Science.gov

Sample records for active imaging system

  1. Active imaging system with Faraday filter

    DOEpatents

    Snyder, J.J.

    1993-04-13

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  2. Active imaging system with Faraday filter

    DOEpatents

    Snyder, James J.

    1993-01-01

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  3. Active gated imaging in driver assistance system

    NASA Astrophysics Data System (ADS)

    Grauer, Yoav

    2014-04-01

    In this paper, we shall present the active gated imaging system (AGIS) in relation to the automotive field. AGIS is based on a fast-gated camera and pulsed illuminator, synchronized in the time domain to record images of a certain range of interest. A dedicated gated CMOS imager sensor and near infra-red (NIR) pulsed laser illuminator, is presented in this paper to provide active gated technology. In recent years, we have developed these key components and learned the system parameters, which are most beneficial to nighttime (in all weather conditions) driving in terms of field of view, illumination profile, resolution, and processing power. We shall present our approach of a camera-based advanced driver assistance systems (ADAS) named BrightEye™, which makes use of the AGIS technology in the automotive field.

  4. Image change detection using a SWIR active imaging system

    NASA Astrophysics Data System (ADS)

    Schneider, Armin L.; Monnin, David; Laurenzis, Martin; Christnacher, Frank

    2013-10-01

    We are currently developing a system consisting of a GPS receiver, a three-axis magnetic compass as well as a digital video camera in order to visualize changes occuring along a regularily used itinerary. This is done by comparing actual images with images from the same scene, which have been acquired during a previous measurement. The luminosity of images from two different passages however can be quite different (due to different meteorological conditions). Whereas the global luminosity can be adjusted using non-linear luminosity correction, the treatment of shadows is more di cult. Since meteorological conditions cannot be controlled, we are investigating the possibility of using a Laser Gated Viewing system in the SWIR domain to illuminate the scene. Using appropriate filters for the camera, we are completely independent of natural illumination and in addition, the system can also be used at night.

  5. Deep trap, laser activated image converting system

    NASA Technical Reports Server (NTRS)

    Maserjian, J. (Inventor)

    1975-01-01

    Receiving an optical image on the surface of a photoconducting semiconductor is presented, storing the image in deep traps of the semiconductor, and later scanning the semiconductor with a laser beam to empty the deep traps, thereby producing a video signal. The semiconductor is illuminated with photons of energy greater than the band gap producing electron-hole pairs in the semiconductor which subsequently fill traps in energy from the band edges. When the laser beam of low energy photons excites the trapped electrons and holes out of the traps into the conduction and valence bands, a photoconductivity can be observed.

  6. Restoration algorithms and system performance evaluation for active imagers

    NASA Astrophysics Data System (ADS)

    Gilles, Jérôme

    2007-10-01

    This paper deals with two fields related to active imaging system. First, we begin to explore image processing algorithms to restore the artefacts like speckle, scintillation and image dancing caused by atmospheric turbulence. Next, we examine how to evaluate the performance of this kind of systems. To do this task, we propose a modified version of the german TRM3 metric which permits to get MTF-like measures. We use the database acquired during NATO-TG40 field trials to make our tests.

  7. Modeling the target acquisition performance of active imaging systems.

    PubMed

    Espinola, Richard L; Jacobs, Eddie L; Halford, Carl E; Vollmerhausen, Richard; Tofsted, David H

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown. PMID:19532626

  8. Modeling the target acquisition performance of active imaging systems

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Jacobs, Eddie L.; Halford, Carl E.; Vollmerhausen, Richard; Tofsted, David H.

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

  9. Active imaging system performance model for target acquisition

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Teaney, Brian; Nguyen, Quang; Jacobs, Eddie L.; Halford, Carl E.; Tofsted, David H.

    2007-04-01

    The U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate has developed a laser-range-gated imaging system performance model for the detection, recognition, and identification of vehicle targets. The model is based on the established US Army RDECOM CERDEC NVESD sensor performance models of the human system response through an imaging system. The Java-based model, called NVLRG, accounts for the effect of active illumination, atmospheric attenuation, and turbulence effects relevant to LRG imagers, such as speckle and scintillation, and for the critical sensor and display components. This model can be used to assess the performance of recently proposed active SWIR systems through various trade studies. This paper will describe the NVLRG model in detail, discuss the validation of recent model components, present initial trade study results, and outline plans to validate and calibrate the end-to-end model with field data through human perception testing.

  10. Research on the system scheme and experiment for the active laser polarization imaging

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Duan, Jin; Zhao, Rui; Li, Zheng; Zhang, Su; Zhan, Juntong; Zhu, Yong; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields. The research present and development trend of polarization imaging detection technology was introduce, the system scheme of the active polarization imaging detection was put forward, and the key technologies such as the polarization information detection, optical system design, polarization radiation calibration and image fusion approach was analyzed. On this basis, detection system by existing equipment of laboratory was set up, and on the different materials such as wood, metal, plastic and goal was detected by polarization imaging to realize the active polarization imaging detection. The results show that image contrast of the metal and man-made objects is higher, the polarization effect is better, which provided the basis on the better performance of the polarization imaging instruments.

  11. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  12. Infrared active polarimetric imaging system controlled by image segmentation algorithms: application to decamouflage

    NASA Astrophysics Data System (ADS)

    Vannier, Nicolas; Goudail, François; Plassart, Corentin; Boffety, Matthieu; Feneyrou, Patrick; Leviandier, Luc; Galland, Frédéric; Bertaux, Nicolas

    2016-05-01

    We describe an active polarimetric imager with laser illumination at 1.5 µm that can generate any illumination and analysis polarization state on the Poincar sphere. Thanks to its full polarization agility and to image analysis of the scene with an ultrafast active-contour based segmentation algorithm, it can perform adaptive polarimetric contrast optimization. We demonstrate the capacity of this imager to detect manufactured objects in different types of environments for such applications as decamouflage and hazardous object detection. We compare two imaging modes having different number of polarimetric degrees of freedom and underline the characteristics that a polarimetric imager aimed at this type of applications should possess.

  13. CMOS active pixel sensor type imaging system on a chip

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)

    2011-01-01

    A single chip camera which includes an .[.intergrated.]. .Iadd.integrated .Iaddend.image acquisition portion and control portion and which has double sampling/noise reduction capabilities thereon. Part of the .[.intergrated.]. .Iadd.integrated .Iaddend.structure reduces the noise that is picked up during imaging.

  14. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  15. Space-based laser active imaging simulation system based on HLA

    NASA Astrophysics Data System (ADS)

    Han, Yi; Sun, Huayan; Li, Yingchun

    2013-09-01

    This paper adopts the High Level Architecture to develop the space-based laser active imaging distribution simulation software system, and designs the system framework which contains three-step workflow including modeling, experimental and analysis. The paper puts forward the general needs of the simulation system first, then builds the simulation system architecture based on HLA and constructs 7 simulation federal members. The simulation system has the primary functions of space target scattering characteristic analysis, imaging simulation, image processing and target recognition, and system performance analysis and so on, and can support the whole simulation process. The results show that the distribution simulation system can meet the technical requirements of the space-based laser imaging simulation.

  16. Active polarization imaging system to discriminate adaptively with diagonal Mueller matrix

    NASA Astrophysics Data System (ADS)

    Geng, Lixiang; Chen, Qian; Qian, Weixian; Gu, Guohua

    2015-11-01

    A promising method to optimize the polarization state of two-channel active polarization imaging system is presented. In this method, it is seminal that the detecting function of the imaging system is regarded as a discriminant projection of the observed objects' polarization features (elements of the Mueller matrix). The polarization state can be seen as a physical classifier which can be obtained by training samples. The image acquired with the system that has the designed optimal polarization state become discriminative results directly. The effectiveness of the proposed method and the discriminative ability of the optimal polarization state are demonstrated by the experimental results.

  17. Ultraviolet imaging spectroscopy shows an active saturnian system.

    PubMed

    Esposito, Larry W; Colwell, Joshua E; Larsen, Kristopher; McClintock, William E; Stewart, A Ian F; Hallett, Janet Tew; Shemansky, Donald E; Ajello, Joseph M; Hansen, Candice J; Hendrix, Amanda R; West, Robert A; Keller, H Uwe; Korth, Axel; Pryor, Wayne R; Reulke, Ralf; Yung, Yuk L

    2005-02-25

    Neutral oxygen in the saturnian system shows variability, and the total number of oxygen atoms peaks at 4 x 10(34). Saturn's aurora brightens in response to solar-wind forcing, and the auroral spectrum resembles Jupiter's. Phoebe's surface shows variable water-ice content, and the data indicate it originated in the outer solar system. Saturn's rings also show variable water abundance, with the purest ice in the outermost A ring. This radial variation is consistent with initially pure water ice bombarded by meteors, but smaller radial structures may indicate collisional transport and recent renewal events in the past 10(7) to 10(8) years. PMID:15604361

  18. Active wideband 350GHz imaging system for concealed-weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick L. J.

    2009-05-01

    A prototype active wideband 350 GHz imaging system has been developed to address the urgent need for standoff concealed-weapon detection. This system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed conical scanner. This system is able to quickly scan personnel for concealed weapons. Additionally, due to the wideband operation, this system provides accurate ranging information, and the images obtained are fully three-dimensional. Waves in the microwave, millimeter-wave, and terahertz (3 GHz to 1 THz) frequency bands are able to penetrate many optical obscurants, and can be used to form the basis of high-resolution imaging systems. Waves in the sub-millimeter-wave band (300 GHz to 1 THz) are particularly interesting for standoff concealed-weapon detection at ranges of 5 - 20+ meters, due to their unique combination of high resolution and clothing penetration. The Pacific Northwest National Laboratory (PNNL) has previously developed portal screening systems that operate at the lower end of the millimeter-wave frequency range around 30 GHz. These systems are well suited for screening within portals; however, increasing the range of these systems would dramatically reduce the resolution due to diffraction at their relatively long wavelength. In this paper, the standoff 350 GHz imaging system is described in detail and numerous imaging results are presented.

  19. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    NASA Astrophysics Data System (ADS)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  20. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  1. Research on long-range laser active imaging system applied in adverse weather conditions

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-gang; Liu, Meng-de; Yang, Li; Kabanov, V. V.; Shi, Lei; Zhao, Jie; Chu, Shi-bo; Yang, Jun-xian; Zhou, Yang

    2013-09-01

    A low-light level night vision device or thermal infrared imager belonging to passive imaging system is generally used in daily target detection and identification. But in adverse weather conditions of dark of night, poor atmospheric transmission characteristics or strong backscattering (fog, dust, rain, snow, etc.), even the most sensitive low-light level night vision could not provide enough image resolution for detecting and identifying targets, and the thermal infrared imager is also limited by low temperature contrast. A long-range laser active imaging system, in combination with high-power semiconductor pulsed lasers with collimation technology, receiving objective lens of large diameter, long focal length and narrow viewing angle, high-gain image intensifier CCD (ICCD) camera and range-gated synchronization control technology, is developed for long distance target detection and high resolution imaging in adverse weather conditions. The system composition and operating principle are introduced. The extremely powerful and efficient illuminators with collimation technology are able to deliver uniform beams, which are essential for illuminating targets at a distance and generating high-quality images. The particular receiving objective lens, ICCD camera and range-gated synchronization control technology could reduce strong backscattering signal and improve imaging signal-to-noise ratio. The laboratory and outfield experiments have been done to validate imaging effect and imaging quality. The results show that the minimum resolution is about 3-5cm, 10cm, and greater than 20 cm for target far from 1100m, 4700m, and 6700m respectively in dark of night. Furthermore, the minimum resolution could reach to 10cm and 20cm for target far from 2500m and 4800m respectively and the image is too blurred to accurately identify the target when observing the target far from 7200m in rainy condition.

  2. Active imaging at DARPA

    NASA Astrophysics Data System (ADS)

    Ricklin, J. C.; Tomlinson, P. G.

    2005-08-01

    Active systems, because they provide their own illumination, are capable of operating 24 hours a day and are not dependent upon the angle of the sun. Unlike passive systems, they can provide three-dimensional imaging. DARPA is currently developing systems, technologies, and signal processing to pioneer new or improve existing capabilities that employ active imaging capabilities. These involve both radar and ladar, ranging from a few MHz for foliage penetration to near-visible IR to achieve ultra-high resolution at long range. These capabilities would improve Battlefield Awareness (BA) and provide persistent Intelligence, Surveillance, and Reconnaissance (ISR) to perform target detection, recognition, and identification. This paper discusses two different approaches to active optical imaging. One is a coherent approach that uses synthetic aperture techniques with infrared laser radar, and another approach uses only the intensity of the speckle pattern in the aperture plane. Both are capable of producing ultra-high resolution at long range.

  3. Active imaging with the aids of polarization retrieve in turbid media system

    NASA Astrophysics Data System (ADS)

    Tao, Qiangqiang; Sun, Yongxuan; Shen, Fei; Xu, Qiang; Gao, Jun; Guo, Zhongyi

    2016-01-01

    We propose a novel active imaging based on the polarization retrieve (PR) method in turbid media system. In our simulations, the Monte Carlo (MC) algorithm has been used to investigate the scattering process between the incident photons and the scattering particles, and the visually concordant object but with different polarization characteristics in different regions, has been selected as the original target that is placed in the turbid media. Under linearly and circularly polarized illuminations, the simulation results demonstrate that the corresponding polarization properties can provide additional information for the imaging, and the contrast of the polarization image can also be enhanced greatly compared to the simplex intensity image in the turbid media. Besides, the polarization image adjusted by the PR method can further enhance the visibility and contrast. In addition, by PR imaging method, with the increasing particles' size in Mie's scale, the visibility can be enhanced, because of the increased forward scattering effect. In general, in the same circumstance, the circular polarization images can offer a better contrast and visibility than that of linear ones. The results indicate that the PR imaging method is more applicable to the scattering media system with relatively larger particles such as aerosols, heavy fog, cumulus, and seawater, as well as to biological tissues and blood media.

  4. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems.

    PubMed

    Hebden, Jeremy C; Brunker, Joanna; Correia, Teresa; Price, Ben D; Gibson, Adam P; Everdell, N L

    2008-01-21

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system. PMID:18184989

  5. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Brunker, Joanna; Correia, Teresa; Price, Ben D.; Gibson, Adam P.; Everdell, N. L.

    2008-01-01

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system.

  6. Estimating ROI activity concentration with photon-processing and photon-counting SPECT imaging systems

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Frey, Eric C.

    2015-03-01

    Recently a new class of imaging systems, referred to as photon-processing (PP) systems, are being developed that uses real-time maximum-likelihood (ML) methods to estimate multiple attributes per detected photon and store these attributes in a list format. PP systems could have a number of potential advantages compared to systems that bin photons based on attributes such as energy, projection angle, and position, referred to as photon-counting (PC) systems. For example, PP systems do not suffer from binning-related information loss and provide the potential to extract information from attributes such as energy deposited by the detected photon. To quantify the effects of this advantage on task performance, objective evaluation studies are required. We performed this study in the context of quantitative 2-dimensional single-photon emission computed tomography (SPECT) imaging with the end task of estimating the mean activity concentration within a region of interest (ROI). We first theoretically outline the effect of null space on estimating the mean activity concentration, and argue that due to this effect, PP systems could have better estimation performance compared to PC systems with noise-free data. To evaluate the performance of PP and PC systems with noisy data, we developed a singular value decomposition (SVD)-based analytic method to estimate the activity concentration from PP systems. Using simulations, we studied the accuracy and precision of this technique in estimating the activity concentration. We used this framework to objectively compare PP and PC systems on the activity concentration estimation task. We investigated the effects of varying the size of the ROI and varying the number of bins for the attribute corresponding to the angular orientation of the detector in a continuously rotating SPECT system. The results indicate that in several cases, PP systems offer improved estimation performance compared to PC systems.

  7. Redox-initiated hydrogel system for detection and real-time imaging of cellulolytic enzyme activity.

    PubMed

    Malinowska, Klara H; Verdorfer, Tobias; Meinhold, Aylin; Milles, Lukas F; Funk, Victor; Gaub, Hermann E; Nash, Michael A

    2014-10-01

    Understanding the process of biomass degradation by cellulolytic enzymes is of urgent importance for biofuel and chemical production. Optimizing pretreatment conditions and improving enzyme formulations both require assays to quantify saccharification products on solid substrates. Typically, such assays are performed using freely diffusing fluorophores or dyes that measure reducing polysaccharide chain ends. These methods have thus far not allowed spatial localization of hydrolysis activity to specific substrate locations with identifiable morphological features. Here we describe a hydrogel reagent signaling (HyReS) system that amplifies saccharification products and initiates crosslinking of a hydrogel that localizes to locations of cellulose hydrolysis, allowing for imaging of the degradation process in real time. Optical detection of the gel in a rapid parallel format on synthetic and natural pretreated solid substrates was used to quantify activity of T. emersonii and T. reesei enzyme cocktails. When combined with total internal reflection fluorescence microscopy and AFM imaging, the reagent system provided a means to visualize enzyme activity in real-time with high spatial resolution (<2 μm). These results demonstrate the versatility of the HyReS system in detecting cellulolytic enzyme activity and suggest new opportunities in real-time chemical imaging of biomass depolymerization. PMID:25116339

  8. Active infrared hyperspectral imaging system using a broadly tunable optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Malcolm, G. P. A.; Maker, G. T.; Robertson, G.; Dunn, M. H.; Stothard, D. J. M.

    2009-09-01

    The in situ identification and spatial location of gases, discrete liquid droplets and residues on surfaces is a technically challenging problem. Active Infrared (IR) hyperspectral imaging is a powerful technique that combines real-time imaging and optical spectroscopy for "standoff" detection of suspected chemical substances, including chemical warfare agents, toxic industrial chemicals, explosives and narcotics. An active IR hyperspectral imaging system requires a coherent, broadly tunable IR light source of high spectral purity, in order to detect a broad range of target substances. In this paper we outline a compact and power-efficient IR illumination source with high stability, efficiency, tuning range and spectral purity based upon an optical parametric oscillator (OPO). The fusion of established OPO technology with novel diode-pumped laser technology and electro-mechanical scanning has enabled a broadly applicable imaging system. This system is capable of hyperspectral imaging at both Near-IR (1.3 - 1.9 μm) and Mid-IR (2.3 - 4.6 μm) wavelengths simultaneously with a line width of < 3 cm-1. System size and complexity are minimised by using a dual InGaAs/InSb single element detector, and images are acquired by raster scanning the coaxial signal and idler beams simultaneously, at ranges up to 20 m. Reflection, absorption and scatter of incident radiation by chemical targets and their surroundings provide a method for spatial location, and characteristic spectra obtained from each sample can be used to identify targets uniquely. To date, we have recognized liquids in sample sizes as small 20 μl-and gases with sensitivity as high as 10ppm.m-at detection standoff distances > 10 m.

  9. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  10. Mid-infrared, broadly tunable, active hyperspectral imaging system for the detection of gaseous hydrocarbon species

    NASA Astrophysics Data System (ADS)

    Stothard, David J. M.; Rae, Cameron F.; Ross, Mark; Dunn, Malcolm H.

    2007-10-01

    We describe a compact mid-infrared active spectroscopic imaging system for the rapid, stand-off detection of gas / chemical agents. Based upon the back-scatter absorption gas imaging (BAGI) technique, the system utilises a miniaturised, extremely efficient all solid state intracavity optical parametric oscillator (OPO) as the imaging illumination source. The OPO produces up to 250mW of tunable radiation in the signal and idler fields over the range 1.3-4.5μm, for a diode pump power of only 3W. Due to the nature of the nonlinear crystal employed within the OPO, the system can be tuned across its spectral range in ~1 second. We obviate the very high cost and complexity of a cooled MCT or InSb video array by raster-scanning the collimated illumination beam over the area of interest and reconstructing the image by sampling the back-scattered radiation with a single element MCT photo-detector at each pixel point. This approach also improves the ultimate signal to noise ratio. Video-like frame rates of 10 f.p.s. have been demonstrated via this technique. The range limit of the instrument is currently <10 meters which is limited by the detector we currently employ. We demonstrate how the system has been used to detect, in real time, leaks of multi-species hydrocarbon gases.

  11. Laser active imaging-guided anti-tank missile system small-scale integration design

    NASA Astrophysics Data System (ADS)

    Yan, Mingliang; Shan, Xiangqian; Qu, Zhou

    2010-10-01

    At present, the domestic and international third-generation anti-tank missiles, laser-guided missiles are mostly divided into active laser-guided and laser semi-active guidance, this guidance system, there are vulnerable to electronic interference, can not be fully realized after launching deficiencies. Article based on this, an in-depth understanding of imaging-guided laser-active working principle, based on the pairs of third-generation anti-tank missile guidance system, boldly proposed to improve the anti-tank missiles, laser-active small-scale integration of imaging guidance system design, the main purpose is to improve a certain type of The optical target missile, TV angle measurement, laser-guided instruction transmission means, so that anti-tank missiles to achieve forward-looking, the next obstacle avoidance TV and multi-functional integration of the entire after launching smart missiles, and in theory be able to study the new antitank missiles play a certain reference.

  12. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging

    PubMed Central

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P.; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P.; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785

  13. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    PubMed

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785

  14. Imaging the magmatic system of Newberry Volcano using Joint active source and teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Heath, Benjamin A.; Hooft, Emilie E. E.; Toomey, Douglas R.; Bezada, Maximiliano J.

    2015-12-01

    In this paper, we combine active and passive source P wave seismic data to tomographically image the magmatic system beneath Newberry Volcano, located east of the Cascade arc. By using both travel times from local active sources and delay times from teleseismic earthquakes recorded on closely spaced seismometers (300-800 m), we significantly improve recovery of upper crustal velocity structure (<10 km depth). The tomographic model reveals a low-velocity feature between 3 and 5 km depth that lies beneath the caldera, consistent with a magma body. In contrast to earlier tomographic studies, where elevated temperatures were sufficient to explain the recovered low velocities, the larger amplitude low-velocity anomalies in our joint tomography model require low degrees of partial melt (˜10%), and a minimum melt volume of ˜2.5 km3. Furthermore, synthetic tests suggest that even greater magnitude low-velocity anomalies, and by inference larger volumes of magma (up to 8 km3), are needed to explain the observed waveform variability. The lateral extent and shape of the inferred magma body indicates that the extensional tectonic regime at Newberry influences the emplacement of magmatic intrusions. Our study shows that jointly inverting active source and passive source seismic data improves tomographic imaging of the shallow crustal seismic structure of volcanic systems and that active source experiments would benefit from longer deployment times to also record teleseismic sources.

  15. Active millimeter-wave imaging system for material analysis and object detection

    NASA Astrophysics Data System (ADS)

    Zech, Christian; Hülsmann, Axel; Kallfass, Ingmar; Tessmann, Axel; Zink, Martin; Schlechtweg, Michael; Leuther, Arnulf; Ambacher, Oliver

    2011-11-01

    The use of millimeter-waves for imaging purposes is becoming increasingly important, as millimeter-waves can penetrate most clothing and packaging materials, so that the detector does not require physical contact with the object. This will offer a view to the hidden content of e.g. packets or bags without the need to open them, whereby packaging and content will not be damaged. Nowadays X-ray is used, but as the millimeter-wave quantum energy is far below the ionization energy, it is less harmful for the human health. In this paper we report an active millimeter-wave imaging tomograph for material analysis and concealed object detection purposes. The system is build using in-house W-band components. The object is illuminated with low-power millimeter-waves in the frequency range between 89 and 96GHz; mirrors are used to guide and focus the beam. The object is moved through the focus point to scan the object pixel by pixel. Depending on the actual material some parts of the waves are reflected, the other parts penetrate the object. A single-antenna transmit and receive module is used for illumination and measurement of the material-specific reflected power. A second receiver module is used to measure the transmitted wave. All information is processed for amplitude and phase images by a computer algorithm. The system can be used for security, such as detecting concealed weapons, explosives or contrabands at airports and other safety areas, but also quality assurance applications, e.g. during production to detect defects. Some imaging results will be presented in this paper.

  16. Miniaturized Three-Dimensional Endoscopic Imaging System Based on Active Stereovision

    NASA Astrophysics Data System (ADS)

    Chan, Manhong; Lin, Wumei; Zhou, Changhe; Qu, Jianan Y.

    2003-04-01

    A miniaturized three-dimensional endoscopic imaging system is presented. The system consists of two imaging channels that can be used to obtain an image from an object of interest and to project a structured light onto the imaged object to measure the surface topology. The structured light was generated with a collimated monochromatic light source and a holographic binary phase grating. The imaging and projection channels were calibrated by use of a modified pinhole camera. The surface profile was extracted by use of triangulation between the projected feature points and the two channels of the endoscope. The imaging system was evaluated in three-dimensional measurements of several objects with known geometries. The results show that surface profiles of the objects with different surfaces and dimensions can be obtained at high accuracy. The in vivo measurements at tissue sites of human skin and an oral cavity demonstrated the potential of the technique for clinical applications.

  17. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. PMID:23239313

  18. Two-channel imaging system for the White light Active Region Monitor (WARM) telescope at Kodaikanal Observatory: design, development, and first images

    NASA Astrophysics Data System (ADS)

    Pruthvi, Hemanth; Ramesh, K. B.

    2015-06-01

    One of the three planned back-end systems for the proposed National Large Solar Telescope (NLST) is the Solar Dynamics Imaging System (SDIS) which is intended to obtain near simultaneous images in multiple wavelengths. As a first step, a prototype system with two channel imaging has been developed and installed at the back-end of the White light Active Region Monitor (WARM) telescope at Kodaikanal Observatory. A two-mirror Coelostat serves as a light feeding system to a refracting objective while an optical breadboard serves as a platform for the back-end instruments. A re-imaging system is used before the prime focus to get two light channels for the observations in two wavelengths. The re-imaging system is designed using ZEMAX and the alignment of the system is done using a laser. Full disk images are obtained using a red filter (674.2nm/10nm) and a G-band filter (430.5nm/0.84nm). Design aspects of the re-imaging system, preliminary observations and image reduction methods are described in this paper.

  19. The Europa Imaging System (EIS): Investigating Europa's geology, ice shell, and current activity

    NASA Astrophysics Data System (ADS)

    Turtle, Elizabeth; Thomas, Nicolas; Fletcher, Leigh; Hayes, Alexander; Ernst, Carolyn; Collins, Geoffrey; Hansen, Candice; Kirk, Randolph L.; Nimmo, Francis; McEwen, Alfred; Hurford, Terry; Barr Mlinar, Amy; Quick, Lynnae; Patterson, Wes; Soderblom, Jason

    2016-07-01

    NASA's Europa Mission, planned for launch in 2022, will perform more than 40 flybys of Europa with altitudes at closest approach as low as 25 km. The instrument payload includes the Europa Imaging System (EIS), a camera suite designed to transform our understanding of Europa through global decameter-scale coverage, topographic and color mapping, and unprecedented sub- meter-scale imaging. EIS combines narrow-angle and wide-angle cameras to address these science goals: • Constrain the formation processes of surface features by characterizing endogenic geologic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure and potential near-surface water. • Search for evidence of recent or current activity, including potential plumes. • Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar. • Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. EIS Narrow-angle Camera (NAC): The NAC, with a 2.3°° x 1.2°° field of view (FOV) and a 10-μμrad instantaneous FOV (IFOV), achieves 0.5-m pixel scale over a 2-km-wide swath from 50-km altitude. A 2-axis gimbal enables independent targeting, allowing very high-resolution stereo imaging to generate digital topographic models (DTMs) with 4-m spatial scale and 0.5-m vertical precision over the 2-km swath from 50-km altitude. The gimbal also makes near-global (>95%) mapping of Europa possible at ≤50-m pixel scale, as well as regional stereo imaging. The NAC will also perform high-phase-angle observations to search for potential plumes. EIS Wide-angle Camera (WAC): The WAC has a 48°° x 24°° FOV, with a 218-μμrad IFOV, and is designed to acquire pushbroom stereo swaths along flyby ground-tracks. From an altitude of 50 km, the WAC achieves 11-m pixel scale over a 44-km

  20. Increased 18F-FDG uptake within the reticuloendothelial system in patients with active lung cancer on PET imaging may indicate activation of the systemic immune response.

    PubMed

    Bural, Gonca G; Torigian, Drew A; Chen, Wengen; Houseni, Mohamed; Basu, Sandip; Alavi, Abass

    2010-01-01

    The reticuloendothelial system (RES) cells are in the defense against certain pathogens, and in the removal of dying cells, cell debris, microorganisms, and malignant cells. Liver, spleen, and bone marrow represent the major organs with high RES activity. We hypothesized that in subjects with active lung cancer, the metabolic activity of these organs would be greater than that of the subjects with no active tumor. We have studied two groups of subjects who had undergone (18)F-FDG-PET imaging for clinical purposes. The first group consisted of 39 subjects (20 women, 19 men, mean age 64.8+/-10.2 years) with benign lung nodules as demonstrated by (18)F-FDG-PET imaging. The second group consisted of 30 subjects (18 women, 12 men; mean age 65.1+/-11 years) who were known to have active lung cancer with or without distant metastases as seen on (18)F-FDG-PET imaging. The subjects in the second group did not have any evidence of liver, spleen, bone marrow, or heart involvement on (18)F-FDG-PET images. We measured the mean SUV of the liver, spleen, bone marrow, heart, and of the contralateral unaffected lung, and compared the average SUV for these organs between the two groups. We found that the mean SUV of the liver, bone marrow, and spleen were significantly greater in subjects with evidence of active primary or metastatic lung cancer compared with those of subjects who had benign lung nodules and no evidence of active malignant disease. There was a statistically significant difference between mean SUV for organs noted above between the two groups (P<0.05). In contrast, mean SUV for the heart and contralateral normal lung did not show any significant difference between the two groups. In conclusion, the mean SUV for the major organs of RES, liver, spleen, and bone marrow were higher in subjects with active lung cancer with or without metastases than in those without active malignancy. We believe these differences in SUV may indicate a differential activation of the

  1. Medical Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  2. Development of an image processing system at the Technology Applications Center, UNM: Landsat image processing in mineral exploration and related activities. Final report

    SciTech Connect

    Budge, T.K.

    1980-09-01

    This project was a demonstration of the capabilities of Landsat satellite image processing applied to the monitoring of mining activity in New Mexico. Study areas included the Navajo coal surface mine, the Jackpile uranium surface mine, and the potash mining district near Carlsbad, New Mexico. Computer classifications of a number of land use categories in these mines were presented and discussed. A literature review of a number of case studies concerning the use of Landsat image processing in mineral exploration and related activities was prepared. Included in this review is a discussion of the Landsat satellite system and the basics of computer image processing. Topics such as destriping, contrast stretches, atmospheric corrections, ratioing, and classification techniques are addressed. Summaries of the STANSORT II and ELAS software packages and the Technology Application Center's Digital Image Processing System (TDIPS) are presented.

  3. Antinociceptive activity of crotoxin in the central nervous system: a functional Magnetic Resonance Imaging study.

    PubMed

    Wolz-Richter, S; Esser, K-H; Hess, A

    2013-11-01

    Crotoxin, the main neurotoxic component of the venom of South American rattlesnake (Crotalus durissus terrificus), is reported to have potent antinociceptive activity. Several authors have shown mainly in behavioral pain models that crotoxin induces antinociceptive effects, supposed to be mediated by actions on the central nervous system. The antinociceptive effects of crotoxin (45 μg/kg ip) in rats were verified in this study by increased response latencies in a Hargreaves test and tail flick test. In addition, it was demonstrated that crotoxin does not lead to motor impairments during a rotarod test and open field test. The main objective, carried out by blood oxygen level dependent functional Magnetic Resonance Imaging (BOLD fMRI) in anesthetized rats, was to determine which specific brain structures are involved in these antinociceptive effects. Moreover, potential antihyperalgesic effects were investigated by inducing a local hyperalgesia on the left hind paw. Therefore, antinociceptive effects (right paw) and antihyperalgesic effects (left paw) of crotoxin were able to be differentiated. As a result, crotoxin exhibited dominant antihyperalgesic but also antinociceptive effects during pain stimulation. Reductions of BOLD signal already occurred in brain input structures but were most prominent in primary and secondary somatosensory cortices. In conclusion, BOLD fMRI in anesthetized rats proved to be a helpful tool in toxinology, particularly in unraveled mechanisms of modulating nociception in the central nervous system by (potential) analgesics like crotoxin. PMID:23916599

  4. Imaging systems and applications.

    PubMed

    Bennett, Gisele; Catrysse, Peter B; Farrell, Joyce E; Fowler, Boyd; Mait, Joseph N

    2012-02-01

    Imaging systems are used in consumer, medical, and military applications. Designing, developing, and building imaging systems requires a multidisciplinary approach. This issue features current research in imaging systems that ranges from fundamental theories to novel applications. Although the papers collected are diverse, their unique compilation provides a systems perspective to imaging. PMID:22307134

  5. Dynamically re-configurable CMOS imagers for an active vision system

    NASA Technical Reports Server (NTRS)

    Yang, Guang (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.

  6. An active microwave imaging system for reconstruction of 2-D electrical property distributions.

    PubMed

    Meaney, P M; Paulsen, K D; Hartov, A; Crane, R K

    1995-10-01

    The goal of this work is to develop a microwave-based imaging system for hyperthermia treatment monitoring and assessment. Toward this end, a four transmit channel and four receive channel hardware device and concomitant image reconstruction algorithm have been realized. The hardware is designed to measure electric fields (i.e., amplitude and phase) at various locations in a phantom tank with and without the presence of various heterogeneities using standard heterodyning principles. Particular attention has been paid to designing a receiver with better than 115 dB of linear dynamic range which is necessary for imaging biological tissue which often has very high conductivity, especially for tissues with high water content. A calibration procedure has been developed to compensate for signal loss due to three-dimensional radiation in the measured data, since the reconstruction process is only two-dimensional at the present time. Results are shown which demonstrate the stability and accuracy of the measurement system, the extent to which the forward computational model agrees with the measured field distribution when the electrical properties are known, and image reconstructions of electrically unknown targets of varying diameter. In the latter case, images of both the reactive and resistive component of the electrical property distribution have been recoverable. Quantitative information on object location, size, and electrical properties results when the target is approximately one-half wavelength in size. Images of smaller objects lack the same level of quantitative information, but remain qualitatively correct. PMID:8582719

  7. Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice

    PubMed Central

    Michael, Neethu; Bischof, Hans-Joachim; Löwel, Siegrid

    2014-01-01

    Large-scale brain activity patterns can be visualized by optical imaging of intrinsic signals (OIS) based on activity-dependent changes in the blood oxygenation level. Another method, flavoprotein autofluorescence imaging (AFI), exploits the mitochondrial flavoprotein autofluorescence, which is enhanced during neuronal activity. In birds, topographic mapping of visual space has been shown in the visual wulst, the avian homologue of the mammalian visual cortex by using OIS. We here applied the AFI method to visualize topographic maps in the visual wulst because with OIS, which depends on blood flow changes, blood vessel artifacts often obscure brain activity maps. We then compared both techniques quantitatively in zebra finches and in C57Bl/6J mice using the same setup and stimulation conditions. In addition to experiments with craniotomized animals, we also examined mice with intact skull (in zebra finches, intact skull imaging is not feasible probably due to the skull construction). In craniotomized animals, retinotopic maps were obtained by both methods in both species. Using AFI, artifacts caused by blood vessels were generally reduced, the magnitude of neuronal activity significantly higher and the retinotopic map quality better than that obtained by OIS in both zebra finches and mice. In contrast, our measurements in non-craniotomized mice did not reveal any quantitative differences between the two methods. Our results thus suggest that AFI is the method of choice for investigations of visual processing in zebra finches. In mice, however, if researchers decide to use the advantages of imaging through the intact skull, they will not be able to exploit the higher signals obtainable by the AFI-method. PMID:24400130

  8. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  9. Chromospheric imaging of the active binary system V 711 Tauri = HR 1099 in December 1992

    NASA Astrophysics Data System (ADS)

    Busà, I.; Pagano, I.; Rodonò, M.; Neff, J. E.; Lanzafame, A. C.

    1999-10-01

    Spectroscopic observations of the bright RS CVn-type system V 711 Tau = HR 1099 (K1 IV + G5 V) were obtained by IUE during the same period of a Multi-Site Continuous Spectroscopy (MUSICOS) campaign between 12-18 December 1992 (Huang et al. 1995). We report on the results of a ``Doppler Imaging" analysis of the Mg II h line. Broad, variable and extended wings have been detected and successfully fitted using a broad Gaussian, which accounts for a large fraction of flux from the global stellar Mg II h emission. This broad component is present in all spectra and presents velocity shifts with respect to the K1 star rest-frame that are variable in the range between -19 and +44 km s(-1) . Similar results have been obtained from Doppler Imaging of the other relevant chromospheric line (H_α) in other RS CVn stars ({c.f.} Hatzes, 1995 and Hatzes, 1998). Furthermore, our analysis suggests that these shifts could be due to rotational modulation produced by an active region, that essentially straddles the pole of the K1 star in which down-flows dominate on up-flows. Finally, emitting matter between the two stars has been detected, indicating that mass-exchange is present in the binary system. Five flare episodes with strong flux enhancements in several transition region lines were observed. These flares were preliminarily reported by Neff et al. (1995). We analyse in this paper the Mg II h and k line emission during the major of these five flare (1992 December 14), since only a weak enhancement was observed in the Mg II h and k lines during the other four flares. Spectral imaging of the Mg II lines during this flare indicates a flaring site on the visible K1 star hemisphere with mass ejection from the K1 star towards the G5 companion. The Mg II emission shows a large broadening with FWHM reaching 1000 km s(-1) at flare peak and decreasing to 700 km s(-1) two hours after the peak. Our analysis have been carried out using both IUESIPS and NEWSIPS processed spectra. We find that

  10. Medical imaging systems

    DOEpatents

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  11. Preliminary images from an adaptive imaging system.

    PubMed

    Griffiths, J A; Metaxas, M G; Pani, S; Schulerud, H; Esbrand, C; Royle, G J; Price, B; Rokvic, T; Longo, R; Asimidis, A; Bletsas, E; Cavouras, D; Fant, A; Gasiorek, P; Georgiou, H; Hall, G; Jones, J; Leaver, J; Li, G; Machin, D; Manthos, N; Matheson, J; Noy, M; Ostby, J M; Psomadellis, F; van der Stelt, P F; Theodoridis, S; Triantis, F; Turchetta, R; Venanzi, C; Speller, R D

    2008-06-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephalography. In our system, the exposure in each image region is optimised and the beam intensity is a function of tissue thickness and attenuation, and also of local physical and statistical parameters in the image. Using a linear array of detectors, the system will perform on-line analysis of the image during the scan, followed by optimisation of the X-ray intensity to obtain the maximum diagnostic information from the region of interest while minimising exposure of diagnostically less important regions. This paper presents preliminary images obtained with a small area CMOS detector developed for this application. Wedge systems were used to modulate the beam intensity during breast and dental imaging using suitable X-ray spectra. The sensitive imaging area of the sensor is 512 x 32 pixels 32 x 32 microm(2) in size. The sensors' X-ray sensitivity was increased by coupling to a structured CsI(Tl) scintillator. In order to develop the I-ImaS prototype, the on-line data analysis and data acquisition control are based on custom-developed electronics using multiple FPGAs. Images of both breast tissues and jaw samples were acquired and different exposure optimisation algorithms applied. Results are very promising since the average dose has been reduced to around 60% of the dose delivered by conventional imaging systems without decrease in the visibility of details. PMID:18291697

  12. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  13. Use of polarization to improve signal to clutter ratio in an outdoor active imaging system

    NASA Astrophysics Data System (ADS)

    Fontoura, Patrick F.; Giles, Michael K.; Padilla, Denise D.

    2005-08-01

    This paper describes the methodology and presents the results of the design of a polarization-sensitive system used to increase the signal-to-clutter ratio in a robust outdoor structured lighting sensor that uses standard CCD camera technology. This lighting sensor is intended to be used on an autonomous vehicle, looking down to the ground and horizontal to obstacles in an 8 foot range. The kinds of surfaces to be imaged are natural and man-made, such as asphalt, concrete, dirt and grass. The main problem for an outdoor eye-safe laser imaging system is that the reflected energy from background clutter tends to be brighter than the reflected laser energy. A narrow-band optical filter does not reduce significantly the background clutter in bright sunlight, and problems also occur when the surface is highly absorptive, like asphalt. Therefore, most of applications are limited to indoor and controlled outdoor conditions. A series of measurements was made for each of the materials studied in order to find the best configuration for the polarizing system and also to find out the potential improvement in the signal-to-clutter ratio (STC). This process was divided into three parts: characterization of the reflected sunlight, characterization of the reflected laser light, and measurement of the improvement in the STC. The results show that by using polarization properties it is possible to design an optical system that is able to increase the signal-to-clutter ratio from approximately 30% to 100% in the imaging system, depending on the kind of surface and on the incidence angle of the sunlight. The technique was also analyzed for indoor use, with the background clutter being the room illumination. For this specific case, polarization did not improve the signal-to-clutter ratio.

