    Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle.

  9. Contribution of stress and sex hormones to memory encoding.

    PubMed

    Merz, Christian J

    2017-08-01

    Distinct stages of the menstrual cycle and the intake of oral contraceptives (OC) affect sex hormone levels, stress responses, and memory processes critically involved in the pathogenesis of mental disorders. To characterize the interaction of sex and stress hormones on memory encoding, 30 men, 30 women in the early follicular phase of the menstrual cycle (FO), 30 women in the luteal phase (LU), and 30 OC women were exposed to either a stress (socially evaluated cold-pressor test) or a control condition prior to memory encoding and immediate recall of neutral, positive, and negative words. On the next day, delayed free and cued recall was tested. Sex hormone levels verified distinct estradiol, progesterone, and testosterone levels between groups. Stress increased blood pressure, cortisol concentrations, and ratings of stress appraisal in all four groups as well as cued recall performance of negative words in men. Stress exposure in OC women led to a blunted cortisol response and rather enhanced cued recall of neutral words. Thus, pre-encoding stress facilitated emotional cued recall performance in men only, but not women with different sex hormone statuses pointing to the pivotal role of circulating sex hormones in modulation of learning and memory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Apolipoprotein A-II polymorphism: relationships to behavioural and hormonal mediators of obesity

    PubMed Central

    Smith, CE; Ordovás, JM; Sánchez-Moreno, C; Lee, Y-C; Garaulet, M

    2011-01-01

    Background The interaction between apolipoprotein A-II (APOA2) m265 genotype and saturated fat for obesity traits has been more extensively demonstrated than for any other locus, but behavioural and hormonal mechanisms underlying this relationship are unexplored. In this study, we evaluated relationships between APOA2 and obesity risk with particular focus on patterns of eating and ghrelin, a hormonal regulator of food intake. Design Cross-sectional study. Subjects Overweight and obese subjects (n = 1225) were evaluated at baseline in five weight loss clinics in southeastern Spain. Methods Behavioural data were assessed using a checklist of weight loss obstacles. Logistic regression models were fitted to estimate the risk of a specific behaviour associated with APOA2 genotype. Relationships between APOA2 genotype and saturated fat intakes for anthropometric traits and plasma ghrelin were evaluated by analysis of variance. To construct categorical variables to evaluate interactions, saturated fat intake was dichotomized into high and low according to the population median intake or as tertiles. Results Homozygous minor (CC) subjects were more likely to exhibit behaviours that impede weight loss (‘Do you skip meals’, odds ratio (OR) = 2.09, P=0.008) and less likely to exhibit the protective behaviour of ‘Do you plan meals in advance’ (OR = 0.64, P=0.034). Plasma ghrelin for CC subjects consuming low saturated fat was lower compared with (1) CC subjects consuming high saturated fat, (2) TT + TC carriers consuming low saturated fat and (3) TT+TC carriers consuming high saturated fat (all P<0.05). Conclusions APOA2 m265 genotype may be associated with eating behaviours and dietary modulation of plasma ghrelin. Expansion of knowledge of APOA2 and obesity to include modulation of specific behaviours and hormonal mediators not only broadens understanding of gene–diet interactions, but also facilitates the pragmatic, future goal of developing dietary guidelines

  11. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry.

    PubMed

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2013-11-01

    Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.

  12. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake

    PubMed Central

    Gao, Su; Kinzig, Kimberly P.; Aja, Susan; Scott, Karen A.; Keung, Wendy; Kelly, Sandra; Strynadka, Ken; Chohnan, Shigeru; Smith, Wanli W.; Tamashiro, Kellie L. K.; Ladenheim, Ellen E.; Ronnett, Gabriele V.; Tu, Yajun; Birnbaum, Morris J.; Lopaschuk, Gary D.; Moran, Timothy H.

    2007-01-01

    Hypothalamic fatty acid metabolism has recently been implicated in the controls of food intake and energy homeostasis. We report that intracerebroventricular (ICV) injection of leptin, concomitant with inhibiting AMP-activated kinase (AMPK), activates acetyl-CoA carboxylase (ACC), the key regulatory enzyme in fatty acid biosynthesis, in the arcuate nucleus (Arc) and paraventricular nucleus (PVN) in the hypothalamus. Arc overexpression of constitutively active AMPK prevents the Arc ACC activation in response to ICV leptin, supporting the hypothesis that AMPK lies upstream of ACC in leptin's Arc intracellular signaling pathway. Inhibiting hypothalamic ACC with 5-tetradecyloxy-2-furoic acid, a specific ACC inhibitor, blocks leptin-mediated decreases in food intake, body weight, and mRNA level of the orexigenic neuropeptide NPY. These results show that hypothalamic ACC activation makes an important contribution to leptin's anorectic effects. Furthermore, we find that ICV leptin up-regulates the level of malonyl-CoA (the intermediate of fatty acid biosynthesis) specifically in the Arc and increases the level of palmitoyl-CoA (a major product of fatty acid biosynthesis) specifically in the PVN. The rises of both levels are blocked by 5-tetradecyloxy-2-furoic acid along with the blockade of leptin-mediated hypophagia. These data suggest malonyl-CoA as a downstream mediator of ACC in leptin's signaling pathway in the Arc and imply that palmitoyl-CoA, instead of malonyl-CoA, could be an effector in relaying ACC signaling in the PVN. Together, these findings highlight site-specific impacts of hypothalamic ACC activation in leptin's anorectic signaling cascade. PMID:17956983

  13. Regulation of ODC activity in the thymus and liver of rats by adrenal hormones.

    PubMed

    Zahner, S L; Prahlad, K V; Mitchell, J L

    1986-01-01

    The activity of L-ornithine decarboxylase (EC 4.1.1.17, ODC) has become a useful indicator of hormone responsiveness. Various regimens of dexamethasone, aldosterone and epinephrine, alone or in combination, were administered to adrenalectomized rats either in acute or chronic doses. In addition, adrenalectomized rats, which were chronically treated with aldosterone and epinephrine, were given a single injection of 50 micrograms dexamethasone and sacrificed at various time intervals after hormone treatment. Hepatic and thymic ODC activity was measured. The expected dexamethasone effect, an increase in hepatic and a decrease in thymic ODC, was observed. This study also revealed that aldosterone induced similar responses in these tissues. Epinephrine had the opposite effect since chronic administration of dexamethasone or aldosterone with epinephrine resulted in control levels of ODC. Furthermore, when aldosterone and epinephrine were chronically administered to adrenalectomized rats, to study the acute effects of dexamethasone on rat thymus and liver, the time course of the response in each tissue was found to be distinct. The influence of the adrenal gland on rat thymus and liver is not restricted only to glucocorticoids, but may also involve other hormones which it secretes.

  14. Surviving starvation: essential role of the ghrelin-growth hormone axis.

    PubMed

    Goldstein, J L; Zhao, T-j; Li, R L; Sherbet, D P; Liang, G; Brown, M S

    2011-01-01

    After brief starvation, vertebrates maintain blood glucose by releasing fatty acids from adipose tissue. The fatty acids provide energy for gluconeogenesis in liver and are taken up by muscle, sparing glucose. After prolonged starvation, fat stores are depleted, yet blood glucose can be maintained at levels sufficient to preserve life. Using a new mouse model, we demonstrate that survival after prolonged starvation requires ghrelin, an octanoylated peptide hormone that stimulates growth hormone (GH) secretion. We studied wild-type mice and mice lacking ghrelin as a result of knockout of GOAT, the enzyme that attaches octanoate to ghrelin. Mice were fed 40% of their normal intake for 7 d. Fat stores in both lines of mice became depleted after 4 d. On day 7, mice were fasted for 23 h. In wild-type mice, ghrelin and GH rose massively, and blood sugar was maintained at ~60 mg/dL. In Goat(-/-) mice, ghrelin was undetectable and GH failed to rise appropriately. Blood sugar declined to ~20 mg/dL, and the animals were moribund. Infusion of ghrelin or GH prevented hypoglycemia. Our results support the following sequence: (1) Starvation lowers blood glucose; (2) glucose-sensing neurons respond by activating sympathetic neurons; (3) norepinephrine, released in the stomach, stimulates ghrelin secretion; (4) ghrelin releases GH, which maintains blood glucose. Thus, ghrelin lies at the center of a hormonal response that permits mice to survive an acute fast superimposed on chronic starvation.

  15. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior.

    PubMed

    Burger, Kyle S; Berner, Laura A

    2014-09-01

    Adequate energy intake is vital for the survival of humans and is regulated by complex homeostatic and hedonic mechanisms. Supported by functional MRI (fMRI) studies that consistently demonstrate differences in brain response as a function of weight status during exposure to appetizing food stimuli, it has been posited that hedonically driven food intake contributes to weight gain and obesity maintenance. These food reward theories of obesity are reliant on the notion that the aberrant brain response to food stimuli relates directly to ingestive behavior, specifically, excess food intake. Importantly, functioning of homeostatic neuroendocrine regulators of food intake, such as leptin and ghrelin, are impacted by weight status. Thus, data from studies that evaluate the effect on weight status on brain response to food may be a result of differences in neuroendocrine functioning and/or behavior. In the present review, we examine the influence of weight and weight change, exogenous administration of appetitive hormones, and ingestive behavior on BOLD response to food stimuli. Published by Elsevier Inc.

  16. Association of cigarette smoking, alcohol consumption, and physical activity with sex steroid hormone levels in US men.

    PubMed

    Shiels, Meredith S; Rohrmann, Sabine; Menke, Andy; Selvin, Elizabeth; Crespo, Carlos J; Rifai, Nader; Dobs, Adrian; Feinleib, Manning; Guallar, Eliseo; Platz, Elizabeth A

    2009-08-01

    We evaluated the associations of smoking, alcohol consumption, and physical activity with sex steroid hormone concentrations among 1,275 men > or =20 years old who participated in the Third National Health and Nutrition Examination Survey (NHANES III). Serum concentrations of testosterone, estradiol, and sex hormone-binding globulin (SHBG) were measured. We compared geometric mean concentrations across levels of smoking, alcohol, and physical activity using multiple linear regression. Current smokers had higher total testosterone (5.42, 5.10, and 5.26 ng/ml in current, former, and never smokers), free testosterone (0.110, 0.102, and 0.104 ng/ml), total estradiol (40.0, 34.5, and 33.5 pg/ml), and free estradiol (1.05, 0.88, and 0.84 pg/ml) compared with former and never smokers (all p < or = 0.05). Men who consumed > or =1 drink/day had lower SHBG than men who drank less frequently (31.5 vs. 34.8 nmol/l, p = 0.01); total (p-trend = 0.08) and free testosterone (p-trend = 0.06) increased with number of drinks per day. Physical activity was positively associated with total (p-trend = 0.01) and free testosterone (p-trend = 0.05). In this nationally representative sample of men, smoking, alcohol, and physical activity were associated with hormones and SHBG, thus these factors should be considered as possible confounders or upstream variables in studies of hormones and men's health, including prostate cancer.

  17. Inappropriate secretion of antidiuretic hormone treated with frusemide.

    PubMed Central

    Decaux, G; Waterlot, Y; Genette, F; Hallemans, R; Demanet, J C

    1982-01-01

    Seven out of nine patients with chronic inappropriate secretion of antidiuretic hormone were successfully treated with 40 mg frusemide daily. One patient needed 80 mg, and the remaining patient achieved only a small increase in diuresis after 40 mg frusemide; this was probably related to his low creatinine clearance. In order to maintain a salt intake high enough to compensate for the loss of urine electrolytes 3 to 6 g sodium chloride was added as tablets to the sodium-free diet in six patients. Hypokalaemia occurred in five patients but was easily corrected with either supplements of potassium chloride or a potassium-sparing diuretic. These findings add further weight to evidence that Frusemide is a good alternative for the treatment of patients with inappropriate secretion of antidiuretic hormone who cannot tolerate water restriction. PMID:6805839

  18. Inappropriate secretion of antidiuretic hormone treated with frusemide.

    PubMed

    Decaux, G; Waterlot, Y; Genette, F; Hallemans, R; Demanet, J C

    1982-07-10

    Seven out of nine patients with chronic inappropriate secretion of antidiuretic hormone were successfully treated with 40 mg frusemide daily. One patient needed 80 mg, and the remaining patient achieved only a small increase in diuresis after 40 mg frusemide; this was probably related to his low creatinine clearance. In order to maintain a salt intake high enough to compensate for the loss of urine electrolytes 3 to 6 g sodium chloride was added as tablets to the sodium-free diet in six patients. Hypokalaemia occurred in five patients but was easily corrected with either supplements of potassium chloride or a potassium-sparing diuretic. These findings add further weight to evidence that Frusemide is a good alternative for the treatment of patients with inappropriate secretion of antidiuretic hormone who cannot tolerate water restriction.

  19. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Activity, energy intake, obesity, and the risk of incident kidney stones in postmenopausal women: a report from the Women's Health Initiative.

    PubMed

    Sorensen, Mathew D; Chi, Thomas; Shara, Nawar M; Wang, Hong; Hsi, Ryan S; Orchard, Tonya; Kahn, Arnold J; Jackson, Rebecca D; Miller, Joe; Reiner, Alex P; Stoller, Marshall L

    2014-02-01

    Obesity is a strong risk factor for nephrolithiasis, but the role of physical activity and caloric intake remains poorly understood. We evaluated this relationship in 84,225 women with no history of stones as part of the Women's Health Initiative Observational Study, a longitudinal, prospective cohort of postmenopausal women enrolled from 1993 to 1998 with 8 years' median follow-up. The independent association of physical activity (metabolic equivalents [METs]/wk), calibrated dietary energy intake, and body mass index (BMI) with incident kidney stone development was evaluated after adjustment for nephrolithiasis risk factors. Activity intensity was evaluated in stratified analyses. Compared with the risk in inactive women, the risk of incident stones decreased by 16% in women with the lowest physical activity level (adjusted hazard ratio [aHR], 0.84; 95% confidence interval [95% CI], 0.74 to 0.97). As activity increased, the risk of incident stones continued to decline until plateauing at a decrease of approximately 31% for activity levels ≥10 METs/wk (aHR, 0.69; 95% CI, 0.60 to 0.79). Intensity of activity was not associated with stone formation. As dietary energy intake increased, the risk of incident stones increased by up to 42% (aHR, 1.42; 95% CI, 1.02 to 1.98). However, intake <1800 kcal/d did not protect against stone formation. Higher BMI category was associated with increased risk of incident stones. In summary, physical activity may reduce the risk of incident kidney stones in postmenopausal women independent of caloric intake and BMI, primarily because of the amount of activity rather than exercise intensity. Higher caloric intake further increases the risk of incident stones.

  1. Vitamin D and Calcium Intakes, Physical Activity, and Calcaneus BMC among School-Going 13-Year Old Malaysian Adolescents.

    PubMed

    Suriawati, A A; Majid, Hazreen Abdul; Al-Sadat, Nabilla; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid

    2016-10-24

    Dietary calcium and vitamin D are essential for bone development. Apart from diet, physical activity may potentially improve and sustain bone health. To investigate the relationship between the dietary intake of calcium and vitamin D, physical activity, and bone mineral content (BMC) in 13-year-old Malaysian adolescents. Cross-sectional. Selected public secondary schools from the central and northern regions of Peninsular Malaysia. The subjects were from the Malaysian Health and Adolescents Longitudinal Research Team Cohort study (MyHeARTs). The data included seven-day diet histories, anthropometric measurements, and the BMC of calcaneal bone using a portable broadband ultrasound bone densitometer. Nutritionist Pro software was used to calculate the dietary calcium and vitamin D intakes from the diet histories, based on the Nutrient Composition of Malaysian Food Database guidance for the dietary calcium intake and the Singapore Energy and Nutrient Composition of Food Database for vitamin D intake. A total of 289 adolescents (65.7% females) were recruited. The average dietary intakes of calcium and vitamin D were 377 ± 12 mg/day and 2.51 ± 0.12 µg/day, respectively, with the majority of subjects failing to meet the Recommended Nutrient Intake (RNI) of Malaysia for dietary calcium and vitamin D. All the subjects had a normal Z-score for the BMC (-2.00 or higher) with a mean of 0.55 ± 0.01. From the statistical analysis of the factors contributing to BMC, it was found that for those subjects with a higher intake of vitamin D, a higher combination of the intake of vitamin D and calcium resulted in significantly higher BMC quartiles. The regression analysis showed that the BMC might have been influenced by the vitamin D intake. A combination of the intake of vitamin D and calcium is positively associated with the BMC.

  2. Association of energy intake and physical activity with overweight among Indonesian children 6-12 years of age.

    PubMed

    Harahap, Heryudarini; Sandjaja, Sandjaja; Soekatri, Moesijanti; Khouw, Ilse; Deurenberg, Paul

    2018-01-01

    Indonesia is currently facing double burden malnutrition in children. As overweight and obesity are due to a disturbed energy balance, this study aimed to assess the association of total energy intake and physical activity with the prevalence of overweight among Indonesian children. The data used for this analysis were from 1143 children, 6-12 years old, that participated in the South East Asian Nutrition Survey (SEANUTS). Physical activity (PA) was measured using pedometers for 2 consecutive days and was categorized low, moderate and high. Child nutritional status was categorized based on body mass index for age z-scores (BAZ) into normal weight (-2 SD ≤BAZ≤1 SD) or overweight (BAZ >1 SD). Energy intake was calculated from a one day 24 hour recall and compared to the Indonesian recommended dietary allowance (RDA) for energy. Children with low PA had higher risk (ODDs 3.4, 95% CI: 2.0, 6.0) of being overweight compared to children who had high PA. Children with moderate PA and energy take >100% RDA had higher risk (ODDs 4.2, 95% CI 1.9, 9.3) of being overweight than children with high PA and energy intakes ≤100% RDA. Low physical activity independently or moderate physical activity and high energy intake are risk factors for Indonesian children to get overweight. Program intervention such as increasing physical activity at school and home is needed to reduce overweight among children.

  3. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    PubMed

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  4. Differences in Mothers' and Children's Dietary Intake during Physical and Sedentary Activities: An Ecological Momentary Assessment Study.

    PubMed

    O'Connor, Sydney G; Koprowski, Carol; Dzubur, Eldin; Leventhal, Adam M; Huh, Jimi; Dunton, Genevieve Fridlund

    2017-08-01

    Physical activity and diet are major modifiable health behaviors contributing to obesity risk. Although patterns of these behaviors tend to cluster within individuals and within family units, it is unknown to what extent healthy and unhealthy dietary intake might differentially accompany sedentary and physical activities in mothers compared with their children. Our goal was to examine differences in co-occurrence of activities and dietary intake between mothers and children, as measured in real time using ecological momentary assessment. This study examined cross-sectional data from 175 mothers and their children aged 8 to 12 years. Participants completed 8 days of ecological momentary assessment surveys, reporting on whether the following activities had occurred during the past 2 hours: sedentary screen activity, physical activity, and intake of healthy (ie, fruits and vegetables) and unhealthy (ie, fast food, chips/fries, pastries/sweets, and soda/energy drinks) foods. Multilevel logistic regression models estimated the adjusted odds of consuming healthy and unhealthy dietary intake for mothers and children during time periods reporting physical activity (vs no physical activity) or sedentary screen activity (vs no sedentary screen activity). Post hoc tests compared estimates for mothers vs children. Children were significantly more likely than their mothers to consume unhealthy foods during 2-hour windows that included physical activity (odds ratio [children] 1.85, 95% CI 1.47 to 2.31; odds ratio [mothers] 0.83, 95% CI 0.58 to 1.20; P diff <0.05), but not sedentary screen activity (P diff =0.067). In addition, children and their mothers did not differ in their likelihood of consuming healthy foods during 2-hour windows with sedentary screen activity (P diff  =0.497) or physical activity (P diff  =0.170). Results indicate that the consumption of unhealthy foods may be more likely to co-occur within a 2-hour window including physical activity in children as

  5. The Conundrum of Estrogen Receptor Oscillatory Activity in the Search for an Appropriate Hormone Replacement Therapy

    PubMed Central

    Della Torre, Sara; Biserni, Andrea; Rando, Gianpaolo; Monteleone, Giuseppina; Ciana, Paolo; Komm, Barry

    2011-01-01

    By the use of in vivo imaging, we investigated the dynamics of estrogen receptor (ER) activity in intact, ovariectomized, and hormone-replaced estrogen response element-luciferase reporter mice. The study revealed the existence of a long-paced, noncircadian oscillation of ER transcriptional activity. Among the ER-expressing organs, this oscillation was asynchronous and its amplitude and period were tissue dependent. Ovariectomy affected the amplitude but did not suppress ER oscillations, suggesting the presence of tissue endogenous oscillators. Long-term administration of raloxifene, bazedoxifene, combined estrogens alone or with basedoxifene to ovariectomized estrogen response element-luciferase mice showed that each treatment induced a distinct spatiotemporal profile of ER activity, demonstrating that the phasing of ER activity among tissues may be regulated by the chemical nature and the concentration of circulating estrogen. This points to the possibility of a hierarchical organization of the tissue-specific pacemakers. Conceivably, the rhythm of ER transcriptional activity translates locally into the activation of specific gene networks enabling ER to significantly change its physiological activity according to circulating estrogens. In reproductive and nonreproductive organs this hierarchical regulation may provide ER with the signaling plasticity necessary to drive the complex metabolic changes occurring at each female reproductive status. We propose that the tissue-specific oscillatory activity here described is an important component of ER signaling necessary for the full hormone action including the beneficial effects reported for nonreproductive organs. Thus, this mechanism needs to be taken in due consideration to develop novel, more efficacious, and safer hormone replacement therapies. PMID:21505049

  6. In vitro lipid metabolism, growth and metabolic hormone concentrations in hyperthyroid chickens.

    PubMed

    Rosebrough, R W; McMurtry, J P; Vasilatos-Younken, R

    1992-11-01

    Indian River male broiler chickens growing from 7 to 28 d of age were fed on diets containing energy:protein values varying from 43 to 106 MJ/kg protein and containing 0 or 1 mg triiodothyronine (T3)/kg diet to study effects on growth, metabolic hormone concentrations and in vitro lipogenesis. In vitro lipid synthesis was determined in liver explants in the presence and absence of ouabain (Na+, K(+)-transporting ATPase (EC 3.6.1.37) inhibitor) to estimate the role of enzyme activity in explants synthesizing lipid. Growth and feed consumption increased (P < 0.01) when the energy:protein value decreased from 106 to 71 MJ/kg protein; however, both variables decreased as the value was further decreased from 53 to 43 MJ/kg protein. Triiodothyronine depressed (P < 0.01) growth, but not food intake. Large energy:protein diets (> 53 MJ/kg protein) and dietary T3 lowered (P < 0.01) plasma growth hormone. Large energy:protein diets (> 53 MJ/kg protein) increased (P < 0.01) lipogenesis, plasma growth hormone (GH) and decreased plasma insulin-like growth factor 1 (IGF-1). Also, T3 decreased plasma GH, IGF-1 in vitro lipogenesis. Ouabain inhibited a greater proportion of in vitro lipogenesis in those explants synthesizing fat at a high rate. Both dietary T3 and in vitro ouabain decrease lipogenesis, but, when combined, the effects are not cumulative.

  7. Phthalate exposure, even below US EPA reference doses, was associated with semen quality and reproductive hormones: Prospective MARHCS study in general population.

    PubMed

    Chen, Qing; Yang, Huan; Zhou, Niya; Sun, Lei; Bao, Huaqiong; Tan, Lu; Chen, Hongqiang; Ling, Xi; Zhang, Guowei; Huang, Linping; Li, Lianbing; Ma, Mingfu; Yang, Hao; Wang, Xiaogang; Zou, Peng; Peng, Kaige; Liu, Taixiu; Shi, Xiefei; Feng, Dejian; Zhou, Ziyuan; Ao, Lin; Cui, Zhihong; Cao, Jia

    2017-07-01

    Environment-Protection-Agency Reference Doses (EPA RfDs) for phthalate intakes are based on limited evidence, especially regarding low-dose male-reproductive toxicity. This study investigates the association between phthalate exposure and semen parameters and reproductive hormones in a general population with low phthalate exposure compared to the EPA RfDs. The MARHCS (Male-Reproductive-Health-in-Chongqing-College-Students) cohort recruited 796 male students, who experienced a relocation of campuses and shifting environmental exposure. Urine, semen and blood before and after the relocation was collected and investigated for: (1) the associations between 13 urinary phthalate metabolites and 11 semen/hormone outcomes (five semen parameters including semen volume, sperm concentration, total sperm number, progressive motility, normal morphology) and six serum reproductive hormones including estradiol, follicle-stimulating hormone, luteinizing hormone, prolactin, progesterone, testosterone; (2) re-analysis of the metabolite-outcome associations in the subjects with estimated phthalate intakes below the RfDs; (3) a change in phthalate metabolites and change in semen/hormone outcomes after the relocation; (4) the association between these changes. (1) All but two semen/hormone outcomes were associated with at least one phthalate metabolite, e.g., each quartile monoethyl phthalate was associated with a 5.3%, 5.7% and 2.6% decrease of sperm concentration, total sperm number and progressive motility respectively. (2) In the subjects with phthalate intakes below the RfDs, these metabolite-outcome associations remained significant. (3) All metabolites except mono(2-ethylhexyl) phthalate declined after relocation (P<0.001 respectively); at the same time, semen volume, normal morphology, estradiol and luteinizing hormone increased (by 5.9%, 25.0%, 34.2% and 10.0%) and testosterone decreased (by 7.0%). (4) The changes in semen volume, normal morphology, estradiol and testosterone

  8. Peak bone strength is influenced by calcium intake in growing rats.

    PubMed

    Viguet-Carrin, S; Hoppler, M; Membrez Scalfo, F; Vuichoud, J; Vigo, M; Offord, E A; Ammann, P

    2014-11-01

    In this study we investigated the effect of supplementing the diet of the growing male rat with different levels of calcium (from low to higher than recommended intakes at constant Ca/P ratio), on multiple factors (bone mass, strength, size, geometry, material properties, turnover) influencing bone strength during the bone accrual period. Rats, age 28days were supplemented for 4weeks with high Ca (1.2%), adequate Ca (0.5%) or low Ca level (0.2%). Bone metabolism and structural parameters were measured. No changes in body weight or food intake were observed among the groups. As anticipated, compared to the adequate Ca intake, low-Ca intake had a detrimental impact on bone growth (33.63 vs. 33.68mm), bone strength (-19.7% for failure load), bone architecture (-58% for BV/TV) and peak bone mass accrual (-29% for BMD) due to the hormonal disruption implied in Ca metabolism. In contrast, novel, surprising results were observed in that higher than adequate Ca intake resulted in improved peak bone strength (106 vs. 184N/mm for the stiffness and 61 vs. 89N for the failure load) and bone material properties (467 vs. 514mPa for tissue hardness) but these effects were not accompanied by changes in bone mass, size, microarchitecture or bone turnover. Hormonal factors, IGF-I and bone modeling were also evaluated. Compared to the adequate level of Ca, IGF-I level was significantly lower in the low-Ca intake group and significantly higher in the high-Ca intake group. No detrimental effects of high Ca were observed on bone modeling (assessed by histomorphometry and bone markers), at least in this short-term intervention. In conclusion, the decrease in failure load in the low calcium group can be explained by the change in bone geometry and bone mass parameters. Thus, improvements in mechanical properties can be explained by the improved quality of intrinsic bone tissue as shown by nanoindentation. These results suggest that supplemental Ca may be beneficial for the attainment of

  9. Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, “breakfast-skipping,” late-adolescent girls123

    PubMed Central

    Ortinau, Laura C; Douglas, Steve M; Hoertel, Heather A

    2013-01-01

    Background: Breakfast skipping is a common dietary habit practiced among adolescents and is strongly associated with obesity. Objective: The objective was to examine whether a high-protein (HP) compared with a normal-protein (NP) breakfast leads to daily improvements in appetite, satiety, food motivation and reward, and evening snacking in overweight or obese breakfast-skipping girls. Design: A randomized crossover design was incorporated in which 20 girls [mean ± SEM age: 19 ± 1 y; body mass index (in kg/m2): 28.6 ± 0.7] consumed 350-kcal NP (13 g protein) cereal-based breakfasts, consumed 350-kcal HP egg- and beef-rich (35 g protein) breakfasts, or continued breakfast skipping (BS) for 6 d. On day 7, a 10-h testing day was completed that included appetite and satiety questionnaires, blood sampling, predinner food cue–stimulated functional magnetic resonance imaging brain scans, ad libitum dinner, and evening snacking. Results: The consumption of breakfast reduced daily hunger compared with BS with no differences between meals. Breakfast increased daily fullness compared with BS, with the HP breakfast eliciting greater increases than did the NP breakfast. HP, but not NP, reduced daily ghrelin and increased daily peptide YY concentrations compared with BS. Both meals reduced predinner amygdala, hippocampal, and midfrontal corticolimbic activation compared with BS. HP led to additional reductions in hippocampal and parahippocampal activation compared with NP. HP, but not NP, reduced evening snacking of high-fat foods compared with BS. Conclusions: Breakfast led to beneficial alterations in the appetitive, hormonal, and neural signals that control food intake regulation. Only the HP breakfast led to further alterations in these signals and reduced evening snacking compared with BS, although no differences in daily energy intake were observed. These data suggest that the addition of breakfast, particularly one rich in protein, might be a useful strategy to

  10. APOA2 -256T>C polymorphism interacts with saturated fatty acids intake to affect anthropometric and hormonal variables in type 2 diabetic patients.

    PubMed

    Basiri, Marjan Ghane; Sotoudeh, Gity; Alvandi, Ehsan; Djalali, Mahmood; Eshraghian, Mohammad Reza; Noorshahi, Neda; Koohdani, Fariba

    2015-05-01

    Recent studies have established the interaction between APOA2 -256T>C polymorphism and dietary saturated fatty acids intake in relation to obesity on healthy individuals. In the current study, we investigate the effects of this interaction on anthropometric variables and serum levels of leptin and ghrelin in patients with type 2 diabetes. In this cross-sectional study, 737 patients with type 2 diabetes mellitus (290 males and 447 females) were recruited from diabetes clinics in Tehran. The usual dietary intake of all participants during the last year was obtained by validated semiquantitative food frequency questionnaire. APOA2 genotyping was performed by real-time PCR on genomic DNA. No significant relation was obtained by univariate analysis between anthropometric variables and APOA2 genotypes. However, after adjusting for age, gender, physical activity and total energy intake, we identified a significant interaction between APOA2-saturated fatty acids intake and body mass index (BMI). After adjusting for potential confounders, serum levels of ghrelin in CC genotype patients were significantly higher than T allele carriers (p = 0.03), whereas the case with leptin did not reveal a significant difference. The result of this study confirmed the interaction between APOA2 -256T>C polymorphism and SFAs intake with BMI in type 2 diabetic patients. In fact, homozygous patients for the C allele with high saturated fatty acids intake had higher BMI. The APOA2 -256T>C polymorphism was associated with elevated levels of serum ghrelin.

  11. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010.

    PubMed

    Ladabaum, Uri; Mannalithara, Ajitha; Myer, Parvathi A; Singh, Gurkirpal

    2014-08-01

    Obesity and abdominal obesity are associated independently with morbidity and mortality. Physical activity attenuates these risks. We examined trends in obesity, abdominal obesity, physical activity, and caloric intake in US adults from 1988 to 2010. Univariate and multivariate analyses were performed using National Health and Nutrition Examination Survey data. Average body mass index (BMI) increased by 0.37% (95% confidence interval [CI], 0.30-0.44) per year in both women and men. Average waist circumference increased by 0.37% (95% CI, 0.30-0.43) and 0.27% (95% CI, 0.22-0.32) per year in women and men, respectively. The prevalence of obesity and abdominal obesity increased substantially, as did the prevalence of abdominal obesity among overweight adults. Younger women experienced the greatest increases. The proportion of adults who reported no leisure-time physical activity increased from 19.1% (95% CI, 17.3-21.0) to 51.7% (95% CI, 48.9-54.5) in women, and from 11.4% (95% CI, 10.0-12.8) to 43.5% (95% CI, 40.7-46.3) in men. Average daily caloric intake did not change significantly. BMI and waist circumference trends were associated with physical activity level but not caloric intake. The associated changes in adjusted BMIs were 8.3% (95% CI, 6.9-9.6) higher among women and 1.7% (95% CI, 0.68-2.8) higher among men with no leisure-time physical activity compared with those with an ideal level of leisure-time physical activity. Our analyses highlight important dimensions of the public health problem of obesity, including trends in younger women and in abdominal obesity, and lend support to the emphasis placed on physical activity by the Institute of Medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Obesity, Abdominal Obesity, Physical Activity, and Caloric Intake in U.S. Adults: 1988-2010

    PubMed Central

    Ladabaum, Uri; Mannalithara, Ajitha; Myer, Parvathi A.; Singh, Gurkirpal

    2014-01-01

    Background Obesity and abdominal obesity are independently associated with morbidity and mortality. Physical activity attenuates these risks. We examined trends in obesity, abdominal obesity, physical activity, and caloric intake in U.S. adults from 1988 to 2010. Methods Univariate and multivariate analyses were performed using National Health and Nutrition Examination Survey (NHANES) data. Results Average body-mass index (BMI) increased by 0.37% (95% CI, 0.30-0.44%) per year in both women and men. Average waist circumference increased by 0.37% (95% CI, 0.30-0.43%) and 0.27% (95% CI, 0.22-0.32%) per year in women and men, respectively. The prevalence of obesity and abdominal obesity increased substantially, as did the prevalence of abdominal obesity among overweight adults. Younger women experienced the greatest increases. The proportion of adults who reported no leisure-time physical activity increased from 19.1% (95% CI, 17.3-21.0%) to 51.7% (95% CI, 48.9-54.5%) in women, and from 11.4% (95% CI, 10.0-12.8%) to 43.5% (95% CI, 40.7-46.3%) in men. Average daily caloric intake did not change significantly. BMI and waist circumference trends were associated with physical activity level, but not caloric intake. The associated changes in adjusted BMIs were 8.3% (95% CI, 6.9-9.6%) higher among women and 1.7% (95% CI, 0.68-2.8%) higher among men with no leisure-time physical activity compared to those with an ideal level of leisure-time physical activity. Conclusions Our analyses highlight important dimensions of the public health problem of obesity, including trends in younger women and in abdominal obesity, and lend support to the emphasis placed on physical activity by the Institute of Medicine. PMID:24631411

  13. Neural predictors of chocolate intake following chocolate exposure.

    PubMed

    Frankort, Astrid; Roefs, Anne; Siep, Nicolette; Roebroeck, Alard; Havermans, Remco; Jansen, Anita

    2015-04-01

    Previous studies have shown that one's brain response to high-calorie food cues can predict long-term weight gain or weight loss. The neural correlates that predict food intake in the short term have, however, hardly been investigated. This study examined which brain regions' activation predicts chocolate intake after participants had been either exposed to real chocolate or to control stimuli during approximately one hour, with interruptions for fMRI measurements. Further we investigated whether the variance in chocolate intake could be better explained by activated brain regions than by self-reported craving. In total, five brain regions correlated with subsequent chocolate intake. The activation of two reward regions (the right caudate and the left frontopolar cortex) correlated positively with intake in the exposure group. The activation of two regions associated with cognitive control (the left dorsolateral and left mid-dorsolateral PFC) correlated negatively with intake in the control group. When the regression analysis was conducted with the exposure and the control group together, an additional region's activation (the right anterior PFC) correlated positively with chocolate intake. In all analyses, the intake variance explained by neural correlates was above and beyond the variance explained by self-reported craving. These results are in line with neuroimaging research showing that brain responses are a better predictor of subsequent intake than self-reported craving. Therefore, our findings might provide for a missing link by associating brain activation, previously shown to predict weight change, with short-term intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ghrelin and the growth hormone secretagogue receptor in growth and development.

    PubMed

    Chanoine, J-P; De Waele, K; Walia, P

    2009-04-01

    The pancreas is a major source of ghrelin in the perinatal period, whereas gastric production progressively increases after birth. Loss of function of the genes for ghrelin or for the constitutively activated growth hormone secretagogue receptor (GHSR) does not affect birth weight and early postnatal growth. However, ghrl(-/-) or ghsr(-/-) mice fed a high fat diet starting soon after weaning are resistant to diet-induced obesity, suggesting that ghrelin affects the maturation of the metabolic axes involved in energy balance. In addition, animal and human studies suggest that GHSR plays a physiological role in linear growth. In mice, absence of the GHSR gene is associated with lower insulin-like growth factor 1 concentrations and lower body mass in adult animals, independently of food intake. In humans, a mutation of the GHSR gene that impairs the constitutive activity of the receptor was found in two families with short stature. Administration of acylated ghrelin to rat pups directly does not affect weight gain. In contrast, administration of ghrelin to pregnant or lactating rats results in greater fetal weight and postnatal weight gain, respectively, suggesting that maternal ghrelin may stimulate perinatal growth. These data point toward a physiological role for ghrelin and GHSR in growth and/or in the maturation of hormonal systems involved in the regulation of energy balance.

  15. Energy partitioning and thyroid hormone levels during Salmonella enteritidis infections in pullets with high or low residual feed intake.

    PubMed

    Van Eerden, E; Van Den Brand, H; Heetkamp, M J W; Decuypere, E; Kemp, B

    2006-10-01

    This experiment was conducted to investigate whether feed efficiency, as measured by residual feed intake as a phenotypic trait, affects energy partitioning in pullets that have received Salmonella inoculation as an immune challenge. In each of 8 trials, energy partitioning was measured during 5 wk in 15-wk-old efficient (R-) and nonefficient (R+) pullets, which were housed per efficiency group in 2 identical climate respiration chambers. After 1 wk of adaptation, the pullets in 4 trials were orally inoculated with 10(8) cfu of Salmonella enteritidis; pullets in the remaining trials were not inoculated and served as controls. Heat production was calculated from continuous recordings of O(2) consumption and CO(2) production. Energy and N partitioning were recorded on a weekly basis. Blood samples for analyses on thyroid hormones were taken at 16, 17, and 19 wk of age. There were no interactions between efficiency type and Salmonella treatment or Salmonella treatment effects in energy partitioning, except for a short-term increase in heat production in inoculated pullets. Nonefficient pullets had higher gross energy and ME intake, higher estimated ME for maintenance, lower ME:gross energy ratio, and higher total heat production and nonactivity-related heat production compared with R- pullets. Triiodothyronine levels in R+ pullets were higher at 16 and 17 wk but were lower at 19 wk of age compared with R- pullets. Thyroxine levels were higher in R- at 16 wk and showed interactions between efficiency type and Salmonella treatment at 17 and 19 wk of age. Body weights and spleen weights did not differ between efficiency groups. Nonefficient pullets had higher heart, liver, and ovary weights and more large yellow follicles than R- pullets. There were no Salmonella effects on body and organ weights. We conclude that R+ pullets have a faster running energy metabolism and that they put more resources into organ development than R- pullets. Inoculation with Salmonella has a

  16. Developmental origins of obesity: programming of food intake or physical activity?

    PubMed

    Gardner, David S; Rhodes, Phillip

    2009-01-01

    Mans ability to capture, harness and store energy most efficiently as fat in adipose tissue has been an evolutionary success story for the majority of human existence. Only over the last 30-40 years has our remarkable metabolic efficiency been revealed as our energy balance increasingly favours storage without regular periods of depletion. Historical records show us that while the composition of our diet has changed markedly over this time, our overall energy intake has significantly reduced. The inevitable conclusion therefore is that habitual physical activity and thus energy expenditure has reduced by a greater extent. Recent studies have illustrated how the finely tuned long-term control of energy intake and of energy expenditure are both developmentally plastic and susceptible to environmentally-induced change that may persist with that individual throughout their adult life, invariably rendering them more susceptible to greater adipose tissue deposition. The central role that lean body mass has upon the 'gating' of energy sensing and the importance of regular physical activity for its potential to reduce the burden of a 'thrifty phenotype' will be briefly discussed in the present review.

  17. Calcium intake: good for the bones but bad for the heart? An analysis of clinical studies.

    PubMed

    Lima, Guilherme Alcantara Cunha; Lima, Priscilla Damião Araújo; Barros, Maria da Glória Costa Reis Monteiro de; Vardiero, Lívia Paiva; Melo, Elisa Fernandes de; Paranhos-Neto, Francisco de Paula; Madeira, Miguel; Farias, Maria Lucia Fleiuss de

    2016-06-01

    The proper dietary calcium intake and calcium supplementation, when indicated, are important factors in the acquisition of peak bone mass during youth and in the prevention of fractures in old age. In addition to its deposition in bone, calcium confers an increase in its resistance and exhibits important activities in different enzymatic pathways in the body (e.g., neural, hormonal, muscle-related and blood clotting pathways). Thus, calcium supplementation can directly or indirectly affect important functions in the body, such as the control of blood pressure, plasma glucose, body weight, lipid profile and endothelial function. Since one publication reported increased cardiovascular risk due to calcium supplementation, many researchers have studied whether this risk actually exists; the results are conflicting, and the involved mechanisms are uncertain. However, studies that have evaluated the influence of the consumption of foods rich in calcium have reported no increase in the cardiovascular risk, which suggests that nutritional intake should be prioritized as a method for supplementation and that the use of calcium supplements should be reserved for patients who truly need supplementation and are unable to achieve the recommended daily nutritional intake of calcium.

  18. Predicting physical activity and fruit and vegetable intake in adolescents: a test of the information, motivation, behavioral skills model.

    PubMed

    Kelly, Stephanie; Melnyk, Bernadette Mazurek; Belyea, Michael

    2012-04-01

    Most adolescents do not meet national recommendations regarding physical activity and/or the intake of fruits and vegetables. The purpose of this study was to explore whether variables in the information, motivation, behavioral skills (IMB) model of health promotion predicted physical activity and fruit and vegetable intake in 404 adolescents from 2 high schools in the Southwest United States using structural equation modeling (SEM). The SEM models included theoretical constructs, contextual variables, and moderators. The theoretical relationships in the IMB model were confirmed and were moderated by gender and race. Interventions that incorporate cognitive-behavioral skills building may be a key factor for promoting physical activity as well as fruit and vegetable intake in adolescents. Copyright © 2012 Wiley Periodicals, Inc.

  19. Orally active growth hormone secretagogues: state of the art and clinical perspectives.

    PubMed

    Ghigo, E; Arvat, E; Camanni, F

    1998-04-01

    Growth hormone secretagogues (GHS) are synthetic, non-natural peptidyl and nonpeptidyl molecules with potent stimulatory effect on somatotrope secretion. They have no structural homology with growth hormone-releasing hormone (GHRH) and act via a specific receptor, which has now been cloned and is present at both the pituitary and hypothalamic level. This evidence strongly suggests the existence of a still unknown natural GHS-like ligand. Several data favour the hypothesis that GHS could counteract somatostatinergic activity at both the pituitary and hypothalamic level and/or, at least partially, via a GHRH-mediated mechanism. However, the possibility that they act via an unknown hypothalamic factor remains open. GH-releasing peptide-6 (GHRP-6) is the first hexapeptide studied extensively in humans. More recently, peptidyl superanalogues GHRP-1, GHRP-2 and hexarelin, and nonpeptidyl mimetics, such as the spiroindoline derivative MK-677, have been synthesized and their effects have been studied in humans. The GH-releasing activity of GHS is marked, dose related and reproducible after intravenous, subcutaneous, intranasal and even oral administration. The effect of GHS is partially desensitized but prolonged, intermittent oral administration increases insulin-like growth factor I (IGF-I) levels. The GH-releasing effect of GHS undergoes age-related variations; it increases from birth to puberty, remains similar in adulthood and decreases with ageing. The effect of GHS on GH release is synergistic with that of GHRH, while it is only partially refractory to inhibitory influences, which nearly abolish the effect of GHRH. GHS maintain their GH-releasing activity in some somatotrope hypersecretory states such as acromegaly, anorexia nervosa, hyperthyroidism and critical illness. The GH response to GHS has been reported clear although reduced in GH deficiency, obesity and hypothyroidism, while it is strongly reduced in patients with pituitary stalk disconnection or Cushing

  20. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake.

    PubMed

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B

    2016-11-01

    In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m - 2 ) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m - 2 ), both before and 30 min after consumption of a standardized meal (~260 kcal). Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (P<0.05). This group difference was not altered by food intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (P<0.05); however, these changes did not differ between the BMI groups. Reward-related brain regions are more active under resting-state conditions in obese than in normal-weight females. This difference was independent of food intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.

  1. Laboratory assessment of indigenous plant extracts for anti-juvenile hormone activity in Culex quinquefasciatus.

    PubMed

    Saxena, R C; Dixit, O P; Sukumaran, P

    1992-07-01

    Of 15 plants tested, five plant extracts showed anti-juvenile hormone-like activity against laboratory colonised late fourth instar larvae and adult female mosquitoes. Petroleum ether extract of Eichhornia crassipes and acetone extracts of Ageratum conyzoides, Cleome icosandra, Tagetes erectes and Tridax procumbens showed growth inhibitory (P less than 0.001) and juvenile hormone mimicing activity to the treated larvae of C. quinquefasciatus.. Larval pupal intermediates, demalanised pupae, defective egg rafts and adult with deformed flight muscles were few noticeable changes. Biting behaviour was observed to be affected only in Ageratum, Cleome and Tridax extracts (P less than 0.001). Loss of fecundity was observed in the treated mosquitoes but no sterilant effects could be seen. Adults, obtained from larvae exposed to the plant extracts produced significantly shorter egg-rafts (P less than 0.005) than in control.

  2. Association of Hormonal Contraceptive Use With Reduced Levels of Depressive Symptoms: A National Study of Sexually Active Women in the United States

    PubMed Central

    Keyes, Katherine M.; Cheslack-Postava, Keely; Westhoff, Carolyn; Heim, Christine M.; Haloossim, Michelle; Walsh, Kate; Koenen, Karestan

    2013-01-01

    An estimated 80% of sexually active young women in the United States use hormonal contraceptives during their reproductive years. Associations between hormonal contraceptive use and mood disturbances remain understudied, despite the hypothesis that estrogen and progesterone play a role in mood problems. In this study, we used data from 6,654 sexually active nonpregnant women across 4 waves of the National Longitudinal Study of Adolescent Health (1994–2008), focusing on women aged 25–34 years. Women were asked about hormonal contraceptive use in the context of a current sexual partnership; thus, contraceptive users were compared with other sexually active women who were using either nonhormonal contraception or no contraception. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression Scale. At ages 25–34 years, hormonal contraceptive users had lower mean levels of concurrent depressive symptoms (β = −1.04, 95% confidence interval: −1.73, −0.35) and were less likely to report a past-year suicide attempt (odds ratio = 0.37, 95% confidence interval: 0.14, 0.95) than women using low-efficacy contraception or no contraception, in models adjusted for propensity scores for hormonal contraceptive use. Longitudinal analyses indicated that associations between hormonal contraception and depressive symptoms were stable. Hormonal contraception may reduce levels of depressive symptoms among young women. Systematic investigation of exogenous hormones as a potential preventive factor in psychiatric epidemiology is warranted. PMID:24043440

  3. Maximal Oxygen Intake and Maximal Work Performance of Active College Women.

    ERIC Educational Resources Information Center

    Higgs, Susanne L.

    Maximal oxygen intake and associated physiological variables were measured during strenuous exercise on women subjects (N=20 physical education majors). Following assessment of maximal oxygen intake, all subjects underwent a performance test at the work level which had elicited their maximal oxygen intake. Mean maximal oxygen intake was 41.32…

  4. Slimming starters. Intake of a diet-congruent food reduces meal intake in active dieters.

    PubMed

    Buckland, Nicola J; Finlayson, Graham; Hetherington, Marion M

    2013-12-01

    Dietary restraint is known to break down in the face of tempting foods. Previous research suggests exposure to cues associated with slimming such as images or odours act as prompts to restrict intake of a tempting snack in dieters. The effects of consuming diet-congruent foods on subsequent intake of a meal have not yet been investigated. Thus, using a repeated measures design 26 female participants (dieters or non-dieters) consumed a diet-congruent (100 kcal salad), hedonic (100 kcal garlic bread) or neutral (0 kcal water) preload. A lexical decision task measured the salience of diet and hedonic thoughts and participants were then offered pizza as a main meal. Appetite sensations were measured throughout the study. Compared to the hedonic and neutral preload, a diet-congruent preload reduced dieters' entire meal intake by 21%. In contrast, non-dieters consumed 9% more in the hedonic preload condition compared to the neutral preload, yet showed no differences between the diet-congruent and other conditions. Salad lowered participants desire to eat and increased fullness compared to garlic bread and water preloads. Dieters were also less hungry after the salad compared to the garlic bread and water preloads. Consuming a diet-congruent first course may prompt lower intake at a meal, in part due to facilitating resolve to refrain from overeating a tempting second course. Copyright © 2013. Published by Elsevier Ltd.

  5. The Effects of Intensive Weight Reduction on Body Composition and Serum Hormones in Female Fitness Competitors

    PubMed Central

    Hulmi, Juha J.; Isola, Ville; Suonpää, Marianna; Järvinen, Neea J.; Kokkonen, Marja; Wennerström, Annika; Nyman, Kai; Perola, Markus; Ahtiainen, Juha P.; Häkkinen, Keijo

    2017-01-01

    Worries about the potential negative consequences of popular fat loss regimens for aesthetic purposes in normal weight females have been surfacing in the media. However, longitudinal studies investigating these kinds of diets are lacking. The purpose of the present study was to investigate the effects of a 4-month fat-loss diet in normal weight females competing in fitness-sport. In total 50 participants finished the study with 27 females (27.2 ± 4.1 years) dieting for a competition and 23 (27.7 ± 3.7 years) acting as weight-stable controls. The energy deficit of the diet group was achieved by reducing carbohydrate intake and increasing aerobic exercise while maintaining a high level of protein intake and resistance training in addition to moderate fat intake. The diet led to a ~12% decrease in body weight (P < 0.001) and a ~35–50% decrease in fat mass (DXA, bioimpedance, skinfolds, P < 0.001) whereas the control group maintained their body and fat mass (diet × group interaction P < 0.001). A small decrease in lean mass (bioimpedance and skinfolds) and in vastus lateralis muscle cross-sectional area (ultrasound) were observed in diet (P < 0.05), whereas other results were unaltered (DXA: lean mass, ultrasound: triceps brachii thickness). The hormonal system was altered during the diet with decreased serum concentrations of leptin, triiodothyronine (T3), testosterone (P < 0.001), and estradiol (P < 0.01) coinciding with an increased incidence of menstrual irregularities (P < 0.05). Body weight and all hormones except T3 and testosterone returned to baseline during a 3–4 month recovery period including increased energy intake and decreased levels aerobic exercise. This study shows for the first time that most of the hormonal changes after a 35–50% decrease in body fat in previously normal-weight females can recover within 3–4 months of increased energy intake. PMID:28119632

  6. Novel orally active growth hormone secretagogues.

    PubMed

    Hansen, T K; Ankersen, M; Hansen, B S; Raun, K; Nielsen, K K; Lau, J; Peschke, B; Lundt, B F; Thøgersen, H; Johansen, N L; Madsen, K; Andersen, P H

    1998-09-10

    A novel class of growth hormone-releasing compounds with a molecular weight in the range from 500 to 650 has been discovered. The aim of this study was to obtain growth hormone secretagogues with oral bioavailability. By a rational approach we were able to reduce the size of the lead compound ipamorelin (4) and simultaneously to reduce hydrogen-bonding potential by incorporation of backbone isosters while retaining in vivo potency in swine. A rat pituitary assay was used for screening of all compounds and to evaluate which compounds should be tested further for in vivo potency in swine and oral bioavailability, fpo, in dogs. Most of the tested compounds had fpo in the range of 10-55%. In vivo potency in swine after iv dosing is reported, and ED50 was found to be 30 nmol/kg of body weight for the most potent compound.

  7. A new strategy to analyze possible association structures between dynamic nocturnal hormone activities and sleep alterations in humans.

    PubMed

    Kalus, Stefanie; Kneib, Thomas; Steiger, Axel; Holsboer, Florian; Yassouridis, Alexander

    2009-04-01

    The human sleep process shows dynamic alterations during the night. Methods are needed to examine whether and to what extent such alterations are affected by internal, possibly time-dependent, factors, such as endocrine activity. In an observational study, we examined simultaneously sleep EEG and nocturnal levels of renin, growth hormone (GH), and cortisol (between 2300 and 0700) in 47 healthy volunteers comprising 24 women (41.67 +/- 2.93 yr of age) and 23 men (37.26 +/- 2.85 yr of age). Hormone concentrations were measured every 20 min. Conventional sleep stage scoring at 30-s intervals was applied. Semiparametric multinomial logit models are used to study and quantify possible time-dependent hormone effects on sleep stage transition courses. Results show that increased cortisol levels decrease the probability of transition from rapid-eye-movement (REM) sleep to wakefulness (WAKE) and increase the probability of transition from REM to non-REM (NREM) sleep, irrespective of the time in the night. Via the model selection criterion Akaike's information criterion, it was found that all considered hormone effects on transition probabilities with the initial state WAKE change with time. Similarly, transition from slow-wave sleep (SWS) to light sleep (LS) is affected by a "hormone-time" interaction for cortisol and renin, but not GH. For example, there is a considerable increase in the probability of SWS-LS transition toward the end of the night, when cortisol concentrations are very high. In summary, alterations in human sleep possess dynamic forms and are partially influenced by the endocrine activity of certain hormones. Statistical methods, such as semiparametric multinomial and time-dependent logit regression, can offer ambitious ways to investigate and estimate the association intensities between the nonstationary sleep changes and the time-dependent endocrine activities.

  8. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    PubMed

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions.

  9. Web-enabled and improved software tools and data are needed to measure nutrient intakes and physical activity for personalized health research

    USDA-ARS?s Scientific Manuscript database

    Food intake, physical activity and genetic make-up each impact health and each factor influences the impact of the other two factors. Nutrigenomics is a term used to describe interactions between food intake, physical activity and genomics. Knowledge about the interplay between environment and ge...

  10. Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development.

    PubMed

    Mahajan, Muktar A; Samuels, Herbert H

    2005-06-01

    Nuclear hormone receptor coregulator (NRC) (also referred to as activating signal cointegrator-2, thyroid hormone receptor-binding protein, peroxisome proliferator activating receptor-interacting protein, and 250-kDa receptor associated protein) belongs to a growing class of nuclear cofactors widely known as coregulators or coactivators that are necessary for transcriptional activation of target genes. The NRC gene is also amplified and overexpressed in breast, colon, and lung cancers. NRC is a 2063-amino acid protein that harbors a potent N-terminal activation domain (AD1) and a second more centrally located activation domain (AD2) that is rich in Glu and Pro. Near AD2 is a receptor-interacting domain containing an LxxLL motif (LxxLL-1), which interacts with a wide variety of ligand-bound nuclear hormone receptors with high affinity. A second LxxLL motif (LxxLL-2) located in the C-terminal region of NRC is more restricted in its nuclear hormone receptor specificity. The intrinsic activation potential of NRC is regulated by a C-terminal serine, threonine, leucine-regulatory domain. The potential role of NRC as a cointegrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known transcriptional regulators including CBP/p300. Recent studies in mice indicate that deletion of both NRC alleles leads to embryonic lethality resulting from general growth retardation coupled with developmental defects in the heart, liver, brain, and placenta. NRC(-/-) mouse embryo fibroblasts spontaneously undergo apoptosis, indicating the importance of NRC as a prosurvival and antiapoptotic gene. Studies with 129S6 NRC(+/-) mice indicate that NRC is a pleiotropic regulator that is involved in growth, development, reproduction, metabolism, and wound healing.

  11. Celecoxib plus hormone therapy versus hormone therapy alone for hormone-sensitive prostate cancer: first results from the STAMPEDE multiarm, multistage, randomised controlled trial

    PubMed Central

    James, Nicholas D; Sydes, Matthew R; Mason, Malcolm D; Clarke, Noel W; Anderson, John; Dearnaley, David P; Dwyer, John; Jovic, Gordana; Ritchie, Alastair WS; Russell, J Martin; Sanders, Karen; Thalmann, George N; Bertelli, Gianfilippo; Birtle, Alison J; O'Sullivan, Joe M; Protheroe, Andrew; Sheehan, Denise; Srihari, Narayanan; Parmar, Mahesh KB

    2012-01-01

    Summary Background Long-term hormone therapy alone is standard care for metastatic or high-risk, non-metastatic prostate cancer. STAMPEDE—an international, open-label, randomised controlled trial—uses a novel multiarm, multistage design to assess whether the early additional use of one or two drugs (docetaxel, zoledronic acid, celecoxib, zoledronic acid and docetaxel, or zoledronic acid and celecoxib) improves survival in men starting first-line, long-term hormone therapy. Here, we report the preplanned, second intermediate analysis comparing hormone therapy plus celecoxib (arm D) with hormone therapy alone (control arm A). Methods Eligible patients were men with newly diagnosed or rapidly relapsing prostate cancer who were starting long-term hormone therapy for the first time. Hormone therapy was given as standard care in all trial arms, with local radiotherapy encouraged for newly diagnosed patients without distant metastasis. Randomisation was done using minimisation with a random element across seven stratification factors. Patients randomly allocated to arm D received celecoxib 400 mg twice daily, given orally, until 1 year or disease progression (including prostate-specific antigen [PSA] failure). The intermediate outcome was failure-free survival (FFS) in three activity stages; the primary outcome was overall survival in a subsequent efficacy stage. Research arms were compared pairwise against the control arm on an intention-to-treat basis. Accrual of further patients was discontinued in any research arm showing safety concerns or insufficient evidence of activity (lack of benefit) compared with the control arm. The minimum targeted activity at the second intermediate activity stage was a hazard ratio (HR) of 0·92. This trial is registered with ClinicalTrials.gov, number NCT00268476, and with Current Controlled Trials, number ISRCTN78818544. Findings 2043 patients were enrolled in the trial from Oct 17, 2005, to Jan 31, 2011, of whom 584 were randomly

  12. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight.

    PubMed

    Gaykema, Ronald P; Newmyer, Brandon A; Ottolini, Matteo; Raje, Vidisha; Warthen, Daniel M; Lambeth, Philip S; Niccum, Maria; Yao, Ting; Huang, Yiru; Schulman, Ira G; Harris, Thurl E; Patel, Manoj K; Williams, Kevin W; Scott, Michael M

    2017-03-01

    Peptides derived from pre-proglucagon (GCG peptides) act in both the periphery and the CNS to change food intake, glucose homeostasis, and metabolic rate while playing a role in anxiety behaviors and physiological responses to stress. Although the actions of GCG peptides produced in the gut and pancreas are well described, the role of glutamatergic GGC peptide-secreting hindbrain neurons in regulating metabolic homeostasis has not been investigated. Here, we have shown that chemogenetic stimulation of GCG-producing neurons reduces metabolic rate and food intake in fed and fasted states and suppresses glucose production without an effect on glucose uptake. Stimulation of GCG neurons had no effect on corticosterone secretion, body weight, or conditioned taste aversion. In the diet-induced obese state, the effects of GCG neuronal stimulation on gluconeogenesis were lost, while the food intake-lowering effects remained, resulting in reductions in body weight and adiposity. Our work suggests that GCG peptide-expressing neurons can alter feeding, metabolic rate, and glucose production independent of their effects on hypothalamic pituitary-adrenal (HPA) axis activation, aversive conditioning, or insulin secretion. We conclude that GCG neurons likely stimulate separate populations of downstream cells to produce a change in food intake and glucose homeostasis and that these effects depend on the metabolic state of the animal.

  13. From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation.

    PubMed

    Howick, Ken; Griffin, Brendan T; Cryan, John F; Schellekens, Harriët

    2017-01-27

    Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrallymediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin's central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry.

  14. Molecular Aspects of Thyroid Hormone Actions

    PubMed Central

    Cheng, Sheue-Yann; Leonard, Jack L.; Davis, Paul J.

    2010-01-01

    Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T3 via transcriptional regulation. Two TR genes, α and β, encode four T3-binding receptor isoforms (α1, β1, β2, and β3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T3, transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T3 target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T3-dependent manner. In the absence of T3, corepressors act to repress the basal transcriptional activity, whereas in the presence of T3, coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRβ gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T3. Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin αvβ3 that activates ERK1/2 and culminate in local membrane actions on

  15. Longitudinal study of weight, energy intake and physical activity change across two decades in older Scottish women.

    PubMed

    Yang, Tiffany C; Gryka, Anna A; Aucott, Lorna S; Duthie, Garry G; Macdonald, Helen M

    2017-05-01

    The perimenopausal and postmenopausal periods are times of pronounced physiological change in body mass index (BMI), physical activity and energy intake. Understanding these changes in middle age could contribute to formation of potential public health targets. A longitudinal cohort of 5119 perimenopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) recruited between 1990 and 1994, with follow-up visits at 1997-1999 and 2009-2011. At each visit, participants were weighed, measured and completed socioeconomic and demographic questionnaires. Participants at the first visit were asked to recall body weights at 20, 30 and 40 years of age. We assessed trends in BMI, physical activity and energy intake across and within visits. Over 2 decades, obesity prevalence doubled from 14% to 28% of the participants, with 69% of participants being categorised as overweight or obese. Greater than 70% of participants gained >5% of their baseline BMI with weight gain occurring across all weight categories. Energy intake and physical activity levels (PALs) did not change during the 2 decades after menopause (p trend=0.06 and 0.11, respectively), but, within the second visit, energy intake increased concomitantly with a decrease in physical activity across increasing quartiles of BMI (p trend <0.001 for all). Overweight and obesity increased by over 50% over the course of 20 years. Weight gain occurred across the adult life course regardless of starting weight. The marked increase in dietary intake and decrease in PALs in middle age suggest a potential critical period for intervention to curb excess weight gain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Early Serum Gut Hormone Concentrations Associated with Time to Full Enteral Feedings in Preterm Infants.

    PubMed

    Shanahan, Kristen H; Yu, Xinting; Miller, Laura G; Freedman, Steven D; Martin, Camilia R

    2018-04-03

    The primary objective of this study was to evaluate early postnatal serum gut hormone concentrations in preterm infants as predictors of time to full enteral feedings. The secondary objective was to identify infant characteristics and nutritional factors that modulate serum gut hormone concentrations and time to full enteral feedings. Sixty-four preterm infants less than 30 weeks of gestation were included in this retrospective cohort study. Serum gut hormone concentrations at postnatal days 0 and 7 were measured using enzyme-linked immunosorbent assays. Linear regression and mediation analyses were performed. Median (IQR) serum concentrations of glucose-dependent insulinotropic peptide (GIP) and peptide YY (PYY) on postnatal day 7 were 31.3 pg/mL (18.2, 52.3) and 1181.7 pg/mL (859.0, 1650.2), respectively. GIP and PYY concentrations on day 7 were associated with days to full enteral feedings after adjustment for confounders (β = -1.1, p = 0.03; and β = -0.002, p = 0.02, respectively). Nutritional intake was correlated with serum concentrations of GIP and PYY on postnatal day 7 and time to full enteral feedings. Mediation analysis revealed that the effect of serum gut hormone concentrations on time to full enteral feedings was not fully explained by nutritional intake. Intrauterine growth restriction (IUGR), mechanical ventilation on postnatal day 7, and patent ductus arteriosus (PDA) treated with indomethacin were associated with longer time to full enteral feedings. Serum concentrations of GIP and PYY on postnatal 7 are independently associated with time to full enteral feedings. The link between serum gut hormone concentrations and time to full enteral feedings is not fully mediated by nutritional factors, suggesting an independent mechanism underlying the influence of gut hormones on feeding tolerance and time to full enteral feedings.

  17. Impact of Improving Home Environments on Energy Intake and Physical Activity: A Randomized Controlled Trial

    PubMed Central

    Haardörfer, Regine; Alcantara, Iris C.; Gazmararian, Julie A.; Veluswamy, J. K.; Hodge, Tarccara L.; Addison, Ann R.; Hotz, James A.