  14. Study of a dual mode SWIR active imaging system for direct imaging and non-line-of-sight vision

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Christnacher, Frank; Velten, Andreas

    2015-05-01

    The application of non-line of sight vision and see around a corner has been demonstrated in the recent past on laboratory level with round trip path lengths on the scale of 1 m as well as 10 m. This method uses a computational imaging approach to analyze the scattered information of objects which are hidden from the direct sensors field of view. Recent demonstrator systems were driven at laser wavelengths (800 nm and 532 nm) which are far from the eye-safe shortwave infrared (SWIR) wavelength band i.e. between 1.4 μm and 2 μm. Therefore, the application in public or inhabited areas is difficult with respect to international laser safety conventions. In the present work, the authors evaluate the application of recent eye safe laser sources and sensor devices for non-line of sight sensing and give predictions on range and resolution. Further, the realization of a dual mode concept is studied enabling both, the direct view on a scene and the indirect view on a hidden scene. While recent laser gated viewing sensors have high spatial resolution, their application in non-line of sight imaging suffer from a too low temporal resolution due to minimal sensor gate width of around 150 ns. On the other hand, Geiger-mode single photon counting devices have high temporal resolution, but their spatial resolution is (until now) limited to array sizes of some thousand sensor elements. In this publication the authors present detailed theoretical and experimental evaluations.

  15. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  16. Imaging performance of elliptical-boundary varifocal mirrors in active optical systems

    NASA Astrophysics Data System (ADS)

    Lukes, Sarah Jane

    Micro-electro-mechanical systems deformable-membrane mirrors provide a means of focus control and attendant spherical aberration correction for miniaturized imaging systems. The technology has greatly advanced in the last decade, thereby extending their focal range capabilities. This dissertation describes a novel SU-8 2002 silicon-on-insulator wafer deformable mirror. A 4.000 mm x 5.657 mm mirror for 45o incident light rays achieves 22 mum stroke or 65 diopters, limited by snapdown. The mirrors show excellent optical quality while flat. Most have peak-to-valley difference of less than 150 nm and root-mean-square less than 25 nm. The process proves simple, only requiring a silicon-on-insulator wafer, SU-8 2002, and a metal layer. Xenon difluoride etches the silicon to release the mirrors. Greater than 90% of the devices survive fabrication and release. While current literature includes several aberration analyses on static mirrors, analyses that incorporate the dynamic nature of these mirrors do not exist. Optical designers may have a choice between deformable mirrors and other types of varifocal mirrors or lenses. Furthermore, a dynamic mirror at an incidence angle other than normal may be desired due to space limitations or for higher throughput (normal incidence requires a beam splitter). This dissertation presents an analysis based on the characteristic function of the system. It provides 2nd and 3rd order aberration coefficients in terms of dynamic focus range and base ray incidence angle. These afford an understanding of the significance of different types of aberrations. Root-mean-square and Strehl calculations provide insight into overall imaging performance for various conditions. I present general guidelines for maximum incidence angle and field of fiew that provide near diffraction-limited performance. Experimental verification of the MEMS mirrors at 5o and 45o incidence angles validates the analytical results. A Blu-ray optical pick-up imaging

  17. Fluorescence imaging of electrical activity in cardiac cells using an all-solid-state system.

    PubMed

    Entcheva, Emilia; Kostov, Yordan; Tchernev, Elko; Tung, Leslie

    2004-02-01

    Tracking spatial and temporal determinants of cardiac arrhythmogenesis at the cellular level presents challenges to the optical mapping techniques employed. In this paper, we describe a compact system combining two nontraditional low-cost solutions for excitation light sources and emission filters in fluorescence measurements of transmembrane potentials, Vm, or intracellular calcium, [Ca2+]i in cardiac cell networks. This is the first reported use of high-power blue and green light emitting diodes (LEDs), to excite cell monolayers stained with Vm - (di-8-ANEPPS) or [Ca2+]i - (Fluo-3) sensitive dyes. In addition, we use simple techniques for fabrication of suitable thin emission filters with uniform properties, no auto-fluorescence, high durability and good flexibility for imaging Vm or [Ca2+]i. The battery-operated LEDs and the fabricated emission filters, integrated with a fiber-optic system for contact fluorescence imaging, were used as tools to characterize conduction velocity restitution at the macro-scale. The versatility of the LEDs for illumination is further emphasized through 1) demonstration of their usage for epi-illumination recordings at the single-cell level, and 2) demonstration of their unique high-frequency light modulation ability. The LEDs showed excellent stability as excitation light sources for fluorescence measurements; acceptable signal-to-noise ratio and negligible cell photodamage and indicator dye photobleaching were observed. PMID:14765706

  18. Active Nuclear Material Detection and Imaging

    SciTech Connect

    Daren Norman; James Jones; KevinHaskell; Peter E. Vanmier; Leon Forman

    2005-10-01

    An experimental evaluation has been conducted to assess the operational performance of a coded-aperture, thermal neutron imaging system and its detection and imaging capability for shielded nuclear material in pulsed photonuclear environments. This evaluation used an imaging system developed by Brookhaven National Laboratory. The active photonuclear environment was produced by an operationallyflexible, Idaho National Laboratory (INL) pulsed electron accelerator. The neutron environments were monitored using INL photonuclear neutron detectors. Results include experimental images, operational imaging system assessments and recommendations that would enhance nuclear material detection and imaging performance.

  19. Reduction of computational complexity in the image/video understanding systems with active vision

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2003-10-01

    The vision system evolved not only as a recognition system, but also as a sensory system for reaching, grasping and other motion activities. In advanced creatures, it became a component of prediction function, allowing creation of environmental models and activity planning. Fast information processing and decision making is vital for any living creature, and requires reduction of informational and computational complexities. The brain achieves this goal using symbolic coding, hierarchical compression, and selective processing of visual information. Network-Symbolic representation, where both systematic structural / logical methods and neural / statistical methods are the parts of a single mechanism, is the most feasible for such models. It converts visual information into the relational Network-Symbolic structures, instead of precise computations of a 3-dimensional models. Narrow foveal vision provides separation of figure from ground, object identification, semantic analysis, and precise control of actions. Rough wide peripheral vision identifies and tracks salient motion, guiding foveal system to salient objects. It also provides scene context. Objects with rigid bodies and other stable systems have coherent relational structures. Hierarchical compression and Network-Symbolic transformations derive more abstract structures that allow invariably recognize a particular structure as an exemplar of class. Robotic systems equipped with such smart vision will be able effectively navigate in any environment, understand situation, and act accordingly.

  20. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  1. Multi Spectral Imaging System

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor)

    1999-01-01

    An optical imaging system provides automatic co-registration of a plurality of multi spectral images of an object which are generated by a plurality of video cameras or other optical detectors. The imaging system includes a modular assembly of beam splitters, lens tubes, camera lenses and wavelength selective filters which facilitate easy reconfiguration and adjustment of the system for various applications. A primary lens assembly generates a real image of an object to be imaged on a reticle which is positioned at a fixed length from a beam splitter assembly. The beam splitter assembly separates a collimated image beam received from the reticle into multiple image beams, each of which is projected onto a corresponding one of a plurality of video cameras. The lens tubes which connect the beam splitter assembly to the cameras are adjustable in length to provide automatic co-registration of the images generated by each camera.

  2. Activity-based costing via an information system: an application created for a breast imaging center.

    PubMed

    Hawkins, H; Langer, J; Padua, E; Reaves, J

    2001-06-01

    Activity-based costing (ABC) is a process that enables the estimation of the cost of producing a product or service. More accurate than traditional charge-based approaches, it emphasizes analysis of processes, and more specific identification of both direct and indirect costs. This accuracy is essential in today's healthcare environment, in which managed care organizations necessitate responsible and accountable costing. However, to be successfully utilized, it requires time, effort, expertise, and support. Data collection can be tedious and expensive. By integrating ABC with information management (IM) and systems (IS), organizations can take advantage of the process orientation of both, extend and improve ABC, and decrease resource utilization for ABC projects. In our case study, we have examined the process of a multidisciplinary breast center. We have mapped the constituent activities and established cost drivers. This information has been structured and included in our information system database for subsequent analysis. PMID:11442093

  3. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  4. Three-dimensional motion estimation using genetic algorithms from image sequence in an active stereo vision system

    NASA Astrophysics Data System (ADS)

    Dipanda, Albert; Ajot, Jerome; Woo, Sanghyuk

    2003-06-01

    This paper proposes a method for estimating 3D rigid motion parameters from an image sequence of a moving object. The 3D surface measurement is achieved using an active stereovision system composed of a camera and a light projector, which illuminates objects to be analyzed by a pyramid-shaped laser beam. By associating the laser rays and the spots in the 2D image, the 3D points corresponding to these spots are reconstructed. Each image of the sequence provides a set of 3D points, which is modeled by a B-spline surface. Therefore, estimating the motion between two images of the sequence boils down to matching two B-spline surfaces. We consider the matching environment as an optimization problem and find the optimal solution using Genetic Algorithms. A chromosome is encoded by concatenating six binary coded parameters, the three angles of rotation and the x-axis, y-axis and z-axis translations. We have defined an original fitness function to calculate the similarity measure between two surfaces. The matching process is performed iteratively: the number of points to be matched grows as the process advances and results are refined until convergence. Experimental results with a real image sequence are presented to show the effectiveness of the method.

  5. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

    PubMed Central

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

  6. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  7. Seismic images of the active fault system in the Yunlin and Chiayi area of Taiwan.

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Hsiang; Shih, Ruey-Chyuan

    2015-04-01

    The Yunlin and Chiayi area in western Taiwan are well known of having a higher risk of earthquake disaster. The main fault system that controls the structure deformation in this area consists of the Chiuchiungkeng fault, the Meishan fault, and the Gukeng fault. According to historical records, the 1906 Meishan earthquake, magnitude 7.1, was triggered by the right-lateral strike-slip fault Meishan fault. Previous Seismic surveys showed that the Meishan fault is a high angle fault with flower structure. The Chiuchiungkeng fault is a thrust fault, located at front of the western foothills. Formations on the hanging wall and foot wall of the fault, both dipping to the east with different angles, can be identified from seismic images. The Gukeng fault was never been studied before. From the recent study of GPS monitoring, we may found that the velocity field near the Gukeng fault had a significant difference at both side of the fault. In addition, there is other information showed that there exists an aseismic gap around the fault. The above phenomena could be considered as a stress accumulation along the Gukeng fault. In the other words, the Gukeng fault could be playing an important role of controlling the regional surface deformation and seismicity distribution in this area. In this case, it will be worthwhile of knowing where the Gukeng fault is, and its subsurface structure. In this presentation, we will show our study of the subsurface structure of the Gukeng fault by using the seismic exploration method. The data consist of the shallow seismic reflection images those conducted by ourselves and the deeper seismic profiles acquired by CPC. Three dimensional relationships between the Gukeng fault, the Meishan fault, the Chiuchiungkeng fault, and other structures such as the Hsiaomei anticline will be illustrated as well.

  8. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  9. Medical imaging systems

    SciTech Connect

    Frangioni, John V.

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  10. Tracking early autoimmune disease by bioluminescent imaging of NF-kappaB activation reveals pathology in multiple organ systems.

    PubMed

    Zangani, Michael; Carlsen, Harald; Kielland, Anders; Os, Audun; Hauglin, Harald; Blomhoff, Rune; Munthe, Ludvig A; Bogen, Bjarne

    2009-04-01

    It is desirable to have an early and sensitive detection marker of autoimmune disease in intact animals. Nuclear factor (NF)-kappaB is a transcription factor that is associated with inflammatory responses and immune disorders. Previously, we demonstrated that so-called idiotypic-driven T-B cell collaboration in mice doubly transgenic for paired immunoglobulin and T cell receptor transgenes resulted in a systemic autoimmune disease with systemic lupus erythematosus-like features. Here, we investigated NF-kappaB activation by including an NF-kappaB-responsive luciferase reporter transgene in this animal model. Triply transgenic mice developed bioluminescence signals from diseased organs before onset of clinical symptoms and autoantibody production, and light emissions correlated with disease progression. Signals were obtained from secondary lymphoid organs, inflamed intestines, skin lesions, and arthritic joints. Moreover, bioluminescence imaging and immunohistochemistry demonstrated that a minority of mice suffered from an autoimmune disease of the small intestine, in which light emissions correlated with antibodies against tissue transglutaminase and gliadin. Detection of luciferase by immunohistochemistry revealed NF-kappaB activation in collaborating B and T cells, as well as in macrophages. These results demonstrate that bioluminescent in vivo imaging of NF-kappaB activation can be used for early and sensitive detection of autoimmune disease in an experimental mouse model, offering new possibilities for the evaluation of anti-inflammatory drugs. PMID:19286564

  11. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  12. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  13. Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system

    NASA Astrophysics Data System (ADS)

    Atsumori, Hirokazu; Kiguchi, Masashi; Katura, Takusige; Funane, Tsukasa; Obata, Akiko; Sato, Hiroki; Manaka, Takaaki; Iwamoto, Mitsumasa; Maki, Atsushi; Koizumi, Hideaki; Kubota, Kisou

    2010-07-01

    Optical topography (OT) based on near-infrared spectroscopy is a noninvasive technique for mapping the relative concentration changes in oxygenated and deoxygenated hemoglobin (oxy- and deoxy-Hb, respectively) in the human cerebral cortex. In our previous study, we developed a small and light wearable optical topography (WOT) system that covers the entire forehead for monitoring prefrontal activation. In the present study, we examine whether the WOT system is applicable to OT measurement while walking, which has been difficult with conventional OT systems. We conduct OT measurements while subjects perform an attention-demanding (AD) task of balancing a ping-pong ball on a small card while walking. The measured time course and power spectra of the relative concentration changes in oxy- and deoxy-Hb show that the step-related changes in the oxy- and deoxy-Hb signals are negligible compared to the task-related changes. Statistical assessment of the task-related changes in the oxy-Hb signals show that the dorsolateral prefrontal cortex and rostral prefrontal area are significantly activated during the AD task. These results suggest that our functional imaging technique with the WOT system is applicable to OT measurement while walking, and will be a powerful tool for evaluating brain activation in a natural environment.

  14. Compressive optical imaging systems

    NASA Astrophysics Data System (ADS)

    Wu, Yuehao

    Compared to the classic Nyquist sampling theorem, Compressed Sensing or Compressive Sampling (CS) was proposed as a more efficient alternative for sampling sparse signals. In this dissertation, we discuss the implementation of the CS theory in building a variety of optical imaging systems. CS-based Imaging Systems (CSISs) exploit the sparsity of optical images in their transformed domains by imposing incoherent CS measurement patterns on them. The amplitudes and locations of sparse frequency components of optical images in their transformed domains can be reconstructed from the CS measurement results by solving an l1-regularized minimization problem. In this work, we review the theoretical background of the CS theory and present two hardware implementation schemes for CSISs, including a single pixel detector based scheme and an array detector based scheme. The first implementation scheme is suitable for acquiring Two-Dimensional (2D) spatial information of the imaging scene. We demonstrate the feasibility of this implementation scheme by developing a single pixel camera, a multispectral imaging system, and an optical sectioning microscope for fluorescence microscopy. The array detector based scheme is suitable for hyperspectral imaging applications, wherein both the spatial and spectral information of the imaging scene are of interest. We demonstrate the feasibility of this scheme by developing a Digital Micromirror Device-based Snapshot Spectral Imaging (DMD-SSI) system, which implements CS measurement processes on the Three-Dimensional (3D) spatial/spectral information of the imaging scene. Tens of spectral images can be reconstructed from the DMD-SSI system simultaneously without any mechanical or temporal scanning processes.

  15. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  16. Combined terahertz imaging system for enhanced imaging quality

    NASA Astrophysics Data System (ADS)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Yakovlev, Egor V.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2016-06-01

    An improved terahertz (THz) imaging system is proposed for enhancing image quality. Imaging scheme includes THz source and detection system operated in active mode as well as in passive one. In order to homogeneously illuminate the object plane the THz reshaper is proposed. The form and internal structure of the reshaper were studied by the numerical simulation. Using different test-objects we compare imaging quality in active and passive THz imaging modes. Imaging contrast and modulation transfer functions in active and passive imaging modes show drawbacks of them in high and low spatial frequencies, respectively. The experimental results confirm the benefit of combining both imaging modes into hybrid one. The proposed algorithm of making hybrid THz image is an effective approach of retrieving maximum information about the remote object.

  17. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  18. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  19. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  20. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  1. Radiation imaging system

    DOEpatents

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  2. Radiation imaging system

    DOEpatents

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  3. Reflective optical imaging system

    DOEpatents

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  4. Multiscale image restoration for photon imaging systems

    NASA Astrophysics Data System (ADS)

    Jammal, Ghada; Bijaoui, Albert

    1999-05-01

    Nuclear medicine imaging is a widely used commercial imaging modality which relies on photon detection as the basis of image formation. As a diagnosis tool, it is unique in that it documents organ function and structure. It is a way to gather information that may be otherwise unavailable or require surgery. Practical limitations on imaging time and the amount of activity that can be administered safely to patients are serious impediments to substantial further improvements in nuclear medicine imaging. Hence, improvements of image quality via optimized image processing represent a significant opportunity to advance the state-of-the-art int his field. We present in this paper a new multiscale image restoration method that is concerned with eliminating one of the major sources of error in nuclear medicine imaging, namely Poisson noise, which degrades images in both quantitative and qualitative senses and hinders image analysis and interpretation. The paper then quantitatively evaluates the performances of the proposed method.

  5. Imaging of enzyme activity using bio-LSI system enables simultaneous immunosensing of different analytes in multiple specimens.

    PubMed

    Hokuto, Toshiki; Yasukawa, Tomoyuki; Kunikata, Ryota; Suda, Atsushi; Inoue, Kumi Y; Ino, Kosuke; Matsue, Tomokazu; Mizutani, Fumio

    2016-06-01

    Electrochemical imaging is an excellent technique to characterize an activity of biomaterials, such as enzymes and cells. Large scale integration-based amperometric sensor (Bio-LSI) has been developed for the simultaneous and continuous detection of the concentration distribution of redox species generated by reactions of biomolecules. In this study, the Bio-LSI system was demonstrated to be applicable for simultaneous detection of different anaytes in multiple specimens. The multiple specimens containing human immunoglobulin G (hIgG) and mouse IgG (mIgG) were introduced into each channel of the upper substrate across the antibody lines for hIgG and mIgG on the lower substrate. Hydrogen peroxide generated by the enzyme reaction of glucose oxidase captured at intersections was simultaneously detected by 400 microelectrodes of Bio-LSI chip. The oxidation current increased with increasing the concentrations of hIgG, which can be detected in the range of 0.01-1.0 µg mL(-1) . Simultaneous detection of hIgG and mIgG in multiple specimens was achieved by using line pattern of both antibodies. Therefore, the presence of different target molecules in the multiple samples would be quantitatively and simultaneously visualized as a current image by the Bio-LSI system. PMID:27150897

  6. Dynamics of Coronal Bright Points as Seen by Sun Watcher Using Active Pixel System Detector and Image Processing (SWAP), Atmospheric Imaging Assembly (AIA), and Helioseismic and Magnetic Imager (HMI)

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Krishna Prasad, S.; Banerjee, D.; Ravindra, B.; Seaton, Daniel B.

    2013-08-01

    The Sun Watcher using Active Pixel system detector and Image Processing (SWAP) onboard the PRoject for OnBoard Autonomy-2 (PROBA2) spacecraft provides images of the solar corona in EUV channel centered at 174 Å. These data, together with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 Å and AIA 171 Å channels. We observe that bright points are seen in EUV channels corresponding to a magnetic flux of the order of 1018 Mx. We find that there exists a good correlation between total emission from the bright point in several UV-EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings, and we have attempted to find the oscillation periods in bright points and their connection to magnetic-flux changes. The observed periods are generally long (10 - 25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection.

  7. Tangible imaging systems

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2013-03-01

    We are developing tangible imaging systems1-4 that enable natural interaction with virtual objects. Tangible imaging systems are based on consumer mobile devices that incorporate electronic displays, graphics hardware, accelerometers, gyroscopes, and digital cameras, in laptop or tablet-shaped form-factors. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of threedimensional objects with complex textures and material properties are rendered to the screen, and tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. Tangible imaging systems thus allow virtual objects to be observed and manipulated as naturally as real ones with the added benefit that object properties can be modified under user control. In this paper we describe four tangible imaging systems we have developed: the tangiBook - our first implementation on a laptop computer; tangiView - a more refined implementation on a tablet device; tangiPaint - a tangible digital painting application; and phantoView - an application that takes the tangible imaging concept into stereoscopic 3D.

  8. Cardiac Imaging System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  9. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  10. Multipurpose hyperspectral imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral i...

  11. Non-linear responsivity characterisation of a CMOS Active Pixel Sensor for high resolution imaging of the Jovian system

    NASA Astrophysics Data System (ADS)

    Soman, M.; Stefanov, K.; Weatherill, D.; Holland, A.; Gow, J.; Leese, M.

    2015-02-01

    The Jovian system is the subject of study for the Jupiter Icy Moon Explorer (JUICE), an ESA mission which is planned to launch in 2022. The scientific payload is designed for both characterisation of the magnetosphere and radiation environment local to the spacecraft, as well as remote characterisation of Jupiter and its satellites. A key instrument on JUICE is the high resolution and wide angle camera, JANUS, whose main science goals include detailed characterisation and study phases of three of the Galilean satellites, Ganymede, Callisto and Europa, as well as studies of other moons, the ring system, and irregular satellites. The CIS115 is a CMOS Active Pixel Sensor from e2v technologies selected for the JANUS camera. It is fabricated using 0.18 μ m CMOS imaging sensor process, with an imaging area of 2000 × 1504 pixels, each 7 μ m square. A 4T pixel architecture allows for efficient correlated double sampling, improving the readout noise to better than 8 electrons rms, whilst the sensor is operated in a rolling shutter mode, sampling at up to 10 Mpixel/s at each of the four parallel outputs.A primary parameter to characterise for an imaging device is the relationship that converts the sensor's voltage output back to the corresponding number of electrons that were detected in a pixel, known as the Charge to Voltage Factor (CVF). In modern CMOS sensors with small feature sizes, the CVF is known to be non-linear with signal level, therefore a signal-dependent measurement of the CIS115's CVF has been undertaken and is presented here. The CVF is well modelled as a quadratic function leading to a measurement of the maximum charge handling capacity of the CIS115 to be 3.4 × 104 electrons. If the CIS115's response is assumed linear, its CVF is 21.1 electrons per mV (1/47.5 μ V per electron).

  12. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  13. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  14. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  15. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  16. Fueling and imaging brain activation.

    PubMed

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron-astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  17. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  18. Generic image matching system

    NASA Astrophysics Data System (ADS)

    Liang, Zhongjie T.

    1992-05-01

    The generic imaging matching system (GIMS) provides an optimal systematic solution to any problem of color image processing in printing and publishing that can be classified as or modeled to the generic image matching problem defined. Typical GIMS systems/processes include color matching from different output devices, color conversion, color correction, device calibration, colorimetric scanner, colorimetric printer, colorimetric color reproduction, and image interpolation from scattered data. GIMS makes color matching easy for the user and maximizes operational flexibility allowing the user to obtain the degree of match wanted while providing the capability to achieve the best balance with respect to the human perception of color, color fidelity, and preservation of image information and color contrast. Instead of controlling coefficients in a transformation formula, GIMS controls the mapping directly in a standard device-independent color space, so that color can be matched, conceptually, to the highest possible accuracy. An optimization algorithm called modified vector shading was developed to minimize the matching error and to perform a 'near-neighborhood' gamut compression. An automatic error correction algorithm with a multidirection searching procedure using correlated re-initialization was developed to avoid local minimum failures. Once the mapping for color matching is generated, it can be utilized by a multidimensional linear interpolator with a small look-up-table (LUT) implemented by either software, a hardware interpolator or a digital-signal-processor.

  19. Quantitative Luminescence Imaging System

    SciTech Connect

    Batishko, C.R.; Stahl, K.A.; Fecht, B.A.

    1992-12-31

    The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  20. Active Seismic Imaging Experiment

    NASA Astrophysics Data System (ADS)

    Berge, Patricia A.; Dawson, Phillip B.; Evans, John R.

    In September 1985 the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory (LLNL) will conduct an active seismic experiment in the Medicine Lake area of northern California. The work is supported by the Geothermal Research Program of USGS and by the Geothermal and Hydropower Technologies Division of the U.S. Department of Energy. We invite interested organizations or individuals to record our explosions from Medicine Lake volcano and surrounding areas not covered by the USGS-LLNL array.

  1. Imaging system fundamentals

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2011-05-01

    Point-and-shoot, TV studio broadcast, and thermal infrared imaging cameras have significantly different applications. A parameter that applies to all imaging systems is Fλ/d, where F is the focal ratio, λ is the wavelength, and d is the detector size. Fλ/d uniquely defines the shape of the camera modulation transfer function. When Fλ/d<2, aliased signal corrupts the imagery. Mathematically, the worst case analysis assumes that the scene contains all spatial frequencies with equal amplitudes. This quantifies the potential for aliasing and is called the spurious response. Digital data cannot be seen; it resides in a computer. Cathode ray tubes, flat panel displays, and printers convert the data into an analog format and are called reconstruction filters. The human visual system is an additional reconstruction filter. Different displays and variable viewing distance affect the perceived image quality. Simulated imagery illustrates different Fλ/d ratios, displays, and sampling artifacts. Since the human visual system is primarily sensitive to intensity variations, aliasing (a spatial frequency phenomenon) is not considered bothersome in most situations.

  2. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    and nano-clinics for optical diagnostics and targeted therapy, can play an important role in the diagnosis and treatment of cancer. These techniques can also be used to provide efficient drug delivery for treatment of other diseases, with increased sensitivity and specificity. Similarly, enhanced stand-off detection, classification, identification and surveillance techniques, for comprehensive civilian and military target protection and enhanced space situational awareness can open new frontiers of research and applications in the defence arena and homeland security. For instance, the development of potential imaging sensor architectures, enhanced remote sensing systems, ladars, lidars and radars can provide data capable of ensuring continuous monitoring of various imaging/physical/chemical parameters under different operating conditions, using both active and passive detection principles, reconfigurable and scalable focal plane array architectures, reliable systems for stand-off detection of explosives, and enhanced airport security. The above areas pose challenging problems to the technical community and indicate an ever-growing need for innovative and auspicious solutions. We would like to thank all authors for their valuable contributions, without which this special issue would not have become reality.

  3. Development of the APEX experiment, preparatory activities for an airborne system supporting future space-borne imaging spectrometers in Europe

    NASA Astrophysics Data System (ADS)

    Schaepman, M.

    2002-06-01

    APEX is an airborne imaging spectrometer built in the framework of ESA PRODEX (Programme développement d'expériences scientifiques) with the support of ESA EO-EP. It is based on a Swiss/Belgian initiative and designed to be an airborne simulator for the support and development of future spaceborne systems for the study of land surface processes. It will be able to contribute to the simulation, calibration, and validation of planned ESA imaging spectrometer missions (e.g., MERIS/ENVISAT, SPECTRA, etc.) in the 400 - 2500 nm region of the spectrum. APEX will foster the use of imaging spectrometer data in Europe and will support the application development for imaging spectroscopy products. The industrial consortium building the instrument is composed out of joint Swiss/Belgian industries with the support of ESA EO-EP (e.g., detectors, calibration, technical management).

  4. Heart Imaging System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  5. Submillimeter Confocal Imaging Active Module

    NASA Technical Reports Server (NTRS)

    Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John

    2009-01-01

    The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams

  6. Active confocal imaging for visual prostheses

    PubMed Central

    Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli

    2014-01-01

    There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710

  7. See around the corner using active imaging

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Elmqvist, Magnus; Larsson, Håkan

    2011-11-01

    This paper investigates the prospects of "seeing around the corner" using active imaging. A monostatic active imaging system offers interesting capabilities in the presence of glossy reflecting objects. Examples of such surfaces are windows in buildings and cars, calm water, signs and vehicle surfaces. During daylight it might well be possible to use mirrorlike reflection by the naked eye or a CCD camera for non-line of sight imaging. However the advantage with active imaging is that one controls the illumination. This will not only allow for low light and night utilization but also for use in cases where the sun or other interfering lights limit the non-line of sight imaging possibility. The range resolution obtained by time gating will reduce disturbing direct reflections and allow simultaneous view in several directions using range discrimination. Measurements and theoretical considerations in this report support the idea of using laser to "see around the corner". Examples of images and reflectivity measurements will be presented together with examples of potential system applications.

  8. Imaging MAMA detector systems

    NASA Astrophysics Data System (ADS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-07-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  9. Active index for content-based medical image retrieval.

    PubMed

    Chang, S K

    1996-01-01

    This paper introduces the active index for content-based medical image retrieval. The dynamic nature of the active index is its most important characteristic. With an active index, we can effectively and efficiently handle smart images that respond to accessing, probing and other actions. The main applications of the active index are to prefetch image and multimedia data, and to facilitate similarity retrieval. The experimental active index system is described. PMID:8954230

  10. Active-imaging-based underwater navigation

    NASA Astrophysics Data System (ADS)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  11. Multitier image streaming teleradiology system

    NASA Astrophysics Data System (ADS)

    Swarnakar, Vivek; Eldar, Adi; Pourfathi, Shahrzad; Keselbrener, Laurence; Genant, Harry K.

    2001-08-01

    With the advent of real-time image streaming, a new paradigm for development of image display and viewing systems that communicate with Picture Archiving and Communication (PACS) systems can be proposed. In this paradigm, the high bandwidth requirements of current systems can be significantly relaxed and security features can be seamlessly adopted and enforced. Based upon this paradigm RealTimeImage and OARG have developed a multi-tiered web-based image display and analysis system for teleradiology. The system architecture consisted of a backend module to communicate with the PACS system via direct file system access or standard DICOM protocols, an Image Server to stream image data to its clients using RealTimeImage Pixel-On-DemandTM streaming technology and a web-based client to provide image display and analysis functionality. The system was used in a clinical research study that required analysis of several hundred images and included participants located at various remote geographical locations. Performance and maintainability of the system were objectively quantified. Usability issues were subjectively identified by the various users of the system. It was observed that the performance of such a system is comparable to that of today's systems over fast LAN, even if the user is connected via standard, dial-up connections. This level of performance was achieved without compromising the usability of the system required for the research study.

  12. A superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in aircraft aluminum structures

    NASA Astrophysics Data System (ADS)

    Abedi, A.; Fellenstein, J. J.; Lucas, A. J.; Wikswo, J. P.

    1999-12-01

    We have designed and built a magnetic imaging system for quantitative analysis of the rate of ongoing hidden corrosion of aircraft aluminum alloys in planar structures such as intact aircraft lap joints. The system utilizes a superconducting quantum interference device (SQUID) magnetometer that measures the magnetic field associated with corrosion currents. It consists of a three-axis (vector) SQUID differential magnetometer, magnetic, and rf shielding, a computer controlled x-y stage, sample registration, and positioning mechanisms, and data acquisition and analysis software. The system is capable of scanning planar samples with dimensions of up to 28 cm square, with a spatial resolution of 2 mm, and a sensitivity of 0.3 pT/Hz1/2 (at 10 Hz). In this article we report the design and technical issues related to this system, outline important data acquisition techniques and criteria for accurate measurements of the rate of corrosion, especially for weakly corroding samples, and present preliminary measurements.

  13. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  14. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  15. Active gated imaging for automotive safety applications

    NASA Astrophysics Data System (ADS)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  16. Scalable histopathological image analysis via active learning.

    PubMed

    Zhu, Yan; Zhang, Shaoting; Liu, Wei; Metaxas, Dimitris N

    2014-01-01

    Training an effective and scalable system for medical image analysis usually requires a large amount of labeled data, which incurs a tremendous annotation burden for pathologists. Recent progress in active learning can alleviate this issue, leading to a great reduction on the labeling cost without sacrificing the predicting accuracy too much. However, most existing active learning methods disregard the "structured information" that may exist in medical images (e.g., data from individual patients), and make a simplifying assumption that unlabeled data is independently and identically distributed. Both may not be suitable for real-world medical images. In this paper, we propose a novel batch-mode active learning method which explores and leverages such structured information in annotations of medical images to enforce diversity among the selected data, therefore maximizing the information gain. We formulate the active learning problem as an adaptive submodular function maximization problem subject to a partition matroid constraint, and further present an efficient greedy algorithm to achieve a good solution with a theoretically proven bound. We demonstrate the efficacy of our algorithm on thousands of histopathological images of breast microscopic tissues. PMID:25320821

  17. Compressive line sensing underwater imaging system

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Dalgleish, F. R.; Vuorenkoski, A. K.; Caimi, F. M.; Britton, W.

    2013-05-01

    Compressive sensing (CS) theory has drawn great interest and led to new imaging techniques in many different fields. In recent years, the FAU/HBOI OVOL has conducted extensive research to study the CS based active electro-optical imaging system in the scattering medium such as the underwater environment. The unique features of such system in comparison with the traditional underwater electro-optical imaging system are discussed. Building upon the knowledge from the previous work on a frame based CS underwater laser imager concept, more advantageous for hover-capable platforms such as the Hovering Autonomous Underwater Vehicle (HAUV), a compressive line sensing underwater imaging (CLSUI) system that is more compatible with the conventional underwater platforms where images are formed in whiskbroom fashion, is proposed in this paper. Simulation results are discussed.

  18. Imaging Systems: What, When, How.

    ERIC Educational Resources Information Center

    Lunin, Lois F.; And Others

    1992-01-01

    The three articles in this special section on document image files discuss intelligent character recognition, including comparison with optical character recognition; selection of displays for document image processing, focusing on paperlike displays; and imaging hardware, software, and vendors, including guidelines for system selection. (MES)

  19. IMAGE ANALYSIS ALGORITHMS FOR DUAL MODE IMAGING SYSTEMS

    SciTech Connect

    Robinson, Sean M.; Jarman, Kenneth D.; Miller, Erin A.; Misner, Alex C.; Myjak, Mitchell J.; Pitts, W. Karl; Seifert, Allen; Seifert, Carolyn E.; Woodring, Mitchell L.

    2010-06-11

    The level of detail discernable in imaging techniques has generally excluded them from consideration as verification tools in inspection regimes where information barriers are mandatory. However, if a balance can be struck between sufficient information barriers and feature extraction to verify or identify objects of interest, imaging may significantly advance verification efforts. This paper describes the development of combined active (conventional) radiography and passive (auto) radiography techniques for imaging sensitive items assuming that comparison images cannot be furnished. Three image analysis algorithms are presented, each of which reduces full image information to non-sensitive feature information and ultimately is intended to provide only a yes/no response verifying features present in the image. These algorithms are evaluated on both their technical performance in image analysis and their application with or without an explicitly constructed information barrier. The first algorithm reduces images to non-invertible pixel intensity histograms, retaining only summary information about the image that can be used in template comparisons. This one-way transform is sufficient to discriminate between different image structures (in terms of area and density) without revealing unnecessary specificity. The second algorithm estimates the attenuation cross-section of objects of known shape based on transition characteristics around the edge of the object’s image. The third algorithm compares the radiography image with the passive image to discriminate dense, radioactive material from point sources or inactive dense material. By comparing two images and reporting only a single statistic from the combination thereof, this algorithm can operate entirely behind an information barrier stage. Together with knowledge of the radiography system, the use of these algorithms in combination can be used to improve verification capability to inspection regimes and improve

  20. NAIS: Nuclear activation-based imaging spectroscopy

    SciTech Connect

    Günther, M. M.; Britz, A.; Harres, K.; Hoffmeister, G.; Nürnberg, F.; Otten, A.; Pelka, A.; Roth, M.; Clarke, R. J.; Vogt, K.

    2013-07-15

    In recent years, the development of high power laser systems led to focussed intensities of more than 10{sup 22} W/cm{sup 2} at high pulse energies. Furthermore, both, the advanced high power lasers and the development of sophisticated laser particle acceleration mechanisms facilitate the generation of high energetic particle beams at high fluxes. The challenge of imaging detector systems is to acquire the properties of the high flux beam spatially and spectrally resolved. The limitations of most detector systems are saturation effects. These conventional detectors are based on scintillators, semiconductors, or radiation sensitive films. We present a nuclear activation-based imaging spectroscopy method, which is called NAIS, for the characterization of laser accelerated proton beams. The offline detector system is a combination of stacked metal foils and imaging plates (IP). After the irradiation of the stacked foils they become activated by nuclear reactions, emitting gamma decay radiation. In the next step, an autoradiography of the activated foils using IPs and an analysis routine lead to a spectrally and spatially resolved beam profile. In addition, we present an absolute calibration method for IPs.

  1. Active and passive millimeter- and sub-millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Petkie, Douglas T.; De Lucia, Frank C.; Castro, Corey; Helminger, Paul; Jacobs, Eddie L.; Moyer, Steven K.; Murrill, Steve; Halford, Carl; Griffin, Steve; Franck, Charmaine

    2005-11-01

    We have developed several millimeter/submillimeter/terahertz systems to study active and passive imaging and associated phenomenology. For measuring the transmission and scattering properties of materials, we have developed a dual rotary stage scattering system with active illumination and a Fourier Transform spectrometer. For imaging studies, we have developed a system based on a 12-inch diameter raster-scanned mirror. By interchange of active sources and both heterodyne and bolometric detectors, this system can be used in a variety of active and passive configurations. The laboratory measurements are used as inputs for, and model calibration and validation of, a terahertz imaging system performance model used to evaluate different imaging modalities for concealed weapon identification. In this paper, we will present examples of transmission and scattering measurements for common clothing as well as active imaging results that used a 640 GHz source and receiver.

  2. VLSI in biomedical imaging systems.

    PubMed

    Sridhar, R; Jones, T

    1995-01-01

    This paper explores the nature of Very Large Scale Integration (VLSI) systems as applied to the area of medical imaging systems. A general discussion of imaging systems and the techniques employed therein will be presented. With this, the merits of VLSI solutions to the medical imaging problem are presented. Consideration is also given to programmable processors, such as off the shelf DSP processors, semi-custom, and full custom VLSI devices. Through the use of VLSI devices, many image processing algorithms can be integrated into a hardware solution. This has the advantage of increased computational capacity over solutions that would normally employ software techniques. PMID:7736415

  3. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  4. Images of an Activated Asteroid

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    In late April of this year, asteroid P/2016 G1 (PANSTARRS) was discovered streaking through space, a tail of dust extending behind it. What caused this asteroids dust activity?Asteroid or Comet?Images of asteroid P/2016 G1 at three different times: late April, late May, and mid June. The arrow in the center panel points out an asymmetric feature that can be explained if the asteroid initially ejected material in a single direction, perhaps due to an impact. [Moreno et al. 2016]Asteroid P/2016 G1 is an interesting case: though it has the orbital elements of a main-belt asteroid it orbits at just under three times the EarthSun distance, with an eccentricity of e ~ 0.21 its appearance is closer to that of a comet, with a dust tail extending 20 behind it.To better understand the nature and cause of this unusual asteroids activity, a team led by Fernando Moreno (Institute of Astrophysics of Andalusia, in Spain) performed deep observations of P/2016 G1 shortly after its discovery. The team used the 10.4-meter Great Canary Telescope to image the asteroid over the span of roughly a month and a half.A Closer Look at P/2016 G1P/2016 G1 lies in the inner region of the main asteroid belt, so it is unlikely to have any ices that suddenly sublimated, causing the outburst. Instead, Moreno and collaborators suggest that the asteroids tail may have been caused by an impact that disrupted the parent body.To test this idea, the team used computer simulations to model their observations of P/2016 G1s dust tail. Based on their models, they demonstrate that the asteroid was likely activated on February 10 2016 roughly 350 days before it reached perihelion in its orbit and its activity was a short-duration event, lasting only ~24 days. The teams models indicate that over these 24 days, the asteroid lost around 20 million kilograms of dust, and at its maximum activity level, it was ejecting around 8 kg/s!Comparison of the observation from late May (panel a) and two models: one in which

  5. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  6. High speed imaging television system

    DOEpatents

    Wilkinson, William O.; Rabenhorst, David W.

    1984-01-01

    A television system for observing an event which provides a composite video output comprising the serially interlaced images the system is greater than the time resolution of any of the individual cameras.

  7. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  8. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  9. Polarimetric active imaging in dense fog

    NASA Astrophysics Data System (ADS)

    Bernier, Robert; Cao, Xiaoying; Tremblay, Grégoire; Roy, Gilles

    2015-10-01

    Operation under degraded visual environment (DVE) presents important strategic advantages. 3D mapping has been performed under DVE and good quality images have been obtained through DVE with active imaging systems. In these applications, the presence of fog clouds degrades the quality of the remotely sensed signal or even renders the operation totally impossible. In view of making the active imaging method more robust against dense fog, the use of polarimetry is herein studied. Spherical particles typical of fog do not depolarize incident polarized light in the backscattering (180°) direction. So, in principle, there should be less dazzling caused by aerosols for active imaging systems operating using the secondary polarization. However, strong depolarization still occurs at angles close to 180°. The greater the ratio of size to wavelength, the closer to 180° will the depolarization occur. When the cloud optical depth is small, the major scattering events seen by an active camera are the single backscattering events. However, when the optical depth of the cloud is higher than 1, multiple scattering becomes more important and causes depolarization due to the backscattering around 180°. The physics of this process will be discussed. Experimental results supporting the analysis will be presented. Those experimental results were obtained under controlled environment using the DRDC-Valcartier aerosol chamber. The experimental method herein proposed is based upon the use of ICCD range gated cameras wherein gate width and gate location may be varied on the fly. The optimal conditions for the use of these devices in view of obtaining the best image contrast are experimentally studied and reported in this paper.

  10. IRES: image retrieval expert system

    NASA Astrophysics Data System (ADS)

    Liu Sheng, Olivia R.; Wang, Hui-Chin; Garcia, Hong-Mei C.

    1990-08-01

    Image Retrieval Expert System (IRES), a knowledge-based system for automatic image retrieval, is being prototyped at the University of Arizona (U of A). IRES is to couple with the distributed database system designed for Structured PACS (S-PACS)1 to achieve the high system performance required by radiologists. IRES encompasses the "intelligence" of multiple expert radiologists. The system will predict and migrate the "old" images needed for comparison purposes during radiological exam readings from slower or remote storage devices to the local buffers of workstations. The use of IRES with the PACS Distributed Database System (DDBS) is expected to shorten the PACS system response time, save the time of radiologists in selecting films, minimize the turnaround time of the exam interpretation function, and increase diagnostic effectiveness by providing relevant images automatically. This paper presents the implementation details of this IRES prototype.

  11. Venus Aerobot Surface Science Imaging System (VASSIS)

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    The VASSIS task was to design and develop an imaging system and container for operation above the surface of Venus in preparation for a Discovery-class mission involving a Venus aerobot balloon. The technical goals of the effort were to: a) evaluate the possible nadir-viewed surface image quality as a function of wavelength and altitude in the Venus lower atmosphere, b) design a pressure vessel to contain the imager and supporting electronics that will meet the environmental requirements of the VASSIS mission, c) design and build a prototype imaging system including an Active-Pixel Sensor camera head and VASSIS-like optics that will meet the science requirements. The VASSIS science team developed a set of science requirements for the imaging system upon which the development work of this task was based.

  12. A hybrid continuous-wave terahertz imaging system

    SciTech Connect

    Dolganova, Irina N. Zaytsev, Kirill I. Metelkina, Anna A.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  13. A hybrid continuous-wave terahertz imaging system.

    PubMed

    Dolganova, Irina N; Zaytsev, Kirill I; Metelkina, Anna A; Karasik, Valeriy E; Yurchenko, Stanislav O

    2015-11-01

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc. PMID:26628141

  14. A hybrid continuous-wave terahertz imaging system

    NASA Astrophysics Data System (ADS)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2015-11-01

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  15. An interactive image processing system.

    PubMed

    Troxel, D E

    1981-01-01

    A multiuser multiprocessing image processing system has been developed. It is an interactive picture manipulation and enhancement facility which is capable of executing a variety of image processing operations while simultaneously controlling real-time input and output of pictures. It was designed to provide a reliable picture processing system which would be cost-effective in the commercial production environment. Additional goals met by the system include flexibility and ease of operation and modification. PMID:21868923

  16. Image retrieval for information systems

    NASA Astrophysics Data System (ADS)

    Hermes, Thorsten; Klauck, Christoph; Kreyss, Jutta; Zhang, J.

    1995-03-01

    In order to retrieve a set of intended images from a huge image archive, human beings think of special contents with respect to the searched scene, like a countryside or a technical drawing. Therefore, in general it is harder to retrieve images by using a syntactical feature- based language than a language which offers the selection of examples concerning color, texture, and contour in combination with natural language concepts. This motivation leads to a content-based image analysis and goes on to a content-based storage and retrieval of images. Furthermore, it is unreasonable for any human being to make the content description for thousands of images manually. From this point of view, the project IRIS (image retrieval for information systems) combines well-known methods and techniques in computer vision and AI in a new way to generate content descriptions of images in a textual form automatically. IRIS retrieves the images by means of text retrieval realized by the SearchManager/6000. The textual description is generated by four sub-steps: feature extraction like colors, textures, and contours, segmentation, and interpretation of part-whole relations. The system is implemented on IBM RS/6000 using AIX. It has already been tested with 350 images.

  17. Image sets for satellite image processing systems

    NASA Astrophysics Data System (ADS)

    Peterson, Michael R.; Horner, Toby; Temple, Asael

    2011-06-01

    The development of novel image processing algorithms requires a diverse and relevant set of training images to ensure the general applicability of such algorithms for their required tasks. Images must be appropriately chosen for the algorithm's intended applications. Image processing algorithms often employ the discrete wavelet transform (DWT) algorithm to provide efficient compression and near-perfect reconstruction of image data. Defense applications often require the transmission of images and video across noisy or low-bandwidth channels. Unfortunately, the DWT algorithm's performance deteriorates in the presence of noise. Evolutionary algorithms are often able to train image filters that outperform DWT filters in noisy environments. Here, we present and evaluate two image sets suitable for the training of such filters for satellite and unmanned aerial vehicle imagery applications. We demonstrate the use of the first image set as a training platform for evolutionary algorithms that optimize discrete wavelet transform (DWT)-based image transform filters for satellite image compression. We evaluate the suitability of each image as a training image during optimization. Each image is ranked according to its suitability as a training image and its difficulty as a test image. The second image set provides a test-bed for holdout validation of trained image filters. These images are used to independently verify that trained filters will provide strong performance on unseen satellite images. Collectively, these image sets are suitable for the development of image processing algorithms for satellite and reconnaissance imagery applications.

  18. Optical Imaging of Neuronal Activity and Visualization of Fine Neural Structures in Non-Desheathed Nervous Systems

    PubMed Central

    Stein, Wolfgang

    2014-01-01

    Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG) of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a good anatomical

  19. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  20. Multilingual system using Internet imaging

    NASA Astrophysics Data System (ADS)

    Mori, Tadashi; Hata, Yoshitsugu; Iida, Ryouji; Kakugawa, Hirotsugu; Ae, Tadashi; Murakami, Hisae

    2000-12-01

    In these years, multilingual system becomes important, but, most computer environment cannot handle all languages (scripts) in ths world. This paper presents a multilingual imaging system on the Internet. In this system, characters are converted into bitmaps, and therefore, we can display multilingual text on WWW browsers. In order to convert multilingual plain text into bitmap images, we have developed software named ctext2pgm and VFlib. VFlib is a software component to rasterize fonts in various file formats, and ctext2pgm generates bitmap image files form multilingual plain texts. Ctext2pgm is an application program of VFlib, and it supports about 30 languages. We also introduce a language education system for various languages. This is an example of the multilingual system using internet imaging.

  1. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  2. The Aberdeen Impedance Imaging System.

    PubMed

    Kulkarni, V; Hutchison, J M; Mallard, J R

    1989-01-01

    The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal. PMID:2742979

  3. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  4. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  5. Airborne Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  6. Stereoscopic medical imaging collaboration system

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  7. Image-based retrieval system and computer-aided diagnosis system for renal cortical scintigraphy images

    NASA Astrophysics Data System (ADS)

    Mumcuoğlu, Erkan; Nar, Fatih; Uğur, Omer; Bozkurt, M. Fani; Aslan, Mehmet

    2008-03-01

    Cortical renal (kidney) scintigraphy images are 2D images (256x256) acquired in three projection angles (posterior, right-posterior-oblique and left-posterior-oblique). These images are used by nuclear medicine specialists to examine the functional morphology of kidney parenchyma. The main visual features examined in reading the images are: size, location, shape and activity distribution (pixel intensity distribution within the boundary of each kidney). Among the above features, activity distribution (in finding scars if any) was found to have the least interobserver reproducibility. Therefore, in this study, we developed an image-based retrieval (IBR) and a computer-based diagnosis (CAD) system, focused on this feature in particular. The developed IBR and CAD algorithms start with automatic segmentation, boundary and landmark detection. Then, shape and activity distribution features are computed. Activity distribution feature is obtained using the acquired image and image set statistics of the normal patients. Active Shape Model (ASM) technique is used for more accurate kidney segmentation. In the training step of ASM, normal patient images are used. Retrieval performance is evaluated by calculating precision and recall. CAD performance is evaluated by specificity and sensitivity. To our knowledge, this paper is the first IBR or CAD system reported in the literature on renal cortical scintigraphy images.

  8. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  9. Hyperspectral Systems Increase Imaging Capabilities

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.

  10. High resolution laser imaging system

    NASA Astrophysics Data System (ADS)

    Kyle, Thomas G.

    1989-07-01

    Computations indicate that a synthetic aperture laser imaging system can provide images with 10-cm resolution at satellite ranges using a 10-W CW laser. When imaging satellites from the ground, the synthetic aperture system reduces atmospheric degradations. The system uses 20-cm diam receiver optics. The low laser power is made possible by using separate transmitter and receiver optics and coded pulses with a 50 percent transmitter duty cycle. The coded pulses are derived from Hadamard matrices for which there is an efficient algorithm to transform the received data into images. The synthetic aperture yields spatial resolutions independent of range, and the coded pulses result in an effective range dependence of r exp-2 instead of r exp-4.

  11. Multispectral imaging system with interchangeable filter design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The design and calibration of a three-band image acquisition system was reported. The prototype system developed was a three-band spectral imaging system that acquired two visible images and a NIR image simultaneously. This was accomplished by using a three-port imaging system that consisted of th...

  12. A programmable image compression system

    NASA Technical Reports Server (NTRS)

    Farrelle, Paul M.

    1989-01-01

    A programmable image compression system which has the necessary flexibility to address diverse imaging needs is described. It can compress and expand single frame video images (monochrome or color) as well as documents and graphics (black and white or color) for archival or transmission applications. Through software control, the compression mode can be set for lossless or controlled quality coding; the image size and bit depth can be varied; and the image source and destination devices can be readily changed. Despite the large combination of image data types, image sources, and algorithms, the system provides a simple consistent interface to the programmer. This system (OPTIPAC) is based on the TITMS320C25 digital signal processing (DSP) chip and has been implemented as a co-processor board for an IBM PC-AT compatible computer. The underlying philosophy can readily be applied to different hardware platforms. By using multiple DSP chips or incorporating algorithm specific chips, the compression and expansion times can be significantly reduced to meet performance requirements.

  13. Limbic system (image)

    MedlinePlus

    ... structures which govern emotions and behavior. The limbic system, and in particular the hippocampus and amygdala, is involved in the formation of long-term memory, and is closely associated with the olfactory structures ( ...

  14. Immune system structures (image)

    MedlinePlus

    The immune system protects the body from potentially harmful substances. The inflammatory response (inflammation) is part of innate immunity. It occurs when tissues are injured by bacteria, trauma, toxins, heat or any other cause.

  15. Immune system structures (image)

    MedlinePlus

    The immune system protects the body from potentially harmful substances. The inflammatory response (inflammation) is part of innate immunity. It occurs when tissues are injured by bacteria, trauma, toxins, heat, or any other cause.

  16. Imaging Calcium in Drosophila at Egg Activation.

    PubMed

    Derrick, Christopher J; York-Andersen, Anna H; Weil, Timothy T

    2016-01-01

    Egg activation is a universal process that includes a series of events to allow the fertilized egg to complete meiosis and initiate embryonic development. One aspect of egg activation, conserved across all organisms examined, is a change in the intracellular concentration of calcium (Ca(2+)) often termed a 'Ca(2+) wave'. While the speed and number of oscillations of the Ca(2+) wave varies between species, the change in intracellular Ca(2+) is key in bringing about essential events for embryonic development. These changes include resumption of the cell cycle, mRNA regulation, cortical granule exocytosis, and rearrangement of the cytoskeleton. In the mature Drosophila egg, activation occurs in the female oviduct prior to fertilization, initiating a series of Ca(2+)-dependent events. Here we present a protocol for imaging the Ca(2+) wave in Drosophila. This approach provides a manipulable model system to interrogate the mechanism of the Ca(2+) wave and the downstream changes associated with it. PMID:27584955

  17. Hemodynamic responses to functional activation accessed by optical imaging

    NASA Astrophysics Data System (ADS)

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  18. Devices, systems, and methods for imaging

    DOEpatents

    Appleby, David; Fraser, Iain; Watson, Scott

    2008-04-15

    Certain exemplary embodiments comprise a system, which can comprise an imaging plate. The imaging plate can be exposable by an x-ray source. The imaging plate can be configured to be used in digital radiographic imaging. The imaging plate can comprise a phosphor-based image storage device configured to convert an image stored therein into light.

  19. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  20. Flyception: imaging brain activity in freely walking fruit flies.

    PubMed

    Grover, Dhruv; Katsuki, Takeo; Greenspan, Ralph J

    2016-07-01

    Genetically encoded calcium sensors have enabled monitoring of neural activity in vivo using optical imaging techniques. Linking neural activity to complex behavior remains challenging, however, as most imaging systems require tethering the animal, which can impact the animal's behavioral repertoire. Here, we report a method for monitoring the brain activity of untethered, freely walking Drosophila melanogaster during sensorially and socially evoked behaviors to facilitate the study of neural mechanisms that underlie naturalistic behaviors. PMID:27183441

  1. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.L.; Kulp, T.J.

    1995-03-10

    Practical limitations of underwater imaging systems are reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and the resolution necessary for target discovery and identification. The advent of high power lasers operating in the oceanic transmission window of the visible spectrum (blue-green portion) has led to improved experimental illumination systems for underwater imaging The properties of laser bearm in range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence effect of common volume back scatter to reduce or eliminate noise, increase signal to noise levels. Synchronously scanned systems rely on the highly collimated nature of the laser beam for spatial rejection of common volume back scatter. A synchronous, raster-scanning underwater laser imaging system (UWLIS) has been developed at Lawrence liver-more National Laboratory. The present UWLIS system differs from earlier synchronous scanners in its ability to scan in two dimensions at conventional video frame rate (30 Hz). The imaging performance of the present UWLIS was measured at distances of up to 6.3 AL (at a physical distance of 15.2 meters) during an in-water tank test and 4.5 to 5.0 AL (at a physical distance of 30 meters) during open water oceanic testing. The test results indicate that the UWLIS system is already capable of extending the underwater imaging range beyond that of conventional floodlight illuminated SIT cameras. The real or near real time frame rates of the UWLIS make possible operations in a mode in which the platform speed is randomly varied. This is typical of the operational environment in which the platform is often maneuvered above and around rugged seafloor terrain`s and obstacles.

  2. Hyperspectral imaging system for UAV

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Zheng, Yuquan

    2015-10-01

    Hyperspectral imaging system for Unmanned Aerial Vehicle (UAV) is proposed under airborne remote sensing application background. By the application of Offner convex spherical grating spectral imaging system and using large area array detector push-broom imaging, hyperspectral imaging system with the indicators of 0.4μm to 1.0μm spectral range, 120 spectral bands, 5nm spectral resolution and 1m ground sampling interval (flight altitude 5km) is developed and completed. The Offner convex grating spectral imaging system is selected to achieve non-spectral line bending and colorless distortion design results. The diffraction efficiency is 15%-30% in the range of 0.4μm to 1.0μm wavelength. The system performances are tested by taking spectral and radiometric calibration methods in the laboratory. Based on monochromatic collimated light method for spectral performance parameters calibration of hyperspectral optical remote sensor, the analysis results of spectral calibration data show that the calibration test repeatability is less than 0.2 nm within one hour. The spectral scaling results show that the average spectral resolution of hyperspectral optical remote sensor is 4.94 nm, and the spatial dimension of the high-spectral optical remote sensor spectral resolution is less than 5 nm, the average of the typical spectral bandwidth is about 6 nm, the system average signal-to-noise ratio (SNR) is up to 43dB under typical operating conditions. Finally the system functionalities and performance indicators are verified by the aviation flight tests, which it's equipped on UAV. The actual image quality is good, and the spectral position is stable.

  3. Dynamic granularity of imaging systems

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-01

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the "dynamic granularity" G dyn as a standardized, objective relation between a detector's spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. This relation can partly be explained through consideration of the signal's photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system's performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. This article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia's Z-Backlighter facility.

  4. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  5. Hyperspectral image segmentation using active contours

    NASA Astrophysics Data System (ADS)

    Lee, Cheolha P.; Snyder, Wesley E.

    2004-08-01

    Multispectral or hyperspectral image processing has been studied as a possible approach to automatic target recognition (ATR). Hundreds of spectral bands may provide high data redundancy, compensating the low contrast in medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) images. Thus, the combination of spectral (image intensity) and spatial (geometric feature) information analysis could produce a substantial improvement. Active contours provide segments with continuous boundaries, while edge detectors based on local filtering often provide discontinuous boundaries. The segmentation by active contours depends on geometric feature of the object as well as image intensity. However, the application of active contours to multispectral images has been limited to the cases of simply textured images with low number of frames. This paper presents a supervised active contour model, which is applicable to vector-valued images with non-homogeneous regions and high number of frames. In the training stage, histogram models of target classes are estimated from sample vector-pixels. In the test stage, contours are evolved based on two different metrics: the histogram models of the corresponding segments and the histogram models estimated from sample target vector-pixels. The proposed segmentation method integrates segmentation and model-based pattern matching using supervised segmentation and multi-phase active contour model, while traditional methods apply pattern matching only after the segmentation. The proposed algorithm is implemented with both synthetic and real multispectral images, and shows desirable segmentation and classification results even in images with non-homogeneous regions.

  6. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  7. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2015-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform

  8. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2014-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform

  9. Dynamic granularity of imaging systems

    DOE PAGESBeta

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  10. Dynamic granularity of imaging systems

    SciTech Connect

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.

  11. RHESSI imager and aspect systems

    NASA Astrophysics Data System (ADS)

    Zehnder, Alex; Bialkowski, Jacek; Burri, F.; Fivian, Martin; Henneck, Reinhold; Mchedlishvili, A.; Ming, P.; Welte, J.; Thomsen, Knud; Clark, David; Dennis, Brian R.; Hurford, Gordon J.; Curtis, David W.; Harvey, Peter R.; Pankow, David H.

    2003-02-01

    RHESSI uses nine Rotating Modulation Collimators (RMCs) for imaging, each consisting of a pair of grids mounted on the rotating spacecraft. The angular resolutions range from 2.3 arcsec to 3arcmin. The relative twist between the two grids of each pair is the most critical parameter. It must be less than 20 arcsec for the finest grid. After precision alignment, it is monitored by the Twist Monitoring System (TMS) to a few arcsec. The Sun-pointing must be known better than 0.4 arcsec for the image reconstruction. This is achieved by the Solar Aspect System (SAS), which consists of a set of three Sun sensors. Each sensor is focusing the filtered Sun light onto a linear CCD. The onboard Aspect Data Processor (ADP) selects the 6 limb positions, which over-define the pointing offset of the Sun center in respect to the imaging axis of the imager. The Roll Angle System (RAS) continuously measures the roll angle of RHESSI within arcmin accuracy. The RAS is a continuously operating CCD star scanner. The time of the passage of a star image over the CCD is recorded and defines the roll angle, comparing its pixel position and amplitude with a star map.

  12. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  13. Physical activity - preventive medicine (image)

    MedlinePlus

    Physical activity contributes to health by reducing the heart rate, decreasing the risk for cardiovascular disease, and reducing ... loss that is associated with age and osteoporosis. Physical activity also helps the body use calories more efficiently, ...

  14. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  15. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. PMID:25446453

  16. Video imaging systems: A survey

    SciTech Connect

    Kefauver, H.L.

    1989-07-01

    Recent technological advances in the field of electronics have made video imaging a viable substitute for the traditional Polaroid/trademark/ picture used to create photo ID credentials. New families of hardware and software products, when integrated into a system, provide an exciting and powerful toll which can be used simply to make badges or enhance an access control system. This report is designed to make the reader aware of who is currently in this business and compare their capabilities.

  17. A computed tomographic imaging system for experimentation

    NASA Astrophysics Data System (ADS)

    Lu, Yanping; Wang, Jue; Liu, Fenglin; Yu, Honglin

    2008-03-01

    Computed tomography (CT) is a non-invasive imaging technique, which is widely applied in medicine for diagnosis and surgical planning, and in industry for non-destructive testing (NDT) and non-destructive evaluation (NDE). So, it is significant for college students to understand the fundamental of CT. In this work, A CT imaging system named CD-50BG with 50mm field-of-view has been developed for experimental teaching at colleges. With the translate-rotate scanning mode, the system makes use of a 7.4×10 8Bq (20mCi) activity 137Cs radioactive source which is held in a tungsten alloy to shield the radiation and guarantee no harm to human body, and a single plastic scintillator + photomultitude detector which is convenient for counting because of its short-time brightness and good single pulse. At same time, an image processing software with the functions of reconstruction, image processing and 3D visualization has also been developed to process the 16 bits acquired data. The reconstruction time for a 128×128 image is less than 0.1 second. High quality images with 0.8mm spatial resolution and 2% contrast sensitivity can be obtained. So far in China, more than ten institutions of higher education, including Tsinghua University and Peking University, have already applied the system for elementary teaching.

  18. Laser Image Contrast Enhancement System

    NASA Technical Reports Server (NTRS)

    Kurtz, Robert L. (Inventor); Holmes, Richard R. (Inventor); Witherow, William K. (Inventor)

    2002-01-01

    An optical image enhancement system provides improved image contrast in imaging of a target in high temperature surroundings such as a furnace. The optical system includes a source of vertically polarized light such as laser and a beam splitter for receiving the light and directing the light toward the target. A retardation plate is affixed to a target-facing surface of the beam splitter and a vertical polarizer is disposed along a common optical path with the beam splitter between the retardation plate and the target. A horizontal polarizer disposed in the common optical path, receives light passing through a surface of the beam splitter opposed to the target-facing surface. An image detector is disposed at one end of the optical path. A band pass filter having a band pass filter characteristic matching the frequency of the vertically polarized light source is disposed in the path between the horizontal polarizer and the image detector. The use of circular polarization, together with cross polarizers, enables the reflected light to be passed to the detector while blocking thermal radiation.

  19. ACTIM: an EDA initiated study on spectral active imaging

    NASA Astrophysics Data System (ADS)

    Steinvall, O.; Renhorn, I.; Ahlberg, J.; Larsson, H.; Letalick, D.; Repasi, E.; Lutzmann, P.; Anstett, G.; Hamoir, D.; Hespel, L.; Boucher, Y.

    2010-10-01

    This paper will describe ongoing work from an EDA initiated study on Active Imaging with emphasis of using multi or broadband spectral lasers and receivers. Present laser based imaging and mapping systems are mostly based on a fixed frequency lasers. On the other hand great progress has recently occurred in passive multi- and hyperspectral imaging with applications ranging from environmental monitoring and geology to mapping, military surveillance, and reconnaissance. Data bases on spectral signatures allow the possibility to discriminate between different materials in the scene. Present multi- and hyperspectral sensors mainly operate in the visible and short wavelength region (0.4-2.5 μm) and rely on the solar radiation giving shortcoming due to shadows, clouds, illumination angles and lack of night operation. Active spectral imaging however will largely overcome these difficulties by a complete control of the illumination. Active illumination enables spectral night and low-light operation beside a robust way of obtaining polarization and high resolution 2D/3D information. Recent development of broadband lasers and advanced imaging 3D focal plane arrays has led to new opportunities for advanced spectral and polarization imaging with high range resolution. Fusing the knowledge of ladar and passive spectral imaging will result in new capabilities in the field of EO-sensing to be shown in the study. We will present an overview of technology, systems and applications for active spectral imaging and propose future activities in connection with some prioritized applications.

  20. Electronic imaging system and technique

    DOEpatents

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  1. Electronic imaging system and technique

    DOEpatents

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  2. Image dissector camera system study

    NASA Technical Reports Server (NTRS)

    Howell, L.

    1984-01-01

    Various aspects of a rendezvous and docking system using an image dissector detector as compared to a GaAs detector were discussed. Investigation into a gimbled scanning system is also covered and the measured video response curves from the image dissector camera are presented. Rendezvous will occur at ranges greater than 100 meters. The maximum range considered was 1000 meters. During docking, the range, range-rate, angle, and angle-rate to each reflector on the satellite must be measured. Docking range will be from 3 to 100 meters. The system consists of a CW laser diode transmitter and an image dissector receiver. The transmitter beam is amplitude modulated with three sine wave tones for ranging. The beam is coaxially combined with the receiver beam. Mechanical deflection of the transmitter beam, + or - 10 degrees in both X and Y, can be accomplished before or after it is combined with the receiver beam. The receiver will have a field-of-view (FOV) of 20 degrees and an instantaneous field-of-view (IFOV) of two milliradians (mrad) and will be electronically scanned in the image dissector. The increase in performance obtained from the GaAs photocathode is not needed to meet the present performance requirements.

  3. Testing of electro-optical imaging systems

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Barela, Jaroslaw; Firmanty, Krzysztof

    2004-08-01

    Humans cannot objectively judge electro-optical imaging systems looking on an image of typical scenery. Quality of the image can be bad for some people but good for others and therefore objective test methods and advanced equipment are needed to evaluate these imaging systems. Test methods and measuring systems that enable reliable testing and evaluation of modern thermal cameras, color and monochrome TV cameras, LLLTV cameras and image intensifier systems are presented in this paper.

  4. Active vs. inactive muscle (image)

    MedlinePlus

    ... may lose 20 to 40 percent of their muscle -- and, along with it, their strength -- as they ... have found that a major reason people lose muscle is because they stop doing everyday activities that ...

  5. Super-resolution imaging system

    NASA Technical Reports Server (NTRS)

    Jain, Atul (Inventor)

    1979-01-01

    The resolution of an imaging system is greatly enhanced by radiating an object with a plane wave field from a coherent source variable in either frequency, angle or distance from the object, detecting the wave field transmitted through, or reflected from, the object at some point on the image of the object, with or without heterodyne detection, and with or without a lens system. The heterodyne detected output of the detector is processed to obtain the Fourier transform as a function of the variable for a direct measurement of the amplitude and surface height structure of the object within a resolution cell centered at the corresponding point on the object. In the case of no heterodyne detection, only intensity data is obtained for a Fourier spectrum.

  6. Imaging systems and materials characterization

    SciTech Connect

    Murr, L.E.

    2009-05-15

    This paper provides a broad background for the historical development and modern applications of light optical metallography, scanning and transmission electron microscopy, field-ion microscopy and several forms of scanning probe microscopes. Numerous case examples illustrating especially synergistic applications of these imaging systems are provided to demonstrate materials characterization especially in the context of structure-property-performance issues which define materials science and engineering.

  7. Stereoscopic wide field of view imaging system

    NASA Technical Reports Server (NTRS)

    Prechtl, Eric F. (Inventor); Sedwick, Raymond J. (Inventor); Jonas, Eric M. (Inventor)

    2011-01-01

    A stereoscopic imaging system incorporates a plurality of imaging devices or cameras to generate a high resolution, wide field of view image database from which images can be combined in real time to provide wide field of view or panoramic or omni-directional still or video images.

  8. HIPPA's compliant Auditing System for Medical Imaging System.

    PubMed

    Chen, Xiaomeng; Zhang, Jianguo; Wu, Dongjing; Han, Ruoling

    2005-01-01

    As an official rule for healthcare privacy and security, Health Insurance Portability and Accountability Act (HIPAA) requires security services supporting implementation features: Access control; Audit controls; Authorization control; Data authentication; and Entity authentication. Audit controls proposed by HIPPA Security Standards are audit trails, which audit activities, to assess compliance with a secure domain's policies, to detect instances of non-compliant behavior, and to facilitate detection of improper creation, access, modification and deletion of Protected Health Information (PHI). Although current medical imaging systems generate activity logs, there is a lack of regular description to integrate these large volumes of log data into generating HIPPA compliant auditing trails. The paper outlines the design of a HIPAA's compliant auditing system for medical imaging system such as PACS and RIS and discusses the development of this security monitoring system based on the Supplement 95 of the DICOM standard: Audit Trail Messages. PMID:17282242

  9. Pulsed laser linescanner for a backscatter absorption gas imaging system

    DOEpatents

    Kulp, Thomas J.; Reichardt, Thomas A.; Schmitt, Randal L.; Bambha, Ray P.

    2004-02-10

    An active (laser-illuminated) imaging system is described that is suitable for use in backscatter absorption gas imaging (BAGI). A BAGI imager operates by imaging a scene as it is illuminated with radiation that is absorbed by the gas to be detected. Gases become "visible" in the image when they attenuate the illumination creating a shadow in the image. This disclosure describes a BAGI imager that operates in a linescanned manner using a high repetition rate pulsed laser as its illumination source. The format of this system allows differential imaging, in which the scene is illuminated with light at least 2 wavelengths--one or more absorbed by the gas and one or more not absorbed. The system is designed to accomplish imaging in a manner that is insensitive to motion of the camera, so that it can be held in the hand of an operator or operated from a moving vehicle.

  10. Can wavefront coding infrared imaging system achieve decoded images approximating to in-focus infrared images?

    NASA Astrophysics Data System (ADS)

    Feng, Bin; Zhang, Chengshuo; Xu, Baoshu; Shi, Zelin

    2015-11-01

    Artefacts and noise degrade the decoded image of a wavefront coding infrared imaging system, which usually results in the decoded image being inferior to the in-focus infrared image of a conventional infrared imaging system. The previous letter showed that the decoded image fell behind the in-focus infrared image. For comparison, a bar target experiment at temperature of 20°C and two groups of outdoor experiments at temperatures of 28°C and 70°C are respectively conducted. Experimental results prove that a wavefront coding infrared imaging system can achieve the decoded image being approximating to its corresponding in-focus infrared image.

  11. Imaging methodologies for systems biology.

    PubMed

    Smith, Sarah E; Slaughter, Brian D; Unruh, Jay R

    2014-01-01

    Systems biology has recently achieved significant success in the understanding of complex interconnected phenomena such as cell polarity and migration. In this context, the definition of systems biology has come to encompass the integration of quantitative measurements with sophisticated modeling approaches. This article will review recent progress in live cell imaging technologies that have expanded the possibilities of quantitative in vivo measurements, particularly in regards to molecule counting and quantitative measurements of protein concentration and dynamics. These methods have gained and continue to gain popularity with the biological community. In general, we will discuss three broad categories: protein interactions, protein quantitation, and protein dynamics. PMID:25482526

  12. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  13. Design of a dynamic dual-foveated imaging system.

    PubMed

    Du, Xiaoyu; Chang, Jun; Zhang, Yunqiang; Wang, Xi; Zhang, Bochuan; Gao, Lei; Xiao, Liping

    2015-10-01

    A new kind of dynamic dual-foveated imaging system in the infrared band is designed and optimized in this paper. Dual-foveated imaging refers to the variation in spatial resolution at the two selected fields across the image. Such variable resolution imaging system is suitable for a variety of applications including monitoring, recognition, and remote operation of unmanned aerial vehicle. In this system, a transmissive spatial light modulator (SLM) is used as an active optical element which is located near the image plane instead of pupil plane creatively in order to divide the two selected fields. PMID:26480118

  14. Image and information management system

    NASA Technical Reports Server (NTRS)

    Robertson, Tina L. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Kent, Peter C. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)

    2007-01-01

    A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places hot spots, or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.

  15. Image and information management system

    NASA Technical Reports Server (NTRS)

    Robertson, Tina L. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Kent, Peter C. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)

    2009-01-01

    A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places ''hot spots'', or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.

  16. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  17. High resolution multimodal clinical ophthalmic imaging system

    PubMed Central

    Mujat, Mircea; Ferguson, R. Daniel; Patel, Ankit H.; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X.

    2010-01-01

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 µm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 µm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes. PMID:20589021

  18. Interactive digital image manipulation system

    NASA Technical Reports Server (NTRS)

    Henze, J.; Dezur, R.

    1975-01-01

    The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.

  19. Single System Image Cluster Management

    Energy Science and Technology Software Center (ESTSC)

    2004-02-13

    Cluster computing has quickly proven itself to be a capable workhorse for a wide variety of production computing tasks; however, setting up and maintaining a cluster still requires significantly more effort than administrating just a single machine. As computing hardware descreases in price and cluster sizes grow, it is becoming increasingly important to manage clusters cleverly so that a system administration effort can "scale" as well. To ease the task of mananging many machines, administratorsmore » often deploy an environment that is homogeneous across all nodes of a cluster, and maintain a snapshot of the filesystem as a 'master image'. However due to operational, behavioral, and physical constraints, many nodes often require numerous deviations from the master image in order to operate as desired.« less

  20. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  1. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  2. Molecular Imaging with SERS-Active Nanoparticles

    PubMed Central

    Zhang, Yin; Hong, Hao; Myklejord, Duane V.; Cai, Weibo

    2011-01-01

    Lead-in Raman spectroscopy has been explored for various biomedical applications (e.g. cancer diagnosis) because it can provide detailed information on the chemical composition of cells and tissues. For imaging applications, several variations of Raman spectroscopy have been developed to enhance its sensitivity. To date, a wide variety of molecular targets and biological events have been investigated using surface-enhanced Raman scattering (SERS)-active nanoparticles. The superb multiplexing capability of SERS-based Raman imaging, already successfully demonstrated in live animals, can be extremely powerful in future research where different agents can be attached to different Raman tags to enable the simultaneous interrogation of multiple biological events. Over the last several years, molecular imaging with SERS-active nanoparticles has advanced significantly and many pivotal proof-of-principle experiments have been successfully carried out. It is expected that SERS-based imaging will continue to be a dynamic research field over the next decade. PMID:21932216

  3. M-ARIANE (Mirror-assisted Active Readout In A Neutron Environment): an x-ray imaging system for implosion experiments on the National Ignition Facility at ignition neutron yields

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Ayers, J.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Cerjan, C.; Emig, J.; Felker, B.; Glenn, S. M.; Hagmann, C.; Holder, J.; Izumi, N.; Kilkenny, J. D.; Koch, J. A.; Landen, O. L.; Moody, J.; Piston, K.; Simanovskaia, N.; Walton, C.

    2013-09-01

    X-ray imaging diagnostics instruments will operate in a harsh ionizing radiation background environment during ignition experiments at the National Ignition Facility (NIF). This background consists of mostly neutrons and gamma rays produced by inelastic scattering of neutrons. An imaging system, M-ARIANE (Mirror-assisted Active Readout In A Neutron Environment), based on an x-ray framing camera with film, has been designed to operate in such a harsh neutron-induced background environment. Multilayer x-ray mirrors and a shielding enclosure are the key components of this imaging system which is designed to operate at ignition neutron yields of ~1e18 on NIF. Modeling of the neutronand gamma-induced backgrounds along with the signal and noise of the x-ray imaging system is presented that display the effectiveness of this design.

  4. Stochastic image reconstruction for a dual-particle imaging system

    NASA Astrophysics Data System (ADS)

    Hamel, M. C.; Polack, J. K.; Poitrasson-Rivière, A.; Flaska, M.; Clarke, S. D.; Pozzi, S. A.; Tomanin, A.; Peerani, P.

    2016-02-01

    Stochastic image reconstruction has been applied to a dual-particle imaging system being designed for nuclear safeguards applications. The dual-particle imager (DPI) is a combined Compton-scatter and neutron-scatter camera capable of producing separate neutron and photon images. The stochastic origin ensembles (SOE) method was investigated as an imaging method for the DPI because only a minimal estimation of system response is required to produce images with quality that is comparable to common maximum-likelihood methods. This work contains neutron and photon SOE image reconstructions for a 252Cf point source, two mixed-oxide (MOX) fuel canisters representing point sources, and the MOX fuel canisters representing a distributed source. Simulation of the DPI using MCNPX-PoliMi is validated by comparison of simulated and measured results. Because image quality is dependent on the number of counts and iterations used, the relationship between these quantities is investigated.

  5. Auto-Versioning Systems Image Manager

    Energy Science and Technology Software Center (ESTSC)

    2013-08-01

    The av_sys_image_mgr utility provides an interface for the creation, manipulation, and analysis of system boot images for computer systems. It is primarily intended to provide a convenient method for managing the introduction of changes to boot images for long-lived production HPC systems.

  6. Foliage penetrating radar imaging system

    NASA Astrophysics Data System (ADS)

    Beaudoin, Christopher J.; Gatesman, Andrew J.; Giles, Robert H.; Waldman, Jerry; Testorf, Markus E.; Fiddy, Michael A.; Nixon, William E.

    2002-12-01

    A far-field radar range has been constructed at the University of Massachusetts Lowell Submillimeter-Wave Technology Laboratory to investigate electromagnetic scattering and imagery of threat military targets located in forested terrain. The radar system, operating at X-band, uses 1/35th scale targets and scenes to acquire VHF/UHF signature data. The trees and ground planes included in the measurement scenes have been dielectrically scaled in order to properly model the target/clutter interaction. The signature libraries acquired by the system could be used to help develop automatic target recognition algorithms. The difficulty in target recognition in forested areas is due to the fact that trees can have a signature larger than that of the target. The rather long wavelengths required to penetrate the foliage canopy also complicate target recognition by limiting image resolution. The measurement system and imaging algorithm will be presented as well as a validation of the measurements obtained by comparing measured signatures with analytical predictions. Preliminary linear co-polarization (HH,VV) and cross-polarization (HV,VH) data will be presented on an M1 tank in both forested and open-field scenarios.

  7. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  8. Comparison of schemes for active sub-millimeter wave imaging

    NASA Astrophysics Data System (ADS)

    Furxhi, Orges; Jacobs, Eddie L.

    2011-11-01

    Various schemes for active imaging require different allocations of source power and can result in different overall signal to noise ratios. At the University of Memphis we have developed an image-plane scanning device used with a single pixel detector to form video rate images of the scene. Imaging with this device requires flood illumination of the scene. Because sub-millimeter wave sources typically produce low power, it is a common belief that flood illumination results in low detected signal power and therefore low signal to noise ratios (SNR) at the detector. In this work we quantify the SNR at the detector for our system and compare it to conventional imaging systems, conjugate point imaging systems, and focal plane array imaging. Unlike the other two systems, imaging with our device requires an additional pixel formation step; therefore, the SNR at the detector is not the per-pixel SNR. We present the limits of the per-pixel SNR and discuss its dependence on various device components.

  9. 3D-catFISH: a system for automated quantitative three-dimensional compartmental analysis of temporal gene transcription activity imaged by fluorescence in situ hybridization.

    PubMed

    Chawla, Monica K; Lin, Gang; Olson, Kathy; Vazdarjanova, Almira; Burke, Sara N; McNaughton, Bruce L; Worley, Paul F; Guzowski, John F; Roysam, Badrinath; Barnes, Carol A

    2004-10-15

    Fluorescence in situ hybridization (FISH) of neural activity-regulated, immediate-early gene (IEG) expression provides a method of functional brain imaging with cellular resolution. This enables the identification, in one brain, of which specific principal neurons were active during each of two distinct behavioral epochs. The unprecedented potential of this differential method for large-scale analysis of functional neural circuits is limited, however, by the time-intensive nature of manual image analysis. A comprehensive software tool for processing three-dimensional, multi-spectral confocal image stacks is described which supports the automation of this analysis. Nuclei counterstained with conventional DNA dyes and FISH signals indicating the sub-cellular distribution of specific, IEG RNA species are imaged using different spectral channels. The DNA channel data are segmented into individual nuclei by a three-dimensional multi-step algorithm that corrects for depth-dependent attenuation, non-isotropic voxels, and imaging noise. Intra-nuclear and cytoplasmic FISH signals are associated spatially with the nuclear segmentation results to generate a detailed tabular/database and graphic representation. Here we present a comprehensive validation of data generated by the automated software against manual quantification by human experts on hippocampal and parietal cortical regions (96.5% concordance with multi-expert consensus). The high degree of reliability and accuracy suggests that the software will generalize well to multiple brain areas and eventually to large-scale brain analysis. PMID:15351517

  10. Infrared Imaging System for Studying Brain Function

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  11. Information Systems - Cancer Imaging Program

    Cancer.gov

    The Lung Image Database Consortium (LIDC) represents an effort by CIP grantees in a consortium to create a database of spiral CT images of the lung for use in CAD (computer-aided detection) algorithm research. The Imaging Database Resources Initiative (IDRI) is extending the efforts of the LIDC, to create a larger database of spiral CT imaging of the lung for use in CAD algorithm research. Image Archive Resources contains links to Web sites related to the interests of the NCI CIP Image Archive Committee. The Molecular Imaging and Contrast Agent Database (MICAD) is a database of research data on in vivo molecular imaging and contrast agents.