    2016-01-01

    Objectives. We assessed the effectiveness of an intervention targeting home food and activity environments to reduce energy intake and increase physical activity among overweight and obese patients from 3 community health centers in rural Georgia. Methods. We conducted a randomized controlled trial (n = 349) from 2011 to 2013, with follow-up at 6 and 12 months. Health coaches delivered the 16-week intervention by using tailored home environment profiles showing areas in need of improvement and positive aspects of the home environment, behavioral contracts for healthy actions, and mailed support materials. Results. Participants were mostly African American women (84.8%), with a mean age of 50.2 years and a mean body mass index (weight in kilograms divided by the square of height in meters) of 38.3. Daily energy intake decreased more for the intervention than control group at 6 (–274 vs –69 kcal) and 12 months (–195 vs –76 kcal). We observed no change for either objective or self-reported physical activity. At 12 months, 82.6% of intervention participants had not gained weight compared with 71.4% of control participants. Conclusions. The intervention was effective in changing home environments and reducing energy intake. PMID:26696290

  18. Activation of Drosophila hemocyte motility by the ecdysone hormone

    PubMed Central

    Sampson, Christopher J.; Amin, Unum; Couso, Juan-Pablo

    2013-01-01

    Summary Drosophila hemocytes compose the cellular arm of the fly's innate immune system. Plasmatocytes, putative homologues to mammalian macrophages, represent ∼95% of the migratory hemocyte population in circulation and are responsible for the phagocytosis of bacteria and apoptotic tissues that arise during metamorphosis. It is not known as to how hemocytes become activated from a sessile state in response to such infectious and developmental cues, although the hormone ecdysone has been suggested as the signal that shifts hemocyte behaviour from quiescent to migratory at metamorphosis. Here, we corroborate this hypothesis by showing the activation of hemocyte motility by ecdysone. We induce motile behaviour in larval hemocytes by culturing them with 20-hydroxyecdysone ex vivo. Moreover, we also determine that motile cell behaviour requires the ecdysone receptor complex and leads to asymmetrical redistribution of both actin and tubulin cytoskeleton. PMID:24285708

  19. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats

    PubMed Central

    Santollo, Jessica; Daniels, Derek

    2015-01-01

    Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats. PMID:26093261

  20. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-07-01

    Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Evaluation of in vivo [corrected] biological activity of new agmatine analogs of growth hormone-releasing hormone (GH-RH)

    PubMed

    Bokser, L; Zarandi, M; Schally, A V

    1990-01-01

    The effects of agmatine analogs of growth hormone releasing hormone (GH-RH) were compared to GH-RH(1-29)-NH2 after intravenous (iv) and subcutaneous (sc) administration to pentobarbital-anesthetized male rats. After the iv injection, the analogs [desNH2-Tyr1,Ala15,Nle27] GH-RH(1-28)Agm (MZ-2-51); [desNH2-Tyr1,D-Lys12,Ala15,Nle27] GH-RH(1-28)Agm (MZ-2-57); [desNH2-Tyr1,Ala15,D-Lys21,Nle27] GH-RH(1-28)Agm (MZ-2-75) and [desNH2-Tyr1, D-Lys12,21, Ala15, Nle27] GH-RH(1-28)Agm (MZ-2-87) showed a potency equivalent to 4.4, 1.9, 1.07 and 1.03 times that of GH-RH (1-29)-NH2, respectively, at 5 min and 5.6, 1.8, 1.9 and 1.8 times higher, respectively, at 15 min. After sc administration, analogs MZ-2-51, MZ-2-57 and MZ-2-75 showed to be 34.3, 14.3 and 10.5 times more potent than the parent hormone at 15 min and 179.1, 88.9 and 45.0 times more active, respectively, at 30 min. In addition, MZ-2-51 had prolonged GH-releasing activity as compared to the standard. We also compared the activity of MZ-2-51 and MZ-2-57 with their homologous L-Arg and D-Arg analogs [desNH2-Tyr1,Ala15,Nle27] GH-RH(1-29)-NH2 (MZ-2-117), [des-NH2Tyr1,D-Lys12, Ala15, Nle27] GH-RH(1-29)NH2 (MZ-2-123) and [desNH2-Tyr1,D-Lys12,Ala15, Nle27,D-Arg29] GH-RH(1-29)NH2 (MZ-2-135) after intramuscular (im) injection. MZ-2-51 induced a somewhat greater GH release than MZ-2-117 at 15 min, both responses being larger than the controls (p less than 0.01) at 15 and 30 min. MZ-2-57, MZ-2-123 and MZ-2-135 given i.m. were able to stimulate GH release only at 15 minutes (p less than 0.05). Animals injected i.m. with MZ-2-51, but not with MZ-2-117, showed GH levels significantly higher than the control group (p less than 0.05) at 60 min. GH-RH(1-29)NH2 had low activity intramuscularly when tested at a dose of 2.5 micrograms. No toxic effects were observed after the iv administration of 1 mg/kg of Agm GH-RH analogs. These results indicate that our Agm analogs are active iv, sc and im and that the substitutions made in these

  2. Video game playing increases food intake in adolescents: a randomized crossover study.

    PubMed

    Chaput, Jean-Philippe; Visby, Trine; Nyby, Signe; Klingenberg, Lars; Gregersen, Nikolaj T; Tremblay, Angelo; Astrup, Arne; Sjödin, Anders

    2011-06-01

    Video game playing has been linked to obesity in many observational studies. However, the influence of this sedentary activity on food intake is unknown. The objective was to examine the acute effects of sedentary video game play on various components of energy balance. With the use of a randomized crossover design, 22 healthy, normal-weight, male adolescents (mean ± SD age: 16.7 ± 1.1 y) completed two 1-h experimental conditions, namely video game play and rest in a sitting position, followed by an ad libitum lunch. The endpoints were spontaneous food intake, energy expenditure, stress markers, appetite sensations, and profiles of appetite-related hormones. Heart rate, systolic and diastolic blood pressures, sympathetic tone, and mental workload were significantly higher during the video game play condition than during the resting condition (P < 0.05). Although energy expenditure was significantly higher during video game play than during rest (mean increase over resting: 89 kJ; P < 0.01), ad libitum energy intake after video game play exceeded that measured after rest by 335 kJ (P < 0.05). A daily energy surplus of 682 kJ (163 kcal) over resting (P < 0.01) was observed in the video game play condition. The increase in food intake associated with video game play was observed without increased sensations of hunger and was not compensated for during the rest of the day. Finally, the profiles of glucose, insulin, cortisol, and ghrelin did not suggest an up-regulation of appetite during the video game play condition. A single session of video game play in healthy male adolescents is associated with an increased food intake, regardless of appetite sensations. The trial was registered at clinicaltrials.gov as NCT01013246.

  3. Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males

    PubMed Central

    ALAJMI, NAWAL; DEIGHTON, KEVIN; KING, JAMES A.; REISCHAK-OLIVEIRA, ALVARO; WASSE, LUCY K.; JONES, JENNY; BATTERHAM, RACHEL L.; STENSEL, DAVID J.

    2016-01-01

    ABSTRACT Purpose To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods In experiment one, 12 healthy women completed three 9-h trials (control, exercise-induced (Ex-Def) and food restriction–induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90-min run, ∼70% of V˙O2max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7-h trials (control and exercise). Sixty minutes of running (∼70% of V˙O2max) was performed at the beginning of the exercise trial. The participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones, and ad libitum energy intake were assessed during main trials. Results In experiment one, an energy deficit of approximately 3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3–36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than in control, but energy intake did not differ between trials. The appetite, acylated ghrelin, and energy intake response to exercise did not differ between men and women. Conclusions Women exhibit compensatory appetite, gut hormone, and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women seem to exhibit similar acylated ghrelin and PYY3–36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women. PMID:26465216

  4. Assessment of physical activity, energy expenditure and energy intakes of young men practicing aerobic sports.

    PubMed

    Wierniuk, Alicja; Włodarek, Dariusz

    2014-01-01

    Adequate nutrition and energy intake play key rule during the training period and recovery time. The assessment of athlete's energetic needs should be calculated individually, based on personal energy expenditure and Sense Wear PRO3 Armband (SWA) mobile monitor is a useful tool to achieve this goal. However, there is still few studies conducted with use of this monitor. To assess individual energy needs of athletes by use of SWA and to determine whether their energy intake fulfils the body's energy expenditure. Subjects were 15 male students attending Military University of Technology in Warsaw, aged 19-24 years, practicing aerobic. The average body mass was 80.7 ± 7.7 kg and average height was 186.9 ± 5.2 cm, (BMI 23.09 ± 1.85 kg/m2). Assessment of physical activity and energy expenditure (TEE) was established using SWA, which was placed on the back side of dominant hand and worn continuously for 48 hours (during the training and non-training day). The presented results are the average values of these 2 days. Assessment of athletes' physical activity level was established by use of metabolic equivalent of task (MET) and number of steps (NS). Estimation of energy intake was based on three-day dietary recalls (two weekdays and one day of the weekend), evaluated using the Polish Software 'Energia' package. The average TEE of examined athletes was 3877 ± 508 kcal/day and almost half of this energy was spend on physical activity (1898 ± 634 kcal/day). The number of steps was on average 19498 ± 5407 and average MET was 2.05 ± 2.09. The average daily energy intake was 2727 ± 576 kcal. Athletes consumed inadequate amount of energy in comparison to their energy expenditure. Examined group did not have an adequate knowledge about their energy requirement, which shows the need of nutritional consulting and education among these athletes. athletes, aerobic sports, energy expenditure, energy intake.

  5. Vitamin D and Calcium Intakes, Physical Activity, and Calcaneus BMC among School-Going 13-Year Old Malaysian Adolescents

    PubMed Central

    Suriawati, A. A.; Abdul Majid, Hazreen; Al-Sadat, Nabilla; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid

    2016-01-01

    Background: Dietary calcium and vitamin D are essential for bone development. Apart from diet, physical activity may potentially improve and sustain bone health. Objective: To investigate the relationship between the dietary intake of calcium and vitamin D, physical activity, and bone mineral content (BMC) in 13-year-old Malaysian adolescents. Design: Cross-sectional. Setting: Selected public secondary schools from the central and northern regions of Peninsular Malaysia. Participants: The subjects were from the Malaysian Health and Adolescents Longitudinal Research Team Cohort study (MyHeARTs). Methods: The data included seven-day diet histories, anthropometric measurements, and the BMC of calcaneal bone using a portable broadband ultrasound bone densitometer. Nutritionist Pro software was used to calculate the dietary calcium and vitamin D intakes from the diet histories, based on the Nutrient Composition of Malaysian Food Database guidance for the dietary calcium intake and the Singapore Energy and Nutrient Composition of Food Database for vitamin D intake. Results: A total of 289 adolescents (65.7% females) were recruited. The average dietary intakes of calcium and vitamin D were 377 ± 12 mg/day and 2.51 ± 0.12 µg/day, respectively, with the majority of subjects failing to meet the Recommended Nutrient Intake (RNI) of Malaysia for dietary calcium and vitamin D. All the subjects had a normal Z-score for the BMC (−2.00 or higher) with a mean of 0.55 ± 0.01. From the statistical analysis of the factors contributing to BMC, it was found that for those subjects with a higher intake of vitamin D, a higher combination of the intake of vitamin D and calcium resulted in significantly higher BMC quartiles. The regression analysis showed that the BMC might have been influenced by the vitamin D intake. Conclusions: A combination of the intake of vitamin D and calcium is positively associated with the BMC. PMID:27783041

  6. Food intake does not differ between obese women who are metabolically healthy or abnormal.

    PubMed

    Kimokoti, Ruth W; Judd, Suzanne E; Shikany, James M; Newby, P K

    2014-12-01

    Metabolically healthy obesity may confer lower risk of adverse health outcomes compared with abnormal obesity. Diet and race are postulated to influence the phenotype, but their roles and their interrelations on healthy obesity are unclear. We evaluated food intakes of metabolically healthy obese women in comparison to intakes of their metabolically healthy normal-weight and metabolically abnormal obese counterparts. This was a cross-sectional study in 6964 women of the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Participants were aged 45-98 y with a body mass index (BMI; kg/m(2)) ≥18.5 and free of cardiovascular diseases, diabetes, and cancer. Food intake was collected by using a food-frequency questionnaire. BMI phenotypes were defined by using metabolic syndrome (MetS) and homeostasis model assessment of insulin resistance (HOMA-IR) criteria. Mean differences in food intakes among BMI phenotypes were compared by using ANCOVA. Approximately one-half of obese women (white: 45%; black: 55%) as defined by MetS criteria and approximately one-quarter of obese women (white: 28%; black: 24%) defined on the basis of HOMA-IR values were metabolically healthy. In age-adjusted analyses, healthy obesity and normal weight as defined by both criteria were associated with lower intakes of sugar-sweetened beverages compared with abnormal obesity among both white and black women (P < 0.05). HOMA-IR-defined healthy obesity and normal weight were also associated with higher fruit and low-fat dairy intakes compared with abnormal obesity in white women (P < 0.05). Results were attenuated and became nonsignificant in multivariable-adjusted models that additionally adjusted for BMI, marital status, residential region, education, annual income, alcohol intake, multivitamin use, cigarette smoking status, physical activity, television viewing, high-sensitivity C-reactive protein, menopausal status, hormone therapy, and food intakes. Healthy obesity was not

  7. Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity

    PubMed Central

    Mas-Muñoz, Julia; Komen, Hans; Schneider, Oliver; Visch, Sander W.; Schrama, Johan W.

    2011-01-01

    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg0.8/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: “Novel Environment” and “Light Avoidance”. Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = −0.65 and r = −0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = −0.55) and growth (r = −0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity. PMID:21738651

  8. Feeding behaviour, swimming activity and boldness explain variation in feed intake and growth of sole (Solea solea) reared in captivity.

    PubMed

    Mas-Muñoz, Julia; Komen, Hans; Schneider, Oliver; Visch, Sander W; Schrama, Johan W

    2011-01-01

    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg(0.8)/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: "Novel Environment" and "Light Avoidance". Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = -0.65 and r = -0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = -0.55) and growth (r = -0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity.

  9. Synthesis and in vitro and in vivo activity of analogs of growth hormone-releasing hormone (GH-RH) with C-terminal agmatine.

    PubMed

    Zarandi, M; Csernus, V; Bokser, L; Bajusz, S; Groot, K; Schally, A V

    1990-12-01

    In the search for more active analogs of human growth hormone-releasing hormone (GH-RH), 37 new compounds were synthesized by solid phase methodology, purified, and tested biologically. Most of the analogs contained a sequence of 27 amino acids and N-terminal desaminotyrosine (Dat) and C-terminal agmatine (Agm), which are not amino acids. In addition to Dat in position 1 and Agm in position 29, the majority of the analogs had Ala15 and Nle27 substitutions and one or more additional L- or D-amino acid modifications. [Dat1, Ala15, Nle27]GH-RH(1-28)Agm (MZ-2-51) was the most active analog. Its in vitro GH-releasing potency was 10.5 times higher than that of GH-RH(1-29)NH2 and in the i.v. in vivo assay, MZ-2-51 was 4-5 times more active than the standard. After s.c. administration to rats. MZ-2-51 showed an activity 34 times higher at 15 min and 179 times greater at 30 min than GH-RH(1-29)NH2 and also displayed a prolonged activity. D-Tyr10, D-Lys12, and D-Lys21 homologs of MZ-2-51 also showed enhanced activities. Thus, [Dat1, D-Tyr10, Ala15, Nle27]GH-RH(1-28)Agm (MZ-2-159), [Dat1, D-Lys12, Ala15, Nle27]GH-RH(1-28)AGM (MZ-2-57), and [Dat1, Ala15, D-Lys21, Nle27]GH-RH(1-28)Agm (MZ-2-75) were 4-6 times more active in vitro than GH-RH(1-29)NH2. In vivo, after i.v. administration, analog MZ-2-75 was equipotent and analogs MZ-2-159 and MZ-2-57 about twice as potent as the standard.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. The Effect of the Home Environment on Physical Activity and Dietary Intake in Preschool Children

    PubMed Central

    Østbye, Truls; Malhotra, Rahul; Stroo, Marissa; Lovelady, Cheryl; Brouwer, Rebecca; Zucker, Nancy; Fuemmeler, Bernard

    2013-01-01

    Background The effects of the home environment on child health behaviors related to obesity are unclear. Purpose To examine the role of the home physical activity (PA) and food environment on corresponding outcomes in young children, and assess maternal education/work status as a moderator. Methods Overweight or obese mothers reported on the home PA and food environment (accessibility, role modeling and parental policies). Outcomes included child moderate-vigorous PA (MVPA) and sedentary time derived from accelerometer data and two dietary factors (“junk” and healthy food intake scores) based on factor analysis of mother-reported food intake. Linear regression models assessed the net effect (controlling for child demographics, study arm, supplemental timepoint, maternal education/work status, child body mass index and accelerometer wear-time (for PA outcomes)) of the home environment on the outcomes and moderation by maternal education/work status. Data was collected in North Carolina from 2007–2011. Results Parental policies supporting PA increased MVPA time, and limiting access to unhealthy foods increased the healthy food intake score. Role modeling of healthy eating behaviors increased the healthy food intake score among children of mothers with no college education. Among children of mothers with no college education and not working, limiting access to unhealthy foods and role modeling reduced “junk” food intake scores while parental policies supporting family meals increased “junk” food intake scores. Conclusions To promote MVPA, parental policies supporting child PA are warranted. Limited access to unhealthy foods and role modeling of healthy eating may improve the quality of the child’s food intake. PMID:23736357

  11. The effect of the home environment on physical activity and dietary intake in preschool children.

    PubMed

    Østbye, T; Malhotra, R; Stroo, M; Lovelady, C; Brouwer, R; Zucker, N; Fuemmeler, B

    2013-10-01

    The effects of the home environment on child health behaviors related to obesity are unclear. To examine the role of the home physical activity (PA) and food environment on corresponding outcomes in young children, and assess maternal education/work status as a moderator. Overweight or obese mothers reported on the home PA and food environment (accessibility, role modeling and parental policies). Outcomes included child moderate-vigorous PA (MVPA) and sedentary time derived from accelerometer data and two dietary factors ('junk' and healthy food intake scores) based on factor analysis of mother-reported food intake. Linear regression models assessed the net effect (controlling for child demographics, study arm, supplemental time point, maternal education/work status, child body mass index and accelerometer wear time (for PA outcomes)) of the home environment on the outcomes and moderation by maternal education/work status. Data were collected in North Carolina from 2007 to 2011. Parental policies supporting PA increased MVPA time, and limiting access to unhealthy foods increased the healthy food intake score. Role modeling of healthy eating behaviors increased the healthy food intake score among children of mothers with no college education. Among children of mothers with no college education and not working, limiting access to unhealthy foods and role modeling reduced 'junk' food intake scores whereas parental policies supporting family meals increased 'junk' food intake scores. To promote MVPA, parental policies supporting child PA are warranted. Limited access to unhealthy foods and role modeling of healthy eating may improve the quality of the child's food intake.

  12. What is the role of metabolic hormones in taste buds of the tongue.

    PubMed

    Cai, Huan; Maudsley, Stuart; Martin, Bronwen

    2014-01-01

    Gustation is one of the important chemical senses that guides the organism to identify nutrition while avoiding toxic chemicals. An increasing number of metabolic hormones and/or hormone receptors have been identified in the taste buds of the tongue and are involved in modulating taste perception. The gustatory system constitutes an additional endocrine regulatory locus that affects food intake, and in turn whole-body energy homeostasis. Here we provide an overview of the main metabolic hormones known to be present in the taste buds of the tongue; discuss their potential functional roles in taste perception and energy homeostasis and how their functional integrity is altered in the metabolic imbalance status (obesity and diabetes) and aging process. Better understanding of the functional roles of metabolic hormones in flavor perception as well as the link between taste perception and peripheral metabolism may be vital for developing strategies to promote healthier eating and prevent obesity or lifestyle-related disorders. © 2014 S. Karger AG, Basel.

  13. Advances on human milk hormones and protection against obesity.

    PubMed

    Savino, F; Benetti, S; Liguori, S A; Sorrenti, M; Cordero Di Montezemolo, L

    2013-11-03

    Extensive research shows that breast milk could have positive health effects not limited to infancy, but extend into childhood and adulthood. Recently many studies have provided new evidence on the long—term positive effects of breastfeeding, in particular protection against obesity and type 2 diabetes, suggesting that breast milk may have a role in the programming of later metabolic diseases. The mechanism throughout breastfeeding that exerts these effects has been a major focus of interest for researchers and it is still not completely known. There are some hints for biological plausibility of beneficial effects of breastfeeding including macronutrient intake, hormonal and behavioural mechanisms related to breast milk composition. Breast milk biochemical components, such as protein quantity and quality, polyunsaturated fatty acids, oligosaccharides, cytokines and hormones, in particular leptin, adiponectin and resistin together with the breastfeeding practice itself can influence infants feeding behaviour and regulation of growth and appetite control later in life. Further research is needed to confirm the possibility that hormones present in breast milk exert a metabolic and beneficial effects.

  14. Effects of Growth Hormone and Nutritional Therapy in Boys with Constitutional Growth Delay: A Randomized Controlled Trial

    PubMed Central

    Han, Joan C.; Damaso, Ligeia; Welch, Susan; Balagopal, Prabhakaran; Hossain, Jobayer; Mauras, Nelly

    2010-01-01

    Objective To examine whether supplemental nutrition augments the anabolic actions of growth hormone (GH) in boys with constitutional delay of growth and maturation (CDGM). Study design We conducted a randomized, controlled trial at an outpatient clinical research center. Subjects were 20 prepubertal boys (age 9.3±1.3y) with CDGM (height-SDS -2.0±0.5, bone age delay 1.8±0.8y, BMI-SDS -1.2±1.0, peak stimulated GH 15.7±7.7ng/mL), who were randomized (N=10/group) to 6 months observation or daily nutritional supplementation, followed by additional daily GH therapy in all for another 12 months. T-tests and repeated measures ANOVAs compared energy intake, total energy expenditure (TEE), growth, hormones and nutrition markers. Results Energy intake was increased at 6 months within the Nutrition (p=0.04) but not the Observation group, and TEE was not statistically different within either group at 6 months. Addition of 6 months GH resulted in higher energy intake and TEE in the GH/Nutrition group at 12 months (p<0.01), but not in the GH group vs. baseline. Height, weight, lean body mass, hormones and nutrition markers increased comparably in both groups throughout 18 months. Conclusions Boys with CDGM utilize energy at an accelerated rate, an imbalance not overcome with added nutrition. GH therapy increases growth comparably with or without added nutrition in these patients. PMID:20961566

  15. Association between childcare educators’ practices and preschoolers’ physical activity and dietary intake: a cross-sectional analysis

    PubMed Central

    Ward, Stéphanie; Blanger, Mathieu; Donovan, Denise; Vatanparast, Hassan; Muhajarine, Nazeem; Leis, Anne; Humbert, M Louise; Carrier, Natalie

    2017-01-01

    Introduction Childcare educators may be role models for healthy eating and physical activity (PA) behaviours among young children. This study aimed to identify which childcare educators’ practices are associated with preschoolers’ dietary intake and PA levels. Methods This cross-sectional analysis included 723 preschoolers from 50 randomly selected childcare centres in two Canadian provinces. All data were collected in the fall of 2013 and 2014 and analysed in the fall of 2015. PA was assessed using Actical accelerometers during childcare hours for 5 consecutive days. Children’s dietary intake was measured at lunch on 2 consecutive days using weighed plate waste and digital photography. Childcare educators’ nutrition practices (modelling, nutrition education, satiety recognition, verbal encouragement and not using food as rewards) and PA practices (informal and formal PA promotion) were assessed by direct observation over the course of 2 days, using the Nutrition and Physical Activity Self-Assessment for Child Care tool. Associations between educators’ practices and preschoolers’ PA and dietary intake were examined using multilevel linear regressions. Results Overall, modelling of healthy eating was positively associated with children’s intake of sugar (β=0.141, 95% CI 0.03 to 0.27), while calorie (β=−0.456, 95% CI −1.46 to –0.02) and fibre intake (β=−0.066, 95% CI −0.12 to –0.01) were negatively associated with providing nutrition education. Not using food as rewards was also negatively associated with fat intake (β=−0.144, 95% CI −0.52 to –0.002). None of the educators’ PA practices were associated with children’s participation in PA. Conclusions Modelling healthy eating, providing nutrition education and not using food as rewards are associated with children’s dietary intake at lunch in childcare centres, highlighting the role that educators play in shaping preschoolers’ eating behaviours. Although PA

  16. Pituitary and ovarian hormone activity during the 7-day hormone-free interval of various combined oral contraceptive regimens.

    PubMed

    Cho, Michael; Atrio, Jessica; Lim, Aaron H; Azen, Colleen; Stanczyk, Frank Z

    2014-07-01

    The objective was to investigate changes in luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2) and progesterone (P) during the hormone-free interval (HFI) of 6 combined oral contraceptives (COCs). Blood samples were obtained from 62 women. When COCs were grouped by ethinyl estradiol (EE) dose, there was a significant positive mean slope for LH and FSH during the HFI for the 30- and 35 mcg-EE doses, whereas 20 showed a gradual nonsignificant slope. All E2 slopes were significant. P remained suppressed with all doses. A more rapid rebound of gonadotropin levels is found with higher doses of EE during the HFI. This study showed a more rapid rebound of pituitary hormone levels among women using higher-EE-dosage formulations, which was demonstrated by the statistically significant slope for mean LH and FSH from day 1 to day 7 of the HFI. The degree of suppression did not vary across progestin generations. It remains to be established whether women who experience side effects during their HFI may benefit from using a COC with a lower EE dose to minimize changes in endogenous pituitary hormone levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Gastroenteric hormone responses to hedonic eating in healthy humans.

    PubMed

    Monteleone, Palmiero; Scognamiglio, Pasquale; Monteleone, Alessio Maria; Perillo, Donato; Canestrelli, Benedetta; Maj, Mario

    2013-08-01

    Hedonic eating differentiates from homeostatic eating on two main aspects: the first one is that eating occurs when there is no need for calorie ingestion and the second one is that the food is consumed exclusively for its gustatory and rewarding properties. Gastroeneteric hormones such as ghrelin, colecystokinin-33 (CCK) and peptide YY3-36 (PYY3-36) are known to play a pivotal role in the homeostatic control of food intake. To the contrary, their role in hedonic eating has been never investigated. Here we report peripheral responses of CCK, PYY3-36 and ghrelin to the consumption of food for pleasure in well-nourished satiated healthy subjects. Plasma levels of CCK, PYY3-36 and ghrelin were measured in 7 satiated healthy subjects before and after ad libitum consumption of both a highly pleasurable food (hedonic eating) and an isoenergetic non-pleasurable food (non-hedonic eating). The consumption of food for pleasure was associated to a significantly increased production of the hunger hormone ghrelin and a significantly decreased secretion of the satiety hormone CCK. No significant changes in plasma PYY3-36 levels occurred in the two eating conditions. These preliminary data demonstrate that in hedonic eating the peripheral hunger signal represented by ghrelin secretion is enhanced while the satiety signal of CCK production is decreased. This could be responsible for the persistence of peripheral cues allowing a continued eating as well as for the activation of endogenous reward mechanisms, which can drive food consumption in spite of no energy need, only for reward. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis

    PubMed Central

    Conde-Sieira, Marta; Soengas, José L.

    2017-01-01

    Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells. PMID:28111540

  19. Assessment of dietary choices of young women in the contexts of hormonal contraceptives

    PubMed

    Friedrich, Mariola; Junak, Magdalena

    Metabolic changes caused by hormonal contraception combined with unbalanced diet may pose many threats, and deficiency or excess of nutrients may increase the risk of using such contraceptives. The purpose of the survey was to assess the dietary choices of young women using hormonal contraceptives, taking into account their general knowledge about the contraception and its impact on their bodies. The survey comprised 67 women aged from 18 to 25 years. In of three-day menus (201 daily food rations) of the women under research the content of energy and most of nutritious ingredients wandered away from recommended values in Poland. Each respondent additionally filled in a questionnaire concerning her: anthropometric data, education, place of residence; the type, name and time of taking contraceptives; purpose for using hormonal contraception along with its determinants; duration of use, breaks in contraceptive practice; occurrence of side effects during contraceptive use; stimulants used; physical activity, incidence of diarrhoea and vomiting, and dietary supplements use. The assessment of nutritional status of young women taking hormonal contraceptives has shown a number of nonconformities. The survey has revealed insufficient energy value of the menus, and incorrect proportions of basic nutrients, from recommended values, what was reflected in insufficient intake of vitamins (A, D, E, C, B1, B3, B6, and folates) and minerals (K, Ca, Mg, Fe). An excessive consumption of proteins, animal-based in particular, and insufficient consumption of lipids and carbohydrates, polysaccharides in particular, what resulted in insufficient consumption of dietary fibre. Nutritional choices of the respondents were typical to their gender and age, but were not adjusted to the use of hormonal contraceptives. Side effects observed by the respondents, mainly weight gain, may have been a summary result of improper eating behaviors that facilitated accumulation of body fat and water.

  20. Thyroid Function among Breastfed Children with Chronically Excessive Iodine Intakes

    PubMed Central

    Aakre, Inger; Strand, Tor A.; Bjøro, Trine; Norheim, Ingrid; Barikmo, Ingrid; Ares, Susana; Alcorta, Marta Duque; Henjum, Sigrun

    2016-01-01

    Iodine excess may impair thyroid function and trigger adverse health consequences for children. This study aims to describe iodine status among breastfed infants with high iodine exposure in the Saharawi refugee camps Algeria, and further assess thyroid function and iodine status among the children three years later. In 2010, a cross-sectional study among 111 breastfed children aged 0–6 months was performed (baseline study). In 2013, a second cross-sectional study (follow-up study) was conducted among 289 children; 213 newly selected and 76 children retrieved from baseline. Urinary iodine concentration (UIC) and breast milk iodine concentration (BMIC) were measured at baseline. UIC, thyroid hormones and serum thyroglobulin (Tg) were measured at follow-up. At baseline and follow-up, 88% and 72% had excessive iodine intakes (UIC ≥ 300 µg/L), respectively. At follow-up, 24% had a thyroid hormone disturbance and/or elevated serum Tg, including 9% with subclinical hypothyroidism (SCH), 4% with elevated fT3 and 14% with elevated Tg. Children with SCH had poorer linear growth and were more likely to be underweight than the children without SCH. Excessive iodine intakes and thyroid disturbances were common among children below four years of age in our study. Further, SCH seemed to be associated with poor growth and weight. PMID:27367720

  1. Effects of phyto-oestrogen quercetin on productive performance, hormones, reproductive organs and apoptotic genes in laying hens.

    PubMed

    Yang, J X; Chaudhry, M T; Yao, J Y; Wang, S N; Zhou, B; Wang, M; Han, C Y; You, Y; Li, Y

    2018-04-01

    Quercetin, a polyphenolic flavonoid with diverse biological activities including anti-inflammatory and antiviral, inhibits lipid peroxidation, prevents oxidative injury and cell death. The purpose of the research was to investigate the effect of quercetin on productive performance, reproductive organs, hormones and apoptotic genes in laying hens between 37 and 45 weeks of age, because of the structure and oestrogenic activities similar to 17β-oestradiol. The trial was conducted using 240 Hessian laying hens (37 weeks old), housed in wire cages with two hens in each cage. These hens were randomly allotted to four treatments with six replicates, 10 hens in each replicate and fed with diets containing quercetin as 0, 0.2, 0.4 and 0.6 g/kg feed for 8 weeks. The results showed that dietary quercetin significantly increased (p < .05) the laying rate and was higher in group supplemented with 0.4 g/kg, and feed-egg ratio was decreased (p < .05) by quercetin. Dietary quercetin has no effect (p > .05) on average egg weight and average daily feed intake. Compared with control, secretion of hormones, oestradiol (E 2 ) , progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), insulin-like growth factors-1 (IGF-1) and growth hormone (GH), was found to be significantly higher (p < .05) in quercetin-supplemented groups. Also ovary index, uterus index and oviduct index were not significantly influenced (p > .05) by quercetin, whereas magnum index, isthmus index, magnum length, isthmus length and follicle numbers were significantly increased (p < .05) with quercetin supplementation. Additionally, expression of apoptotic genes was significantly (p < .05) up-regulated or down-regulated by quercetin. These results indicated that quercetin improved productive performance, and its mechanism may be due to the oestrogen-like activities of quercetin. © 2017 Blackwell Verlag GmbH.