  12. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  13. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  14. Communication Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This communication systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 32 modules on the following topics: story…

  15. Imaging CREB Activation in Living Cells*

    PubMed Central

    Friedrich, Michael W.; Aramuni, Gayane; Mank, Marco; Mackinnon, Jonathan A. G.; Griesbeck, Oliver

    2010-01-01

    The Ca2+- and cAMP-responsive element-binding protein (CREB) and the related ATF-1 and CREM are stimulus-inducible transcription factors that link certain forms of cellular activity to changes in gene expression. They are attributed to complex integrative activation characteristics, but current biochemical technology does not allow dynamic imaging of CREB activation in single cells. Using fluorescence resonance energy transfer between mutants of green fluorescent protein we here develop a signal-optimized genetically encoded indicator that enables imaging activation of CREB due to phosphorylation of the critical serine 133. The indicator of CREB activation due to phosphorylation (ICAP) was used to investigate the role of the scaffold and anchoring protein AKAP79/150 in regulating signal pathways converging on CREB. We show that disruption of AKAP79/150-mediated protein kinase A anchoring or knock-down of AKAP150 dramatically reduces the ability of protein kinase A to activate CREB. In contrast, AKAP79/150 regulation of CREB via L-type channels may only have minor importance. ICAP allows dynamic and reversible imaging in living cells and may become useful in studying molecular components and cell-type specificity of activity-dependent gene expression. PMID:20484048

  16. Measurement of image plane illumination uniformity of photoelectric imaging system

    NASA Astrophysics Data System (ADS)

    Kang, Deng-kui; Yang, Hong; Sha, Ding-guo; Jiang, Chang-lu; Chen, Min; Zhong, Xing-hui; Ma, Shi-bang; Yuan, Liang

    2014-09-01

    The image plane illumination nonuniformity caused by optical system or detector will affect the detection precision of photoelectric imaging system, especially in image guidance, positioning and recognition. An image plane illumination uniformity measurement device was set up, which was characteristiced of high uniformity and wide dynamic range. The device was composed of an asymmetric integrating sphere,the image collection and processing system, as well as the electrical control system.The asymmetric integrating sphere had two different radius,which was respectively 800mm and 1000mm.The spectral region was (0.4~1.1)μm, the illumination range was (1×10-4~2×104)lx. The image collection and processing system had two different acquisition card,which were respectively used for analog and digital signals. The software can process for dynamic image or static image. The TracePro software was used to make a internal ray tracing of integrating sphere, the illumination uniformity at the export was simulated for the size of 330mm×230mm and Φ 100mm export, the results were respectively 97.95% and 98.33%. Then,an illuminometer was used to measure the actual illumination uniformity of integrating sphere, the result was shown the actual illumination uniformity was 98.8%. Finally, a visible photoelectric imaging system was tested ,and three different uniformity indicators results were given.

  17. Active place recognition using image signatures

    NASA Astrophysics Data System (ADS)

    Engelson, Sean P.

    1992-11-01

    For reliable navigation, a mobile robot needs to be able to recognize where it is in the world. We previously described an efficient and effective image-based representation of perceptual information for place recognition. Each place is associated with a set of stored image signatures, each a matrix of numbers derived by evaluating some measurement functions over large blocks of pixels. One difficulty, though, is the large number of inherently ambiguous signatures which bloats the database and makes recognition more difficult. Furthermore, since small differences in orientation can produce very different images, reliable recognition requires many images. These problems can be ameliorated by using active methods to select the best signatures to use for the recognition. Two criteria for good images are distinctiveness (is the scene distinguishable from others?) and stability (how much do small viewpoint motions change image recognizability?). We formulate several heuristic distinctiveness metrics which are good predictors of real image distinctiveness. These functions are then used to direct the motion of the camera to find locally distinctive views for use in recognition. This method also produces some modicum of stability, since it uses a form of local optimization. We present the results of applying this method with a camera mounted on a pan-tilt platform.

  18. Research on range-gated laser active imaging seeker

    NASA Astrophysics Data System (ADS)

    You, Mu; Wang, PengHui; Tan, DongJie

    2013-09-01

    Compared with other imaging methods such as millimeter wave imaging, infrared imaging and visible light imaging, laser imaging provides both a 2-D array of reflected intensity data as well as 2-D array of range data, which is the most important data for use in autonomous target acquisition .In terms of application, it can be widely used in military fields such as radar, guidance and fuse. In this paper, we present a laser active imaging seeker system based on range-gated laser transmitter and sensor technology .The seeker system presented here consist of two important part, one is laser image system, which uses a negative lens to diverge the light from a pulse laser to flood illuminate a target, return light is collected by a camera lens, each laser pulse triggers the camera delay and shutter. The other is stabilization gimbals, which is designed to be a rotatable structure both in azimuth and elevation angles. The laser image system consists of transmitter and receiver. The transmitter is based on diode pumped solid-state lasers that are passively Q-switched at 532nm wavelength. A visible wavelength was chosen because the receiver uses a Gen III image intensifier tube with a spectral sensitivity limited to wavelengths less than 900nm.The receiver is image intensifier tube's micro channel plate coupled into high sensitivity charge coupled device camera. The image has been taken at range over one kilometer and can be taken at much longer range in better weather. Image frame frequency can be changed according to requirement of guidance with modifiable range gate, The instantaneous field of views of the system was found to be 2×2 deg. Since completion of system integration, the seeker system has gone through a series of tests both in the lab and in the outdoor field. Two different kinds of buildings have been chosen as target, which is located at range from 200m up to 1000m.To simulate dynamic process of range change between missile and target, the seeker system has

  19. Along-Track Reef Imaging System (ATRIS)

    USGS Publications Warehouse

    Brock, John; Zawada, Dave

    2006-01-01

    "Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.

  20. Molecular Imaging System for Monitoring Tumor Angiogenesis

    NASA Astrophysics Data System (ADS)

    Aytac, Esra; Burcin Unlu, Mehmet

    2012-02-01

    In cancer, non-invasive imaging techniques that monitor molecular processes associated with the tumor angiogenesis could have a central role in the evaluation of novel antiangiogenic and proangiogenic therapies as well as early detection of the disease. Matrix metalloproteinases (MMP) can serve as specific biological targets for imaging of angiogenesis since expression of MMPs is required for angiogenesis and has been found to be upregulated in every type of human cancer and correlates with stage, invasive, metastatic properties and poor prognosis. However, for most cancers it is still unknown when, where and how MMPs are involved in the tumor angiogenesis [1]. Development of high-resolution, high sensitivity imaging techniques in parallel with the tumor models could prove invaluable for assessing the physical location and the time frame of MMP enzymatic acitivity. The goal of this study is to understand where, when and how MMPs are involved in the tumor angiogenesis. We will accomplish this goal by following two objectives: to develop a high sensitivity, high resolution molecular imaging system, to develop a virtual tumor simulator that can predict the physical location and the time frame of the MMP activity. In order to achieve our objectives, we will first develop a PAM system and develop a mathematical tumor model in which the quantitative data obtained from the PAM can be integrated. So, this work will develop a virtual tumor simulator and a molecular imaging system for monitoring tumor angiogenesis. 1.Kessenbrock, K., V. Plaks, and Z. Werb, MMP:regulators of the tumor microenvironment. Cell, 2010. 141(1)

  1. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    NASA Astrophysics Data System (ADS)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    available and it will also provide statistical pedigree data. This pedigree data provides both uncertainties associated with the information and an audit trail cataloging the raw data sources and the processing/exploitation applied to derive the final product. Collaboration provides for a close union between the information producer(s)/exploiter(s) and the information user(s) as well as between local and remote producer(s)/exploiter(s). From a military operational perspective, IMAGES is a step toward further uniting NIMA with its customers and further blurring the dividing line between operational command and control (C2) and its supporting intelligence activities. IMAGES also provides a foundation for reachback to remote data sources, data stores, application software, and computational resources for achieving 'just-in- time' information delivery -- all of which is transparent to the analyst or operator employing the system.

  2. A novel system of electrodes transparent to ultrasound for simultaneous detection of myoelectric activity and B-mode ultrasound images of skeletal muscles

    PubMed Central

    Vieira, T. M. M.; Loram, I. D.; Merletti, R.; Hodson-Tole, E. F.

    2013-01-01

    Application of two-dimensional surface electrode arrays can provide a means of mapping motor unit action potentials on the skin surface above a muscle. The resulting muscle tissue displacement can be quantified, in a single plane, using ultrasound (US) imaging. Currently, however, it is not possible to simultaneously map spatio-temporal propagation of activation and resulting tissue strain. In this paper, we developed and tested a material that will enable concurrent measurement of two-dimensional surface electromyograms (EMGs) with US images. Specific protocols were designed to test the compatibility of this new electrode material, both with EMG recording and with US analysis. Key results indicate that, for this new electrode material, 1) the electrode-skin impedance is similar to that of arrays of electrodes reported in literature; 2) the reflection of US at the electrode-skin interface is negligible; 3) the likelihood of observing missing contacts, short-circuits, and artifacts in EMGs is not affected by the US probe; 4) movement of tissues sampled by US can be tracked accurately. We, therefore, conclude this approach will facilitate multimodal imaging of muscle to provide new spatio-temporal information regarding electromechanical function of muscle. This is relevant to basic physiology-biomechanics of active and passive force transmission through and between muscles, of motor unit spatio-temporal activity patterns, of their variation with architecture and task-related function, and of their adaptation with aging, training-exercise-disuse, neurological disease, and injury. PMID:23908313

  3. A novel system of electrodes transparent to ultrasound for simultaneous detection of myoelectric activity and B-mode ultrasound images of skeletal muscles.

    PubMed

    Botter, A; Vieira, T M M; Loram, I D; Merletti, R; Hodson-Tole, E F

    2013-10-15

    Application of two-dimensional surface electrode arrays can provide a means of mapping motor unit action potentials on the skin surface above a muscle. The resulting muscle tissue displacement can be quantified, in a single plane, using ultrasound (US) imaging. Currently, however, it is not possible to simultaneously map spatio-temporal propagation of activation and resulting tissue strain. In this paper, we developed and tested a material that will enable concurrent measurement of two-dimensional surface electromyograms (EMGs) with US images. Specific protocols were designed to test the compatibility of this new electrode material, both with EMG recording and with US analysis. Key results indicate that, for this new electrode material, 1) the electrode-skin impedance is similar to that of arrays of electrodes reported in literature; 2) the reflection of US at the electrode-skin interface is negligible; 3) the likelihood of observing missing contacts, short-circuits, and artifacts in EMGs is not affected by the US probe; 4) movement of tissues sampled by US can be tracked accurately. We, therefore, conclude this approach will facilitate multimodal imaging of muscle to provide new spatio-temporal information regarding electromechanical function of muscle. This is relevant to basic physiology-biomechanics of active and passive force transmission through and between muscles, of motor unit spatio-temporal activity patterns, of their variation with architecture and task-related function, and of their adaptation with aging, training-exercise-disuse, neurological disease, and injury. PMID:23908313

  4. Technologies for imaging neural activity in large volumes.

    PubMed

    Ji, Na; Freeman, Jeremy; Smith, Spencer L

    2016-08-26

    Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Conventional microscopy collects data from individual planes and cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point-spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for processing and analyzing volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics and helping elucidate how brain regions work in concert to support behavior. PMID:27571194

  5. Adjoint active surfaces for localization and imaging.

    PubMed

    Cook, Daniel A; Mueller, Martin Fritz; Fedele, Francesco; Yezzi, Anthony J

    2015-01-01

    This paper addresses the problem of localizing and segmenting regions embedded within a surrounding medium by characterizing their boundaries, as opposed to imaging the entirety of the volume. Active surfaces are used to directly reconstruct the shape of the region of interest. We describe the procedure for finding the optimal surface, which is computed iteratively via gradient descent that exploits the sensitivity of an error minimization functional to changes of the active surface. In doing so, we introduce the adjoint model to compute the sensitivity, and in this respect, the method shares common ground with several other disciplines, such as optimal control. Finally, we illustrate the proposed active surface technique in the framework of wave propagation governed by the scalar Helmholtz equation. Potential applications include electromagnetics, acoustics, geophysics, nondestructive testing, and medical imaging. PMID:25438311

  6. Towards a proton imaging system

    NASA Astrophysics Data System (ADS)

    Civinini, C.; Brianzi, M.; Bruzzi, M.; Bucciolini, M.; Candiano, G.; Capineri, L.; Cirrone, G. A. P.; Cuttone, G.; Lo Presti, D.; Marrazzo, L.; Mazzaglia, E.; Menichelli, D.; Pieri, S.; Randazzo, N.; Sipala, V.; Stancampiano, C.; Talamonti, C.; Tesi, M.; Valentini, S.

    2010-11-01

    Hadron therapy for tumor treatment is nowadays used in several medical centres. The main advantage in using protons or light ions beams is the possibility of tightly shaping the radiation dose to the target volume. Presently the spatial accuracy of the therapy is limited by the uncertainty in stopping power distribution, which is derived, for each treatment, from the photon attenuation coefficients measured by X-ray tomography. A direct measurement of the stopping powers will help in reducing this uncertainty. This can be achieved by using a proton beam and a detection system able to reconstruct a tomography image of the patient. As a first step towards such a system an apparatus able to perform a proton transmission radiography (pCR) has been designed. It consists of a silicon microstrip tracker, measuring proton trajectories, and a YAG:Ce calorimeter to determine the particle residual energy. Proton beam and laboratory tests have been performed on the system components prototypes: the main results will be shown and discussed.

  7. Low cost Image Transmission System

    SciTech Connect

    Skogmo, D.

    1994-06-01

    Throughout the Department of Energy (DOE) complex, sites protect themselves with intrusion detection systems. Some of these systems have sensors in remote areas. These sensors frequently alarm -- not because they have detected a terrorist skulking around the area, but because they have detected a horse, or a dog, or a bush moving in the breeze. Even though the local security force is 99% sure there is no real threat, they must assess each of these nuisance or false alarms. Generally, the procedure consists of dispatching an inspector to drive to the area and make an assessment. This is expensive in terms of manpower and the assessment is not timely. Often, by the time the inspector arrives, the cause of the alarm has vanished. A television camera placed to view the area protected by the sensor could be used to help in this assessment, but this requires the installation of high-quality cable, optical fiber, or a microwave link. Further, to be of use at the present time, the site must have had the foresight to have installed these facilities in the past and have them ready for use now. What is needed is a device to place between the television camera and a modem connecting to a low-bandwidth channel such as radio or a telephone line. This paper discusses the development of such a device: an Image Transmission System, or ITS.

  8. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  9. The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: A diffusion tensor imaging study.

    PubMed

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2015-10-01

    Precise evaluation of the ascending reticular activating system (ARAS) is important for diagnosis, prediction of prognosis, and management of patients with disorders of impaired consciousness. In the current study, we attempted to reconstruct the direct neural pathway between the brainstem reticular formation (RF) and the cerebral cortex in normal subjects, using diffusion tensor imaging (DTI). Forty-one healthy subjects were recruited for this study. DTIs were performed using a sensitivity-encoding head coil at 1.5Tesla with FMRIB Software Library. For connectivity of the brainstem RF, we used two regions of interest (ROIs) for the brainstem RF (seed ROI) and the thalamus and hypothalamus (exclusion ROI). Connectivity was defined as the incidence of connection between the brainstem RF and target brain regions at the threshold of 5 and 50 streamlines. Regarding the thresholds of 5 and 50, the brainstem RF showed high connectivity to the lateral prefrontal cortex (lPFC, 67.1% and 20.7%) and ventromedial prefrontal cortex (vmPFC, 50.0% and 18.3%), respectively. In contrast, the brainstem RF showed low connectivity to the primary motor cortex (31.7% and 3.7%), premotor cortex (24.4% and 3.7%), primary somatosensory cortex (23.2% and 2.4%), orbitofrontal cortex (17.1% and 7.3%), and posterior parietal cortex (12.2% and 0%), respectively. The brainstem RF was mainly connected to the prefrontal cortex, particularly lPFC and vmPFC. We believe that the methodology and results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. PMID:26363340

  10. Objective analysis of image quality of video image capture systems

    NASA Astrophysics Data System (ADS)

    Rowberg, Alan H.

    1990-07-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give

  11. Web-based medical image archive system

    NASA Astrophysics Data System (ADS)

    Suh, Edward B.; Warach, Steven; Cheung, Huey; Wang, Shaohua A.; Tangiral, Phanidral; Luby, Marie; Martino, Robert L.

    2002-05-01

    This paper presents a Web-based medical image archive system in three-tier, client-server architecture for the storage and retrieval of medical image data, as well as patient information and clinical data. The Web-based medical image archive system was designed to meet the need of the National Institute of Neurological Disorders and Stroke for a central image repository to address questions of stroke pathophysiology and imaging biomarkers in stroke clinical trials by analyzing images obtained from a large number of clinical trials conducted by government, academic and pharmaceutical industry researchers. In the database management-tier, we designed the image storage hierarchy to accommodate large binary image data files that the database software can access in parallel. In the middle-tier, a commercial Enterprise Java Bean server and secure Web server manages user access to the image database system. User-friendly Web-interfaces and applet tools are provided in the client-tier for easy access to the image archive system over the Internet. Benchmark test results show that our three-tier image archive system yields fast system response time for uploading, downloading, and querying the image database.

  12. Imaging Active Urokinase Plasminogen Activator in Prostate Cancer

    PubMed Central

    LeBeau, Aaron M.; Sevillano, Natalia; Markham, Kate; Winter, Michael B.; Murphy, Stephanie T.; Hostetter, Daniel R.; West, James; Lowman, Henry; Craik, Charles S.; VanBrocklin, Henry F.

    2015-01-01

    The increased proteolytic activity of membrane-bound and secreted proteases on the surface of cancer cells and in the transformed stroma is a common characteristic of aggressive metastatic prostate cancer. We describe here the development of an active site-specific probe for detecting a secreted peritumoral protease expressed by cancer cells and the surrounding tumor microenvironment. Using a human fragment antigen binding phage display library, we identified a human antibody termed U33 that selectively inhibited the active form of the protease urokinase plasminogen activator (uPA, PLAU). In the full-length immunoglobulin form, U33 IgG labeled with near-infrared fluorophores or radionuclides allowed us to non-invasively detect active uPA in prostate cancer xenograft models using optical and single-photon emission computed tomography (SPECT) imaging modalities. U33 IgG labeled with 111In had a remarkable tumor uptake of 43.2% injected dose per gram (%ID/g) 72hr post tail vein injection of the radiolabeled probe in subcutaneous xenografts. Additionally, U33 was able to image active uPA in small soft-tissue and osseous metastatic lesions using a cardiac dissemination prostate cancer model that recapitulated metastatic human cancer. The favorable imaging properties were the direct result of U33 IgG internalization through an uPA receptor mediated mechanism where U33 mimicked the function of the endogenous inhibitor of uPA to gain entry into the cancer cell. Overall, our imaging probe targets a prostate cancer-associated protease, through a unique mechanism, allowing for the non-invasive preclinical imaging of prostate cancer lesions. PMID:25672980

  13. Handbook on COMTAL's Image Processing System

    NASA Technical Reports Server (NTRS)

    Faulcon, N. D.

    1983-01-01

    An image processing system is the combination of an image processor with other control and display devices plus the necessary software needed to produce an interactive capability to analyze and enhance image data. Such an image processing system installed at NASA Langley Research Center, Instrument Research Division, Acoustics and Vibration Instrumentation Section (AVIS) is described. Although much of the information contained herein can be found in the other references, it is hoped that this single handbook will give the user better access, in concise form, to pertinent information and usage of the image processing system.

  14. Developing stereo image based robot control system

    SciTech Connect

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W.

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  15. Image Segmentation With Cage Active Contours.

    PubMed

    Garrido, Lluís; Guerrieri, Marité; Igual, Laura

    2015-12-01

    In this paper, we present a framework for image segmentation based on parametrized active contours. The evolving contour is parametrized according to a reduced set of control points that form a closed polygon and have a clear visual interpretation. The parametrization, called mean value coordinates, stems from the techniques used in computer graphics to animate virtual models. Our framework allows to easily formulate region-based energies to segment an image. In particular, we present three different local region-based energy terms: 1) the mean model; 2) the Gaussian model; 3) and the histogram model. We show the behavior of our method on synthetic and real images and compare the performance with state-of-the-art level set methods. PMID:26316128

  16. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOEpatents

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  17. Time-delay compensation for stabilization imaging system

    NASA Astrophysics Data System (ADS)

    Chen, Yueting; Xu, Zhihai; Li, Qi; Feng, Huajun

    2014-05-01

    The spatial resolution of imaging systems for airborne and space-borne remote sensing are often limited by image degradation resulting from mechanical vibrations of platforms during image exposure. A straightforward way to overcome this problem is to actively stabilize the optical axis or drive the focal plane synchronous to the motion image during exposure. Thus stabilization imaging system usually consists of digital image motion estimation and micromechanical compensation. The performance of such kind of visual servo system is closely related to precision of motion estimation and time delay. Large time delay results in larger phase delay between motion estimation and micromechanical compensation, and leads to larger uncompensated residual motion and limited bandwidth. The paper analyzes the time delay caused by image acquisition period and introduces a time delay compensation method based on SVM (Support Vector Machine) motion prediction. The main idea to cancel the time delay is to predict the current image motion from delayed measurements. A support vector machine based method is designed to predict the image motion. A prototype of stabilization imaging system has been implemented in the lab. To analyze the influences of time delay on system performance and to verify the proposed time delay cancelation method, comparative experiments over various frequencies of vibration are taken. The experimental results show that, the accuracy of motion compensation and the bandwidth of the system can be significantly improved with time delay cancelation.

  18. Integrative System of Fast Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Yi, Tan

    An integrative fast (Photoacoustic) PA imaging system based on multi-element linear ultrasonic transducer array was developed, which integrates laser delivery, photoacoustic excitation and photoacoustic detection into a portable system. It collects PA signals by a multi-element linear transducer array in a reflection mode. The PA images with high spatial resolution and high contrast were obtained. Compared to other existing PA imaging methods, the integrative PA imaging system is characterized by rapidness, convenience and high practicality. The integrative system is mobile and portable, and it is suitable for imaging samples in natural condition with various different shapes. It will provide a novel and effective PA imaging approach for clinic diagnosis of neoplasm and tissue functional imaging in vivo, and has potential to be developed into a practical apparatus used in the early non-invasive detection of breast-cancer.

  19. Low-cost image analysis system

    SciTech Connect

    Lassahn, G.D.

    1995-01-01

    The author has developed an Automatic Target Recognition system based on parallel processing using transputers. This approach gives a powerful, fast image processing system at relatively low cost. This system scans multi-sensor (e.g., several infrared bands) image data to find any identifiable target, such as physical object or a type of vegetation.

  20. Multicolor Imaging of Bifacial Activities of Estrogens.

    PubMed

    Kim, Sung-Bae; Umezawa, Yoshio

    2016-01-01

    The present protocol introduces multicolor imaging of bifacial activities of an estrogen. For the multicolor imaging, the authors fabricated two single-chain probes emitting green or red bioluminescence (named Simer-G and -R, respectively) from click beetle luciferase (CBLuc) green and red: Simer-R consists of the ligand binding domain of estrogen receptor (ER LBD) and the Src homology-2 (SH2) domain of Src, which are sandwiched between split-CBLuc red (CBLuc-R). On the other hand, Simer-G emitting red light consists of the ER LBD and a common consensus sequence of coactivators (LXXLL motif), which are inserted between split-CBLuc green (CBLuc-G). This probe set creates fingerprinting spectra from the characteristic green and red bioluminescence in response to agonistic and antagonistic activities of a ligand of interest. The present protocol further provides a unique methodology to calculate characteristic estrogenicity scores of various ligands from the spectra. PMID:27424902

  1. VA's Integrated Imaging System on three platforms.

    PubMed

    Dayhoff, R E; Maloney, D L; Majurski, W J

    1992-01-01

    The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability. PMID:1482983

  2. Gimbaled multispectral imaging system and method

    DOEpatents

    Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.

    2016-01-26

    A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.

  3. Image Control In Automatic Welding Vision System

    NASA Technical Reports Server (NTRS)

    Richardson, Richard W.

    1988-01-01

    Orientation and brightness varied to suit welding conditions. Commands from vision-system computer drive servomotors on iris and Dove prism, providing proper light level and image orientation. Optical-fiber bundle carries view of weld area as viewed along axis of welding electrode. Image processing described in companion article, "Processing Welding Images for Robot Control" (MFS-26036).

  4. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  5. Image reconstruction and optimization using a terahertz scanned imaging system

    NASA Astrophysics Data System (ADS)

    Yıldırım, İhsan Ozan; Özkan, Vedat A.; Idikut, Fırat; Takan, Taylan; Şahin, Asaf B.; Altan, Hakan

    2014-10-01

    Due to the limited number of array detection architectures in the millimeter wave to terahertz region of the electromagnetic spectrum, imaging schemes with scan architectures are typically employed. In these configurations the interplay between the frequencies used to illuminate the scene and the optics used play an important role in the quality of the formed image. Using a multiplied Schottky-diode based terahertz transceiver operating at 340 GHz, in a stand-off detection scheme; the effect of image quality of a metal target was assessed based on the scanning speed of the galvanometer mirrors as well as the optical system that was constructed. Background effects such as leakage on the receiver were minimized by conditioning the signal at the output of the transceiver. Then, the image of the target was simulated based on known parameters of the optical system and the measured images were compared to the simulation. By using an image quality index based on χ2 algorithm the simulated and measured images were found to be in good agreement with a value of χ2 = 0 .14. The measurements as shown here will aid in the future development of larger stand-off imaging systems that work in the terahertz frequency range.

  6. Far ultraviolet imaging from the IMAGE spacecraft. 1. System design

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Lampton, M.; Geller, S. P.; Habraken, S.; Renotte, E.; Jamar, C.; Rochus, P.; Spann, J.; Fuselier, S. A.; Gerard, J.-C.; Gladstone, R.; Murphree, S.; Cogger, L.

    2000-01-01

    Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora, the footprint of magnetospheric regions. To assure the simultaneity of these observations and the measurement of the magnetospheric background neutral gas density, the IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. In the wavelength region 120-190 nm, a downward-viewing auroral imager is only minimally contaminated by sunlight, scattered from clouds and ground, and radiance of the aurora observed in a nadir viewing geometry can be observed in the presence of the high-latitude dayglow. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N_2 bands of the aurora. The Spectrographic Imager (SI), a monochromatic imager, will image different types of aurora, filtered by wavelength. By measuring the Doppler-shifted Ly-α, the proton-induced component of the aurora will be imaged separately. Finally, the GEO instrument will observe the distribution of the geocoronal emission, which is a measure of the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. Detailed descriptions of the WIC, SI, GEO, and their individual performance validations are discussed in companion papers. This paper summarizes the system requirements and system design approach taken to satisfy the science requirements. One primary requirement is to maximize photon collection efficiency and use efficiently the short time available for exposures. The FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, multiple images are taken and

  7. Far Ultraviolet Imaging from the Image Spacecraft. 1; System Design

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Lampton, M.; Geller, S. P.; Habraken, S.; Renotte, E.; Jamar, C.; Rochus, P.; Spann, J.

    1999-01-01

    Direct imaging of the magnetosphere by the IMAGE spacecraft A,ill be supplemented by observation of the global aurora, the footprint of magnetospheric regions. To assure the simultaneity of these observations and tile measurement of the magnetospheric back-round neutral gas density, the IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. In tile wavelength region 120-1 90 nm. a downward-viewing aurora imager is only minimally contaminated sunlight, scattered from clouds and ground, and radiance of the aurora observed in a nadir viewing geometry can be observed in the presence of the high-latitude day-low. Tile Wideband Imaging Camera (WIC) will provide broadband ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a monochromatic imager, will image different types of aurora, filtered by wavelength. By measuring the Doppler-shifted Lyman-alpha, the proton-induced component of the aurora will be imaged separately. Finally, the GEO instrument will observe the distribution of the geocoronal emission, which is a measure of the neutral background density source of the charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing tile aurora and the Earth during, each spin. Detailed descriptions of the WIC, Si, GEO, and their individual performance validations are discussed in companion papers. This paper summarizes the system requirements and system design approach taken to satisfy the science requirements. One primary requirement is to maximize photon collection efficiency and use efficiently tile short time available foe exposures. The FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, multiple images

  8. Anniversary paper: evaluation of medical imaging systems.

    PubMed

    Krupinski, Elizabeth A; Jiang, Yulei

    2008-02-01

    Medical imaging used to be primarily within the domain of radiology, but with the advent of virtual pathology slides and telemedicine, imaging technology is expanding in the healthcare enterprise. As new imaging technologies are developed, they must be evaluated to assess the impact and benefit on patient care. The authors review the hierarchical model of the efficacy of diagnostic imaging systems by Fryback and Thornbury [Med. Decis. Making 11, 88-94 (1991)] as a guiding principle for system evaluation. Evaluation of medical imaging systems encompasses everything from the hardware and software used to acquire, store, and transmit images to the presentation of images to the interpreting clinician. Evaluation of medical imaging systems can take many forms, from the purely technical (e.g., patient dose measurement) to the increasingly complex (e.g., determining whether a new imaging method saves lives and benefits society). Evaluation methodologies cover a broad range, from receiver operating characteristic (ROC) techniques that measure diagnostic accuracy to timing studies that measure image-interpretation workflow efficiency. The authors review briefly the history of the development of evaluation methodologies and review ROC methodology as well as other types of evaluation methods. They discuss unique challenges in system evaluation that face the imaging community today and opportunities for future advances. PMID:18383686

  9. Active vision and image/video understanding systems built upon network-symbolic models for perception-based navigation of mobile robots in real-world environments

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-12-01

    To be completely successful, robots need to have reliable perceptual systems that are similar to human vision. It is hard to use geometric operations for processing of natural images. Instead, the brain builds a relational network-symbolic structure of visual scene, using different clues to set up the relational order of surfaces and objects with respect to the observer and to each other. Feature, symbol, and predicate are equivalent in the biologically inspired Network-Symbolic systems. A linking mechanism binds these features/symbols into coherent structures, and image converts from a "raster" into a "vector" representation. View-based object recognition is a hard problem for traditional algorithms that directly match a primary view of an object to a model. In Network-Symbolic Models, the derived structure, not the primary view, is a subject for recognition. Such recognition is not affected by local changes and appearances of the object as seen from a set of similar views. Once built, the model of visual scene changes slower then local information in the visual buffer. It allows for disambiguating visual information and effective control of actions and navigation via incremental relational changes in visual buffer. Network-Symbolic models can be seamlessly integrated into the NIST 4D/RCS architecture and better interpret images/video for situation awareness, target recognition, navigation and actions.

  10. Standoff concealed weapon detection using a 350 GHz radar imaging system

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick LJ

    2010-04-01

    The Pacific Northwest National Laboratory is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff concealed weapon detection. The prototype radar imaging system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. Recent improvements to the system include increased imaging speed using improved balancing techniques, wider bandwidth, and image display techniques.

  11. European Neutron Activation System.

    Energy Science and Technology Software Center (ESTSC)

    2013-01-11

    Version 03 EASY-2010 (European Activation System) consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. The main difference from the previous version is the upper energy limit, which has increased from 20 to 60 MeV. It is designed to investigate both fusion devices and accelerator based materials test facilities that will act as intense sources of high-energymore » neutrons causing significant activation of the surrounding materials. The very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 60 MeV. EASY can be divided into two parts: data and code development tools and user tools and data. The former are required to develop the latter, but EASY users only need to be able to use the inventory code FISPACT and be aware of the contents of the EAF library (the data source). The complete EASY package contains the FISPACT-2007 inventory code, the EAF-2003, EAF-2005, EAF-2007 and EAF-2010 libraries, and the EASY User Interface for the Window version. The activation package EASY-2010 is the result of significant development to extend the upper energy range from 20 to 60 MeV so that it is capable of being used for IFMIF calculations. The EAF-2010 library contains 66,256 reactions, almost five times more than in EAF-2003 (12,617). Deuteron-induced and proton-induced cross section libraries are also included, and can be used with EASY to enable calculations of the activation due to deuterons and proton [2].« less

  12. Special feature on imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  13. Performance of image intensifiers in radiographic systems

    SciTech Connect

    Baker, S.A.

    2000-01-01

    Electronic charge-coupled device (CCD) cameras equipped with image intensifiers are increasingly being used for radiographic applications. These systems may be used to replace film recording for static imaging, or at other times CCDs coupled with electro-optical shutters may be used for static or dynamic (explosive) radiography. Image intensifiers provide precise shuttering and signal gain. The authors have developed a set of performance measures to calibrate systems, compare one system to another, and to predict experimental performance. The performance measures discussed in this paper are concerned with image quality parameters that relate to resolution and signal-to-noise ratio.

  14. A scanned beam THz imaging system for medical applications

    NASA Astrophysics Data System (ADS)

    Taylor, Zachary D.; Li, Wenzao; Suen, Jon; Tewari, Priyamvada; Bennett, David; Bajwa, Neha; Brown, Elliott; Culjat, Martin; Grundfest, Warren; Singh, Rahul

    2011-10-01

    THz medical imaging has been a topic of increased interest recently due largely to improvements in source and detector technology and the identification of suitable applications. One aspect of THz medical imaging research not often adequately addressed is pixel acquisition rate and phenomenology. The majority of active THz imaging systems use translation stages to raster scan a sample beneath a fixed THz beam. While these techniques have produced high resolution images of characterization targets and animal models they do not scale well to human imaging where clinicians are unwilling to place patients on large translation stages. This paper presents a scanned beam THz imaging system that can acquire a 1 cm2 area with 1 mm2 pixels and a per-pixel SNR of 40 dB in less than 5 seconds. The system translates a focused THz beam across a stationary target using a spinning polygonal mirror and HDPE objective lens. The illumination is centered at 525 GHz with ~ 125 GHz of response normalized bandwidth and the component layout is designed to optically co-locate the stationary source and detector ensuring normal incidence across a 50 mm × 50 mm field of view at standoff of 190 mm. Component characterization and images of a test target are presented. These results are some of the first ever reported for a short standoff, high resolution, scanned beam THz imaging system and represent an important step forward for practical integration of THz medical imaging where fast image acquisition times and stationary targets (patients) are requisite.

  15. Compton Dry-Cask Imaging System

    ScienceCinema

    None

    2013-05-28

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  16. Compton Dry-Cask Imaging System

    SciTech Connect

    2011-01-01

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  17. Fiber optic in vivo imaging in the mammalian nervous system

    PubMed Central

    Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J

    2010-01-01

    The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896

  18. A Prototype Digital Image Management System

    PubMed Central

    Dwyer, Samuel J.; Templeton, Arch W.; Anderson, William H.; Tarlton, Mark A.; Hensley, Kenneth S.; Lee, Kyo Rak; Batnitzky, Solomon; Rosenthal, Stanton J.; Johnson, Joy A.; Preston, David F.

    1983-01-01

    A prototype digital image management system has been designed, implemented and is being evaluated by our department. The system satisfies two major requirements: (a) an on-line access, rapid response microcomputer network providing 9 day archiving of digital data; (b) a long-term, low demand archiving system. This paper provides an estimate of the cost of the system, the potential cost-savings, and identifies the digital data throughput using the Ethernet communications protocol. ImagesFigure 4

  19. Detection performance of laser range-gated imaging system

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Li, Xiaofeng; Luo, Jijun; Zhang, Shengxiu; Xu, Yibin

    2010-10-01

    Laser radar is rapidly developing towards very capable sensors for number of applications such as military sensing and guidance, auto collision avoidance, robotic vision and atmospheric sensing. In this paper, the detection performance of non-scanned Laser Rang-gated (LRG) imaging system is studied. In order to compute the detection range of laser active imaging system, the range equation is derived by using laser illuminating model and considering factors which affect system imaging quality. According to the principle of laser radar and the characters of objects and the detectors in special applied setting, it mainly deduced the non-scanned laser radar range equation of the range-gated system, meanwhile, the SNR model of non-scanned LRG imaging system is set up. Then, relationship of the detection probability, the false alarm probability and the signal-to-noise ratio in the non-scanned LRG imaging system are analyzed, the influence factors of system's performance are pointed out, and the solution is proposed. The detection performance simulation software of non-scanned LRG imaging system is designed with MATLAB and the performance of the imaging system is simulated.

  20. MPEG-7 and image understanding systems

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2003-06-01

    Inexpensive computer hardware and optical devices has made image/video applications available even for private individuals. This has created a huge demand for image and multimedia databases and other systems, which work with visual information. Analysis of visual information has not been completely formalized and automated yet. The reason for that is a long tradition of separation of vision and knowledge subsystems. However, brain researches show that vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty in real images via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. It is hard to split such system apart. Brain does not recreate 3-D image of visual scene, but analyzes an image as a graph-type decision structure created via multilevel hierarchical compression of visual information. Vision mechanisms can never be completely understood separately from the informational processes related to knowledge and intelligence. MPEG-7 is an industry-wide effort to incorporate knowledge into image/video code. This article describes basic principles of integration low-level image processing with high-level knowledge reasoning, and shows how Image Understanding systems can utilize MPEG-7 standard. Such applications can add to the standard the power of image understanding.

  1. Automated imaging system for single molecules

    DOEpatents

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  2. 3D holoscopic video imaging system

    NASA Astrophysics Data System (ADS)

    Steurer, Johannes H.; Pesch, Matthias; Hahne, Christopher

    2012-03-01

    Since many years, integral imaging has been discussed as a technique to overcome the limitations of standard still photography imaging systems where a three-dimensional scene is irrevocably projected onto two dimensions. With the success of 3D stereoscopic movies, a huge interest in capturing three-dimensional motion picture scenes has been generated. In this paper, we present a test bench integral imaging camera system aiming to tailor the methods of light field imaging towards capturing integral 3D motion picture content. We estimate the hardware requirements needed to generate high quality 3D holoscopic images and show a prototype camera setup that allows us to study these requirements using existing technology. The necessary steps that are involved in the calibration of the system as well as the technique of generating human readable holoscopic images from the recorded data are discussed.

  3. Imaging Systemic Inflammatory Networks in Ischemic Heart Disease

    PubMed Central

    Nahrendorf, Matthias; Frantz, Stefan; Swirski, Filip K.; Mulder, Willem J.M.; Randolph, Gwendalyn; Ertl, Georg; Ntziachristos, Vasilis; Piek, Jan; Stroes, Erik; Schwaiger, Markus; Mann, Douglas L.; Fayad, Zahi A.

    2015-01-01

    While acute myocardial infarction mortality declines, patients continue to face reinfarction and/or heart failure. The immune system, which intimately interacts with healthy and diseased tissues through resident and recruited leukocytes, is a central interface for a global host response to ischemia. Pathways that enhance the systemic leukocyte supply may be potential therapeutic targets. Pre-clinically, imaging helps identify immunity’s decision nodes, which may serve as such targets. In translating the rapidly expanding preclinical data on immune activity, the difficulty of obtaining multiple clinical tissue samples from involved organs is an obstacle that whole-body imaging can help overcome. In patients, molecular and cellular imaging can be integrated with blood-based diagnostics to assess the translatability of discoveries, including the activation of hematopoietic tissues after myocardial infarction, and serve as an endpoint in clinical trials. In this review, we discuss these concepts while focusing on imaging immune activity in organs involved in ischemic heart disease. PMID:25881940

  4. Active Metamaterials for Terahertz Communication and Imaging

    NASA Astrophysics Data System (ADS)

    Rout, Saroj

    In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in

  5. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  6. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  7. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  8. Imaging the Glycome in Living Systems

    PubMed Central

    Li, Boyangzi; Mock, Feiyan; Wu, Peng

    2016-01-01

    The glycome, the full complement of glycans that cells produce, is an attractive target for molecular imaging. Imaging of the glycome in living systems has recently been enabled via bioorthogonal chemical reporter-based approaches. In this chapter, we describe two approaches to introduce bioorthogonal chemical reporters (tags) onto cell surface fucosylated glycans and glycans bearing LacNAc disaccharides, respectively. The tagged glycans can then be conjugated to imaging probes via bioorthogonal click chemistry. Similar approaches can be extended to image other sectors of the glycome in living systems. PMID:22289465

  9. Terahertz imaging system with resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Tomoyuki; Yamaguchi, Atsushi; Mukai, Toshikazu

    2016-03-01

    We report a feasibility study of a terahertz imaging system with resonant tunneling diodes (RTDs) that oscillate at 0.30 THz. A pair of RTDs acted as an emitter and a detector in the system. Terahertz reflection images of opaque samples were acquired with our RTD imaging system. A spatial resolution of 1 mm, which is equal to the wavelength of the RTD emitter, was achieved. The signal-to-noise ratio (SNR) of the reflection image was improved by 6 dB by using polarization optics that reduced interference effects. Additionally, the coherence of the RTD enabled a depth resolution of less than 3 µm to be achieved by an interferometric technique. Thus, RTDs are an attractive candidate for use in small THz imaging systems.

  10. CAD/CAM-coupled image processing systems

    NASA Astrophysics Data System (ADS)

    Ahlers, Rolf-Juergen; Rauh, W.

    1990-08-01

    Image processing systems have found wide application in industry. For most computer integrated manufacturing faci- lities it is necessary to adapt these systems thus that they can automate the interaction with and the integration of CAD and CAM Systems. In this paper new approaches will be described that make use of the coupling of CAD and image processing as well as the automatic generation of programmes for the machining of products.

  11. Imaging characteristics of photogrammetric camera systems

    USGS Publications Warehouse

    Welch, R.; Halliday, J.

    1973-01-01

    In view of the current interest in high-altitude and space photographic systems for photogrammetric mapping, the United States Geological Survey (U.S.G.S.) undertook a comprehensive research project designed to explore the practical aspects of applying the latest image quality evaluation techniques to the analysis of such systems. The project had two direct objectives: (1) to evaluate the imaging characteristics of current U.S.G.S. photogrammetric camera systems; and (2) to develop methodologies for predicting the imaging capabilities of photogrammetric camera systems, comparing conventional systems with new or different types of systems, and analyzing the image quality of photographs. Image quality was judged in terms of a number of evaluation factors including response functions, resolving power, and the detectability and measurability of small detail. The limiting capabilities of the U.S.G.S. 6-inch and 12-inch focal length camera systems were established by analyzing laboratory and aerial photographs in terms of these evaluation factors. In the process, the contributing effects of relevant parameters such as lens aberrations, lens aperture, shutter function, image motion, film type, and target contrast procedures for analyzing image quality and predicting and comparing performance capabilities. ?? 1973.

  12. Design Criteria For Networked Image Analysis System

    NASA Astrophysics Data System (ADS)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

  13. Scanned Image Projection System Employing Intermediate Image Plane

    NASA Technical Reports Server (NTRS)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  14. Linear and non-linear fluorescence imaging of neuronal activity

    NASA Astrophysics Data System (ADS)

    Fisher, Jonathan A. N.

    Optical imaging of neuronal activity offers new possibilities for understanding brain physiology. The predominant methods in neuroscience for measuring electrical activity require electrodes inserted into the tissue. Such methods, however, provide limited spatial information and are invasive. Optical methods are less physically invasive and offer the possibility for simultaneously imaging the activity of many neurons. In this thesis one- and two-photon fluorescence microscopy techniques were applied to several in vivo and in vitro mammalian preparations. Using one-photon absorption fluorescence microscopy and gradient index (GRIN) lens optics, cortical electrical activity in response to electric stimulation was resolved in three-dimensions at high-speed in the primary somatosensory cortex of the mouse in vivo using voltage-sensitive dyes. Imaging at depths up to 150 mum below the cortex surface, it was possible to resolve depth-dependent patterns of neuronal activity in response to cortical and thalamic electric stimulation. The patterns of activity were consistent with known cortical cellular architecture. In a qualitatively different set of experiments, one-photon fluorescence microscopy via voltage-sensitive dyes was successfully employed to image an in vitro preparation of the perfused rat brainstem during the process of respiratory rhythmogenesis. Imaging results yielded insights into the spatial organization of the central respiratory rhythm generation region in the ventrolateral medulla. A multifocal two-photon scanning microscope was constructed, and design and operation principles are described. Utilizing the novel device, anatomical and functional two-photon imaging via potentiometric dyes and calcium dyes is described, and the results of in vivo versus in vitro imaging are compared. Anatomical imaging results used either functional probe background fluorescence or green fluorescent protein (GFP) expression. Spectroscopic experiments measuring the two

  15. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  16. An automated imaging system for radiation biodosimetry.

    PubMed

    Garty, Guy; Bigelow, Alan W; Repin, Mikhail; Turner, Helen C; Bian, Dakai; Balajee, Adayabalam S; Lyulko, Oleksandra V; Taveras, Maria; Yao, Y Lawrence; Brenner, David J

    2015-07-01

    We describe here an automated imaging system developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry. The imaging system is built around a fast, sensitive sCMOS camera and rapid switchable LED light source. It features complete automation of all the steps of the imaging process and contains built-in feedback loops to ensure proper operation. The imaging system is intended as a back end to the RABiT-a robotic platform for radiation biodosimetry. It is intended to automate image acquisition and analysis for four biodosimetry assays for which we have developed automated protocols: The Cytokinesis Blocked Micronucleus assay, the γ-H2AX assay, the Dicentric assay (using PNA or FISH probes) and the RABiT-BAND assay. PMID:25939519

  17. An Automated Imaging System for Radiation Biodosimetry

    PubMed Central

    Garty, Guy; Bigelow, Alan W.; Repin, Mikhail; Turner, Helen C.; Bian, Dakai; Balajee, Adayabalam S.; Lyulko, Oleksandra V.; Taveras, Maria; Yao, Y. Lawrence; Brenner, David J.

    2015-01-01

    We describe here an automated imaging system developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry. The imaging system is built around a fast, sensitive sCMOS camera and rapid switchable LED light source. It features complete automation of all the steps of the imaging process and contains built-in feedback loops to ensure proper operation. The imaging system is intended as a back end to the RABiT – a robotic platform for radiation biodosimetry. It is intended to automate image acquisition and analysis for four biodosimetry assays for which we have developed automated protocols: The Cytokinesis Blocked Micronucleus assay, the γ-H2AX assay, the Dicentric assay (using PNA or FISH probes) and the RABiT-BAND assay. PMID:25939519

  18. Diffuse optical imaging of brain activation to joint attention experience.

    PubMed

    Zhu, Banghe; Yadav, Nitin; Rey, Gustavo; Godavarty, Anuradha

    2009-08-24

    In the early development of social cognition and language, infants tend to participate in face-to-face interactions engaging in joint attention exchanges. Joint attention is vital to social competence at all ages, lacking which is a primary feature to distinguish autistic from non-autistic population. In this study, diffuse optical imaging is used for the first time to investigate the joint attention experience in normal adults. Imaging studies were performed in the frontal regions of the brain (BA9 and BA10) in order to study the differences in the brain activation in response to video clips corresponding to joint attention based skills. The frontal regions of the brain were non-invasively imaged using a novel optical cap coupled to a frequency-domain optical imaging system. The statistical analysis from 11 normal adult subjects, with three repetitions from each subject, indicated that the averaged changes in the cerebral blood oxygenation levels were different under the joint and non-joint attention based stimulus. The preliminary studies demonstrate the feasibility of implementing diffuse optical imaging towards autism-related research to study the brain activation in response to socio-communication skills. PMID:19447278

  19. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  20. Hyperspectral imaging utility for transportation systems

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver

    2015-03-01

    The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.

  1. Active Millimeter-Wave and Sub-Millimeter-Wave Imaging for Security Applications

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2011-09-02

    Active imaging at millimeter and sub-millimeter wavelengths has been developed for security applications including concealed weapon detection. The physical properties that affect imaging performance are discussed along with a review of the current state-of-the-art and future potential for security imaging systems.

  2. Integrating IR detector imaging systems

    NASA Technical Reports Server (NTRS)

    Bailey, G. C. (Inventor)

    1984-01-01

    An integrating IR detector array for imaging is provided in a hybrid circuit with InSb mesa diodes in a linear array, a single J-FET preamplifier for readout, and a silicon integrated circuit multiplexer. Thin film conductors in a fan out pattern deposited on an Al2O3 substrate connect the diodes to the multiplexer, and thick film conductors also connect the reset switch and preamplifier to the multiplexer. Two phase clock pulses are applied with a logic return signal to the multiplexer through triax comprised of three thin film conductors deposited between layers. A lens focuses a scanned image onto the diode array for horizontal read out while a scanning mirror provides vertical scan.

  3. Ultrasonic flow imaging system: A feasibility study

    SciTech Connect

    Sheen, S.H.; Lawrence, W.P.; Chien, H.T.; Raptis, A.C.

    1991-09-01

    This report examines the feasibility and potential problems in developing a real-time ultrasonic flow imaging instrument for on-line monitoring of mixed-phased flows such as coal slurries. State-of-the-art ultrasonic imaging techniques are assessed for this application. Reflection and diffraction tomographies are proposed for further development, including image-reconstruction algorithms and parallel processing systems. A conventional ultrasonic C-scan technique is used to demonstrate the feasibility of imaging the particle motion in a solid/water flow. 13 refs., 11 figs.

  4. FLIPS: Friendly Lisp Image Processing System

    NASA Astrophysics Data System (ADS)

    Gee, Shirley J.

    1991-08-01

    The Friendly Lisp Image Processing System (FLIPS) is the interface to Advanced Target Detection (ATD), a multi-resolutional image analysis system developed by Hughes in conjunction with the Hughes Research Laboratories. Both menu- and graphics-driven, FLIPS enhances system usability by supporting the interactive nature of research and development. Although much progress has been made, fully automated image understanding technology that is both robust and reliable is not a reality. In situations where highly accurate results are required, skilled human analysts must still verify the findings of these systems. Furthermore, the systems often require processing times several orders of magnitude greater than that needed by veteran personnel to analyze the same image. The purpose of FLIPS is to facilitate the ability of an image analyst to take statistical measurements on digital imagery in a timely fashion, a capability critical in research environments where a large percentage of time is expended in algorithm development. In many cases, this entails minor modifications or code tinkering. Without a well-developed man-machine interface, throughput is unduly constricted. FLIPS provides mechanisms which support rapid prototyping for ATD. This paper examines the ATD/FLIPS system. The philosophy of ATD in addressing image understanding problems is described, and the capabilities of FLIPS are discussed, along with a description of the interaction between ATD and FLIPS. Finally, an overview of current plans for the system is outlined.

  5. Portable imaging system method and apparatus

    DOEpatents

    Freifeld, Barry M.; Kneafsley, Timothy J.; Pruess, Jacob; Tomutsa, Liviu; Reiter, Paul A.; deCastro, Ted M.

    2006-07-25

    An operator shielded X-ray imaging system has sufficiently low mass (less than 300 kg) and is compact enough to enable portability by reducing operator shielding requirements to a minimum shielded volume. The resultant shielded volume may require a relatively small mass of shielding in addition to the already integrally shielded X-ray source, intensifier, and detector. The system is suitable for portable imaging of well cores at remotely located well drilling sites. The system accommodates either small samples, or small cross-sectioned objects of unlimited length. By rotating samples relative to the imaging device, the information required for computer aided tomographic reconstruction may be obtained. By further translating the samples relative to the imaging system, fully three dimensional (3D) tomographic reconstructions may be obtained of samples having arbitrary length.

  6. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not

  7. Imaging Systemic Dysfunction in Parkinson's Disease.

    PubMed

    Borghammer, Per; Knudsen, Karoline; Brooks, David J

    2016-06-01

    Parkinson's disease is now widely recognized to be a multisystem disorder affecting the brain and peripheral autonomic nerves. Extensive pathology is present in both the sympathetic and parasympathetic nervous system and the intrinsic gastrointestinal plexuses in patients. Autonomic pathology and symptoms such as constipation can predate the clinical diagnosis by years or decades. Imaging studies have contributed greatly to our understanding of Parkinson's disease but focused primarily on imaging cerebral pathology. However, given the importance of understanding the nature, chronology, and functional consequences of peripheral pathology, there has been renewed interest in imaging peripheral organs in Parkinson's disease. Suitable imaging tools can be divided into two types: radiotracer studies that directly estimate loss of sympathetic or parasympathetic nerve terminals, and imaging modalities to quantitate dysphagia, gastric emptying, esophageal and intestinal transit times, and anorectal dyssynergia. In this review, we summarize current knowledge about peripheral imaging in Parkinson's disease. PMID:27072951

  8. Imaging Spectrometry-Concepts and System Tradeoffs

    NASA Technical Reports Server (NTRS)

    Herring, M.; Chrien, T.; Duval, V.; Krabach, T.

    1993-01-01

    The concept of imaging spectrometry is finding broad application in scientific instrumentation for earth-based, airborne, and space applications. An imaging spectrometer is characterized by the combination of imaging with complete sampling in the spectral domain. In so doing, material identification can be accomplished and displayed in conjunction with the conventional recognizable image. An image spectrometer incorporates a wide variety of techniques, including focal plane arrays, imaging and spectrometer optics, and spectral dispersing devices. The design of a successful system involves a complex set of tradeoffs incorporating the properties and limitations of the various technologies. For applications in the infrared, additional technologies such as focal plane cooling are required, and the other technologies present more limitations and constraints.

  9. System for imaging plutonium through heavy shielding

    SciTech Connect

    Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

    1984-04-01

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi /sup 57/Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% /sup 240/Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures.

  10. Image digitizer system for bubble chamber laser

    SciTech Connect

    Haggerty, H

    1986-12-08

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed. (LEW)

  11. Advanced laser systems for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Klosner, Marc; Sampathkumar, Ashwin; Chan, Gary; Wu, Chunbai; Gross, Daniel; Heller, Donald F.

    2015-03-01

    We describe the ongoing development of laser systems for advanced photoacoustic imaging (PAI). We discuss the characteristics of these laser systems and their particular benefits for soft tissue imaging and next-generation breast cancer diagnostics. We provide an overview of laser performance and compare this with other laser systems that have been used for early-stage development of PAI. These advanced systems feature higher pulse energy output at clinically relevant repetition rates, as well as a novel wavelength-cycling output pulse format. Wavelength cycling provides pulse sequences for which the output repeatedly alternates between two wavelengths that provide differential imaging. This capability improves co-registration of captured differential images. We present imaging results of phantoms obtained with a commercial ultrasound detector system and a wavelength-cycling laser source providing ~500 mJ/pulse at 755 and 797 nm, operating at 25 Hz. The results include photoacoustic images and corresponding pulse-echo data from a tissue mimicking phantom containing inclusions, simulating tumors in the breast. We discuss the application of these systems to the contrast-enhanced detection of various tissue types and tumors.

  12. Linear digital imaging system fidelity analysis

    NASA Technical Reports Server (NTRS)

    Park, Stephen K.

    1989-01-01

    The combined effects of imaging gathering, sampling and reconstruction are analyzed in terms of image fidelity. The analysis is based upon a standard end-to-end linear system model which is sufficiently general so that the results apply to most line-scan and sensor-array imaging systems. Shift-variant sampling effects are accounted for with an expected value analysis based upon the use of a fixed deterministic input scene which is randomly shifted (mathematically) relative to the sampling grid. This random sample-scene phase approach has been used successfully by the author and associates in several previous related papers.

  13. Onboard Image Processing System for Hyperspectral Sensor.

    PubMed

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS's performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  14. Onboard Image Processing System for Hyperspectral Sensor

    PubMed Central

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  15. An Open System for Intravascular Ultrasound Imaging

    PubMed Central

    Qiu, Weibao; Chen, Yan; Li, Xiang; Yu, Yanyan; Cheng, Wang Fai; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Dai, Jiyan; Sun, Lei

    2013-01-01

    Visualization of the blood vessels can provide valuable morphological information for diagnosis and therapy strategies for cardiovascular disease. Intravascular ultrasound (IVUS) is able to delineate internal structures of vessel wall with fine spatial resolution. However, the developed IVUS is insufficient to identify the fibrous cap thickness and tissue composition of atherosclerotic lesions. Novel imaging strategies have been proposed, such as increasing the center frequency of ultrasound or using a modulated excitation technique to improve the accuracy of diagnosis. Dual-mode tomography combining IVUS with optical tomography has also been developed to determine tissue morphology and characteristics. The implementation of these new imaging methods requires an open system that allows users to customize the system for various studies. This paper presents the development of an IVUS system that has open structures to support various imaging strategies. The system design is based on electronic components and printed circuit board, and provides reconfigurable hardware implementation, programmable image processing algorithms, flexible imaging control, and raw RF data acquisition. In addition, the proposed IVUS system utilized a miniaturized ultrasound transducer constructed using PMN-PT single crystal for better piezoelectric constant and electromechanical coupling coefficient than traditional lead zirconate titanate (PZT) ceramics. Testing results showed that the IVUS system could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain, with a frequency range from 20 to 80 MHz. Finally, phantom imaging, in vitro IVUS vessel imaging, and multimodality imaging with photoacoustics were conducted to demonstrate the performance of the open system. PMID:23143570

  16. Design and simulation of imaging algorithm for Fresnel telescopy imaging system

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-yu; Liu, Li-ren; Yan, Ai-min; Sun, Jian-feng; Dai, En-wen; Li, Bing

    2011-06-01

    Fresnel telescopy (short for Fresnel telescopy full-aperture synthesized imaging ladar) is a new high resolution active laser imaging technique. This technique is a variant of Fourier telescopy and optical scanning holography, which uses Fresnel zone plates to scan target. Compare with synthetic aperture imaging ladar(SAIL), Fresnel telescopy avoids problem of time synchronization and space synchronization, which decreasing technical difficulty. In one-dimensional (1D) scanning operational mode for moving target, after time-to-space transformation, spatial distribution of sampling data is non-uniform because of the relative motion between target and scanning beam. However, as we use fast Fourier transform (FFT) in the following imaging algorithm of matched filtering, distribution of data should be regular and uniform. We use resampling interpolation to transform the data into two-dimensional (2D) uniform distribution, and accuracy of resampling interpolation process mainly affects the reconstruction results. Imaging algorithms with different resampling interpolation algorithms have been analysis and computer simulation are also given. We get good reconstruction results of the target, which proves that the designed imaging algorithm for Fresnel telescopy imaging system is effective. This work is found to have substantial practical value and offers significant benefit for high resolution imaging system of Fresnel telescopy laser imaging ladar.

  17. Reflective optical imaging system with balanced distortion

    DOEpatents

    Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.

    1999-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  18. EOS image data processing system definition study

    NASA Technical Reports Server (NTRS)

    Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.

  19. Image enhancement system for mobile displays

    NASA Astrophysics Data System (ADS)

    Parkkinen, Jaana; Nenonen, Petri

    2005-02-01

    In this paper, we present a system for enhancing digital photography on mobile displays. The system is using adaptive filtering and display specific methods for maximizing the subjective quality of images. Because mobile platforms have a limited amount of memory and processing power, we describe computationally efficient scaling and enhancement algorithms that are especially suitable for mobile devices and displays. We also show how a proper arrangement of these algorithms forms an image processing chain that is optimized for mobile use. The developed image enhancement system has been implemented using the Nokia Series60 platform and tested on imaging phones. Tests and results show that significant improvement of quality can be achieved with this solution within the processing power and memory limitations that mobile platforms set.

  20. High-throughput imaging of neuronal activity in Caenorhabditis elegans

    PubMed Central

    Larsch, Johannes; Ventimiglia, Donovan; Bargmann, Cornelia I.; Albrecht, Dirk R.

    2013-01-01

    Neuronal responses to sensory inputs can vary based on genotype, development, experience, or stochastic factors. Existing neuronal recording techniques examine a single animal at a time, limiting understanding of the variability and range of potential responses. To scale up neuronal recordings, we here describe a system for simultaneous wide-field imaging of neuronal calcium activity from at least 20 Caenorhabditis elegans animals under precise microfluidic chemical stimulation. This increased experimental throughput was used to perform a systematic characterization of chemosensory neuron responses to multiple odors, odor concentrations, and temporal patterns, as well as responses to pharmacological manipulation. The system allowed recordings from sensory neurons and interneurons in freely moving animals, whose neuronal responses could be correlated with behavior. Wide-field imaging provides a tool for comprehensive circuit analysis with elevated throughput in C. elegans. PMID:24145415

  1. The National Ignition Facility neutron imaging system.

    PubMed

    Wilke, Mark D; Batha, Steven H; Bradley, Paul A; Day, Robert D; Clark, David D; Fatherley, Valerie E; Finch, Joshua P; Gallegos, Robert A; Garcia, Felix P; Grim, Gary P; Jaramillo, Steven A; Montoya, Andrew J; Moran, Michael J; Morgan, George L; Oertel, John A; Ortiz, Thomas A; Payton, Jeremy R; Pazuchanics, Peter; Schmidt, Derek W; Valdez, Adelaida C; Wilde, Carl H; Wilson, Doug C

    2008-10-01

    The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y(n)>10(14) neutrons. The shielding will also permit the NIS to function at neutron yields >10(18), which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical

  2. Development of a triple modality small animal planar imaging system

    SciTech Connect

    A. G. Weisenberger, Z. Lee, S. Majewski, B. Kross, V. Popov, B. Welch, R. Wojcik, C. Zorn

    2006-02-01

    Recently small animal research utilizing nuclear medicine based imaging has been combined with structural anatomical imaging from x-ray radiography providing a powerful tool for animal researchers. The addition of a third modality is the goal of our instrumentation development. Thomas Jefferson National Accelerator Facility and Case Western Reserve University have been collaborating on the development of a planar imaging system which in addition to radiopharmaceutical based functional imaging and x-ray radiography structural imaging also allows for the in vivo bioluminescence imaging thus providing another functional imaging modality. For the gamma camera we use is a Hamamatsu position sensitive photomultiplier tube coupled to a pixellated NaI(TI) scintillator array with individual crystal elements 1 mm × 1 mm × 5 mm in size and a 0.25 mm septum between each element. The gamma camera has a 10 cm diameter active area and can be used for 125I, 99mT and 111In radionuclide imaging. To acquire anatomical information we are using a Rad-Icon Shad-o-Box X-ray detector that provides a field of view of 5 cm × 10 cm. The x-ray source is a Source-Ray compact x-ray generator. We are using a Princeton Instruments cooled CCD based detector for the imaging of the bio-distribution of bioluminescence. All three imaging instruments will be integrated into a single light tight / x-ray tight enclosure.

  3. Brain and nervous system (image)

    MedlinePlus

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve ...

  4. Brain and nervous system (image)

    MedlinePlus

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, ...

  5. A novel multiwavelength fluorescence image-guided surgery imaging system

    NASA Astrophysics Data System (ADS)

    Volpi, D.; Tullis, I. D. C.; Laios, A.; Pathiraja, P. N. J.; Haldar, K.; Ahmed, A. A.; Vojnovic, B.

    2014-02-01

    We describe the development and performance analysis of two clinical near-infrared fluorescence image-guided surgery (FIGS) devices that aim to overcome some of the limitations of current FIGS systems. The devices operate in a widefield-imaging mode and can work (1) in conjunction with a laparoscope, during minimally invasive surgery, and (2) as a hand-held, open surgery imaging system. In both cases, narrow-band excitation light, delivered at multiple wavelengths, is efficiently combined with white reflectance light. Light is delivered to ~100 cm2 surgical field at 1-2 mW/cm2 for white light and 3-7 mW/cm2 (depending on wavelength) of red - near infrared excitation, at a typical working distance of 350 mm for the hand-held device and 100 mm for the laparoscope. A single, sensitive, miniaturized color camera collects both fluorescence and white reflectance light. The use of a single imager eliminates image alignment and software overlay complexity. A novel filtering and illumination arrangement allows simultaneous detection of white reflectance and fluorescence emission from multiple dyes in real-time. We will present both fluorescence detection sensitivity modeling and practical performance data. We have demonstrated the efficiency and the advantages of the devices both pre-clinically and during live surgery on humans. Both the hand-held and the laparoscopic systems have proved to be reliable and beneficial in an ongoing clinical trial involving sentinel lymph node detection in gynecological cancers. We will show preliminary results using two clinically approved dyes, Methylene blue and indocyanine green. We anticipate that this technology can be integrated and routinely used in a larger variety of surgical procedures.

  6. International standards activities in image data compression

    NASA Technical Reports Server (NTRS)

    Haskell, Barry

    1989-01-01

    Integrated Services Digital Network (ISDN); coding for color TV, video conferencing, video conferencing/telephone, and still color images; ISO color image coding standard; and ISO still picture standard are briefly discussed. This presentation is represented by viewgraphs only.

  7. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  8. Quantitative phase imaging technologies to assess neuronal activity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thouvenin, Olivier; Fink, Mathias; Boccara, Claude

    2016-03-01

    Active neurons tends to have a different dynamical behavior compared to resting ones. Non-exhaustively, vesicular transport towards the synapses is increased, since axonal growth becomes slower. Previous studies also reported small phase variations occurring simultaneously with the action potential. Such changes exhibit times scales ranging from milliseconds to several seconds on spatial scales smaller than the optical diffraction limit. Therefore, QPI systems are of particular interest to measure neuronal activity without labels. Here, we report the development of two new QPI systems that should enable the detection of such activity. Both systems can acquire full field phase images with a sub nanometer sensitivity at a few hundreds of frames per second. The first setup is a synchronous combination of Full Field Optical Coherence Tomography (FF-OCT) and Fluorescence wide field imaging. The latter modality enables the measurement of neurons electrical activity using calcium indicators. In cultures, FF-OCT exhibits similar features to Digital Holographic Microscopy (DHM), except from complex computational reconstruction. However, FF-OCT is of particular interest in order to measure phase variations in tissues. The second setup is based on a Quantitative Differential Interference Contrast setup mounted in an epi-illumination configuration with a spectrally incoherent illumination. Such a common path interferometer exhibits a very good mechanical stability, and thus enables the measurement of phase images during hours. Additionally, such setup can not only measure a height change, but also an optical index change for both polarization. Hence, one can measure simultaneously a phase change and a birefringence change.

  9. Infrared imaging system using nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Lai, King Wai Chiu; Xi, Ning; Chen, Hongzhi; Chen, Liangliang; Song, Bo

    2012-06-01

    Nanocarbon materials, such as carbon nanotubes and graphene, can potentially overcome the short comes in traditional infrared detector materials because of their excellent electrical and optical properties such as adjustable electrical band gap, low dark current, fast optical response time etc. This paper will present the development of an infrared imaging system that is capable of infrared imaging without cooling. The sensing elements of the system are carbon nanotubes and graphene. When they are illumined by an infrared light, the nano devices generate photocurrents, respectively. As a result, infrared images can be presented based on using compressive sensing after the collection of photocurrent from the nano devices. The development of this imaging system overcomes two major difficulties. First, the system uses singlepixel nano photodetector, so the pixel crosstalk phenomena of conventional sensor arrays can be eliminated. Second, the requirement of single-pixel unit reduces the manufacturing difficulties and costs. Under this compressive sensing camera configuration, 50 × 50 pixel infrared images can be reconstructed efficiently. The results demonstrated a possible solution to overcome the limitation of current infrared imaging.

  10. Standardized system for multispectral imaging of palimpsests

    NASA Astrophysics Data System (ADS)

    Easton, Roger L., Jr.; Knox, Keith T.; Christens-Barry, William A.; Boydston, Kenneth; Toth, Michael B.; Emery, Doug; Noel, William

    2010-02-01

    The Archimedes Palimpsest imaging team has developed a spectral imaging system and associated processing techniques for general use with palimpsests and other artifacts. It includes an illumination system of light-emitting diodes (LEDs) in 13 narrow bands from the near ultraviolet through the near infrared (▵λ<= 40nm), blue and infrared LEDs at raking angles, high-resolution monochrome and color sensors, a variety of image collection techniques (including spectral imaging of emitted fluorescence), standard metadata records, and image processing algorithms, including pseudocolor color renderings and principal component analysis (PCA). This paper addresses the development and optimization of these techniques for the study of parchment palimpsests and the adaptation of these techniques to allow flexibility for new technologies and processing capabilities. The system has proven useful for extracting text from several palimpsests, including all original manuscripts in the Archimedes Palimpsest, the undertext in a privately owned 9th-century Syriac palimpsest, and in a survey of selected palimpsested leaves at St. Catherine's Monastery in Egypt. In addition, the system is being used at the U.S. Library of Congress for spectral imaging of historical manuscripts and other documents.

  11. An approach to designing optimal imaging systems

    SciTech Connect

    Seeley, G.W.; Barrett, H.H.; Borgstrom, M.C.; Cargill, E.B.; Fiete, R.D.; Myers, K.J.; Patton, D.D.; Smith, W.E.; Stempski, M.O.; Paxman, R.G.

    1985-05-01

    This paper reports recent work by the authors to develop a systematic basis for the improvement of existing and the development of new imaging systems for nuclear medicine. Assessment of imaging systems is typically done by using the radiologists' perceptual skills in a number of tasks which approximate the clinical setting. For these psycho-physical experiments, an object class with a specified number of categories must first be selected (e.g., liver with or without lesions). Data collected by the system to be evaluated are then used to generate a set of images which are displayed to the observers. From the experiment comes a figure of merit that is used to evaluate the system. However, there is often no clear indication of how one should use the information from the psychophysical study to guide physicists and engineers toward specific improvements in the imaging system. Proposed here is a procedure which will provide a feedback loop for system improvement. A key part of this procedure involves identifying and selecting features that can be used to classify images into their respective categories. The human-evaluation segment of the paradigm, which makes use of signal-detection theory and multidimensional scaling techniques, serves as a verification of the computer-selected features.

  12. Design patterns in medical imaging information systems

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.; Laxer, Kenneth D.; Knowlton, Robert C.; Ching, Wan

    2000-05-01

    The purpose of this paper is to introduce a new and important conceptual framework of software design for the medical imaging community using design patterns. Use cases are created to summarize operational scenarios of clinicians using the system to complete certain tasks such as image segmentation. During design the Unified Modeling Language is used to translate the use cases into modeling diagrams that describe how the system functions. Next, design patterns are applied to build models that describe how software components interoperate to deliver that functionality. The software components are implemented using the Java language, CORBA architecture, and other web technologies. The biomedical image information system is used in epilepsy neurosurgical planning and diagnosis. This article proposes the use of proven software design models for solving medical imaging informatics design problems. Design patterns provide an excellent vehicle to leverage design solutions that have worked in the past to solve the problems we face in building user-friendly, reliable, and efficient information systems. This work introduces this new technology for building increasing complex medical image information systems. The rigorous application of software design techniques is essential in building information systems that are easy to use, rich in functionality, maintainable, reliable, and updatable.

  13. Image integrity verification in medical information systems.

    PubMed

    Lenti, Jozsef; Lovanyi, Istvan

    2003-01-01

    In nowadays it is a major objective to protect healthcare information against unauthorized access. Comparing conventional and electronic management of medical images the later one demands much more complex security measures. We propose a new scenario for watermark data buildup and embedding which is independent from the applied watermarking technology. In our proposed method the embedded watermark data is dependant on image and patient information too. The proposed watermark buildup method provides watermark information where it is small in size and represents a unique digest of the image and image related data. The embedded data can be considered unique with high probability even if the same algorithm was used in different medical information systems. Described procedures ensure new, more secure links between image and related data, offering further perspectives in smartcard implementations. PMID:14664001

  14. Low level image segmentation: an expert system.

    PubMed

    Nazif, A M; Levine, M D

    1984-05-01

    A major problem in robotic vision is the segmentation of images of natural scenes in order to understand their content. This paper presents a new solution to the image segmentation problem that is based on the design of a rule-based expert system. General knowledge about low level properties of processes employ the rules to segment the image into uniform regions and connected lines. In addition to the knowledge rules, a set of control rules are also employed. These include metarules that embody inferences about the order in which the knowledge rules are matched. They also incorporate focus of attention rules that determine the path of processing within the image. Furthermore, an additional set of higher level rules dynamically alters the processing strategy. This paper discusses the structure and content of the knowledge and control rules for image segmentation. PMID:21869225

  15. A scanning system for intelligent imaging: I-ImaS

    NASA Astrophysics Data System (ADS)

    Longo, R.; Asimidis, A.; Cavouras, D.; Esbrand, C.; Fant, A.; Gasiorek, P.; Georgiou, H.; Hall, G.; Jones, J.; Leaver, J.; Li, G.; Griffiths, J.; Machin, D.; Manthos, N.; Metaxas, M.; Noy, M.; Østby, J. M.; Psomadellis, F.; Rokvic, T.; Royle, G.; Schulerud, H.; Speller, R.; van der Stelt, PF.; Theodoridis, S.; Triantis, F.; Turchetta, R.; Venanzi, C.

    2007-03-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce adaptive x-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create optimal diagnostic images. Initial systems concentrate on mammography and cephalography. The on-chip intelligence available to MAPS technology will allow real-time analysis of data during image acquisition, giving the capability to build a truly adaptive imaging system with the potential to create images with maximum diagnostic information within given dose constraints. In our system, the exposure in each image region is optimized and the beam intensity is a function not only of tissue thickness and attenuation, but also of local physical and statistical parameters found in the image itself. Using a linear array of detectors with on-chip intelligence, the system will perform an on-line analysis of the image during the scan and then will optimize the X-ray intensity in order to obtain the maximum diagnostic information from the region of interest while minimizing exposure of less important, or simply less dense, regions. This paper summarizes the testing of the sensors and their electronics carried out using synchrotron radiation, x-ray sources and optical measurements. The sensors are tiled to form a 1.5D linear array. These have been characterised and appropriate correction techniques formulated to take into account misalignments between individual sensors. Full testing of the mammography and cephalography I-ImaS prototypes is now underway and the system intelligence is constantly being upgraded through iterative testing in order to obtain the optimal algorithms and settings.

  16. Overcoming Dynamic Disturbances in Imaging Systems

    NASA Technical Reports Server (NTRS)

    Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian

    2000-01-01

    We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optormechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel

  17. Overcoming Dynamic Disturbances in Imaging Systems

    NASA Technical Reports Server (NTRS)

    Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian

    2000-01-01

    We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optomechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel

  18. Reflective optical imaging system with balanced distortion

    SciTech Connect

    Chapman, H.N.; Hudyma, R.M.; Shafer, D.R.; Sweeney, D.W.

    1999-10-26

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate is disclosed. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  19. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  20. Reflective optical imaging systems with balanced distortion

    DOEpatents

    Hudyma, Russell M.

    2001-01-01

    Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  1. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  2. Expert system for imaging spectrometer analysis results

    NASA Technical Reports Server (NTRS)

    Borchardt, Gary C.

    1985-01-01

    Information on an expert system for imaging spectrometer analysis results is outlined. Implementation requirements, the Simple Tool for Automated Reasoning (STAR) program that provides a software environment for the development and operation of rule-based expert systems, STAR data structures, and rule-based identification of surface materials are among the topics outlined.

  3. Effective imaging systems based on periodic lattices

    SciTech Connect

    Gennarelli, Gianluca Soldovieri, Francesco; Persico, Raffaele

    2014-05-12

    A crucial question in imaging problems from diffracted wavefields is the evaluation of the information content of data and the related reconstruction performance in terms of spatial resolution. It is well-known that full-view tomographic reconstructions are characterized by resolution limits of the order of one half propagated wavelength. These limits are further deteriorated when a truncated measurement domain is exploited for the imaging. In this Letter, we show that when the imaging system comprises a periodic layer located between a linear array of probes and the investigated domain, the resolution limits are substantially improved compared to the case of a homogenous scenario. This intriguing result is a consequence of the multiscattering effects arising from the periodicity of the structure. The study provides physical insight supported by mathematical arguments paving the way to the development of effective imaging systems requiring few radiating elements.

  4. Portable active interrogation system.

    SciTech Connect

    Moss, C. E.; Brener, M. W.; Hollas, C. L.; Myers, W. L.

    2004-01-01

    The system consists of a pulsed DT neutron generator (5 x 10{sup 7} n/s) and a portable but high intrinsic efficiency, custom-designed, polyethylene-moderated {sup 3}He neutron detector. A multichannel scaler card in a ruggedized laptop computer acquires the data. A user-friendly LabVIEW program analyzes and displays the data. The program displays a warning message when highly enriched uranium or any other fissionable materials is detected at a specified number of sigmas above background in the delayed region between pulses. This report describes the system and gives examples of the response of the system to highly enriched uranium and some other fissionable materials, at several distances and with various shielding materials.

  5. Distributed-data imaging system

    SciTech Connect

    Tolmie, D.E.; Dornhoff, A.G.; DuBois, A.J.; Hodson, S.W.; Maestas, F.A.; Winkler, K.H.

    1996-05-01

    A group of eight Digital Equipment Corporation Alpha workstations is interconnected with ATM to form a cluster with supercomputer power. For output, each workstation drives a single tile on an 8-tile high- resolution frame buffer. A special purpose adapter is used to convert the workstation`s ATM format to the frame buffer`s HIPPI format. This paper discusses the rationale behind the workstation farm, and then describes the visualization output path in detail. To provide the system quickly, special emphasis was placed on making the design as simple as possible and using standard software protocols to drive and synchronize the display. The design choices are examined, and the resultant system is described.. Previously, a display could connect to a single computer; or a group of computers could drive a fragmented display, e.g., a video wall. Our system is unique in that it provides a high-quality desktop visualization display driven collectively by a group of workstations. A short video will be shown during the presentation to demonstrate the system capabilities.

  6. Expert System for ASIC Imaging

    NASA Astrophysics Data System (ADS)

    Gupta, Shri N.; Arshak, Khalil I.; McDonnell, Pearse; Boyce, Conor; Duggan, Andrew

    1989-07-01

    With the developments in the techniques of artificial intelligence over the last few years, development of advisory, scheduling and similar class of problems has become very convenient using tools such as PROLOG. In this paper an expert system has been described which helps lithographers and process engineers in several ways. The methodology used is to model each work station according to its input, output and control parameters, combine these work stations in a logical sequence based on past experience and work out process schedule for a job. In addition, all the requirements vis-a-vis a particular job parameters are converted into decision rules. One example is the exposure time, develop time for a wafer with different feature sizes would be different. This expert system has been written in Turbo Prolog. By building up a large number of rules, one can tune the program to any facility and use it for as diverse applications as advisory help, trouble shooting etc. Leitner (1) has described an advisory expert system that is being used at National Semiconductor. This system is quite different from the one being reported in the present paper. The approach is quite different for one. There is stress on job flow and process for another.

  7. Multimodal imaging system for dental caries detection

    NASA Astrophysics Data System (ADS)

    Liang, Rongguang; Wong, Victor; Marcus, Michael; Burns, Peter; McLaughlin, Paul

    2007-02-01

    Dental caries is a disease in which minerals of the tooth are dissolved by surrounding bacterial plaques. A caries process present for some time may result in a caries lesion. However, if it is detected early enough, the dentist and dental professionals can implement measures to reverse and control caries. Several optical, nonionized methods have been investigated and used to detect dental caries in early stages. However, there is not a method that can singly detect the caries process with both high sensitivity and high specificity. In this paper, we present a multimodal imaging system that combines visible reflectance, fluorescence, and Optical Coherence Tomography (OCT) imaging. This imaging system is designed to obtain one or more two-dimensional images of the tooth (reflectance and fluorescence images) and a three-dimensional OCT image providing depth and size information of the caries. The combination of two- and three-dimensional images of the tooth has the potential for highly sensitive and specific detection of dental caries.

  8. The Assessment of Neurological Systems with Functional Imaging

    ERIC Educational Resources Information Center

    Eidelberg, David

    2007-01-01

    In recent years a number of multivariate approaches have been introduced to map neural systems in health and disease. In this review, we focus on spatial covariance methods applied to functional imaging data to identify patterns of regional activity associated with behavior. In the rest state, this form of network analysis can be used to detect…

  9. Display system for imaging scientific telemetric information

    NASA Technical Reports Server (NTRS)

    Zabiyakin, G. I.; Rykovanov, S. N.

    1979-01-01

    A system for imaging scientific telemetric information, based on the M-6000 minicomputer and the SIGD graphic display, is described. Two dimensional graphic display of telemetric information and interaction with the computer, in analysis and processing of telemetric parameters displayed on the screen is provided. The running parameter information output method is presented. User capabilities in the analysis and processing of telemetric information imaged on the display screen and the user language are discussed and illustrated.

  10. Active State Model for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  11. Biomedical Imaging in Implantable Drug Delivery Systems

    PubMed Central

    Zhou, Haoyan; Hernandez, Christopher; Goss, Monika; Gawlik, Anna; Exner, Agata A.

    2015-01-01

    Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant-body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS. PMID:25418857

  12. Constrained TV-minimization image reconstruction for industrial CT system

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Yang, Min; Zhang, Zheng; Bian, Junguo; Han, Xiao; Sidky, Emil; Pan, Xiaochuan

    2014-02-01

    In this work, we investigate the applicability of the constrained total-variation (TV)-minimization reconstruction method to industrial CT system. In general, industrial CT systems have the same principles of imaging process with clinical CT systems, but different imaging objectives and evaluation metrics. Optimization-based image reconstruction methods have been actively developed to meet practical challenges and extensively tested for clinical CT systems. However, the utility of optimization-based reconstruction methods is task-specific and not necessarily transferrable among different tasks. In this work, we adopt constrained TV-minimization programs together with adaptive-steepest-descent-projection-ontoconvex-sets (ASD-POCS) algorithm for reconstructing images from data of a concrete sample collected using a laboratory industrial CT system developed for non-destructive evaluation. Our results, compared to those reconstructed from FBPbased algorithm, suggest that the constrained TV-minimization program combined with ASD-POCS algorithm can yield images with comparable or improved visual quality and achieve equivalent or better imaging objectives over the currently used FBP-based algorithm under dense sampling data condition.

  13. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  14. Hard x-ray imaging system for XEUS

    NASA Astrophysics Data System (ADS)

    Kunieda, Hideyo; Takahashi, Tadayuki; Kokubun, Motohide; Nakazawa, Kazuhiro; Ogasaka, Yasushi

    2008-07-01

    One of the major sciences of XEUS is the evolution of massive black holes from early to current Universe. As is well known, considerable fraction of massive black holes harbored in active galactic nuclei are embedded in thick absorbing material. In order to observe black holes without any bias of absorption, we propose a hard X-ray imaging system to XEUS. The hard X-ray imaging system is consisted of super mirror X-ray telescopes with multilayer coating and of the position sensitive hard X-ray imaging CdTe detector. Under the current boundary conditions, the design parameters will be optimized for the telescope and the multilayers. Current achievements of hard X-ray imaging detectors are also presented.