  2. Fruit and vegetable intake and risk of breast cancer by hormone receptor status.

    PubMed

    Jung, Seungyoun; Spiegelman, Donna; Baglietto, Laura; Bernstein, Leslie; Boggs, Deborah A; van den Brandt, Piet A; Buring, Julie E; Cerhan, James R; Gaudet, Mia M; Giles, Graham G; Goodman, Gary; Hakansson, Niclas; Hankinson, Susan E; Helzlsouer, Kathy; Horn-Ross, Pamela L; Inoue, Manami; Krogh, Vittorio; Lof, Marie; McCullough, Marjorie L; Miller, Anthony B; Neuhouser, Marian L; Palmer, Julie R; Park, Yikyung; Robien, Kim; Rohan, Thomas E; Scarmo, Stephanie; Schairer, Catherine; Schouten, Leo J; Shikany, James M; Sieri, Sabina; Tsugane, Schoichiro; Visvanathan, Kala; Weiderpass, Elisabete; Willett, Walter C; Wolk, Alicja; Zeleniuch-Jacquotte, Anne; Zhang, Shumin M; Zhang, Xuehong; Ziegler, Regina G; Smith-Warner, Stephanie A

    2013-02-06

    Estrogen receptor-negative (ER(-)) breast cancer has few known or modifiable risk factors. Because ER(-) tumors account for only 15% to 20% of breast cancers, large pooled analyses are necessary to evaluate precisely the suspected inverse association between fruit and vegetable intake and risk of ER(-) breast cancer. Among 993 466 women followed for 11 to 20 years in 20 cohort studies, we documented 19 869 estrogen receptor positive (ER(+)) and 4821 ER(-) breast cancers. We calculated study-specific multivariable relative risks (RRs) and 95% confidence intervals (CIs) using Cox proportional hazards regression analyses and then combined them using a random-effects model. All statistical tests were two-sided. Total fruit and vegetable intake was statistically significantly inversely associated with risk of ER(-) breast cancer but not with risk of breast cancer overall or of ER(+) tumors. The inverse association for ER(-) tumors was observed primarily for vegetable consumption. The pooled relative risks comparing the highest vs lowest quintile of total vegetable consumption were 0.82 (95% CI = 0.74 to 0.90) for ER(-) breast cancer and 1.04 (95% CI = 0.97 to 1.11) for ER(+) breast cancer (P (common-effects) by ER status < .001). Total fruit consumption was non-statistically significantly associated with risk of ER(-) breast cancer (pooled multivariable RR comparing the highest vs lowest quintile = 0.94, 95% CI = 0.85 to 1.04). We observed no association between total fruit and vegetable intake and risk of overall breast cancer. However, vegetable consumption was inversely associated with risk of ER(-) breast cancer in our large pooled analyses.

  3. Evaluation of Dietary Intake, Leisure-Time Physical Activity, and Metabolic Profile in Women with Mutation in the LMNA Gene.

    PubMed

    Monteiro, Luciana; Foss-Freitas, Maria Cristina; Navarro, Anderson; Pereira, Francisco; Coeli, Fernanda; Carneseca, Estela; Júnior, Renan Montenegro; Foss, Milton

    2017-01-01

    Familial partial lipodystrophy (FPL) is a rare genetic disorder characterized by selective lack of subcutaneous fat, which is associated with insulin-resistant diabetes. The Dunnigan variety (FPLD2) is caused by several missense mutations in the lamin A/C (LMNA) gene, most of which are typically located in exon 8 at the codon position 482. The aim of this study was to assess and compare the dietary intake, leisure-time physical activity (LTPA), and biochemical measurements (glucose, A1C, and plasma lipids) in women with FPLD2 and without (control group, CG) and to examine the associations between dietary intake and biochemical measurements (BM). LTPA was measured with a questionnaire and metabolic equivalent (MET) hours per week (hours/week) were calculated. Dietary intake by the 3-day recall method and clinical laboratory parameters were collected. Characteristics of women with FPLD2: 35.8 ± 13.9 years, fat mass = 10 ± 2.3 kg and fat free mass = 41.4 ± 4.5 kg (p < 0.05). Women with FPLD2 showed a smaller intake of energy (kcal), lipids, and carbohydrates and a large intake of protein (p < 0.01) compared to CG. Comparing the 2 groups in terms of LTPA, 78% of women with FPLD2 performed insufficient physical activity. In addition, they had a higher levels of glucose, A1C, and triglycerides (TG) and lower levels of high-density lipoprotein (HDL). There was no correlation between dietary intake and biochemical measurements. Women with FPLD2 have a lower intake of energy (kcal), lipids, and carbohydrates and greater changes in biochemical measurements. Because this is a rare disease, future studies are needed with encouragement of the practice of physical activity and of healthy eating habits, preventing the onset of diseases.

  4. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    PubMed

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  5. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings

    PubMed Central

    Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25–47.4% and increased the rooting percentages of cuttings by 0.9–1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting. PMID:28231330

  6. Passive and active roles of fat-free mass in the control of energy intake and body composition regulation.

    PubMed

    Dulloo, A G; Jacquet, J; Miles-Chan, J L; Schutz, Y

    2017-03-01

    While putative feedback signals arising from adipose tissue are commonly assumed to provide the molecular links between the body's long-term energy requirements and energy intake, the available evidence suggests that the lean body or fat-free mass (FFM) also plays a role in the drive to eat. A distinction must, however, be made between a 'passive' role of FFM in driving energy intake, which is likely to be mediated by 'energy-sensing' mechanisms that translate FFM-induced energy requirements to energy intake, and a more 'active' role of FFM in the drive to eat through feedback signaling between FFM deficit and energy intake. Consequently, a loss of FFM that results from dieting or sedentarity should be viewed as a risk factor for weight regain and increased fatness not only because of the impact of the FFM deficit in lowering the maintenance energy requirement but also because of the body's attempt to restore FFM by overeating-a phenomenon referred to as 'collateral fattening'. A better understanding of these passive and active roles of FFM in the control of energy intake will necessitate the elucidation of peripheral signals and energy-sensing mechanisms that drive hunger and appetite, with implications for both obesity prevention and its management.

  7. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    PubMed

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P < 0.001); dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P < 0.001); light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P < 0.005)] with no significant difference in mean arterial pressure [wild type 110 +/- 0.3 vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  8. Dietary Slowly Digestible Starch Triggers the Gut-Brain Axis in Obese Rats with Accompanied Reduced Food Intake.

    PubMed

    Hasek, Like Y; Phillips, Robert J; Zhang, Genyi; Kinzig, Kimberly P; Kim, Choon Young; Powley, Terry L; Hamaker, Bruce R

    2018-03-01

    Slowly digestible starch (SDS), as a functional carbohydrate providing a slow and sustained glucose release, may be able to modulate food intake through activation of the gut-brain axis. Diet-induced obese rats were used to test the effect on feeding behavior of high-fat (HF) diets containing an SDS, fabricated to digest into the ileum, as compared to rapidly digestible starch (RDS). Ingestion of the HF-SDS diet over an 11-week period reduced daily food intake, through smaller meal size, to the same level as a lean body control group, while the group consuming the HF-RDS diet remained at a high food intake. Expression levels (mRNA) of the hypothalamic orexigenic neuropeptide Y (NPY) and Agouti-related peptide (AgRP) were significantly reduced, and the anorexigenic corticotropin-releasing hormone (CRH) was increased, in the HF-SDS fed group compared to the HF-RDS group, and to the level of the lean control group. SDS with digestion into the ileum reduced daily food intake and paralleled suppressed expression of appetite-stimulating neuropeptide genes associated with the gut-brain axis. This novel finding suggests further exploration involving a clinical study and potential development of SDS-based functional foods as an approach to obesity control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hormonal control of euryhalinity

    USGS Publications Warehouse

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  10. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel.

    PubMed

    Wang, Ming-Xiao; Cuevas, Catherina A; Su, Xiao-Tong; Wu, Peng; Gao, Zhong-Xiuzi; Lin, Dao-Hong; McCormick, James A; Yang, Chao-Ling; Wang, Wen-Hui; Ellison, David H

    2018-04-01

    Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Effect of dietary γ-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens.

    PubMed

    Zhang, Min; Zou, Xiao-Ting; Li, Hui; Dong, Xin-Yang; Zhao, Wenjing

    2012-02-01

    This study was conducted to evaluate the effect of γ-aminobutyric acid (GABA) on laying performance, egg quality, digestive enzyme activity, hormone level and immune activities in Roman hens under heat stress. Roman hens (320 days old) were fed with 0, 25, 50, 75 and 100 mg/kg GABA, respectively during a 60-day experiment. Compared with control, supplementation of 50 mg/kg GABA improved the laying performance and egg quality by significantly increasing egg production, average egg weight and shell strength (P < 0.05), while decreasing the feed-egg ratio and cholesterol level. Anti-oxidation activity was improved by significantly increasing the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), but decreasing malondialdehyde level in serum (P < 0.05), while significantly increasing the glucose and total protein (TP) level, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E(2) ), insulin, triiodothyronine (T(3) ) and free triiodothyronine (FT(3) ) levels, and IgG, IgA and complement (C3)activity in serum (P < 0.05). The results indicated that oral GABA improved laying performance and physical condition mainly by modulating hormone secretion, enhancing anti-oxidation and immune activity, and maintaining electrolyte balance. Fifty mg/kg was the optimum level for laying hens under heat stress in the present study. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  12. Effect of short-term vs. long-term elevation of dietary protein intake on responsiveness of rat thick ascending limbs to peptide hormones.

    PubMed

    Goldstein, David L; Plaga, Kimberly

    2002-10-01

    We compared the renal responses of rats on three diet regimens. Rats received either 8% protein food (low-protein, LP) for 10 weeks following weaning, 8% protein for 9 weeks followed by 1 week on 30% protein (short-term high-protein, SHP), or 30% protein for 10 weeks (high-protein, HP). Kidneys from HP rats were enlarged by approximately 50%, or 20% when corrected for body mass. Most of this hypertrophy resulted from enlargement of the inner stripe of the outer medulla, site of the thick ascending limbs (TAL), and TAL from HP rats were larger in diameter. SHP rats had TAL diameters similar to HP rats, but changes in renal mass or height of renal zones did not reach statistical significance. The activity of adenylyl cyclase (AC) in TAL, measured from the accumulation of cAMP in isolated tubules, increased with dose of both arginine vasopressin (AVP) and glucagon in all rats. However, HP rats had significantly higher hormone-induced AC activity than LP or SHP rats, which were not different from each other. Our results suggest that tubule hypertrophy may precede up-regulation of hormone-sensitive AC activity during the progression of renal response to elevated dietary protein.

  13. Food Intake Does Not Differ between Obese Women Who Are Metabolically Healthy or Abnormal1234

    PubMed Central

    Kimokoti, Ruth W; Judd, Suzanne E; Shikany, James M; Newby, PK

    2014-01-01

    Background: Metabolically healthy obesity may confer lower risk of adverse health outcomes compared with abnormal obesity. Diet and race are postulated to influence the phenotype, but their roles and their interrelations on healthy obesity are unclear. Objective: We evaluated food intakes of metabolically healthy obese women in comparison to intakes of their metabolically healthy normal-weight and metabolically abnormal obese counterparts. Methods: This was a cross-sectional study in 6964 women of the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Participants were aged 45–98 y with a body mass index (BMI; kg/m2) ≥18.5 and free of cardiovascular diseases, diabetes, and cancer. Food intake was collected by using a food-frequency questionnaire. BMI phenotypes were defined by using metabolic syndrome (MetS) and homeostasis model assessment of insulin resistance (HOMA-IR) criteria. Mean differences in food intakes among BMI phenotypes were compared by using ANCOVA. Results: Approximately one-half of obese women (white: 45%; black: 55%) as defined by MetS criteria and approximately one-quarter of obese women (white: 28%; black: 24%) defined on the basis of HOMA-IR values were metabolically healthy. In age-adjusted analyses, healthy obesity and normal weight as defined by both criteria were associated with lower intakes of sugar-sweetened beverages compared with abnormal obesity among both white and black women (P < 0.05). HOMA-IR–defined healthy obesity and normal weight were also associated with higher fruit and low-fat dairy intakes compared with abnormal obesity in white women (P < 0.05). Results were attenuated and became nonsignificant in multivariable-adjusted models that additionally adjusted for BMI, marital status, residential region, education, annual income, alcohol intake, multivitamin use, cigarette smoking status, physical activity, television viewing, high-sensitivity C-reactive protein, menopausal status, hormone therapy

  14. Sex-hormone-binding globulin.

    PubMed

    Anderson, D C

    1974-01-01

    A review was made to understand how plasma binding protein might influence sex-hormone action in target tissues. Steroids are predominately bound to plasma proteins and only unbound steroids enter the cells. Sex-hormone-binding globulin (SHBG) binds to both the main circulating steroid T and E2 but changes in SHBG concentrations exert significant results. Increased SHBG levels increase estrogen production and decreases T activity; whereas, increased androgens increase T action and inhibit SHBG production. These disturbances in hormone maintenance may lead to abnormal adult sex differentiation such as hirsutism and forms of hynaecomastia. By developing SHBG concentration measurement methods-responses of hirsutism to glucocorticoid or estrogem may be assessed. In addition, the effect of thyroid hormones on SHBG may also have therapeutic implications in endocrine disease.

  15. Ghrelin – A Pleiotropic Hormone Secreted from Endocrine X/A-Like Cells of the Stomach

    PubMed Central

    Stengel, Andreas; Taché, Yvette

    2012-01-01

    The gastric X/A-like endocrine cell receives growing attention due to its peptide products with ghrelin being the best characterized. This peptide hormone was identified a decade ago as a stimulator of food intake and to date remains the only known peripherally produced and centrally acting orexigenic hormone. In addition, subsequent studies identified numerous other functions of this peptide including the stimulation of gastrointestinal motility, the maintenance of energy homeostasis and an impact on reproduction. Moreover, ghrelin is also involved in the response to stress and assumed to play a role in coping functions and exert a modulatory action on immune pathways. Our knowledge on the regulation of ghrelin has markedly advanced during the past years by the identification of the ghrelin acylating enzyme, ghrelin-O-acyltransferase, and by the description of changes in expression, activation, and release under different metabolic as well as physically and psychically challenging conditions. However, our insight on regulatory processes of ghrelin at the cellular and subcellular levels is still very limited and warrants further investigation. PMID:22355282

  16. Differential effects of phosphotyrosine phosphatase expression on hormone-dependent and independent pp60c-src activity.

    PubMed

    Way, B A; Mooney, R A

    1994-10-26

    pp60c-src kinase activity can be increased by phosphotyrosine dephosphorylation or growth factor-dependent phosphorylation reactions. Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit growth factor receptor signal transduction (Mooney, RA, Freund, GG, Way, BA and Bordwell, KL (1992) J Biol Chem 267, 23443-23446). Here it is shown that PTPase expression decreased platelet-derived growth factor (PDGF)-dependent activation of pp60c-src but failed to increase hormone independent (basal) pp60c-src activity. PDGF-dependent tyrosine phosphorylation of its receptor was reduced by approximately 60% in cells expressing the PTPase. In contrast, a change in phosphotyrosine content of pp60c-src was not detected in response to PDGF or in PTPase+ cells. PDGF increased the intrinsic tyrosine kinase activity of pp60c-src in both control and PTPase+ cells, but the effect was smaller in PTPase+ cells. In an in vitro assay, hormone-stimulated pp60c-src autophosphorylation from PTPase+ cells was decreased 64 +/- 22%, and substrate phosphorylation by pp60c-src was reduced 54 +/- 16% compared to controls. Hormone-independent pp60c-src kinase activity was unchanged by expression of the PTPase. pp60c-src was, however, an in vitro substrate for CD45, being dephosphorylated at both the regulatory (Tyr527) and kinase domain (Tyr416) residues. In addition, in vitro dephosphorylation by CD45 increased pp60c-src activity. These findings suggest that the PDGF receptor was an in vivo substrate of CD45 but pp60c-src was not. The lack of activation of pp60c-src in the presence of expressed PTPase may demonstrate the importance of compartmentalization and/or accessory proteins to PTPase-substrate interactions.

  17. Thyroid hormone receptor alpha gene variants increase the risk of developing obesity and show gene-diet interactions.

    PubMed

    Fernández-Real, J M; Corella, D; Goumidi, L; Mercader, J M; Valdés, S; Rojo Martínez, G; Ortega, F; Martinez-Larrad, M-T; Gómez-Zumaquero, J M; Salas-Salvadó, J; Martinez González, M A; Covas, M I; Botas, P; Delgado, E; Cottel, D; Ferrieres, J; Amouyel, P; Ricart, W; Ros, E; Meirhaeghe, A; Serrano-Rios, M; Soriguer, F; Estruch, R

    2013-11-01

    Thyroid hormone receptor-beta resistance has been associated with metabolic traits. THRA gene sequencing of an obese woman (index case) who presented as empirical thyroid hormone receptor-α (THRA) resistance, disclosed a polymorphism (rs12939700) in a critical region involved in TRα alternative processing. THRA gene variants were evaluated in three independent europid populations (i) in two population cohorts at baseline (n=3417 and n=2265), 6 years later (n=2139) and (ii) in 4734 high cardiovascular risk subjects (HCVR, PREDIMED trial). The minor allele of the index case polymorphism (rs12939700), despite having a very low frequency (4%), was significantly associated with higher body mass index (BMI) (P=0.042) in HCVR subjects. A more frequent THRA polymorphism (rs1568400) was associated with higher BMI in subjects from the population (P=0.00008 and P=0.05) after adjusting for several confounders. Rs1568400 was also strongly associated with fasting triglycerides (P dominant=3.99 × 10(-5)). In the same sample, 6 years later, age and sex-adjusted risk of developing obesity was significantly increased in GG homozygotes (odds ratio 2.93 (95% confidence interval, 1.05-6.95)). In contrast, no association between rs1568400 and BMI was observed in HCVR subjects, in whom obesity was highly prevalent. This might be explained by the presence of an interaction (P <0.001) among the rs1568400 variant, BMI and saturated fat intake. Only when saturated fat intake was high (>24.5 g d(-1)), GG carriers showed a significantly higher BMI than A carriers after controlling for energy intake and physical activity. THRA gene polymorphisms are associated with obesity development. This is a novel observation linking the THRA locus to metabolic phenotypes.

  18. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    EPA Pesticide Factsheets

    behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).

  19. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study.

    PubMed

    Zhu, Xiangzhu; Shrubsole, Martha J; Ness, Reid M; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Jiang, Ming; Hou, Lifang; Kabagambe, Edmond K; Zhang, Bing; Smalley, Walter E; Edwards, Todd L; Giovannucci, Edward L; Zheng, Wei; Dai, Qi

    2016-10-01

    Some studies suggest that the calcium to magnesium ratio intakes modify the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence, and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. We conducted a two-phase study including 1336 cases and 2891 controls from the Tennessee Colorectal Polyp Study. In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (P for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥ 1000 mg/d) was significantly associated with 64% reduced adenoma risk (OR = 0.36 (95% CI : 0.18-0.74)) among those homozygous for the minor allele (TT genotype) (P for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found that highest magnesium intake was significantly associated with 27% reduced risk (OR = 0.73 (95% CI : 0.54-0.97)) of colorectal adenoma (P for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype, whereas magnesium intake was not linked to risk among those with the TT genotype. These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study

    PubMed Central

    Zhu, Xiangzhu; Shrubsole, Martha J.; Ness, Reid M.; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Ming, Jiang; Hou, Lifang; Kabagambe, Edmond K.; Zhang, Bing; Smalley, Walter E.; Edwards, Todd L.; Giovannucci, Edward L.; Zheng, Wei; Dai, Qi

    2016-01-01

    Background Some studies suggest that the calcium to magnesium ratio intakes modifies the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. Methods We conducted a two-phase study including 1,336 cases and 2,891 controls from the Tennessee Colorectal Polyp Study. Results In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (p for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥1000 mg/day) was significantly associated with 64% reduced adenoma risk (OR=0.36 (95% CI: 0.18–0.74)) among those homozygous for the minor allele (TT genotype) (p for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found highest magnesium intake was significantly associated with 27% reduced risk (OR=0.73 (95% CI: 0.54–0.97)) of colorectal adenoma (p for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype; whereas magnesium intake was not linked to risk among those with the TT genotype. Conclusions These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. PMID:26333203

  1. Bed rest suppresses bioassayable growth hormone release in response to muscle activity

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Goulet, C.; Grindeland, R. E.; Hodgson, J. A.; Bigbee, A. J.; Edgerton, V. R.

    1997-01-01

    Hormonal responses to muscle activity were studied in eight men before (-13 or -12 and -8 or -7 days), during (2 or 3, 8 or 9, and 13 or 14 days) and after (+2 or +3 and +10 or +11 days) 17 days of bed rest. Muscle activity consisted of a series of unilateral isometric plantar flexions, including 4 maximal voluntary contractions (MVCs), 48 contractions at 30% MVC, and 12 contractions at 80% MVC, all performed at a 4:1-s work-to-rest ratio. Blood was collected before and immediately after muscle activity to measure plasma growth hormone by radioimmunoassay (IGH) and by bioassay (BGH) of tibia epiphyseal cartilage growth in hypophysectomized rats. Plasma IGH was unchanged by muscle activity before, during, or after bed rest. Before bed rest, muscle activity increased (P < 0.05) BGH by 66% at -13 or -12 days (2,146 +/- 192 to 3,565 +/- 197 microg/l) and by 92% at -8 or -7 days (2,162 +/- 159 to 4,161 +/- 204 microg/l). After 2 or 3 days of bed rest, there was no response of BGH to the muscle activity, a pattern that persisted through 8 or 9 days of bed rest. However, after 13 or 14 days of bed rest, plasma concentration of BGH was significantly lower after than before muscle activity (2,594 +/- 211 to 2,085 +/- 109 microg/l). After completion of bed rest, muscle activity increased BGH by 31% at 2 or 3 days (1,807 +/- 117 to 2,379 +/- 473 microg/l; P < 0.05), and by 10 or 11 days the BGH response was similar to that before bed rest (1,881 +/- 75 to 4,160 +/- 315 microg/l; P < 0.05). These data demonstrate that the ambulatory state of an individual can have a major impact on the release of BGH, but not IGH, in response to a single bout of muscle activity.

  2. Effects of juvenile hormone (JH) analog insecticides on larval development and JH esterase activity in two spodopterans.

    PubMed

    El-Sheikh, El-Sayed A; Kamita, Shizuo G; Hammock, Bruce D

    2016-03-01

    Juvenile hormone analog (JHA) insecticides are biological and structural mimics of JH, a key insect developmental hormone. Toxic and anti-developmental effects of the JHA insecticides methoprene, fenoxycarb, and pyriproxyfen were investigated on the larval and pupal stages of Spodoptera littoralis and Spodoptera frugiperda. Bioassays showed that fenoxycarb has the highest toxicity and fastest speed of kill in 2nd instar S. littoralis. All three JHAs affected the development of 6th instar (i.e., final instar) and pupal S. frugiperda. JH esterase (JHE) is a critical enzyme that helps to regulate JH levels during insect development. JHE activity in the last instar S. littoralis and S. frugiperda was 11 and 23 nmol min(-1) ml(-1) hemolymph, respectively. Methoprene and pyriproxyfen showed poor inhibition of JHE activity from these insects, whereas fenoxycarb showed stronger inhibition. The inhibitory activity of fenoxycarb, however, was more than 1000-fold lower than that of OTFP, a highly potent inhibitor of JHEs. Surprisingly, topical application of methoprene, fenoxycarb or pyriproxyfen on 6th instars of S. littoralis and S. frugiperda prevented the dramatic reduction in JHE activity that was found in control insects. Our findings suggest that JHAs may function as JH agonists that play a disruptive role or a hormonal replacement role in S. littoralis and S. frugiperda. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Intake of Phthalate-tainted Foods and Serum Thyroid Hormones in Taiwanese Children and Adolescents

    NASA Astrophysics Data System (ADS)

    Tsai, Hui-Ju; Wu, Chia-Fang; Tsai, Yi-Chun; Huang, Po-Chin; Chen, Mei-Lien; Wang, Shu-Li; Chen, Bai-Hsiun; Chen, Chu-Chih; Wu, Wen-Chiu; Hsu, Pi-Shan; Hsiung, Chao A.; Wu, Ming-Tsang

    2016-07-01

    On April-May, 2011, phthalates, mainly Di-(2-ethylhexyl) phthalate (DEHP), were deliberately added to a variety of foodstuff as a substitute emulsifier in Taiwan. This study investigated the relationship between DEHP-tainted foodstuffs exposure and thyroid function in possibly affected children and adolescents. Two hundred fifty participants <18 years possibly exposed to DEHP were enrolled in this study between August 2012 and January 2013. Questionnaires were used to collect details on their past exposure to DEHP-tainted food items. Blood and urine samples were collected for biochemical workups to measure current exposure derived from three urinary DEHP metabolites using a creatinine excretion-based model. More than half of 250 participants were estimated to be exposed to DEHP-tainted foods found to exceed the recommend tolerable daily intake of DEHP established by the European Food Safety Authority (<50 μg/kg/day). The median daily DEHP intake (DDI) among those 250 participants was 46.52 μg/kg/day after multiple imputation. This value was ~10-fold higher than the current median DEHP intake (4.46 μg/kg/day, n = 240). Neither past nor current DEHP exposure intensity was significantly associated with serum thyroid profiles. Future studies may want to follow the long-term health effects of this food scandal in affected children and adolescents.

  4. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes

    PubMed Central

    Bolden, Ashley L.

    2015-01-01

    Background Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled “BPA-free.” Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes. Objectives This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA. Methods We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol. Results We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression. Conclusions Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects. Citation Rochester JR, Bolden AL. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123:643–650; http://dx.doi.org/10.1289/ehp.1408989 PMID:25775505

  5. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure.

    PubMed

    Dulka, Eden A; Moenter, Suzanne M

    2017-11-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.

  6. From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation

    PubMed Central

    Howick, Ken; Griffin, Brendan T.; Cryan, John F.; Schellekens, Harriët

    2017-01-01

    Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrally-mediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry. PMID:28134808

  7. Dietary fiber intake and risk of breast cancer defined by estrogen and progesterone receptor status: the Japan Public Health Center-based Prospective Study.

    PubMed

    Narita, Saki; Inoue, Manami; Saito, Eiko; Abe, Sarah K; Sawada, Norie; Ishihara, Junko; Iwasaki, Motoki; Yamaji, Taiki; Shimazu, Taichi; Sasazuki, Shizuka; Shibuya, Kenji; Tsugane, Shoichiro

    2017-06-01

    Epidemiological studies have suggested a protective effect of dietary fiber intake on breast cancer risk while the results have been inconsistent. Our study aimed to investigate the association between dietary fiber intake and breast cancer risk and to explore whether this association is modified by reproductive factors and hormone receptor status of the tumor. A total of 44,444 women aged 45 to 74 years from the Japan Public Health Center-based Prospective Study were included in analyses. Dietary intake assessment was performed using a validated 138-item food frequency questionnaire (FFQ). Hazard ratios (HRs) and 95% confidence intervals (CIs) for breast cancer incidence were calculated by multivariate Cox proportional hazards regression models. During 624,423 person-years of follow-up period, 681 breast cancer cases were identified. After adjusting for major confounders for breast cancer risk, inverse trends were observed but statistically non-significant. Extremely high intake of fiber was associated with decreased risk of breast cancer but this should be interpreted with caution due to limited statistical power. In stratified analyses by menopausal and hormone receptor status, null associations were observed except for ER-PR- status. Our findings suggest that extreme high fiber intake may be associated with decreased risk of breast cancer but the level of dietary fiber intake among Japanese population might not be sufficient to examine the association between dietary fiber intake and breast cancer risk.

  8. Effects of blood glucose on delay discounting, food intake and counterregulation in lean and obese men.

    PubMed

    Klement, Johanna; Kubera, Britta; Eggeling, Jonas; Rädel, Christin; Wagner, Christin; Park, Soyoung Q; Peters, Achim

    2018-03-01

    Delay discounting as a measure of impulsivity has been shown to be higher in obesity with an association of increased food intake. Moreover, obese humans showed a higher wanting for high-calorie food than lean men when blood glucose concentrations were low. First studies linking blood glucose levels to delay discounting yielded mixed results. We hypothesized that obese people - in comparison to lean men - have a relative lack of energy, especially when blood glucose levels are low, that results in higher levels of delay discounting, food intake and hormonal counterregulation. We investigated 20 lean and 20 obese healthy young men in a single-blind balanced cross-over design. With a standardized glucose clamp technique, subjects underwent a hypoglycemic state in one condition and a euglycemic state in the control condition. Regularly, blood was sampled for assessment of hormonal status, and questionnaires were filled out to assess delay discounting and symptom awareness. After normalizing blood glucose concentrations, subjects were free to eat from a standardized test buffet, followed by a snack test. Delay discounting was higher in obese than in lean men throughout experiments (p < 0.03). However, we did not observe significant discounting differences between glucose conditions (p > 0.1). Furthermore, the discounting performance did not correlate with food intake from the test buffet or snack test (p > 0.3). As a response to hypoglycemia, hormonal counterregulation was pronounced in both weight groups (p < 0.03), but responses of ACTH, norepinephrine and glucagon were stronger in obese compared to lean men (p < 0.03). Also, intake from the high-calorie buffet after hypoglycemia compared to euglycemia was higher in obese subjects (p < 0.02) but comparable in lean men (p > 0.5). Our data suggest that augmented delay discounting is a robust feature in obesity that is not linked to glucose levels or actual food intake. With our

  9. Sedentary Lifestyle and High-Carbohydrate Intake are Associated with Low-Grade Chronic Inflammation in Post-Menopause: A Cross-sectional Study.

    PubMed

    Alves, Bruna Cherubini; Silva, Thaís Rasia da; Spritzer, Poli Mara

    2016-07-01

    Introduction Cardiovascular disease (CVD) is the leading cause of death in post menopausal women, and inflammation is involved in the atherosclerosis process. Purpose to assess whether dietary pattern, metabolic profile, body composition and physical activity are associated with low-grade chronic inflammation according to high-sensitivity C-reactive protein (hs-CRP) levels in postmenopausal women. Methods ninety-five postmenopausal participants, with no evidence of clinical disease, underwent anthropometric, metabolic and hormonal assessments. Usual dietary intake was assessed with a validated food frequency questionnaire, habitual physical activity was measured with a digital pedometer, and body composition was estimated by bioelectrical impedance analysis. Patients with hs-CRP ≥10 mg/L or using hormone therapy in the last three months before the study were excluded from the analysis. Participants were stratified according to hs-CRP lower or ≥3 mg/L. Sedentary lifestyle was defined as walking fewer than 6 thousand steps a day. Two-tailed Student's t-test, Wilcoxon-Mann-Whitney U or Chi-square (χ(2)) test were used to compare differences between groups. A logistic regression model was used to estimate the odds ratio of variables for high hs-CRP. Results participants with hs-CRP ≥3 mg/L had higher body mass index (BMI), body fat percentage, waist circumference (WC), triglycerides, glucose, and homeostasis model assessment of insulin resistance (HOMA-IR) (p = 0.01 for all variables) than women with hs-CRP <3 mg/L. Also, women with hs-CRP ≥3 mg/L had a higher glycemic load diet and lower protein intake. Prevalence of sedentary lifestyle (p < 0.01) and metabolic syndrome (p < 0.01) was higher in women with hs-CRP ≥3 mg/L. After adjustment for age and time since menopause, the odds ratio for hs-CRP ≥3 mg/L was higher for sedentary lifestyle (4.7, 95% confidence interval [95%CI] 1.4-15.5) and carbohydrate intake (2.9, 95%CI

  10. Growth hormone deficiency in treated acromegaly and active Cushing's syndrome.

    PubMed

    Formenti, Anna Maria; Maffezzoni, Filippo; Doga, Mauro; Mazziotti, Gherardo; Giustina, Andrea

    2017-02-01

    Growth hormone deficiency (GHD) in adults is characterized by reduced quality of life and physical fitness, skeletal fragility, increased weight and cardiovascular risk. It may be found in (over-) treated acromegaly as well as in active Cushing's syndrome. Hypopituitarism may develop in patients after definitive treatment of acromegaly, although the exact prevalence of GHD in this population is still uncertain because of limited awareness, and scarce and conflicting data so far available. Because GHD associated with acromegaly and Cushing's syndrome may yield adverse consequences on similar target systems, the final outcomes of some complications of both acromegaly and Cushing's syndrome may be further affected by the occurrence of GHD. It is still largely unknown, however, whether GHD in patients with post-acromegaly or active Cushing's syndrome (e.g. pharmacologic glucocorticoid treatment) may benefit from GH replacement. We review the diagnostic, clinical and therapeutic aspects of GHD in adults treated for acromegaly and in those with active Cushing's syndrome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    PubMed Central

    Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.