  15. Dual-modality imaging system combined fast photoacoustic imaging and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Yuan, Yi

    2009-08-01

    In this paper, we have developed a fast dual-modality imaging system for reconstruction photoacoustic and ultrasound imaging based on a novel digital phased array. The scanning mode and image reconstruction algorithms were modified from our previous work to improve the image quality. A 128-element linear transducer array is connected to a multichannel signal acquisition and digital beam-formation system providing techniques of dynamic receiving focus and dynamic receiving apodization to process the signal. We use the linear transducer array with combined scanning mode to detect signals at multiple locations on a circle around the sample. It makes our dual-modality imaging own the ability of imaging complicated structures of objects. An improved limited-field filtered back projection algorithm with directivity factors was applied in photoacoustic imaging to further improve the lateral resolution. Phase-controlled imaging algorithm was applied to reconstruct acoustical impedance difference in the pure ultrasound imaging. The experiments on phantoms and in vivo early breast cancer detection in a mouse model were performed. The images are clearly, accurately provided.

  16. System Design For A Dental Image Processing System

    NASA Astrophysics Data System (ADS)

    Cady, Fredrick M.; Stover, John C.; Senecal, William J.

    1988-12-01

    An image processing system for a large clinic dental practice has been designed and tested. An analysis of spatial resolution requirements and field tests by dentists show that a system built with presently available, PC-based, image processing equipment can provide diagnostic quality images without special digital image processing. By giving the dentist a tool to digitally enhance x-ray images, increased diagnostic capabilities can be achieved. Very simple image processing procedures such as linear and non-linear contrast expansion, edge enhancement, and image zooming can be shown to be very effective. In addition to providing enhanced imagery in the dentist's treatment room, the system is designed to be a fully automated, dental records management system. It is envisioned that a patient's record, including x-rays and tooth charts, may be retrieved from optical disk storage as the patient enters the office. Dental procedures undertaken during the visit may be entered into the record via the imaging workstation by the dentist or the dental assistant. Patient billing and records keeping may be generated automatically.

  17. Automated live cell imaging systems reveal dynamic cell behavior.

    PubMed

    Chirieleison, Steven M; Bissell, Taylor A; Scelfo, Christopher C; Anderson, Jordan E; Li, Yong; Koebler, Doug J; Deasy, Bridget M

    2011-07-01

    Automated time-lapsed microscopy provides unique research opportunities to visualize cells and subcellular components in experiments with time-dependent parameters. As accessibility to these systems is increasing, we review here their use in cell science with a focus on stem cell research. Although the use of time-lapsed imaging to answer biological questions dates back nearly 150 years, only recently have the use of an environmentally controlled chamber and robotic stage controllers allowed for high-throughput continuous imaging over long periods at the cell and subcellular levels. Numerous automated imaging systems are now available from both companies that specialize in live cell imaging and from major microscope manufacturers. We discuss the key components of robots used for time-lapsed live microscopic imaging, and the unique data that can be obtained from image analysis. We show how automated features enhance experimentation by providing examples of uniquely quantified proliferation and migration live cell imaging data. In addition to providing an efficient system that drastically reduces man-hours and consumes fewer laboratory resources, this technology greatly enhances cell science by providing a unique dataset of temporal changes in cell activity. PMID:21692197

  18. Active constraint control for image-guided robotic surgery.

    PubMed

    Yen, P-L; Davies, B L

    2010-01-01

    The concept of active constraint control for image-guided robotic surgery is introduced, together with its benefits and a short outline of its history. The clinical use of active constraint control in orthopaedic surgery is discussed, together with the outcomes of a clinical trial for unicondylar knee replacement surgery. The evolution of the robotic design from large costly structures towards simpler, more cost-effective systems is also presented, leading to the design of the Acrobot 'Sculptor' system. A new approach to the achievement of robotic total knee replacement is also presented, in which a high-speed rotary cutter is used to slice through the bone to achieve a speedy resection. The control concept is presented, together with the results of trials on animal bones and a cadaver, showing that it is possible to remove large quantities of bone both quickly and accurately. PMID:20718267

  19. An optimized optical system for backlit imaging.

    PubMed

    Ghandhi, J B; Heim, D M

    2009-05-01

    An optimized optical system for back-illuminated imaging was developed and was applied to automotive-type fuel injectors; the system provides significantly higher light collection efficiency than standard flood illumination. An engineered diffuser is used to distribute an extended light source through a controlled range of angles, and a field lens is used to redirect the light to the camera. A ray tracing analysis provides the required source size and diffuser angle to ensure that the necessary range of ray angles is included to allow fully diffuse imaging. Direct comparison with a flood illumination system showed that the collection efficiency increased by more than two orders of magnitude without any degradation of image quality. PMID:19485542

  20. The system integration of image processing

    NASA Astrophysics Data System (ADS)

    Chen, Qi-xing; Wu, Qin-zhang; Gao, Xiao-dong; Ren, Guo-qiang

    2008-03-01

    An integration system was designed to apply to the remote communication of optics and electronics detection systems, which was integrated with programmable DSP and FPGA chirps in addition to a few Application Specific Integrated Circuits (ASICs). It could achieve image binarization, image enhancement, data encryption, image compression encoding, channel encoding, data interleaving, etc., and the algorithms of these functions might be renewed or updated easily. The CCD color camera being a signal source, experiments had been done on the platform with a DSP chirp and a FPGA one. The FPGA chirp mainly realized the reconstruction of image's brightness signal and the production of various timing signals, and the DSP chirp mainly accomplished the other functions. The algorithms to compress image data were based on discrete cosine transformation (DCT) and discrete wavelet transformation (DWT), respectively. The experiment results showed that the developed platform was characterized by flexibility, programmability and reconfigurability. The integration system is well suitable for the remote communication of optics and electronics detection systems.

  1. Camera system for multispectral imaging of documents

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Boydston, Kenneth; France, Fenella G.; Knox, Keith T.; Easton, Roger L., Jr.; Toth, Michael B.

    2009-02-01

    A spectral imaging system comprising a 39-Mpixel monochrome camera, LED-based narrowband illumination, and acquisition/control software has been designed for investigations of cultural heritage objects. Notable attributes of this system, referred to as EurekaVision, include: streamlined workflow, flexibility, provision of well-structured data and metadata for downstream processing, and illumination that is safer for the artifacts. The system design builds upon experience gained while imaging the Archimedes Palimpsest and has been used in studies of a number of important objects in the LOC collection. This paper describes practical issues that were considered by EurekaVision to address key research questions for the study of fragile and unique cultural objects over a range of spectral bands. The system is intended to capture important digital records for access by researchers, professionals, and the public. The system was first used for spectral imaging of the 1507 world map by Martin Waldseemueller, the first printed map to reference "America." It was also used to image sections of the Carta Marina 1516 map by the same cartographer for comparative purposes. An updated version of the system is now being utilized by the Preservation Research and Testing Division of the Library of Congress.

  2. Analysis of imaging system performance capabilities

    NASA Astrophysics Data System (ADS)

    Haim, Harel; Marom, Emanuel

    2013-06-01

    Present performance analysis of optical imaging systems based on results obtained with classic one-dimensional (1D) resolution targets (such as the USAF resolution chart) are significantly different than those obtained with a newly proposed 2D target [1]. We hereby prove such claim and show how the novel 2D target should be used for correct characterization of optical imaging systems in terms of resolution and contrast. We apply thereafter the consequences of these observations on the optimal design of some two-dimensional barcode structures.

  3. Complementary compressive imaging for the telescopic system.

    PubMed

    Yu, Wen-Kai; Liu, Xue-Feng; Yao, Xu-Ri; Wang, Chao; Zhai, Yun; Zhai, Guang-Jie

    2014-01-01

    Conventional single-pixel cameras recover images only from the data recorded in one arm of the digital micromirror device, with the light reflected to the other direction not to be collected. Actually, the sampling in these two reflection orientations is correlated with each other, in view of which we propose a sampling concept of complementary compressive imaging, for the first time to our knowledge. We use this method in a telescopic system and acquire images of a target at about 2.0 km range with 20 cm resolution, with the variance of the noise decreasing by half. The influence of the sampling rate and the integration time of photomultiplier tubes on the image quality is also investigated experimentally. It is evident that this technique has advantages of large field of view over a long distance, high-resolution, high imaging speed, high-quality imaging capabilities, and needs fewer measurements in total than any single-arm sampling, thus can be used to improve the performance of all compressive imaging schemes and opens up possibilities for new applications in the remote-sensing area. PMID:25060569

  4. Geophysical tomography imaging system. Final CRADA report

    SciTech Connect

    Norton, S.J.; Won, I.J.

    1998-05-20

    The Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and Geophex, Ltd., was established to investigate high-resolution, shallow acoustic imaging of the subsurface. The primary objectives of the CRADA were accomplished, including the evaluation of a new tomographic imaging algorithm and the testing and comparison of two different acoustic sources, the hammer/plate source and an electromagnetic vibratory source. The imaging system was composed essentially of a linear array of geophones, a digital seismograph, and imaging software installed on a personal computer. Imaging was most successful using the hammer source, which was found to be less susceptible to ground roll (surface wave) interference. It is conjectured that the vibratory source will perform better for deeper targets for which ground roll is less troublesome. Potential applications of shallow acoustic imaging are numerous, including the detection and characterization of buried solid waste, unexploded ordnance, and clandestine man-made underground structures associated with treaty verification (e.g., tunnels, underground storage facilities, hidden bunkers).

  5. Volumetric imaging system for the ionosphere (VISION)

    NASA Astrophysics Data System (ADS)

    Dymond, Kenneth F.; Budzien, Scott A.; Nicholas, Andrew C.; Thonnard, Stefan E.; Fortna, Clyde B.

    2002-01-01

    The Volumetric Imaging System for the Ionosphere (VISION) is designed to use limb and nadir images to reconstruct the three-dimensional distribution of electrons over a 1000 km wide by 500 km high slab beneath the satellite with 10 km x 10 km x 10 km voxels. The primary goal of the VISION is to map and monitor global and mesoscale (> 10 km) electron density structures, such as the Appleton anomalies and field-aligned irregularity structures. The VISION consists of three UV limb imagers, two UV nadir imagers, a dual frequency Global Positioning System (GPS) receiver, and a coherently emitting three frequency radio beacon. The limb imagers will observe the O II 83.4 nm line (daytime electron density), O I 135.6 nm line (nighttime electron density and daytime O density), and the N2 Lyman-Birge-Hopfield (LBH) bands near 143.0 nm (daytime N2 density). The nadir imagers will observe the O I 135.6 nm line (nighttime electron density and daytime O density) and the N2 LBH bands near 143.0 nm (daytime N2 density). The GPS receiver will monitor the total electron content between the satellite containing the VISION and the GPS constellation. The three frequency radio beacon will be used with ground-based receiver chains to perform computerized radio tomography below the satellite containing the VISION. The measurements made using the two radio frequency instruments will be used to validate the VISION UV measurements.

  6. Thermal Neutron Imaging in an Active Interrogation Environment

    SciTech Connect

    Vanier, Peter E.; Forman, Leon; Norman, Daren R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutron-emitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  7. Thermal neutron imaging in an active interrogation environment

    SciTech Connect

    Vanier,P.E.; Forman, L., and Norman, D.R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  8. Active contours for localizing polyps in colonoscopic NBI image data

    NASA Astrophysics Data System (ADS)

    Breier, Matthias; Gross, Sebastian; Behrens, Alexander; Stehle, Thomas; Aach, Til

    2011-03-01

    Colon cancer is the third most common type of cancer in the United States of America. Every year about 140,000 people are newly diagnosed with colon cancer. Early detection is crucial for a successful therapy. The standard screening procedure is called colonoscopy. Using this endoscopic examination physicians can find colon polyps and remove them if necessary. Adenomatous colon polyps are deemed a preliminary stage of colon cancer. The removal of a polyp, though, can lead to complications like severe bleedings or colon perforation. Thus, only polyps diagnosed as adenomatous should be removed. To decide whether a polyp is adenomatous the polyp's surface structure including vascular patterns has to be inspected. Narrow-Band imaging (NBI) is a new tool to improve visibility of vascular patterns of the polyps. The first step for an automatic polyp classification system is the localization of the polyp. We investigate active contours for the localization of colon polyps in NBI image data. The shape of polyps, though roughly approximated by an elliptic form, is highly variable. Active contours offer the flexibility to adapt to polyp variation well. To avoid clustering of contour polygon points we propose the application of active rays. The quality of the results was evaluated based on manually segmented polyps as ground truth data. The results were compared to a template matching approach and to the Generalized Hough Transform. Active contours are superior to the Hough transform and perform equally well as the template matching approach.

  9. Optical imaging module for astigmatic detection system.

    PubMed

    Wang, Wei-Min; Cheng, Chung-Hsiang; Molnar, Gabor; Hwang, Ing-Shouh; Huang, Kuang-Yuh; Danzebrink, Hans-Ulrich; Hwu, En-Te

    2016-05-01

    In this paper, an optical imaging module design for an astigmatic detection system (ADS) is presented. The module is based on a commercial optical pickup unit (OPU) and it contains a coaxial illuminant for illuminating a specimen. Furthermore, the imaging module facilitates viewing the specimen and the detection laser spot of the ADS with a lateral resolution of approximately 1 μm without requiring the removal of an element of the OPU. Two polarizers and one infrared filter are used to eliminate stray laser light in the OPU and stray light produced by the illuminant. Imaging modules designed for digital versatile disks (DVDs) and Blu-ray DVDs were demonstrated. Furthermore, the module can be used for imaging a small cantilever with approximate dimensions of 2 μm (width) × 5 μm (length), and therefore, it has the potential to be used in high-speed atomic force microscopy. PMID:27250434

  10. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  11. Advances in Small Animal Imaging Systems

    SciTech Connect

    Loudos, George K.

    2007-11-26

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  12. Bioluminescence imaging of estrogen receptor activity during breast cancer progression

    PubMed Central

    Vantaggiato, Cristina; Dell’Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  13. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  14. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  15. Information efficiency in hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Reichenbach, Stephen E.; Cao, Luyin; Narayanan, Ram M.

    2002-07-01

    In this work we develop a method for assessing the information density and efficiency of hyperspectral imaging systems that have spectral bands of nonuniform width. Imaging system designs with spectral bands of nonuniform width can efficiently gather information about a scene by allocating bandwidth among the bands according to their information content. The information efficiency is the ratio of information density to data density and is a function of the scene's spectral radiance, hyperspectral system design, and signal-to-noise ratio. The assessment can be used to produce an efficient system design. For example, one approach to determining the number and width of the spectral bands for an information-efficient design is to begin with a design that has a single band and then to iteratively divide a band into two bands until no further division improves the system's efficiency. Two experiments illustrate this approach, one using a simple mathematical model for the scene spectral-radiance autocorrelation function and the other using the deterministic spectral-radiance autocorrelation function of a hyperspectral image from NASA's Advanced Solid-State Array Spectroradiometer. The approach could be used either to determine a fixed system design or to dynamically control a system with variable-width spectral bands (e.g., using on-board processing in a satellite system).

  16. Echocardiographic image of an active human heart

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiographic images provide quick, safe images of the heart as it beats. While a state-of-the art echocardiograph unit is part of the Human Research Facility on International Space Station, quick transmission of images and data to Earth is a challenge. NASA is developing techniques to improve the echocardiography available to diagnose sick astronauts as well as study the long-term effects of space travel on their health. Echocardiography uses ultrasound, generated in a sensor head placed against the patient's chest, to produce images of the structure of the heart walls and valves. However, ultrasonic imaging creates an enormous volume of data, up to 220 million bits per second. This can challenge ISS communications as well as Earth-based providers. Compressing data for rapid transmission back to Earth can degrade the quality of the images. Researchers at the Cleveland Clinic Foundation are working with NASA to develop compression techniques that meet imaging standards now used on the Internet and by the medical community, and that ensure that physicians receive quality diagnostic images.

  17. Neutron coincidence imaging for active and passive neutron assays

    SciTech Connect

    Estep, R. J.; Brunson, G. S.; Melton, S. G.

    2001-01-01

    Neutron multiplicity assay algorithms for {sup 240}Pu assume a point source of fission neutrons that are detected in a single detector channel. The {sup 240}Pu in real waste, however, is more likely to be distributed throughout the container in some random way. For different reasons, this leads to significant errors when using either multiplicity or simpler coincidence analyses. Reduction of these errors can be achieved using tomographic imaging. In this talk we report on our results from using neutron singles and coincidence data between tagged detector pairs to provide enhanced tomographic imaging capabilities to a crate nondestructive assay system. Only simulated passive coincidence data is examined here, although the higher signal rates from active coincidence counting hold more promise for waste management. The active coincidence approach has significantly better sensitivity than the passive and is not significantly perturbed by (alpha,n) contributions. Our study was based primarily on simulated neutron pulse trains derived from the Los Alamos SIM3D software, which were subjected to analysis using the Los Alamos CTEN-FIT and TGS-FIT software. We found significantly improved imaging capability using the coincidence and singles rate data than could be obtained using the singles rate alone.

  18. Weighted contrast metric for imaging system performance

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.

    2012-06-01

    There have been significant improvements in the image quality metrics used in the NVESD model suite in recent years. The introduction of the Targeting Task Performance (TTP) metric to replace the Johnson criteria yielded significantly more accurate predictions for under-sampled imaging systems in particular. However, there are certain cases which cause the TTP metric to predict optimistic performance. In this paper a new metric for predicting performance of imaging systems is described. This new weighted contrast metric is characterized as a hybrid of the TTP metric and Johnson criteria. Results from a number of historical perception studies are presented to compare the performance of the TTP metric and Johnson criteria to the newly proposed metric.

  19. Optical image acquisition system for colony analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Jin, Wenbiao

    2006-02-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.

  20. Stereo Imaging Velocimetry System and Method

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2003-01-01

    A system and a method is provided for measuring three dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. Image frames captured by the cameras may be filtered using background subtraction with outlier rejection with spike-removal filtering. The cameras may calibrated to accurately represent image coordinates in a world coordinate system using calibration grids modified using warp transformations. The two-dimensional views of the cameras may be recorded fur image processing and particle track determination. The tracer particles may be tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured there from.

  1. The magnetic resonance imaging-linac system.

    PubMed

    Lagendijk, Jan J W; Raaymakers, Bas W; van Vulpen, Marco

    2014-07-01

    The current image-guided radiotherapy systems are suboptimal in the esophagus, pancreas, kidney, rectum, lymph node, etc. These locations in the body are not easily accessible for fiducials and cannot be visualized sufficiently on cone-beam computed tomographies, making daily patient set-up prone to geometrical uncertainties and hinder dose optimization. Additional interfraction and intrafraction uncertainties for those locations arise from motion with breathing and organ filling. To allow real-time imaging of all patient tumor locations at the actual treatment position a fully integrated 1.5-T, diagnostic quality, magnetic resonance imaging with a 6-MV linear accelerator is presented. This system must enable detailed dose painting at all body locations. PMID:24931095

  2. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  3. IMAGE 100: The interactive multispectral image processing system

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.; Towles, R. W.

    1975-01-01

    The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.

  4. Resolution limits in imaging LADAR systems

    NASA Astrophysics Data System (ADS)

    Khoury, Jed; Woods, Charles L.; Lorenzo, Joseph P.; Kierstead, John; Pyburn, Dana; Sengupta, S. K.

    2004-04-01

    In this paper, we introduce a new design concept of laser radar systems that combines both phase comparison and time-of-flight methods. We show from signal to noise ration considerations that there is a fundamental limit to the overall resolution in 3-D imaging range laser radar (LADAR). We introduce a new metric, volume of resolution (VOR), and we show from quantum noise considerations, that there is a maximum resolution volume, that can be achieved, for a given set of system parameters. Consequently, there is a direct tradeoff between range resolution and spatial resolution. Thus in a LADAR system, range resolution may be maximized at the expense of spatial image resolution and vice versa. We introduce resolution efficiency, ηr, as a new figure of merit for LADAR, that describes system resolution under the constraints of a specific design, compared to its optimal resolution performance derived from quantum noise considerations. We analyze how the resolution efficiency could be utilized to improve the resolution performance of a LADAR system. Our analysis could be extended to all LADAR systems, regardless of whether they are flash imaging or scanning laser systems.

  5. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  6. Multi-spectral image dissector camera system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The image dissector sensor for the Earth Resources Program is evaluated using contrast and reflectance data. The ground resolution obtainable for low contrast at the targeted signal to noise ratio of 1.8 was defined. It is concluded that the system is capable of achieving the detection of small, low contrast ground targets from satellites.

  7. A Portable Image Workstation/Transmission System

    NASA Astrophysics Data System (ADS)

    Ferrante, R. D.; Tom, V. T.; Walton, G.

    1986-11-01

    This paper describes a PC-based workstation for the acquisition, enhancement, transmission and reception of image and text data. The system was designed to provide both ease of use and reasonable performance using IBM PC technology with a 512 X 512 monochrome frame grabber board (PCVISION). The system allows the user to annotate an image with text legends and graphics. The system utilizes some unique methods for achieving eye pleasing two pixel graphics. An image may also be enhanced in two ways: globally with look up table alterations and locally with contrast and edge enhancing operations. Performance enhancement is achieved by implementing primarily integer operations, thereby elimating floating point operations, and radically increasing the apparent processor speed. We show that designing a system for ease of use may also significantly enhance its responsiveness and speed. For example, the edge enhancement technique only allows selection of low, medium, and high levels of enhancement, simplifying user choices and speeding up process operations. In addition, all look up table enhancements are precalculated and stored, allowing the user to alter the contrast with keystroke rapidity without being concerned about the applicability of the algorithm to a particular image.

  8. W-band active imaging by photonics-based synthesizer

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu

    2016-05-01

    We demonstrate a nondestructive electromagnetic-wave imaging system with a photonics-based W-band synthe- sizer, traveling-wave tube amplifier and focal-plane transistor array in real time manner. High-power amplifier with multi-watts output will enhance the quality of obtained images under transmission and reflection imaging configurations.

  9. Functional imaging of the musculoskeletal system

    PubMed Central

    2015-01-01

    Functional imaging, which provides information of how tissues function rather than structural information, is well established in neuro- and cardiac imaging. Many musculoskeletal structures, such as ligaments, fascia and mineralized bone, have by definition a mainly structural role and clearly don’t have the same functional capacity as the brain, heart, liver or kidney. The main functionally responsive musculoskeletal tissues are the bone marrow, muscle and nerve and, as such, magnetic resonance (MR) functional imaging has primarily addressed these areas. Proton or phosphorus spectroscopy, other fat quantification techniques, perfusion imaging, BOLD imaging, diffusion and diffusion tensor imaging (DTI) are the main functional techniques applied. The application of these techniques in the musculoskeletal system has mainly been research orientated where they have already greatly enhanced our understanding of marrow physiology, muscle physiology and neural function. Going forwards, they will have a greater clinical impact helping to bridge the disconnect often seen between structural appearances and clinical symptoms, allowing a greater understanding of disease processes and earlier recognition of disease, improving prognostic prediction and optimizing the monitoring of treatment effect. PMID:26029633

  10. Miniaturized 3D microscope imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  11. A recommender system for medical imaging diagnostic.

    PubMed

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision. PMID:25991188

  12. The Imaging Node for the Planetary Data System

    NASA Astrophysics Data System (ADS)

    Eliason, Eric M.; LaVoie, Susan K.; Soderblom, Laurence A.

    1996-01-01

    The Planetary Data System Imaging Node maintains and distributes the archives of planetary image data acquired from NASA's flight projects with the primary goal of enabling the science community to perform image processing and analysis on the data. The Node provides direct and easy access to the digital image archives through wide distribution of the data on CD-ROM media and on-line remote-access tools by way of Internet services. The Node provides digital image processing tools and the expertise and guidance necessary to understand the image collections. The data collections, now approaching one terabyte in volume, provide a foundation for remote sensing studies for virtually all the planetary systems in our solar system (except for Pluto). The Node is responsible for restoring data sets from past missions in danger of being lost. The Node works with active flight projects to assist in the creation of their archive products and to ensure that their products and data catalogs become an integral part of the Node's data collections.

  13. Stereofluoroscopic image-guided robotic biopsy system

    NASA Astrophysics Data System (ADS)

    Shi, Minyan; Liu, Hong; Tao, Gang; Fajardo, Laurie L.

    1999-07-01

    This paper presents the key techniques of a stereo- fluoroscopic image-guided robotic biopsy system: 3D position reconstruction, 3D path planning, path registration and robot trajectory control with safety considerations. This system automatically adjusts the needle inserting path according to a real-time 3D position error feedback. This system is particularly applicable to the soft tissue and organ biopsy, with advantages of increased accuracy, short completion time and minimum invasiveness to the patient. Simulation shows the safety and accuracy of this robotic biopsy system.

  14. Adjunct processors in embedded medical imaging systems

    NASA Astrophysics Data System (ADS)

    Trepanier, Marc; Goddard, Iain

    2002-05-01

    Adjunct processors have traditionally been used for certain tasks in medical imaging systems. Often based on application-specific integrated circuits (ASICs), these processors formed X-ray image-processing pipelines or constituted the backprojectors in computed tomography (CT) systems. We examine appropriate functions to perform with adjunct processing and draw some conclusions about system design trade-offs. These trade-offs have traditionally focused on the required performance and flexibility of individual system components, with increasing emphasis on time-to-market impact. Typically, front-end processing close to the sensor has the most intensive processing requirements. However, the performance capabilities of each level are dynamic and the system architect must keep abreast of the current capabilities of all options to remain competitive. Designers are searching for the most efficient implementation of their particular system requirements. We cite algorithm characteristics that point to effective solutions by adjunct processors. We have developed a field- programmable gate array (FPGA) adjunct-processor solution for a Cone-Beam Reconstruction (CBR) algorithm that offers significant performance improvements over a general-purpose processor implementation. The same hardware could efficiently perform other image processing functions such as two-dimensional (2D) convolution. The potential performance, price, operating power, and flexibility advantages of an FPGA adjunct processor over an ASIC, DSP or general-purpose processing solutions are compelling.

  15. Photospheric imaging of the RS CVn system HR 1099

    NASA Technical Reports Server (NTRS)

    Donati, J.-F.; Brown, S. F.; Semel, M.; Rees, D. E.; Dempsey, R. C.; Matthews, J. M.; Henry, G. W.; Hall, D. S.

    1992-01-01

    Spectropolarimetric, spectroscopic, and photometric observations of the RS CVn binary system HR 1099 = V711 Tau (K1IV+G5V) were made from Oct. 1988 to Jan. 1991. From Doppler imaging of the unpolarized spectra and the corresponding data, two maximum entropy images of the temperature distribution of the active K1 subgiant at epochs 1988.9 and 1990.9 were derived. Zeeman-Doppler imaging of the circularly polarized spectra has led to the first magnetic maps of a star other than the sun. The fragmentary observations made at epoch 1989.6 suggest that the star's magnetic field lines were emerging radially and/or poloidally from an equatorial warm region at that time, quite likely one of these reconstructed in the 1988.9 temperature image.

  16. The Airborne Ocean Color Imager - System description and image processing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.

    1992-01-01

    The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.

  17. Polarization sensitive optical frequency domain imaging system for endobronchial imaging.

    PubMed

    Li, Jianan; Feroldi, Fabio; de Lange, Joop; Daniels, Johannes M A; Grünberg, Katrien; de Boer, Johannes F

    2015-02-01

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to detect interference signal in two orthogonal polarization channels. Per depth location four electro-magnetic field components are measured that can be represented in a complex 2x2 field matrix. A Jones matrix of the sample is derived and the sample birefringence is extracted by eigenvalue decomposition. The condition of balanced detection and the polarization mode dispersion are quantified. A complex field averaging method based on the alignment of randomly pointing field phasors is developed to reduce speckle noise. The variation of the polarization states incident on the tissue due to the circular scanning and catheter sheath birefringence is investigated. With this system we demonstrated imaging of ex vivo chicken muscle, in vivo pig lung and ex vivo human lung specimens. PMID:25836196

  18. Mars Rover imaging systems and directional filtering

    NASA Technical Reports Server (NTRS)

    Wang, Paul P.

    1989-01-01

    Computer literature searches were carried out at Duke University and NASA Langley Research Center. The purpose is to enhance personal knowledge based on the technical problems of pattern recognition and image understanding which must be solved for the Mars Rover and Sample Return Mission. Intensive study effort of a large collection of relevant literature resulted in a compilation of all important documents in one place. Furthermore, the documents are being classified into: Mars Rover; computer vision (theory); imaging systems; pattern recognition methodologies; and other smart techniques (AI, neural networks, fuzzy logic, etc).

  19. Quantitative image analysis in adipose tissue using an automated image analysis system: differential effects of peroxisome proliferator-activated receptor-alpha and -gamma agonist on white and brown adipose tissue morphology in AKR obese and db/db diabetic mice.

    PubMed

    Okamoto, Yuji; Higashiyama, Hiroyuki; Inoue, Hiroki; Kanematsu, Masahiro; Kinoshita, Mine; Asano, Satoshi

    2007-06-01

    Morphometric analysis of adipocytes is widely used to demonstrate the effects of antiobesity drugs or anti-diabetic drugs on adipose tissues. However, adipocyte morphometry has been quantitatively performed by manual object extraction using conventional image analysis systems. The authors have developed an automated quantitative image analysis method for adipose tissues using an innovative object-based quantitative image analysis system (eCognition). Using this system, it has been shown quantitatively that morphological features of adipose tissues of mice treated with peroxisome proliferator-activated receptor (PPAR) agonists differ dramatically depending on the type of PPAR agonist. Marked alteration of morphological characteristics of brown adipose tissue (BAT) treated with GI259578A, a PPAR-alpha agonist, was observed in AKR/J (AKR) obese mice. Furthermore, there was a 22.8% decrease in the mean size of adipocytes in white adipose tissue (WAT) compared with vehicle. In diabetic db/db mice, the PPAR-gamma agonist GW347845X decreased the mean size of adipocytes in WAT by 15.4% compared with vehicle. In contrast to changes in WAT, GW347845X increased the mean size of adipocytes in BAT greatly by 96.1% compared with vehicle. These findings suggest that GI259578A may activate fatty acid oxidation in BAT and that GW347845X may cause adipocyte differentiation in WAT and enhancement of lipid storage in BAT. PMID:17539968

  20. An imaging system for intraoperative functional imaging of optical intrinsic signals

    NASA Astrophysics Data System (ADS)

    Wong, Gregory Kai

    This dissertation focuses on the research, design, and implementation of a Neurosurgical Imaging System (NIS), having the principle characteristics of modularity, mobility, multispectral imaging capabilities, and an open software architecture. The NIS will enable functional imaging of humans and animals by implementing innovative hardware and software enhancements. The NIS is tightly integrated with data acquisition hardware and software for simultaneous measurements of real-time, physiological parameters and Optical Intrinsic Signals (OIS). The NIS provides a portable, versatile imaging system. High speed ``off the shelf'' hardware has been implemented and refined to reduce overall cost and maintenance of the NIS. Implementation of new, enhanced charge coupled device technology, such as, Electron Bombardment Charge Coupled Devices (EBCCD) dramatically increases sensitivity and multi-spectral image acquisition capabilities. Utilization of efficient calibration and testing protocols provides advanced trouble shooting and standard performance metrics for the NIS. The NIS was experimentally tested and validated on LED ``phantoms'' and a variety of mammalian brain models throughout its design phases. Implementation of an innovative imaging system such as the NIS provides a powerful research and clinical diagnostic tool that will enhance our current understanding of the various physiologic underpinnings of neurovascular coupling in normal and diseased brains. The development of this type of portable imaging instrumentation controlled by a robust software architecture that provides command and control, real time data acquisition, data analysis, auto calibration, and performance metrics lay the foundations for a comprehensive neurosurgical guidance tool, as well as, a powerful experimental research tool for mapping activity-related changes in cerebral perfusion and neuronal activity.

  1. Design and implementation of control system for range-gated underwater laser imaging

    NASA Astrophysics Data System (ADS)

    Ge, Wei-long; Zhang, Xiao-hui; Han, Hong-wei; Hua, Liang-hong

    2012-01-01

    There is currently considerable in developing underwater target detection, the underwater imaging system can be divided into active imaging system and passive system. The main feature of the active imaging system is that they use light sources to illuminate the targets and collect the reflection from targets. The advantages of active imaging system over passive imaging systems are high contrast and without the affection of environment sources. In this article, a range-gated underwater laser imaging system is built, which consists of laser illumination system, photoelectric imaging system and control system. The laser illumination system includes a light-pumped solid state doubled ND-YAG laser(532nm) which laser power and frequency can be adjusted and an optics expanding system of variable ratio. The photoelectric imaging system includes a gated Intensified CCD(ICCD) cameras which ICCD scheduling, gate width, delay time and gain can be adjusted and a optics received system of variable ratio. In order to acquire effectual target image using range-gated underwater laser imaging system, appropriate control parameters that include laser power and frequency, ICCD scheduling, gate width, delay time and gain, optics expanding system ratio and optics received system ratio must be given accurately. A control system which used C8051F320 and C8051F040 (MCU) as the core is designed, the control system can effectively control seven parameters that given above. The construction of software and hardware of the control system is introduced. And target image of underwater distance 25 m and 40m is given, Experimental results showed that the control system has high control precision, safe and stable operation and good speed adjusting performance can be achieved. It can be satisfied to apply to underwater target detection.

  2. Design and implementation of control system for range-gated underwater laser imaging

    NASA Astrophysics Data System (ADS)

    Ge, Wei-Long; Zhang, Xiao-Hui; Han, Hong-Wei; Hua, Liang-Hong

    2011-11-01

    There is currently considerable in developing underwater target detection, the underwater imaging system can be divided into active imaging system and passive system. The main feature of the active imaging system is that they use light sources to illuminate the targets and collect the reflection from targets. The advantages of active imaging system over passive imaging systems are high contrast and without the affection of environment sources. In this article, a range-gated underwater laser imaging system is built, which consists of laser illumination system, photoelectric imaging system and control system. The laser illumination system includes a light-pumped solid state doubled ND-YAG laser(532nm) which laser power and frequency can be adjusted and an optics expanding system of variable ratio. The photoelectric imaging system includes a gated Intensified CCD(ICCD) cameras which ICCD scheduling, gate width, delay time and gain can be adjusted and a optics received system of variable ratio. In order to acquire effectual target image using range-gated underwater laser imaging system, appropriate control parameters that include laser power and frequency, ICCD scheduling, gate width, delay time and gain, optics expanding system ratio and optics received system ratio must be given accurately. A control system which used C8051F320 and C8051F040 (MCU) as the core is designed, the control system can effectively control seven parameters that given above. The construction of software and hardware of the control system is introduced. And target image of underwater distance 25 m and 40m is given, Experimental results showed that the control system has high control precision, safe and stable operation and good speed adjusting performance can be achieved. It can be satisfied to apply to underwater target detection.

  3. Terahertz imaging system performance model for concealed-weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Jacobs, Eddie L.; Moyer, Steven K.; Halford, Carl E.; Griffin, Steven T.; De Lucia, Frank C.; Petkie, Douglas T.; Franck, Charmaine C.

    2008-03-01

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory have developed a terahertz (THz) -band imaging system performance model for detection and identification of concealed weaponry. The MATLAB-based model accounts for the effects of all critical sensor and display components and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination. The model is based on recent U.S. Army NVESD sensor performance modeling technology that couples system design parameters to observer-sensor field performance by using the acquire methodology for weapon identification performance predictions. This THz model has been developed in support of the Defense Advanced Research Project Agencies' Terahertz Imaging Focal-Plane Technology (TIFT) program and is currently being used to guide the design and development of a 0.650 THz active-passive imaging system. This paper will describe the THz model in detail, provide and discuss initial modeling results for a prototype THz imaging system, and outline plans to calibrate and validate the model through human perception testing.

  4. Terahertz imaging system performance model for concealed-weapon identification.

    PubMed

    Murrill, Steven R; Jacobs, Eddie L; Moyer, Steven K; Halford, Carl E; Griffin, Steven T; De Lucia, Frank C; Petkie, Douglas T; Franck, Charmaine C

    2008-03-20

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory have developed a terahertz (THz) -band imaging system performance model for detection and identification of concealed weaponry. The MATLAB-based model accounts for the effects of all critical sensor and display components and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination. The model is based on recent U.S. Army NVESD sensor performance modeling technology that couples system design parameters to observer-sensor field performance by using the acquire methodology for weapon identification performance predictions. This THz model has been developed in support of the Defense Advanced Research Project Agencies' Terahertz Imaging Focal-Plane Technology (TIFT) program and is currently being used to guide the design and development of a 0.650 THz active-passive imaging system. This paper will describe the THz model in detail, provide and discuss initial modeling results for a prototype THz imaging system, and outline plans to calibrate and validate the model through human perception testing. PMID:18709076

  5. Terahertz imaging system performance model for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Jacobs, Eddie L.; Moyer, Steven K.; Halford, Carl E.; Griffin, Steven T.; De Lucia, Frank C.; Petkie, Douglas T.; Franck, Charmaine C.

    2005-11-01

    The U.S. Army Night Vision and Electronic Sensors Directorate and the U.S. Army Research Laboratory have developed a terahertz-band imaging system performance model for detection and identification of concealed weaponry. The MATLAB-based model accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination. The model is based on recent U.S. Army NVESD sensor performance models that couple system design parameters to observer-sensor field performance using the acquire methodology for weapon identification performance predictions. This THz model has been developed in support of the Defense Advanced Research Project Agencies' Terahertz Imaging Focal-Plane-Array Technology (TIFT) program and is presently being used to guide the design and development of a 0.650 THz active/passive imaging system. This paper will describe the THz model in detail, provide and discuss initial modeling results for a prototype THz imaging system, and outline plans to validate and calibrate the model through human perception testing.

  6. Spatial distortion prediction system for stereoscopic images

    NASA Astrophysics Data System (ADS)

    Masaoka, Kenichiro; Hanazato, Atsuo; Emoto, Masaki; Yamanoue, Hirokazu; Nojiri, Yuji; Okano, Fumio

    2006-01-01

    We propose a system to calculate the spatial distortion in 3-D images based on the shooting, display, and viewing conditions. It can be used to predict the extent of the perceived puppet-theater effect and the cardboard effect. The magnitude of the spatial distortion and the extent of the puppet-theater and cardboard effects are displayed using a space grid whose size can be estimated based on the objects' depths, calculated from the binocular parallax of the acquired stereoscopic images. This system can also be used to predict excessive binocular parallax and excessive parallax distribution. Several cases in which puppet-theater and cardboard effects are expected to be produced are presented. We also demonstrate how the proposed system might be used to predict ratings of naturalness and quality of depth.

  7. SPECT-CT system for small animal imaging

    SciTech Connect

    Andrew Weisenberger; Randolph Wojcik; E.L. Bradley; Paul Brewer; Stanislaw Majewski; Jianguo Qian; Amoreena Ranck; Arunava Saha; Mark Smith; Robert Welsh

    2003-02-01

    The Detector Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the Biology, Physics, and Applied Sciences Departments at the College of William and Mary are collaborating on the development of a miniature dual modality SPECT-CT system for mouse imaging. The detector heads of the SPECT sub-system are designed to be capable of imaging the gamma- and X-ray emissions (28-35 keV) of the radioactive isotope iodine-125 (I-125). Two different sets of I-125 imaging detectors are configured on a gantry that has an open-barrel type design. One set of detector heads is based on the 1-in square Hamamatsu R5900-M64 position sensitive photomultiplier tube coupled to crystal scintillator arrays. The other detector heads configured on the gantry are two 5-in diameter Hamamatsu R3292-based compact gamma cameras. The X-ray radiographic projections are obtained using a LIXI Inc. model LF-85-503-OS X-ray imaging system that has an active area of 5.5 cm in diameter. The open-barrel shaped gantry facilitates the positioning of various mini gamma-ray imaging detectors and the X-ray system. The data acquisition and gantry control is interfaced through a Macintosh G3 workstation. Preliminary SPECT reconstruction results using the R5900 based detector are presented.

  8. SPECT-CT System for Small Animal Imaging

    SciTech Connect

    A.G. Weisenberger; R. Wojcik; E.L. Bradley; P. Brewer; S. Majewski; J. Qian; A. Ranck; M.S. Saha; K. Smith; M.F. Smith; R.E. Welsh

    2001-11-01

    The Detector Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the Biology, Physics and Applied Sciences Departments at the College of William and Mary are collaborating on the development of a miniature dual modality SPECT-CT system for mouse imaging. The detector heads of the SPECT sub-system are capable of imaging the gamma- and x-ray emissions (28-35 keV) of the radioactive isotope iodine-125 (I-125). Two different sets of I-125 imaging detectors are configured on a gantry which has an open-barrel type design. One set of detector heads is based on the 1 inch square Hamamatsu R5900-M64 position sensitive photomultiplier tube coupled to crystal scintillator arrays. The other detector heads configured on the gantry are two 5-inch diameter Hamamatsu R3292-based compact gamma cameras. The x-ray radiographic projections will be obtained using a LIXI Inc. model LF-85-503-OS x-ray imaging system that has an active area of 5.5 cm in diameter. The open-barrel shaped gantry facilitates the positioning of various mini gamma-ray imaging detectors and the x-ray system. The data acquisition and gantry control is interfaced through a Macintosh G3 workstation. SPECT reconstruction results using the R5900 based detector are presented.

  9. Compact fiber-pigtailed terahertz imaging system

    NASA Astrophysics Data System (ADS)

    Rudd, James V.; Zimdars, David A.; Warmuth, Matthew W.

    2000-05-01

    Terahertz imaging has been shown to be a powerful tool for analyzing a variety of materials. From the amount of water in a leaf over time to looking at the spectroscopic species in a flame, this technique shows great potential for commercial applications. However, in order to work in a commercial environment, the present free-space optical systems must be abandoned in favor of fiber-optic delivery. To this end, we have developed a compact, fiber-pigtailed terahertz imaging system that utilizes a hermetically sealed, photoconductive, transmitter and receiver. The receiver uses an integrated amplifier to obtain a 1000:1 S/N with only 1 mW of power on both the transmitter and receiver and with a one second integration time. This system has usable energy extending from 0.04 to 2 THz and has both a rapid (20 Hz) scanner for short, 40-ps, scans as well as a long rail for scans up to 1 ns. The system hardware is contained in a 1.5 cu. ft. box with fibers feeding both the transceiver units. These units can be configured into either a transmission or reflection mode depending on the user's application. An advanced software system controls the hardware, collects the data, and does image processing.

  10. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  11. Active Response Gravity Offload System

    NASA Technical Reports Server (NTRS)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  12. A continuous-wave THz imaging system

    NASA Astrophysics Data System (ADS)

    Pei, Ting-Hang; Huang, Yang-Tung; Wang, Yu-Jiu; Chen, Wei-Zen; Kuo, Chien-Nan; Cheng, Yu-Ting

    2013-08-01

    We develop a continuous wave terehertz (THz) imaging system operating at 288 GHz. This imaging system simply consitutes three parts including the source, two optical lenses, and the detector. The entire size is smaller than the tranditional pulsed THz imaging system. In this developed system, the THz wave is generated by a horn attenna which concentrates the wave in an azimuth angle of 3° ~ 5°. The source originates from a singnal generator, and then the frequency increases to 288 GHz after passing through an 8X multiplier. Next, THz wave is focused by a THz lens on the test sample. By controling the sample position in the x-z plane, we can scan it pixel-by-pixel in which each step along the x- or z- axes is 0.1 mm. After penetrating the test sample, another lens collects the transmitted THz wave and focuses them into the thermal detector. This detector can disply the collected THz power. Finally, by drawing the detected power of each pixel, a transmitted-intensity figure for all pixels is obtained. The resolution of this THz imaging system is about 1~2 mm at present. We have measured human molar tooth and obtained its transmitted figures. Besides, we also develop a technology to adjust the positions of the source and detector by a system containing one laser, one beamsplitter, and two mirrors. The relative positions between the source and detector is very important. The input of the source and the output of the detector are small so that they have to aim at each other very accurately in order to collect maximum transmitted power in the detector.

  13. System Matrix Analysis for Computed Tomography Imaging

    PubMed Central

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  14. System Matrix Analysis for Computed Tomography Imaging.

    PubMed

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  15. Musculoskeletal imaging in progress: the EOS imaging system.

    PubMed

    Wybier, Marc; Bossard, Philippe

    2013-05-01

    The EOS 2D/3D radio-imaging device (Biospace med, France) can disclose a digital radiographic image of bones with a very low radiation dose. This in turn allows in obtaining a single image of a large field of view, as wide as the full skeleton. The simultaneous capturing of spatially paired AP and lateral X-ray images is also a specificity of EOS imaging, which further provides secondary 3D (volumic) reformation of skeletal images. The main indications of this new imaging technology are assessment and follow-up of balance disorders of the spine and of the lower limbs. PMID:23177915

  16. Acoustic imaging systems (for robotic object acquisition)

    NASA Astrophysics Data System (ADS)

    Richardson, J. M.; Martin, J. F.; Marsh, K. A.; Schoenwald, J. S.

    1985-03-01

    The long-term objective of the effort is to establish successful approaches for 3D acoustic imaging of dense solid objects in air to provide the information required for acquisition and manipulation of these objects by a robotic system. The objective of this first year's work was to achieve and demonstrate the determination of the external geometry (shape) of such objects with a fixed sparse array of sensors, without the aid of geometrical models or extensive training procedures. Conventional approaches for acoustic imaging fall into two basic categories. The first category is used exclusively for dense solid objects. It involves echo-ranging from a large number of sensor positions, achieved either through the use of a larger array of transducers or through extensive physical scanning of a small array. This approach determines the distance to specular reflection points from each sensor position; with suitable processing an image can be inferred. The second category uses the full acoustic waveforms to provide an image, but is strictly applicable only to weak inhomogeneities. The most familiar example is medical imaging of the soft tissue portions of the body where the range of acoustic impedance is relatively small.

  17. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  18. High Quality Color Imaging on the Mead Microencapsulated Imaging System Using a Fiber Optic CRT

    NASA Astrophysics Data System (ADS)

    Duke, Ronald J.

    1989-07-01

    Mead Imaging's unique microencapsulated color imaging system (CYCOLOR) has many applications. Mead Imaging and Hughes have combined CYCOLOR and Fiber Optic Cathode Ray Tubes (FOCRT) to develop digital color printers.

  19. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method. PMID:20051345

  20. Being active after a heart attack (image)

    MedlinePlus

    ... best activity when you start exercising after a heart attack. Start slowly, and increase the amount of time ... best activity when you start exercising after a heart attack. Start slowly, and increase the amount of time ...

  1. Calibration and characterization of spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Polder, Gerrit; van der Heijden, Gerie W.

    2001-09-01

    Spectral image sensors provide images with a large umber of contiguous spectral channels per pixel. This paper describes the calibration of spectrograph based spectral imaging systems. The relation between pixel position and measured wavelength was determined using three different wavelength calibration sources. Results indicate that for spectral calibration a source with very small peaks,such as a HgAr source, is preferred to arrow band filters. A second order polynomial model gives a better fit than a linear model for the pixel to wavelength mapping. The signal to noise ratio (SNR)is determined per wavelength. In the blue part of the spectrum,the SNR was lower than in the green and red part.This is due to a decreased quantum efficiency of the CCD,a smaller transmission coefficient of the spectrograph,as well as poor performance of the illuminant. Increasing the amount of blue light,using additional Fluorescent tube with special coating increased the SNR considerably. Furthermore, the spatial and spectral resolution of the system are determined.These can be used to choose appropriate binning factors to decrease the image size without losing information.

  2. [Diagnostic imaging of central nervous system vasculitis].

    PubMed

    Yokota, Hajime; Yamada, Kei

    2015-03-01

    Vasculitis involving the central nervous system presents with infarction and hemorrhage, which are often nonspecific findings. Laboratory examinations are essential for diagnosis of vasculitis in addition to comprehensive and systematic review of the clinical course. Although most findings tend to be nonspecific, enhancement and thickening of the vascular wall indicate vasculitis. Visualization of the vascular wall requires selection of the appropriate imaging modality and mode of image acquisition. Contrast-enhanced CT, MRI, and FDG-PET are useful for visualizing large vessel vasculitis, while CT, MRI, and angiography are effective for medium vessel vasculitis. The use of ultrasound is limited to evaluating vessels on the body surface. Although relatively thick vessels can be demonstrated by angiography, complete survey of small vessels is difficult. Here, we summarize the characteristics of each imaging modality and imaging findings of typical vasculitides-Takayasu arteritis, giant cell arteritis, ANCA-associated vasculitis, Behçet's disease, primary angiitis of the CNS, and vasculitis associated with systemic disease. Differential diagnoses are also shown, including infective endocarditis, tuberculous meningitis, Ehlers-Danlos syndrome, and reversible cerebral vasoconstriction syndrome. PMID:25846439

  3. A rapid-deployable imaging system for environmental system studies

    NASA Astrophysics Data System (ADS)

    Steidley, Carl; Bachnak, Ray; Sadovski, Alexey; Mayfield, Chad; Kulkarni, Rahul

    2005-03-01

    This paper describes an Airborne Multi-Spectral Imaging System (AMIS) and the development of its system software. This system has been developed so as to be rapidly deployed in response to episodic events such as hurricanes and tropical storms which may occur year round in coastal zones. The system uses digital video cameras to provide high resolution images at a very high collection rate. The system is software controlled so as to provide a minimum distraction for the aircraft pilot by providing for the remote manipulation of the camera and the GPS receiver. The system is viable for many applications that require good resolution at low cost. Such applications include vegetation detection, oceanography, marine biology, and environmental coastal science analysis.

  4. A rapid-deployable imaging system for environmental system studies

    NASA Astrophysics Data System (ADS)

    Steidley, Carl W.; Bachnak, Rafic; Dannelly, R. Stephen; Mayfield, Chad; Kulkarni, Rahul

    2004-10-01

    This paper describes an Airborne Multi-Spectral Imaging System (AMIS) and the development of its system software. This system has been developed so as to be rapidly deployed in response to episodic events such as hurricanes and tropical storms which may occur year round in coastal zones. The system uses digital video cameras to provide high resolution images at a very high collection rate. The system is software controlled so as to provide a minimum distraction for the aircraft pilot by providing for the remote manipulation of the camera and the GPS receiver. The system is viable for many applications that require good resolution at low cost. Such applications include vegetation detection, oceanography, marine biology, and environmental coastal science analysis.

  5. Intraoperative Fluorescence Imaging and Multimodal Surgical Navigation Using Goggle System.

    PubMed

    Mela, Christopher A; Papay, Francis A; Liu, Yang

    2016-01-01

    Intraoperative imaging is an invaluable tool in many surgical procedures. We have developed a wearable stereoscopic imaging and display system entitled Integrated Imaging Goggle, which can provide real-time multimodal image guidance. With the Integrated Imaging Goggle, wide field-of-view fluorescence imaging is tracked and registered with intraoperative ultrasound imaging and preoperative tomography-based surgical navigation, to provide integrated multimodal imaging capabilities in real-time. Herein we describe the system instrumentation and the methods of using the Integrated Imaging Goggle to guide surgeries. PMID:27283420

  6. Image selection system. [computerized data storage and retrieval system

    NASA Technical Reports Server (NTRS)

    Knutson, M. A.; Hurd, D.; Hubble, L.; Kroeck, R. M.

    1974-01-01

    An image selection (ISS) was developed for the NASA-Ames Research Center Earth Resources Aircraft Project. The ISS is an interactive, graphics oriented, computer retrieval system for aerial imagery. An analysis of user coverage requests and retrieval strategies is presented, followed by a complete system description. Data base structure, retrieval processors, command language, interactive display options, file structures, and the system's capability to manage sets of selected imagery are described. A detailed example of an area coverage request is graphically presented.

  7. Advanced terahertz imaging system performance model for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Redman, Brian; Espinola, Richard L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.; Griffin, Steven T.; Halford, Carl E.; Reynolds, Joe

    2007-04-01

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory (ARL) have developed a terahertz-band imaging system performance model for detection and identification of concealed weaponry. The details of this MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium. The focus of this paper is to report on recent advances to the base model which have been designed to more realistically account for the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system. The advanced terahertz-band imaging system performance model now also accounts for target and background thermal emission, and has been recast into a user-friendly, Windows-executable tool. This advanced THz model has been developed in support of the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will describe the advanced THz model and its new radiometric sub-model in detail, and provide modeling and experimental results on target observability as a function of target and background orientation.

  8. Experimental acquisition system for impedance tomography with active electrode approach.

    PubMed

    Rigaud, B; Shi, Y; Chauveau, N; Morucci, J P

    1993-11-01

    An experimental system for impedance tomography has been constructed. The acquisition system uses 16 multifunctional active electrodes, each including a current source and a voltage buffer. Images of active and reactive parts of different target impedances in a phantom filled with liquid have been obtained. The system performance has been compared with those of other systems using either a mesh phantom or rods as point sources used for the determination of the modulation transfer function. PMID:8145585

  9. Imaging the fetal central nervous system

    PubMed Central

    De Keersmaecker, B.; Claus, F.; De Catte, L.

    2011-01-01

    The low prevalence of fetal central nervous system anomalies results in a restricted level of exposure and limited experience for most of the obstetricians involved in prenatal ultrasound. Sonographic guidelines for screening the fetal brain in a systematic way will probably increase the detection rate and enhance a correct referral to a tertiary care center, offering the patient a multidisciplinary approach of the condition. This paper aims to elaborate on prenatal sonographic and magnetic resonance imaging (MRI) diagnosis and outcome of various central nervous system malformations. Detailed neurosonographic investigation has become available through high resolution vaginal ultrasound probes and the development of a variety of 3D ultrasound modalities e.g. ultrasound tomographic imaging. In addition, fetal MRI is particularly helpful in the detection of gyration and neurulation anomalies and disorders of the gray and white matter. PMID:24753859

  10. A LANDSAT digital image rectification system

    NASA Technical Reports Server (NTRS)

    Vanwie, P.; Stein, M.

    1976-01-01

    DIRS is a digital image rectification system for the geometric correction of LANDSAT multispectral scanner digital image data. DIRS removes spatial distortions from the data and brings it into conformance with the Universal Transverse Mercator (UTM) map projection. Scene data in the form of landmarks are used to drive the geometric correction algorithms. Two dimensional least squares polynominal and spacecraft attitude modeling techniques for geometric mapping are provided. Entire scenes or selected quadrilaterals may be rectified. Resampling through nearest neighbor or cubic convolution at user designated intervals is available. The output products are in the form of digital tape in band interleaved, single band or CCT format in a rotated UTM projection. The system was designed and implemented on large scale IBM 360 computers.

  11. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  12. Whole-central nervous system functional imaging in larval Drosophila

    PubMed Central

    Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.

    2015-01-01

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051

  13. Imaging system design for improved information capacity

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.; Samms, R. W.

    1984-01-01

    Shannon's theory of information for communication channels is used to assess the performance of line-scan and sensor-array imaging systems and to optimize the design trade-offs involving sensitivity, spatial response, and sampling intervals. Formulations and computational evaluations account for spatial responses typical of line-scan and sensor-array mechanisms, lens diffraction and transmittance shading, defocus blur, and square and hexagonal sampling lattices.

  14. Requirements for imaging vulnerable plaque in the coronary artery using a coded aperture imaging system

    NASA Astrophysics Data System (ADS)

    Tozian, Cynthia

    A coded aperture1 plate was employed on a conventional gamma camera for 3D single photon emission computed tomography (SPECT) imaging on small animal models. The coded aperture design was selected to improve the spatial resolution and decrease the minimum detectable activity (MDA) required to image plaque formation in the APoE (apolipoprotein E) gene deficient mouse model when compared to conventional SPECT techniques. The pattern that was tested was a no-two-holes-touching (NTHT) modified uniformly redundant array (MURA) having 1,920 pinholes. The number of pinholes combined with the thin sintered tungsten plate was designed to increase the efficiency of the imaging modality over conventional gamma camera imaging methods while improving spatial resolution and reducing noise in the image reconstruction. The MDA required to image the vulnerable plaque in a human cardiac-torso mathematical phantom was simulated with a Monte Carlo code and evaluated to determine the optimum plate thickness by a receiver operating characteristic (ROC) yielding the lowest possible MDA and highest area under the curve (AUC). A partial 3D expectation maximization (EM) reconstruction was developed to improve signal-to-noise ratio (SNR), dynamic range, and spatial resolution over the linear correlation method of reconstruction. This improvement was evaluated by imaging a mini hot rod phantom, simulating the dynamic range, and by performing a bone scan of the C-57 control mouse. Results of the experimental and simulated data as well as other plate designs were analyzed for use as a small animal and potentially human cardiac imaging modality for a radiopharmaceutical developed at Bristol-Myers Squibb Medical Imaging Company, North Billerica, MA, for diagnosing vulnerable plaques. If left untreated, these plaques may rupture causing sudden, unexpected coronary occlusion and death. The results of this research indicated that imaging and reconstructing with this new partial 3D algorithm improved

  15. An imaging contamination monitoring system for surfaces

    SciTech Connect

    Shonka, J.J.; DeBord, D.M.; Bennett, T.E.

    1996-06-01

    A novel system for monitoring surfaces for radioactive contamination has been developed. The system uses audible and visual identification methods to provide natural coactivation clues to an operator, resulting in enhanced sensitivity to areas of surface contamination. The system utilizes position-sensing proportional counter detectors, and includes a head-mounted display that provides the user with a real-time, three-dimensional image to allow for instant recognition of surface contamination. This visual information is augmented with audio input in the form of background-subtracted stereo clicks. Time-stamped survey data is stored for later retrieval, providing for additional analysis using a digital imaging workstation. The system is motorized to provide constant speed during surveys, and surveys are recorded with a video camera to allow identification of locations of contamination using the time index from the stored data. The system has been used to conduct surveys at several facilities throughout the southeast, including the Y-12 and K-25 sites in Oak Ridge, Tennessee, and EPA facilities in Montgomery, Alabama. It was demonstrated that the system could perform surveys at much greater rates than with conventional methods, with equal or better detection performance and with documentation so complete that an entire survey could be reexamined at a later date with the reviewer able to see what the original surveyor saw, including display indications and the surface that was monitored.

  16. Small Interactive Image Processing System (SMIPS) system description

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    The Small Interactive Image Processing System (SMIPS) operates under control of the IBM-OS/MVT operating system and uses an IBM-2250 model 1 display unit as interactive graphic device. The input language in the form of character strings or attentions from keys and light pen is interpreted and causes processing of built-in image processing functions as well as execution of a variable number of application programs kept on a private disk file. A description of design considerations is given and characteristics, structure and logic flow of SMIPS are summarized. Data management and graphic programming techniques used for the interactive manipulation and display of digital pictures are also discussed.

  17. Automated method and system for the alignment and correlation of images from two different modalities

    DOEpatents

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  18. The JET Neutron Activation System

    NASA Astrophysics Data System (ADS)

    Roquemore, A. L.; Bertalot, L.; Esposito, B.; Jarvis, O. N.; Loughlin, M. J.; Sadler, G.; van Belle, P.

    1997-11-01

    The JET activation system provides the absolute value of the neutron yields as well as a check on the linearity of other neutron detector systems. The total neutron yield is standardized to one irradiation end reentrant in the top of the vessel, while the results from the other seven irradiation ends are normalized to this standard end and provide redundancy as well as information on the plasma position. A pneumatic transfer system is used to transfer up to five capsules containing elemental foils for a single discharge on JET. Eleven different elemental foils have been utilized to determine the yields from both DD and DT plasmas. By placing several different foils with different activation energy thresholds in a single capsule for one DT discharge, neutron spectral information has been obtained by use of the SAND-II unfolding code. A description of the activation system hardware and calibration of the activation detector system will be presented along with the results from the DT neutron calibration campaign.

  19. Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The figure presents selected views of a compact microscope imaging system (CMIS) that includes a miniature video microscope, a Cartesian robot (a computer- controlled three-dimensional translation stage), and machine-vision and control subsystems. The CMIS was built from commercial off-the-shelf instrumentation, computer hardware and software, and custom machine-vision software. The machine-vision and control subsystems include adaptive neural networks that afford a measure of artificial intelligence. The CMIS can perform several automated tasks with accuracy and repeatability . tasks that, heretofore, have required the full attention of human technicians using relatively bulky conventional microscopes. In addition, the automation and control capabilities of the system inherently include a capability for remote control. Unlike human technicians, the CMIS is not at risk of becoming fatigued or distracted: theoretically, it can perform continuously at the level of the best human technicians. In its capabilities for remote control and for relieving human technicians of tedious routine tasks, the CMIS is expected to be especially useful in biomedical research, materials science, inspection of parts on industrial production lines, and space science. The CMIS can automatically focus on and scan a microscope sample, find areas of interest, record the resulting images, and analyze images from multiple samples simultaneously. Automatic focusing is an iterative process: The translation stage is used to move the microscope along its optical axis in a succession of coarse, medium, and fine steps. A fast Fourier transform (FFT) of the image is computed at each step, and the FFT is analyzed for its spatial-frequency content. The microscope position that results in the greatest dispersal of FFT content toward high spatial frequencies (indicating that the image shows the greatest amount of detail) is deemed to be the focal position.

  20. Infrared Images of an Infant Solar System

    NASA Astrophysics Data System (ADS)

    2002-05-01

    ESO Telescopes Detect a Strange-Looking Object Summary Using the ESO 3.5-m New Technology Telescope and the Very Large Telescope (VLT) , a team of astronomers [1] have discovered a dusty and opaque disk surrounding a young solar-type star in the outskirts of a dark cloud in the Milky Way. It was found by chance during an unrelated research programme and provides a striking portrait of what our Solar System must have looked like when it was in its early infancy. Because of its striking appearance, the astronomers have nicknamed it the "Flying Saucer" . The new object appears to be a perfect example of a very young star with a disk in which planets are forming or will soon form, and located far away from the usual perils of an active star-forming environment . Most other young stars, especially those that are born in dense regions, run a serious risk of having their natal dusty disks destroyed by the blazing radiation of their more massive and hotter siblings in these clusters. The star at the centre of the "Flying Saucer", seems destined to live a long and quiet life at the centre of a planetary system , very much like our own Sun. This contributes to making it a most interesting object for further studies with the VLT and other telescopes. The mass of the observed disk of gas and dust is at least twice that of the planet Jupiter and its radius measures about 45 billion km, or 5 times the size of the orbit of Neptune. PR Photo 12a/02 : The "Flying Saucer" object photographed with NTT/SOFI. PR Photo 12b/02 : VLT/ISAAC image of this object. PR Photo 12c/02 : Enlargement of VLT/ISAAC image . Circumstellar Disks and Planets Planets form in dust disks around young stars. This is a complex process of which not all stages are yet fully understood but it begins when small dust particles collide and stick to each other. For this reason, observations of such dust disks, in particular those that appear as extended structures (are "resolved"), are very important for our

  1. Circularly polarized antennas for active holographic imaging through barriers

    SciTech Connect

    McMakin, Douglas L; Severtsen, Ronald H; Lechelt, Wayne M; Prince, James M

    2011-07-26

    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  2. Modeling approaches for active systems

    NASA Astrophysics Data System (ADS)

    Herold, Sven; Atzrodt, Heiko; Mayer, Dirk; Thomaier, Martin

    2006-03-01

    To solve a wide range of vibration problems with the active structures technology, different simulation approaches for several models are needed. The selection of an appropriate modeling strategy is depending, amongst others, on the frequency range, the modal density and the control target. An active system consists of several components: the mechanical structure, at least one sensor and actuator, signal conditioning electronics and the controller. For each individual part of the active system the simulation approaches can be different. To integrate the several modeling approaches into an active system simulation and to ensure a highly efficient and accurate calculation, all sub models must harmonize. For this purpose, structural models considered in this article are modal state-space formulations for the lower frequency range and transfer function based models for the higher frequency range. The modal state-space formulations are derived from finite element models and/or experimental modal analyses. Consequently, the structure models which are based on transfer functions are directly derived from measurements. The transfer functions are identified with the Steiglitz-McBride iteration method. To convert them from the z-domain to the s-domain a least squares solution is implemented. An analytical approach is used to derive models of active interfaces. These models are transferred into impedance formulations. To couple mechanical and electrical sub-systems with the active materials, the concept of impedance modeling was successfully tested. The impedance models are enhanced by adapting them to adequate measurements. The controller design strongly depends on the frequency range and the number of modes to be controlled. To control systems with a small number of modes, techniques such as active damping or independent modal space control may be used, whereas in the case of systems with a large number of modes or with modes that are not well separated, other control

  3. MCT SWIR modules for passive and active imaging applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Benecke, M.; Eich, D.; Figgemeier, H.; Weber, A.; Wendler, J.; Sieck, A.

    2016-05-01

    Based on AIM's state-of-the-art MCT IR technology, detector modules for the SWIR spectral range have been developed, fabricated and characterized. While LPE grown MCT FPAs with extended 2.5μm cut-off have been fabricated and integrated also MBE grown MCT on GaAs is considered for future production. Two imaging applications have been in focus operating either in passive mode by making use of e.g. the night glow, or in active mode by laser illumination for gated viewing. Dedicated readout integrated circuits (ROIC), realized in 0.18μm Si-CMOS technology providing the required functionality for passive imaging and gated imaging, have been designed and implemented. For both designs a 640x512 15μm pitch format was chosen. The FPAs are integrated in compact dewar cooler configurations using AIM's split linear coolers. A command and control electronics (CCE) provides supply voltages, biasing, clocks, control and video digitization for easy system interfacing. For imaging under low-light conditions a low-noise 640x512 15μm pitch ROIC with CTIA input stages and correlated double sampling was designed. The ROIC provides rolling shutter and snapshot integration. To reduce size, weight, power and cost (SWaP-C) a 640x512 format detector in a 10μm pitch is under development. The module makes use of the extended SWIR spectral cut-off up to 2.5μm. To be used for active gated-viewing operation SWIR MCT avalanche photodiodes have been implemented and characterized on FPA level in a 640x512 15μm pitch format. The specific ROIC provides also the necessary functions for range gate control and triggering by the laser illumination. First lab and field tests of a gated viewing demonstrator have been carried out. The paper will present the development status and performance results of AIM's MCT based SWIR Modules for imaging applications.

  4. Collaborative Design of an Image Annotation Tool for Oceanographic Imaging Systems

    NASA Astrophysics Data System (ADS)

    Futrelle, J.; York, A.

    2012-12-01

    We present a design for a web-based image annotation interface developed to assist in supervised classification of organisms and substrate for habitat assessment from multiple, heterogeneous oceanographic imaging systems. The interface enables human image annotators to count, identify, and measure targets and classify substrate in a variety of kinds of imagery including benthic surveys and imaging flow cytometry. These annotations are then used to build training sets for supervised classification algorithms for purposes of characterizing community structure and habitat assessment. The Ocean Imaging Informatics team at WHOI used the Tetherless World Constellation's collaborative design methodology to develop shared formal information model and system design that applies to a variety of image annotation use cases. Because the information model represents consensus between researchers with differing instrumentation and science needs, it assists with rapid prototyping and establishes a baseline against which existing and forthcoming image annotation tools can be evaluated. A technology review suggested that there are few general-purpose image annotation tools suitable for annotation of high-volume oceanographic imagery. Most tools require too many steps for operations that must be repeated thousands of times, and/or lack critical features such as display of instrument metadata, QA/QC, and management of annotator tasks. While some of these problems are user interface limitations, others suggest that existing tools are missing critically important concepts. For example, QA/QC appears in our information model as an "activity stream" associated with each image annotation, consisting of events indicating review status, specific image quality issues, etc. The model also includes "identification modes" that contextualize annotations according to the annotator's assigned task, assisting both with interpreting annotations and with providing contextual user interface shortcuts

  5. eID: A System for Exploration of Image Databases.

    ERIC Educational Resources Information Center

    Stan, Daniela; Sethi, Ishwar K.

    2003-01-01

    Describes an exploration system for large image databases. The system, which consists of three stages, allows user to interpret and annotate an image in the context in which that image appears, dramatically reducing the time taken to annotate a large collection of images. Includes 25 figures and two tables. (AEF)

  6. Systems for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  7. Nonlinear dual reconstruction of SPECT activity and attenuation images.

    PubMed

    Liu, Huafeng; Guo, Min; Hu, Zhenghui; Shi, Pengcheng; Hu, Hongjie

    2014-01-01

    In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction. PMID:25225796

  8. Nonlinear Dual Reconstruction of SPECT Activity and Attenuation Images

    PubMed Central

    Liu, Huafeng; Guo, Min; Hu, Zhenghui; Shi, Pengcheng; Hu, Hongjie

    2014-01-01

    In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction. PMID:25225796

  9. Voltage-Sensitive Dye Imaging of Neocortical Activity.

    PubMed

    Grinvald, Amiram; Omer, David B; Sharon, Dahlia; Vanzetta, Ivo; Hildesheim, Rina

    2016-01-01

    Neural computations underlying sensory perception, cognition, and motor control are performed by populations of neurons at different anatomical and temporal scales. Few techniques are currently available for exploring the dynamics of local and large range populations. Voltage-sensitive dye imaging (VSDI), based on organic voltage probes, reveals neural population activity in areas ranging from a few tens of micrometers to a couple of centimeters, or two areas up to ~10 cm apart. VSDI provides a submillisecond temporal resolution and a spatial resolution of ~50 µm. The dye signal emphasizes subthreshold synaptic potentials. VSDI has been applied in the mouse, rat, gerbil, ferret, tree shrew, cat, and monkey cortices to explore the lateral spread of retinotopic or somatotopic activation; the dynamic spatiotemporal pattern resulting from sensory activation, including the somatosensory, olfactory, auditory, and visual modalities; and motor preparation and the properties of spontaneously occurring population activity. In this introduction, we focus on VSDI in vivo and review results obtained mostly in the visual system in our laboratory. PMID:26729915

  10. Using Digital Imaging in Classroom and Outdoor Activities.

    ERIC Educational Resources Information Center

    Thomasson, Joseph R.

    2002-01-01

    Explains how to use digital cameras and related basic equipment during indoor and outdoor activities. Uses digital imaging in general botany class to identify unknown fungus samples. Explains how to select a digital camera and other necessary equipment. (YDS)

  11. Calcium Imaging of Neuronal Activity in Free-Swimming Larval Zebrafish.

    PubMed

    Muto, Akira; Kawakami, Koichi

    2016-01-01

    Visualization of neuronal activity during animal behavior is a critical step in understanding how the brain generates behavior. In the model vertebrate zebrafish, imaging of the brain has been done mostly by using immobilized fish. Here, we describe a novel method to image neuronal activity of the larval zebrafish brain during prey capture behavior. We expressed a genetically encoded fluorescent calcium indicator, GCaMP, in the optic tectum of the midbrain using the Gal4-UAS system. Tectal activity was then imaged in unrestrained larvae during prey perception. Since larval zebrafish swim only intermittently, detection of the neuronal activity is possible between swimming bouts. Our method makes functional brain imaging under natural behavioral conditions feasible and will greatly benefit the study of neuronal activities that evoke animal behaviors. PMID:27464819

  12. Molecular Imaging of the ATM Kinase Activity

    SciTech Connect

    Williams, Terence M.; Nyati, Shyam; Ross, Brian D.; Rehemtulla, Alnawaz

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  13. In vivo simultaneous multispectral fluorescence imaging with spectral multiplexed volume holographic imaging system

    NASA Astrophysics Data System (ADS)

    Lv, Yanlu; Zhang, Jiulou; Zhang, Dong; Cai, Wenjuan; Chen, Nanguang; Luo, Jianwen

    2016-06-01

    A simultaneous multispectral fluorescence imaging system incorporating multiplexed volume holographic grating (VHG) is developed to acquire multispectral images of an object in one shot. With the multiplexed VHG, the imaging system can provide the distribution and spectral characteristics of multiple fluorophores in the scene. The implementation and performance of the simultaneous multispectral imaging system are presented. Further, the system's capability in simultaneously obtaining multispectral fluorescence measurements is demonstrated with in vivo experiments on a mouse. The demonstrated imaging system has the potential to obtain multispectral images fluorescence simultaneously.

  14. Resolution enhancement in active underwater polarization imaging with modulation transfer function analysis.

    PubMed

    Han, Jiefei; Yang, Kecheng; Xia, Min; Sun, Liying; Cheng, Zao; Liu, Hao; Ye, Junwei

    2015-04-10

    Active polarization imaging technology is a convenient and promising method for imaging in a scattering medium such as fog and turbid water. However, few studies have investigated the influence of polarization on the resolution in underwater imaging. This paper reports on the effects of polarization detection on the resolution of underwater imaging by using active polarization imaging technology. An experimental system is designed to determine the influence under various polarization and water conditions. The modulation transfer function is introduced to estimate the resolution variations at different spatial frequencies. Results show that orthogonal detection supplies the best resolution compared with other polarization directions in the turbid water. The performance of the circular polarization method is better than the linear process. However, if the light propagates under low scattering conditions, such as imaging in clean water or at small optical thickness, the resolution enhancement is not sensitive to the polarization angles. PMID:25967316

  15. Multiple Classifier System for Remote Sensing Image Classification: A Review

    PubMed Central

    Du, Peijun; Xia, Junshi; Zhang, Wei; Tan, Kun; Liu, Yi; Liu, Sicong

    2012-01-01

    Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+). Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community. PMID:22666057

  16. Hyperspectral range imaging for transportation systems evaluation

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.

    2016-04-01

    Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.

  17. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  18. Ultrawideband radar imaging system for biomedical applications

    SciTech Connect

    Jafari, H.M.; Liu, W.; Hranilovic, S.; Deen, M.J.

    2006-05-15

    Ultrawideband (UWB) (3-10 GHz) radar imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration and resolution characteristics. The underlying principle of UWB cancer detection is a significant contrast in dielectric properties, which is estimated to be greater than 2:1 between normal and cancerous tissue, compared to a few-percent contrast in radiographic density exploited by x rays. This article presents a feasibility study of the UWB imaging of liver cancer tumors, based on the frequency-dependent finite difference time domain method. The reflection, radiation, and scattering properties of UWB pulses as they propagate through the human body are studied. The reflected and back-scattered electromagnetic energies from cancer tumors inside the liver are also investigated. An optimized, ultrawideband antenna was designed for near field operation, allowing for the reduction of the air-skin interface. It will be placed on the fat-liver tissue phantom with a malignant tumor stimulant. By performing an incremental scan over the phantom and removing early time artifacts, including reflection from the antenna ends, images based on the back-scattered signal from the tumor can be constructed. This research is part of our effort to develop a UWB cancer detection system with good detection and localization properties.

  19. Active-Pixel Image Sensors With Programmable Resolution

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.; Fossum, Eric R.; Pain, Bedabrata; Nakamura, Junichi; Matthies, Larry H.

    1996-01-01

    Active-pixel image sensors with programmable resolution proposed for use in applications in which speed and efficiency of processing of image data enhanced by providing those data at varying resolutions. Such applications include modeling of biological vision, stereoscopic range-finding, recognition of patterns, tracking targets, and progressive transmission of compressed images. In target-tracking application, sensor initially forms low-resolution image from which area of interest identified, then sensor set at high resolution for examination of identified area. Outputs of contiguous pixels combined. Sensor of this type made to act as though it comprised fewer and larger pixels.

  20. Spatial Segmentation of Image Sequences Based on Their Time Activity

    NASA Astrophysics Data System (ADS)

    Galatsanos, N. P.

    2006-04-01

    There are many applications in medical imaging where one is interested in finding the areas of the image that exhibit the same time activity. Such applications occur in positron and single photon emission imaging as well as in perfusion studies with magnetic resonance imaging (MRI). In this talk we will present Bayesian methodology based on clustering to solve this problem. At first the dimensionality of the pixel observations is reduced using a probabilistic principle component model along the spatial dimension of the data. Then, a multidimensional Gaussian mixture model with spatial constraints is used for clustering. Examples from MRI perfusion studies of the heart and the brain will be shown.

  1. The activation system EASY-2007

    NASA Astrophysics Data System (ADS)

    Forrest, R. A.; Kopecky, J.

    2009-04-01

    Safety and waste management of materials for ITER, IFMIF and future power plants require knowledge of the activation caused by irradiation with neutrons, or in the case of IFMIF, deuterons. The European Activation System has been developed for such calculations and a new version was released earlier this year. This contains a large amount of nuclear data in the European Activation File covering neutron-, deuteron- and proton-induced cross sections. These data are input to the FISPACT code for activation calculations. EASY-2007 is being validated using integral and differential measurements. However, only a minority of reactions have experimental support and a statistical method is described that can test the complete library. Importance diagrams are useful in finding the dominant nuclides formed following irradiation and the reactions responsible for their production. These diagrams now cover energies above 20 MeV and examples of new dominant nuclides and reactions relevant to IFMIF are given.

  2. Adaptive optics for directly imaging planetary systems

    NASA Astrophysics Data System (ADS)

    Bailey, Vanessa Perry

    In this dissertation I present the results from five papers (including one in preparation) on giant planets, brown dwarfs, and their environments, as well as on the commissioning and optimization of the Adaptive Optics system for the Large Binocular Telescope Interferometer. The first three Chapters cover direct imaging results on several distantly-orbiting planets and brown dwarf companions. The boundary between giant planets and brown dwarf companions in wide orbits is a blurry one. In Chapter 2, I use 3--5 mum imaging of several brown dwarf companions, combined with mid-infrared photometry for each system to constrain the circum-substellar disks around the brown dwarfs. I then use this information to discuss limits on scattering events versus in situ formation. In Chapters 3 and 4, I present results from an adaptive optics imaging survey for giant planets, where the target stars were selected based on the properties of their circumstellar debris disks. Specifically, we targeted systems with debris disks whose SEDs indicated gaps, clearings, or truncations; these features may possibly be sculpted by planets. I discuss in detail one planet-mass companion discovered as part of this survey, HD 106906 b. At a projected separation of 650 AU and weighing in at 11 Jupiter masses, a companion such as this is not a common outcome of any planet or binary star formation model. In the remaining three Chapters, I discuss pre-commissioning, on-sky results, and planned work on the Large Binocular Telescope Interferometer Adaptive Optics system. Before construction of the LBT AO system was complete, I tested a prototype of LBTI's pyramid wavefront sensor unit at the MMT with synthetically-generated calibration files. I present the methodology and MMT on-sky tests in Chapter 5. In Chapter 6, I present the commissioned performance of LBTIAO. Optical imperfections within LBTI limited the quality of the science images, and I describe a simple method to use the adaptive optics system

  3. SAIM: a mobile multisensor image exploitation system

    NASA Astrophysics Data System (ADS)

    Devambez, Francois

    2000-11-01

    The control of information is an essential part of operations. Technology allows today a near real time surveillance capacity, over wide areas, due to sensor performances, communication networks. The system presented herein has been developed by Thomson-Csf, under contract with the French MOD to give to the decision makers the right information, in a very short delay, and prepare support information, to help for decision. The SAIM, Mobile Multisensor Image Exploitation Ground System, uses near real time acquisition units, very large data base management, data processing, including fusion and decision aiding tools, and communication networks. It then helps for all the steps of exploitation of data incoming from image sensors, form preparation of the reconnaissance mission to the dissemination of intelligence. The SAIM system is in operations in the French Air Force, and soon in the French Navy and the French Army. Initially defined for the specific use of French Recce sensors, the SAIM is now intended to be widely used for the exploitation of UAV and battle field MTI and SAR surveillance systems.

  4. Image quality assessment and human visual system

    NASA Astrophysics Data System (ADS)

    Gao, Xinbo; Lu, Wen; Tao, Dacheng; Li, Xuelong

    2010-07-01

    This paper summaries the state-of-the-art of image quality assessment (IQA) and human visual system (HVS). IQA provides an objective index or real value to measure the quality of the specified image. Since human beings are the ultimate receivers of visual information in practical applications, the most reliable IQA is to build a computational model to mimic the HVS. According to the properties and cognitive mechanism of the HVS, the available HVS-based IQA methods can be divided into two categories, i.e., bionics methods and engineering methods. This paper briefly introduces the basic theories and development histories of the above two kinds of HVS-based IQA methods. Finally, some promising research issues are pointed out in the end of the paper.

  5. Active Learning in Context-Driven Stream Mining With an Application to Image Mining.

    PubMed

    Tekin, Cem; van der Schaar, Mihaela

    2015-11-01

    We propose an image stream mining method in which images arrive with contexts (metadata) and need to be processed in real time by the image mining system (IMS), which needs to make predictions and derive actionable intelligence from these streams. After extracting the features of the image by preprocessing, IMS determines online the classifier to use on the extracted features to make a prediction using the context of the image. A key challenge associated with stream mining is that the prediction accuracy of the classifiers is unknown, since the image source is unknown; thus, these accuracies need to be learned online. Another key challenge of stream mining is that learning can only be done by observing the true label, but this is costly to obtain. To address these challenges, we model the image stream mining problem as an active, online contextual experts problem, where the context of the image is used to guide the classifier selection decision. We develop an active learning algorithm and show that it achieves regret sublinear in the number of images that have been observed so far. To further illustrate and assess the performance of our proposed methods, we apply them to diagnose breast cancer from the images of cellular samples obtained from the fine needle aspirate of breast mass. Our findings show that very high diagnosis accuracy can be achieved by actively obtaining only a small fraction of true labels through surgical biopsies. Other applications include video surveillance and video traffic monitoring. PMID:26087490

  6. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    PubMed Central

    Sharma, Rakesh; Sharma, Avdhesh

    2004-01-01

    Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities. PMID:15125779

  7. Design of polarization imaging system based on CIS and FPGA

    NASA Astrophysics Data System (ADS)

    Zeng, Yan-an; Liu, Li-gang; Yang, Kun-tao; Chang, Da-ding

    2008-02-01

    As polarization is an important characteristic of light, polarization image detecting is a new image detecting technology of combining polarimetric and image processing technology. Contrasting traditional image detecting in ray radiation, polarization image detecting could acquire a lot of very important information which traditional image detecting couldn't. Polarization image detecting will be widely used in civilian field and military field. As polarization image detecting could resolve some problem which couldn't be resolved by traditional image detecting, it has been researched widely around the world. The paper introduces polarization image detecting in physical theory at first, then especially introduces image collecting and polarization image process based on CIS (CMOS image sensor) and FPGA. There are two parts including hardware and software for polarization imaging system. The part of hardware include drive module of CMOS image sensor, VGA display module, SRAM access module and the real-time image data collecting system based on FPGA. The circuit diagram and PCB was designed. Stokes vector and polarization angle computing method are analyzed in the part of software. The float multiply of Stokes vector is optimized into just shift and addition operation. The result of the experiment shows that real time image collecting system could collect and display image data from CMOS image sensor in real-time.