    2012-01-01

    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409

  12. Intake of vinegar beverage is associated with restoration of ovulatory function in women with polycystic ovary syndrome.

    PubMed

    Wu, Di; Kimura, Fuminori; Takashima, Akiko; Shimizu, Yoshihiko; Takebayashi, Akie; Kita, Nobuyuki; Zhang, Guangmei; Murakami, Takashi

    2013-05-01

    Polycystic ovary syndrome (PCOS) is one of major causes of irregular menstruation. It is defined as a condition involving the combination of hyperandrogenism and chronic oligomenorrhea or anovulation, and is thought to have a variety of etiologies. Insulin resistance (impaired insulin sensitivity) has been suggested to be one of the etiologies of PCOS. PCOS patients often need to take medication to treat anovulation and infertility. Therefore, it would be beneficial to patients if simple non-pharmacological treatments can be developed. Recently the efficacy of vinegar to improve insulin resistance has been reported. To study the effect of vinegar on metabolic and hormonal indices and ovulatory function in PCOS, seven patients seeking a non-pharmacological treatment for PCOS took a beverage containing 15 g of apple vinegar daily for 90 to 110 days. Ovulation, the menstrual interval, fasting serum glucose level, fasting serum insulin level, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone were compared before and after intake of the vinegar beverage. Intake of the vinegar beverage resulted in a decrease of the homeostasis model assessment insulin resistance index (HOMA-R) in six patients, as well as a decrease of the LH/FSH ratio in five of seven patients. Ovulatory menstruation was observed within 40 day in four of seven patients. These findings suggest the possibility of vinegar to restore ovulatory function through improving insulin sensitivity in PCOS patients, thus, avoiding pharmacological treatment. Intake of vinegar might reduce medical cost and treatment time for insulin resistance, anovulation, and infertility in patients with PCOS.

  13. Variation in dietary intake and physical activity pattern as predictors of change in body mass index (BMI) Z-score among Brazilian adolescents.

    PubMed

    Enes, Carla C; Slater, Betzabeth

    2013-06-01

    To assess whether changes in dietary intake and physical activity pattern are associated with the annual body mass index (BMI) z-score change among adolescents. The study was conducted in public schools in the city of Piracicaba, Sao Paulo, Brazil, with a probabilistic sample of 431 adolescents participating in wave I (2004) (hereafter, baseline) and 299 in wave II (2005) (hereafter, follow-up). BMI, usual food intake, physical activity, screen time, sexual maturation and demographic variables were assessed twice. The association between annual change in food intake, physical activity, screen time, and annual BMI z-score changes were assessed by multiple regression. The study showed a positive variation in BMI z-score over one-year. Among variables related to physical activity pattern only playing videogame and using computer increased over the year. The intake of fruits and vegetables and sugar-sweetened beverages increased over one year, while the others variables showed a reduction. An increased consumption of fatty foods (β = 0.04, p = 0.04) and sweetened natural fruit juices (β = 0.05, p = 0.03) was positively associated with the rise in BMI z-score. Unhealthy dietary habits can predict the BMI z-score gain more than the physical activity pattern. The intake of fatty foods and sweetened fruit juices is associated with the BMI z-score over one year.

  14. LOW VITAMIN D STATUS IS ASSOCIATED WITH PHYSICAL INACTIVITY, OBESITY AND LOW VITAMIN D INTAKE IN A LARGE US SAMPLE OF HEALTHY MIDDLE-AGED MEN AND WOMEN

    PubMed Central

    Brock, K.; Huang, W-Y; Fraser, D. R.; Ke, L.; Tseng, M.; Stolzenberg-Solomon, R.; Peters, U.; Ahn, J.; Purdue, M.; Mason, R. S.; McCarty, C.; Ziegler, R.; Graubard, B.

    2010-01-01

    The aim of this study was to investigate modifiable predictors of vitamin D status in healthy individuals, aged 55-74, and living across the USA. Vitamin D status [serum 25-hydroxyvitamin D (25(OH)D)] was measured along with age and season at blood collection, demographics, anthropometry, physical activity (PA), diet, and other lifestyle factors in 1357 male and 1264 female controls selected from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) cohort. Multivariate linear and logistic regression analyses were used to identify associations with vitamin D status. Three, 29 and 79% of the population had serum 25(OH)D levels <25, <50 and <80 nmol/L, respectively. The major modifiable predictors of low vitamin D status were low vitamin D dietary and supplement intake, body mass index (BMI) >30 kg/m2, physical inactivity (PA) and low milk and calcium supplement intake. In men, 25(OH)D was determined more by milk intake on cereal and in women, by vitamin D and calcium supplement and menopausal hormone therapy (MHT) use. Thus targeting an increase in vigorous activity and vitamin D and calcium intake and decreasing obesity could be public health interventions independent of sun exposure to improve vitamin D status in middle-aged Americans. PMID:20399270

  15. Short Sleep Duration and Dietary Intake: Epidemiologic Evidence, Mechanisms, and Health Implications12

    PubMed Central

    Dashti, Hassan S; Scheer, Frank AJL; Jacques, Paul F; Lamon-Fava, Stefania; Ordovás, José M

    2015-01-01

    Links between short sleep duration and obesity, type 2 diabetes, hypertension, and cardiovascular disease may be mediated through changes in dietary intake. This review provides an overview of recent epidemiologic studies on the relations between habitual short sleep duration and dietary intake in adults from 16 cross-sectional studies. The studies have observed consistent associations between short sleep duration and higher total energy intake and higher total fat intake, and limited evidence for lower fruit intake, and lower quality diets. Evidence also suggests that short sleepers may have irregular eating behavior deviating from the traditional 3 meals/d to fewer main meals and more frequent, smaller, energy-dense, and highly palatable snacks at night. Although the impact of short sleep duration on dietary intake tends to be small, if chronic, it may contribute to an increased risk of obesity and related chronic disease. Mechanisms mediating the associations between sleep duration and dietary intake are likely to be multifactorial and include differences in the appetite-related hormones leptin and ghrelin, hedonic pathways, extended hours for intake, and altered time of intake. Taking into account these epidemiologic relations and the evidence for causal relations between sleep loss and metabolism and cardiovascular function, health promotion strategies should emphasize improved sleep as an additional factor in health and weight management. Moreover, future sleep interventions in controlled studies and sleep extension trials in chronic short sleepers are imperative for establishing whether there is a causal relation between short sleep duration and changes in dietary intake. PMID:26567190

  16. Effects of photoperiod on food intake, activity and metabolic rate in adult neutered male cats.

    PubMed

    Kappen, K L; Garner, L M; Kerr, K R; Swanson, K S

    2014-10-01

    With the continued rise in feline obesity, novel weight management strategies are needed. To date, strategies aimed at altering physical activity, an important factor in weight maintenance, have been lacking. Photoperiod is known to cause physiological changes in seasonal mammals, including changes in body weight (BW) and reproductive status. Thus, our objective was to determine the effect of increased photoperiod (longer days) on voluntary physical activity levels, resting metabolic rate (RMR), food intake required to maintain BW, and fasting serum leptin and ghrelin concentrations in adult cats. Eleven healthy, adult, neutered, male domestic shorthair cats were used in a randomized crossover design study. During two 12-week periods, cats were exposed to either a short-day (SD) photoperiod of 8 h light: 16 h dark or a long-day (LD) photoperiod of 16 h light: 8 h dark. Cats were fed a commercial diet to maintain baseline BW. In addition to daily food intake and twice-weekly BW, RMR (via indirect calorimetry), body composition [via dual-energy X-ray absorptiometry (DEXA)] and physical activity (via Actical activity monitors) were measured at week 0 and 12 of each period. Fasting serum leptin and ghrelin concentrations were measured at week 0, 6 and 12 of each period. Average hourly physical activity was greater (p = 0.008) in LD vs. SD cats (3770 vs. 3129 activity counts/h), which was primarily due to increased (p < 0.001) dark period activity (1188 vs. 710 activity counts/h). This corresponded to higher (p < 0.0001) daily metabolizable energy intake (mean over 12-week period: 196 vs. 187 kcal/day), and increased (p = 0.048) RMR in LD cats (9.02 vs. 8.37 kcal/h). Body composition, serum leptin and serum ghrelin were not altered by photoperiod. More research is needed to determine potential mechanisms by which these physiological changes occurred and how they may apply to weight management strategies.

  17. Dietary intake, physical activity, and time management are associated with constipation in preschool children in Japan.

    PubMed

    Asakura, Keiko; Masayasu, Shizuko; Sasaki, Satoshi

    2017-01-01

    Constipation is a common complaint in children, which is not fatal but can affect quality of life. Several lifestyle-related risk factors for constipation have been reported, particularly dietary factors, but results have been inconsistent. Here, we examined the relationship of dietary and lifestyle factors with constipation in Japanese preschool children using data of a nationwide study. Subjects were 5,309 children aged 5 to 6 years at 380 nursery schools in 44 of 47 prefectures in Japan. Children having three or fewer bowel movements per week were considered constipated. Dietary intake data was collected using a validated brief-type self-administered diet history questionnaire for Japanese preschool children, and information about general lifestyle was collected using a 4-page questionnaire designed for this study. Multivariateadjusted odds ratios for constipation were calculated by logistic regression. Higher dietary fiber intake was significantly associated with a lower prevalence of constipation (adjusted odds ratio: 0.62, p for trend: 0.005), but higher carbohydrate intake was marginally associated with a higher prevalence of constipation. Intake of potatoes, pulses, vegetables, and fruits intake decreased constipation prevalence, whereas higher rice intake was significantly and independently associated with higher prevalence of constipation. Regarding lifestyle factors, high physical activity and sufficient preparation time for breakfast and dinner for guardians were significantly associated with lower prevalence. Prevalence tended to be negatively associated with a higher educational background of the mother. Several lifestyle factors were associated with a lower prevalence of constipation among Japanese preschool children, including dietary fiber intake.

  18. Acute Consumption of Resistant Starch Reduces Food Intake but Has No Effect on Appetite Ratings in Healthy Subjects.

    PubMed

    Ble-Castillo, Jorge L; Juárez-Rojop, Isela E; Tovilla-Zárate, Carlos A; García-Vázquez, Carlos; Servin-Cruz, Magda Z; Rodríguez-Hernández, Arturo; Araiza-Saldaña, Claudia I; Nolasco-Coleman, Ana M; Díaz-Zagoya, Juan C

    2017-07-04

    Previous studies have shown the benefits of native banana starch (NBS) supplementation in improving glucose metabolism and reducing body weight (BW) in humans. However, the effect of this starch on appetite regulation is unknown. The aim of this study was to examine the effects of NBS rich resistant starch on subjective measurements of appetite, energy intake, and appetite hormones in healthy subjects. Postprandial glucose and insulin responses were also assessed. In a randomized, single-blind, crossover study, 28 healthy young subjects consumed a beverage containing either 40 g of NBS or 40 g of digestible corn starch (DCS) on two separate occasions. Effects on appetite were estimated using visual analogue scales (VAS) and satiety hormone responses. At the end of the intervention, participants were provided with a pre-weighed ad libitum homogeneous test meal. After a washout period of 1 week, subjects received the alternative treatment. NBS supplementation induced a reduction in food intake, glucose area under the curve (AUC)-180 min, and insulin AUC-180 min. However, there was no associated effect on the subjective appetite ratings or gut hormones. NBS supplementation may help to reduce meal size and control BW.

  19. Acute Consumption of Resistant Starch Reduces Food Intake but Has No Effect on Appetite Ratings in Healthy Subjects

    PubMed Central

    Ble-Castillo, Jorge L.; Juárez-Rojop, Isela E.; Tovilla-Zárate, Carlos A.; García-Vázquez, Carlos; Servin-Cruz, Magda Z.; Rodríguez-Hernández, Arturo; Araiza-Saldaña, Claudia I.; Nolasco-Coleman, Ana M.

    2017-01-01

    Previous studies have shown the benefits of native banana starch (NBS) supplementation in improving glucose metabolism and reducing body weight (BW) in humans. However, the effect of this starch on appetite regulation is unknown. The aim of this study was to examine the effects of NBS rich resistant starch on subjective measurements of appetite, energy intake, and appetite hormones in healthy subjects. Postprandial glucose and insulin responses were also assessed. In a randomized, single-blind, crossover study, 28 healthy young subjects consumed a beverage containing either 40 g of NBS or 40 g of digestible corn starch (DCS) on two separate occasions. Effects on appetite were estimated using visual analogue scales (VAS) and satiety hormone responses. At the end of the intervention, participants were provided with a pre-weighed ad libitum homogeneous test meal. After a washout period of 1 week, subjects received the alternative treatment. NBS supplementation induced a reduction in food intake, glucose area under the curve (AUC)-180 min, and insulin AUC-180 min. However, there was no associated effect on the subjective appetite ratings or gut hormones. NBS supplementation may help to reduce meal size and control BW. PMID:28677623

  20. Environmental Xenobiotics and the Antihormones Cyproterone Acetate and Spironolactone Use the Nuclear Hormone Pregnenolone X Receptor to Activate the CYP3A23 Hormone Response Element

    PubMed Central

    SCHUETZ, ERIN G.; BRIMER, CYNTHIA; SCHUETZ, JOHN D.

    2013-01-01

    The pregnenolone X receptor (PXR), a new member of the nuclear hormone receptor superfamily, was recently demonstrated to mediate glucocorticoid agonist and antagonist activation of a hormone response element spaced by three nucleotides (DR-3) within the rat CYP3A23 promoter. Because many other steroids and xenobiotics can up-regulate CYP3A23 expression, we determined whether some of these other regulators used PXR to activate the CYP3A23 DR-3. Transient cotransfection of LLC-PK1 cells with (CYP3A23)2-tk-CAT and mouse PXR demonstrated that the organochlorine pesticides transnonachlor and chlordane and the nonplanar polychlorinated biphenyls (PCBs) each induced the CYP3A23 DR-3 element, and this activation required PXR. Additionally, this study found that PXR is activated to induce (CYP3A23)2-tk-CAT by antihormones of several steroid classes including the antimineralocorticoid spironolactone and the antiandrogen cyproterone acetate. These studies reveal that PXR is involved in the induction of CYP3A23 by pharmacologically and structurally distinct steroids and xenobiotics. Moreover, PXR-mediated PCB activation of the (CYP3A23)2-tk-CAT may serve as a rapid assay for effects of nonplanar PCBs. PMID:9855641

  1. The Effect of a Subcutaneous Infusion of GLP-1, OXM, and PYY on Energy Intake and Expenditure in Obese Volunteers

    PubMed Central

    Tan, Tricia; Behary, Preeshila; Tharakan, George; Minnion, James; Al-Najim, Werd; Albrechtsen, Nicolai J. Wewer; Holst, Jens J.

    2017-01-01

    Background: Roux-en-Y gastric bypass (RYGB) surgery is currently the most effective treatment of obesity, although limited by availability and operative risk. The gut hormones Glucagon-like peptide-1 (GLP-1), Peptide YY (PYY), and Oxyntomodulin (OXM) are elevated postprandially after RYGB, which has been postulated to contribute to its metabolic benefits. Objective: We hypothesized that infusion of the three gut hormones to achieve levels similar to those encountered postprandially in RYGB patients might be effective in suppressing appetite. The aim of this study was to investigate the effect of a continuous infusion of GLP-1, OXM, and PYY (GOP) on energy intake and expenditure in obese volunteers. Methods: Obese volunteers were randomized to receive an infusion of GOP or placebo in a single-blinded, randomized, placebo-controlled crossover study for 10.5 hours a day. This was delivered subcutaneously using a pump device, allowing volunteers to remain ambulatory. Ad libitum food intake studies were performed during the infusion, and energy expenditure was measured using a ventilated hood calorimeter. Results: Postprandial levels of GLP-1, OXM, and PYY seen post RYGB were successfully matched using 4 pmol/kg/min, 4 pmol/kg/min, and 0.4 pmol/kg/min, respectively. This dose led to a mean reduction of 32% in food intake. No significant effects on resting energy expenditure were observed. Conclusion: This is, to our knowledge, the first time that an acute continuous subcutaneous infusion of GOP, replicating the postprandial levels observed after RYGB, is shown to be safe and effective in reducing food intake. This data suggests that triple hormone therapy might be a useful tool against obesity. PMID:28379519

  2. Brain innate immunity regulates hypothalamic arcuate neuronal activity and feeding behavior.

    PubMed

    Reis, Wagner L; Yi, Chun-Xia; Gao, Yuanqing; Tschöp, Mathias H; Stern, Javier E

    2015-04-01

    Hypothalamic inflammation, involving microglia activation in the arcuate nucleus (ARC), is proposed as a novel underlying mechanism in obesity, insulin and leptin resistance. However, whether activated microglia affects ARC neuronal activity, and consequently basal and hormonal-induced food intake, is unknown. We show that lipopolysaccharide, an agonist of the toll-like receptor-4 (TLR4), which we found to be expressed in ARC microglia, inhibited the firing activity of the majority of orexigenic agouti gene-related protein/neuropeptide Y neurons, whereas it increased the activity of the majority of anorexigenic proopiomelanocortin neurons. Lipopolysaccharide effects in agouti gene-related protein/neuropeptide Y (but not in proopiomelanocortin) neurons were occluded by inhibiting microglia function or by blocking TLR4 receptors. Finally, we report that inhibition of hypothalamic microglia altered basal food intake, also preventing central orexigenic responses to ghrelin. Our studies support a major role for a TLR4-mediated microglia signaling pathway in the control of ARC neuronal activity and feeding behavior.

  3. Factors associated with low water intake among US high school students - National Youth Physical Activity and Nutrition Study, 2010.

    PubMed

    Park, Sohyun; Blanck, Heidi M; Sherry, Bettylou; Brener, Nancy; O'Toole, Terrence

    2012-09-01

    Drinking plain water instead of sugar-sweetened beverages is one approach for reducing energy intake. Only a few studies have examined characteristics associated with plain water intake among US youth. The purpose of our cross-sectional study was to examine associations of demographic characteristics, weight status, dietary habits, and other behavior-related factors with plain water intake among a nationally representative sample of US high school students. The 2010 National Youth Physical Activity and Nutrition Study data for 11,049 students in grades 9 through 12 were used. Multivariable logistic regression analysis was used to calculate adjusted odds ratios (ORs) and 95% CIs for variables associated with low water intake (<3 times/day). Nationwide, 54% of high school students reported drinking water <3 times/day. Variables significantly associated with a greater odds for low water intake were age ≤15 years (OR 1.1), consuming <2 glasses/day of milk (OR 1.5), nondiet soda ≥1 time/day (OR 1.6), other sugar-sweetened beverages ≥1 time/day (OR 1.4), fruits and 100% fruit juice <2 times/day (OR 1.7), vegetables <3 times/day (OR 2.3), eating at fast-food restaurants 1 to 2 days/week and ≥3 days/week (OR 1.3 and OR 1.4, respectively), and being physically active ≥60 minutes/day on <5 days/week (OR 1.6). Being obese was significantly associated with reduced odds for low water intake (OR 0.7). The findings of these significant associations of low water intake with poor diet quality, frequent fast-food restaurant use, and physical inactivity may be used to tailor intervention efforts to increase plain water intake as a substitute for sugar-sweetened beverages and to promote healthy lifestyles. Published by Elsevier Inc.

  4. Associations of Polyunsaturated Fatty Acid Intake with Bone Mineral Density in Postmenopausal Women

    PubMed Central

    Harris, Margaret; Farrell, Vanessa; Houtkooper, Linda; Going, Scott; Lohman, Timothy

    2015-01-01

    A secondary analysis of cross-sectional data was analyzed from 6 cohorts (Fall 1995–Fall 1997) of postmenopausal women (n = 266; 56.6 ± 4.7 years) participating in the Bone Estrogen Strength Training (BEST) study (a 12-month, block-randomized, clinical trial). Bone mineral density (BMD) was measured at femur neck and trochanter, lumbar spine (L2–L4), and total body BMD using dual-energy X-ray absorptiometry (DXA). Mean dietary polyunsaturated fatty acids (PUFAs) intakes were assessed using 8 days of diet records. Multiple linear regression was used to examine associations between dietary PUFAs and BMD. Covariates included in the models were total energy intake, body weight at year 1, years after menopause, exercise, use of hormone therapy (HT), total calcium, and total iron intakes. In the total sample, lumbar spine and total body BMD had significant negative associations with dietary PUFA intake at P < 0.05. In the non-HT group, no significant associations between dietary PUFA intake and BMD were seen. In the HT group, significant inverse associations with dietary PUFA intake were seen in the spine, total body, and Ward's triangle BMD, suggesting that HT may influence PUFA associations with BMD. This study is registered with clinicaltrials.gov, identifier: NCT00000399. PMID:25785226

  5. The role of circulating sex hormones in menstrual cycle dependent modulation of pain-related brain activation

    PubMed Central

    Veldhuijzen, Dieuwke S.; Keaser, Michael L.; Traub, Deborah S.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2013-01-01

    Sex differences in pain sensitivity have been consistently found but the basis for these differences is incompletely understood. The present study assessed how pain-related neural processing varies across the menstrual cycle in normally cycling, healthy females, and whether menstrual cycle effects are based on fluctuating sex hormone levels. Fifteen subjects participated in four test sessions during their menstrual, mid-follicular, ovulatory, and midluteal phases. Brain activity was measured while nonpainful and painful stimuli were applied with a pressure algometer. Serum hormone levels confirmed that scans were performed at appropriate cycle phases in 14 subjects. No significant cycle phase differences were found for pain intensity or unpleasantness ratings of stimuli applied during fMRI scans. However, lower pressure pain thresholds were found for follicular compared to other phases. Pain-specific brain activation was found in several regions traditionally associated with pain processing, including the medial thalamus, anterior and mid-insula, mid-cingulate, primary and secondary somatosensory cortices, cerebellum, and frontal regions. The inferior parietal lobule, occipital gyrus, cerebellum and several frontal regions demonstrated interaction effects between stimulus level and cycle phase, indicating differential processing of pain-related responses across menstrual cycle phases. Correlational analyses indicated that cycle-related changes in pain sensitivity measures and brain activation were only partly explained by varying sex hormone levels. These results show that pain-related cerebral activation varies significantly across the menstrual cycle, even when perceived pain intensity and unpleasantness remain constant. The involved brain regions suggest that cognitive pain or more general bodily awareness systems are most susceptible to menstrual cycle effects. PMID:23528204

  6. Effect of injection of antisense oligodeoxynucleotides of GAD isozymes into rat ventromedial hypothalamus on food intake and locomotor activity.

    PubMed

    Bannai, M; Ichikawa, M; Nishihara, M; Takahashi, M

    1998-02-16

    In the ventromedial hypothalamus (VMH), gamma-aminobutyric acid (GABA) plays a role in regulating feeding and running behaviors. The GABA synthetic enzyme, glutamic acid decarboxylase (GAD), consists of two isozymes, GAD65 and GAD67. In the present study, the phosphorothioated antisense oligodeoxynucleotides (ODNs) of each GAD isozyme were injected bilaterally into the VMH of male rats, and food intake, body weight and locomotor activity were monitored. ODNs were incorporated in the water-absorbent polymer (WAP, 0.2 nmol/microliter) so that ODNs were retained at the injection site. Each antisense ODN of GAD65 or GAD67 tended to reduce food intake on day 1 (day of injection=day 0) though not significantly. An injection combining both antisense ODNs significantly decreased food intake only on day 1, but body weight remained significantly lower than the control for 5 days. This suppression of body weight gain could be attributed to a significant increase in locomotor activity between days 3 and 5. Individual treatment with either ODNs did not change locomotor activity. The increase in daily locomotor activity in the group receiving the combined antisense ODNs occurred mainly during the light phase. Neither vehicle (WAP) nor control ODN affected food intake, body weight and locomotor activity. Histological studies indicated that antisense ODN distributed within 800 micron from the edge of the area where WAP was located 24 h after the injection gradually disappeared within days, but still remained within 300 micron m distance even 7 days after the injection. Antisense ODN was effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias. Further, HPLC analysis revealed that antisense ODNs of GAD isozymes, either alone or combined, decreased the content of GABA by 50% in VMH 24 h after the injection. These results indicate that suppression of GABA synthesis by either of the GAD isozymes is synergistically involved in suppressing food

  7. Prebiotic Fibre Supplementation In Combination With Metformin Modifies Appetite, Energy Metabolism, And Gut Satiety Hormones In Obese Rats

    NASA Astrophysics Data System (ADS)

    Pyra, Kim Alicia

    The prebiotic fibre, oligofructose (OFS), reduces energy intake and improves glycemic control in rodents and man. Metformin (MT) is a commonly used insulin-sensitizing agent that may limit weight gain in individuals with type 2 diabetes. Our objective was to determine if using OFS as an adjunct to MT therapy (AD) modifies satiety hormone production and metabolism in obese rats. Independently, OFS and MT decreased energy intake, body fat, hepatic triglyceride content, plasma leptin and glucose-dependent insulinotropic peptide (GIP) levels. OFS and AD but not MT rats showed superior glycemic control during an oral glucose tolerance test (OGTT) compared to C. Area under the curve for GIP was lowest in ADThe prebiotic fibre, oligofructose (OFS), reduces energy intake and improves glycemic control in rodents and man. Metformin (MT) is a commonly used insulin-sensitizing agent that may limit weight gain in individuals with type 2 diabetes. Our objective was to determine if using OFS as an adjunct to MT therapy (AD) modifies satiety hormone production and metabolism in obese rats. Independently, OFS and MT decreased energy intake, body fat, hepatic triglyceride content, plasma leptin and glucose-dependent insulinotropic peptide (GIP) levels. OFS and AD but not MT rats showed superior glycemic control during an oral glucose tolerance test (OGTT) compared to C. Area under the curve for GIP was lowest in AD

  8. Correlation of magnesium intake with metabolic parameters, depression and physical activity in elderly type 2 diabetes patients: a cross-sectional study

    PubMed Central

    2012-01-01

    Background Type 2 diabetes mellitus is a major global public health problem in the worldwide and is increasing in aging populations. Magnesium intake may be one of the most important factors for diabetes prevention and management. Low magnesium intake may exacerbate metabolic abnormalities. In this study, the relationships of magnesium intake with metabolic parameters, depression and physical activity in elderly patients with type 2 diabetes were investigated. Methods This cross-sectional study involved 210 type 2 diabetes patients aged 65 years and above. Participants were interviewed to obtain information on lifestyle and 24-hour dietary recall. Assessment of depression was based on DSM-IV criteria. Clinical variables measured included anthropometric measurements, blood pressure, and biochemical determinations of blood and urine samples. Linear regression was applied to determine the relationships of magnesium intake with nutritional variables and metabolic parameters. Results Among all patients, 88.6% had magnesium intake which was less than the dietary reference intake, and 37.1% had hypomagnesaemia. Metabolic syndromes and depression were associated with lower magnesium intake (p < 0.05). A positive relationship was found between magnesium intake and HDL-cholesterol (p = 0.005). Magnesium intake was inversely correlated with triglyceride, waist circumference, body fat percent and body mass index (p < 0.005). After controlling confounding factor, HDL-cholesterol was significantly higher with increasing quartile of magnesium intake (p for trend = 0005). Waist circumference, body fat percentage, and body mass index were significantly lower with increase quartile of magnesium intake (p for trend < 0.001). The odds of depression, central obesity, high body fat percentage, and high body mass index were significantly lower with increasing quartile of magnesium intake (p for trend < 0.05). In addition, magnesium intake was related to high

  9. Mammary cell-activating factor regulates the hormone-independent transcription of the early lactation protein (ELP) gene in a marsupial.

    PubMed

    Pharo, Elizabeth A; Renfree, Marilyn B; Cane, Kylie N

    2016-11-15

    The regulation of the tammar wallaby (Macropus eugenii) early lactation protein (ELP) gene is complex. ELP is responsive to the lactogenic hormones; insulin (I), hydrocortisone (HC) and prolactin (PRL) in mammary gland explants but could not be induced with lactogenic hormones in tammar primary mammary gland cells, nor in KIM-2 conditionally immortalised murine mammary epithelial cells. Similarly, ELP promoter constructs transiently-transfected into human embryonic kidney (HEK293T) cells constitutively expressing the prolactin receptor (PRLR) and Signal Transducer and Activator of Transcription (STAT)5A were unresponsive to prolactin, unlike the rat and mouse β-casein (CSN2) promoter constructs. Identification of the minimal promoter required for the hormone-independent transcription of tammar ELP in HEK293Ts and comparative analysis of the proximal promoters of marsupial ELP and the orthologous eutherian colostrum trypsin inhibitor (CTI) gene suggests that mammary cell-activating factor (MAF), an E26 transformation-specific (ETS) factor, may bind to an AGGAAG motif and activate tammar ELP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Endocrine interactions between plants and animals: Implications of exogenous hormone sources for the evolution of hormone signaling.

    PubMed

    Miller, Ashley E M; Heyland, Andreas

    2010-05-01

    Hormones are central to animal physiology, metabolism and development. Details on signal transduction systems and regulation of hormone synthesis, activation and release have only been studied for a small number of animal groups, notably arthropods and chordates. However, a significant body of literature suggests that hormonal signaling systems are not restricted to these phyla. For example, work on several echinoderm species shows that exogenous thyroid hormones (THs) affect larval development and metamorphosis and our new data provide strong evidence for endogenous synthesis of THs in sea urchin larvae. In addition to these endogenous sources, these larvae obtain THs when they consume phytoplankton. Another example of an exogenously acquired hormone or their precursors is in insect and arthropod signaling. Sterols from plants are essential for the synthesis of ecdysteroids, a crucial group of insect morphogenic steroids. The availability of a hormone or hormone precursor from food has implications for understanding hormone function and the evolution of hormonal signaling in animals. For hormone function, it creates an important link between the environment and the regulation of internal homeostatic systems. For the evolution of hormonal signaling it helps us to better understand how complex endocrine mechanisms may have evolved. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men.