  8. Imaging techniques for assaying lymphocyte activation in action

    PubMed Central

    Balagopalan, Lakshmi; Sherman, Eilon; Barr, Valarie A.; Samelson, Lawrence E.

    2012-01-01

    Imaging techniques have greatly improved our understanding of lymphocyte activation. Technical advances in spatial and temporal resolution and new labelling tools have enabled researchers to directly observe the activation process. Consequently, research using imaging approaches to study lymphocyte activation has expanded, providing an unprecedented level of cellular and molecular detail in the field. As a result, certain models of lymphocyte activation have been verified, others have been revised and yet others have been replaced with new concepts. In this article, we review the current imaging techniques that are used to assess lymphocyte activation in different contexts, from whole animals to single molecules, and discuss the advantages and potential limitations of these methods. PMID:21179118

  9. An Investigation of Implicit Active Contours for Scientific Image Segmentation

    SciTech Connect

    Weeratunga, S K; Kamath, C

    2003-10-29

    The use of partial differential equations in image processing has become an active area of research in the last few years. In particular, active contours are being used for image segmentation, either explicitly as snakes, or implicitly through the level set approach. In this paper, we consider the use of the implicit active contour approach for segmenting scientific images of pollen grains obtained using a scanning electron microscope. Our goal is to better understand the pros and cons of these techniques and to compare them with the traditional approaches such as the Canny and SUSAN edge detectors. The preliminary results of our study show that the level set method is computationally expensive and requires the setting of several different parameters. However, it results in closed contours, which may be useful in separating objects from the background in an image.

  10. Intelligent elevator management system using image processing

    NASA Astrophysics Data System (ADS)

    Narayanan, H. Sai; Karunamurthy, Vignesh; Kumar, R. Barath

    2015-03-01

    In the modern era, the increase in the number of shopping malls and industrial building has led to an exponential increase in the usage of elevator systems. Thus there is an increased need for an effective control system to manage the elevator system. This paper is aimed at introducing an effective method to control the movement of the elevators by considering various cases where in the location of the person is found and the elevators are controlled based on various conditions like Load, proximity etc... This method continuously monitors the weight limit of each elevator while also making use of image processing to determine the number of persons waiting for an elevator in respective floors. Canny edge detection technique is used to find out the number of persons waiting for an elevator. Hence the algorithm takes a lot of cases into account and locates the correct elevator to service the respective persons waiting in different floors.

  11. Direct method of three-dimensional imaging using the multiple-wavelength range-gated active imaging principle.

    PubMed

    Matwyschuk, Alexis

    2016-05-10

    The tomography executed with mono-wavelength active imaging systems uses the recording of several images to restore a three-dimensional (3D) scene. Thus, in order to show the depth in the scene, a different color is attributed to each recorded image. Therefore, the 3D restoration depends on the video frame rate of the camera. By using a multiple-wavelength range-gated active imaging system, it is possible to restore the 3D scene directly in a single image at the moment of recording with a video camera. Each emitted light pulse with a different wavelength corresponds to a visualized zone at a different distance in the scene. The camera shutter opens just once during the emission of light pulses with the different wavelengths. Thus, the restoration can be executed in real time with regard to the video frame rate of the camera. From an analytical model and from a graphical approach, we demonstrated the feasibility of this new method of 3D restoration. The non-overlapping conditions between two consecutive visualized zones are analyzed. The experimental test results confirm these different conditions and validate the theoretical principle to directly restore the 3D scene in a color image with a multiple-wavelength laser source, an RGB filter, and a triggerable intensified camera. PMID:27168293

  12. Image process technique used in a large FOV compound eye imaging system

    NASA Astrophysics Data System (ADS)

    Cao, Axiu; Shi, Lifang; Shi, Ruiying; Deng, Qiling; Du, Chunlei

    2012-11-01

    Biological inspiration has produced some successful solutions for different imaging systems. Inspired by the compound eye of insects, this paper presents some image process techniques used in the spherical compound eye imaging system. By analyzing the relationship between the system with large field of view (FOV) and each lens, an imaging system based on compound eyes has been designed, where 37 lenses pointing in different directions are arranged on a spherical substrate. By researching the relationship between the lens position and the corresponding image geometrical shape to realize a large FOV detection, the image process technique is proposed. To verify the technique, experiments are carried out based on the designed compound eye imaging system. The results show that an image with FOV over 166° can be acquired while keeping excellent image process quality.

  13. Augmented reality based real-time subcutaneous vein imaging system.

    PubMed

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690

  14. Augmented reality based real-time subcutaneous vein imaging system

    PubMed Central

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-01-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed. PMID:27446690

  15. Architecture For An Image Filing And Indexing System

    NASA Astrophysics Data System (ADS)

    Hack, Stanley N.; Paoni, Robert A.; Robeson, Glenn H.

    1986-06-01

    We are developing an in-house Picture Archiving and Communication System (PACS) targeted to the centralized storage of images acquired from our computer-assisted imaging modalities and to the display of these images on multi-modality viewing stations. The central image database is distributed between two system modules with image processing capabilities located at the viewing stations. The first module of the image database is an image filing subsystem used for the storage and retrieval of complete image files. In our initial work, this module consists of a Data General MV/6000 computer system with 1.16 Gbytes of on-line disk storage. However, more efficient dedicated filing systems may be substituted for this general purpose computer in future revisions. The second module is an image file indexing subsystem which has been implemented on a DEC PDP-11/44 computer and is tightly integrated with our MARS II (ADAC Laboratories) Radiology Information System. These two image database modules communicate via low-speed, serial communications lines. This report focuses on our developmental work on the image file indexing subsystem and its communications protocol with the image filing subsystem. The image file indexing subsystem automatically inserts image file locators for studies referenced by patient when an image is transmitted from the acquisition device (eg, CT) to the image filing subsystem. It also locates image files at the request of a viewing station user based on patient name, physician name, or study type for either read or unread studies. Other capabilities include cross-referencing patient attributes with the MARS II system, deleting studies based on predefined criteria, storing requests for hard copy, storing user selected image processing attributes for individual images, flagging the archival status of an image, and complete managerial functions. This central-ized image filing and indexing system comprises what will become the central element of our PACS.

  16. Fast Line-Scan Imaging System For Broiler Carcass Inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service has developed a fast line-scan imaging system for differentiating wholesome and systemically diseased fresh chickens. The imaging system was used to acquire hyperspectral line-scan images of 250 chicken carcasses on a laboratory processing line moving at 70 bi...

  17. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery

    NASA Astrophysics Data System (ADS)

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-09-01

    A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance.

  18. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery.

    PubMed

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-09-01

    A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance. PMID:26358823

  19. A Landsat Digital Image Rectification System

    NASA Technical Reports Server (NTRS)

    Van Wie, P.; Stein, M.

    1976-01-01

    DIRS is a Digital Image Rectification System for the geometric correction of Landsat Multispectral Scanner digital image data. DIRS removes spatial distortions from the data and brings it into conformance with the Universal Transverse Mercator (UTM) map projection. Scene data in the form of landmarks or Ground Control Points (GCPs) are used to drive the geometric correction algorithms. The system offers extensive capabilities for 'shade printing' to aid in the determination of GCPs. Affine, two dimensional least squares polynominal and spacecraft attitude modeling techniques for geometric mapping are provided. Entire scenes or selected quadralaterals may be rectified. Resampling through nearest neighbor or cubic convolution at user designated intervals is available. The output products are in the form of digital tape in band interleaved, single band or CCT format in a rotated UTM projection. The system was designed and implemented on large scale IBM 360 computers with at least 300-500K bytes of memory for user application programs and five nine track tapes plus direct access storage.

  20. A miniature real-time volumetric ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Karaman, Mustafa; Khuri-Yakub, Butrus T.

    2005-04-01

    Progress made in the development of a miniature real-time volumetric ultrasound imaging system is presented. This system is targeted for use in a 5-mm endoscopic channel and will provide real-time, 30-mm deep, volumetric images. It is being developed as a clinically useful device, to demonstrate a means of integrating the front-end electronics with the transducer array, and to demonstrate the advantages of the capacitive micromachined ultrasonic transducer (CMUT) technology for medical imaging. Presented here is the progress made towards the initial implementation of this system, which is based on a two-dimensional, 16x16 CMUT array. Each CMUT element is 250 um by 250 um and has a 5 MHz center frequency. The elements are connected to bond pads on the back side of the array with 400-um long through-wafer interconnects. The transducer array is flip-chip bonded to a custom-designed integrated circuit that comprises the front-end electronics. The result is that each transducer element is connected to a dedicated pulser and low-noise preamplifier. The pulser generates 25-V, 100-ns wide, unipolar pulses. The preamplifier has an approximate transimpedance gain of 500 kOhm and 3-dB bandwidth of 10 MHz. In the first implementation of the system, one element at a time can be selected for transmit and receive and thus synthetic aperture images can be generated. In future implementations, 16 channels will be active at a given time. These channels will connect to an FPGA-based data acquisition system for real-time image reconstruction.

  1. Image-quality performance of an a-Si : H-based X-ray imaging system for digital mammography

    NASA Astrophysics Data System (ADS)

    Darambara, D. G.; Taibi, A.; Speller, R. D.

    2002-01-01

    We have been investigating the potential of large area active matrix flat-panel a-Si : H imaging arrays for full-field digital X-ray mammography. To optimise the overall performance of such an imaging system under mammographic conditions, four different Gd 2O 2S : Tb phosphor screens (i.e. Lanex Fast-Back, Regular, Fine and MinR-2000) were employed and our full-field detector was integrated with the Feinfocus DIMA (Direct Magnification) PLUS MII mammographic unit. The spatial resolution and the image noise of the digital detector were measured and the X-ray imaging performance of the whole system was also evaluated with two mammographic phantoms. It was deduced from the results of this study that Regular screen offers the best compromise between sensitivity and spatial resolution and exhibits better overall image-quality performance than that of a conventional mammography system.

  2. Multispectral imaging system for contaminant detection

    NASA Technical Reports Server (NTRS)

    Poole, Gavin H. (Inventor)

    2003-01-01

    An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.

  3. NIR DLP hyperspectral imaging system for medical applications

    NASA Astrophysics Data System (ADS)

    Wehner, Eleanor; Thapa, Abhas; Livingston, Edward; Zuzak, Karel

    2011-03-01

    DLP® hyperspectral reflectance imaging in the visible range has been previously shown to quantify hemoglobin oxygenation in subsurface tissues, 1 mm to 2 mm deep. Extending the spectral range into the near infrared reflects biochemical information from deeper subsurface tissues. Unlike any other illumination method, the digital micro-mirror device, DMD, chip is programmable, allowing the user to actively illuminate with precisely predetermined spectra of illumination with a minimum bandpass of approximately 10 nm. It is possible to construct active spectral-based illumination that includes but is not limited to containing sharp cutoffs to act as filters or forming complex spectra, varying the intensity of light at discrete wavelengths. We have characterized and tested a pure NIR, 760 nm to 1600 nm, DLP hyperspectral reflectance imaging system. In its simplest application, the NIR system can be used to quantify the percentage of water in a subject, enabling edema visualization. It can also be used to map vein structure in a patient in real time. During gall bladder surgery, this system could be invaluable in imaging bile through fatty tissue, aiding surgeons in locating the common bile duct in real time without injecting any contrast agents.

  4. Thermal Imaging System For Material Processing

    NASA Astrophysics Data System (ADS)

    Auric, Daniel; Hanonge, Eric; Kerrand, Emmanuel; de Miscault, Jean-Claude; Cornillault, Jean

    1987-09-01

    In the field of lasers for welding and surface processing, we need to measure the map of temperatures in order to control the processing in real time by adjusting the laser power, the beam pointing and focussing and the workpiece moving speed. For that purpose, we studied, realized and evaluated a model of thermal imaging system at 2 wavelengths in the mid-infrared. The device is connected to a 3 axis table and to a 3 kW CO2 laser. The range of measured temperatures is 800 C to 1 500 C. The device includes two AGEMA infrared cameras fixed to the welding torch each operating with a choice of filters in the 3, 4 and 5 micrometre band. The field of view of each is about 14 mm by 38 mm. The cameras are connected to an M68000 microprocessor family based microcomputer in which the images enter at the rate of 6. 25 Hz with 64 x 128 pixels by image at both wavelengths. The microcomputer stores the pictures into memory and floppy disk, displays them in false colours and calculates for each pixel the surface temperature of the material with the grey body assumption. The results have been compared with metallurgic analysis of the samples. The precision is about 20 C in most cases and depends on the sample surface state. Simplifications of the laboratory device should lead to a cheap, convenient and reliable product.

  5. THz imaging system with the IJJ emitter

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Manabu; Minami, Hidetoshi; Sawamura, Masashi; Delfanazari, Kaveh; Yamamoto, Takashi; Kashiwagi, Takanari; Kadowaki, Kazuo

    2011-03-01

    The intrinsic Josephson junction (IJJ) emitter consisted of thousands of IJJs uniformly stacked in single crystalline high-Tc superconductor Bi 2 Sr 2 CaCu 2 O8 + δ (Bi-2212) [L. Ozyuzer et al., Science 318, (2007) 1291.] is expected to be a novel source of the continuous terahertz electromagnetic waves (THz-waves). The maximum emission power of tens of microwatts recently obtained with the mesa structure of IJJs seems to be sufficient to make use of the IJJ emitter for some practical applications such as THz imaging. According to the cavity resonance condition, we can control the radiation frequency by changing the geometrical size of the mesa. In this study, we develop the THz imaging system with IJJ emitter. In the presentation, we will show some transparent images of standard specimens obtained by the raster scanning method. Also, we will mention some problems to be solved for the future applications of the IJJ emitter. CREST-JST, WPI-MANA, Strategic Initiative A (University of Tsukuba).

  6. Dielectrophoretic Force Imaging of Biological Systems

    NASA Astrophysics Data System (ADS)

    Simpson, Garth J.

    2004-03-01

    A new scanning probe microscopic technique is demonstrated, exploiting AC electrokinetic forces for real-time functional imaging of biological interfaces with nanometer-scale spatial resolution. Dielectrophoresis (DEP) describes the mobility of particles in radio-frequency AC electric fields and is related to the frequency-dependent polarizability. Similar to the forces in optical trapping, DEP interactions are greatest for large field gradients, such as those adjacent to highly curved electrodes. Moderate AC potentials (5 Vpp) are more than sufficient to induce surface forces strong enough for reliable feedback during imaging. Simply changing the AC frequency can change the nature of the DEP force from repulsive to attractive. By scanning the AC frequency, dielectrophoretic spectroscopy using light with a wavelength of ˜ 1/2 km can be performed with spatial resolution of a few nanometers (about 11 to 12 orders of magnitude below the diffraction-limit), representing a new level of achievement in near-field microscopy. Among other things, the facile applicability of DEP imaging in aqueous media is ideally suited for ultrahigh resolution microscopy of biological systems, including supported lipid bilayer membranes, immobilized organelles, and living cells.

  7. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  8. Neutron imaging for geothermal energy systems

    SciTech Connect

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  9. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    NASA Astrophysics Data System (ADS)

    Uri, Bin-Nun

    2011-06-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  10. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    NASA Astrophysics Data System (ADS)

    Bin-Nun, Uri

    2011-05-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  11. A new concept of stereoscopic imaging system using single optical channel and a deflector: pilot study

    NASA Astrophysics Data System (ADS)

    Jang, Won Hyuk; Kang, Heesung; Son, Taeyoon; Park, Jihoon; Jun, Eunkwon; Jung, Byungjo

    2014-03-01

    An imaging system was developed based on single-channel and transparent rotating deflector (TRD) to achieve stereoscopic video imaging. To acquire images at high frame rate, a CMOS camera was used with triggering function allowing image acquisition at certain time point. Stepping motor was controlled to rotate in an arc, stopping at the edge for image acquisition. The acquired 2D images were displayed in stereoscopic 3D using active shutter glasses and conventional display monitor. Using microcontroller (MCU) as centralized control system, system components were controlled and synchronized through using general purpose input/output (GPIO) ports. The created system was evaluated for two factors: motor rotation analysis based on MCU signal generation; and image property based on coefficient of variation calculation.

  12. Optical imaging of fast light-evoked fast neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2006-02-01

    High performance functional imaging is needed for dynamic measurements of neural processing in retina. Emerging techniques of visual prosthesis also require advanced methodology for reliable validation of electromagnetic stimulation of the retina. Imaging of fast intrinsic optical responses associated with neural activation promises a variety of technical advantages over traditional single and multi-channel electrophysiological techniques for these purposes, but the application of fast optical signals for neural imaging has been limited by low signal to noise ratio and high background light intensity. However, using optimized near infrared probe light and improved optical systems, we have improved the optical signals substantially, allowing single pass measurements. Fast photodiode measurements typically disclose dynamic transmitted light changes of whole retina at the level of 10 -4 dI/I, where dI is the dynamic optical change and I is the baseline light intensity. Using a fast high performance CCD, we imaged fast intrinsic optical responses from isolated retina activated by a visible light flash. Fast, high resolution imaging disclosed larger local optical responses, and showed evidence of multiple response components with both negative- and positive-going signals, on different timescales. Darkfield imaging techniques further enhanced the sensitivity of optical measurements. At single cell resolution, brightfield imaging disclosed maxima of optical responses ~5% dI/I, while darkfield imaging showed maxima of optical responses exceeding 10% dI/I. In comparison with simultaneous electrophysiological recording, optical imaging provided much better localized patterns of response over the activated area of the retina.

  13. QI2S - Quick Image Interpretation System

    NASA Astrophysics Data System (ADS)

    Naghmouchi, Jamin; Aviely, Peleg; Ginosar, Ran; Ober, Giovanna; Bischoff, Ole; Nadler, Ron; Guiser, David; Citroen, Meira; Freddi, Riccardo; Berekovic, Mladen

    2015-09-01

    The evolution of the Earth Observation mission will be driven by many factors, and the deveploment of new processing paradigms to facilitate data downlink, handling and storage will be a key factor. Next generation EO satellites will generate a great amount of data at a very high data rate, both radar and optical. Real-time onboard processing can be the solution to reduce data downlink and management on ground. Radiometric, geometric, and atmospheric corrections of EO data as well as material/object detection in addition to the well-known needs for image compression and signal processing can be performed directly on board and the aim of QI2S project is to demonstrate this. QI2S, a concept prototype system for novel onboard image processing and image interpretation which has been designed, developed and validated in the framework of an EU FP7 project, targets these needs and makes a significant step towards exceeding current roadmaps of leading space agencies for future payload processors. The QI2S system features multiple chip components of the RC64, a novel rad-hard 64-core signal processing chip, which targets DSP performance of 75 GMACs (16bit), 150 GOPS and 38 single precision GFLOPS while dissipating less than 10 Watts. It integrates advanced DSP cores with a multibank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 3.125 Gbps full duplex high-speed serial links using SpaceFibre and other protocols. The processor is being developed within the European FP7 Framework Program and will be qualified to the highest space standards.

  14. APPLEPIPS /Apple Personal Image Processing System/ - An interactive digital image processing system for the Apple II microcomputer

    NASA Technical Reports Server (NTRS)

    Masuoka, E.; Rose, J.; Quattromani, M.

    1981-01-01

    Recent developments related to microprocessor-based personal computers have made low-cost digital image processing systems a reality. Image analysis systems built around these microcomputers provide color image displays for images as large as 256 by 240 pixels in sixteen colors. Descriptive statistics can be computed for portions of an image, and supervised image classification can be obtained. The systems support Basic, Fortran, Pascal, and assembler language. A description is provided of a system which is representative of the new microprocessor-based image processing systems currently on the market. While small systems may never be truly independent of larger mainframes, because they lack 9-track tape drives, the independent processing power of the microcomputers will help alleviate some of the turn-around time problems associated with image analysis and display on the larger multiuser systems.

  15. Non-Invasive Imaging of Neuroanatomical Structures and Neural Activation with High-Resolution MRI

    PubMed Central

    Herberholz, Jens; Mishra, Subrata H.; Uma, Divya; Germann, Markus W.; Edwards, Donald H.; Potter, Kimberlee

    2011-01-01

    Several years ago, manganese-enhanced magnetic resonance imaging (MEMRI) was introduced as a new powerful tool to image active brain areas and to identify neural connections in living, non-human animals. Primarily restricted to studies in rodents and later adapted for bird species, MEMRI has recently been discovered as a useful technique for neuroimaging of invertebrate animals. Using crayfish as a model system, we highlight the advantages of MEMRI over conventional techniques for imaging of small nervous systems. MEMRI can be applied to image invertebrate nervous systems at relatively high spatial resolution, and permits identification of stimulus-evoked neural activation non-invasively. Since the selection of specific imaging parameters is critical for successful in vivo micro-imaging, we present an overview of different experimental conditions that are best suited for invertebrates. We also compare the effects of hardware and software specifications on image quality, and provide detailed descriptions of the steps necessary to prepare animals for successful imaging sessions. Careful consideration of hardware, software, experiments, and specimen preparation will promote a better understanding of this novel technique and facilitate future MEMRI studies in other laboratories. PMID:21503138

  16. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  17. Video guidance, landing, and imaging systems

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Rice, R. B.; Moog, R. D.

    1975-01-01

    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions.

  18. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  19. Fingerprint verification on medical image reporting system.

    PubMed

    Chen, Yen-Cheng; Chen, Liang-Kuang; Tsai, Ming-Dar; Chiu, Hou-Chang; Chiu, Jainn-Shiun; Chong, Chee-Fah

    2008-03-01

    The healthcare industry is recently going through extensive changes, through adoption of robust, interoperable healthcare information technology by means of electronic medical records (EMR). However, a major concern of EMR is adequate confidentiality of the individual records being managed electronically. Multiple access points over an open network like the Internet increases possible patient data interception. The obligation is on healthcare providers to procure information security solutions that do not hamper patient care while still providing the confidentiality of patient information. Medical images are also part of the EMR which need to be protected from unauthorized users. This study integrates the techniques of fingerprint verification, DICOM object, digital signature and digital envelope in order to ensure that access to the hospital Picture Archiving and Communication System (PACS) or radiology information system (RIS) is only by certified parties. PMID:18178287

  20. Image engine: an integrated multimedia clinical information system.

    PubMed

    Lowe, H J; Buchanan, B G; Cooper, G F; Kaplan, B; Vries, J K

    1995-01-01

    Image Engine is a microcomputer-based system for the integration, storage, retrieval, and sharing of digitized clinical images. The system seeks to address the problem of integrating a wide range of clinically important images with the text-based electronic patient record. Rather than create a single, integrated database system for all clinical data, we are developing a separate image database system that creates real-time, dynamic links to other network-based clinical databases. To the user, this system will present an integrated multimedia representation of the patient record, providing access to both the image and text-based data required for effective clinical decision making. PMID:8591216

  1. SORIS—A standoff radiation imaging system

    NASA Astrophysics Data System (ADS)

    Zelakiewicz, Scott; Hoctor, Ralph; Ivan, Adrian; Ross, William; Nieters, Edward; Smith, William; McDevitt, Daniel; Wittbrodt, Michael; Milbrath, Brian

    2011-10-01

    The detection of radiological and special nuclear material within the country's borders is a crucial component of the national security network. Being able to detect small amounts of radiological material at large distances is especially important for search applications. To provide this capability General Electric's Research Center has developed, as a part of DNDO's standoff radiation detection system advanced technology demonstration (SORDS-ATD) program, a standoff radiation imaging system (SORIS). This vehicle-based system is capable of detecting weak sources at large distances in relatively short times. To accomplish this, GE has developed a novel coded aperture detector based on commercial components from GE Healthcare. An array of commercial gamma cameras modified to increase the system efficiency and energy range are used as position sensitive detectors. Unlike typical coded aperture systems, however, SORIS employs a non-planar mask and thus does not suffer the typical limitations of partially encoded regions giving it a wide field of view. Source identification is done using both low-statistics anomaly indicators and conventional high-statistics algorithms being developed by Pacific Northwest National Laboratory. The results of scanned areas and threats identified are displayed to the user and overlaid on satellite imagery.

  2. Range accuracy analysis of streak tube imaging lidar systems

    NASA Astrophysics Data System (ADS)

    Ye, Guangchao; Fan, Rongwei; Chen, Zhaodong; Yuan, Wei; Chen, Deying; He, Ping

    2016-02-01

    Streak tube imaging lidar (STIL) is an active imaging system that has a high range accuracy and a wide range gate with the use of a pulsed laser transmitter and streak tube receiver to produce 3D range images. This work investigates the range accuracy performance of STIL systems based on a peak detection algorithm, taking into account the effects of blurring of the image. A theoretical model of the time-resolved signal distribution, including the static blurring width in addition to the laser pulse width, is presented, resulting in a modified range accuracy analysis. The model indicates that the static blurring width has a significant effect on the range accuracy, which is validated by both the simulation and experimental results. By using the optimal static blurring width, the range accuracies are enhanced in both indoor and outdoor experiments, with a stand-off distance of 10 m and 1700 m, respectively, and corresponding, best range errors of 0.06 m and 0.25 m were achieved in a daylight environment.

  3. First Results of the Near Real-Time Imaging Reconstruction System at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Yang, G.; Denker, C.; Wang, H.

    2003-05-01

    The Near Real-Time Imaging Reconstruction system (RTIR) at Big Bear Solar Observatory (BBSO) is designed to obtain high spatial resolution solar images at a cadence of 1 minute utilizing the power of parallel processing. With this system, we can compute near diffraction-limited images without saving huge amounts of data that are involved in the speckle masking reconstruction algorithm. It enables us to monitor active regions and give fast response to the solar activity. In this poster we present the first results of our new 32-CPU Beowulf cluster system. The images are 1024 x 1024 and the field of view (FOV) is 80'' x 80''. Our target is an active region with complex magnetic configuration. We focus on pores and small spots in the active region with the goal of better understanding the formation of penumbra structure. In addition we expect to study evolution of active regions during solar flares.

  4. Optical design and system calibration for three-band spectral imaging system with interchangeable filters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The design and calibration of a three-band image acquisition system was reported. The prototype system developed in this research was a three-band spectral imaging system that acquired two visible (510 and 568 nm) images and a near-infrared (NIR) (800 nm) image simultaneously. The system was proto...

  5. Super-resolved imaging system with oversampling technology

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Yanyan; Zhang, Jian-ping; Wang, Ling-jie

    2007-12-01

    It has been a significant issue in the imaging filed to provide the highest possible resolution of an electro-optical imaging system(E-O imaging system). CCD arrays are inherently undersampled and spatial frequency above Nyquist frequency is distorted so as to create ambiguity and Moire patterns for targets imaged by E-O system.. As to this drawback, a system-design project is introduced and discussed in the paper. It's well known that many image quality metrics are linked to MTF. However, CCDs don't satisfy MTF condition, namely, the shift-invariant property, so MTF synthesis can't appraise the whole system simply by the MTF product of the few sub-system ones in E-O imaging system. Then it is depicted how to solve this problem in the following. Finally the analyses and comparisons of the imaging performance parameters with and without super-resolved technologies are shown.

  6. Simulation of signal-to-noise ratio for the laser range-gated imaging system

    NASA Astrophysics Data System (ADS)

    Liang, Weiwei; Chen, Qianrong; Hao, Yongwang; Guo, Hao; Zhang, Wenpan

    2015-10-01

    The laser active imaging system is widely used in night vision, underwater imaging, three-dimension scene imaging and other civilian applications, and the system's detected range increase greatly comparing with the passive imaging system. In recent years, with rapid development of sensor and laser source technique, the laser range-gated imaging system is achieved based on high peak power pulsed laser and gated intensified CCD(ICCD), and it is well known for its properties such as high suppression of backscatter noise from fog and other obscurants, high resolution, long detection range and direct visualization. However, the performance of the laser range-gated imaging system is seriously affected by many factors, and the relationships between system's Signal-to-Noise Ratio (SNR) and influence factors are not further elaborated. In this paper, the simulation of SNR for the laser range-gated imaging system is studied. The principle of the laser range-gated imaging system is shown firstly, and the range equation is derived by means of deducing laser illuminating model according to the principle of laser radar and the characters of objects and the detectors. And then, the sources of noise are analyzed by accurately modeling all noise sources in the detection system, the model of SNR for laser range-gated imaging system is established. Finally, the relationships between SNR of system and influence factors such as gating time, laser pulse width and repetition frequency are discussed, and correspondingly the solutions are proposed.

  7. Two satellite image sets for the training and validation of image processing systems for defense applications

    NASA Astrophysics Data System (ADS)

    Peterson, Michael R.; Aldridge, Shawn; Herzog, Britny; Moore, Frank

    2010-04-01

    Many image processing algorithms utilize the discrete wavelet transform (DWT) to provide efficient compression and near-perfect reconstruction of image data. Defense applications often require the transmission of data at high levels of compression over noisy channels. In recent years, evolutionary algorithms (EAs) have been utilized to optimize image transform filters that outperform standard wavelets for bandwidth-constrained compression of satellite images. The optimization of these filters requires the use of training images appropriately chosen for the image processing system's intended applications. This paper presents two robust sets of fifty images each intended for the training and validation of satellite and unmanned aerial vehicle (UAV) reconnaissance image processing algorithms. Each set consists of a diverse range of subjects consisting of cities, airports, military bases, and landmarks representative of the types of images that may be captured during reconnaissance missions. Optimized algorithms may be "overtrained" for a specific problem instance and thus exhibit poor performance over a general set of data. To reduce the risk of overtraining an image filter, we evaluate the suitability of each image as a training image. After evolving filters using each image, we assess the average compression performance of each filter across the entire set of images. We thus identify a small subset of images from each set that provide strong performance as training images for the image transform optimization problem. These images will also provide a suitable platform for the development of other algorithms for defense applications. The images are available upon request from the contact author.

  8. Computer Human Interaction for Image Information Systems.

    ERIC Educational Resources Information Center

    Beard, David Volk

    1991-01-01

    Presents an approach to developing viable image computer-human interactions (CHI) involving user metaphors for comprehending image data and methods for locating, accessing, and displaying computer images. A medical-image radiology workstation application is used as an example, and feedback and evaluation methods are discussed. (41 references) (LRW)

  9. Image processing system to analyze droplet distributions in sprays

    NASA Technical Reports Server (NTRS)

    Bertollini, Gary P.; Oberdier, Larry M.; Lee, Yong H.

    1987-01-01

    An image processing system was developed which automatically analyzes the size distributions in fuel spray video images. Images are generated by using pulsed laser light to freeze droplet motion in the spray sample volume under study. This coherent illumination source produces images which contain droplet diffraction patterns representing the droplets degree of focus. The analysis is performed by extracting feature data describing droplet diffraction patterns in the images. This allows the system to select droplets from image anomalies and measure only those droplets considered in focus. Unique features of the system are the totally automated analysis and droplet feature measurement from the grayscale image. The feature extraction and image restoration algorithms used in the system are described. Preliminary performance data is also given for two experiments. One experiment gives a comparison between a synthesized distribution measured manually and automatically. The second experiment compares a real spray distribution measured using current methods against the automatic system.

  10. Experiments and models of active and thermal imaging under bad weather conditions

    NASA Astrophysics Data System (ADS)

    Bernard, Erwan; Riviere, Nicolas; Renaudat, Mathieu; Guiset, Pierrick; Pealat, Michel; Zenou, Emmanuel

    2013-10-01

    Thermal imaging cameras are widely used in military contexts for their night vision capabilities and their observation range; there are based on passive infrared sensors (e.g. MWIR or LWIR range). Under bad weather conditions or when the target is partially hidden (e.g. foliage, military camouflage) they are more and more complemented by active imaging systems, a key technology to perform target identification at long range. The 2D flash imaging technique is based on a high powered pulsed laser source that illuminates the entire scene and a fast gated camera as the imaging system. Both technologies are well experienced under clear meteorological conditions; models including atmospheric effects such as turbulence are able to predict accurately their performances. However, under bad weather conditions such as rain, haze or snow, these models are not relevant. This paper introduces new models to predict performances under bad weather conditions for both active and infrared imaging systems. We point out their effects on controlled physical parameters (extinction, transmission, spatial resolution, thermal background, speckle, turbulence). Then we develop physical models to describe their intrinsic characteristics and their impact on the imaging system performances. Finally, we approximate these models to have a "first order" model easy to deploy for industrial applications. This theoretical work will be validated on real active and infrared data.

  11. An image retrieval system for three-dimensional image

    NASA Astrophysics Data System (ADS)

    Lee, Chu-Hui; Lin, Jin-Shu

    2013-07-01

    With the progress of the age, the popularization of the computer and the internet, the text, images, photographs and varieties of multimedia will be uploaded to groups of the network space or cloud storage space by users. Thus, the multimedia data and technology have to renew and transfer by user constantly. How to search the images economically is a significant issue. This paper will focus on 3D images for in-depth investigate. It will propose an efficient 3D searching method. The analytical object is used by three-dimensional trademark gallery of the Intellectual Property Office of the Ministry of Economic Affairs, R.O.C. One three-dimensional trademark image expresses by a set of 2D images. This paper uses Harris Corner detection and combines CPDH (contour points distribution histogram) method to extract the shape feature and uses color histogram to refine the color feature. And then, the two features help to retrieve the similar 3D images. Experiment verifies that the method we proposed is effective.

  12. Multiresponse imaging system design for improved resolution

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.; Rahman, Zia-Ur; Reichenbach, Stephen E.

    1991-01-01

    Multiresponse imaging is a process that acquires A images, each with a different optical response, and reassembles them into a single image with an improved resolution that can approach 1/sq rt A times the photodetector-array sampling lattice. Our goals are to optimize the performance of this process in terms of the resolution and fidelity of the restored image and to assess the amount of information required to do so. The theoretical approach is based on the extension of both image restoration and rate-distortion theories from their traditional realm of signal processing to image processing which includes image gathering and display.

  13. Imaging and characterizing root systems using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Kelter, M.; Pfeifer, J.; Zimmermann, E.; Walter, A.

    2011-12-01

    Root architecture, growth, and activity play an essential role regarding the nutrient uptake of roots in soils. While in recent years advances could be achieved concerning the modeling of root systems, measurement methods capable of imaging, characterizing, and monitoring root structure and dynamics in a non-destructive manner are still lacking, in particular at the field scale. We here propose electrical impedance tomography (EIT) for the imaging of root systems. The approach takes advantage of the low-frequency capacitive electrical properties of the soil-root interface and the root tissue. These properties are based on the induced migration of ions in an externally applied electric field and give rise to characteristic impedance spectra which can be measured by means of electrical impedance spectroscopy. The latter technique was already successfully applied in the 10 Hz to 1 MHz range by Ozier-Lafontaine and Bajazet (2005) to monitor root growth of tomato. We here apply the method in the 1 mHz to 45 kHz range, requiring four-electrode measurements, and demonstrate its implementation and potential in an imaging framework. Images of real and imaginary components of complex electrical conductivity are computed using a finite-element based inversion algorithm with smoothness-constraint regularization. Results from laboratory measurements on rhizotrons with different root systems (barley, rape) show that images of imaginary conductivity delineate the spatial extent of the root system under investigation, while images of real conductivity show a less clear response. As confirmed by numerical simulations, the latter could be explained by the partly compensating electrical conduction properties of epidermis (resistive) and inner root cells (conductive), indicating the limitations of conventional electrical resistivity tomography. The captured spectral behavior exhibits two distinct relaxation processes with Cole-Cole type signatures, which we interpret as the responses

  14. Using the One Degree Imager to Study Active Asteroids

    NASA Astrophysics Data System (ADS)

    Brunker, Samantha; Rajagopal, Jayadev; Ridgway, Susan E.

    2015-01-01

    Active asteroids are asteroids that eject material, which can be caused by several different mechanisms that act on the asteroid, such as collisions, rotational instability, or radiation pressure. We study these asteroids in order to better understand these ejection mechanisms, and gauge their contribution to the zodiacal dust in the Solar System. For this project at the NOAO/KPNO REU program, we chose to focus on two specific asteroids, P/2010 A2 and 300160. Both asteroids were observed with the partial One Degree Imager on the WIYN 3.5 meter telescope on Kitt Peak. P/2010 A2 has an impressive debris tail made up of ejected dust that stretches for over a million kilometers. The wide field of pODI allowed us to construct a surface brightness profile for almost the entire extent of the tail. From this we can investigate the ejection mechanisms that caused the tail to form, and estimate the dust mass. For 300163 we did follow up observations to search for any current activity. We did not identify any trace of nebulosity in our data which indicate that the previously seen nebulosity was part of a transient event. This gives us clues about the possible ejection mechanisms acting on 300163.S. Brunker was supported by the NOAO/KPNO Research Experiences for Undergraduates Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  15. AEOS radiometer system: a multichannel imaging radiometer

    NASA Astrophysics Data System (ADS)

    Pritchett, Donald G.; Hendrick, Roy W.; Moore, Douglas K.; Briscoe, David E.; Bishop, Joseph; Medrano, Robert S.; Vigil, Michael L.

    1999-07-01

    A four channel imaging radiometer is now operational as the first sensor on the U.S. Air Force 3.67-meter Advanced Electro Optical System (AEOS) telescope at the Maui Space Surveillance Site on Mt. Haleakala. The four AEOS Radiometer System (ARS) channels cover the visible/near infrared, MWIR (2.0 - 5.5 micrometers ), LWIR (7.9 - 13.2 micrometers ), and VLWIR (16.2 - 23 micrometers ). The bands are separated by dichroic mirrors that direct the visible channel into a cooled enclosure and the infrared channels into a common cryogenic Dewar. Interference filters separate each band into multiple subbands. A novel background suppression technique uses array data and a circular scan generated by the telescope secondary. The ARS design meets challenges in volume constraint on the trunnion, a low vibration cryogenic system, thermal dissipation control, internal calibration, remotely operating four integrated focal plane arrays, high frame rates with their attendant large data handling and processing requirements, and integration into an observatory wide control system. This paper describes the design, integration, and first light test results of the ARS at the AEOS facility.

  16. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  17. Research of Active Contour Model in Aerial Images

    NASA Astrophysics Data System (ADS)

    Kun, Wang; Li, Guo

    With the development of computer and aviation technology, the aerial image is facing an important issue is how to automate, including aerial images of the automatic extraction of the target. In this paper, the issue of aerial images to study the active contour model is introduced, that is, Snake model, to achieve the target aerial image of the semi-automatic contour extraction method. Snake model used the unique characteristic of the energy minimization, carried out on the image contour extraction, to obtain a clear, consistent and accurate image contour. The model is defined through the energy minimization of the function, given in the initial position of artificial circumstances, through the iterative calculation of Snake model will eventually form the minimum energy function has been described in the outline of the target partition. The results indicate that Snake model for aerial images of the edge contour extraction, verification, concluded that the Snake-based edge detection methods could be more objectively and accurately extract the edge of the outline of aerial images.

  18. Validation of an active transponder for KOMPSAT-5 SAR image calibration

    NASA Astrophysics Data System (ADS)

    Park, Durk Jong; Yeom, Kyung Whan; Ahn, Sang Il; Lim, Hyo Suk

    2014-10-01

    This paper describes the development and validation of a transportable active transponder designed for the image calibration of Korea Multi-Purpose Satellite-5 (KOMPSAT-5) with a synthetic aperture radar (SAR). Ground targets are essential in SAR image calibration. The environment for the deployment of ground targets for SAR image calibration should provide uniformity and minimum interference. The Amazon or deserts are regarded as desirable environments. However, such environments for SAR image calibration are difficult to find in Korea. Thus, it will be advantageous to have an active transponder whose performance will not be severely limited by the absence of such uniform environment. We have therefore developed an active transponder which has an adjustable internal delay and into which the orbit data of an arbitrary satellite can be loaded. The stored obit data with the aid of an internal global positioning system (GPS) receiver and gyroscope enables the active transponder to point to a selected satellite. In addition, a virtual deployment of the active transponder is possible due to its adjustable internal delay. Thus, the developed active transponder can be deployed at any place without environmental constraint. The performance of the developed active transponder is validated using the satellite TerraSAR-X, which is already in operation. The test results show that the active transponder is successfully compliant with the requirements for KOMPSAT-5 image calibration.

  19. PAMS photo image retrieval prototype system requirements specification

    SciTech Connect

    Conner, M.L.

    1996-04-30

    This project is part of the Photo Audiovisual Management System (PAMS). The project was initially identified in 1989 and has since been has been worked on under various names such as Image Retrieval and Viewing System, Photo Image Retrieval Subsystem and Image Processing and Compression System. This document builds upon the information collected and the analysis performed in the earlier phases of this project. The PAMS Photo Imaging subsystem will provide the means of capturing low resolution digital images from Photography`s negative files and associating the digital images with a record in the PAMS photo database. The digital images and key photo identification information will be accessible to HAN users to assist in locating and identifying specific photographs. After identifying desired photographs, users may request photo prints or high resolution digital images directly from Photography. The digital images captured by this project are for identification purposes only and are not intended to be of sufficient quality for subsequent use.

  20. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809