    PubMed

    Chiu, Yu-Han; Gaskins, Audrey J; Williams, Paige L; Mendiola, Jaime; Jørgensen, Niels; Levine, Hagai; Hauser, Russ; Swan, Shanna H; Chavarro, Jorge E

    2016-05-01

    Numerous studies have shown that occupational or environmental pesticide exposure can affect male fertility. There is less evidence, however, regarding any potentially adverse effects of pesticide residues in foods on markers of male fertility potential. We examined the relations between fruit and vegetable intake, considering pesticide residue status, and semen quality and serum concentrations of reproductive hormones in healthy young men. The Rochester Young Men's Study is a cross-sectional study that recruited men aged 18-22 y (n = 189) in Rochester, New York. Participants completed a questionnaire, provided a semen sample, had a blood sample drawn, and underwent a physical examination at enrollment. Semen samples were analyzed for total sperm count, sperm concentration, morphology, motility, ejaculate volume, total motile count, and total normal count. Dietary intake during the previous year was assessed by a validated food-frequency questionnaire. Fruit and vegetables were categorized as having high [Pesticide Residue Burden Score (PRBS) ≥4] or low-to-moderate (PRBS <4) pesticide residues on the basis of data from the USDA Pesticide Data Program. Linear regression models were used to analyze the associations of fruit and vegetable intake with semen variables and reproductive hormones while adjusting for potential confounding factors. The total intake of fruit and vegetables was unrelated to semen quality. However, the intake of fruit and vegetables with low-to-moderate pesticide residues was associated with a higher total sperm count and sperm concentration, whereas the intake of fruit and vegetables with high pesticide residues was unrelated to semen quality. On average, men in the highest quartile of low-to-moderate-pesticide fruit and vegetable intake (≥2.8 servings/d) had a 169% (95% CI: 45%, 400%) higher total sperm count and a 173% (95% CI: 57%, 375%) higher sperm concentration than did men in the lowest quartile (<1.1 servings/d; P-trend = 0.003 and

  12. Oxytocin curbs calorie intake via food-specific increases in the activity of brain areas that process reward and establish cognitive control.

    PubMed

    Spetter, Maartje S; Feld, Gordon B; Thienel, Matthias; Preissl, Hubert; Hege, Maike A; Hallschmid, Manfred

    2018-02-09

    The hypothalamic neurohormone oxytocin decreases food intake via largely unexplored mechanisms. We investigated the central nervous mediation of oxytocin's hypophagic effect in comparison to its impact on the processing of generalized rewards. Fifteen fasted normal-weight, young men received intranasal oxytocin (24 IU) or placebo before functional magnetic resonance imaging (fMRI) measurements of brain activity during exposure to food stimuli and a monetary incentive delay task (MID). Subsequently, ad-libitum breakfast intake was assessed. Oxytocin compared to placebo increased activity in the ventromedial prefrontal cortex, supplementary motor area, anterior cingulate, and ventrolateral prefrontal cortices in response to high- vs. low-calorie food images in the fasted state, and reduced calorie intake by 12%. During anticipation of monetary rewards, oxytocin compared to placebo augmented striatal, orbitofrontal and insular activity without altering MID performance. We conclude that during the anticipation of generalized rewards, oxytocin stimulates dopaminergic reward-processing circuits. In contrast, oxytocin restrains food intake by enhancing the activity of brain regions that exert cognitive control, while concomitantly increasing the activity of structures that process food reward value. This pattern points towards a specific role of oxytocin in the regulation of eating behaviour in humans that might be of relevance for potential clinical applications.

  13. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.

    PubMed

    Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2015-07-01

    This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Collective hormonal profiles predict group performance.

    PubMed

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H; Lu, Jackson G

    2016-08-30

    Prior research has shown that an individual's hormonal profile can influence the individual's social standing within a group. We introduce a different construct-a collective hormonal profile-which describes a group's hormonal make-up. We test whether a group's collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revealed that group-level concentrations of testosterone and cortisol interact to predict a group's standing across groups. Groups with a collective hormonal profile characterized by high testosterone and low cortisol exhibited the highest performance. These collective hormonal level results remained reliable when controlling for personality traits and group-level variability in hormones. These findings support the hypothesis that groups with a biological propensity toward status pursuit (high testosterone) coupled with reduced stress-axis activity (low cortisol) engage in profit-maximizing decision-making. The current work extends the dual-hormone hypothesis to the collective level and provides a neurobiological perspective on the factors that determine who rises to the top across, not just within, social hierarchies.

  15. Dietary intakes and antioxidant status in mind-body exercising pre- and postmenopausal women.

    PubMed

    Palasuwan, A; Margaritis, I; Soogarun, S; Rousseau, A-S

    2011-08-01

    The decline in antioxidant defenses due to both estrogen loss and frequent adoption of poor dietary choices exposes postmenopausal women to cardiovascular diseases. Adequate nutrition and physical exercise are two factors of health promotion. This study investigated whether regular practice of mind-body exercise (yoga and/or tai chi) alters dietary intake and antioxidant status and balances the menopause-related increases in lipid peroxidation and cardiovascular risk. Cross-sectional study. The study was conducted in an urban community in Bangkok (Thailand) between May and August 2007. Premenopausal (Pre M; 39±8 yrs; n=56) and postmenopausal (Post M; 54±5 yrs; n=39) women who had been practicing yoga (Y) and/or tai chi (TC) more than 3 hours/week for a year, or who had no regular physical activity practice (sedentary, S). All participants completed food frequency questionnaires and 4-day food and activity records. Blood was collected on day 5. Factorial ANOVA tests were performed according to menopause status, exercise, and hormone replacement therapy (HRT) groups. Post M had higher (p = 0.01) dietary fiber intake compared with Pre M. Yoga practitioners had lower BMI (p = 0.004) and lower fat intake (p = 0.02) compared with their S and TC counterparts. Plasma total antioxidant status was significantly and independently lower and higher in Y and Post M groups, respectively. However, no difference was shown after adjusting for BMI. Regardless of menopause status and HRT, the activity of erythrocyte glutathione peroxidase - an aerobic training-responsive enzyme - was higher (p < 0.001) in TC practitioners compared with other groups. No effects were shown on erythrocyte superoxide dismutase activity, plasma lipid peroxidation (TBARS) or total homocysteine concentrations. Yoga and tai chi exercises can be used as components of a strategy to promote healthy lifestyles (balanced diet and moderate intensity exercise) in vulnerable populations, such as menopausal women

  16. 78 FR 64064 - Agency Information Collection (Principles of Excellence Complaint System Intake) Activity Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... (Principles of Excellence Complaint System Intake) Activity Under OMB Review AGENCY: Veterans Benefits... to the Office of Management and Budget (OMB) for review and comment. The PRA submission describes the... Information and Regulatory Affairs, Office of Management and Budget, Attn: VA Desk Officer; 725 17th St. NW...

  17. Increased salt consumption induces body water conservation and decreases fluid intake.

    PubMed

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  18. Design and Control of a Proof-of-Concept Active Jet Engine Intake Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Song, Gangbing; Ma, Ning; Penney, Nicholas; Barr, Todd; Lee, Ho-Jun; Arnold, Steven M.

    2004-01-01

    The design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators is used to demonstrate the potential of an adaptive intake to improve the fuel efficiency of a jet engine. The Nitinol SMA material is selected for this research due to the material's ability to generate large strains of up to 5 percent for repeated operations, a high power-to-weight ratio, electrical resistive actuation, and easy fabrication into a variety of shapes. The proof-of-concept engine intake employs an overlapping leaf design arranged in a concentric configuration. Each leaf is mounted on a supporting bar that rotates upon actuation by SMA wires electrical resistive heating. Feedback control is enabled through the use of a laser range sensor to detect the movement of a leaf and determine the radius of the intake area. Due to the hysteresis behavior inherent in SMAs, a nonlinear robust controller is used to direct the SMA wire actuation. The controller design utilizes the sliding-mode approach to compensate for the nonlinearities associated with the SMA actuator. Feedback control experiments conducted on a fabricated proof-of-concept model have demonstrated the capability to precisely control the intake area and achieve up to a 25 percent reduction in intake area. The experiments demonstrate the feasibility of engine intake area control using the proposed design.

  19. Bone Mineral Density Changes after Physical Training and Calcium Intake in Students with Attention Deficit and Hyper Activity Disorders

    ERIC Educational Resources Information Center

    Arab ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool

    2012-01-01

    In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  20. Higher Maternal Protein Intake during Pregnancy Is Associated with Lower Cord Blood Concentrations of Insulin-like Growth Factor (IGF)-II, IGF Binding Protein 3, and Insulin, but Not IGF-I, in a Cohort of Women with High Protein Intake.

    PubMed

    Switkowski, Karen M; Jacques, Paul F; Must, Aviva; Hivert, Marie-France; Fleisch, Abby; Gillman, Matthew W; Rifas-Shiman, Sheryl; Oken, Emily

    2017-07-01

    Background: Prenatal exposure to dietary protein may program growth-regulating hormones, consequently influencing early-life growth patterns and later risk of associated chronic diseases. The insulin-like growth factor (IGF) axis is of particular interest in this context given its influence on pre- and postnatal growth and its sensitivity to the early nutritional environment. Objective: Our objective was to examine associations of maternal protein intake during pregnancy with cord blood concentrations of IGF-I, IGF-II, IGF binding protein-3 (IGFBP-3), and insulin. Methods: We studied 938 mother-child pairs from early pregnancy through delivery in the Project Viva cohort. Using multivariable linear regression models adjusted for maternal race/ethnicity, education, income, smoking, parity, height, and gestational weight gain and for child sex, we examined associations of second-trimester maternal protein intake [grams per kilogram (weight before pregnancy) per day], as reported on a food frequency questionnaire, with IGF-I, IGF-II, IGFBP-3, and insulin concentrations in cord blood. We also examined how these associations may differ by child sex and parity. Results: Mothers were predominantly white (71%), college-educated (64%), and nonsmokers (67%). Mean ± SD protein intake was 1.35 ± 0.35 g ⋅ kg -1 ⋅ d -1 Each 1-SD increment in second-trimester protein intake corresponded to a change of -0.50 ng/mL (95% CI: -2.26, 1.26 ng/mL) in IGF-I and -0.91 μU/mL (95% CI: -1.45, -0.37 μU/mL) in insulin. Child sex and parity modified associations of maternal protein intake with IGF-II and IGFBP-3: protein intake was inversely associated with IGF-II in girls ( P -interaction = 0.04) and multiparous mothers ( P -interaction = 0.05), and with IGFBP-3 in multiparous mothers ( P -interaction = 0.04). Conclusions: In a cohort of pregnant women with relatively high mean protein intakes, higher intake was associated with lower concentrations of growth-promoting hormones in cord

  1. Meat intake and mortality: a prospective study of over half a million people.

    PubMed

    Sinha, Rashmi; Cross, Amanda J; Graubard, Barry I; Leitzmann, Michael F; Schatzkin, Arthur

    2009-03-23

    High intakes of red or processed meat may increase the risk of mortality. Our objective was to determine the relations of red, white, and processed meat intakes to risk for total and cause-specific mortality. The study population included the National Institutes of Health-AARP (formerly known as the American Association of Retired Persons) Diet and Health Study cohort of half a million people aged 50 to 71 years at baseline. Meat intake was estimated from a food frequency questionnaire administered at baseline. Cox proportional hazards regression models estimated hazard ratios (HRs) and 95% confidence intervals (CIs) within quintiles of meat intake. The covariates included in the models were age, education, marital status, family history of cancer (yes/no) (cancer mortality only), race, body mass index, 31-level smoking history, physical activity, energy intake, alcohol intake, vitamin supplement use, fruit consumption, vegetable consumption, and menopausal hormone therapy among women. Main outcome measures included total mortality and deaths due to cancer, cardiovascular disease, injuries and sudden deaths, and all other causes. There were 47 976 male deaths and 23 276 female deaths during 10 years of follow-up. Men and women in the highest vs lowest quintile of red (HR, 1.31 [95% CI, 1.27-1.35], and HR, 1.36 [95% CI, 1.30-1.43], respectively) and processed meat (HR, 1.16 [95% CI, 1.12-1.20], and HR, 1.25 [95% CI, 1.20-1.31], respectively) intakes had elevated risks for overall mortality. Regarding cause-specific mortality, men and women had elevated risks for cancer mortality for red (HR, 1.22 [95% CI, 1.16-1.29], and HR, 1.20 [95% CI, 1.12-1.30], respectively) and processed meat (HR, 1.12 [95% CI, 1.06-1.19], and HR, 1.11 [95% CI 1.04-1.19], respectively) intakes. Furthermore, cardiovascular disease risk was elevated for men and women in the highest quintile of red (HR, 1.27 [95% CI, 1.20-1.35], and HR, 1.50 [95% CI, 1.37-1.65], respectively) and processed meat

  2. No effect of pinealectomy on the parallel shift in circadain rhythms of adrenocortical activity and food intake in blinded rats.

    PubMed

    Takahashi, K; Inoue, K; Takahashi, Y

    1976-10-01

    Twenty-four-hr patterns of plasma corticosterone levels were determined at 4-hr intervals every 3-4 weeks in sighted and blinded pinealectomized rats of adult age. Through the whole period of the experiment, 24-hr patterns of food intake were also measured weekly. The sighted rats manifested the same 24-hr patterns of plasma corticosterone levels and food intake for 15 weeks after pinealectomy as those observed in the intact control rats. The magnitude of peak levels of plasma corticosterone and the amount of food intake did not differ between the two groups. A phase shift in circadian rhythms of plasma corticosterone levels and food intake was observed in both groups of blinded rats, with and without pinealectomy. Between the two groups, the patterns of phase shift were essentially similar for 10 weeks examined after optic enucleation. The peak elevation of plasma levels took place at 11 p.m. at the end of the 4th week after optic enucleation. Thereafter, 4- to 8-hr delay of peak appearance was observed every 3 weeks. No significant differences were found in peak values between the two groups of blinded rats. Furthermore, the circadian rhythm of food intake shifted in parallel with that of plasma corticosterone levels. A phase reversal of these two activities was observed between the 8th and 10th week after the operation. These results indicate that the pineal gland does not play any important role either in the maintenance of normal circadian periodicities of adrenocortical activity and food intake or in the shift in circadian rhythms of the two activities in the blinded rats.

  3. Selective activation of estrogen receptors, ERα and GPER-1, rapidly decreases food intake in female rats.

    PubMed

    Butler, Michael J; Hildebrandt, Ryan P; Eckel, Lisa A

    2018-05-25

    Many of estradiol's behavioral effects are mediated, at least partially, via extra-nuclear estradiol signaling. Here, we investigated whether two estrogen receptor (ER) agonists, targeting ERα and G protein-coupled ER-1 (GPER-1), can promote rapid anorexigenic effects. Food intake was measured in ovariectomized (OVX) rats at 1, 2, 4, and 22 h following subcutaneous (s.c.) injection of an ERα agonist (PPT; 0-200 μg/kg), a GPER-1 agonist (G-1; 0-1600 μg/kg), and a GPER-1 antagonist (G-36; 0-80 μg/kg). To investigate possible cross-talk between ERα and GPER-1, we examined whether GPER-1 blockade affects the anorexigenic effect of PPT. Feeding was monitored in OVX rats that received s.c. injections of vehicle or 40 μg/kg G-36 followed 30 min later by s.c. injections of vehicle or 200 μg/kg PPT. Selective activation of ERα and GPER-1 alone decreased food intake within 1 h of drug treatment, and feeding remained suppressed for 22 h following PPT treatment and 4 h following G-1 treatment. Acute administration of G-36 alone did not suppress feeding at any time point. Blockade of GPER-1 attenuated PPT's rapid (within 1 h) anorexigenic effect, but did not modulate PPT's ability to suppress food intake at 2, 4 and 22 h. These findings demonstrate that selective activation of ERα produces a rapid (within 1 h) decrease in food intake that is best explained by a non-genomic signaling pathway and thus implicates the involvement of extra-nuclear ERα. Our findings also provide evidence that activation of GPER-1 is both sufficient to suppress feeding and necessary for PPT's rapid anorexigenic effect. Copyright © 2017. Published by Elsevier Inc.

  4. Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction

    PubMed Central

    Kanashiro-Takeuchi, Rosemeire M.; Tziomalos, Konstantinos; Takeuchi, Lauro M.; Treuer, Adriana V.; Lamirault, Guillaume; Dulce, Raul; Hurtado, Michael; Song, Yun; Block, Norman L.; Rick, Ferenc; Klukovits, Anna; Hu, Qinghua; Varga, Jozsef L.; Schally, Andrew V.; Hare, Joshua M.

    2010-01-01

    Whether the growth hormone (GH)/insulin-like growth factor 1(IGF-1) axis exerts cardioprotective effects remains controversial; and the underlying mechanism(s) for such actions are unclear. Here we tested the hypothesis that growth hormone-releasing hormone (GHRH) directly activates cellular reparative mechanisms within the injured heart, in a GH/IGF-1 independent fashion. After experimental myocardial infarction (MI), rats were randomly assigned to receive, during a 4-week period, either placebo (n = 14), rat recombinant GH (n = 8) or JI-38 (n = 8; 50 µg/kg per day), a potent GHRH agonist. JI-38 did not elevate serum levels of GH or IGF-1, but it markedly attenuated the degree of cardiac functional decline and remodeling after injury. In contrast, GH administration markedly elevated body weight, heart weight, and circulating GH and IGF-1, but it did not offset the decline in cardiac structure and function. Whereas both JI-38 and GH augmented levels of cardiac precursor cell proliferation, only JI-38 increased antiapoptotic gene expression. The receptor for GHRH was detectable on myocytes, supporting direct activation of cardiac signal transduction. Collectively, these findings demonstrate that within the heart, GHRH agonists can activate cardiac repair after MI, suggesting the existence of a potential signaling pathway based on GHRH in the heart. The phenotypic profile of the response to a potent GHRH agonist has therapeutic implications. PMID:20133784

  5. The orexigenic effect of melanin-concentrating hormone (MCH) is influenced by sex and stage of the estrous cycle

    PubMed Central

    Santollo, Jessica; Eckel, Lisa A.

    2008-01-01

    Recently, it was shown that that the orexigenic effect of melanin concentrating hormone (MCH) is attenuated by estradiol treatment in ovariectomized (OVX) rats. This suggests that female rats may be less responsive than male rats to the behavioral effects of MCH. To investigate this hypothesis, the effects of lateral ventricular infusions of MCH on food intake, water intake, meal patterns, and running wheel activity were examined in male and female rats. To further characterize the impact of estradiol on MCH-induced food intake, female rats were OVX and tested with and without 17-β-estradiol benzoate (EB) replacement. In support of our hypothesis, food and water intakes following MCH treatment were greater in male rats, relative to female rats. Specifically, the orexigenic effect of MCH was maximal in male rats and minimal in EB-treated OVX rats. In both sexes, the orexigenic effect of MCH was mediated by a selective increase in meal size, which was attenuated in EB-treated OVX rats. MCH induced a short-term (2 h) decrease in wheel running that, unlike its effects on ingestive behavior, was similar in males and females. Thus, estradiol decreases some, but not all, of the behavioral effects of MCH. To examine the influence of endogenous estradiol, food intake was monitored following MCH treatment in ovarian-intact, cycling rats. As predicted by our findings in OVX rats, the orexigenic effect of MCH was attenuated in estrous rats, relative to diestrous rats. We conclude that the female rat’s reduced sensitivity to the orexigenic effect of MCH may contribute to sex- and estrous cycle-related differences in food intake. PMID:18191424

  6. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.

    2017-01-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  7. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    PubMed

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-06-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T 4 /g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hormone supply of the organism in prolonged emotional stress

    NASA Technical Reports Server (NTRS)

    Amiragova, M. G.; Stulnikov, B. V.; Svirskaya, R. I.

    1980-01-01

    The effect of prolonged emotional stress of varying genesis on the hormonal function of the pancreas, thyroid gland, and adrenal cortex was studied. The amount of the hormonal secretion was found to depend on the type of adaptation activity and its duration. High secretion of the hormones observed outside the adaptation activity was examined as an index of the phase transition of defense reactions to the phase of overstress.

  9. Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men123

    PubMed Central

    Gaskins, Audrey J; Williams, Paige L; Mendiola, Jaime; Levine, Hagai; Hauser, Russ; Swan, Shanna H; Chavarro, Jorge E

    2016-01-01

    Background: Numerous studies have shown that occupational or environmental pesticide exposure can affect male fertility. There is less evidence, however, regarding any potentially adverse effects of pesticide residues in foods on markers of male fertility potential. Objectives: We examined the relations between fruit and vegetable intake, considering pesticide residue status, and semen quality and serum concentrations of reproductive hormones in healthy young men. Methods: The Rochester Young Men's Study is a cross-sectional study that recruited men aged 18–22 y (n = 189) in Rochester, New York. Participants completed a questionnaire, provided a semen sample, had a blood sample drawn, and underwent a physical examination at enrollment. Semen samples were analyzed for total sperm count, sperm concentration, morphology, motility, ejaculate volume, total motile count, and total normal count. Dietary intake during the previous year was assessed by a validated food-frequency questionnaire. Fruit and vegetables were categorized as having high [Pesticide Residue Burden Score (PRBS) ≥4] or low-to-moderate (PRBS <4) pesticide residues on the basis of data from the USDA Pesticide Data Program. Linear regression models were used to analyze the associations of fruit and vegetable intake with semen variables and reproductive hormones while adjusting for potential confounding factors. Results: The total intake of fruit and vegetables was unrelated to semen quality. However, the intake of fruit and vegetables with low-to-moderate pesticide residues was associated with a higher total sperm count and sperm concentration, whereas the intake of fruit and vegetables with high pesticide residues was unrelated to semen quality. On average, men in the highest quartile of low-to-moderate-pesticide fruit and vegetable intake (≥2.8 servings/d) had a 169% (95% CI: 45%, 400%) higher total sperm count and a 173% (95% CI: 57%, 375%) higher sperm concentration than did men in the lowest

  10. Relationship between dietary intake and behaviors with oxytocin: a systematic review of studies in adults.

    PubMed

    Skinner, Janelle A; Garg, Manohar L; Dayas, Christopher V; Fenton, Sasha; Burrows, Tracy L

    2018-05-01

    Oxytocin plays an important hormonal role in the regulation of feeding and energy intake. The aims of this review were to 1) determine the effects of dietary intake/behaviors on endogenous oxytocin and 2) examine the effect of exogenous oxytocin on dietary intake/behaviors. Published studies up to December 2016 were identified through searches of 5 electronic databases. Eligible studies included those in adults that included a measure related to an individual's diet and a measure of oxytocin and the relationship between the 2 outcomes. Twenty-six studies (n = 912 participants; 77% female) were included. The most common dietary outcomes assessed were alcohol, caffeine, calcium, sodium, fat, and calorie intake. It was found that endogenous oxytocin (n = 13) in nonclinical samples did not change significantly (P > 0.05) through altered diet or behaviors (neutral effect); in contrast, significant (P < 0.05) differences (increases and decreases) were identified in clinical samples. Exogenous oxytocin studies (n = 13) found reduced indices of food intake (positive effect) in clinical and nonclinical samples. Overall, few studies included comprehensive investigation of dietary intakes through the use of validated assessment tools. Dietary intake and behaviors appear to have some influence on oxytocin, with more pronounced effects found with exogenously administered oxytocin.

  11. Hormonally active agents in the environment: a state-of-the-art review.

    PubMed

    Anwer, Faizan; Chaurasia, Savita; Khan, Abid Ali

    2016-12-01

    After the Second World War, infatuation with modern products has exponentially widened the spectrum of chemicals used. Some of them are capable of hijacking the endocrine system by blocking or imitating a hormone and are referred to as hormonally active chemicals or endocrine disruptors. These are chemicals that the body was not designed for evolutionarily and they are present in every matrix of the environment. We are living in a chemical world where the exposures are ubiquitous and take place in combinations that can interact with the endocrine system and some other metabolic activities in unexpected ways. The complexity of interaction of these compounds can be understood by the fact that they interfere with gene expression at extremely low levels, consequently harming an individual life form, its offspring or population. As the endocrine system plays a critical role in many biological or physiological functions, by interfering body's endocrine system, endocrine disrupting compounds (EDCs) have various adverse effects on human health, starting from birth defects to developmental disorders, deadly deseases like cancer and even immunological disorders. Most of these compounds have not been tested yet for safety and their effects cannot be assessed by the available techniques. The establishment of proper exposure measurement techniques and integrating correlation is yet to be achieved to completely understand the impacts at various levels of the endocrine axis.

  12. The interaction of amylin with other hormones in the control of eating.

    PubMed

    Lutz, T A

    2013-02-01

    Twenty years of research established amylin as an important control of energy homeostasis. Amylin controls nutrient and energy fluxes by reducing energy intake, by modulating nutrient utilization via an inhibition of postprandial glucagon secretion and by increasing energy disposal via a prevention of compensatory decreases of energy expenditure in weight reduced individuals. Like many other gastrointestinal hormones, amylin is secreted in response to meals and it reduces eating by promoting meal-ending satiation. Not surprisingly, amylin interacts with many of these hormones to control eating. These interactions seem to occur at different levels because amylin seems to mediate the eating inhibitory effect of some of these gastrointestinal hormones, and the combination of some of these hormones seems to lead to a stronger reduction in eating than single hormones alone. Amylin's effect on eating is thought to be mediated by a stimulation of specific amylin receptors in the area postrema. Secondary brain sites that were defined to mediate amylin action - and hence potential additional sites of interaction with other hormones - include the nucleus of the solitary tract, the lateral parabrachial nucleus, the lateral hypothalamic area and other hypothalamic nuclei. The focus of this review is to summarize the current knowledge of amylin interactions in the control of eating. In most cases, these interactions have only been studied at a descriptive rather than a mechanistic level and despite the clear knowledge on primary sites of amylin action, the interaction sites between amylin and other hormones are often unknown. © 2012 Blackwell Publishing Ltd.

  13. Early Hormonal Influences on Childhood Sex-Typed Activity and Playmate Preferences: Implications for the Development of Sexual Orientation.

    ERIC Educational Resources Information Center

    Berenbaum, Sheri A.; Snyder, Elizabeth

    1995-01-01

    Examined hormonal influences on activity and playmate preferences in children with congenital adrenal hyperplasia (CAH) age 2.5 to 12 years and their relatives. Found that girls with CAH preferred boys' toys and activities, whereas boys with CAH did not differ significantly from controls. Activity and playmate preferences were not related. (MDM)

  14. Hypothalamic Integration of the Endocrine Signaling Related to Food Intake.

    PubMed

    Klockars, Anica; Levine, Allen S; Olszewski, Pawel K

    2018-06-10

    Hypothalamic integration of gastrointestinal and adipose tissue-derived hormones serves as a key element of neuroendocrine control of food intake. Leptin, adiponectin, oleoylethanolamide, cholecystokinin, and ghrelin, to name a few, are in a constant "cross talk" with the feeding-related brain circuits that encompass hypothalamic populations synthesizing anorexigens (melanocortins, CART, oxytocin) and orexigens (Agouti-related protein, neuropeptide Y, orexins). While this integrated neuroendocrine circuit successfully ensures that enough energy is acquired, it does not seem to be equally efficient in preventing excessive energy intake, especially in the obesogenic environment in which highly caloric and palatable food is constantly available. The current review presents an overview of intricate mechanisms underlying hypothalamic integration of energy balance-related peripheral endocrine input. We discuss vulnerabilities and maladaptive neuroregulatory processes, including changes in hypothalamic neuronal plasticity that propel overeating despite negative consequences.

  15. HPA-Axis Hormone Modulation of Stress Response Circuitry Activity in Women with Remitted Major Depression

    PubMed Central

    Holsen, Laura M.; Lancaster, Katie; Klibanski, Anne; Whitfield-Gabrieli, Susan; Cherkerzian, Sara; Buka, Stephen; Goldstein, Jill M.

    2013-01-01

    Decades of clinical and basic research indicate significant links between altered hypothalamic-pituitary-adrenal (HPA)-axis hormone dynamics and major depressive disorder (MDD). Recent neuroimaging studies of MDD highlight abnormalities in stress response circuitry regions which play a role in the regulation of the HPA-axes. However, there is a dearth of research examining these systems in parallel, especially as related to potential trait characteristics. The current study addresses this gap by investigating neural responses to a mild visual stress challenge with real-time assessment of adrenal hormones in women with MDD in remission and controls. 15 women with recurrent MDD in remission (rMDD) and 15 healthy control women were scanned on a 3T Siemens MR scanner while viewing neutral and negative (stress-evoking) stimuli. Blood samples were obtained before, during, and after scanning for measurement of HPA-axis hormone levels. Compared to controls, rMDD women demonstrated higher anxiety ratings, increased cortisol levels, and hyperactivation in the amygdala and hippocampus, p<0.05, FWE-corrected in response to the stress challenge. Among rMDD women, amygdala activation was negatively related to cortisol changes and positively associated with duration of remission. Findings presented here provide evidence for differential effects of altered HPA-axis hormone dynamics on hyperactivity in stress response circuitry regions elicited by a well-validated stress paradigm in women with recurrent MDD in remission. PMID:23891965

  16. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  17. Soda Intake Is Directly Associated with Serum C-Reactive Protein Concentration in Mexican Women.

    PubMed

    Tamez, Martha; Monge, Adriana; López-Ridaura, Ruy; Fagherazzi, Guy; Rinaldi, Sabina; Ortiz-Panozo, Eduardo; Yunes, Elsa; Romieu, Isabelle; Lajous, Martin

    2018-01-01

    Soda intake is associated with an increased risk of cardiovascular disease. Consumption of diet sodas, often considered healthy alternatives to sodas, could also increase the likelihood of cardiovascular outcomes. This study aims to evaluate the relation between soda and diet soda and biomarkers of cardiovascular risk. We conducted a cross-sectional analysis among 825 Mexican women free of diabetes, cardiovascular disease, and cancer, and for whom serum concentrations of C-reactive protein (CRP), C-peptide, adiponectin, and leptin were available. Mean ± SD age was 45.9 ± 6.6 y, the majority of women were premenopausal (60.4%), and the prevalence of obesity was 35%. We estimated the adjusted percentage differences in biomarkers and 95% CIs by performing multiple linear regression models comparing categories of consumption for soda and diet soda adjusting for age, family history of heart disease, menopause, menopausal hormone therapy, socioeconomic status, region, smoking, physical activity, alcohol intake, and dietary patterns. In the entire study sample we observed a 50% higher serum CRP concentration in women in the highest soda intake quartile (median intake: 202.9 mL/d, IQR: 101.4, 304.3 mL/d) compared to those in the lowest (median intake: 11.8 mL/d, IQR: 0.0, 152.1 mL/d). After stratification by menopausal status, results remained significant only for premenopausal women. Premenopausal women in the highest quartile of soda intake had 56% higher CRP concentration relative to women in the lowest quartile. We observed no significant association with the other biomarkers. After further adjustment for body mass index, a potential mediator, results remained significant only for CRP. Diet soda consumption was not associated with any of the biomarkers. Consumption of soda was associated with adverse levels in a biomarker of inflammation and cardiovascular risk, serum CRP, in Mexican women. These results add to the accumulating evidence on soda and cardiovascular

  18. Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows.

    PubMed

    Kuhla, B; Metges, C C; Hammon, H M

    2016-07-01

    The high metabolic priority of the mammary gland for milk production, accompanied by limited feed intake around parturition results in a high propensity to mobilize body fat reserves. Under these conditions, fuel selection of many peripheral organs is switched, for example, from carbohydrate to fat utilization to spare glucose for milk production and to ensure partitioning of tissue- and dietary-derived nutrients toward the mammary gland. For example, muscle tissue uses nonesterified fatty acids (NEFA) but releases lactate and amino acids in a coordinated order, thereby providing precursors for milk synthesis or hepatic gluconeogenesis. Tissue metabolism and in concert, nutrient partitioning are controlled by the endocrine system involving a reduction in insulin secretion and systemic insulin sensitivity and orchestrated changes in plasma hormones such as insulin, adiponectin, insulin growth factor-I, growth hormone, glucagon, leptin, glucocorticoids, and catecholamines. However, the endocrine system is highly sensitive and responsive to an overload of fatty acids no matter if excessive NEFA supply originates from exogenous or endogenous sources. Feeding a diet containing rumen-protected fat from late lactation to calving and beyond exerts similar negative effects on energy intake, glucose and insulin concentrations as does a high extent of body fat mobilization around parturition in regard to the risk for ketosis and fatty liver development. High plasma NEFA concentrations are thought not to act directly at the brain level, but they increase the energy charge of the liver which is, signaled to the brain to diminish feed intake. Cows differing in fat mobilization during the transition phase differ in their hepatic energy charge, whole body fat oxidation, glucose metabolism, plasma ghrelin, and leptin concentrations and in feed intake several week before parturition. Hence, a high lipid load, no matter if stored, mobilized or fed, affects the endocrine system

  19. Steroid hormones specifically modify the activity of organic anion transporting polypeptides.

    PubMed

    Koenen, Anna; Köck, Kathleen; Keiser, Markus; Siegmund, Werner; Kroemer, Heyo K; Grube, Markus

    2012-11-20

    Previously, the steroid hormone progesterone has been demonstrated to stimulate OATP2B1-mediated transport of estrone-3-sulphate (E(1)S), dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PS), which may influence the uptake of precursor molecules for steroid hormone synthesis. However, it is unclear whether OATP2B1 drug substrates like atorvastatin or glibenclamide are also affected by this phenomenon. In addition, it has not been studied so far if this stimulatory effect is specific for OATP2B1. To address these questions, we examined the influence of progesterone on OATP2B1-mediated atorvastatin and glibenclamide uptake and studied the impact of steroid hormones on the transport activity of OATP1A2, OATP1B1 and OATP1B3. Comparison of the substrate spectrum of the investigated OATPs revealed that DHEAS and atorvastatin are substrates of all transporters, while E(1)S was only significantly transported by OATP1A2, OATP2B1 and OATP1B1. Glibenclamide uptake was limited to OATP1A2, OATP1B1 and OATP2'B1. Subsequent interaction studies indicated that progesterone only increases OATP2B1-mediated E(1)S and DHEAS transport, whereas uptake of BSP, atorvastatin and glibenclamide was either inhibited or not affected. Moreover, the steroid hormone effect was specific for OATP2B1; neither OATP1B1, OATP1B3 nor OATP1A2 function was stimulated in the presence of progesterone. Similar to progesterone, the glucocorticoide dexamethasone stimulated OATP2B1-mediated transport of E(1)S and DHEAS (EC(50) for E(1)S: 10.2 ± 5.6 μM and 17.9 ± 15.4 μM for DHEAS). In conclusion, our data demonstrate that among the tested compounds the stimulatory effect of progesterone is specific for OATP2B1 and restricted to sulphated steroids like E(1)S and DHEAS while the OATP-mediated drug transport is not enhanced. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The relationship between alkaline phosphatase and bone alkaline phosphatase activity and the growth hormone/insulin-like growth factor-1 axis and vitamin D status in children with growth hormone deficiency.

    PubMed

    Witkowska-Sędek, Ewelina; Stelmaszczyk-Emmel, Anna; Majcher, Anna; Demkow, Urszula; Pyrżak, Beata

    2018-04-13

    The relationships between bone turnover, the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and vitamin D are complex, but still not fully explained. The GH/IGF-1 axis and vitamin D can mutually modulate each other's metabolism and influence the activation of cell proliferation, maturation, and mineralization as well as bone resorption. The aim of this study was to evaluate the reciprocal associations between bone formation markers [alkaline phosphatase (ALP), bone alkaline phosphatase (BALP)], the GH/IGF-1 axis and 25-hydroxyvitamin D [25(OH)D] in children with growth hormone deficiency at baseline and during recombinant human growth hormone (rhGH) therapy. ALP, BALP, 25(OH)D and IGF-1 levels were evaluated in 53 patients included in this prospective three-year study. ALP, BALP and IGF-1 increased during rhGH therapy. Baseline ALP activity correlated positively with baseline height velocity (HV). ALP and BALP activity at 12 months correlated positively with HV in the first year of therapy. We found positive correlations between ALP and IGF-1 at baseline and during the first year of therapy, between BALP activity at 12 months and rhGH dose in the first year of therapy, and between doses of cholecalciferol in the first year of rhGH therapy and early changes in BALP activity during rhGH therapy. Our results indicate that vitamin D supplementation enhances the effect of rhGH on bone formation process, which could improve the effects of rhGH therapy. ALP and BALP activity are useful in the early prediction of the effects of rhGH therapy, but their utility as long-term predictors seemed insufficient.

  1. In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River.

    PubMed

    Hu, Xinxin; Shi, Wei; Zhang, Fengxian; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia

    2013-02-01

    The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Collective hormonal profiles predict group performance

    PubMed Central

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H.; Lu, Jackson G.

    2016-01-01

    Prior research has shown that an individual’s hormonal profile can influence the individual’s social standing within a group. We introduce a different construct—a collective hormonal profile—which describes a group’s hormonal make-up. We test whether a group’s collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revealed that group-level concentrations of testosterone and cortisol interact to predict a group’s standing across groups. Groups with a collective hormonal profile characterized by high testosterone and low cortisol exhibited the highest performance. These collective hormonal level results remained reliable when controlling for personality traits and group-level variability in hormones. These findings support the hypothesis that groups with a biological propensity toward status pursuit (high testosterone) coupled with reduced stress-axis activity (low cortisol) engage in profit-maximizing decision-making. The current work extends the dual-hormone hypothesis to the collective level and provides a neurobiological perspective on the factors that determine who rises to the top across, not just within, social hierarchies. PMID:27528679

  3. Effect of three day bed-rest on circulatory and hormonal responses to active orthostatic test in endurance trained athletes and untrained subjects

    NASA Technical Reports Server (NTRS)

    Kubala, P.; Smorawinski, J.; Kaciuba-Uscilko, H.; Nazar, K.; Bicz, B.; Greenleaf, J. E.

    1996-01-01

    Circulatory and hormonal parameters were measured in endurance-trained athletes and control subjects during orthostatic tolerance tests conducted prior to and after three days of bed rest. Heart rate and blood pressure changes due to bed rest appeared to be the same in both groups. Hormonal changes, however, were different between the two groups, with the athletes having decreased sympathoadrenal activity and increased plasma renin activity. Untrained subjects had changes in cortisol secretion only.

  4. The sum of its parts--effects of gastric distention, nutrient content and sensory stimulation on brain activation.

    PubMed

    Spetter, Maartje S; de Graaf, Cees; Mars, Monica; Viergever, Max A; Smeets, Paul A M

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural

  5. The Sum of Its Parts—Effects of Gastric Distention, Nutrient Content and Sensory Stimulation on Brain Activation

    PubMed Central

    Spetter, Maartje S.; de Graaf, Cees; Mars, Monica; Viergever, Max A.; Smeets, Paul A. M.

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural

  6. Activation of murine pre-proglucagon–producing neurons reduces food intake and body weight

    PubMed Central

    Gaykema, Ronald P.; Newmyer, Brandon A.; Ottolini, Matteo; Warthen, Daniel M.; Lambeth, Philip S.; Niccum, Maria; Yao, Ting; Huang, Yiru; Schulman, Ira G.; Harris, Thurl E.; Patel, Manoj K.; Williams, Kevin W.

    2017-01-01

    Peptides derived from pre-proglucagon (GCG peptides) act in both the periphery and the CNS to change food intake, glucose homeostasis, and metabolic rate while playing a role in anxiety behaviors and physiological responses to stress. Although the actions of GCG peptides produced in the gut and pancreas are well described, the role of glutamatergic GGC peptide–secreting hindbrain neurons in regulating metabolic homeostasis has not been investigated. Here, we have shown that chemogenetic stimulation of GCG-producing neurons reduces metabolic rate and food intake in fed and fasted states and suppresses glucose production without an effect on glucose uptake. Stimulation of GCG neurons had no effect on corticosterone secretion, body weight, or conditioned taste aversion. In the diet-induced obese state, the effects of GCG neuronal stimulation on gluconeogenesis were lost, while the food intake–lowering effects remained, resulting in reductions in body weight and adiposity. Our work suggests that GCG peptide–expressing neurons can alter feeding, metabolic rate, and glucose production independent of their effects on hypothalamic pituitary-adrenal (HPA) axis activation, aversive conditioning, or insulin secretion. We conclude that GCG neurons likely stimulate separate populations of downstream cells to produce a change in food intake and glucose homeostasis and that these effects depend on the metabolic state of the animal. PMID:28218622

  7. The association between dietary intake of folate and physical activity with psychological dimensions of depressive symptoms among students from Iran.

    PubMed

    Yary, Teymoor

    2013-01-01

    Depression in students is a major public health problem. Although several risk factors associated with depression have been identified, the cause of depression is still not clear. Several studies have demonstrated that physical activity and nutrient intake, such as increased levels of B vitamins in serum, decrease symptoms of depression. The aim of this study was to investigate the association between physical activity and dietary intake of vitamins B₆, B₉, and B₁₂ and symptoms of depression among postgraduate students. The results of this study suggest that intake of vitamin B9 may modulate the total score of Center for Epidemiological Studies Depression Scale (CES-D) and two subscales of the CES-D including depressive affect and interpersonal difficulties. This study also showed that moderate/high levels of physical activity were inversely and significantly associated with symptoms of depression (total scores) and three subscales of the CES-D including depressive affect, positive affect, and somatic complaints.

  8. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake.

    PubMed

    Ryan, Philip J; Ross, Silvano I; Campos, Carlos A; Derkach, Victor A; Palmiter, Richard D

    2017-12-01

    Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (Oxtr PBN neurons) are key regulators of fluid satiation. Chemogenetic activation of Oxtr PBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, Oxtr PBN neurons were activated by fluid satiation and hypertonic saline injection. Oxtr PBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (Oxt PVH  neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated Oxtr PBN neurons. Our results suggest that Oxtr PBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.

  9. The most effective factors to offset sarcopenia and obesity in the older Korean: Physical activity, vitamin D, and protein intake.

    PubMed

    Oh, Chorong; Jeon, Byeong Hwan; Reid Storm, Shaun Nicholas; Jho, Sunkug; No, Jae-Kyung

    2017-01-01

    The aim of this study was to evaluate the effects of the types and levels of physical activity in conjunction with protein intake and vitamin D on sarcopenia and obesity status in an elderly population. Study participants (N = 4452) were ages ≥60 y and included 1929 men and 2523 women who completed a body composition analysis with a dual energy x-ray absorptiometry and provided health and dietary data. Higher appendicular skeletal muscle mass/weight was observed in the non-obese group, although obese participants had greater weights. The non-obese sarcopenia subgroup showed health problems related to insulin resistance and metabolic-related factors compared with the nonsarcopenic group. The total metabolic equivalent was significantly different in both obese categories, regardless of sarcopenic status. The prevalence of obesity, sarcopenia, and sarcopenic obesity relatively increased with a diet deficient of protein intake and vitamin D. These data suggest that sarcopenia had a significant association with metabolic-related factors; physical activity, especially vigorous activity; and protein intake and vitamin D levels in a non-obese elderly population. Therefore, maintaining healthy body weight by means of resistance exercise and enhanced protein intake and vitamin D may help offset sarcopenia in this age group. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Dietary micronutrient intake and atherosclerosis in systemic lupus erythematosus.

    PubMed

    Lourdudoss, C; Elkan, A-C; Hafström, I; Jogestrand, T; Gustafsson, T; van Vollenhoven, R; Frostegård, J

    2016-12-01

    The aim of this study was to investigate the role of dietary micronutrient intake in systemic lupus erythematosus (SLE). This study included 111 SLE patients and 118 age and gender-matched controls. Data on diet (food frequency questionnaires) were linked with data on Systemic Lupus Activity Measure, Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) and carotid atherosclerotic/echolucent plaque (B-mode ultrasound). Dietary micronutrient intake were compared between SLE patients and controls and in relation to lupus activity and atherosclerosis in SLE. Associations between micronutrient intake and plaque were analyzed through logistic regression, adjusted for potential confounders. Micronutrient intake did not differ between patients and controls, and between lower and higher lupus activity, apart from the fact that phosphorus was associated with SLEDAI > 6. In SLE patients, some micronutrients were associated with atherosclerotic plaque, left side. Lower intake of riboflavin and phosphorus was associated with atherosclerotic plaque, left side (odds ratio (OR) 3.06, 95% confidence interval (CI) 1.12-8.40 and OR 4.36, 95% CI 1.53-12.39, respectively). Higher intake of selenium and thiamin was inversely associated with atherosclerotic plaque, left side (OR 0.28, 95% CI 0.09-0.89 and OR 0.26, 95% CI 0.08-0.80, respectively). In addition, higher intake of thiamin was inversely associated with echolucent plaque, left side (OR 0.22, 95% CI 0.06-0.84). Lower intake of folate was inversely associated with bilateral echolucent plaque (OR 0.36, 95% CI 0.13-0.99). SLE patients did not have different dietary micronutrient intake compared to controls. Phosphorus was associated with lupus activity. Riboflavin, phosphorus, selenium and thiamin were inversely associated with atherosclerotic plaque, left side in SLE patients, but not in controls. Dietary micronutrients may play a role in atherosclerosis in SLE. © The Author(s) 2016.

  11. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance

    PubMed Central

    Alvarez-Crespo, Mayte; Csikasz, Robert I.; Martínez-Sánchez, Noelia; Diéguez, Carlos; Cannon, Barbara; Nedergaard, Jan; López, Miguel

    2016-01-01

    Objective Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice. Methods Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry. Results We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 °C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging (“browning”) of inguinal white adipose tissue (iWAT). Conclusions We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents. PMID:27069867

  12. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress.

    PubMed

    Bale, T L; Contarino, A; Smith, G W; Chan, R; Gold, L H; Sawchenko, P E; Koob, G F; Vale, W W; Lee, K F

    2000-04-01

    Corticotropin-releasing hormone (Crh) is a critical coordinator of the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, Crh released from the paraventricular nucleus (PVN) of the hypothalamus activates Crh receptors on anterior pituitary corticotropes, resulting in release of adrenocorticotropic hormone (Acth) into the bloodstream. Acth in turn activates Acth receptors in the adrenal cortex to increase synthesis and release of glucocorticoids. The receptors for Crh, Crhr1 and Crhr2, are found throughout the central nervous system and periphery. Crh has a higher affinity for Crhr1 than for Crhr2, and urocortin (Ucn), a Crh-related peptide, is thought to be the endogenous ligand for Crhr2 because it binds with almost 40-fold higher affinity than does Crh. Crhr1 and Crhr2 share approximately 71% amino acid sequence similarity and are distinct in their localization within the brain and peripheral tissues. We generated mice deficient for Crhr2 to determine the physiological role of this receptor. Crhr2-mutant mice are hypersensitive to stress and display increased anxiety-like behaviour. Mutant mice have normal basal feeding and weight gain, but decreased food intake following food deprivation. Intravenous Ucn produces no effect on mean arterial pressure in the mutant mice.

  13. A sea lamprey glycoprotein hormone receptor similar with gnathostome thyrotropin hormone receptor.

    PubMed

    Freamat, Mihael; Sower, Stacia A

    2008-10-01

    The specificity of the vertebrate hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes is explained by the evolutionary refinement of the specificity of expression and selectivity of interaction between the glycoprotein hormones GpH (FSH, LH, and TSH) and their cognate receptors GpH-R (FSH-R, LH-R, and TSH-R). These two finely tuned signaling pathways evolved by gene duplication and functional divergence from an ancestral GpH/GpH-R pair. Comparative analysis of the protochordate and gnathostome endocrine systems suggests that this process took place prior or concomitantly with the emergence of the gnathostome lineage. Here, we report identification and characterization of a novel glycoprotein hormone receptor (lGpH-R II) in the Agnathan sea lamprey. This 781 residue protein was found approximately 43% identical with mammalian TSH-R and FSH-R representative sequences, and similarly with these two classes of mammalian receptors it is assembled from ten exons. A synthetic ligand containing the lamprey glycoprotein hormone beta-chain tethered upstream of a mammalian alpha-chain activated the lGpH-R II expressed in COS-7 cells but in a lesser extent than lGpH-R I. Molecular phylogenetic analysis of vertebrate GpH-R protein sequences suggests a closer relationship between lGpH-R II and gnathostome thyrotropin receptors. Overall, the presence and characteristics of the lamprey glycoprotein hormone receptors suggest existence of a primitive functionally overlapping glycoprotein hormone/glycoprotein hormone receptor system in this animal.

  14. Impact of California Children's Power Play! Campaign on Fruit and Vegetable Intake and Physical Activity among Fourth- and Fifth-Grade Students.

    PubMed

    Keihner, Angie; Rosen, Nila; Wakimoto, Patricia; Goldstein, Lauren; Sugerman, Sharon; Hudes, Mark; Ritchie, Lorrene; McDevitt, Kate

    2017-05-01

    Examine the impact of the Children's Power Play! Campaign on fruit and vegetable (FV) intake and physical activity (PA). Study design was a cluster randomized, controlled trial. Forty-four low-resource public schools in San Diego County, California, were included in the study. Study subjects comprised a total of 3463 fourth/fifth-graders (1571 intervention, 1892 control), with an 86.9% completion rate. Throughout 10 weeks, activities were conducted during/after school, including weekly FV/PA lessons and PA breaks; biweekly classroom promotions/taste tests; posters displayed in/around schools; and weekly nutrition materials for parents. Self-reported FV intake (cups/d) and PA (min/d) were collected at baseline and follow-up using a diary-assisted, 24-hour dietary recall and Self-Administered Physical Activity Checklist. Multivariate regression models adjusted for demographics and cluster design effects were used, with change as the dependent variable. Intervention children, compared with controls, showed gains in daily FV intake (.26 cups, p < .001) and PA time at recess/lunch (5.1 minutes, p = .003), but not total daily PA minutes. Power Play! can help schools and community organizations improve low-income children's FV intake and PA during recess/lunch.

  15. Acutely Decreased Thermoregulatory Energy Expenditure or Decreased Activity Energy Expenditure Both Acutely Reduce Food Intake in Mice

    PubMed Central

    Kaiyala, Karl J.; Morton, Gregory J.; Thaler, Joshua P.; Meek, Thomas H.; Tylee, Tracy; Ogimoto, Kayoko; Wisse, Brent E.

    2012-01-01

    Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21°C to 28°C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40±1%) and dark cycle energy expenditure (15±3%) at normal ambient temperature (21°C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65±7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14±2% at 21°C; 21±4% at 28°C), while food intake was reduced during the dark cycle (0.9±0.1 g) in mice housed at 28°C, but during the light cycle (0.3±0.1 g) in mice housed at 21°C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R2 = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure. PMID:22936977

  16. Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males.

    PubMed

    Ueda, Shin-ya; Yoshikawa, Takahiro; Katsura, Yoshihiro; Usui, Tatsuya; Nakao, Hayato; Fujimoto, Shigeo

    2009-04-01

    We examined whether changes in gut hormone levels due to a single bout of aerobic exercise differ between obese young males and normal controls, and attempted to determine the involvement of hormonal changes during exercise in the regulation of energy balance (EB) in these obese subjects. Seven obese and seven age-matched subjects of normal weight participated in exercise and rest sessions. Subjects consumed a standardized breakfast that was followed by constant cycling exercise at 50% VO(2max) or rest for 60 min. At lunch, a test meal was presented, and energy intake (EI) and relative energy intake (REI) were calculated. Blood samples were obtained at 30 min intervals during both sessions for measurement of glucose, insulin, glucagon, ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Plasma levels of PYY and GLP-1 were increased by exercise, whereas plasma ghrelin levels were unaffected by exercise. The areas under the curve (AUC) of the time courses of PYY and GLP-1 levels did not significantly differ between the two groups. In contrast, EI and REI were decreased by exercise in both groups, and energy deficit was significantly larger in obese subjects than in normal controls. The present findings suggest that short-term EB during a single exercise session might be regulated not by increased amounts of these gut hormones per se.

  17. High-monosaccharide intake inhibits anorexigenic hypothalamic insulin response in male rats.

    PubMed

    Ramos, Viviane Wagner; Batista, Leandro Oliveira; Cordeiro, Elisaldo Mendes; Oliveira, Gustavo Vieira; Albuquerque, Kelse Tibau

    2018-06-01

    The aim of this research is to evaluate if intake of 20% fructose solution is able to change the anorexigenic hypothalamic insulin action. Thirty day-old male Wistar rats were randomly assigned to one of the following groups: standard chow and water for the rats (Control group, C) and standard chow and 20% fructose solution for the rats (Fructose group, F).These treatments lasted 8 weeks. Three-month-old rats from group C and F received insulin or saline intracerebroventricular injections for evaluation of 24 h food intake, phosphorylated forms of the IR (p-IR) and Akt (p-Akt) proteins and quantified hypothalamic insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) proteins. Insulin injection was able to decrease food intake in group C compared to 0.9% saline. However, insulin infusion failed to inhibit 24 h food intake in group F compared to 0.9% saline. The hypothalamic content of the IRS-1 was 37% higher in group F as well as p-Akt protein was significant higher vs. group C. We concluded that the 20% fructose solution compromised insulin signaling considering that it inhibited the anorexigenic hypothalamic response to acute injection of this hormone and increase of IRS-1 and p-Akt content.

  18. Prostaglandin mediates endotoxaemia-induced hypophagia by activation of pro-opiomelanocortin and corticotrophin-releasing factor neurons in rats.

    PubMed

    Rorato, Rodrigo; Menezes, Aline Motta; Giusti-Paiva, Alexandre; de Castro, Margaret; Antunes-Rodrigues, José; Elias, Lucila Leico Kagohara

    2009-03-01

    Corticotrophin-releasing factor (CRF) and alpha-melanocyte-stimulating hormone (alpha-MSH), both of which are synthesized by hypothalamic neurons, play an essential role in the control of energy homeostasis. Neuroendocrine and behavioural responses induced by lipopolyssacharide (LPS) have been shown to involve prostaglandin-mediated pathways. This study investigated the effects of prostaglandin on CRF and alpha-MSH neuronal activities in LPS-induced anorexia. Male Wistar rats were pretreated with indomethacin (10 mg kg(-1); i.p.) or vehicle; 15 min later they received LPS (500 microg kg(-1); i.p.) or saline injection. Food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the paraventricular and arcuate nuclei, respectively, were evaluated. In comparison with saline treatment, LPS administration induced lower food intake and increased plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF and Fos-alpha-MSH double-labelled neurons in vehicle-pretreated rats. In contrast, indomethacin treatment partly reversed the hypophagic effect, blunted the hormonal increase and blocked the Fos-CRF and Fos-alpha-MSH hypothalamic double labelling increase in response to the LPS stimulus. These data demonstrate that the activation of pro-opiomelanocortin and CRF hypothalamic neurons following LPS administration is at least partly mediated by the prostaglandin pathway and is likely to be involved in the modulation of feeding behaviour during endotoxaemia.

  19. Nasal oxytocin administration reduces food intake without affecting locomotor activity and glycemia with c-Fos induction in limited brain areas.

    PubMed

    Maejima, Yuko; Rita, Rauza Sukma; Santoso, Putra; Aoyama, Masato; Hiraoka, Yuichi; Nishimori, Katsuhiko; Gantulga, Darambazar; Shimomura, Kenju; Yada, Toshihiko

    2015-01-01

    Recent studies have considered oxytocin (Oxt) as a possible medicine to treat obesity and hyperphagia. To find the effective and safe route for Oxt treatment, we compared the effects of its nasal and intraperitoneal (IP) administration on food intake, locomotor activity, and glucose tolerance in mice. Nasal Oxt administration decreased food intake without altering locomotor activity and increased the number of c-Fos-immunoreactive (ir) neurons in the paraventricular nucleus (PVN) of the hypothalamus, the area postrema (AP), and the dorsal motor nucleus of vagus (DMNV) of the medulla. IP Oxt administration decreased food intake and locomotor activity and increased the number of c-Fos-ir neurons not only in the PVN, AP, and DMNV but also in the nucleus of solitary tract of the medulla and in the arcuate nucleus of the hypothalamus. In IP glucose tolerance tests, IP Oxt injection attenuated the rise of blood glucose, whereas neither nasal nor intracerebroventricular Oxt affected blood glucose. In isolated islets, Oxt administration potentiated glucose-induced insulin secretion. These results indicate that both nasal and IP Oxt injections reduce food intake to a similar extent and increase the number of c-Fos-ir neurons in common brain regions. IP Oxt administration, in addition, activates broader brain regions, reduces locomotor activity, and affects glucose tolerance possibly by promoting insulin secretion from pancreatic islets. In comparison with IP administration, the nasal route of Oxt administration could exert a similar anorexigenic effect with a lesser effect on peripheral organs. © 2015 S. Karger AG, Basel.

  20. Jejunal Infusion of Glucose Decreases Energy Intake to a Greater Extent than Fructose in Adult Male Rats12

    PubMed Central

    Moghadam, Alexander A; Moran, Timothy H; Dailey, Megan J

    2016-01-01

    Background: Intestinal nutrient infusions result in variable decreases in energy intake and body weight based on nutrient type and specific intestinal infusion site. Objective: The objective was to test whether an intrajejunal fructose infusion (FRU) would lower energy intake and body weight and induce similar increases in gut hormones as those found after intrajejunal glucose infusions (GLU). Methods: Male Sprague-Dawley rats received an intrajejunal infusion of either an equal kilocalorie load of glucose or fructose (11.4 kcal) or saline (SAL) for 5 d while intake of a standard rodent diet was continuously recorded; body weight was measured daily. Immediately after the infusion on the final day, rats were killed and plasma was collected to measure hormones. Results: Daily energy intake was significantly lower in the GLU group than in the SAL group, but the FRU group did not differ from the GLU or SAL groups when the 11.4 kcal of the infusate was included as energy intake. Lower energy intake was due to smaller meal sizes during the infusion period in the GLU group than in the FRU and SAL groups; the FRU and SAL groups did not differ. The percentage of change in body weight was lower in the GLU group than in the FRU and SAL groups. Plasma glucagon-like-peptide 1 (GLP-1) concentrations were greater in the GLU group than in the SAL group; the FRU group did not differ from the GLU or SAL groups. The plasma insulin concentration was greater in the FRU group than in both the GLU and SAL groups. Conclusion: These results demonstrate that glucose induces a greater decrease in energy intake and increase in GLP-1 at distal intestinal sites than fructose in rats, which may explain differential effects of these monosaccharides between studies when delivered orally or along the proximal to distal axis of the intestine. PMID:27581579

  1. Role of addiction and stress neurobiology on food intake and obesity.

    PubMed

    Sinha, Rajita

    2018-01-01

    The US remains at the forefront of a global obesity epidemic with a significant negative impact on public health. While it is well known that a balance between energy intake and expenditure is homeostatically regulated to control weight, growing evidence points to multifactorial social, neurobehavioral and metabolic determinants of food intake that influence obesity risk. This review presents factors such as the ubiquitous presence of rewarding foods in the environment and increased salience of such foods that stimulate brain reward motivation and stress circuits to influence eating behaviors. These rewarding foods via conditioned and reinforcing effects stimulate not only metabolic, but also stress hormones, that, in turn, hijack the brain emotional (limbic) and motivational (striatal) pathways, to promote food craving and excessive food intake. Furthermore, the impact of high levels of stress and trauma and altered metabolic environment (e.g. higher weight, altered insulin sensitivity) on prefrontal cortical self-control processes that regulate emotional, motivational and visceral homeostatic mechanisms of food intake and obesity risk are also discussed. A heuristic framework is presented in which the interactive dynamic effects of neurobehavioral adaptations in metabolic, motivation and stress neurobiology may further support food craving, excessive food intake and weight gain in a complex feed-forward manner. Implications of such adaptations in brain addictive-motivational and stress pathways and their effects on excessive food intake and weight gain are discussed to highlight key questions that requires future research attention in order to better understand and address the growing obesity epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Body composition and power performance improved after weight reduction in male athletes without hampering hormonal balance.

    PubMed

    Huovinen, Heikki T; Hulmi, Juha J; Isolehto, Juha; Kyröläinen, Heikki; Puurtinen, Risto; Karila, Tuomo; Mackala, Krzysztof; Mero, Antti A

    2015-01-01

    The aim of this study was to investigate the effects of a 4-week weight reduction period with high protein and reduced carbohydrate intake on body composition, explosive power, speed, serum hormones, and acid-base balance in male track and field jumpers and sprinters. Eight participants were assigned to a high weight reduction group (HWR; energy restriction 750 kcal·d) and 7 to a low weight reduction group (LWR; energy restriction 300 kcal·d). Energy and carbohydrate intake decreased significantly (p ≤ 0.05) only in HWR by 740 ± 330 kcal·d and 130 ± 29 g·d, respectively. Furthermore, total body mass and fat mass decreased (p ≤ 0.05) only in HWR by 2.2 ± 1.0 kg and 1.7 ± 1.6 kg, respectively. Fat-free mass (FFM), serum testosterone, cortisol, and sex hormone-binding globulin did not change significantly. Ca ion and pH decreased (p ≤ 0.05) only in HWR (3.1 ± 2.8% and 0.8 ± 0.8%, respectively), whereas (Equation is included in full-text article.)declined (p ≤ 0.05) in both groups by 19.3 ± 6.2% in HWR and by 13.1 ± 8.5% in LWR. The countermovement jump and 20-m sprint time improved consistently (p ≤ 0.05) only in HWR, by 2.6 ± 2.5 cm and 0.04 ± 0.04 seconds, respectively. Finally, athletes with a fat percentage of 10% or more at the baseline were able to preserve FFM. In conclusion, altered acid-base balance but improved weight-bearing power performance was observed without negative consequences on serum hormones and FFM after a 4-week weight reduction of 0.5 kg·wk achieved by reduced carbohydrate but maintained high protein intake.

  3. Effect of supplementing activated charcoal on the intake of honey mesquite leaves by lambs

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to determine if intake of honey mesquite (Prosopis glandulosa Torr.) leaves by sheep could be increased by supplementing four levels of activated charcoal supplemental (0.0, 0.33, 0.67 and 1.00 g/kg of BW). Twenty wether lambs (36.6 ± 0.6 kg) were randomly assigned to the 4 tre...

  4. Effect of supplementing activated charcoal on the intake of honey mesquite leaves by lambs

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to determine if intake of honey mesquite (Prosopis glandulosa Torr.) leaves by sheep could be increased by supplementing activated charcoal at 0.0, 0.33, 0.67 or 1.00 g / kg of body weight. Twenty wether lambs (36.6 ± 0.6 kg) were randomly assigned to the 4 treatment levels. La...

  5. Can hormones contained in mothers' milk account for the beneficial effect of breast-feeding on obesity in children?

    PubMed

    Savino, Francesco; Fissore, Maria F; Liguori, Stefania A; Oggero, Roberto

    2009-12-01

    Nutrition and growth during infancy are an emerging issue because of their potential link to metabolic health disorders in later life. Moreover, prolonged breast-feeding appears to be associated with a lower risk of obesity than formula feeding. Human milk is a source of various hormones and growth factors, namely adipokines (leptin and adiponectin), ghrelin, resistin and obestatin, which are involved in food intake regulation and energy balance. These compounds are either not found in commercial milk formulas or their presence is still controversial. Diet-related differences during infancy in serum levels of factors involved in energy metabolism might explain anthropometric differences and also differences in dietary habits between breast-fed (BF) and formula-fed (FF) infants later in life, and may thus have long-term health consequences. In this context, the recent finding of higher leptin levels and lower ghrelin levels in BF than in FF infants suggests that differences in hormonal values together with different protein intake could account for the differences in growth between BF and FF infants both during infancy and later in life. In this review, we examine the data related to hormones contained in mothers' milk and their potential protective effect on subsequent obesity and metabolic-related disorders.

  6. Towards engineering of hormonal crosstalk in plant immunity.

    PubMed

    Shigenaga, Alexandra M; Berens, Matthias L; Tsuda, Kenichi; Argueso, Cristiana T

    2017-08-01

    Plant hormones regulate physiological responses in plants, including responses to pathogens and beneficial microbes. The last decades have provided a vast amount of evidence about the contribution of different plant hormones to plant immunity, and also of how they cooperate to orchestrate immunity activation, in a process known as hormone crosstalk. In this review we highlight the complexity of hormonal crosstalk in immunity and approaches currently being used to further understand this process, as well as perspectives to engineer hormone crosstalk for enhanced pathogen resistance and overall plant fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Influence of carbohydrate and fat intake on diet-induced thermogenesis and brown fat activity in rats fed low protein diets.

    PubMed

    Rothwell, N J; Stock, M J

    1987-10-01

    Voluntary intake of protein, fat and carbohydrate (CHO) was modified by feeding young rats either a control purified diet [% metabolizable energy (ME): protein 21, fat 7, CHO 72], a control diet plus sucrose solution (20%) to drink (final intakes 17, 6 and 77% ME as protein, fat and CHO, respectively) or a low protein diet substituted with either CHO (8, 7 and 85% ME as protein, fat and CHO, respectively) or fat (8, 20 and 72% ME as protein, fat and CHO, respectively). Total ME intakes corrected for body size were similar for all rats, but body weight, energy gain and net energetic efficiency were lower in both low protein-fed groups than in the control group. The acute thermogenic response (% rise in oxygen consumption) to a standard balanced-nutrient meal was higher (12%) in sucrose-supplemented and in low protein groups (15-16%) than in control rats (8%). Brown adipose tissue protein content and thermogenic capacity (assessed from purine nucleotide binding to isolated mitochondria) were greater than control values in sucrose-fed and protein-deficient animals, and the greatest levels of activity were seen in low protein-fed rats with a high fat intake. The results demonstrate that the changes in energy balance, thermogenesis and brown adipose tissue activity that result from protein deficiency cannot be ascribed to changes in the level of energy intake or to a specific increase in the amount or proportion of either CHO or fat. They suggest that the protein-to-energy ratio must be the primary influence on thermogenesis and brown fat activity in these animals.

  8. Thiazide-induced hyponatraemia is associated with increased water intake and impaired urea-mediated water excretion at low plasma antidiuretic hormone and urine aquaporin-2.

    PubMed

    Frenkel, Nanne J; Vogt, Liffert; De Rooij, Sophia E; Trimpert, Christiane; Levi, Marcel M; Deen, Peter M T; van den Born, Bert-Jan H

    2015-03-01

    Hyponatraemia is a common, potentially life-threatening, complication of thiazide diuretics. The mechanism of thiazide-induced hyponatraemia is incompletely understood. Previous experiments have suggested a direct effect of thiazide diuretics on the plasma membrane expression of aquaporin (AQP)2. We examined the effects of a single re-exposure to hydrochlorothiazide (HCTZ) 50 mg on water balance, renal sodium handling and osmoregulation in 15 elderly hypertensive patients with a history of thiazide-induced hyponatraemia and 15 matched hypertensive controls using thiazide diuretics without previous hyponatraemia. Patients with thiazide-induced hyponatraemia had significantly lower body weight and lower plasma sodium and osmolality at baseline. After HCTZ administration, plasma sodium and osmolality significantly decreased and remained lower in patients compared with controls (P < 0.001). Plasma antidiuretic hormone (ADH) and urine AQP2 were low or suppressed in patients, whereas solute and electrolyte-free water clearance was significantly increased compared with controls. Ad libitum water intake was significantly higher in patients (2543 ± 925 ml) than in controls (1828 ± 624 ml, P < 0.05), whereas urinary sodium excretion did not differ. In contrast, urea excretion remained significantly lower in patients (263 ± 69 mmol per 24 h) compared with controls (333 ± 97 mmol per 24 h, P < 0.05) and predicted the decrease in plasma sodium following HCTZ administration. Thiazide diuretics are associated with markedly impaired free water excretion at low ADH and AQP2 in elderly patients. The higher water intake and lower urea excretion in patients points to an important role for polydipsia and urea-mediated water excretion in the pathogenesis of thiazide-induced hyponatraemia.

  9. Differences in food intake and nutritional habits between Spanish adolescents who engage in ski activity and those who do not.

    PubMed

    Mariscal-Arcas, Miguel; Monteagudo, Celia; Hernandez-Elizondo, Jessenia; Benhammou, Samira; Lorenzo, M Luisa; Olea-Serrano, Fatima

    2014-10-31

    Increasing obesity among adolescents in the industrialized world may result from poor nutritional habits and inadequate exercise. To determine differences in food intake, nutritional habits, and body mass index between Spanish adolescents who engage in ski activity and those who do not. A socio-demographic survey, food frequency questionnaire, 24-hr dietary recall, and physical activity questionnaire were completed by 300 Spanish schoolchildren aged 10 to 18 yrs. RESULTS were compared (Student's t, chi-square and Fisher's exact test) between adolescents engaged (SP) and not engaged (N-SP) in skiing according to their sex. SP adolescents devoted > 4 h/day to physical activity versus < 1 h for N-SP adolescents. No significant differences were found in nutrient intake or nutritional habits between SP and N-SP adolescents. Protein and fat intakes of both groups were above recommended levels. A higher proportion of N-SP than SP males were overweight. Logistic regression analysis showed that the maintenance of a normal weight was favored by the practice of skiing, the consumption of sugar-free drinks, and supplementation with vitamins/mineral salts and was negatively associated with body weight dissatisfaction, intake of nutritional supplements other than vitamins or minerals, and the consumption of snacks. The diet of this adolescent population was poorly balanced. Engagement in physical activity appears to be a key factor in maintaining a healthy body mass index. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  10. Association between intake of dietary protein and 3-year-change in body growth among normal and overweight 6-year-old boys and girls (CoSCIS).

    PubMed

    van Vught, Anneke J A H; Heitmann, Berit L; Nieuwenhuizen, Arie G; Veldhorst, Margriet A B; Andersen, Lars Bo; Hasselstrom, Henriette; Brummer, Robert-Jan M; Westerterp-Plantenga, Margriet S

    2010-05-01

    Growth hormone (GH) affects linear growth and body composition, by increasing the secretion of insulin-like growth factor-I (IGF-I), muscle protein synthesis and lipolysis. The intake of protein (PROT) as well as the specific amino acids arginine (ARG) and lysine (LYS) stimulates GH/IGF-I secretion. The present paper aimed to investigate associations between PROT intake as well as intake of the specific amino acids ARG and LYS, and subsequent 3-year-change in linear growth and body composition among 6-year-old children. Children's data were collected from Copenhagen (Denmark), during 2001-2002, and again 3 years later. Boys and girls were separated into normal weight and overweight, based on BMI quintiles. Fat-free mass index (FFMI) and fat mass index (FMI) were calculated. Associations between change (Delta) in height, FMI and FFMI, respectively, and habitual PROT intake as well as ARG and LYS were analysed by multiple linear regressions, adjusted for baseline height, FMI or FFMI and energy intake, age, physical activity and socio-economic status. Eighteen schools in two suburban communities in the Copenhagen (Denmark) area participated in the study. In all, 223 children's data were collected for the present study. High ARG intake was associated with linear growth (beta = 1.09 (se 0.54), P = 0.05) among girls. Furthermore, in girls, DeltaFMI had a stronger inverse association with high ARG intake, if it was combined with high LYS intake, instead of low LYS intake (P = 0.03). No associations were found in boys.ConclusionIn prepubertal girls, linear growth may be influenced by habitual ARG intake and body fat gain may be relatively prevented over time by the intake of the amino acids ARG and LYS.

  11. Effect of intake on fasting heat production, respiratory quotient and plasma metabolites measured using the washed rumen technique

    USDA-ARS?s Scientific Manuscript database

    The objective was to investigate the effect of intake prior to fasting on concentrations of metabolites and hormones, respiratory quotient (RQ) and fasting heat production (HP) using the washed rumen technique and to compare these values with those from the fed state. Six Holstein steers (360 ± 22 k...

  12. [Role of hypothalamic AMP-activated protein kinase in the control of food intake].

    PubMed

    Fijałkowski, Franciszek; Jarzyna, Robert

    2010-05-21

    AMP-activated kinase is an evolutionarily conserved enzyme found in every eukaryotic organism examined for its presence. It plays a critical role in the shift between catabolic and anabolic metabolism. Its activity is under the control of many factors, but basically it integrates the level of intracellular AMP with signals transduced by upstream kinases. It acts through the control of the activities of other enzymes, mitochondrial biogenesis, vesicular transport, and gene expression. From a physiological point of view its effects are pleiotropic and tissue dependent. In 2004, the control of food intake in hypothalamic neurons was added to the long list of its varied functions. Since then, its crucial role in transmitting signals from all important factors that inform the brain about the body's energy level, including leptin, insulin, glucose, ghrelin, and adiponectin, has been well established. Much attention was also paid to the molecular basis of this regulation. It seems that the main targets of hypothalamic AMPK are acetyl-CoA carboxylase and mTOR and the main candidate for upstream kinase is CaMKKbeta. These discoveries seem interesting not only due to their cognitive value, but because they may also carry significant practical aspects, both in the context of AMPK activators, such as the use of metformin in diabetes mellitus therapy, and in the recent trend to look for new ways to deal with the increase in obesity in well-developed countries. A better understanding of the role of AMPK in the control of food intake may create the possibility for new therapeutic approaches in this disease.

  13. Steroid Hormones and Uterine Vascular Adaptation to Pregnancy

    PubMed Central

    Chang, Katherine; Zhang, Lubo

    2008-01-01

    Pregnancy is a physiological state that involves a significant decrease in uterine vascular tone and an increase in uterine blood flow, which is mediated in part by steroid hormones, including estrogen, progesterone, and cortisol. Previous studies have demonstrated the involvement of these hormones in the regulation of uterine artery contractility through signaling pathways specific to the endothelium and the vascular smooth muscle. Alterations in endothelial nitric oxide synthase expression and activity, nitric oxide production, and expression of enzymes involved in PGI2 production contribute to the uterine artery endothelium-specific responses. Steroid hormones also have an effect on calcium-activated potassium channel activity, PKC signaling pathway and myogenic tone, and alterations in pharmacomechanical coupling in the uterine artery smooth muscle. This review addresses current understanding of the molecular mechanisms by which steroid hormones including estrogen, progesterone, and cortisol modulate uterine artery contractility to alter uterine blood flow during pregnancy with an emphasis on the pregnant ewe model. PMID:18497342

  14. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol inducedmore » systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation

  15. Physical Activity, Dietary Intake, and the Insulin Resistance Syndrome in Nondiabetic Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Draheim, Christopher C.; Williams, Daniel P.; McCubbin, Jeffrey A.

    2002-01-01

    A study identified 145 adults with mild mental retardation and hyperinsulinemia, borderline high triglycerides, low high-density lipoprotein cholesterol, hypertension, and abdominal obesity. Those who participated in more frequent bouts of physical activity or who consumed lower dietary fat intakes were one-third as likely to have hyperinsulinemia…

  16. Hormones and immune function: implications of aging.

    PubMed

    Arlt, Wiebke; Hewison, Martin

    2004-08-01

    Aging is associated with a decline in immunity described as immunosenescence. This is paralleled by a decline in the production of several hormones, as typically illustrated by the menopausal loss of ovarian oestrogen production. However, other hormonal changes that occur with aging and that potentially impact on immune function include the release of the pineal gland hormone melatonin and pituitary growth hormone, adrenal production of dehydroepiandrosterone and tissue-specific availability of active vitamin D. It remains to be established whether hormonal changes with aging actually contribute to immunosenescence and this area is at the interface of fact and fiction, clearly inviting systematic research efforts. As a step in this direction, the present review summarizes established facts on the physiology of secretion and function of hormones that, in most cases, decline with aging and that are likely to affect the immune system.

  17. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.

    PubMed

    Essner, Rachel A; Smith, Alison G; Jamnik, Adam A; Ryba, Anna R; Trutner, Zoe D; Carter, Matthew E

    2017-09-06

    To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need. SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in

  18. Thyroid hormone effects on mitochondrial energetics.

    PubMed

    Harper, Mary-Ellen; Seifert, Erin L

    2008-02-01

    Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.

  19. Obtaining growth hormone from calf blood

    NASA Technical Reports Server (NTRS)

    Kalchev, L. A.; Ralchev, K. K.; Nikolov, I. T.

    1979-01-01

    The preparation of a growth hormone from human serum was used for the isolation of the hormone from calf serum. The preparation was biologically active - it increased the quantity of the free fatty acids released in rat plasma by 36.4 percent. Electrophoresis in Veronal buffer, ph 8.6, showed the presence of a single fraction having mobility intermediate between that of alpha and beta globulins. Gel filtration through Sephadex G 100 showed an elutriation curve identical to that obtained by the growth hormone prepared from pituitary glands.

  20. Iodine intakes and status in Irish adults: is there cause for concern?

    PubMed

    McNulty, Breige A; Nugent, Anne P; Walton, Janette; Flynn, Albert; Tlustos, Christina; Gibney, Michael J

    2017-02-01

    I is an important mineral for health, required for the production of key thyroid hormones, which are essential for cellular metabolism, growth and physical development. Hence, adequate I is crucial at all stages of life, but imperative during pregnancy for fetal brain development and during a child's early life for neurodevelopment. Within Ireland, limited information exists on population I intakes and status. Therefore, the purposes of the present analysis were to estimate dietary I intakes and to analyse urinary iodine (UI) status using the cross-sectional National Adult Nutrition Survey 2008-2010 and the most recent Irish Total Diet Study. Median I intakes in the total population (n 1106) were adequate with only 26 % of the population being classified as below the estimated average requirement (EAR). Milk consumption was the major source of I in the diet, contributing 45 % to total intake. Likewise, median UI concentrations (107 µg/l) indicated 'optimal' I nutrition according to the WHO cut-off points. In our cohort, 77 % of women of childbearing age (18-50 years) did not meet the EAR recommendation set for pregnant women. Although I is deemed to be sufficient in the majority of adult populations resident in Ireland, any changes to the current dairy practices could significantly impact intake and status. Continued monitoring should be of priority to ensure that all subgroups of the population are I sufficient.

  1. CRH-stimulated cortisol release and food intake in healthy, non-obese adults.

    PubMed

    George, Sophie A; Khan, Samir; Briggs, Hedieh; Abelson, James L

    2010-05-01

    There is considerable anecdotal and some scientific evidence that stress triggers eating behavior, but underlying physiological mechanisms remain uncertain. The hypothalamic-pituitary-adrenal (HPA) axis is a key mediator of physiological stress responses and may play a role in the link between stress and food intake. Cortisol responses to laboratory stressors predict consumption but it is unclear whether such responses mark a vulnerability to stress-related eating or whether cortisol directly stimulates eating in humans. We infused healthy adults with corticotropin-releasing hormone (CRH) at a dose that is subjectively undetectable but elicits a robust endogenous cortisol response, and measured subsequent intake of snack foods, allowing analysis of HPA reactivity effects on food intake without the complex psychological effects of a stress paradigm. CRH elevated cortisol levels relative to placebo but did not impact subjective anxious distress. Subjects ate more following CRH than following placebo and peak cortisol response to CRH was strongly related to both caloric intake and total consumption. These data show that HPA axis reactivity to pharmacological stimulation predicts subsequent food intake and suggest that cortisol itself may directly stimulate food consumption in humans. Understanding the physiological mechanisms that underlie stress-related eating may prove useful in efforts to attack the public health crises created by obesity. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Magnesium Intake Is Inversely Associated With Coronary Artery Calcification

    PubMed Central

    Hruby, Adela; O'Donnell, Christopher J.; Jacques, Paul F.; Meigs, James B.; Hoffmann, Udo; McKeown, Nicola M.

    2014-01-01

    OBJECTIVES The aim of this study was to examine whether magnesium intake is associated with coronary artery calcification (CAC) and abdominal aortic calcification (AAC). BACKGROUND Animal and cell studies suggest that magnesium may prevent calcification within atherosclerotic plaques underlying cardiovascular disease. Little is known about the association of magnesium intake and atherosclerotic calcification in humans. METHODS We examined cross-sectional associations of self-reported total (dietary and supplemental) magnesium intake estimated by food frequency questionnaire with CAC and AAC in participants of the Framingham Heart Study who were free of cardiovascular disease and underwent Multi-Detector Computed Tomography (MDCT) of the heart and abdomen (n = 2,695; age: 53 ± 11 years), using multivariate-adjusted Tobit regression. CAC and AAC were quantified using modified Agatston scores (AS). Models were adjusted for age, sex, body mass index, smoking status, systolic blood pressure, fasting insulin, total-to-high-density lipoprotein cholesterol ratio, use of hormone replacement therapy (women only), menopausal status (women only), treatment for hyperlipidemia, hypertension, cardiovascular disease prevention, or diabetes, as well as self-reported intake of calcium, vitamins D and K, saturated fat, fiber, alcohol, and energy. Secondary analyses included logistic regressions of CAC and AAC outcomes as cut-points (AS >0 and AS ≥90th percentile for age and sex), as well as sex-stratified analyses. RESULTS In fully adjusted models, a 50-mg/day increment in self-reported total magnesium intake was associated with 22% lower CAC (p < 0.001) and 12% lower AAC (p = 0.07). Consistent with these observations, the odds of having any CAC were 58% lower (p trend: <0.001) and any AAC were 34% lower (p trend: 0.01), in those with the highest compared to those with the lowest magnesium intake. Stronger inverse associations were observed in women than in men. CONCLUSIONS In

  3. Hormone treatment enhances WT1 activation of Renilla luciferase constructs in LNCaP cells.

    PubMed

    Hanson, Julie; Reese, Jennifer; Gorman, Jacquelyn; Cash, Jennifer; Fraizer, Gail

    2007-01-01

    The zinc finger transcription factor, WT1, regulates many growth control genes, repressing or activating transcription depending on the gene and cell type. Based on earlier analyses of the effect of WT1 on androgen responsive genes, we hypothesized that there may be an interaction between the androgen signaling pathway and WT1, such that the commonly used Renilla luciferase control vectors were activated in LNCaP prostate cancer cells. Using cotransfection assays we tested the effects of WT1 and/or the androgen analog, R1881, on two Renilla luciferase vectors, pRL-SV40 and the promoter-less pRL-null. To determine whether the zinc finger DNA binding domain was required, the zinc finger mutant DDS-WT1 (R394W) was tested; but it had no significant effect on the Renilla luciferase vectors. To determine whether the androgen signaling pathway was required, WT1 was co-transfected with Renilla vectors in cells with varied hormone responsiveness. The WT1 effect on pRL-null varied from no significant effect in 293 and PC3 cells to very strong enhancement in LNCaP cells treated with 5 nM R1881. Overall, these results suggest that hormone enhanced WT1 mediated activation of Renilla luciferase and that these interactions require an intact WT1 zinc finger DNA binding domain.

  4. The role of adrenal hormones in the activation of tryptophan 2,3-dioxygenase by nicotinic acid in rat liver.

    PubMed

    Sainio, E L

    1997-09-01

    In this study, our previous finding that nicotinic acid activates tryptophan 2,3-dioxygenase as strongly as tryptophan was investigated in further detail. This study focused on the role of the adrenals in the activation process. Adrenalectomy abolished the activation due to nicotinic acid, but not the activation caused by tryptophan. The role of corticoids and/or adrenomedullary hormones in the enzyme activation was studied, by supplementing these hormones in adrenalectomized rats using minipumps implanted under the skin. The results showed that the enhanced activity of tryptophan 2,3-dioxygenase caused by nicotinic acid was partly restored by adrenaline following adrenalectomy but not by corticosterone supplementation. The results were supported by further experiments in which the rats were treated with adrenaline or corticosterone intraperitoneally before nicotinic acid administration. The conclusion that adrenaline participates in the regulation of tryptophan 2,3-dioxygenase should promote further study to determine whether adrenaline is a general modulator of this enzyme. This experimental model generated new information on the activation mechanism of tryptophan 2,3-dioxygenase by nicotinic acid.

  5. mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin.

    PubMed

    Haissaguerre, Magalie; Ferrière, Amandine; Simon, Vincent; Saucisse, Nicolas; Dupuy, Nathalie; André, Caroline; Clark, Samantha; Guzman-Quevedo, Omar; Tabarin, Antoine; Cota, Daniela

    2018-06-01

    Nutrient availability modulates reactive oxygen species (ROS) production in the hypothalamus. In turn, ROS regulate hypothalamic neuronal activity and feeding behavior. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is an important cellular integrator of the action of nutrients and hormones. Here we tested the hypothesis that modulation of mTORC1 activity, particularly in Proopiomelanocortin (POMC)-expressing neurons, mediates the cellular and behavioral effects of ROS. C57BL/6J mice or controls and their knockout (KO) littermates deficient either for the mTORC1 downstream target 70-kDa ribosomal protein S6 kinase 1 (S6K1) or for the mTORC1 component Rptor specifically in POMC neurons (POMC-rptor-KO) were treated with an intracerebroventricular (icv) injection of the ROS hydrogen peroxide (H 2 O 2 ) or the ROS scavenger honokiol, alone or, respectively, in combination with the mTORC1 inhibitor rapamycin or the mTORC1 activator leptin. Oxidant-related signal in POMC neurons was assessed using dihydroethidium (DHE) fluorescence. Icv administration of H 2 O 2 decreased food intake, while co-administration of rapamycin, whole-body deletion of S6K1, or deletion of rptor in POMC neurons impeded the anorectic action of H 2 O 2 . H 2 O 2 also increased oxidant levels in POMC neurons, an effect that hinged on functional mTORC1 in these neurons. Finally, scavenging ROS prevented the hypophagic action of leptin, which in turn required mTORC1 to increase oxidant levels in POMC neurons and to inhibit food intake. Our results demonstrate that ROS and leptin require mTORC1 pathway activity in POMC neurons to increase oxidant levels in POMC neurons and consequently decrease food intake. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Urea for long-term treatment of syndrome of inappropriate secretion of antidiuretic hormone.

    PubMed

    Decaux, G; Genette, F

    1981-10-24

    The efficacy of oral urea in producing a sufficiently high osmotic diuresis was tested in seven patients with the syndrome of inappropriate secretion of antidiuretic hormone. In all patients urea corrected the hyponatraemia despite a normal fluid intake. Five patients were controlled (serum sodium concentration greater than 128 mmol(mEq)/1) with a dose of 30 g urea daily, and two with 60 g daily. The patients who needed 30 g drank 1-2 1 of fluid daily, while those who needed 60 g drank up to 3.1 per day. No major side effects were noted, even after treatment periods of up to 270 days. These findings suggest that urea is a safe and efficacious treatment of the syndrome of inappropriate secretion of antidiuretic hormone.

  7. Association between parenting practices and children's dietary intake, activity behavior and development of body mass index: the KOALA Birth Cohort Study.

    PubMed

    Gubbels, Jessica S; Kremers, Stef P J; Stafleu, Annette; de Vries, Sanne I; Goldbohm, R Alexandra; Dagnelie, Pieter C; de Vries, Nanne K; van Buuren, Stef; Thijs, Carel

    2011-03-14

    Insights into the effects of energy balance-related parenting practices on children's diet and activity behavior at an early age is warranted to determine which practices should be recommended and to whom. The purpose of this study was to examine child and parent background correlates of energy balance-related parenting practices at age 5, as well as the associations of these practices with children's diet, activity behavior, and body mass index (BMI) development. Questionnaire data originated from the KOALA Birth Cohort Study for ages 5 (N = 2026) and 7 (N = 1819). Linear regression analyses were used to examine the association of child and parent background characteristics with parenting practices (i.e., diet- and activity-related restriction, monitoring and stimulation), and to examine the associations between these parenting practices and children's diet (in terms of energy intake, dietary fiber intake, and added sugar intake) and activity behavior (i.e., physical activity and sedentary time) at age 5, as well as BMI development from age 5 to age 7. Moderation analyses were used to examine whether the associations between the parenting practices and child behavior depended on child characteristics. Several child and parent background characteristics were associated with the parenting practices. Dietary monitoring, stimulation of healthy intake and stimulation of physical activity were associated with desirable energy balance-related behaviors (i.e., dietary intake and/or activity behavior) and desirable BMI development, whereas restriction of sedentary time showed associations with undesirable behaviors and BMI development. Child eating style and weight status, but not child gender or activity style, moderated the associations between parenting practices and behavior. Dietary restriction and monitoring showed weaker, or even undesirable associations for children with a deviant eating style, whereas these practices showed associations with desirable behavior for

  8. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration.

    PubMed

    Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter

    2016-08-01

    During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Physical activity and calorie intake mediate the relationship from depression to body fat mass among female Mexican health workers.

    PubMed

    Quezada, Amado D; Macías-Waldman, Nayeli; Salmerón, Jorge; Swigart, Tessa; Gallegos-Carrillo, Katia

    2017-11-17

    Depression is a foremost cause of morbidity throughout the world and the prevalence of depression in women is about twice as high as men. Additionally, overweight and obesity are major global health concerns. We explored the relationship between depression and body fat, and the role of physical activity and diet as mediators of this relationship in a sample of 456 adult female Mexican health workers. Longitudinal and cross-sectional analyses using data from adult women of the Health Workers Cohort Study (HWCS) Measures of body fat mass (kg from DEXA), dietary intake (kcal from FFQ), leisure time activity (METs/wk) and depression (CES-D) were determined in two waves (2004-2006 and 2010-2011). We explored the interrelation between body fat, diet, leisure time, physical activity, and depression using a cross-lagged effects model fitted to longitudinal data. We also fitted a structural equations model to cross-sectional data with body fat as the main outcome, and dietary intake and physical activity from leisure time as mediators between depression and body fat. Baseline depression was significantly related to higher depression, higher calorie intake, and lower leisure time physical activity at follow-up. From our cross-sectional model, each standard deviation increase in the depression score was associated with an average increase of 751 ± 259 g (± standard error) in body fat through the mediating effects of calorie intake and physical activity. The results of this study show how depression may influence energy imbalance between calories consumed and calories expended, resulting in higher body fat among those with a greater depression score. Evaluating the role of mental conditions like depression in dietary and physical activity behaviors should be positioned as a key research goal for better designed and targeted public health interventions. The HealthWorkers Cohort Study (HWCS) has been approved by the Institutional IRB. Number: 2005-785-012.

  10. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  11. Neuropeptide B in Nile tilapia Oreochromis niloticus: molecular cloning and its effects on the regulation of food intake and mRNA expression of growth hormone and prolactin.

    PubMed

    Yang, Lu; Sun, Caiyun; Li, Wensheng

    2014-05-01

    Neuropeptide B (NPB) regulates food intake, energy homeostasis and hormone secretion in mammals via two G-protein coupled receptors, termed as GPR 7 and GPR 8. However, there is no study that reports the function of NPB in teleosts. In this study, the full-length cDNA of prepro-NPB with the size of 663bp was cloned from the hypothalamus of Nile tilapia. The CDS of the prepro-NPB is 387bp which encodes a precursor protein with the size of 128a.a. This precursor contains a mature peptide with the size of 29a.a, and it was named as NPB29. Tissue distribution study showed that this gene was mainly expressed in different parts of brain, especially in the diencephalon as well as hypothalamus, and the spinal cord in Nile tilapia. Fasting significantly stimulated the mRNA expression of NPB in the brain area without hypothalamus, and refeeding after fasting for 3 and 14days also showed similar effects on NPB expression. While, only short-term fasting (3days) and refeeding after fasting for 7 and 14days induced mRNA expression of NPB in the hypothalamus. Intraperitoneal (i.p.) injection of NPB remarkably elevated the mRNA expression of hypothalamic neuropeptide Y (NPY), cholecystokinin 1 (CCK1) and pituitary prolactin (PRL), whereas significantly inhibited growth hormone (GH) expression in pituitary. These observations in the present study suggested that NPB may participate in the regulation of feeding and gene expression of pituitary GH and PRL in Nile tilapia. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens.

    PubMed

    Shigenaga, Alexandra M; Argueso, Cristiana T

    2016-08-01

    Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modulation of taste responsiveness by the satiation hormone peptide YY

    PubMed Central

    La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.

    2013-01-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261

  14. Neural Activation During Mental Rotation in Complete Androgen Insensitivity Syndrome: The Influence of Sex Hormones and Sex Chromosomes.

    PubMed

    van Hemmen, Judy; Veltman, Dick J; Hoekzema, Elseline; Cohen-Kettenis, Peggy T; Dessens, Arianne B; Bakker, Julie

    2016-03-01

    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Parathyroid Hormone, Calcitonin, and Vitamin D

    NASA Technical Reports Server (NTRS)

    Potts, J. T.

    1972-01-01

    Analyses of secretion of parathyroid hormone during tests of stimulation and suppression of hormone-secretory activity using infusions of EDTA and calcium, respectively, have established that, in contrast to previous views, secretion of the hormone is not autonomous in many patients that have adenomatous hyperparathyroidism, but is responsive to changes in blood-calcium concentration. These findings have led to a new understanding of the pathophysiology of hormone production in hyperparathy-roidism. A related application of the diagnostic use of the radioimmunoassay is the preoperative localization of parathyroid tumors and the distinction between adenomas and chief-cell hyperplasia. Work involving catheterization and radioimmunoassay of blood samples obtained from the subclavin and innominate veins and the venae cavae, led to localization in a high percentage of patients. However, this procedure has been adopted recently to detect hormone concentration in the small veins directly draining the parathyroid glands.

  16. Eating styles and energy intake in young women.

    PubMed

    Anschutz, Doeschka J; Van Strien, Tatjana; Van De Ven, Monique O M; Engels, Rutger C M E

    2009-08-01

    The aim of the present study was to examine the relations between restrained, emotional, and external eating and total energy intake, and total fat and carbohydrate intake controlling for body mass index and physical activity. The sample consisted of 475 female students. Energy intake was measured over a 1-month period using the self-report Food Frequency Questionnaire and eating styles were assessed with the Dutch Eating Behaviour Questionnaire. Structural equation modelling was used to analyze the data. The results showed that restrained eating was consistently negatively related to energy intake and fat and carbohydrate intake, whereas external eating was positively related to all dependent variables. Emotional eating was not related to energy intake or fat and carbohydrate intake. Thus, restrained eaters seem to restrict their energy intake, while external eating was found to be associated with higher levels of energy intake, especially of fat intake.

  17. Do Negative Emotions Predict Alcohol Consumption, Saturated Fat Intake, and Physical Activity in Older Adults?

    ERIC Educational Resources Information Center

    Anton, Stephen D.; Miller, Peter M.

    2005-01-01

    This study examined anger, depression, and stress as related to alcohol consumption, saturated fat intake, and physical activity. Participants were 23 older adults enrolled in either an outpatient or in-residence executive health program. Participants completed (a) a health-risk appraisal assessing medical history and current health habits, (b)…

  18. HUMAN ACTIVITIES THAT MAY LEAD TO HIGH INHALED INTAKE DOSES IN CHILDREN AGED 6-13

    EPA Science Inventory

    The paper focuses on possible activities of children aged 6-13 that may make them susceptible to high hourly intake doses of ozone (O3) air pollution. Data from an O3 exposure modeling exercise indicates that a relatively few hours can account for a significant amount of the t...

  19. Amino acids intake and physical fitness among adolescents.

    PubMed

    Gracia-Marco, Luis; Bel-Serrat, Silvia; Cuenca-Garcia, Magdalena; Gonzalez-Gross, Marcela; Pedrero-Chamizo, Raquel; Manios, Yannis; Marcos, Ascensión; Molnar, Denes; Widhalm, Kurt; Polito, Angela; Vanhelst, Jeremy; Hagströmer, Maria; Sjöström, Michael; Kafatos, Anthony; de Henauw, Stefaan; Gutierrez, Ángel; Castillo, Manuel J; Moreno, Luis A

    2017-06-01

    The aim was to investigate whether there was an association between amino acid (AA) intake and physical fitness and if so, to assess whether this association was independent of carbohydrates intake. European adolescents (n = 1481, 12.5-17.5 years) were measured. Intake was assessed via two non-consecutive 24-h dietary recalls. Lower and upper limbs muscular fitness was assessed by standing long jump and handgrip strength tests, respectively. Cardiorespiratory fitness was assessed by the 20-m shuttle run test. Physical activity was objectively measured. Socioeconomic status was obtained via questionnaires. Lower limbs muscular fitness seems to be positively associated with tryptophan, histidine and methionine intake in boys, regardless of centre, age, socioeconomic status, physical activity and total energy intake (model 1). However, these associations disappeared once carbohydrates intake was controlled for (model 2). In girls, only proline intake seems to be positively associated with lower limbs muscular fitness (model 2) while cardiorespiratory fitness seems to be positively associated with leucine (model 1) and proline intake (models 1 and 2). None of the observed significant associations remained significant once multiple testing was controlled for. In conclusion, we failed to detect any associations between any of the evaluated AAs and physical fitness after taking into account the effect of multiple testing.

  20. Increased salt consumption induces body water conservation and decreases fluid intake

    PubMed Central

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Marton, Adriana; Müller, Dominik N.; Rauh, Manfred; Luft, Friedrich C.

    2017-01-01

    BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology